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Kleene Algebra with Hypotheses?

Amina Doumane1,2, Denis Kuperberg1, Damien Pous1, Pierre Pradic1,2

1 Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France.
2 Warsaw University, MIMUW

Abstract. We study the Horn theories of Kleene algebras and star con-
tinuous Kleene algebras, from the complexity point of view. While their
equational theories coincide and are PSpace-complete, their Horn theo-
ries differ and are undecidable. We characterise the Horn theory of star
continuous Kleene algebras in terms of downward closed languages and
we show that when restricting the shape of allowed hypotheses, the prob-
lems lie in various levels of the arithmetical or analytical hierarchy. We
also answer a question posed by Cohen about hypotheses of the form
1 = S where S is a sum of letters: we show that it is decidable.

Keywords: Kleene Algebra · Hypotheses · Horn theory · Complexity.

1 Introduction

Kleene algebras [10,6] are idempotent semirings equipped with a unary operation
star such that x∗ intuitively corresponds to the sum of all powers of x. They
admit several models which are important in practice: formal languages, where
L∗ is the Kleene star of a language L; binary relations, where R∗ is the reflexive
transitive closure of a relation R; matrices over various semirings, where M∗ can
be used to perform flow analysis.

A fundamental result is that their equational theory is decidable, and actu-
ally PSpace-complete. This follows from a completeness result which was proved
independently by Kozen [11] and Krob and Boffa [17,3], and the fact that check-
ing language equivalence of two regular expressions is PSpace-complete: given
two regular expressions, we have

KA ` e ≤ f iff [e] ⊆ [f ]

(where KA ` e ≤ f denotes provability from Kleene algebra axioms, and [e] is
the language of a regular expression e).

Because of their interpretation in the algebra of binary relations, Kleene
algebras and their extensions have been used to reason abstractly about program
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correctness [12,15,2,9,1]. For instance, if two programs can be abstracted into
two relational expressions (R∗;S)∗ and ((R∪S)∗;S)=, then we can deduce that
these programs are equivalent by checking that the regular expression (a∗b)∗

and (a+ b)∗b+ 1 denote the same language. This technique made it possible to
automate reasoning steps in proof assistants [4,16,19].

In such a scenario, one often has to reason under assumptions. For instance,
if we can abstract our programs into relational expressions (R+S)∗ and S∗;R∗,
then we can deduce algebraically that the starting programs are equal if we
know that R;S = R (i.e., that S is a no-op when executed after R). When
doing so, we move from the equational theory of Kleene algebras to their Horn
theory: we want to know whether a given set of equations, the hypotheses, entails
another equation in all Kleene algebras. Unfortunately, this theory is undecidable
in general [13]. In this paper, we continue the work initiated by Cohen [5] and
pursued by Kozen [13], by characterising the precise complexity of new subclasses
of this general problem.

A few cases have been shown to be decidable in the literature, when we
restrict the form of the hypotheses :

– when they are of the form e = 0 [5],
– when they are of the form a ≤ 1 for a a letter [5],
– when they are of the form 1 = w or a = w for a a letter and w a word,

provided that those equations seen as a word rewriting system satisfy certain
properties [18,14]; this includes equations like idempotency (x = xx) or self-
invertibility (1 = xx).

(In the first two cases, the complexity can be shown to remain in PSpace.)
We add one positive case, which was listed as open by Cohen [5], and which is
typically useful to express that a certain number of predicates cover all cases:

– when hypotheses are of the form S = 1 for S a sum of letters.

Conversely, Kozen also studied the precise complexity of various undecidable
sub-classes of the problem [13]. For those, one has to be careful about the precise
definition of Kleene algebras. Indeed, these only form a quasi-variety (their def-
inition involves two implications), and one often consider ∗-continuous Kleene
algebras [6], which additionally satisfy an infinitary implication (We define these
formally in Sect. 2). While the equational theory of Kleene algebras coincides
with that of ∗-continuous Kleene algebras, this is not the case for their Horn
theories: there exist Horn sentences which are valid in all ∗-continuous Kleene
algebras but not in all Kleene algebras.

Kozen [13] showed for instance that when hypotheses are of the form pq = qp
for pairs of letters (p, q), then validity of an implication in all ∗-continuous Kleene
algebras is Π0

1 -complete, while it is only known to be ExpSpace-hard for plain
Kleene algebras. In fact, for plain Kleene algebras, the only known negative
result is that the problem is undecidable for hypotheses of the form u = v for
pairs (u, v) of words (Kleene star plays no role in this undecidability result: this
is just the word problem). We show that it is already undecidable, and in fact
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1 =
∑
a a ≤

∑
b a ≤

∑
w a ≤ g

KAH ` u ≤ f Decidable EXPTIME− complete Σ0
1−complete Σ0

1−complete

KAH ` e ≤ f Decidable Undecidable Σ0
1−complete Σ0

1−complete

KA∗
H ` u ≤ f Decidable EXPTIME− complete Σ0

1−complete Π1
1−complete

KA∗
H ` e ≤ f Decidable Π0

1−complete Π0
2−complete Π1

1−complete

Fig. 1. Summary of the main results.

Σ0
1 -complete when hypotheses are of the form a ≤ S where a is a letter and S is

a sum of letters. We use a similar encoding as in [13] to relate the Horn theories
of KA and KA∗ to runs of Turing Machines and alternating linearly bounded
automata. This allows us to show that deciding whether an inequality w ≤ f
holds where w is a word, in presence of sum-of-letters hypotheses, is EXPTIME-
complete. We also refine the Π1

1 -completeness result obtained in [13] for general
hypotheses, by showing that hypotheses of the form a ≤ g where a is a letter
already make the problem Π1

1 -complete.

The key notion we define and exploit in this paper is the following: given a set
H of equations, and given a language L, write clH(L) for the smallest language
containing L such that for all hypotheses (e ≤ f) ∈ H and all words u, v,

if u[f ]v ⊆ clH(L) then u[e]v ⊆ clH(L) .

This notion makes it possible to characterise the Horn theory of ∗-continuous
Kleene algebras, and to approximate that of Kleene algebras: we have

KAH ` e ≤ f ⇒ KA∗H ` e ≤ f ⇔ [e] ⊆ clH([f ])

where KAH ` e ≤ f (resp. KA∗H ` e ≤ f) denotes provability in Kleene algebra
(resp. ∗-continuous Kleene algebra). We study downward closed languages and
prove the above characterisation in Sect. 3.

The first implication can be strengthened into an equivalence in a few cases,
for instance when the regular expression e and the right-hand sides of all hy-
potheses denote finite languages, or when hypotheses have the form 1 = S for S
a sum of letters. We obtain decidability in those cases (Sect. 4).

Then we focus on cases where hypotheses are of the form a ≤ e for a a
letter, and we show that most problems are already undecidable there. We do
so by exploiting the characterisation in terms of downward closed languages to
provide encodings of various undecidable problems on Turing machines, total
Turing machines, and linearly bounded automata (Sect. 5).

We summarise our results in Fig. 1. The top of each column restricts the
type of allowed hypotheses. Variables e, f stand for general expressions, u,w for
words, and a, b for letters. Grayed statements are implied by non-grayed ones.

Notations We let a, b range over the letters of a finite alphabet Σ. We let u, v, w
range over the words over Σ, whose set is written Σ∗. We write ε for the empty
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word; uv for the concatenation of two words u, v; |w| for the length of a word
w.We write Σ+ for the set of non-empty words. We let e, f, g range over the
regular expressions over Σ, whose set is written ExpΣ . We write [e] for the
language of such a an expression e: [e] ⊆ Σ∗. We sometimes implicitly regard a
word as a regular expression. If X is a set, P(X) (resp. Pfin(X)) is the set of its
subsets (resp. finite subsets) and |X| for its cardinality.

2 The systems KA and KA∗

Definition 1 (KA,KA∗). A Kleene algebra is a tuple (M, 0, 1,+, ·, ∗) where
(M, 0, 1,+, ·) is an idempotent semiring and the following axioms and impli-
cations, where the partial order ≤ is defined by x ≤ y if x + y = y, hold for all
x, y ∈M .

1 + xx∗ ≤ x∗ xy ≤ y ⇒ x∗y ≤ y

1 + x∗x ≤ x∗ yx ≤ y ⇒ yx∗ ≤ y

A Kleene algebra is ∗-continuous if it satisfies the following implication:

(∀i ∈ N, xyiz ≤ t) ⇒ xy∗z ≤ t

A hypothesis is an inequation of the form e ≤ f , where e and f are regular
expressions. If H is a set of hypotheses, and e, f are regular expressions, we
write KAH ` e ≤ f (resp. KA∗H ` e ≤ f) if e ≤ f is derivable from the axioms
and implications of KA (resp. KA∗) as well as the hypotheses from H. We omit
the subscript when H is empty.

Note that the letters appearing in the hypotheses are constants: they are not
universally quantified. In particular if H = {aa ≤ a}, we may deduce KAH `
a∗ ≤ a but not KAH ` b∗ ≤ b.

Languages over the alphabet Σ form a ∗-continuous Kleene algebra, as well
as binary relations over an arbitrary set.

In absence of hypotheses, provability in KA is coincides with provability in
KA∗ and with language inclusion:

Theorem 1 (Kozen [11]).

KA ` e ≤ f ⇔ KA∗ ` e ≤ f ⇔ [e] ⊆ [f ]
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We will classify the theories based on the shape of hypotheses we allow; we
list them below (I is a finite non-empty set):

Name of the hypothesis Its shape

(1 =
∑
x)− hypothesis 1 =

∑
i∈I ai where ai ∈ Σ

(w ≤
∑
w)− hypothesis v ≤

∑
i∈I vi where v, vi ∈ Σ∗

(x ≤
∑
w)− hypothesis a ≤

∑
i∈I vi where a ∈ Σ, vi ∈ Σ∗

(x ≤
∑
x)− hypothesis a ≤

∑
i∈I ai where a, ai ∈ Σ

(1 ≤
∑
x)− hypothesis 1 ≤

∑
i∈I ai where ai ∈ Σ

(x ≤ 1)− hypothesis a ≤ 1 where a ∈ Σ

We call letter hypotheses any class of hypotheses where the left-hand side is
a letter (the last four ones). In the rest of the paper, we study the following
problem from a complexity point of view: given a set of C-hypotheses H, where
C is one of the classes listed above, and two expressions e, f ∈ ExpΣ , can we
decide whether KAH ` e ≤ f (resp. KA∗H ` e ≤ f) holds? We call it the problem
of deciding KA (resp. KA∗) under C-hypotheses.

3 Closure of regular languages

It is known that provability in KA and KA∗ can be characterised by language
inclusions (Thm. 1). In the presence of hypotheses, this is not the case anymore:
we need to take the hypotheses into account in the semantics. We do so by using
the following notion of downward closure of a language.

3.1 Definition of the closure

Definition 2 (H-closure). Let H be a set of hypotheses and L ⊆ Σ∗ be a
language. The H-closure of L, denoted clH(L), is the smallest language K such
that L ⊆ K and for all hypotheses e ≤ f ∈ H and all words u, v ∈ Σ∗, we have

u[f ]v ⊆ C ⇒ u[e]v ⊆ K

Alternatively, clH(L) can be defined as the least fixed point of the function
φL : P(Σ∗)→ P(Σ∗) defined by φL(X) = L ∪ ψH(X), where

ψH(X) =
⋃

(e≤f)∈H

{u[e]v | u, v ∈ Σ∗, u[f ]v ⊆ X}.

Example 1. If H = {ab ≤ ba} then clH([b∗a∗]) = [(a+ b)∗]. while clH([a∗b∗]) =
[a∗b∗].

In order to manipulate closures more conveniently, we introduce a syntactic
object witnessing membership in a closure: derivation trees.
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Definition 3. Let H be a set of hypotheses and L a regular language. We define
an infinitely branching proof system related to clH(L), where statements are regu-
lar expressions, and rules are the following, called respectively axiom, extension,
and hypothesis:

(u)
u ∈ L

u

(u)u∈[e]

e

ufv
w ∈ [e], e ≤ f ∈ H

uwv

We write `H,L e if e is derivable in this proof system, i.e. if there is a well-
founded tree using these rules, with root e and all leaves labelled by words in L.
Such a tree will be called a derivation tree for [e] ⊆ clH(L) (or e ∈ clH(L) if e
is a word).

Example 2. The following derivation is a derivation tree for bababa ∈ clH([b∗a∗]),
where H = {ab ≤ ba}.

bbbaaa

bbabaa

bbaaba

bababa

Derivation trees witness membership to the closure as shown by the following
proposition.

Proposition 1. [e] ⊆ clH(L) iff `H,L e.

3.2 Properties of the closure operator

We summarise in this section some useful properties of the closure. Lem. 1 shows
in particular that the closure is idempotent, monotonic (both for the set of
hypotheses and its language argument) and invariant by context application.
Lem. 2 shows that internal closure operators can be removed in the evaluation
of regular expressions.

Lemma 1. Let A,B,U, V ⊆ Σ∗. We have

1. A ⊆ clH(A)
2. clH(clH(A)) = clH(A)
3. A ⊆ B implies clH(A) ⊆ clH(B)
4. H ⊆ H ′ implies clH(A) ⊆ clH′(A)
5. clH(A) ⊆ clH(B) if and only if A ⊆ clH(B).
6. A ⊆ clH(B) implies UAV ⊆ clH(UBV ).

Lemma 2. Let A,B ⊆ Σ∗, then

1. clH(A+B) = clH(clH(A) + clH(B)),
2. clH(AB) = clH(clH(A)clH(B)),
3. clH(A∗) = clH(clH(A)∗)
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3.3 Relating closure and provability in KAH and KA∗
H

We show that provability in KA∗ can be characterized by closure inclusions. In
KA, provability implies closure inclusions but the converse is not true in general.

Theorem 2. Let H be a set of hypotheses and e, f be two regular expressions.

KAH ` e ≤ f ⇒ KA∗H ` e ≤ f ⇔ [e] ⊆ clH([f ])

Proof. Let CRegH,Σ = {clH(L) | L ∈ RegΣ}, on which we define the following
operations:

X ⊕ Y = clH(X + Y ) X � Y = clH(X · Y ) X~ = clH(X∗).

We define the closure model FH,Σ = (CRegH,Σ , ∅, {ε},⊕,�,~).
We write ≤ for the inequality induced by ⊕ in FH,Σ : X ≤ Y if X ⊕ Y = Y .

Lemma 3. FH,Σ = (CRegH,Σ , ∅, {ε},⊕,�,~) is a ∗-continuous Kleene algebra.
The inequality ≤ of FH,Σ coincides with inclusion of languages.

Proof. By Lem. 2, the function clH : (P(Σ∗),+, ·, ∗) → (CRegH,Σ ,⊕,�,~) is
a homomorphism. We show that FH,Σ is a ∗-continuous Kleene algebra. First,
identities of LangΣ = (P(Σ∗),+, ·, ∗) are propagated through the morphism
clH , so only Horn formulas defining ∗-continuous Kleene algebras remain to
be verified.It suffices to prove that FH,Σ satisfies the ∗-continuity implication,
because the implication xy ≤ y → x∗y ≤ y and its dual can be deduced from

it. Let A,B,C ∈ FH,Σ such that for all i ∈ N, A � B i � C ≤ D, where B
i

=

B�· · ·�B. By Lem. 2, A�B i �C = clH(ABiC), so we have clH(ABiC) ≤ D,
and in particular ABiC ≤ D for all i. By ∗-continuity of LangΣ , we obtain
AB∗C ≤ D. By Lem. 1 and using D = clH(D), we obtain clH(AB∗C) ≤ D and
finally by Lem. 2, A � B~ � C ≤ D. This achieves the proof that FH,Σ is a
∗-continuous Kleene algebra.

Let A,B ∈ CRegH,Σ . We have A ≤ B ⇔ A⊕ B = B ⇔ clH(A+ B) = B ⇔
A ⊆ B. Finally, if e ≤ f is a hypothesis from H, then we have clH [e] ⊆ clH([f ]),
so the hypothesis is verified in FH,Σ .

The implications KA
(∗)
H ` e ≤ f ⇒ [e] ⊆ clH(f) follow from the fact that if

an inequation e ≤ f is derivable in KAH (resp. KA∗H) then it is true in every
model, in particular in the model FH,Σ , thus clH([e]) ⊆ clH([f ]) or, equivalently.
[e] ⊆ clH([f ]).

Let us prove that for any regular expressions e, f , if [e] ⊆ clH([f ]) then
KA∗H ` e ≤ f . Let e, f be two such expressions and let T be a derivation tree for
[e] ⊆ clH([f ]), i.e. witnessing `H,L e ≤ f . We show that we can transform this
tree T into a proof tree in KA∗H . The extension rule is an occurrence of Lem. 12.
Finally, the hypothesis rule is also provable in KA∗H , using the hypothesis e ≤ f
together with compatibiliy of ≤ with concatenation, and completeness of KA∗

for membership of u ∈ [e]. We can therefore build from the tree T a proof in
KA∗H witnessing KA∗H ` e ≤ f .
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When we restrict the shape of the expression e to words, and hypotheses to
(w ≤

∑
w)-hypotheses, we get the implication missing from Thm. 2.

Proposition 2. Let H be a set of (w ≤
∑
w)-hypotheses, w ∈ Σ∗ and f ∈

ExpΣ.
KAH ` w ≤ f ⇔ w ∈ clH([f ])

Proof. Let us show that w ∈ clH([f ]) implies KAH ` w ≤ f . We proceed by
induction on the height of a derivation tree for w ∈ clH([f ]). If this tree is just a
leaf, then w ∈ [f ] and by Thm. 1 KA ` w ≤ f . Otherwise, this derivation starts
with the following steps: ( . . .

uwiv
)
i

u(
∑
i wi)v

w ≤
∑
i wi ∈ Huwv

Our inductive assumption is that KAH ` uwiv ≤ f for all i, thus KAH `∑
i uwiv ≤ f . We also have KAH ` w ≤ (

∑
i wi) hence KA ` w ≤ f by dis-

tributivity.

4 Decidability of KA and KA∗ with (1 =
∑

x)-hypotheses

In this section, we answer positively the decidability problem of KAH , where H
is a set of (1 =

∑
x)-hypotheses, posed by Cohen [5]:

Theorem 3. If H is a set of (1 =
∑
x)-hypotheses, then KAH is decidable.

To prove this theorem we show that in the case of (1 =
∑
x)-hypotheses:

(P1) KAH ` e ≤ f if and only if [e] ⊆ clH([f ]).
(P2) clH([f ]) is regular and we can compute effectively an expression for it.

Decidability of KAH follows immediately from (P1) and (P2), since it amounts
to checking language inclusion for two regular expressions.

To show (P1) and (P2), it is enough to prove the following result:

Theorem 4. Let H be a set of (1 =
∑
x)-hypotheses and let f be a regular

expression. The language clH([f ]) is regular and we can compute effectively an
expression c such that [c] = clH([f ]) and KAH ` c ≤ f .

(P2) follows immediatly from Thm. 4. To show (P1), it is enough to prove
that [e] ⊆ clH([f ]) implies KAH ` e ≤ f , since the other implication is always
true (Thm. 2). Let e, f such that [e] ⊆ clH([f ]). If c is the expression given by
Thm 4, we have KAH ` c ≤ f and [e] ⊆ [c] so by Thm. 1 KA ` e ≤ c, and this
concludes the proof.

To prove Thm. 4, we first show that the closure of (1 =
∑
x)-hypotheses can

be decomposed into the closure of (x ≤ 1)-hypotheses followed by the closure of
(1 ≤

∑
x)-hypotheses:
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Proposition 3 (Decomposition result). Let H = {1 = Sj | j ∈ J} be a set
of (1 =

∑
x)-hypotheses.

We set Hsum = {1 ≤ Sj | j ∈ J} and Hid = {a ≤ 1 | a ∈ [Sj ], j ∈ J}. For
every language L ⊆ Σ∗, we have clH(L) = clHsum

(clHid
(L)).

Sketch. We show that rules from Hid can be locally permuted with rules of Hsum

in a derivation tree. This allows to compute a derivation tree where all rules from
Hid occur after (i.e. closer to leaves than) rules from Hsum .

Now, we will show results similar to Thm. 4, but which apply to (x ≤ 1)-
hypotheses and (1 ≤

∑
x)-hypotheses (Prop. 5 and 6 below). To prove Thm. 4,

the idea is to decompose H into Hid and Hsum using the decomposition property
Prop. 3, then applying Prop. 5 and Prop. 6 to Hid and Hsum respectively.

To show these two propositions, we make use of a result from [7]:

Definition 4. Let A = (Q,∆, ι, F ) be an NFA , H be a set of hypotheses and
ϕ : Q → ExpΣ a function from states to expressions. We say that ϕ is H-
compatible with A if:

– KAH ` 1 ≤ ϕ(q) whenever q ∈ F ,
– KAH ` aϕ(r) ≤ ϕ(q) for all transitions (q, a, r) ∈ ∆.

We set ϕA = ϕ(ι).

Proposition 4 ([7]). Let A be a NFA, H be a set of hypothesis and ϕ be a
function H-compatible with A. We can construct a regular expression fA such
that:

[fA] = [A] and KAH ` fA ≤ ϕA

Proposition 5. Let H be a set of (x ≤ 1)-hypotheses and let f be a regular
expression. The language clH([f ]) is regular and we can compute effectively an
expression c such that [c] = clH([f ]) and KAH ` c ≤ f .

Proof. Let K = clH([f ]) and Γ = {a | (a ≤ 1) ∈ H}, we show that K is regular.
If A is a NFA for f , a NFA Aid recognizing K can be built from A by adding a
Γ -labelled loop on every state. It is straightforward to verify that the resulting
NFA recognizes K, by allowing to ignore any letter from Γ .

For every q ∈ Q, let fq be a regular expression such that [fq] = [q]A, where
[q]A denotes the language accepted from q in A. Let ϕ : Q→ ExpΣ which maps
each state q of Aid (which is also a state of A) to ϕ(q) = fq. Let us show that
ϕ is H-compatible with A. If q ∈ F , then 1 ∈ [fq], so by completeness of KA,
we have KA ` 1 ≤ fq. Let (p, a, q) be a transition of Aid . Either (p, a, q) ∈ ∆, in
which case we have a[fq] ⊆ [fp], and so by Thm. 1 KA ` afq ≤ fp. Or p = q (this
transition is a loop that we added). Then KAH ` a ≤ 1, so KAH ` afp ≤ fp,
and this concludes the proof.

By Prop. 4, we can now construct a regular expression c which satisfies the
desired properties.
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Definition 5. Let Γ be a set of letters. A language L is said to be Γ -closed if:

∀u, v ∈ Σ∗,∀a ∈ Γ uv ∈ L ⇒ uav ∈ L

If H = {1 ≤ Si | i ∈ I} is a set of (1 ≤
∑
x)-hypotheses, we say that a

language L is H-closed if if it is Γ -closed where Γ = ∪i∈I [Si].

Remark 1. If H is a set of (x ≤ 1)-hypothesis, and Γ = {a | (a ≤ 1) ∈ H}, then
clH(L) is Γ -closed for every language L.

Proposition 6. Let H be a set of (1 ≤
∑
x)-hypotheses and let f be a regular

expression whose language is H-closed. The language clH([f ]) is regular and we
can compute effectively an expression c such that [c] = clH([f ]) and KAH ` c ≤ f .

Proof. We set L = [f ], H = {1 ≤ Sj | j ∈ J} and Γ = {a | a ∈ [Sj ], j ∈ J}.
Let us show that clH(L) is regular. The idea is to construct a set of words

L], where each word u] is obtained from a word u of clH(L), by adding at the
position where a rule (1 ≤ Sj) is applied in the derivation tree for clH(L) ` u, a
new symbol ]j . We will show that this set satisfies the two following properties:

– clH(L) is obtained from L] by erasing the symbols ]j .
– L] is regular.

Since the operation that erases letters preserves regularity, we obtain as a coro-
lary that clH(L) is regular.

Let us now introduce more precisely the language L] and show the properties
that it satisfies. Let Θ] = {]j | j ∈ J} be a set of new letters and Σ] = Σ ∪ Θ]
be the alphabet Σ enriched with these new letters.

We define the function exp : Σ] → P(Σ) that expands every letter ]j into
the sum of the letters corresponding to its rule in H as follows:

exp(a) = a if a ∈ Σ
exp(]j) = {a | a ∈ [Sj ]} ∀j ∈ J

This function can naturally be extended to exp : (Σ])
∗ → P(Σ∗).

If L ⊆ Σ∗, we define L] ⊆ (Σ])
∗ as follows:

L] = exp−1(P(L)) = {u ∈ (Σ])
∗ | exp(u) ⊆ L}

We define the morphism π : (Σ])
∗ → Σ∗ that erases the letters from Θ] as

follows: π(a) = a if a ∈ Σ and π(]j) = ε for all j ∈ J . Our goal is to prove
that clH(L) = π(L]) and that L] is regular. To prove the first part, we need an
alternative presentation of L] as the closure of a new set of hypotheses H] which
we define as follows:

H] = {]j ≤ Sj | j ∈ J} ∪ {]j ≤ 1 | j ∈ J}

Lemma 4. We have L] = clH]
(L). In particular L] is Θ]-closed.

See [8, App. B] for a detailed proof of Lem. 4.
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Lemma 5. clH(L) = π(L]).

Proof. If u ∈ π(L]), let v ∈ L] such that u = π(v). By Lem. 4, there is a
derivation tree Tv for v ∈ clH]

(L). Erasing all occurences of ]j in Tv yields a
derivation tree for u ∈ clH(L).

Conversely, if u ∈ clH(L) is witnessed by some derivation tree Tu, we show
by induction on Tu that there exists v ∈ L] ∩ π−1(u). If Tu is a single leaf, we
have u ∈ L, and therefore it suffices to take v = u.

Otherwise, the rule applied at the root of Tu partitions u into u = wz, and has
premises {wbz | b ∈ [Sj ]} for some j ∈ J and w, z ∈ Σ∗. By induction hypothesis,
for all b ∈ [Sj ], there is vb ∈ L] ∩ π−1(wbz). Let w = w1 . . . wn and z = z1 . . . zm
be the decompositions of w, z into letters of Σ. By definition of π, for all b ∈ [Sj ],
vb can be written vb = αb,1w1αb,2w2 . . . wnαb,nbαb,n+1z1αb,n+2 . . . zmαb,n+m+3,
with αb,0 . . . αb,n+m+3 ∈ (Θ])

∗. For each k ∈ [0, n+m+ 3], let αk = Πb∈[Sj ]αb,k.
Let w′ = α0w1α1 . . . wnαn+1 and z′ = αn+2z1αn+3 . . . zmαn+m+3 By Lem. 4, L]
is Θ]-closed, so for each b ∈ [Sj ] the word v′b = w′bz′ is in L], since v′b is obtained
from vb by adding letters from Θ]. We can finally build v = w′]jz

′. We have
exp(v) =

⋃
b∈[Sj ] exp(v′b) ⊆ L, and π(v) = π(w′)π(z′) = wz = u.

Lemma 6. L] is a regular language, computable effectively.

Sketch. From a DFA A = (Σ,Q, q0, F, δ) for for L, we first build a DFA A∧ =
(Σ,P(Q), q0,P(F ), δ∧),which corresponds to a powerset construction, except
that accepting states are P(F ). This means that the semantic of a state P
is the conjunction of its members. We then build A] = (Σ,P(Q), q0,P(F ), δ])
based on A∧, which can additionally read letters of the form ]j , by expanding
them using the powerset structure of A∧.

Lemma 7. We can construct a regular expression c such that [c] = clH(L) and
KAH ` c ≤ f .

Proof. Let A] be the DFA constructed for L] in the proof of Lem. 6. We will
use the notations of this proof in the following.

Let π(A]) = (Σ,P(Q), q0,P(F ), π(δ])) be the NFA obtained from A] by re-
placing every transition δ](P, ]j) = R, where j ∈ J , by a transition π(δ])(P, ε) =
R. By Lem. 5, the automaton π(A]) recognizes the language clH(L). Let us
construct a regular expression c for this automaton such that KAH ` c ≤ f .

For every P ∈ P(Q), let fP be a regular expression such that [fP ] = [P ]A∧ .
Let ϕ : P(Q)→ ExpΣ be the function which maps each state P of π(A]) to

ϕ(P ) = fP . Let us show that ϕ is H-compatible.
If P ∈ P(F ), then P is a final state of A∧, so 1 ∈ [fP ], and by completeness

of KA, KA ` 1 ≤ fP . Let (P, a,R) ∈ π(∆]). Either a ∈ Σ, so (P, a,R) ∈ ∆∧ and
a[fR] ⊆ [fP ], so by Thm. 1 KA ` afR ≤ fP . Or a = ε so there is j ∈ J such that
(P, ]j , R) ∈ ∆]. This means that R = ∪b∈[Sj ]Rb where δ∧(P, b) = Rb,∀b ∈ [Sj ].
We have then that b[fRb

] ⊆ [fP ] for all b ∈ [Sj ]. Note that for all b ∈ [Sj ],
Rb ⊆ R, so [fR] ⊆ [fRb

] and then Sj [fR] ⊆ [fP ]. By Thm. 1 KA ` SjfR ≤ fP .
We have also that KAH ` ]j ≤ Sj , so KAH ` ]jfR ≤ fP .

By Prop. 4, we can construct the desired regular expression c.
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5 Complexity results for letter hypotheses

In this section, we give a recursion-theoretic characterization of KAH and KA∗H
where H is a set of letter hypotheses or (w ≤

∑
w)-hypotheses. In all the section,

by “deciding KA
(∗)
H ” we mean deciding whether KA

(∗)
H ` e ≤ f , given e, f,H as

input.
Theses various complexity classes will be obtained by reduction from some

known problems concerning Turing Machines (TM) and alternating linearly
bounded automata (LBA), such as halting problem and universality.

To obtain these reductions, we build on a result which bridges TMs and LBAs
on one hand and closures on the other: the set of co-reachable configurations of
a TM (resp. LBA) can be seen as the closure of a well-chosen set of hypotheses.

We present this result in Section 5.1, and show in Section 5.2 how to instan-
tiate it to get our complexity classes.

5.1 Closure and co-reachable states of TMs and LBAs

Definition 6. An alternating Turing Machine over Σ is a tupleM = (Q,QF , Γ, ι, B,∆)
consisting of a finite set of states Q and final states QF ⊆ Q, a finite set of states
Q, a finite working alphabet Γ ⊇ Σ, an initial state ι ∈ Q, B ∈ Γ the blank
symbol and a transition function ∆ : (Q \ QF ) × Γ → P(P({L,R} × Γ × Q)).
Let #L,#R /∈ Γ be fresh symbols to mark the ends of the tape, and Γ# =
Γ ∪ {#L,#R}.

A configuration is a word uqav = #LΓ
∗QΓ+#R, where #L and #R are

special symbols not in Γ , meaning that the head of the TM points to the letter
a. We denote by C the set of configurations of M. A configuration is final if it
is of the form #LΓ

∗QFΓ
+#L.

The execution of the TM M over input w ∈ Σ may be seen as a game-like
scenario between two players ∃loise and ∀belard over a graph Ct(C×P({L,R}×
Γ ×Q)), with initial position ιw which proceeds as follows.

– over a configuration uqav with a ∈ Γ , u, v ∈ Γ ∗#, ∃loise picks a transition
X ∈ ∆(q, a) to move to position (uqav,X)

– over a position (uqav,X) with a ∈ Γ , u, v ∈ Γ ∗, ∀belard picks a triple
(d, c, r) ∈ X to move in configuration

• ucrB#R if v = #R and d = R
• ucrv if v 6= #R and d = R
• #LrBcv if u = #L and d = L
• u′rbcv if u = #Ru

′b and d = L

Given a subset of configurations D ⊆ C, we define Attr∃loise(D) the ∃loise
attractor for D as the set of configurations from which ∃loise may force the
execution to go through D.
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A deterministic TM M is one where every ∆(q, a) ⊆ {{(d, c, r)}} for some
(d, c, r) ∈ {L,R}×Γ ×Q In such a case, we may identifyM with the underlying
partial function [M] : Σ∗ ⇀ QF .

An alternating linearly bounded automaton over the alphabet Σ is a tuple
A = (Q,QF , Γ, ι,∆) where (Q,QF , Γ t{B}, ι, B,∆) is a TM that does not insert
B symbols. This means that the head can point to ]d , and for every X ∈ ∆(q,#d)
and (d′, a, r) ∈ X, we have d 6= d′ and a = #d.

An LBA is deterministic if its underlying TM is.

Definition 7. A set of (w ≤
∑
w)-hypotheses is said to be length-preserving if

for every (v ≤
∑
i∈I vi) ∈ H, we have that |v| = |vi| for all i ∈ I.

The following lemma generalizes a similar construction from [13].

Lemma 8. For every TM M of working alphabet Γ , there exists a set of (w ≤∑
w)-hypotheses HM over the alphabet Θ = Q ∪ Γ such that, for any set of

configurations D ⊆ C we have that: clHA(D) = Attr∃loise(D). Furthermore, this
reduction is polytime computable, and HA is length-preserving if M is an LBA.

A configuration c is co-reachable if ∃loise has a strategy to reach a final
configuration from c. Lem. 8 shows that the set of co-reachable configurations
can be seen as the closure by (w ≤

∑
w)-hypotheses. Since we are also interested

in (x ≤
∑
x)-hypotheses, we will show that (w ≤

∑
w) hypotheses can be

transformed into letter hypotheses. Moreover, this transformation preserves the
length-preserving property.

Theorem 5. Let Σ be an alphabet, H be a set of (w ≤
∑
w)-hypotheses over

Σ. There exists an extended alphabet Σ′ ⊇ Σ, a set of (x ≤
∑
w)-hypotheses

H ′ over Σ′ and a regular expression h ∈ ExpΣ′ such that the following holds for
every f ∈ ExpΣ and w ∈ Σ∗.

w ∈ clH([f ]) if and only if w ∈ clH′([f + h])

Furthermore, we guarantee the following:

– (Σ′, H ′, h) can be computed in polynomial time from (Σ,H).
– H ′ is length-preserving whenever H is.

5.2 Complexity results

Lemma 9. If H is a set of length-preserving (w ≤
∑
w)-hypotheses (resp. a

set of (x ≤
∑
x)-hypotheses), w ∈ Σ∗ and f ∈ ExpΣ, deciding KAH ` w ≤ f is

EXPTIME− complete.

Proof. We actually show that our problem is complete in alternating-PSPACE
(APSPACE), which enables us to conclude as EXPTIME and APSPACE coin-
cide. First, notice that by completeness of KAH over this fragment (Prop. 2),
we have KAH ` w ≤ f ⇔ w ∈ clH([f ]). Hence, we work directly with the latter
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notion. It suffices to show hardness for the (x ≤
∑
x) case and membership for

the (w ≤
∑
w) case.

Given an arbitrary alternating Turing MachineM in APSPACE there exists
a polynomial p ∈ N[X] such that executions of M over words w are bisimilar
to executions of the LBA(M) over wBp(|w|). Hence, by Lem. 8 and Thm. 5,
the problem with (x ≤

∑
x)-hypotheses is APSPACE-hard. Conversely, we may

show that our problem with (w ≤
∑
w)-hypotheses falls into APSPACE. On

input w, the alternating algorithm first checks whether w ∈ [f ] in linear time.
If it is the case, it returns “yes”. Otherwise, it non-deterministically picks a fac-
torization w = uxv with x ∈ Σ∗ and a hypothesis x ≤

∑
i yi. It then universally

picks yi ∈ Σ|x|, and replaces x by yi on the tape, so that the new tape content
is w′ = uyiv. Then the algorithm loops back to its first step. In parallel, we
keep track of the number of steps and halt by returning “no” as soon as we

reach |Σ||w| steps. This is correct because, if there is a derivation tree witnessing
w ∈ clH([f ]), there is one where on every path, all nodes have distinct labels, so
the nondeterministic player can play according to this tree, while the universal
player selects a branch.

Theorem 6. Deciding KA∗H is Π0
1−complete for (x ≤

∑
x)-hypotheses.

Proof. By Lem. 9 and the fact that regular expressions are in recursive bijection
with natural numbers, our set is clearly Π0

1 . To show completeness, we effectively
reduce the set of universal LBAs, which is known to be Π0

1−complete, to our set
of triples. Indeed, by Lem. 8, an LBA A is universal if and only if #L{ι}Σ∗#R ⊆
clH(CF ) where CF is the set of final configurations.

Theorem 7. If H is a set of (x ≤
∑
w)-hypotheses, w ∈ Σ∗ and f ∈ ExpΣ,

deciding KA
(∗)
H ` w ≤ f is Σ0

1−complete.

Proof. As KAH is a recursively enumerable theory, our set is Σ0
1 . By the com-

pleteness theorem (Prop. 2), we have KAH ` w ≤ f ⇔ KA∗H ` w ≤ f ⇔ w ∈
clH([f ]), so we may work directly with closure. In order to show completeness, we
reduce the halting problem for Turing machines (on empty input) to this prob-
lem. LetM be a Turing machine with alphabet Σ and final state qf , and HM be
the set of (w ≤

∑
w)-hypotheses given effectively by Lem. 8. Let f = Σ∗qfΣ

∗,
by Lem. 8 we have M halts on empty input if and only if q0 ∈ clHM(f). Notice
that hypotheses of H ′ are of the form u ≤ V where u ∈ Θ3 and V ⊆ Θ3. By
Thm. 5, we can compute a set H ′ of (x ≤

∑
x)-hypotheses, and an expression

h on an extended alphabet such that q0 ∈ clHM([f ])⇔ q0 ∈ clH′([f + h]).

Theorem 8. Deciding KA∗H is Π0
2−complete for (x ≤

∑
w)-hypotheses.

Proof. This set is Π0
2 by Thm. 7. It is complete by reduction from the set of

Turing Machines accepting all inputs, which is known to be Π0
2 . Indeed, let M

be a Turing Machine on alphabet Σ with final state qf , by Lem. 8, we can
compute a set of (w ≤

∑
w)-hypotheses HM with finite language in second

components such that c ∈ clHM(c′) if and only if configuration c′ is reachable
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from c. As before, by Thm. 5, we can compute a set of letter hypotheses H ′

with finite languages in second components, and a regular expression h on an
extended alphabet, such that for any clH′([f + h]) ∩ Θ∗ = clH([f ]) for any
f ∈ ExpΘ. Let Cf = Σ∗qfΣ

∗, we obtain that M accepts all inputs if and only
if [q0Σ

∗] ⊆ clH′([Cf + h]), which achieves the proof of Π0
2 -completeness.

Theorem 9. Deciding KA∗H is Π1
1−complete for (x ≤ g)-hypotheses (g ∈ ExpΣ).

Sketch. It is shown in [13] that the problem is complete with hypotheses of the
form H = Hw ∪ {x ≤ g}, where Hw is a set of length-preserving (w ≤

∑
w)

hypotheses. A slight refinement of Thm. 5 allows us to reduce this problem to
hypotheses of the form x ≤ g.

5.3 Undecidability of KAH for sums of letters

Fix an alphabet Σ, a well-behaved coding function d·e of Turing machines with
final states {0, 1} into Σ∗ and a recursive pairing function 〈·, ·〉 : Σ∗×Σ∗ → Σ∗.
A universal total F : Σ∗ → {0, 1} is a function such that, for every total Turing
machine M and input w ∈ Σ∗ we have F (〈dMe, w〉) = [M ](w). In particular,
F should be total and is not uniquely determined over codes of partial Turing
machines. The next folklore lemma follows from an easy diagonal argument.

Lemma 10. There is no universal total Turing machine.

Our strategy is to show that decidability of KAH with (x ≤
∑
x) hypothe-

ses would imply the existence of a universal total TM. To do so, we need one
additional lemma.

Lemma 11. Suppose that M = (Q,QF , Γ, ι, B,∆) is a total Turing machine
with final states {0, 1} and initial state ι. Let w ∈ Σ∗ be an input word for M.

Then there is effectively a set of length-preserving (w ≤
∑
w)-hypotheses H

and expressions ew, h such that [M](w) = 1 if and only if KAH ` ew ≤ h

Theorem 10. KAH is undecidable for (x ≤
∑
x)-hypotheses.

Proof. Assume that KAH is decidable. This means that we have an algorithm A
taking tuples (Σ,w, f,H), with H consisting only of sum-of-letters hypotheses
and returning true when KAH ` w ≤ f and false otherwise. Without loss of
generality, we can assume that A is total. By Thm. 5, we may even provide
an algorithm A′ taking as input tuples (w, f,H) where H is a set of length-
preserving (w ≤

∑
w)-hypotheses with a similar behaviour: A′ returns true

when KAH ` w ≤ f and false otherwise.
Given A′, consider M defined so that [M](dNe, w) = [A′](ew, h,H). where

the last tuple is given by Lem. 11. We show thatM is a total universal Turing ma-
chine. Since such a machine cannot exist by Lem. 10, this is enough to conclude.
Since A′ is total, so isM. For total Turing Machines N , Lem. 11 guarantees that
[N ](w) = 1 if and only if [A′](ew, h,H) = [M](dNe, w) = 1. Since both [A′] and
[M] are total with codomain {0, 1}, we really have [M](dNe, w) = [N ](w).
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Proof. We prove this by induction on (h(e), |e|), where h(e) is the star-height
of e, i.e. the number of nested Kleene stars in e. If h(e) = 0, i.e. [e] is a finite
language, the result is trivial, using rules of idempotent semirings.

If e = e1 +e2, the assumption ∀u ∈ [e], xσ̄(u)y ≤ z entails ∀u ∈ [ei], xσ̄(u)y ≤
z for i ∈ {1, 2}. By induction hypothesis we obtain that xσ̄(e1)y ≤ z and
xσ̄(e2)y ≤ z, hence xσ̄(e)y ≤ z.

If e = e1e2, noting IHei for the induction hypothesis on ei, we have

∀u ∈ [e], xσ̄(u)y ≤ z
∀u1 ∈ [e1],∀u2 ∈ [e2], xσ̄(u1)σ̄(u2)y ≤ z

IHe2∀u1 ∈ [e1], xσ̄(u1)σ̄(e2)y ≤ z
IHe1

xσ̄(e1)σ̄(e2)y ≤ z
xσ̄(e)y ≤ z

Finally, if e = f∗, we have

∀u ∈ [e], xσ̄(u)y ≤ z

∀i ∈ N,∀u ∈ [f i], xσ̄(u)y ≤ z
HIfi

∀i ∈ N, xσ̄(f i)y ≤ z
*-continuity

xσ̄(e)y ≤ z

We prove Prop. 1:

Proposition 1. [e] ⊆ clH(L) iff `H,L e.

Proof. Assume [e] ⊆ clH(L). This means there is an ordinal α such that [e] ⊆
φαL(∅), by definition of clH(L) as the least fixed point of φL and Knaster-Tarski
theorem. We prove by transfinite induction on α that clH(L) `H,L e, i.e. there is a
derivation tree for [e] ⊆ clH(L). The case α = 0 is trivial, as φ0

L(∅) = ∅. If α > 0,

we get that [e] ⊆ φL(
⋃
β<α φ

β
L(∅)). We build the tree T in the following way: let

w ∈ [e], we want to build a tree Tw for w ∈ clH(L). If w ∈ L, then the tree Tw
is just the single leaf w, an axiom of the system. If w ∈ φβL(∅) for some β < α,

we can conclude by induction hypothesis. The last possibility is w ∈ ψH(φβL(∅)
for some β < α. This means that there is an hypothesis eH ≤ fH ∈ H and
words u, v ∈ Σ∗ such that w ∈ u[eH ]v, and u[fH ]v ⊆ φβL(∅) for some β < α. By

induction hypothesis, there is a derivation tree T ′ for u[fH ]v ⊆ φβL(∅). We can
therefore build a tree Tw for w ∈ clH(L), by appending a hypothesis rule at the
root of T ′. Using an extension rule combining all these tres Tw, we finally build
the derivation tree T for [e] ⊆ clH(L).

Conversely, assume there is a well-founded derivation tree T for [e] ⊆ clH(L),
we want to show that it is indeed true that [e] ⊆ clH(L). Again, this can be shown
by induction on the transfinite height α of the tree. If the tree is an axiom, then e
is a word of L so it is true that [e] ∈ clH(L). Otherwise, consider the rule applied
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to the root of the tree. If it is an extension rule, then by induction hypothesis,
for all u ∈ [e] we have u ∈ clH(L), so we have [e] ⊆ clH(L). If it is a hypothesis
rule, then there is a hypothesis eH ≤ fH ∈ H and words u, v ∈ Σ∗ such that
e is a word w ∈ u[eH ]v, and there is a tree T ′ for u[fH ]v ⊆ clH(L). Then by
induction hypothesis we have indeed u[fH ]v ⊆ clH(L), and by definition of φL
we have w ∈ clH(L).

A.1 Proof of closure properties

We prove Lem. 1:

Lemma 1. Let A,B,U, V ⊆ Σ∗. We have

1. A ⊆ clH(A)
2. clH(clH(A)) = clH(A)
3. A ⊆ B implies clH(A) ⊆ clH(B)
4. H ⊆ H ′ implies clH(A) ⊆ clH′(A)
5. clH(A) ⊆ clH(B) if and only if A ⊆ clH(B).
6. A ⊆ clH(B) implies UAV ⊆ clH(UBV ).

Proof. The first four items follow from the definition of clH as the smallest fixed
point of φA (or φB). If A ⊆ clH(B), we have clH(A) ⊆ clH(clH(B)) = clH(B).

Finally, assume A ⊆ clH(B) and let (u,w, v) ∈ U × A × V . We need to
show that uwv ∈ clH(UBV ). Consider a derivation tree T for w ∈ clH(B).
Applying the mapping x 7→ uxv to all nodes of T yields a derivation tree for
uwv ∈ clH(uBv) ⊆ clH(UBV ). By Prop. 1, we obtain uwv ∈ clH(uBv) ⊆
clH(UBV ).

We prove Lem. 2:

Lemma 2. Let A,B ⊆ Σ∗, then

1. clH(A+B) = clH(clH(A) + clH(B)),
2. clH(AB) = clH(clH(A)clH(B)),
3. clH(A∗) = clH(clH(A)∗)

Proof. Using Lem. 1, to prove the first item it suffices to prove that clH(A) +
clH(B) ⊆ clH(A + B). This follows from clH(A) ⊆ clH(A + B) and clH(B) ⊆
clH(A+B), by monotonicity of clH .

To show the second item, again it suffices to show clH(A)clH(B) ⊆ clH(AB).
By stability under concatenation (last item of Lem. 1), for any X ⊆ Σ∗, we
have XclH(B) ⊆ clH(XB), so clH(A)clH(B) ⊆ clH(clH(A)B). Using this sta-
bility again, we can now show clH(A)B ⊆ clH(AB), and thus by Lem. 1,
clH(clH(A)B) ⊆ clH(AB), thereby concluding the second item.

We finally show the last item, by proving clH(A)∗ ⊆ clH(A∗). Let u ∈
clH(A)∗, there is i ∈ N such that u ∈ clH(A)i. As we just proved, this implies
u ∈ clH(Ai) ⊆ clH(A∗).
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B Proofs of section 4

We prove Prop. 3:

Proposition 3 (Decomposition result). Let H = {1 = Sj | j ∈ J} be a set of
(1 =

∑
x)-hypotheses.

We set Hsum = {1 ≤ Sj | j ∈ J} and Hid = {a ≤ 1 | a ∈ [Sj ], j ∈ J}. For
every language L ⊆ Σ∗, we have that:

clH(L) = clHsum (clHid
(L))

Proof. We have that clHsum (clHid
(L)) ⊆ clH(L) using the monotonicity of the

closure (items 3 and 4, lem. 1). Let us show the other inclusion. Let u ∈ clH(L),
and T be a derivation tree witnessing this membership. Note that T is finite
since it is well-founded and finitely branching. We show first that T can be
transformed into a derivation tree for u ∈ clH(L), where the application of the
rules from Hid are delayed after the rules Hsum . In other words, no rule from
Hsum appears after a rule Hid . For that, we define a rewriting system where a
redex is a pattern of an application of a rule from Hid followed immediately by
a rule from Hsum , followed by an expansion rule. Thus a redex is a derivation of
one of the following forms:( πi

ubvw

)
, b ∈ [Sj ]

u(Sj)vw

uvw
uvaw

or

( πi

uvbw

)
, b ∈ [Sj ]

uvSjw

uvw
uavw

We define the following rewriting rules, which delays the application of the hy-
pothesis rule from Hid .( πi

ubvw

)
, b ∈ [Sj ]

uSjvw

uvw
uvaw

⇒

( πi

ubvw

ubvaw

)
, b ∈ [Sj ]

uSjvaw

uvaw( πi

uvbw

)
, b ∈ [Sj ]

uvSjw

uvw
uavw

⇒

( πi

uvbw

uavbw

)
, b ∈ [Sj ]

uavSjw

uavw

Using these rewriting rules, we can transform T into a redex-free derivation T ′.
Let T ′′ be the subtree of T ′ (with the same root) such that:

– No hypothesis rule from Hid is applied in T ′′.
– For every leaf l of T ′′, the subtree of T ′ rooted in l does not contain a

hypothesis rule from Hsum . We denote this subtree Tl.
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This decomposition of T ′ is possible because all the rule applications of Hid are
delayed after those of Hsum . Note that Tl is a derivation tree for l ∈ clHid

(L).
Thus T ′′ is a derivation tree for u ∈ clHsum (clHid

(L)).

Proof of Lem. 4

Proof. If v ∈ (Σ])
∗, let |v|] be the number of letters in v from Θ]. We show

by induction on |v|] that for all v ∈ (Σ])
∗, v ∈ L] ⇔ v ∈ clH]

(L). If |v|] = 0,
then v ∈ L] ⇔ v ∈ L ⇒ v ∈ clH]

(L). We also show that v ∈ clH]
(L) ⇒ v ∈ L,

completing the base case of the induction. Consider a derivation tree Tv for
v ∈ clH]

(L). Since v does not contain any occurence of ]j for any j ∈ J , no
hypothesis from H] can be applied at the root of Tv, so Tv is necessarily a single
leaf, and v ∈ L.

We now proceed to the induction case, and consider v ∈ (Σ])
∗ with |v|] > 0.

Asssume v ∈ L]. There is u ∈ Σ∗, j ∈ J and v′ ∈ (Σ])
∗ such that v =

u]jv
′ and |v′|] = |v|] − 1. For all b ∈ [Sj ], let wb = ubv′. Then exp(v) =⋃

b∈[Sj ] exp(wb) ⊆ L. This means that for all b ∈ [Sj ], wb ∈ L] and by induction

hypothesis, wb ∈ clH]
(L). Applying the rule ]j ≤

∑
b∈[Sj ] b from H] yields v ∈

clH]
(L).
Conversely, assume v ∈ clH]

(L), witnessed by a derivation tree Tv.

– If the rule applied at the root of Tv is of the form ]j ≤ 1, then it partitions
v into v1]jv2, and by induction hypothesis we have exp(v1v2) ⊆ L. Since L
is Γ -closed, and letters from Γ ⊆ Σ are preserved by exp, for each i ∈ Ij ,
we have exp(v1yi,jv2) ⊆ K. Since exp(v) =

⋃
b∈[Sj ] exp(v1bv2), we obtain

exp(v) ⊆ L i.e. v ∈ L].
– Or the rule applied at the root of Tv partitions v into v1]jv2 for some j ∈ J

and has premises {v1bv2 | b ∈ [Sj ]}. By induction hypothesis, for all b ∈ [Sj ],
v1bv2 ∈ L], i.e. exp(v1bv2) ⊆ L. As before, this yields v ∈ L].

Proof of Lem. 6:

Lemma 6. L] is a regular language, computable effectively.

Proof. LetA = (Σ,Q, q0, F, δ) be a DFA for L. LetA∧ = (Σ,P(Q), q0,P(F ), δ∧)
be the DFA where δ∧ is defined as follows:

δ∧(P, a) = Q ⇔ ∀p ∈ P,∃q ∈ Q such that δ(p, a) = q, and
∀q ∈ Q,∃p ∈ P such that δ(p, a) = q.

If q is the state of an automaton A, we denote by [q]A the language of this
automaton with initial state q. Note that if P is a state of A∧, then [P ]A∧ =
∩q∈P [q]A.

Let us constructA], the automaton for L]. We setA] = (Σ],P(Q), q0,P(F ), δ])
be the DFA where δ] is defined as follows:

∀a ∈ Σ δ](P, a) = Q ⇔ δ∧(P, a) = Q
∀j ∈ J, δ](]j , a) = Q ⇔ Q = ∪b∈[Sj ]Qb where δ∧(P, b) = Qb,∀b ∈ [Sj ]
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We will show that for all u ∈ Σ∗] , for all P ∈ P(Q), u ∈ [P ]A]
⇔ exp(u) ⊆ [P ]A∧ ,

by induction on |u|. This implies in particular [A]] = L].

– If u = ε, then ε ∈ [P ]A]
⇔ P ∈ P(F )⇔ ε ∈ [P ]A∧ ⇔ exp(ε) ⊆ [P ]A∧ .

– If u = av with a ∈ Σ, let Q = δ∧(P, a). By induction hypothesis, v ∈
[Q]A]

⇔ exp(v) ⊆ [Q]A∧ . Since exp(u) = aexp(v) and δ](P, a) = Q, we
obtain u ∈ [P ]A]

⇔ v ∈ [Q]A]
⇔ exp(v) ⊆ [Q]A∧ ⇔ aexp(v) ⊆ a[Q]A]

⇔
aexp(v) ⊆ [P ]A]

⇔ exp(u) ⊆ [P ]A]
.

– If u = ]jv with j ∈ J , let Qb = δ(P, b) for all b ∈ [Sj ]. Then u ∈ [P ]A]
⇔

∀b ∈ Sj , v ∈ [Qb]A]
⇔ ∀b ∈ [Sj ], exp(v) ⊆ [Qb]A∧ by induction hypothesis.

Since exp(u) =
⋃
b∈[Sj ] bexp(v), we obtain u ∈ [P ]A]

⇔ exp(u) ⊆ [P ]A∧ .

C Simulating Turing Machines

C.1 From word hypotheses to letter hypotheses

We prove Thm. 5

Theorem 5. Let Σ be an alphabet, H a set of word hypotheses over Σ. There
exists an extended alphabet Σ′ ⊇ Σ, a set of letter hypotheses H ′ over Σ′ and a
regular expression h ∈ ExpΣ′ such that the following holds for every f ∈ ExpΣ
and w ∈ Σ∗.

w ∈ clH([f ]) if and only if w ∈ clH′([f + h])

Furthermore, we guarantee the following:

– (Σ′, H ′, h) can be computed in polynomial time from (Σ,H).
– H ′ is length-preserving whenever H is.

Proof. Let Σ be an alphabet and H ∈ Pfin(Σ+ × Pfin(Σ∗)) be a set of word
hypotheses.

We will show that it is possible to design h and a set of letter hypotheses
H ′ such that performing derivations for clH′([f + h]) simulates derivations for
clH([f ]). This is done by simulating hypotheses (w,X) from H by many hy-
potheses in H ′, one for each letter of w, and the expression h controlling that
we process the letters in the right order. This also needs extra alphabets to
store information about which hypothesis (w,X) and which position in w we
are currently processing.

Call Θ the set {(w,X,w′, i) | (w,X) ∈ H, w′ ∈ X, i < |w|} and |= =
{⊥s} ∪ {⊥(w,X) | (w,X) ∈ H} a set of fresh letters. We let Σ′ = Σ t Θ t

|= . Let us call the letters a ∈ Θ transition letters. For w ∈ Σ+, (w,X) ∈
H and w′ ∈ X, the (w,X,w′)-transition word δw,X,w′ ⊆ Θ+ is the word
(w,X,w′, 0) . . . (w,X,w′, |w| − 1). Call T ⊆ Θ+ the set of all such transitions
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words. We define auxiliary functions source s : Θ → Σ and target t : Θ → Σ∗

as follows.

s : Θ → Σ t : Θ → Σ∗

(w,X,w′, i) 7→ wi (w,X,w′, i) 7→


w′i . . . w

′
|w′|−1 if i = |w| − 1

ε if i ≥ |w′|
w′i otherwise

Notice that if H is length-preserving, then t is actually a function Θ → Σ.
Furthermore, if we extend s and t to monoid morphisms, we have s(δw,X,w′) = w
and t(δw,X,w′) = w′.

We also define the function Hypo : Θ∪ ( |= \⊥s)→ H by Hypo(w,X,w′, i) =
(w,X) and Hypo(⊥Hyp) = Hyp.

If Hyp ∈ H, let ΘHyp = {(w,X,w′, i) ∈ Θ | (w,X) = Hyp}
The set H ′ is defined as follows.

H ′ = H ′1 ∪H ′2 ∪H ′3 where
H ′1 = {(⊥, {⊥}) | ⊥ ∈ |= }
H ′2 = {(a, {b ∈ ΘHyp | s(b) = a} ∪ {⊥s}) | a ∈ Σ,Hyp ∈ H}
H ′3 = {(b, {t(b),⊥Hypo(b)}) | b ∈ Θ}

H ′ is length-preserving as soon as H is.
Let h0 = {(w,X,w′, k) ∈ Θ | k 6= 0} and hsucc = {(w,X,w′, k)(w,X,w′, k +

1) ∈ Θ2}. For each Hyp ∈ H, we define hHyp,succ = (ΘHyp)∗(Θ2
Hyp \hsucc), which

can be written as a regular expression of polynomial size over alphabet ΘHyp .
Finally, h is a sum h1 + h2 where

h1 =
∑
w∈T

( ∑
u,v∈Θ∗
a∈Θ
w=uav

Σ∗u⊥ss(v)Σ∗ +Σ∗t(u)⊥Hypo(a)vΣ
∗)

h2 = Σ∗(h0 +
∑

Hyp∈H
hHyp,succ)Σ∗

It is straightforward to verify that (Σ′, H ′, h) is computable in polynomial time
from (Σ,H). We need to show the announced equivalence, for arbitrary u ∈ Σ∗
and f ∈ ExpΣ :

u ∈ clH([f ]) if and only if u ∈ clH′([f + h])

We start with the left to right implication. To do so, we first show an auxiliary
lemma.

Lemma 13. For every (w,X) ∈ H, we have w ∈ clH′([X + h]).

Proof. We first show that, for every transition word δw,X,w′ and factorization
δw,X,w′ = uv, we have t(u)v ∈ clH′([X+h]) by induction over the length of v. If v
is the empty word, we have t(u)v = t(δw,X,w′) = w′ ∈ X ⊆ clH′([X+h]). Other-
wise, v = av′ with a = (w,X,w′, i) for some i ∈ N. By the inductive hypothesis,
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t(ua)v′ ∈ clH′([X+h]). It is thus sufficient to prove t(u)av′ ∈ clH′([t(ua)v′+h]).
By definition of H ′, we have (a, {t(a),⊥(w,X)}) ∈ H ′. Clearly, t(u)⊥(w,X)v

′ ∈ [h]
and t(u)t(a)v′ = t(ua)v′ so we may conclude.

Now, we show that for every factorization δw,X,w′ = uv we have us(v) ∈
clH′([X + h]) by another induction over |v|. If v is empty, then this is given by
the previous induction by taking a trivial factorization. Otherwise, v = av′ with
a = (w,X,w′, i) for some i ∈ N. Let Hyp = (w,X). We have two subcases.

– If i > 0 and u is non-empty, then we show uwis(v
′) ∈ clH′([uas(v

′)+h]), from
which me may conclude using the inductive hypothesis and the properties
of the closure. By definition of H ′ and setting Y = {b ∈ ΘHyp | s(b) =
wi}∪{⊥s}, we have (wi, Y ) ∈ H ′. It thus suffices to check that uys(v′) ∈ [h]
for all y ∈ Y \ {a} to conclude.
• Either y = ⊥s, in which case uys(v′) ∈ [h1].
• Otherwise, since u is non-empty and y 6= a we necessarily have uy ∈
hHyp,succ and thus uys(v′) ∈ [h2].

– Otherwise v = δw,X,w′ and u is empty. In such a case, note that for every
w′′ ∈ X, we have s(δw,X,w′) = w = s(δw,X,w′′). For any w′′ ∈ X, call b0w′′ =
(w,X,w′′, 0) the first letter of δw,X,w′′ and factorize w as av′ with a ∈ Σ and
v′ ∈ Σ∗. By definition of H ′, setting Y = {b ∈ ΘHyp | s(b) = a} ∪ {⊥s}, we
have (a, Y ) ∈ H ′. By the inductive hypothesis, we have {b0w′′v′ | w′′ ∈ X} ⊆
clH′([X + h]). Thus it is sufficient to show yv′ ∈ {b0w′′v′ | w′′ ∈ X} ∪ [h]
for all y ∈ Y to conclude. If y = ⊥s, then clearly yv′ ∈ [h1]. Otherwise,
y = (w,X,w′′, j) with w′′ ∈ X. If j = 0, then y = b0w′′ and we are done.
Otherwise y ∈ h0 and thus yv′ ∈ [h2].

This concludes our induction, showing that w = s(δw,X,w′) ∈ clH′([X + h]).

With Lem. 13, we then proceed by induction over the derivation of u ∈
clH([f ]), to show the wanted implication, i.e. u ∈ clH([f ])⇒ u ∈ clH′([f+h]). If
u ∈ [f ], then we also have u ∈ [f +h] and we are done. Otherwise, we have some
factorization u = u′wu′′ for u′, u′′ ∈ Σ∗, w ∈ Σ+, some X such that (w,X) ∈ H
and u′Xu′′ ⊆ clH′([f+h]) by the induction hypothesis. By Lem. 13, we know that
w ∈ clH′([X + h]), and by stability under concatenation (last item of Lem. 1),
we have u′wu′′ ∈ clH′([u

′(X + h)u′′]). But since we have [Σ∗hΣ∗] = [h], this
amounts to u′wu′′ ∈ clH′([u

′Xu′′+h]). Since we have, [u′Xu′′+h] ⊆ clH′([f+h])
we can conclude u ∈ clH′([f + h]).

To prove the converse, i.e. the right to left implication of Thm. 5, we first
need auxiliary lemmas concerning |= letters and consistency of transitions.

Lemma 14. If w ∈ (Σ ∪ Θ)∗ |= (Σ ∪ Θ)∗, then w ∈ clH′([f + h]) if and only if
w ∈ [h].

Proof. The right-to-left direction is easy. For the left-to-right, first notice that H ′

does not allow to remove letters from ⊥, hence (Σ∪Θ)∗ |= (Σ∪Θ)∗ |= (Σ∪Θ)∗∩
clH′([f+h]) is empty. Moreover, any rule of H ′ either leaves the word unchanged,
or introduces a new letter from⊥. This means if a word w ∈ (Σ∪Θ)∗ |= (Σ∪Θ)∗ is
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in w ∈ clH′([f+h]), by the previous remark it must be in [f+h]. Since [f ] ⊆ Σ∗,
we get w ∈ [h].

Lemma 15. If w ∈ clH′([f + h]) has two letters a, b ∈ Θ ∪ ( |= \ ⊥s), then
Hypo(a) = Hypo(b).

Proof. Straightforward induction.

The following lemma states that if we commpletely process a word hypothesis
from H letter by letter according to clH′([f + h]), we indeed performed a step
according to clH([f ]).

Lemma 16. Let δw,X,w′ be a transition word, and u, v ∈ Θ∗ such that uv =
δw,X,w′ . Then we have, for every u′, v′ ∈ Σ∗

u, v 6= ε and u′us(v)v′ ∈ clH′([f + h]))
or

u′t(u)vv′ ∈ clH′([f + h])

⇒ u′t(uv)v′ ∈ clH([f ]).

Proof. We will show the result for all (w,X,w′), and proceed by induction.
Towards notational convenience, let us define the following sets and function,
for any (w,X) ∈ H.

Yw,X,1 = {u′us(v)v′ | u′, v′ ∈ Σ∗,∃β ∈ X,uv = δw,X,w′ , u, v 6= ε}
Yw,X,2 = {u′t(u)vv′ | u′, v′ ∈ Σ∗,∃β ∈ X,uv = δw,X,w′}
Y =

⋃
(w,X)∈H Yw,X,1 ∪ Yw,X,2

F : Y → Σ∗

u′us(v)v′ 7→ u′t(uv)v′

u′t(u)vv′ 7→ u′t(uv)v′

Notice that F is well-defined because u is non-empty in the first case, and there-
fore contains the information w = uv. In the second case, it suffices to project
letters from v according to t. The function F describes the result after we finish
processing the current word hypothesis from H letter-by-letter.

We show that for every α ∈ clH′([f +h]), if α ∈ Y , then F (α) ∈ clH([f ]). We
proceed by induction on the derivation tree Tα for α ∈ clH′([f + h]). Note that
Y1 ∩ [f + h] = ∅, Y2 ∩ [h] = ∅, and Y2 ∩ [f ] = [f ]. Furthermore, for all α ∈ [f ]
we have F (α) = α. Putting the pieces together, if α ∈ [f + h] and α ∈ Y , we
necessarily have F (α) ∈ [f ] ⊆ clH([f ]), which takes care of the base step where
Tα is a single leaf. For the inductive step, suppose that the root of Tα uses the
rule (a,X ′) ∈ H ′ in the following way, with α = xay:

∀a′ ∈ X ′, xa′y
xay

where by induction hypothesis, for each a′ ∈ X ′, if xa′y ∈ Y , then F (xa′y) ∈
clH([f ]). We perform a case analysis according to which component of Y the
word xay belongs to.
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– If xay ∈ Yw,X,1 for some (w,X) ∈ H, we have xay = u′us(v)v′ with u, v 6= ε.
According to hypotheses H ′, Lem. 14 and the shape of h1, we necessarily
have: a ∈ Σ, x = u′u, s(v) = as(v′′), and y = s(v′′)v′ for some v′′ ∈ Θ∗. We
also have x⊥sy ∈ h1. By Lem. 15 and since u 6= ε, we must have a′ ∈ X ′ such
that δw,X,w′ = ua′v′′. Hence we have xa′y = u′ua′s(v′′)v′ ∈ Y and thus, by
the induction hypothesis, F (xa′y) ∈ clH([f ]). We can then conclude since
F (xay) = F (xa′y).

– If xay ∈ Yw,X,2 for some (w,X) ∈ H, we have xay = u′t(u)vv′. We make a
case distinction on whether v = ε.

• If v 6= ε, we necessarily have a ∈ Θ, x = u′t(u), v = av′′, and y = v′′v′

for some v′′ ∈ Θ∗, with x⊥Hypo(a)y ∈ h1. But then xt(a)y ∈ Yw,X,2 and,
by the inductive hypothesis F (xt(a)y) ∈ clH([f ]). We can conclude by
F (xt(a)y) = F (xay).

• Otherwise, we actually have xay ∈ Σ∗. This corresponds to the case
where we finished treating a word hypothesis from H, and start treating
a new one. By using Lem. 14, we can show that there exists a factor-
ization y = αy′ and an hypothesis Hyp = (aα,A) ∈ H such that X ′ =
{b ∈ ΘHyp | s(b) = a} ∩ ⊥s. For each β ∈ A, let θβ = (aα,A, β, 0) ∈ Θ.
We have xθβαy

′ ∈ Yaα,A,1 for every β ∈ A, so, by the inductive hy-
pothesis F (xθβαy

′) ∈ clH([f ]). Moreover, for each β ∈ A, notice that
F (xθβαy

′) = xβy′. Hence, by the definition of the H-closure, we have
xaαy ∈ clH([f ]).

This achieves the proof of Thm. 5, since taking u = v = ε in Lem. 16 yields
the right-to-left implication in Thm. 5.

C.2 Simulating an LBA with closure

We prove Lem. 8.

Lemma 8. For every alternating LBA A, there exists a set of length-preserving
word hypotheses HA over the alphabet Θ = Q∪Γ# such that the following holds.
For any subset of configurations D ⊆ C

clHA(D) = Attr∃loise(D)

Furthermore, this reduction is polytime computable.



26 A. Doumane et al.

Proof. As transitions over configurations are made at a local level, regarding HA
as a subset of Pfin(Θ3 × Pfin(Θ3)), define

Hmid =
⋃
b∈Γ#

q∈Q
a∈Γ

{(bqa,
⋃

X∈∆(q,a)

{bcr | (R, c, r) ∈ X} ∪ {rbc | (L, c, r) ∈ X})}

Hright =
⋃

b∈Γ#,q∈Q

{(bq#R,
⋃

X∈∆(q,#R)

{rb#R | (L, c, r) ∈ X}}

Hleft =
⋃
q∈Q
{(q#Lu,

⋃
X∈∆(q,#L)

{#Lru | (R, c, r) ∈ X})}

HA = Hmid ∪Hright ∪Hleft

It is then easy to check that clHA , when restricted to C and Attr∃(D) are fixed
points of the same operator. Notice that if A is an LBA, HA is length-preserving.

For Turing machines, the hypotheses are no more left preserving, and as
shown in [13] rulesHright , Hleft are replaced with rules HB = {#L ≤ #LB,#R ≤
B#R}.

C.3 Proof of Lem. 11

Lemma 11. Suppose that M = (Q,QF , Γ, ι, B,∆) is a total Turing machine
with final states {0, 1} and initial state ι. Let w ∈ Σ∗ be an input word for M.

Then there is effectively a set of length-preserving word hypotheses H and
expressions ew, h such that [M](w) = 1 if and only if KAH ` ew ≤ h

Proof. Consider the linearly bounded automaton LBA(M) associated with M
and take H = HLBA(M) to be the set of length-preserving hypotheses given by
Lem. 8. Notice that this LBA is stuck on configurations where the head reaches
an extremity of the configurations. Take accordingly h to be the sum h1 +h2 +h3

where

h1 = Q#LΓ
∗#R h2 = #LΓ

∗Q#R and h3 = #LΓ
∗{1}Γ+#R

By the semantics, the right-to-left implication is trivial in light of Lem. 8. In-
deed, as soon as the number of B symbols in the lefthand side is sufficient, the
expression h forces the result of M to be 1. For the left-to-right, suppose that
[M](w) = 1. Then, from ιw, M may execute to a final configuration u1v. Con-
sidering the execution of LBA(M) over #LB

kιwBk
′
#R, we may show that we

have n, n′ ∈ N such that a stuck configuration c occurs in one of the following
patterns:

– if k ≥ n and k′ ≥ n′, then the computation faithfully simulates the execution
of M and c ∈ [h3]
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– if k < n and k′ ≥ n′, then the computation cannot faithfully the execution
of M because of lack of space on the left of the tape and c ∈ [h1]

– if k ≥ n and k′ < n′, c ∈ [h2] for similar reasons
– if k < n and k′ < n′, we have c ∈ [h2 + h1]

Let ew = #LB
∗ιwB∗#R. We partition ew into the following (n + 1)(n′ + 1)

regular expressions e for which we can prove KAH ` e ≤ h. We detail below the
different cases.

– The expressions #LB
kιwBk

′
#R with k < n and k′ < n′. The wanted in-

equality can be shown in KAH by Cor. 9.
– The expressions #LB

kιwv′Bn
′
B∗#R with k < n. Using the proof of Lem. 8,

we can show that #LB
kιwBn

′ ∈ clH(Q#LΓ
∗), which by Prop. 2 estab-

lishes that KAH ` #LB
kιwv′Bn

′ ≤ Q#LΓ
∗. Then, we have KA ` B∗#R ≤

Γ ∗#R, thus by concatenation and KA ` Γ ∗Γ ∗ ≤ Γ ∗, we have KAH `
#LB

kιwBn
′
B∗#R ≤ Q#LΓ

∗#R = h1.
– The expressions #LB

∗BnιwBk
′
#R with k′ < n′ are treated in the same

way.
– The expression #LB

∗BnιwBn
′
B∗#R also gets a fairly similar treatment:

KAH ` BnιwBn
′ ≤ Γ ∗1, from which we conclude by cutting with a proof in

KA.

C.4 Proof of Lem. 10

Lemma 17. There is no universal total Turing machine.

Proof. Suppose that M is a universal total Turing machine. Consider the diag-
onal function D(w) = 1−M(〈w,w〉). Notice that D is total. So, by universality,
we have a contradiction.

[D](dDe) = 1− [M](dDe, dDe) = 1− [D](dDe)


