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CONVERGENCE RATE OF INERTIAL PROXIMAL ALGORITHMS WITH GENERAL

EXTRAPOLATION AND PROXIMAL COEFFICIENTS

HEDY ATTOUCH, ZAKI CHBANI, AND HASSAN RIAHI

Abstract. In a Hilbert space setting, with the aim of developing rapid methods for nonsmooth convex opti-
mization, we analyze the convergence rate of the inertial proximal algorithms. These algorithms involve both
extrapolation coefficients (including Nesterov acceleration method) and proximal coefficients in a general form.
They can be interpreted as the discrete time version of inertial continuous gradient systems with general damp-
ing and time scale coefficients. Based on the proper setting of these parameters, we show the fast convergence
of values and the convergence of iterates. In doing so, we provide an overview of this class of algorithms. Our
study complements the previous Attouch-Cabot paper (SIOPT, 2018) by introducing into the algorithm time
scaling aspects, and sheds new light on the Güler seminal papers on the convergence rate of the accelerated
proximal methods for convex optimization.

Key words: Inertial proximal algorithms; general extrapolation coefficient; Lyapunov analysis; Nesterov accel-
erated gradient method; nonsmooth convex optimization; time rescaling.
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1. Introduction

Throughout the paper, H is a real Hilbert space endowed with the scalar product 〈·, ·〉 and the corresponding
norm ‖·‖. The function Φ : H → R∪{+∞}, which is to minimize, is supposed to be convex lower semicontinuous
and proper, and such that argminH Φ 6= ∅. We will analyze the convergence properties of the Inertial Proximal
algorithm

(1) (IP)αk,βk

{
yk = xk + αk(xk − xk−1)

xk+1 = proxβkΦ(yk),

where the sequences (αk) and (βk) play the role of parameters. As a standing assumption, we assume that,
for every k ≥ 1, αk is non-negative and βk is positive. For a judicious choice of αk and βk, we will obtain fast
convergence of the values and convergence of the iterates. In doing so, we will extend previous studies to the
case of inertial proximal methods with general coefficients, including large proximal steps βk. We recall that,
for β > 0, the proximal mapping proxβΦ : H → H is defined by: for every x ∈ H,

proxβΦ(x) = argminξ∈H

{
βΦ(ξ) +

1

2
‖x− ξ‖2

}
.

One can consult [15, 28, 29, 32], for a recent account on the proximal methods, that play a central role in non-
smooth optimization as a basic block of many splitting algorithms. Proximal methods have a close relationship
with gradient-type continuous evolution systems, from which they can be derived by implicit discretization. As
such, their retain their convergence properties (see [30] for first-order evolution systems). Precisely, to guide
our study, when Φ is continuously differentiable, we will use the link between the (IP)αk,βk proximal algorithm
and the continuous second-order evolution equation

(IGS)γ,β ẍ(t) + γ(t)ẋ(t) + β(t)∇Φ(x(t)) = 0.

In (IGS)γ,β , γ(t) is a positive damping coefficient, and β(t) is a time scale coefficient. The inertial proximal

algorithm (IP)αk,βk can be interpreted as an implicit discretization of (IGS)γ,β , which gives the following

dynamic interpretation of the parameters (αk) and (βk):

• The sequence (αk) of non-negative extrapolation coefficients captures the inertial effect. The property
αk → 1, which plays a central role in the Nesterov acceleration method, is associated with the vanishing
damping property γ(t)→ 0, as t→ +∞.
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• The sequence (βk) of positive proximal coefficients takes into account the temporal scale effects. The
coefficient βk in (IP)αk,βk is the discrete temporal version of β(t). The fast time parametrization of the

orbits (respectively iterates) results from the property β(t)→ +∞ as t→ +∞ (respectively βk → +∞
as k → +∞). It plays a key role in obtaining fast optimization properties.

1.1. Presentation of the results. Historical aspects. Recall two important instances of (IP)αk,βk already
studied, and which constitute special cases of our study:

1. The case βk ≡ β > 0 where the proximal parameter is fixed, and αk is general, is written as follows

(2) (IP)αk,β

{
yk = xk + αk(xk − xk−1)

xk+1 = proxβΦ(yk).

It was analyzed by Attouch-Cabot [5], then by Attouch-Cabot-Chbani-Riahi [6] in the presence of perturbations,
errors. The following result gives the convergence rate of values in this case. It is expressed with the help of

the sequence (tk) that is related to (αk) by the formula tk := 1 +
∑+∞
i=k

∏i
j=k αj . The inverse mapping takes

the simpler form αk = tk−1
tk+1

.

Theorem 1.1 (Attouch-Cabot [5]). Suppose that the sequence (αk) satisfies the following properties (K0) and
(K1).

(K0) ∀k ≥ 1,
∑+∞
i=k

∏i
j=k αj < +∞,

(K1) ∀k ≥ 1, t2k+1 − t2k ≤ tk+1.

Then, for any sequence (xk) generated by the algorithm (IP)αk,β

Φ(xk)−min
H

Φ = O
(

1

t2k

)
as k → +∞.

This result comes as a result of a rich history. In a seminal paper [26], Nesterov proposed the extrapolation

coefficient αk = tk−1
tk+1

with t1 = 1 and tk+1 =

√
4t2k+1+1

2 . This choice corresponds to taking equality in (K1),

and leads to an increasing sequence (αk) which behaves like 1 − 3
k as k → +∞. Then tk is of order k, and

the corresponding convergence rate for values is O( 1
k2 ). This result has been extended by Beck-Teboulle to

structured convex minimization problems in [16], that’s the FISTA inertial proximal-gradient algorithm. Since
the introduction of Nesterov’s scheme, much progress has been made in the development of first-order accelerated
methods, to name a few [15, 16, 18, 19, 22, 23, 24, 28, 32, 37, 35]. Recently, a special attention has been devoted
to the case αk = 1 − α

k , where α > 0 (or an equivalent expression), see [8, 11, 18, 37]. Given x0, x1 ∈ H, for
k ≥ 1 the algorithm writes

(3)

{
yk = xk +

(
1− α

k

)
(xk − xk−1)

xk+1 = proxβΦ (yk) .

For α = 3 we recover a first-order approximation of the original choice of Nesterov. The great novelty of the
algorithm (3) is that, while keeping the same computational complexity as in the case α = 3, taking α > 3
offers many advantages. First, it ensures the convergence of the sequences (xk), as proved by Chambolle-Dossal
[18], see [8] for complementary results. Let us recall that the convergence of the sequences generated by FISTA
has not been established so far. This is a puzzling question in the study of numerical optimization methods.
Second, as proved by Attouch-Peypouquet in [11], it provides the better convergence rate of values

Φ(xk)−min
H

Φ = o

(
1

k2

)
as k → +∞.

When taking αk = 1 − α
k , α = 3 appears as a critical value. The subcritical case α < 3 has been recently

considered by Apidopoulos-Aujol-Dossal [3] and Attouch-Chbani-Riahi [9] with the convergence rate of values

O
(

1

k
2α
3

)
. Theorem 1.1 allows to cover all these situations (except the subcritical case), and many others

including the case αk = 1− c
kr with 0 ≤ r ≤ 1.

2. The case βk general, and αk = 1− α
k , is written as follows

(4) (IP)α,βk

{
yk = xk +

(
1− α

k

)
(xk − xk−1)

xk+1 = proxβkΦ(yk).

The following result gives the convergence rate of values for the algorithm (4). It was obtained by the authors
in [7, Theorem 7.1].
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Theorem 1.2 (Attouch-Chbani-Riahi [7]). Take α ≥ 1. Suppose that the sequence (βk) satisfies the growth
condition: there exists k1 ∈ N such that for all k ≥ k1

(Hβ) βk+1 ≤
k2

(k + 1)(k + 2− α)
βk.

Then, for any sequence (xk) generated by the algorithm (IP)α,βk , we have

Φ(xk)−min
H

Φ = O
(

1

k2βk

)
as k → +∞.

In this result, the introduction of the scaling factor βk permits to pass from the convergence rate O
(

1
k2

)
to

O
(

1
k2βk

)
. When taking βk = kδ, condition (Hβ) is satisfied for δ < α − 3. In this case, for a given δ > 0,

by taking α large enough, namely α > 3 + δ, we can improve the convergence rate of values from O
(

1
k2

)
to

O
(

1
k2+δ

)
This is a clear acceleration effect.

In Theorem 2.3 we will prove the following result, which includes the two studies above (it is formulated
below in a condensed form).

Theorem 1.3. Suppose that the sequence (αk) satisfies (K0). Let (tk) be the sequence defined by αk = tk−1
tk+1

.

Suppose that the sequences (αk) and (βk) satisfy jointly

(K1,αk,βk) t2k+1βk − t2kβk−1 − tk+1βk ≤ 0 for every k ≥ 1.

Let (xk) be a sequence generated by algorithm (IP)αk,βk . Then,

Φ(xk)−min
H

Φ = O
(

1

t2kβk−1

)
as k → +∞.

This result permits to better understand the joint tuning of the extrapolation parameter αk and the scaling
parameter βk in (IP)αk,βk which provides fast convergence of the values. Our study includes Güler’s accelerated
proximal algorithm, and provides new insight on this result. In Güler’s algorithm, the damping coefficient is

written αk = gk

(
1

gk−1
− 1
)

, which allows to formulate the condition (K1,αk,βk) in a simpler form, directly on

the data. Based on this appraoch, and considering various temporal discretizations, our dynamic approach with
general damping and scaling coefficients provides a family of inertial proximal algorithms with fast convergence
properties.

1.2. Link with inertial gradient systems and time scaling.

1.2.1. Link with inertial gradient systems. First verify that the inertial proximal algorithm (IP)αk,βk can be
interpreted as a discretized version in time of the damped inertial dynamic

(IGS)γ,β ẍ(t) + γ(t)ẋ(t) + β(t)∇Φ(x(t)) = 0.

Take a fixed time step h > 0, and set τk = kh, xk = x(τk). Implicit discretization of (IGS)γ,β with centered
second-order variation, gives

(5)
1

h2
(xk+1 − 2xk + xk−1) +

γ(kh)

h
(xk − xk−1) + β(kh)∇Φ(xk+1) = 0.

Hence, xk+1 + h2β(kh)∇Φ(xk+1) = xk + (1− hγ(kh)) (xk − xk−1), which gives the algorithm (IP)αk,βk{
yk = xk + (1− hγ(kh)) (xk − xk−1)

xk+1 = proxh2β(kh)Φ(yk),

with extrapolation coefficient αk = 1− hγ(kh), and prox. parameter h2β(kh).

1.2.2. From Polyak heavy ball to vanishing damping. Take β(·) ≡ 1 and discuss the role of the time-dependent
parameter γ(t) in the continuous dynamic (IGS)γ,1. In the context of mechanics, γ(t) is a viscous friction

coefficient. Taking γ(t) positive causes the dissipation of the global energy of the system. This plays a central
role in its stabilization and optimization properties. The introduction of inertial dynamics (second-order in
time) in optimization comes with B. Polyak [31] who, in 1964, introduced the so-called heavy ball with friction
method, which corresponds to a constant friction coefficient γ(t) ≡ γ0 > 0 in (IGS)γ,1. It turns out that in this
model, the friction is important and neutralizes the inertial effect, which prevents obtaining fast optimization
methods. Indeed, taking the damping parameter γ(t) which tends to zero as t → +∞ (vanishing damping) is
a key property for obtaining fast optimization methods. A decisive step in this direction was obtained by Su,
Boyd, and Candès [37], who showed that the Nesterov acceleration method can be obtained as a discretization



4 H. ATTOUCH, Z. CHBANI, H. RIAHI

of the dynamical system (IGS)γ,1 with γ(t) = 3
t . Recently, Attouch-Chbani-Peypouquet-Redont [8] and May

[25] showed convergence of the trajectories of the (IGS)γ system with γ(t) = α
t and α > 3

(6) (AVD)α ẍ(t) +
α

t
ẋ(t) +∇Φ(x(t)) = 0.

They also obtained the improved convergence rate Φ(x(t))−minH Φ = o( 1
t2 ) as t → +∞. On the basis of the

correspondence αk = 1 − hγk (where h is the discrete time step, and γk = γ(kh)), the discrete version of the
vanishing damping property is that the sequence (αk) tends to one from below as k → +∞. This makes the
link with the historical aspects and the recent developments based on Nesterov acceleration method described
in the previous section. For recent developments concerning the rich relations between inertial gradient systems
with time-dependent friction and the inertial proximal-based algorithms, one can consult [2], [5], [7], [8], [14],
[17], [37], [36].

1.2.3. Link with time scaling. The time-dependent parameter β(t) comes from the time scaling of the dynamic.
Let’s illustrate it in the following model situation. Start from the (AVD)α system with γ(t) = α

t and α ≥ 3.
Given a trajectory x(·) of (AVD)α, we know that (see [4], [8], [37])

(7) Φ(x(t))−min
H

Φ = O
(

1

t2

)
.

Let’s make the following change of time variable in (AVD)α: t = sp, where p is a positive parameter. Set
y(s) := x(sp). By the derivation chain rule, we have

(8) ÿ(s) +
αp
s
ẏ(s) + p2s2(p−1)∇Φ(y(s)) = 0,

where αp = 1 + (α− 1)p. The convergence rate of values becomes

(9) Φ(y(s))−min
H

Φ = O
(

1

s2p

)
.

For p > 1, we have αp > α, so the damping parameters for (8) are similar to those of (AVD)α. The only major

difference is the coefficient s2(p−1) in front of ∇Φ(y(s)), which explodes when s → +∞. From (9) we observe
that the convergence rate of values can be made arbitrarily fast (in the scale of powers of 1

s ) with p large. The
physical intuition is clear. Fast optimization is associated with the fast parameterization of the trajectories of
the (AVD)α system. Our goal is to transpose these results to the discrete case, taking advantage of the fact
that proximal algorithms usually inherit the properties of the continuous dynamics from which they come.

1.2.4. Geometrical damping. The optimization properties of the continuous dynamic (IGS)γ,β come from its
viscous damping term, which makes the system stabilize asymptotically. According to this mechanical and
control point of view, it is natural to consider other types of damping. An important case is the damping
driven by the Hessian which contains a rich geometric information, as considered in [2], [10], [12]. The temporal
discretization of this dynamic gives the Ravine method initially introduced by Gelfand, Tsetlin 1961, then
developed by B. Polyak. The exact link was obtained in [36] using high-resolution. Another interesting damping
is the dry friction, taken account in an optimization framework in [1], and which gives finite time stabilization.
Developing our Lyapunov analysis in these situations is an interesting subject for further studies.

1.3. Organization of the paper. Based on Lyapunov analysis, our main convergence result is established in
Section 2. Depending on the behavior of the sequences (αk) and (βk), we give the convergence rate of the values
of the sequences (xk) generated by algorithm (IP)αk,βk . In Section 3, we analyze the convergence rate of the
velocities. In Section 4, we show how to pass from O to o estimates. In Section 5, we give general conditions on
the sequences (αk) and (βk) which guarantee the weak convergence of the iterates. In Section 6, we study the
link with the accelerated proximal algorithm of Güler. In Section 7 we study a parametrized family of rescaled
proximal algorithms which extends the previous study. In Section 8, we study the stability with respect to
perturbations. The paper is completed by some auxiliary technical lemmas contained in the Appendix.

2. Convergence rate of the values

The algorithm (IP)αk,βk

(10) (IP)αk,βk

{
yk = xk + αk(xk − xk−1)

xk+1 = proxβkΦ(yk),

can be equivalently formulated as

(11) xk+1 − 2xk + xk−1 + (1− αk)(xk − xk−1) + βk∂Φ(xk+1) 3 0.
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This formulation can also be obtained from the implicit discretization of the inertial dynamic (IGS)γ,β , see (5).

Following [4], let us introduce the sequence (tk) that plays a central role in the analysis of algorithm (IP)αk,βk .

2.1. The sequence (tk). Given k ≥ 1, assume that

+∞∑
i=k

i∏
j=k

αj < +∞ and set tk = 1 +
∑+∞
i=k

∏i
j=k αj . We use

the convention
∏k−1
j=k αj = 1, which gives the compact form of tk

(12) tk =

+∞∑
i=k−1

i∏
j=k

αj .

If the series defining tk+1 is convergent, the series defining tk is also convergent, and we have

1 + αktk+1 = 1 + αk

+∞∑
i=k

i∏
j=k+1

αj

 = 1 +

+∞∑
i=k

i∏
j=k

αj = tk.

Conversely, if αk 6= 0 and if tk is well-defined, then the series defining tk+1 is convergent and the above equalities
hold true. From now on, we assume that

(K0)
+∞∑
i=k

i∏
j=k

αj < +∞ for every k ≥ 1.

Let us summarize the above results.

Lemma 2.1. Assume that the non-negative sequence (αk) satisfies (K0). Then the sequence (tk) is well defined
and satisfies for every k ≥ 1

(13) 1 + αktk+1 = tk.

The sequence (tk) allows us to formulate the conditions on the sequence (αk) in a dense form. Although the
direct formulation (12) of (tk) in terms of (αk) is complicated, the inverse formulation is simple: αk = tk−1

tk+1
.

2.2. Convergence rates of the values: Lyapunov analysis. Let us introduce the ingredients that will
serve for the Lyapunov analysis. For k ≥ 1, the global energy Wk is defined by

(14) Wk := βk−1

(
Φ(xk)−min

H
Φ
)

+
1

2
‖xk − xk−1‖2.

Its importance is due to the fact that, for damped inertial gradient systems, it is the global energy that decreases.
Given x∗ ∈ argmin Φ, the anchor sequence (hk) is defined by: for k ≥ 1

(15) hk :=
1

2
‖xk − x∗‖2.

Let us define the sequence (Ek) by: for every k ≥ 1

(16) Ek := t2kβk−1(Φ(xk)−min
H

Φ) +
1

2
‖xk−1 + tk(xk − xk−1)− x∗‖2.

Note that

Ek = t2kWk +
1

2
‖xk−1 − x∗‖2 + tk〈xk − xk−1, xk−1 − x∗〉.

This formulation shows Ek as a weighted sum of the global energy, the anchor function, and the discrete time
derivative of the anchor function. For our next calculation, we will use the formulation (16), which, as a main
advantage, involves only non-negative terms. The following result shows that the sequence (Ek) is non-increasing,
under the condition (K1,αk,βk), that involves the two sequences (αk), and (βk) together.

Proposition 2.2. Assume that the non-negative sequence (αk) satisfies (K0). Let (xk) be a sequence generated
by algorithm (IP)αk,βk , and let (Ek) be the sequence defined by (16). Then we have: for every k ≥ 1

(17) Ek+1 − Ek ≤ (t2k+1βk − t2kβk−1 − tk+1βk)(Φ(xk)−min
H

Φ).

Under the assumption

(K1,αk,βk) t2k+1βk − t2kβk−1 − tk+1βk ≤ 0 for every k ≥ 1,

then the sequence (Ek) is non-increasing.
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Proof. By definition of the proximal operator, the iteration at step k of the algorithm (IP)αk,βk writes

1

βk
(yk − xk+1) ∈ ∂Φ(xk+1).

Equivalently, we have the following subdifferential inequalities: for any x ∈ H

(18) Φ(x) ≥ Φ(xk+1) +
1

βk
〈x− xk+1, yk − xk+1〉.

Let us write successively inequality (18) at x = xk and x = x∗ ∈ argmin Φ. We obtain the two inequalities

Φ(xk) ≥ Φ(xk+1) +
1

βk
〈xk − xk+1, yk − xk+1〉,(19)

Φ(x∗) ≥ Φ(xk+1) +
1

βk
〈x∗ − xk+1, yk − xk+1〉.(20)

Using xk − xk+1 = xk − yk + yk − xk+1 in (19) and x∗ − xk+1 = x∗ − yk + yk − xk+1 in (20) we obtain

Φ(xk) ≥ Φ(xk+1) +
1

βk
〈xk − yk, yk − xk+1〉+

1

βk
‖yk − xk+1‖2,(21)

Φ(x∗) ≥ Φ(xk+1) +
1

βk
〈x∗ − yk, yk − xk+1〉+

1

βk
‖yk − xk+1‖2.(22)

Multiplying (21) by tk+1 − 1 ≥ 0, then adding (22), we derive that

(tk+1 − 1)(Φ(xk)− Φ(x∗)) ≥ tk+1(Φ(xk+1)− Φ(x∗)) +
1

βk
〈xk+1 − yk, (tk+1 − 1)(yk − xk) + yk − x∗〉

+
tk+1

βk
‖yk − xk+1‖2.

Observe that

(tk+1 − 1)(yk − xk) + yk = tk+1 yk − (tk+1 − 1)xk

= xk + tk+1 αk(xk − xk−1)

= xk−1 + (1 + tk+1 αk)(xk − xk−1)

= xk−1 + tk(xk − xk−1) in view of (13).

Setting zk = xk−1 + tk(xk − xk−1), we then deduce from (23) that

(tk+1 − 1)(Φ(xk)− Φ(x∗)) ≥ tk+1(Φ(xk+1)− Φ(x∗))(23)

+
1

βk
〈xk+1 − yk, zk − x∗〉+

tk+1

βk
‖yk − xk+1‖2.

Equivalently, after multiplication by βk

βk(tk+1 − 1)(Φ(xk)− Φ(x∗)) ≥ βktk+1(Φ(xk+1)− Φ(x∗))(24)

+ 〈xk+1 − yk, zk − x∗〉+ tk+1‖yk − xk+1‖2.

To write (24) in a recursive form, observe that

zk+1 − zk = xk + tk+1(xk+1 − xk)− xk−1 − tk(xk − xk−1)

= tk+1(xk+1 − xk)− (tk − 1)(xk − xk−1)

= tk+1(xk+1 − xk − αk(xk − xk−1)) in view of (13)

= tk+1(xk+1 − yk).

It ensues that

‖zk+1 − x∗‖2 = ‖zk − x∗‖2 + 2tk+1〈xk+1 − yk, zk − x∗〉+ t2k+1‖xk+1 − yk‖2,

which gives

〈xk+1 − yk, zk − x∗〉 =
1

2tk+1

(
‖zk+1 − x∗‖2 − ‖zk − x∗‖2

)
− tk+1

2
‖xk+1 − yk‖2.

Using this equality in (24), we find

βk(tk+1 − 1)(Φ(xk)− Φ(x∗)) ≥ βktk+1(Φ(xk+1)− Φ(x∗)) +
tk+1

2
‖yk − xk+1‖2

+
1

2tk+1

(
‖zk+1 − x∗‖2 − ‖zk − x∗‖2

)
.
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After multiplication by tk+1, and neglecting the non-negative term tk+1

2 ‖yk − xk+1‖2, we obtain

βk(t2k+1 − tk+1)(Φ(xk)− Φ(x∗)) +
1

2
‖zk − x∗‖2. ≥ βkt2k+1(Φ(xk+1)− Φ(x∗)) +

1

2
‖zk+1 − x∗‖2.

Note that the sequence (Ek) writes equivalently Ek = t2kβk−1(Φ(xk) −minH Φ) + 1
2‖zk − x

∗‖2. Thus, we have
obtained the following inequality

Ek ≥ Ek+1 + (t2kβk−1 − βk(t2k+1 − tk+1))(Φ(xk)−min
H

Φ).

Under condition (K1,βk) we have t2kβk−1 − βk(t2k+1 − tk+1) ≥ 0. As a consequence Ek ≥ Ek+1, and the sequence
(Ek) is non-increasing. �

As a result of Proposition 2.2, we obtain the convergence rate of values as shown below.

Theorem 2.3. Suppose that the sequence (αk) satisfies (K0). Suppose that (αk) and (βk) satisfy (K1,αk,βk).
Let (xk) be a sequence generated by algorithm (IP)αk,βk . Then we have

(i) For every k ≥ 1,

Φ(xk)−min
H

Φ ≤ C

t2kβk−1
,

with C = t21β0(Φ(x1)−minHΦ) + 1
2 (d(x0, argminH Φ)2 + t21‖x1 − x0‖2).

(ii) Assume moreover that there exists m < 1 such that

(K+
1,αk,βk

) t2k+1βk − t2kβk−1 ≤ mtk+1βk for every k ≥ 1.

Then we have
+∞∑
k=1

tk+1βk(Φ(xk)−min
H

Φ) < +∞.

Proof. (i) From Proposition 2.2, the sequence (Ek) is non-increasing. It ensues that Ek ≤ E1 for every k ≥ 1.
Recalling the expression of Ek, we deduce that

t2kβk−1 (Φ(xk)−min
H

Φ) ≤ t21β0[Φ(x1)−min
H

Φ] +
1

2
‖x0 − x∗ + t1(x1 − x0)‖2

≤ t21β0[Φ(x1)−min
H

Φ] +
1

2
‖x0 − x∗‖2 +

t21
2
‖x1 − x0‖2

Since x∗ can be taken arbitrarily in argminH Φ, we finally obtain

t2kβk−1 (Φ(xk)−min
H

Φ) ≤ C,

with

C = t21β0(Φ(x1)−min
H

Φ) +
1

2
(d(x0, argminHΦ)2 + t21‖x1 − x0‖2).

(ii) By summing inequality (17) from k = 1 to n, we find

En+1 +

n∑
k=1

(tk+1βk − t2k+1βk + t2kβk−1)(Φ(xk)−min
H

Φ) ≤ E1.

Since En+1 ≥ 0 and since t2k+1βk − t2kβk−1 ≤ mtk+1βk, this implies that

(1−m)

n∑
k=1

tk+1βk(Φ(xk)−min
H

Φ) ≤ E1.

By letting n tend to infinity, we obtain

∞∑
k=1

tk+1βk(Φ(xk)−min
H

Φ) ≤ E1
1−m

,

which gives the claim. �

2.3. Particular cases.
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2.3.1. Case βk ≡ s > 0, αk general. This is the case without scaling. The algorithm (IP)αk,βk writes

(25)

{
yk = xk + αk(xk − xk−1)

xk+1 = proxsΦ(yk),

Condition (K1,αk,βk) becomes t2k+1 − t2k − tk+1 ≤ 0 for every k ≥ 1. Under this condition, we obtain the
convergence rate of values

Φ(xk)−min
H

Φ ≤ C

t2k
.

Thus, we recover the convergence rate of values of Attouch-Cabot [4].

2.3.2. Case αk = 1− α
k , βk general. The algorithm (IP)αk,βk writes

(26)

{
yk = xk +

(
1− α

k

)
(xk − xk−1)

xk+1 = proxβkΦ(yk),

Then, tk = k−1
α−1 (see [4]), and condition (K1,βk) becomes

βk+1 ≤ βk
k2

(k + 1)(k + 2− α)
.

Under this condition, we obtain the convergence rate of values

Φ(xk)−min
H

Φ ≤ C

k2βk
.

Thus, we recover the result of Attouch-Chbani-Riahi [7, section 7].

3. Convergence rate of the velocities

Let (xk) be a sequence generated by the algorithm (IP)αk,βk . We will analyze the convergence rate to zero

of the velocity ‖xk − xk−1‖. Our analysis is based on the global energy decay. Recall that the friction effect,
and thus the dissipation of energy, is related to αk ≤ 1.

Proposition 3.1. Let (xk) be a sequence generated by algorithm (IP)αk,βk .
Then, for every k ≥ 1,

βk(Φ(xk)−min
H

Φ) +
1

2
‖xk − xk−1‖2 ≥ βk(Φ(xk+1)−HΦ) +

1

2
‖xk+1 − xk‖2 +

1− α2
k

2
‖xk − xk−1‖2.(27)

Proof. The iteration at step k of the algorithm (IP)αk,βk writes 1
βk

(yk − xk+1) ∈ ∂Φ(xk+1), which gives:

(28) Φ(xk)−min
H

Φ ≥ Φ(xk+1)−min
H

Φ +
1

βk
〈yk − xk+1, xk − xk+1〉.

According to the extrapolation formula, yk = xk + αk(xk − xk−1), and after multiplication by βk we get

βk(Φ(xk)−min
H

Φ) ≥ βk(Φ(xk+1)−min
H

Φ) + 〈xk − xk+1 + αk(xk − xk−1), xk − xk+1〉

= βk(Φ(xk+1)−min
H

Φ) + ‖xk − xk+1‖2 + 〈αk(xk − xk−1), xk − xk+1〉.

By using the algebraic inequality

|〈αk(xk − xk−1), xk − xk+1〉| ≤
1

2
‖xk − xk+1‖2 +

α2
k

2
‖xk − xk−1‖2,

we deduce that

βk(Φ(xk)−min
H

Φ) ≥ βk(Φ(xk+1)−min
H

Φ) + ‖xk − xk+1‖2 −
1

2
‖xk − xk+1‖2 −

α2
k

2
‖xk − xk−1‖2.

Equivalently

βk(Φ(xk)−min
H

Φ) +
1

2
‖xk − xk−1‖2 ≥ βk(Φ(xk+1)−min

H
Φ) +

1

2
‖xk+1 − xk‖2 +

1− α2
k

2
‖xk − xk−1‖2,

which gives the claim. �

Theorem 3.2. Suppose that (αk) and (βk) satisfy (K+
1,αk,βk

). Then, we have

+∞∑
k=1

tk‖xk − xk−1‖2 < +∞.
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Proof. Consider, for k ≥ 1, the global energy Wk, where we set m = minH Φ:

Wk := βk−1 (Φ(xk)−m) +
1

2
‖xk − xk−1‖2.

Let us multiply the inequality (27) obtained in Proposition 3.1 by t2k+1

t2k+1

(
βk(Φ(xk)−m) +

1

2
‖xk − xk−1‖2

)
≥ t2k+1βk(Φ(xk+1)−m)

+
t2k+1

2
‖xk+1 − xk‖2 +

t2k+1(1− α2
k)

2
‖xk − xk−1‖2.

Let us reformulate this inequality in terms of the sequence (Wk). We have

t2k+1

(
βk−1(Φ(xk)−m) + (βk − βk−1)(Φ(xk)−m) +

1

2
‖xk − xk−1‖2

)
≥ t2k+1Wk+1 +

t2k+1(1− α2
k)

2
‖xk − xk−1‖2,

which gives

t2k+1Wk + t2k+1(βk − βk−1)(Φ(xk)−m) ≥ t2k+1Wk+1 +
t2k+1(1− α2

k)

2
‖xk − xk−1‖2.

Equivalently

t2k+1(Wk+1 −Wk) +
t2k+1(1− α2

k)

2
‖xk − xk−1‖2 ≤ t2k+1 (βk − βk−1) (Φ(xk)−m).

Let us rewrite the above expression as

t2k+1Wk+1 − t2kWk + (t2k − t2k+1)Wk +
t2k+1(1− α2

k)

2
‖xk − xk−1‖2

≤ t2k+1 (βk − βk−1) (Φ(xk)−m).

Recalling the expression of Wk, we deduce that

t2k+1Wk+1 − t2kWk +
1

2
[t2k − t2k+1 + t2k+1(1− α2

k)]‖xk − xk−1‖2

≤ [(t2k+1 − t2k)βk−1 + t2k+1 (βk − βk−1)](Φ(xk)−m).

On the one hand, by (13), and since tk ≥ 1 we have

t2k − t2k+1 + t2k+1(1− α2
k) = t2k − t2k+1α

2
k = t2k − (tk − 1)2 = 2tk − 1 ≥ tk.

On the other hand, by using condition (K+
1,αk,βk

) we have

(t2k+1 − t2k)βk−1 + t2k+1 (βk − βk−1) = t2k+1βk − t2kβk−1 ≤ tk+1βk.

Combining the above results we obtain

(29) t2k+1Wk+1 − t2kWk +
1

2
tk‖xk − xk−1‖2 ≤ tk+1βk(Φ(xk)−m).

By Theorem 2.3, under the assumption (K+
1,αk,βk

) we have

∞∑
k=1

tk+1βk(Φ(xk)−m) < +∞.

As a consequence, by summing the above inequalities, we obtain

1

2

∞∑
k=1

tk‖xk − xk−1‖2 ≤ t21W1 +

∞∑
k=1

tk+1βk(Φ(xk)−m) < +∞,

which gives the claim. �

Corollary 3.3. Suppose that the sequences (αk) and (βk) satisfy (K+
1,αk,βk

). Suppose that 0 ≤ αk ≤ 1 for every

k ≥ 1, and that the sequence (βk) satisfies: there exists some positive constant C such that, for all k ≥ 1

(30) βk ≤ Cβk+1.

Then, for any sequence (xk) generated by the algorithm (IP)αk,βk , we have∑+∞
k=1 tkWk < +∞, where Wk := βk−1 (Φ(xk)−minH Φ) + 1

2‖xk − xk−1‖2.
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Proof. By Theorem 2.3 (ii), under the assumption (K+
1,αk,βk

) we have

(31)

+∞∑
k=1

tk+1βk(Φ(xk)−min
H

Φ) < +∞.

By assumption (30) we have tkβk−1 ≤ Ctkβk. By Lemma 2.1, we have tk = 1 + αktk+1. Since 0 ≤ αk ≤ 1, and
according to 1 ≤ tk+1, this implies

tk ≤ 1 + tk+1 ≤ 2tk+1.

Combining the two above inequalities, we obtain tkβk−1 ≤ 2Ctk+1βk. According to (31) this implies

(32)

+∞∑
k=1

tkβk−1(Φ(xk)−min
H

Φ) ≤ 2C

+∞∑
k=1

tk+1βk(Φ(xk)−min
H

Φ) < +∞.

Combining this inequality with the estimate of the velocities
∑+∞
k=1 tk‖xk−xk−1‖2 < +∞, obtained in Theorem

3.2, we obtain
∑+∞
k=1 tkWk < +∞. �

Remark 3.4. In Corollary 3.3, the assumption on the sequence (βk) is satisfied in almost all practical situations.
Clearly, it is satisfied if the sequence (βk) is non-decreasing. It may be also decreasing like 1

kr for any r ≥ 0, or

exp(−k). A limiting case in which it is not satisfied is 1
k! . Moreover, the assumption on the sequence (αk) can

be weakened, just assuming that it is bounded from above.

4. From O to o estimates

In line with Attouch-Peypouquet [11] and Attouch-Cabot [5], we have the following convergence rate of
values, where O is replaced by o.

Theorem 4.1. Let us assume that the non-negative sequence (αk) is bounded from above, (αk) and (βk) satisfy
the condition (K+

1,αk,βk
), and there exists some positive constant C such that βk ≤ Cβk+1 for all k ≥ 1.

Then, for any sequence (xk) generated by the algorithm (IP)αk,βk , we have:

i) If
∑

1
tk

= +∞, then

Φ(xk)−min
H

Φ = o

(
1

t2kβk

)
and ‖xk − xk−1‖2 = o

(
1

t2k

)
.

ii) If
∑
tkβk−1 = +∞, 0 ≤ αk ≤ 1, and (βk) is non-decreasing, then

Φ(xk)−min
H

Φ = o

(
1∑k

i=1 tiβi−1

)
and ‖xk − xk−1‖2 = o

(
βk−1∑k
i=1 tiβi−1

)
.

In particular, Φ(xk)→ minH Φ as k → +∞.

Proof. Let’s consider the sequence of global energies (Wk) introduced in the proof of Theorem 3.2

Wk := βk−1 (Φ(xk)−m) +
1

2
‖xk − xk−1‖2.

By Corollary 3.3 it satisfies
∞∑
k=1

tkWk < +∞.

i) Returning to (29) we have

t2k+1Wk+1 − t2kWk +
1

2
tk‖xk − xk−1‖2 ≤ tk+1βk(Φ(xk)−m).

The non-negative sequence (ak) with ak := t2kWk satisfies the relation

ak+1 − ak ≤ ωk
with ωk = tk+1βk(Φ(xk) −m). According to

∑
k≥1 tk+1βk(Φ(xk) −m) < +∞ (see Theorem 2.3 (ii)) we have

(wk) ∈ l1(N). By a standard argument, we deduce that the limit of the sequence (ak) exists, that is

lim
k→+∞

t2kWk exists.

Let c := limk→+∞ t2kWk. Let’s show that c = 0. Let’s argue by contradiction, and suppose that c > 0. As a
result, tkWk ∼ c

tk
. According to

∑∞
k=1 tkWk < +∞, this implies c

∑
1
tk
< +∞, a clear contradiction with the

hypothesis
∑

1
tk

= +∞. Hence, c = 0. So, limk→+∞ t2kWk = 0, which gives the claim.
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ii) The argument is based on the non-increasing property of the sequence ( 1
βk−1

Wk). Let us return to

Proposition 3.1. After dividing (27) by βk, we get

(Φ(xk)−min
H

Φ) +
1

2βk
‖xk − xk−1‖2 ≥ (Φ(xk+1)−min

H
Φ)

+
1

2βk
‖xk+1 − xk‖2 +

1− α2
k

2βk
‖xk − xk−1‖2.(33)

Let’s formulate the above inequality in terms of the sequence (Wk). We obtain

(34)
1

βk−1
Wk + (

1

2βk
− 1

2βk−1
)‖xk − xk−1‖2 ≥

1

βk
Wk+1 +

1− α2
k

2βk
‖xk − xk−1‖2.

Since 0 ≤ αk ≤ 1, and the sequence (βk) is non-decreasing, we deduce that

(35)
1

βk−1
Wk ≥

1

βk
Wk+1.

Hence, the sequence ( 1
βk−1

Wk) is non-increasing. Let us rewrite the estimate
∑∞
k=1 tkWk < +∞. as

∞∑
k=1

tkβk−1

(
1

βk−1
Wk

)
< +∞.

We are now in position to apply Lemma A.2 in the appendix, with the sequences (tkβk−1) and ( 1
βk−1

Wk),

respectively in place of (τk) and (εk). We obtain that

1

βk−1
Wk = o

(
1∑k

i=1 tiβi−1

)
as k → +∞.

Hence

Wk = o

(
βk−1∑k
i=1 tiβi−1

)
as k → +∞,

which gives the claim. �

As a direct consequence of Theorem 4.1, in the case without inertia, i.e. αk ≡ 0 (which gives tk ≡ 1) we
obtain the following result.

Corollary 4.2. Suppose that the sequence (βk) is non-decreasing. Then for any sequence (xk) generated by the
proximal algorithm xk+1 = proxβkΦ(xk) we have the following estimates:

Φ(xk)−min
H

Φ = o

(
1∑k

i=1 βi−1

)
and ‖xk − xk−1‖2 = o

(
βk−1∑k
i=1 βi−1

)
.

When (βk) is non-decreasing, this notably improves the results obtained by Güler in [20, Theorem 3.1].

5. Convergence of the iterates

Let us now fix x∗ ∈ argmin Φ, and define hk := 1
2‖xk − x∗‖2. The sequence (hk) takes account of the

anchoring of the sequence of iterates (xk) to the solution set. The next result will be useful for establishing the
convergence of the iterates of the algorithm (IP)αk,βk .

Proposition 5.1. For any k ≥ 1, the following inequality holds

(36) hk+1 − hk − αk(hk − hk−1) ≤ 1

2
(α2
k + αk)‖xk − xk−1‖2 − βk(Φ(xk+1)−min

H
Φ).

Proof. Observe that

‖yk − x∗‖2 = ‖xk + αk(xk − xk−1)− x∗‖2

= ‖xk − x∗‖2 + α2
k‖xk − xk−1‖2 + 2αk〈xk − x∗, xk − xk−1〉

= ‖xk − x∗‖2 + α2
k‖xk − xk−1‖2 + αk‖xk − x∗‖2 + αk‖xk − xk−1‖2 − αk‖xk−1 − x∗‖2

= ‖xk − x∗‖2 + αk(‖xk − x∗‖2 − ‖xk−1 − x∗‖2) + (α2
k + αk)‖xk − xk−1‖2

= 2[hk + αk(hk − hk−1)] + (α2
k + αk)‖xk − xk−1‖2.
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Set briefly Ak = hk+1 − hk − αk(hk − hk−1) = 1
2‖xk+1 − x∗‖2 − [hk + αk(hk − hk−1)]. According to the above

inequality, we get

Ak =
1

2
‖xk+1 − x∗‖2 −

1

2
‖yk − x∗‖2 +

1

2
(α2
k + αk)‖xk − xk−1‖2

=

〈
xk+1 − yk,

1

2
(xk+1 + yk)− x∗

〉
+

1

2
(α2
k + αk)‖xk − xk−1‖2

= 〈xk+1 − yk, yk − x∗〉+
1

2
‖xk+1 − yk‖2 +

1

2
(α2
k + αk)‖xk − xk−1‖2.

So, we obtain the equality

hk+1 − hk − αk(hk − hk−1) =
1

2
(α2
k + αk)‖xk − xk−1‖2 + 〈yk − xk+1, x

∗ − yk〉+
1

2
‖yk − xk+1‖2.(37)

Now use that x∗ ∈ argmin Φ. By definition of the proximal operator, xk+1 = proxβkΦ(yk) equivalently gives
1
βk

(yk − xk+1) ∈ ∂Φ(xk+1). The convex subdifferential inequality applied at xk+1 gives

Φ(x∗) ≥ Φ(xk+1) + 〈 1

βk
(yk − xk+1), x∗ − xk+1〉.

Since Φ(x∗) = minHΦ, we infer that

〈yk − xk+1, x
∗ − xk+1〉 ≤ −βk(Φ(xk+1)−min

H
Φ).

Hence

‖yk − xk+1‖2 + 〈yk − xk+1, x
∗ − yk〉 ≤ −βk(Φ(xk+1)−min

H
Φ).

Combining this inequality with (37) gives

hk+1 − hk − αk(hk − hk−1) ≤ 1

2
(α2
k + αk)‖xk − xk−1‖2 − βk(Φ(xk+1)−min

H
Φ),

which completes the proof of Proposition 5.1. �

We will also need the following estimate for the velocities which completes Theorem 3.2.

Proposition 5.2. Suppose that the sequences (αk) and (βk) satisfy the condition (K+
1,αk,βk

) and that the

sequence (βk) is non-decreasing. Then, we have

+∞∑
k=1

tk+1‖xk − xk−1‖2 < +∞.

Proof. Condition (K+
1,αk,βk

) can be equivalently written as

(t2k+1 − t2k)βk + t2k(βk − βk−1) ≤ tk+1βk

Since the sequence (βk) is non-decreasing, we infer t2k+1 − t2k ≤ tk+1. Hence

tk+1 − tk ≤
tk+1

tk+1 + tk
≤ 1.

Since 1 ≤ tk, we immediately obtain tk+1 ≤ 2tk. So

+∞∑
k=1

tk+1‖xk − xk−1‖2 ≤ 2

+∞∑
k=1

tk‖xk − xk−1‖2 < +∞,

where the last inequality comes from Theorem 3.2. �

Theorem 5.3. Assume that
i) the sequences (αk) and (βk) satisfy the condition (K+

1,αk,βk
);

ii) αk ∈ [0, 1] for every k ≥ 1;
iii) the sequence (βk) is non-decreasing;
iv)

∑∞
k=1 tkβk−1 = +∞.

Then, any sequence (xk) generated by the algorithm (IP)αk,βk converges weakly, and its limit belongs to argmin Φ.

Proof. We apply the Opial lemma, see Lemma A.1. Assume that there exist x ∈ H and a sequence (kn) such
that kn → +∞, and xkn ⇀ x weakly as n → +∞. Since the convex function Φ is lower semicontinuous, it is
lower semicontinuous for the weak topology, hence satisfies

Φ(x) ≤ lim inf
n→+∞

Φ(xkn) = lim
k→+∞

Φ(xk) = min
H

Φ,
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where the last equality comes from Theorem 4.1. It ensues that x ∈ argmin Φ, which shows the first point.
Let us now fix x∗ ∈ argmin Φ, and show that limk→+∞ ‖xk−x∗‖ exists. Set hk = 1

2‖xk−x
∗‖2. From Proposition

5.1, (hk) satisfies the following inequalities

hk+1 − hk − αk(hk − hk−1) ≤ 1

2
(α2
k + αk)‖xk − xk−1‖2 ≤ ‖xk − xk−1‖2 since αk ∈ [0, 1].

Taking the positive part, we find

(hk+1 − hk)+ ≤ αk(hk − hk−1)+ + ‖xk − xk−1‖2.

By Proposition 5.2 we have
∑+∞
k=1 tk+1‖xk − xk−1‖2 < +∞. By applying Lemma A.3 (appendix) with ak =

(hk − hk−1)+ and ωk = ‖xk − xk−1‖2, we obtain
∑+∞
k=1(hk − hk−1)+ < +∞. Since (hk) is nonnegative, this

implies that limk→+∞ hk exists. The second point of the Opial lemma is shown, which ends the proof. �

6. Link with Güler’s accelerated proximal algorithm

Let’s recall Güler’s accelerated proximal algorithm, see [21]. We modify the notations to adapt them to our
framework. The proximal parameter noted λk in Güler’s article is noted here βk, and the inertial parameter is
denoted by gk in place of γk.

a) Initialization of ν0 and A0.

b) Step k :

•Chooseβk > 0, and calculate gk > 0 by solving

g2
k + gkAkβk −Akβk = 0.

•Define
i) yk = (1− gk)xk + gkνk;

ii) xk+1 = proxβkΦ(yk);

iii) νk+1 = νk + 1
gk

(xk+1 − yk);

iv) Ak+1 = (1− gk)Ak.

(38)

6.1. Güler’s accelerated proximal algorithm as (IP)αk,βk . Let us show that Güler’s proximal algorithm

can be written as an inertial proximal algorithm (IP)αk,βk . First verify that, for all k ≥ 1

(39) νk = xk−1 +
1

gk−1
(xk − xk−1) .

For this, we use an induction argument. Suppose (39) is satisfied at step k. Using successively (38) iii), (39),
(38) i), and (39) again, we obtain

νk+1 = νk +
1

gk
(xk+1 − yk) = xk−1 +

1

gk−1
(xk − xk−1) +

1

gk
(xk+1 − yk)

=
1

gk
xk+1 + xk−1 +

1

gk−1
(xk − xk−1)− 1

gk
((1− gk)xk + gkνk)

=
1

gk
xk+1 −

1− gk
gk

xk = xk +
1

gk
(xk+1 − xk) ,

which shows that (39) is satisfied at step k + 1. Then, combining (38) i) with (39), we obtain

yk = (1− gk)xk + gkνk = (1− gk)xk + gk

(
xk−1 +

1

gk−1
(xk − xk−1)

)
= xk +

(
gk
gk−1

− gk
)

(xk − xk−1) .

Hence, Güler’s proximal algorithm can be written as

(40)

{
yk = xk + αk(xk − xk−1)

xk+1 = proxβkΦ(yk),

with

(41) αk = gk

(
1

gk−1
− 1

)
.

By construction of gk, we have gk = 1
2

(
−Akβk +

√
(Akβk)2 + 4Akβk

)
, which gives 0 ≤ gk < 1. According to

(41), we deduce that αk > 0. As a result, the first formula of (40) defines an extrapolation operation. This
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makes Güler’s algorithm an inertial proximal algorithm, within the framework of the algorithm (IP)αk,βk . From

item iv) in Güler’s algorithm, we immediately get:

(42) Ak = A0

k−1∏
j=0

(1− gj).

From the second-order algebraic equation that defines gk and (38) iv), we have

(43) g2
k = Akβk(1− gk) = βkAk+1.

Combining (42) with (43), we obtain the following relation:

(44) βk =
g2
k

A0

∏k
j=0(1− gj)

.

According to (41)-(42)-(44), we have obtained that all the parameters entering into Güler’s algorithm can be
expressed according to the single parameter gk.

6.2. Convergence rate of Güler’s accelerated proximal algorithm. Let us show that the convergence
rate of Güler’s accelerated proximal algorithm falls within the framework of Theorem 2.3. For this, we must
make the link between the parameters used in Güler’s algorithm and the parameter tk used in Theorem 2.3.
We start from

(45) αk = gk

(
1

gk−1
− 1

)
.

Let us show how to invert this relation. Set γk = 1− αk. According to (45)

γk = 1− gk
(

1

gk−1
− 1

)
= gk

(
1 +

1

gk
− 1

gk−1

)
.

Set wk := 1
gk

. The sequence (wk) safisfies the finite-difference equation

1 + wk − wk−1 = γkwk,

which gives, for all k ≥ 1,

wk−1 = 1 + αkwk.

Comparing with the relation (13) that defines the sequence (tk) in Lemma 2.1, we obtain wk = tk+1. Hence,
for all k ≥ 1

(46) gk =
1

tk+1
.

We have now all the ingredients to verify that the condition

(K1,αk,βk) t2k+1βk − t2kβk−1 − tk+1βk ≤ 0 for every k ≥ 1,

is satisfied by Güler’s algorithm. We have

t2k+1βk − t2kβk−1 − tk+1βk = tk+1βk(tk+1 − 1)− t2kβk−1

=
βk
gk

(
1− gk
gk

)
− βk−1

g2
k−1

=
g2
k

A0

∏k
j=0(1− gj)

1

gk

(
1− gk
gk

)
− 1

g2
k−1

g2
k−1

A0

∏k−1
j=0 (1− gj)

=
1

A0

∏k−1
j=0 (1− gj)

− 1

A0

∏k−1
j=0 (1− gj)

= 0.

So, Güler’s accelerated proximal algorithm corresponds to taking equality in the condition (K1,αk,βk). Let us
summarize the above results.

Proposition 6.1. Güler’s accelerated proximal algorithm is within the framework of algorithm (IP)αk,βk with

αk = gk

(
1

gk−1
− 1
)

. It satisfies the condition (K1,αk,βk) with equality instead of inequality, i.e., for all k ≥ 1

t2k+1βk − t2kβk−1 − tk+1βk = 0.

The following rate of convergence is satisfied: For every k ≥ 1,

(47) Φ(xk)−min
H

Φ ≤ C

t2kβk−1
,
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with C = t21β0(Φ(x1)−minHΦ) + 1
2 (d(x0, argminH Φ)2 + t21‖x1 − x0‖2).

Moreover, for every k ≥ 1,

(48) Φ(xk)−min
H

Φ = O

(
1∑k

j=1 tjβj−1

)
.

The above formulas can be expressed equivalently in terms of Güler’s parameters thanks to the relation tk = 1
gk−1

:

Φ(xk)−min
H

Φ = O
(
g2
k−1

βk−1

)
Φ(xk)−min

H
Φ = O

 1∑k
j=1

βj−1

gj−1


Proof. The convergence rate given in (47) results from Theorem 2.3. Let us now exploit the fact that in the
case of Güler’s algorithm, the condition (K1,αk,βk) is satisfied, with equality. By adding the equalities

t2jβj−1 − t2j−1βj−2 = tjβj−1

from j = 1 to k, we get

t2kβk−1 =

k∑
j=1

tjβj−1 + t1β0.

This gives (48), by just assuming that theses quantities are infinite. This is a minimal assumption to insure
convergence of the algorithm. �

Let’s now compare the convergence rate given as above, which results from Theorem 2.3, with the convergence
rate obtained by Güler in [21]

(49) Φ(xk)−min
H

Φ = O

 1(∑k−1
j=1

√
βj

)2

 .

The two above formulas give the same rate of convergence in most practical situations. Let’s give a simple
result where we can deduce the convergence rate obtained by Güler from the Proposition 6.1. Suppose that
(βk) is a non-decreasing sequence, and that tk ≥ Ck for some positive constant C, and k large enough. This
last assumption is satisfied for the Nesterov type acceleration formula with αk = 1− α

k and α ≥ 3, see [5]. Since
(βk) is non-decreasing k−1∑

j=1

√
βj

2

≤ (k − 1)2βk−1.

Since tk ≥ Ck for k large enough, we deduce that (for some other constant C)

1(∑k−1
j=1

√
βj

)2 ≥
C

t2kβk−1
,

which gives the claim.

Remark 6.2. Güler’s accelerated proximal algorithm corresponds to taking equality in (K1,αk,βk). As such,
it fits into the critical case, introduced historically by Nesterov, and for which the convergence of the iterates
is still an open question. By contrast, as shown in Theorem 5.3, taking strict inequality (precisely assuming
the condition (K+

1,αk,βk
)) gives the convergence of iterates, and makes it possible to pass from the capital O to

small o convergence rates. See [18] and [11] who initiated this type of result.

6.3. Dynamic interpretation of Güler’s algorithm. Let’s come with the dynamic interpretation of Güler’s
algorithm, as formulated in (40-41). According to the formulation (41) of αk we get

xk+1 + βk∂Φ(xk+1) 3 yk = xk + gk

(
1

gk−1
− 1

)
(xk − xk−1).

Equivalently,

(50) xk+1 − 2xk + xk−1 +

(
gk −

gk − gk−1

gk−1

)
(xk − xk−1) + βk∂Φ(xk+1) = 0.

This can be interpreted as a time discretization of the second-order evolution equation (when Φ is smooth)

(51) ẍ(t) +

(
g(t)− ġ(t)

g(t)

)
ẋ(t) + β(t)∇Φ(x(t)) = 0.
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So, Güler’s proximal algorithm is based on the damped inertial dynamic (IGS)γ,β where the damping coefficient
is expressed as

γ(t) = g(t)− ġ(t)

g(t)
= g(t)

(
1 +

d

dt

(
1

g

)
(t)

)
.

This makes the link with the next section, where we show that, in this context, the corresponding dynamic
and proximal algorithms can be studied more directly: the conditions ensuring the rapid convergence of the
algorithm can be expressed directly on the parameters gk and βk. This avoids the use of the coefficients tk
whose study requires additional analysis, see [5] for more details.

7. A class of inertial proximal algorithms

Motivated by the results above, we consider the proximal algorithms that can be obtained (when Φ is smooth)
by various temporal discretizations of the second-order evolution equation

(52) ẍ(t) + g(t)

(
1 +

d

dt

(
1

g

)
(t)

)
ẋ(t) + λ(t)∇Φ(x(t)) = 0.

We will see that, without loss of generality, the convergence analysis for the Inertial Proximal algorithm (IP)αk,βk
can be developed within this setting. In doing so, we will introduce a class of inertial proximal algorithms,
including the one studied in the previous sections, and which share similar convergence properties. Moreover,
the convergence results can now be expressed directly on the parameters describing the algorithms.

7.1. Link between the two descriptions.

7.1.1. Continuous case. Let’s show that taking g(t)
(

1 + d
dt

(
1
g

)
(t)
)

as the damping coefficient γ(t) is not a

restrictive assumption. To see this, given a continuous function γ(·), we have to integrate the differential
equation

(53) g(t)

(
1 +

d

dt

(
1

g

)
(t)

)
= γ(t).

Take as a new unknown function w := 1
g . Then (53) is equivalent to solve the non-autonomous linear differential

equation

ẇ(t)− γ(t)w(t) = −1.

Set p(t) := exp
(∫ t

t0
γ(τ)dτ

)
for t ≥ t0, then, following [4] and assuming that

∫ +∞
t0

ds
p(s) < +∞, we obtain as a

solution

w(t) = p(t)

∫ ∞
t

1

p(s)
ds.

This is the function Γ(·) introduced in [4]. Hence g(t) = 1
Γ(t) is solution of (53). The general solution is

g(t) = 1
Cp(t)+Γ(t) with 1

C = limt→+∞ p(t)g(t). Let’s summarize the above results in the following lemma.

Lemma 7.1. Let γ : [t0,+∞[→ R be a positive continuous function. Set p(t) = exp
(∫ t

t0
γ(τ)dτ

)
and assume∫ +∞

t0
ds
p(s) < +∞. Consider the following differential equation, where the unknown function is g(·):

(54) g(t)

(
1 +

d

dt

(
1

g

)
(t)

)
= γ(t).

Then, the following non-negative continuously differentiable function g(·) is solution of (54):

(55) g(t) =
1

Γ(t)
where Γ(t) = p(t)

∫ ∞
t

1

p(s)
ds.

Precisely, it is the solution of (54) that satisfies limt→+∞
1

p(t)g(t) = 0.

Note that the above definition of Γ does not depend on the initial time t0. When β(t) ≡ β > 0 is fixed, fast
convergence of the values is obtained in [4] under the condition γ(t)Γ(t) ≤ 3

2 . According to (54) and (55), in
terms of g(t), this condition takes the equivalent form

g(t)

(
1 +

d

dt

(
1

g

)
(t)

)
1

g(t)
= 1 +

d

dt

(
1

g

)
(t) ≤ 3

2
.

So, the condition γ(t)Γ(t) ≤ 3
2 becomes

(56)
d

dt

(
1

g

)
(t) ≤ 1

2
,
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with the corresponding convergence rate of the values

(57) Φ(x(t))−min
H

Φ = O
(
g(t)2

)
.

This shows the obvious interest in formulating the damping coefficient in the form g(t)
(

1 + d
dt

(
1
g

)
(t)
)

. There

is no loss of generality, and the conditions for obtaining rapid convergence results can be formulated directly
on the data g. For example, let’s start with g(t) = α−1

t . From (54), we immediately obtain γ(t) = α
t . Then,

(56)-(57) shows that the well-known condition α ≥ 3 provides the O
(

1
t2

)
convergence rate of values (see [4],

[14], [37]).

7.1.2. Discrete case. Similar results occur in the discrete case. Recall that the implicit temporal discretization
of (52) gives

(58) xk+1 − 2xk + xk−1 + gk

(
1 +

1

gk
− 1

gk−1

)
(xk − xk−1) + λk∂Φ(xk+1) 3 0.

Equivalently

(59)

{
yk = xk + αk(xk − xk−1)

xk+1 = proxλkΦ(yk),

where

(60) αk = gk

(
1

gk−1
− 1

)
.

Set γk = 1− αk. This gives γk = gk

(
1 + 1

gk
− 1

gk−1

)
. As shown in the previous section, inverting this relation

gives, for all k ≥ 1, gk = 1
tk+1

.

Let’s summarize the above results in the following lemma.

Lemma 7.2. Let (γk) be a sequence of non-negative numbers. Consider the following finite-difference equation,
where the unknown sequence is (gk)

(61) gk

(
1 +

1

gk
− 1

gk−1

)
= γk.

Then, the following sequence of non-negative numbers is solution of (61):

(62) gk =
1

tk+1
where tk = 1 +

+∞∑
i=k

i∏
j=k

αj .

Following Theorem 1.1 recalled in the introduction, when βk ≡ β > 0 is fixed, we obtain a fast convergence
of the values (see [5]) under the condition

(K1) ∀k ≥ 1, t2k+1 − t2k ≤ tk+1.

According to the above lemma this condition can be equivalently formulated in terms of gk as

(63) gk ≥ 1−
(

gk
gk−1

)2

,

with the corresponding convergence rate of the values

(64) Φ(xk)−min
H

Φ = O
(
g2
k

)
.

Starting from gk = α−1
k , (61) immediately gives γk = α

k . Then (63)-(64) shows that the well-known condition

α ≥ 3 provides the O
(

1
k2

)
convergence rate of values, a classical result (see [5], [8], [11], [18], [37]).

7.2. A parametrized family of proximal inertial algorithms. Let us start from the second-order evolution
equation (52) and introduce various temporal discretizations. When considering the implicit discretization for
the potential term, which gives proximal algorithms, we can take a general convex lower semicontinuous proper
function Φ. As novelty, we introduce a parameter θ ∈ [0, 1] which takes into account different discretizations of
the damping term: for k ≥ 1,

(xk+1 − 2xk + xk−1) + gk(1− θ)
(

1 +
1

gk+1
− 1

gk

)
(xk+1 − xk)

+ gkθ

(
1 +

1

gk
− 1

gk−1

)
(xk − xk−1) + λk∂Φ(xk+1) 3 0.
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For θ = 1, we recover the algorithm considered in the previous sections. After dividing by gk, we obtain(
1

gk
+ (1− θ)

(
1 +

1

gk+1
− 1

gk

))
(xk+1 − xk)

−
(

1

gk
+ θ

(
1

gk−1
− 1

gk
− 1

))
(xk − xk−1) +

λk
gk
∂Φ(xk+1) 3 0.

Set, for k ≥ 1, θk := 1
gk

+ θ
(

1
gk−1

− 1
gk
− 1
)
. Note that

1

gk
+ (1− θ)

(
1 +

1

gk+1
− 1

gk

)
= 1 + θk+1.

So, we can reformulate the above algorithm in the condensed form

(65) xk+1 +
λk

gk(1 + θk+1)
∂Φ(xk+1) 3 xk +

θk
1 + θk+1

(xk − xk−1).

This gives the Inertial Proximal algorithm with parameter θ:

Inertial Proximal algorithm with parameter θ.

(IP)αk,βk,θ

{
yk = xk + αk(xk − xk−1)

xk+1 = proxβkΦ(yk),

αk := θk
1+θk+1

;

βk := λk
gk(1+θk+1) ;

θk := 1
gk

+ θ
(

1
gk−1

− 1
gk
− 1
)
.

(66)

(IP)αk,βk,θ fits into the general framework of (IP)αk,βk , with extrapolation parameters and proximal parameters
written in a specific form.

7.3. Convergence rates. An analysis parallel to that developed in the previous sections can be developed.
We only detail the study of the rapid convergence of values.

Theorem 7.3. Consider the inertial proximal algorithm (IP)αk,βk,θ where αk := θk
1+θk+1

, βk := λk
gk(1+θk+1) , and

θk := 1
gk

+ θ
(

1
gk−1

− 1
gk
− 1
)

. Suppose that 0 < gk ≤ 1, 0 ≤ θ ≤ 1, and the parameters (gk), (λk) and θ satisfy

the growth condition: there exists k1 ∈ N such that for all k ≥ k1

(K1,gk,λk,θ) λk+1 ≤
gk+1

gk

θk+1 + 1

θk+2
λk.

Then, for any sequence (xk) generated by the algorithm (IP)αk,βk,θ, we have
(i) Φ(xk)−minHΦ = O

(
gk−1

λk−1(1 + θk)

)
, as k → +∞;

(ii)
∑
k≥1 βk,θ (Φ(xk)−minHΦ) < +∞

where βk,θ := λk−1

gk−1
(1 + θk)− λk

gk
θk+1 is non-negative by (K1,gk,λk,θ).

The proof is similar to that of the more general perturbed case (Theorem 8.1).

7.4. Some examples. Depending on the choice of the parameter θ, we obtain a specific algorithm, with its
convergence rate. The classical situation (considered below) corresponds to the explicit discretization (θ = 1)
of the damping term. Let’s consider the following cases of particular interest:

a) Case θ = 1: it corresponds to the explicit discretization of the damping term

(67) (xk+1 − 2xk + xk−1) + gk

(
1 +

1

gk
− 1

gk−1

)
(xk − xk−1) + βk∂Φ(xk+1) 3 0.
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This is precisely the algorithm studied in the previous section with αk = gk

(
1

gk−1
− 1
)

. Let us compare the

result obtained by applying respectively Theorem 2.3 (using the tk) and Theorem 7.3 (using the gk in an explicit
form). On the one hand, according to gk = 1

tk+1
, the growth condition (K1,αk,βk) of Theorem 2.3 can be written

βk+1 ≤
gk+1

g2
k( 1
gk+1

− 1)
βk.

Making θ = 1 in the formula giving the parameters, we have

θk :=
1

gk
+

(
1

gk−1
− 1

gk
− 1

)
=

1

gk−1
− 1.

Hence θk+1 + 1 = 1
gk

, which gives βk = λk. The formula (K1,gk,λk,θ) in Theorem 7.3 becomes

(68) βk+1 ≤
gk+1

gk

1
gk

1
gk+1

− 1
βk =

gk+1

g2
k( 1
gk+1

− 1)
βk.

So we recover the same growth condition. Let us now compare the convergence rates. Theorem 2.3 gives

Φ(xk)−min
H

Φ = O
(

1

t2kβk−1

)
.

Theorem 7.3 gives

Φ(xk)−min
H

Φ = O
(

gk−1

λk−1(1 + θk)

)
.

From θk + 1 = 1
gk−1

we get

gk−1

λk−1(1 + θk)
=
g2
k−1

λk−1
=

1

t2kβk−1
.

So, we recover the same convergence rate.

b) Case θ = 0: it corresponds to the implicit discretization of the damping term

(69) (xk+1 − 2xk + xk−1) + gk

(
1 +

1

gk+1
− 1

αk

)
(xk+1 − xk) + βk∂Φ(xk+1) 3 0.

We have θk =
1

gk
, which gives algorithm (IP)αk,βk,θ with αk =

gk+1

gk(1 + gk+1)
and βk =

λkgk+1

gk(1 + gk+1)
. Theorem

7.3 gives that, under the condition (K1,gk,λk,θ)

λk+1 ≤
(1 + gk+1)gk+2

gk
λk,

we have

Φ(xk)−min
H

Φ = O
(

gkgk−1

λk−1(1 + gk)

)
, as k → +∞;

Consider the particular case gk = α−1
k−1 . This gives αk = k−1

k+α−1 , which corresponds to a variant of the Nesterov

acceleration scheme considered in [8], [18], [37]. An elementary calculation shows that the growth condition
above and the corresponding convergence rate give results comparable to those of the explicit case.

8. Stability with respect to perturbations, errors

Consider the perturbed version of the evolution equation (52)

(70) ẍ(t) + g(t)

(
1 +

d

dt

(
1

g

)
(t)

)
ẋ(t) + λ(t)∇Φ(x(t)) = e(t)

where the second member of (70), denoted by e(·), can be interpreted as an external action on the system, a
perturbation, or a control term. By following a parallel approach to the time discretization procedure described
in section 7.2, we obtain : for k ≥ 1,

(xk+1 − 2xk + xk−1) + gk(1− θ)
(

1 +
1

gk+1
− 1

gk

)
(xk+1 − xk)

+ gkθ

(
1 +

1

gk
− 1

gk−1

)
(xk − xk−1) + λk∂Φ(xk+1) 3 ek
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From the algorithmic point of view, the sequence (ek) of elements of H takes into account the presence of
perturbations, approximations, or errors. After dividing by gk, we obtain(

1

gk
+ (1− θ)

(
1 +

1

gk+1
− 1

gk

))
(xk+1 − xk)

−
(

1

gk
+ θ

(
1

gk−1
− 1

gk
− 1

))
(xk − xk−1) +

λk
gk
∂Φ(xk+1) 3 1

gk
ek.

Set, for k ≥ 1

θk :=
1

gk
+ θ

(
1

gk−1
− 1

gk
− 1

)
.

Note that
1

gk
+ (1− θ)

(
1 +

1

gk+1
− 1

gk

)
= 1 + θk+1.

So, we can reformulate the above algorithm in the condensed form

(71) (1 + θk+1)(xk+1 − xk) +
λk
gk
∂Φ(xk+1) 3 θk(xk − xk−1) +

1

gk
ek.

Equivalently,

(72) xk+1 +
λk

gk(1 + θk+1)
∂Φ(xk+1) 3 xk +

θk
1 + θk+1

(xk − xk−1) +
1

gk(1 + θk+1)
ek.

This gives the Inertial Proximal algorithm with parameter θ and error rk, (IP)αk,βk,rk,θ for short

Inertial Proximal Algorithm with parameter θ and error rk.

(IP)αk,βk,rk,θ

{
yk = xk + αk(xk − xk−1)

xk+1 = proxβkΦ(yk − rk),

αk := θk
1+θk+1

;

βk := λk
gk(1+θk+1) ;

rk = − 1
gk(1+θk+1)ek

θk := 1
gk

+ θ
(

1
gk−1

− 1
gk
− 1
)
.

(73)

The following result extends Theorem 2.3 to the perturbed case.

Theorem 8.1. Consider the inertial proximal algorithm (IP)αk,βk,rk,θ. Suppose that 0 < gk ≤ 1, 0 ≤ θ ≤ 1,

and the parameters (gk), (λk) and θ satisfy the growth condition: there exists k1 ∈ N such that for all k ≥ k1

(K1,gk,λk,θ) λk+1 ≤
gk+1

gk

θk+1 + 1

θk+2
λk.

Suppose that the sequence (rk) satisfies the summability property

(74)
∑
k≥1

(1 + θk+1)‖rk‖ < +∞.

Then, for any sequence (xk) generated by the algorithm (IP)αk,βk,rk,θ, we have
(i) Φ(xk)−minHΦ = O

(
gk−1

λk−1(1 + θk)

)
, as k → +∞;

(ii)
∑
k≥1 βk,θ (Φ(xk)−minHΦ) < +∞

where βk,θ := λk−1

gk−1
(1 + θk)− λk

gk
θk+1 is non-negative by (K1,gk,λk,θ).

Proof. To make the presentation simpler, without loss of generality, we take k1 = 1. By definition of the
proximal operator, the iteration at step k of the algorithm (IP)αk,βk,θ is written

1

βk
(yk − xk+1 − rk) ∈ ∂Φ(xk+1).
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Equivalently, we have the following subdifferential inequalities: for any x ∈ H

(75) Φ(x) ≥ Φ(xk+1) +
1

βk
〈x− xk+1, yk − xk+1〉 −

1

βk
〈x− xk+1, rk〉.

Let us write successively inequality (75) at x = xk and x = x∗ ∈ argmin Φ. We obtain the two inequalities

Φ(xk) ≥ Φ(xk+1) +
1

βk
〈xk − xk+1, yk − xk+1〉 −

1

βk
〈xk − xk+1, rk〉,(76)

Φ(x∗) ≥ Φ(xk+1) +
1

βk
〈x∗ − xk+1, yk − xk+1〉 −

1

βk
〈x∗ − xk+1, rk〉.(77)

Using xk − xk+1 = xk − yk + yk − xk+1 in (76) and x∗ − xk+1 = x∗ − yk + yk − xk+1 in (77) we obtain

Φ(xk) ≥ Φ(xk+1) +
1

βk
〈xk − yk, yk − xk+1〉 −

1

βk
〈xk − xk+1, rk〉+

1

βk
‖yk − xk+1‖2,(78)

Φ(x∗) ≥ Φ(xk+1) +
1

βk
〈x∗ − yk, yk − xk+1〉 −

1

βk
〈x∗ − xk+1, rk〉+

1

βk
‖yk − xk+1‖2.(79)

Multiplying (78) by
θk
αk
− 1 ≥ 0, then adding (79), we derive that(

θk
αk
− 1

)
(Φ(xk) − Φ(x∗)) ≥ θk

αk
(Φ(xk+1)− Φ(x∗)) +

θk
αkβk

‖yk − xk+1‖2

+
1

βk

〈
xk+1 − yk,

(
θk
αk
− 1

)
(yk − xk) + yk − x∗

〉
(80)

+
1

βk

〈(
θk
αk
− 1

)
(xk+1 − xk) + xk+1 − x∗, rk

〉
.

By definition of yk we have(
θk
αk
− 1

)
(yk − xk) + yk =

(
θk
αk
− 1

)
αk(xk − xk−1) + xk + αk(xk − xk−1)

= xk + θk(xk − xk−1) = zk

where zk := xk + θk(xk − xk−1). Moreover(
θk
αk
− 1

)
(xk+1 − xk) + xk+1 = θk+1(xk+1 − xk) + xk+1 = zk+1.

We then deduce from (80) that(
θk
αk
− 1

)
(Φ(xk)− Φ(x∗)) ≥ θk

αk
(Φ(xk+1)− Φ(x∗)) +

1

βk
〈xk+1 − yk, zk − x∗〉

+
1

βk
〈rk, zk+1 − x∗〉+

θk
αkβk

‖yk − xk+1‖2.

Equivalently, after multiplication by βk

βk

(
θk
αk
− 1

)
(Φ(xk)− Φ(x∗)) ≥ βkθk

αk
(Φ(xk+1)− Φ(x∗))

+〈xk+1 − yk, zk − x∗〉+ 〈rk, zk+1 − x∗〉+
θk
αk
‖yk − xk+1‖2.(81)

To write (81) in a recursive form, we use zk+1 − zk = (1 + θk+1) (xk+1 − yk) . It ensues that

‖zk+1 − x∗‖2 = ‖zk − x∗‖2 + 2(1 + θk+1)〈xk+1 − yk, zk − x∗〉+ (1 + θk+1)2‖xk+1 − yk‖2,

which gives

〈xk+1 − yk, zk − x∗〉 =
1

2(1 + θk+1)

(
‖zk+1 − x∗‖2 − ‖zk − x∗‖2

)
− (1 + θk+1)

2
‖xk+1 − yk‖2.

Using this equality in (81), we find

βk

(
θk
αk
− 1

)
(Φ(xk)− Φ(x∗)) ≥ βkθk

αk
(Φ(xk+1)− Φ(x∗)) + 〈rk, zk+1 − x∗〉

+
1

2(1 + θk+1)

(
‖zk+1 − x∗‖2 − ‖zk − x∗‖2

)
+

(1 + θk+1)

2
‖xk+1 − yk‖2,
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where we have used θk
αk
− (1+θk+1)

2 = (1+θk+1)
2 (a consequence of the definition of αk). After multiplication by

(1 + θk+1), and neglecting the non-negative term (1+θk+1)
2 ‖xk+1 − yk‖2, we obtain

βk(1 + θk+1)

(
θk
αk
− 1

)
(Φ(xk)− Φ(x∗)) +

1

2
‖zk − x∗‖2

≥ βk(1 + θk+1)θk
αk

(Φ(xk+1)− Φ(x∗)) +
1

2
‖zk+1 − x∗‖2 + (1 + θk+1)〈rk, zk+1 − x∗〉.(82)

According to βk(1 + θk+1) = λk
gk

, and θk
αk
− 1 = θk+1 we have

βk(1 + θk+1)

(
θk
αk
− 1

)
=
λk
gk
θk+1.

Hence, (82) can be equivalently written as

λk
gk
θk+1(Φ(xk)− Φ(x∗)) +

1

2
‖zk − x∗‖2 ≥

λk
gk

(1 + θk+1)(Φ(xk+1)− Φ(x∗))

+
1

2
‖zk+1 − x∗‖2 + (1 + θk+1)〈rk, zk+1 − x∗〉.

This naturally leads us to introduce the sequence (Ek)

(83) Ek =
λk−1

gk−1
(1 + θk)(Φ(xk)− Φ(x∗)) +

1

2
‖zk − x∗‖2.

Thus, we have obtained the following inequality

Ek ≥ Ek+1 +

(
λk−1

gk−1
(1 + θk)− λk

gk
θk+1

)
(Φ(xk)−min

H
Φ) + (1 + θk+1)〈rk, zk+1 − x∗〉.(84)

Under condition K1,gk,λk,θ we have λk−1

gk−1
(1 + θk)− λk

gk
θk+1 ≥ 0. Hence,

(85) (1 + θk+1)‖rk‖ × ‖zk+1 − x∗‖+ Ek ≥ Ek+1.

By summing inequalities (85) from j = 1 to k − 1, we obtain

(86) Ek ≤ E1 +

k∑
j=2

(1 + θj)‖rj−1‖ × ‖zj − x∗‖.

Since Ek ≥ 1
2‖zk − x

∗‖2, we deduce that

(87) ‖zk − x∗‖2 ≤ 2E1 +

k∑
j=1

2(1 + θj)‖rj−1‖ × ‖zj − x∗‖.

Let us apply the Gronwall lemma A.4 with aj = ‖zj − x∗‖, bj = 2(1 + θj)‖rj−1‖, and c =
√

2E1. We obtain

‖zk − x∗‖ ≤
√

2E1 +
∞∑
j=1

2(1 + θj)‖rj−1‖.

By assumption (74),
√

2E1 +
∑∞
j=1 2(1 + θj)‖rj−1‖ is a positive finite real number. Returning to (86) we obtain

(88) Ek ≤ C := E1 +

k∑
j=2

(1 + θj)‖rj−1‖

√2E1 +

∞∑
j=1

2(1 + θj)‖rj−1‖

 .

By definition of Ek, we obtain, for all k ≥ k1

λk−1

gk−1
(1 + θk)(Φ(xk)− Φ(x∗)) ≤ Ek ≤ C,

which gives the claim. The last item follows directly by summing (84). �

Remark 8.2. According to the relations between the parameters, the summability assumption on the errors
can be equivalently formulated in terms of ek as∑

k≥1

1

gk
‖ek‖ < +∞.

When θ = 1 and αk = 1− α
k , using 1

gk
= tk+1, we recover the condition

∑
k≥1 k‖ek‖ < +∞ considered in [8].
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Remark 8.3. Because of its numerical importance, several papers have been devoted to the study of per-
turbation, errors in accelerated proximal-gradient methods. One can consult Aujol-Dossal [13], Schmidt-Le
Roux-Bach [34], and Villa-Salzo-Baldassarres-Verri [35].

Appendix A. Some auxiliary results

The following auxiliary lemmas are used throughout the paper. To establish the weak convergence of the
iterates of (IP)αk,βk , we apply Opial’s Lemma [27], that we recall in its discrete form.

Lemma A.1. Let S be a nonempty subset of H, and (xk) a sequence in H. Assume that
(i) every sequential weak cluster point of (xk), as k → +∞, belongs to S;
(ii) for every z ∈ S, limk→+∞ ‖xk − z‖ exists.

Then (xk) converges weakly as k → +∞ to a point in S.

Owing to the next lemma, we are able to estimate the rate of convergence of a sequence (εk) supposed to be
non-increasing and summable with respect to weight coefficients, see [5, Lemma 21] for the proof.

Lemma A.2. Let (τk) be a nonnegative sequence such that
∑+∞
k=1 τk = +∞. Assume that (εk) is a non-negative

and non-increasing sequence satisfying
∑+∞
k=1 τk εk < +∞. Then we have

εk = o

(
1∑k
i=1 τi

)
as k → +∞.

The following result shows the summability of a sequence (ak) satisfying some suitable inequality.

Lemma A.3. Given a non-negative sequence (αk) satisfying (K0), let (tk) be the sequence defined by tk =

1 +
∑+∞
i=k

∏i
j=k αj. Let (ak) and (ωk) be two sequences of nonnegative numbers such that

(89) ak+1 ≤ αkak + ωk,

for all k ≥ 0. If
∑+∞
k=0 tk+1ωk < +∞, then

∑+∞
k=0 ak < +∞.

Proof. By Lemma 2.1, we have tk+1αk = tk − 1. Multiplying inequality (89) by tk+1 gives

tk+1ak+1 ≤ (tk − 1)ak + tk+1ωk,

or equivalently ak ≤ (tkak − tk+1ak+1) + tk+1ωk. By summing from k = 0 to n, we obtain

n∑
k=0

ak ≤ t0a0 − tn+1an+1 +

n∑
k=0

tk+1ωk

≤ t0a0 +

+∞∑
k=0

tk+1ωk < +∞ by assumption.

The conclusion follows by letting n tend to +∞. �

Lemma A.4 ([8, Lemma 5.14]). Let (ak) be a sequence of nonnegative numbers such that, for all k ∈ N,

a2
k ≤ c2 +

∑k
j=1 bjaj, where (bj) is a summable sequence of nonnegative numbers, and c ≥ 0. Then, for all

k ∈ N, ak ≤ c+
∑∞
j=1 bj .
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