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ABSTRACT Today’s cities generate tremendous amounts of data, thanks to a boom in affordable smart
devices and sensors. The resulting big data creates opportunities to develop diverse sets of context-aware
services and systems, ensuring smart city services are optimized to the dynamic city environment. Critical
resources in these smart cities will be more rapidly deployed to regions in need, and those regions predicted
to have an imminent or prospective need. For example, crime data analytics may be used to optimize the
distribution of police, medical, and emergency services. However, as smart city services become dependent
on data, they also become susceptible to disruptions in data streams, such as data loss due to signal quality
reduction or due to power loss during data collection. This paper presents a dynamic network model
for improving service resilience to data loss. The network model identifies statistically significant shared
temporal trends across multivariate spatiotemporal data streams and utilizes these trends to improve data
prediction performance in the case of data loss. Dynamics also allow the system to respond to changes in
the data streams such as the loss or addition of new information flows. The network model is demonstrated
by city-based crime rates reported in Montgomery County, MD, USA. A resilient network is developed
utilizing shared temporal trends between cities to provide improved crime rate prediction and robustness
to data loss, compared with the use of single city-based auto-regression. A maximum improvement in
performance of 7.8 % for Silver Spring is found and an average improvement of 5.6 % among cities with high
crime rates. The model also correctly identifies all the optimal network connections, according to prediction
error minimization. City-to-city distance is designated as a predictor of shared temporal trends in crime and
weather is shown to be a strong predictor of crime in Montgomery County.

INDEX TERMS Adaptive algorithms, geospatial analysis, predictive models, statistical learning.

I. INTRODUCTION

Smart city design seeks to optimize city services, by improv-
ing the resident experience and reducing waste, through intel-
ligent use of citywide data. Smart city services are expected
to respond appropriately to changing conditions, requiring
regular data updates on the status of citywide properties,
such as weather, road conditions, and communicable dis-
ease case numbers. Consequently, optimal deployment of
critical resources will depend on data streams. For instance,
in the event of a disease epidemic, current medical statistics

will be used to ensure that ambulances, drugs, and vaccine
resources are intelligently distributed to the worst hit neigh-
borhoods and those predicted to be at high risk. In the case
of a powerful storm that disrupts traffic, traffic data will
be used to distribute police resources for traffic guidance
based on current and predicted traffic patterns. In the case of
changing crime rates throughout the city, crime statistics and
predictions will be used to ensure that police, medical, and
emergency resources are intelligently distributed to reduce
response time.
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As city services become more dependent on smart city
data streams, the services also become more susceptible
to disruptions in the data streams. Such disruptions can
affect critical services, for instance, by increasing ambu-
lance response time. Interruptions in data streams and the
resulting loss of data can occur for any number of reasons,
including anomalous signal to noise reduction, power loss
during data collection, or data loss on a network level, either
benign or malicious. Additionally, due to the spatial and
temporal dependence of smart city data streams, with data
collected periodically by distributed sensors or local human-
based reporting, spatiotemporal events can impact data ser-
vice. For example, a storm can knock out neighborhood-wide
communications, interrupting data collection as the storm
travels from one location to the next. For these reasons, smart
city services require a level of resilience to data stream dis-
ruption based on application domain and data rate frequency.

A diverse set of techniques exists for establishing resilience
to data stream disruptions, and the resulting data loss, at dif-
ferent network layers [16]. The work presented here focuses
on resilience techniques at the application level. For exam-
ple, if data loss occurs in one field or element of multi-
field data, the entire entry can be removed, or a marked as
missing. In particular, when knowledge of the missing data is
required, many methods exist for estimating the missing data
including the use of mean or median, extrapolation from past
data, or the use of model-based methods such as maximum
likelihood or multiple imputations [8]. To improve smart city
resilience to data loss, such a scheme must be implemented.
As data disruptions occur and data loss is identified, the lost
data is estimated with minimal prediction error to reduce the
impact of the data loss on dependent services. In this work,
we propose an application-layer algorithm that can be used
to ensure robustness across regions of different scale, from
smart communities to smart counties, and establish both inter-
and intra-smart city networks. Inter-smart city networks are
of interest for county-wide occurrences such as the spread
of epidemics, while intra-smart city network can provide
resilience for the scenarios as traffic management. The algo-
rithm identifies a dynamic data sharing network between
independent, smart cities or generalized smart community
to ensure minimal data estimation error for each smart city,
with each smart city, assumed to be associated with a single
multivariate data stream.

The proposed model incorporates three key features:
(1) the ability to handle multivariate time series data streams
and capitalize on temporal trends in past data to improve
estimation accuracy, (2) identification and use of mutual
information, in the form of statistically significant temporal
trends shared between data streams, to improve estimation
accuracy, and (3) network dynamics to respond to changing
data and city conditions. The ability to handle multivariate
time-series/spatiotemporal data streams is essential for many
smart city applications as data is often collected for multiple,
distributed locations and periodically over the same time
range. For example, a set of data streams may pertain to
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hourly temperature data, with one data stream for each neigh-
borhood. Furthermore, multivariate time-series techniques
allow data analysts to identify and track temporal trends
within a data stream to improve data prediction, increasing
robustness in the presence of potential data loss. Additionally,
shared information between data streams can be utilized to
improve data prediction and increase robustness even fur-
ther. For example, if a neighborhood weather sensor network
experiences data loss at one node, data from a neighboring
sensor can be used to reinforce estimation of the lost data.
Finally, a practical, smart city resilience model must also
be dynamic — capable of self-adaptation to changes in the
city environment to maintain service. In the case of a crime
incident data network, the network should be resilient to the
closing of a reporting office in one location, or the opening of
a new office. Similarity, dynamics is important in the case of
travel data for travel safety, as a path that was safe yesterday
may not be safe today. The three features are incorporated into
the proposed resilient data-sharing network, ensuring optimal
use of data in the face of potential disruptions and a dynamic
environment.

The data sharing network is represented by a graph, with
each smart city and its respective data stream indicated by one
node, and directed edges are indicating data sharing connec-
tions between the smart cities. Data sharing is described by
a set of vector-autoregression (VAR) [21] time series models
which provide multivariate temporal analysis while capital-
izing on shared temporal trends. The set of potential VAR
models for each smart city is reduced by an automatic anal-
ysis of shared temporal trends between cities using Granger
causality [9]. Both VAR and the Granger causality methods
are popular methods in econometrics, used for predictive
analytics in the stock market and exchange rate volatility [19].
The VAR model selected for each city utilizes data from cities
with mutual information as indicated by Granger causality
while also providing minimum data estimation error. The
computational issue of model selection is further reduced by
using Multidimensional Data Scaling (MDS) [8], a common
data dimensional reduction technique, to investigate potential
underlying environment variables that are predictive of model
performance. These predictive environmental variables may
then be used to whittle down the space of possible models.
Dynamics in the data sharing network is achieved through a
regular update of network connections performed by iterative
analysis of data sharing efficacy.

The system is demonstrated on the application domain
of crime data analytics for Montgomery County (MC),
Maryland USA. A cross-county resilience network of city-
to-city data sharing is identified and demonstrated to provide
improved crime statistics prediction and data-loss resilience,
as compared to analysis using city-based autoregression.
The identified resilience network can be utilized to opti-
mize medical, police, and emergency services as well as
suggest policy changes enhance public safety and health [12].
The experimental data is comprised of the number of
police-reported incidents, organized by city, throughout MC
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between 01/01/2014 and 06/26/2016, constituting a spa-
tiotemporal multivariate time series with each data stream
reporting one variable — the number of daily city-wide crime
incidents. The resilience network capitalizes on underlying
temporal trends within a city and shared temporal trends
between cities to improve crime prediction, thus mitigating
the effects of data loss and day-to-day crime rate variability.
An investigation was also conducted to discover potential
underlying demographic and topology parameters that may
explain the evaluated network graph.

This paper is structured as follows. In section 2,
we describe prior related work. Section 3 describes the
problem statement followed by the proposed novel approach
and a description of evaluation metrics. Section 4 examines
potential network models for the Montgomery County crime
dataset as well as their performance and analysis, followed by
a discussion of the proposed network. Finally, Section 5 dis-
cusses the conclusions and a description of future
work.

Il. BACKGROUND

Prior work in smart city resilience models includes a variety
of techniques and application areas, combining subsets of the
three key data analysis features described in the introduction.
We look at different statistical methods for resilience. For
example, Anava et al. [4] only uses its own past predictors to
overcome the missing data. Dogra and Kobti [7] incorporated
dynamics and data sharing into a complex modeling system
by utilizing an agent-based approach capable of evolving in
response to a changing environment. As individual agents
detect changes, those changes are shared with the other
agents. Dynamics for fault tolerance were introduced in [5],
which utilizes a Byzantine fault tolerance method to cre-
ate hardware resilience to malicious attacks. These methods
provide system resilience and adaptability to environmental
changes but do not utilize temporal trends from past data to
improve future resilience. Aman et al. [3] deployed dynam-
ics, a temporal trend sensitive system using a combination
of autoregressive integrated moving average (ARIMA) time
series models to respond to the dynamics of energy demand.
Similarly, [2] combines dynamics and time series based
regression via a decision tree to improve prediction of com-
plex events. Their algorithm identifies current model predic-
tion error and dynamically determines to increase or decrease
the time series training window accordingly.

Methods that leverage mutual information between data
streams to improve estimation accuracy and robustness have
also been used for smart city data-loss resilience, in particular
for the application domains of weather and transportation. For
example, the work in [20] combines support vector machine
regression and a data network between neighboring weather
sensors to interpolate missing spatiotemporal weather data
from one sensor using neighboring sensors. However, this
method assumes a static network, where network connections

1 https://data.montgomerycountymd.gov/
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do not change over time, and where connections are defined
by sensor proximity and similarity. A network of weather
data streams is also addressed by Derguech et al. [6] where
network dynamics is allowed with potential changes in data
sharing connections. A greedy algorithm selects data streams
with the most recent data and rejects data streams identified
to provide poor prediction performance. Pearson’s product
moment correlation function is used to determine and eval-
uate data streams for shared temporal trends dynamically,
and these learned relationships are then utilized across a
set of regression techniques to ensure system resilience to
data faults. Pravilovic et al. [17] also utilize correlation in
their geo-sensor data resilience networks, where the tempo-
ral and spatial correlation between data streams are iden-
tified and used to establish a spatial-based cluster of data
streams. A stationary correlation is assumed, and a static
data sharing network is formed. However, while correlation
analysis can provide useful information on shared temporal
trends, it does not give an indication of the statistical sig-
nificance of these relationships. Additionally, highly useful
shared trends between data sources separated by significant
distances may be missed in such spatial correlation based
techniques.

The particular application domain of crime prediction
and analysis has greatly benefited from the development
of such smart city data analysis techniques, as well as an
increase in data collection. Data analysis techniques are used
to identify spatiotemporal patterns in crimes incidents and
develop crime prediction models [12], [15]. For example,
analyses of shared trends across locations are used to dis-
cover spatial patterns in crime incidents [13], and time series
analysis techniques are used to find relevant and meaningful
temporal patterns [13]. Spatiotemporal crime trend analysis,
which studies the dynamic interplay of location-dependent
and time-dependent aspects of crime, utilizes a wide vari-
ety of techniques including pattern mining, association
rule mining, and combinations of the previously mentioned
methods [13]. Many methods rely on the use of multivariate
time series or relationship analysis to improve crime predic-
tion. For example, Gunderson et al. demonstrated in [10] a
time series multi-agent model to predict areas in which future
criminal incidents are likely to happen and use both physical
and cyber-criminal activity data. Liao er al. [14] utilize
Bayesian inference to create a geographical map to show
potential crime factors per area. This weighted geographical
profile provides probability estimation for the next crime hot
spots and likely locations for future crime incidents. Such
results can be used to improve police resource deployment.
Gerber et al. applied in [9] a Latent Dirichlet Allocation
semantic analysis to capitalize on the relationship between
criminal activity and Twitter crime discussions to identify
crime-predictive Twitter discussion topics. Ranson ef al. [18]
used linear regression to investigate the relationship between
weather factors and crime data and identified a strong rela-
tionship between climate and crime incident number and
type. These crime statistics studies have used a subset of the
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three key features of the proposed algorithm and may benefit
from expanding the data analysis technique to use all three
features.

Ill. PROBLEM DESCRIPTION AND

PROPOSED SOLUTIONS

A. PROBLEM STATEMENT AND NOTATION

Smart city service optimization depends on linking services
to the dynamic state of the city, measured by time series data
collected across the city. The challenge is to identify a flexible
mechanism to ensure optimal, resilient, smart city services
in the presence of potential data loss within a data stream,
reduction in data stream quality, the loss of an entire data
stream, or the addition of a new data stream. The system
should also capitalize on shared information between data
streams to ensure optimal performance.

For this work, sets of multivariate, spatiotemporal
smart city data streams such as the status of multiple
traffic lights, the number of locally available vaccine
units, and neighborhood air quality are represented by
Y = [ykzl,ykzz, . ,yk:N], where the superscript k €
{1,...,N} provides the data stream index for a set of N
data streams. For spatial data, each index k corresponds
to a location. Individual data streams are represented by a
time-series vector y' = [y/_,,y/__,....,yl__,] with the
subscript t providing the time series sample index, beginning
at the time of interest to be predicted + = 0 and extending
to v periods in the past # = —v. An individual data stream y’
thus has dimensions R” and the set of N data streams Y has
dimensions RY*P_ A snapshot of the state across all streams
at time t is given by y, = [y!,y?,...,y]. For this work,
we assume that all data streams are simultaneously sampled
atregular time intervals. Data loss in a data stream is indicated
by the absence of data at a time, y! = f.

The estimate for data value yé is represented by %
When using the set of data streams {yl ¥, y”} to evalu-
ate )76, the functional relationship is represented by % =
f (¥, y™,¥"). For this work, it is always assumed that 3}, is
estimated using past data r < O from the independent data
streams. For example, the set of three data streams can be
the daily crime incident numbers for two cities indexed by
! and m, and n is the daily regional temperature. Here we
use past data from these three data streams to estimate %,
the crime incident number on day ¢+ = O for city /. The
functional relationship between data streams can be repre-
sented using a directed graph, with data streams indicated
by nodes, and directed edges connecting nodes that repre-
sent independent data streams to nodes representing depen-
dent data stream. As both AR and VAR models require
the self-dependent functional relationship 3% = f (y') for
any t, the edge pointing from y’ back to y' is assumed
and not indicated in the presented figures. The set of all
concurrent resilient models composes the network graph,
G = {f=!, =2, ... f=K} with i indexing the set of all
K functions.
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B. PROPOSED SOLUTION

We propose a dynamic network-based model that pro-
vides improved and reinforced resilience to data loss. The
VAR-based model utilizes past data from the data stream of
interest as well as data from ‘related’ data streams that share
temporal trends, to achieve optimal estimation accuracy. The
model dynamically identifies the optimal set of data sources
to reinforce the data-loss robustness of each data stream
with Granger causality and MDS analysis. Model dynamics
is achieved through recurrent updates, which identify the
optimal network connections for each data stream to maintain
optimal estimation accuracy.

An example is shown in Figure 1. Three data streams are
presented with their values indicated for times 7_4 through #s.
At time 1y, the data stream of interest y1 experiences data
loss. (At this time the data for times #; through t5 have
yet to be collected.) Resilience in the data stream can be
established by estimating the lost data using autoregression
(AR) — extrapolating the value of y(l) from past data. Alterna-
tively, if either available data stream y? or y> shows similar
trends to data stream yl, information from that stream can be
used to improve the estimate of y(l) using VAR. During the
period of t = {—4, ..., 5}, there are four potential resilience
models which can be evaluated for their utility in reinforcing
estimation of y!:

(1]

[-TH]

8 S yz L 2

5 4 y p

T b

-] 3 F

b= ¥ 3

&

g Q) [yl ¥ vl yh vi y: ¥ ¥ oy

2y iyiovi yi oy

= L

a0 yi y? oyl vl ¥vd
Time & &y L; &y & & & & L &

FIGURE 1. An illustration of three event-based data sources [y;, Y5, Y3]
and dynamic model adaptation over time [t_,, ..., t5] depending on data
stream changes.

1) AR using only data stream y': )3(1) =f (yl).

2) VAR using data streams y' and y*: 5)(1) =f (yl ,yz).

3) VAR using data streams y' and y*: ) = f (v1, y°).

4) VAR using all three data streams: ) = f (y', y%, y°)

Data streams two and three are first tested for shared
trends with data stream 1 using the Granger causality test to
determine the viability of models 2-4. The Granger causal-
ity test [9], as well as MDS, are described in section 3.2b.
If shared trends are identified, the models are queried for their
performance at each period, the models are ranked by perfor-
mance, and the best performing model is selected for imple-
mentation. Performance is measured by computing estimated
prediction error using time series cross-validation. If instead a
supporting data stream is found not to provide utility, that data
stream can be removed from the later analysis, reducing the
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amount of data traffic required for the network. In this exam-
ple, model 2 is determined to provide optimal performance
for period t = {—4, ..., 0} and once data has been collected
fort = {1,...,5}, model 3 is found to provide the best
performance for this period. Models 2 and 3 are graphically
represented by a directed graph, with edges connecting the
nodes representing y> or y3 to the node representing y' (See
Figure 1). If an issue is identified with the optimal resilience
model, e.g., the supporting data stream stops reporting, then
the next best performing model is chosen, and so on.

The set of all top performing, concurrent models for all
data streams composes the resilience network. The network
is represented by the resilience network graph — the collected
graphical representation of all concurrent models. At user-
determined intervals, the system is iteratively updated,
re-evaluating the performance of each model to update model
rankings and identify and implement the optimal model.

The resilience network method is diagramed in Figure 2,
with each step explained below.

Improved services with enhanced

awareness Data wrangling
day hour  iocation  event
LM m h 21
:\::,::-: @) @) m: n: -] [-H
4 fma s Ly .1}

. Nesmalization for each
@%) day and location

Model selection (€]

(b)
b n
Ll S

FIGURE 2. Overview of the proposed solutions - Data analytics
framework with periodically based iterations. The right side represents
the first two steps which constitute the data preprocessing

(a) step: (a’) data wrangling and (a”) data normalization. Next step is data
stream relationship analysis (b), used to identify the streams that share
temporal trends and narrow down the hypothesis space of potential data
sharing models for the network. Step (c) is to determine the list of best
models for analysis based on minimum prediction error, and step (d) is
dynamic respond on the best model selection and available resources.

Feelationahip
wlentification between
cach data node

The system begins with preprocessing the data streams,
described in section 3a, followed by relationship analysis for
sets of streams. Relationship analysis is performed to reduce
the search space for optimal resilience models, as described
in section 3b. Potential resilience models are then evalu-
ated, the optimal models are selected, and the network is
identified. These steps are iterated at user-determined inter-
vals to maintain an updated, optimal resilience network.
Qualitative analysis is also used to determine correlations
between the network and any pertinent data relating the data
streams. Through this qualitative analysis, additional infor-
mation sources can be used to reduce the search space of
potential resilience models and subsequently reduce compu-
tation time and cost.
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1) DATA PREPROCESSING

Data preprocessing can involve many steps including data
wrangling, and feature vector normalization. For this work
data wrangling includes data cleaning, unifying the format
for all data streams, and feature extraction. The choice of
pre-processing methods is of course application and data
dependent. A description of the techniques used for the case
study in more details can be found in section 4.

2) DATA STEAM RELATIONSHIP ANALYSIS

a: QUANTITATIVE ANALYSIS

Once data preprocessing is complete, relationship analysis
is performed on each pair of data streams to identify those
with shared temporal trends. The reduced set of ‘related’ data
streams can then be used to narrow in on potential resilience
models. This approach can greatly reduce search time, and
computation cost as the initial resilience model hypothesis
space for each data stream includes all models covering the
range of possible dependencies on all other data streams.
For this work, the Granger causality test is used to identify
whether one data stream can be used to improve prediction
estimate accuracy of another data stream due to shared tempo-
ral trends. More specifically, the null hypothesis of no causal
relationship is investigated with an F-test, and the resulting
p-value is compared to a threshold to identify whether the
null hypothesis can be rejected. Here, ‘causality’ is a mis-
nomer, as the method does not identify causality between
data stream sources, and instead implies predictive causality.
The method does not take into account the possibility that
both data streams are consequences of a common cause, i.e.,
the existence of latent variables that Granger-cause both data
streams of interest.

The Granger test is used rather than a more common
correlation metric such as Pearson’s product moment as it
indicates the statistical significance of using past values of
data stream y™ to assist in predicting y' rather than using
past values of y' alone. Identifying the latter can assist in
discovering potential relationships between the data sources,
which can be used to help improve resilience models. For this
work, bidirectional causal relationships were tested between
each pair of data streams. As a pre-processing step, each
data stream was first confirmed to be stationary by use
of the Augmented Dickey-Fuller (ADF) and Kwiatkowski
Phillips Schmidt Shin (KPSS) unit root tests [21]. In eval-
uating the Granger casual relationships, the lag parameter
was programmatically selected using the Akaike informa-
tion criterion (AIC) [1], ensuring dynamic response of the
system.

Identifying the predictive causal relationship between one
dependent and two independent variables can be performed
using the multivariate Granger causality test which is reliant
on the results of VAR analysis. Thus, in the first iteration,
the prediction accuracy of all relevant VAR models % =
f(y',y™ y") can be computed and the field of potential
models whittled down for future iterations by subsequent
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multivariate Granger analysis. Using this method can greatly
reduce the hypothesis search space for resilience models.

b: QUALITATIVE ANALYSIS

Qualitative analysis can be used to determine if underly-
ing latent parameters dictate the relationship between data
streams. If such parameters are found, they can be used to
reduce the hypothesis space of possible resilient models,
thus reducing computation cost and required data sharing
network traffic. For this work, the multi-dimensional data
scaling (MDS) method was used to visualize the relation-
ship between potential descriptive variables and resilience
model performance. MDS operates by mapping points from
a high dimensional Euclidian space to a lower dimensional
space while attempting to preserve dissimilarity relationships
between the points. For the case study, geospatial, topological
and demographic parameters are investigated for their utility
in predicting resilience model accuracy.

3) MODEL SELECTION AND EVALUATION

The next step is identifying and ranking resilience models by
prediction accuracy. For this work, the hypothesis space of
resilience models is limited to linear AR and VAR models
with one to three independent data stream variables, although
this method can be generalized to a larger number of indepen-
dent variables. Linear AR and VAR models were chosen due
to their ease of computation and interpretation for dynamic
multivariate time series, as well as their availability on scal-
able big data platforms. For N data streams, the set of possible
models include:

1) N models of type AR using past data from the stream
of interest

2) (N 2_N ) models of type VAR using past data from
the stream of interest and a supplemental data stream
(‘two-city’)

3) (N® — 3N? 4+ 2N)/2 models of type VAR models
using past data from the stream of interest and two
supplemental data streams (‘three-city’)

The three model types can be expressed by the time series
p-th order VAR equation which uses p past data stream
values:

p
Si=c+ D D BEViw (1)

k={l,5} n=1

where )35 is the approximation for the missing data value yl{,
cis a constant, and B_, is the auto-regression weight learned
for data value y¥_, for data stream k and time t-n. k is summed
over the set of data streams to be used in the approximation
analysis which includes the data stream of interest / and the
set of supplemental data streams S. For model type one,
simple AR, no supplemental data streams are used and S is
the empty set. Thus, regression is performed over only the
past values of the single data stream y'. For model types
two and three, S is composed of the one or two supplemen-
tal data streams, respectively. The order of the VAR model
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used, p, also known as the lag, is dynamically determined by
selecting the value of p that provides the minimum AIC.

Model evaluation is performed using time series cross-
validation [11], and performance is measured using mean
square error (MSE). Time series cross-validation is selected
over general cross-validation as it provides better estimates
of model prediction performance. For each run of the cross-
validation, testing is performed on the value y{, for each pos-
sible t and training is made of all possible sets with target y{‘_r
withr € {1,...,v — p} and independent inputs yf_r_q, qe€
{1, ..., p} with p the lag. MSE is computed over the set of )31
estimated. Ranking model performance is achieved by com-
paring the MSE for each model to the AR model MSE for the
same target data stream. This emphasizes the improvement
in prediction performance provided by the model of interest
relative to the baseline of AR. The formula used is:

MSE (f4R) — MSE (f")

RelMSE = 100
¢ © T MSE (FAR)

(@)

4) NETWORK DYNAMICS

As trends change in the data streams, the network should
respond dynamically, self-adapting and reform network con-
nections to maintain optimal performance. For example,
a weather sensor network should respond appropriately as a
storm travels from one neighborhood to another. If a sensor
experiences data loss, the supporting sensor data used to rein-
force resilience should be from those currently experiencing
similar weather patterns. Network dynamics are introduced
by iterating network evaluation on a user-defined interval,
ensuring that network connections reflect current data stream
trends. Network re-evaluation is diagramed in Figure 2, start-
ing with data pre-processing, followed by relationship anal-
ysis performed for data stream sets, ranking of models by
prediction performance and implementing the optimal set
of models in the current resilience network. Additionally,
if an anomaly in the network is detected, such as the loss
of a networked data stream, the network can dynamically
select the next best models from the ranks of models to
replace those affected. Or in case of an addition of a data
stream, a reevaluation of the network is being triggered, and
a new list of best models is created. In implementing such a
system, a delay may be necessary to improve system stability,
reducing the likelihood of rapidly alternating between models
due to small variations in data. Network reevaluation can
also be triggered based on an external signal ensuring user
control or interaction with a relevant event detection system.
This depends on domain application of interest, data rates,
and sensitivity.

IV. CASE STUDY: CROSS COUNTY CRIME

A. DATA COLLECTION AND PREPROCESSING

For this work, a diverse set of data was collected includ-
ing crime statistics, weather data, demographics data and
geospatial data. Weather data is included as previous research
has found that temperature influences crime rates [18].
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Scalar geospatial and demographic data are included to
explore the relationship between these city parameters and the
resilience network. The data characteristics are summarized

as follows:
a) Crime dataset*: 116375 records were collected for

crime events reported throughout Montgomery County,
Maryland (MD) for the 1/1/2014 to 5/26/2016 period.
Each record has twenty-four attributes including date
and time (start, end, police dispatch) for the incident,
location of the incident (longitude, latitude, zip code,
city, state, address, description of urban or residential
environment city), police district name and number,
agency, uniform crime reporting number and descrip-
tion. For this work, only the incident start date, city,
and description fields were used.

b) Weather dataset’: Daily weather data was collected
over the same period as the crime dataset, for the
cities in Montgomery County, MD. Each record has
the attributes: temperature, humidity, sea level pres-
sure, visibility miles, wind speed and direction, dew
point, precipitation, cloud coverage. Each attribute
is described with min, mean, max features. For this
work, only the daily mean temperature is used. Also,
Montgomery County is covered by three weather cen-
ters (College Park Airport, (MD), Ronald Reagan
Washington National Airport, (VA) and Montgomery
County Airpark, (MD)). For this analysis, data from the
Montgomery County Airpark was selected.

c) Census dataset*: Census data was collected for
the Montgomery County cities, including population
count, a number of city dwellers with an education
degree of bachelor or higher, and the median household
income.

d) Geospatial topological distance: The distances between
cities were collected by using Google Maps> service,
where the distance is calculated as a driving distance

from the center of the town to the center of the city.
For this case study, it is assumed that the reporting city

collects the event data streams, and each Montgomery County
city is identified as a separate data stream and a single node in
the resilience network graph. The crime dataset was program-
matically preprocessed by first removing crime incidents that
occurred outside Montgomery County or crime incidents
with unresolvable errors in the location field. Next, the crime
incident context features were extracted, and the incidents
were sorted by offense type using the MD offense policy
categorization, which includes among sixty different cate-
gories including assault, abuse, burglary, offense, robbery,
theft. Records pertaining to non-crime events, such as natural
death, were removed. For each city and date, the number of

2https://data.montgomerycountyrnd.gov/

3www,wundergr0und.com

4http://www.census.gov/

5The identification of any commercial product or trade name does not
imply endorsement or recommendation by the NIST, nor is it intended to
imply that the materials or equipment identified are necessarily the best
available for the purpose.
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crime events was then tabulated. A plot of the number of
crime events occurring in each city during the last month
of data for the available dates of May 1st and May 26th
(showing the last 26 out of 877 days) is shown in Figure 3.
From this figure, it is evident that Silver Spring dominates of
crime events while Chevy Chase, Potomac, and Montgomery
Village typically fall near the bottom. with an average of
only a few events per day. This trend is shared throughout
the period investigated. The eight cities with the highest
number of crime events were chosen for analysis, they are
(in descending order) Silver Spring, Bethesda, Gaithersburg,
Rockville, Germantown, Montgomery Village, Potomac, and
Chevy Chase. The rest of the cities were not considered for
analysis as they exhibited a deficient number of events per
day, e.g., between zero and two daily events. The eight city-
based daily crime rate data streams and the one daily weather
data stream were normalized by subtracting the mean of each
data stream and dividing each data stream by its the standard
deviation.

City
Siver Spring
Rochville
Bethesda
Chowy Chase
Gaithersburg
Germantown

Monigomery Village:

Total number of crime events

Potomac

Date

FIGURE 3. Interpreting the number of daily crimes for May 1-26, 2016.

All work described in this paper was performed in the R
statistical computing language.® The vars’ package was used
for implementing AIC, Granger test, AR models, and VAR
models. Graphics were generated using the ggplot® package.

B. RELATIONSHIP ANALYSIS: IDENTIFYING POTENTIAL
NETWORK CONNECTIONS
1) BIVARIATE AND TRIVARIATE GRANGER CAUSALITY TEST
After data normalization, each crime rate data stream, as well
as the weather data stream, were programmatically confirmed
to be stationary. The Granger test was then applied to each
pair of data streams to quantify the bi-directionally predic-
tive causal relationships, as described above, with the lag
parameter automatically selected by the AIC method. Sim-
ilarly, the multivariate Granger test was performed for each
triple of data sources. For both types of models, the weather
was removed from the set of target variables. The results
of the Granger test analysis for two-city models are shown
in Table 1.

A Granger test p-value below or equal to the significance
level of 0.05 is used to identify if the forecast data stream is

6https J/Iwww.r-project.org/
7https://cran.r—project.org/web/packages/vars/index.html

8https :/[cran.r-project.org/web/packages/ggplot2/index.html
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TABLE 1. Granger causality relation index between top eight cities by the number of crime events.

Forecaster
Data Stream Sil\_/er Rockville Bethesda Chevy Gaithersburg Germantown Momgomery Potomac Weather
Spring Chase Village
e e — 0.00009 0.01685 0.03399 0.17606 0.10106 0.00925 0.06527 0.00796
Rockville (1177 [ f— 0.09925 0.28008 0.00313 0.03449 0.00111 0.05617 0.01097
Bethesda 0.11235 | 0.00658 | ----eeev 0.01854 0.00786 0.01437 0.00026 0.21347 0.02932
_ | Chevy Chase 0.01069 | 0.67876 [N E—— 055178 0.85620 0.04985 0.05769 0.03993
£ | Gaithersburg 0.01166 | 0.01822 0.00011 0.00072 | oo 0.09518 0.06589 0.10123 0.00426
& | Germantown 0.01208 | 035502 0.39609 0.04996 031938 | —oeeoem 0.05555 0.77694 0.01047
yi?lr:gg;)mery 0.00944 | 0.00173 0.04038 0.04164 0.00491 0.05677 | -eeeeeee 0.02273 0.00316
Potomac 0.07615 | 0.170987 | 0.25884 0.24689 0.01017 0.06066 023479 | coeeeenee 0.24719
a good predictor for the target data stream. The Granger test o Germantow « "t
indicates that in 57 % of two-city models and 37 % of three- g . . g . ;
city models the forecast data stream provides statistically § T vt s § .
meaningful information about future values of the target data a ° 2 . '
stream, and can, therefore, be used to improve prediction gﬁ 7 s gﬁ
of the target data stream. Using the Granger test narrows 3 A o .
the hypothesis space from 289 potential models (90 two-city b 1:!-1]35 C:m dm:e" 1 MDS Coor diate
models and 199 three-city models) to 120 models or 42 % _
of the original hypothesis space. Each indicated Granger- - T
causal data stream pair can now be investigated for prediction T -
accuracy using VAR. It was also found that for all eight § ] * Bethesas
cities, weather Granger-causes the daily crime rates either 8 » Gemartown
individually or with an additional supplemental data stream, L T e
confirming the results from [18]. 2 01 0 1 2

The resilience performance for all models was computed
and compared to the Granger test predictions to identify the
efficacy of the Granger test. It was found that the Granger test
accurately identifies a predictive causal relationship among
61 % of the two-city models and 61 % of the three-city
models. Here, the Granger test is said to accurately identify a
predictive causal relationship when the Granger test p-value
was equal to or less than the threshold value of 0.05 and the
multi-city VAR model provides a lower prediction error than
the AR model for the city being predicted. Among the top
three models for each city, only two models were misclas-
sified, and these were both the third best models for their
cities. Thus the Granger test has an excellent ability to greatly
reduce the hypothesis search space while still retaining the
best performing models for each city. It was also confirmed
that the significance level of 0.05 is optimal in detecting
Granger-causation over the range of 0.03 to 0.08 with maxi-
mum performance at 0.05.

2) QUALITATIVE RELATIONSHIP IDENTIFICATION

Once a set of resilience models have been selected and ana-
lyzed for their performance (described in the next section) in
the first iteration, the hypothesis space of possible two-city
resilience models can be whittled down for future iterations
through qualitative analysis. Qualitative analysis can identify
city parameters that may underlie the predictive performance
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1#*MDS Coordinate

FIGURE 4. Graph representation of cities in Montgomery County,
Maryland, U.S.A. by three dimensions: (a) mean square error from model
two, (b) distance in miles between the cities and (c) demographics
(population, education, and income).

of the resilience models. For instance, if it is found that
cities separated by vast distances tend to be poor predictors
for each other, a threshold on city-to-city distance can be
used to reduce the model hypothesis space. The city param-
eters investigated include city-to-city distance as well as a
set of city demographics including population, the number
of denizens with a bachelor degree or higher, and average
household income. For this work, MDS is used for qualitative
analysis of potential predictive city parameters. First, a two-
dimensional mapping is identified for city-to-city dissimilar-
ity, where dissimilarity is defined by the maximum two-city
VAR prediction error for each pair of cities (Figure 4. (a)).
Here Chevy Chase, Montgomery Village, and Potomac were
removed due to their significantly lower crime rates, which
result in difficulty comparing prediction error with the rest of
the cities. This does not affect the MDS plot as the three cities
fall near the origin, and the five other cities retain their relative
position. This mapping is compared to the geospatial map of
city-to-city distances (Figure 4. (b)). Additionally, each city
is described by a vector of the city-based demographics data.
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TABLE 2. (a) Validation metrics, mean squared error (MSE) for model one and two. (b) Percentage improvement of model two using model one as a base.

(a)
Forecaster
MSE Sllyer Rockville | Bethesda Chevy Gaithersburg | Germantown Moanomery Potomac Weather
Spring Chase Village

Silver Spring | 111729 | 1.05356 | 1.13045 | 1.09662 1.09721 1.10938 1.09081 1.12080 1.08126

+ Rockville 095685 | 097789 | 098851 | 0.96154 0.95159 0.94610 0.99172 0.98421 0.96799
d Bethesda 097911 | 097003 | 099561 | 0.99549 0.96035 1.01674 0.93352 1.00682 1.00749
¢ Chevy Chase | 0.75906 | 0.75919 | 0.77145 | 0.76441 0.77892 0.76088 0.75464 0.75101 0.76816
Gaithersburg | 1.00187 | 0.94575 | 0.97302 | 0.98055 0.97684 0.96209 0.98702 0.96385 0.96160
Germantown | 1.01198 | 099755 | 1.01942 | 0.98335 1.00427 1.01820 1.02760 1.03902 | 1.001856
%’Ii‘l’ggg:mery 092669 | 0.90070 | 093184 | 0.93170 0.89326 0.94129 0.92424 0.93403 0.92309
Potomac 0.68546 | 0.67539 | 0.67157 | 0.65870 0.64944 0.71280 0.67835 0.66590 | 0.670914

(b)
Forecaster
MSE SIIYGI‘ Rockville | Bethesda Chevy Gaithersburg | Germantown Monygomery Potomac Weather
Spring Chase Village

Silver Spring | —-—ooev 570353 _1.17856 | 1.84972 1.79683 0.70770 2.36989 2031464 | 2.43592

o Rockville 215196 | eooeemeeee -1.08537 | 1.67231 2.68973 325112 _1.41444 10.64589 | 0.73619
g Bethesda 1.65704 | 2.56950 | —cooomoem 0.01200 | 3.54149 2.12269 6.23599 J1.12574 | -1.00834
] Chevy Chase | 0.69909 | 0.68260 | -0.92130 | -----oe-omr -1.89847 0.46142 127733 1.75175 -0.76476
Gaithersburg | -2.56224 | 3.18280 | 0.39153 | -0.37934 | —ccooeeev 1.51011 -1.04254 1.32985 1.42131
Germantown | 0.61066 | 2.02838 20.11969 | 3.42264 136901 | ceoecomem- 20.92275 2.04451 | 1.60526
g{i‘l’ggg’mﬂy 1026557 | 2.54621 10.82285 | -0.80734 | 3.35167 184473 | e 105966 | -0.22616
Potomac 293622 | -1.42485 | -0.85108 | 1.08158 2.47264 7.04199 1.86857 | e 2075244

TABLE 3. The best three results from all three models for each data stream and the percentage of improvement compared with model one as a baseline.

City M, M, M3
Silver Spring Silver Spring + Rockville + Chevy Chase | Silver Spring + Rockville + Montgomery Silver Spring + Rockville + Weather
(1.038511; 7.050432 %) Village (1.044873; 6.481486 %) (1.046729; 6.315370 %)
Rockville Rockville + Silver Spring + Germantown Rockville + Germantown (0.94610; Rockville + Silver Spring + Weather
(0.9253039; 5.377611 %) 3.25112 %) (0.9482259; 3.03348 %)
Bethesda Bethesda + Rockville + Montgomery Bethesda + Silver Spring + Montgomery Bethesda + Montgomery Village (0.
Village (0.9177663; 7.818525 %) Village (0.9289618; 6.69420757 %) 93352; 6.23599 %)
Chevy Chase Chevy Chase + Silver Spring + Chevy Chase + Bethesda + Silver Spring ( | Chevy Chase + Potomac + Silver Spr
Germantown (0.7378122; 3.478879 %) 0.7388459; 3.34429167 %) ing (0.7402985; 3.15426276 %)
Gaithersbur Gaithersburg + Montgomery Village + Gaithersburg + Rockville + Bethesda (0.9 Gaithersburg + Rockville (0.94575;
g Rockville (0.9369844; 4.080038 %) 417804; 3.589083166 %) 3.18280 %)
Germantown Germantown + Chevy Chase (0.98335; Germantown + Rockville + Weather Germantown + Rockville (0.99755;
3.42264 %) (0.9930925; 2.465970 %) 2.02838 %)
Montgomery Montgomery Village + Rockville + Montgomery Village + Gaithersburg Montgomery Village + Rockville
Village Gaithersburg (0.8883964; 3.877734 %) (0.89326; 3.35167 %) (0.90070; 2.54621 %)
Potomac Potomac + Gaithersburg (0.64944; Potomac + Weather + Gaithersburg Potomac + Chevy Chase (0.65870;
2.47264 %) (0.6579727; 1.191014 %) 1.08158 %)

The demographics data is normalized by subtracting the mean
and dividing by the standard deviation of each demographic
parameter. An MDS two-dimensional mapping is performed
using the Euclidean metric (Figure 4. (¢)).

It can be seen that the mapping of prediction perfor-
mance is highly similar to the geospatial mapping, with
the cities occurring in similar relative locations except
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for Gaithersburg. All city pairs also occur at the same rela-
tive cardinalities, e.g., in both mappings, Bethesda appears
to the left and above Silver Spring. The similarity between
mappings indicates that geospatial positioning may be a good
predictor for resilience model performance and may also be a
good choice of city parameter to reduce the hypothesis space
of possible resilience models, with cities that are geospatially
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far apart less likely to have high performing resilience mod-
els. By restricting the hypothesis space for two-city VAR to
only the two nearest neighbor cities among the five towns
of interest, the best or the second-best models for each city
is captured with the average performance compared to AR
going from a maximum of 4.4 % to 3.4 %. Thus, a search
space of N> — N models can potentially be reduced to
2N models.

Investigation of the demographics mapping shows a lower
agreement with the resilience performance mapping, indicat-
ing that two cities may be more likely to share crime rate
trends if they are neighbors than if they share demographic
trends.” However, these demographics results may be due to
the chosen demographics property and used normalization,
suggesting further investigation.

C. RESILIENCE MODEL EVALUATION

All possible resilience models were investigated for their
prediction performance. The hypothesis space includes all
possibilities of the three model types: 1) AR models,
2) two-city VAR models, and 3) three-city VAR models.
In our case, we have 9 data streams, and after the data
selection functionality, we have the hypothesis space of 9 AR
models, 72 VAR models with one supplemental data stream,
and 252 VAR models with two supplemental data streams.

Table 2a shows the MSE prediction errors computed for
the first two model types, over the full-time range, with
forecast data streams listed as columns and target data streams
listed as rows. AR models fall along the table diagonal with
the rest describing two-city VAR models. Table 2b provides
the percent improvement in prediction for the two-city VAR
models over the AR models for each data stream. The best
model is indicated with the color coding.

For the third model type, three-city VAR, all the approx-
imately one thousand models were evaluated. For simplic-
ity, the top three performing models for each city is listed
in Table 3 along with the models’ MSE and their percent
improvement over the AR model. It was found that three-
city VAR models are among the top performing or second
best-performing models for each city. As can be seen, for
all city data streams the use of additional data sources pro-
vides improved prediction and thus improved resilience in
the case of data loss. For each city data stream, at least one
other source can be used to improve prediction accuracy
over simple AR with a maximum improvement of 7.8 %,
an average improvement of 4.7 % for all cities, and an average
improvement of 5.6 % when excluding the cities with few
crime events per day.

The top model for each city is chosen for implementa-
tion in the resilience network, see Figure 5. In dynamic
operation (discussed in the next section), if an event
results in the inability to use the top model, that

9 “Everything is related to everything else, but near things are more related
than distant things”, First Law of Geography. Tobler W (1970) Economic
Geography, 46(2): 234-240.
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model is then replaced by the next best model, and so
forth.

Germamtow b ,..g ¥
Village

[ ——

FIGURE 5. Optimal network resilience graph representing data sharing
directionality between the cities.

D. RESILIENCE NETWORK DYNAMICS

Resilience network dynamics allow the model to self-adapt
to changes in the data streams, so that it always pro-
vides optimal performance. Iterating network determination
achieves dynamics at user-determined intervals or from a
user-provided trigger signal. Figure 6 shows a dynamic
implementation for Silver Spring with only models of type
one and two investigated. For this implementation, at each
date, the network is provided data from the previous four
weeks, ensuring that trends learned by the models are local
in time. The model which provides the best performance is
chosen dynamically for network implementation. Here it can
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FIGURE 6. Dynamic network implementation for Silver Spring using AR
and two-city VAR models. The optimal resilience model initially requires
only weather as the independent variable, and switches to Rockville on
day 28, weather on day 83, and Germantown on day 106. Legend: Silver
Spring (SS), Weather (W), Rockville (R), Bethesda (B), Chevy Chase (CC),
Gaithersburg (Ga), Germantown (Ge), Montgomery Village (MV),
Potomac (P).

be seen that for the first four weeks, use of weather data pro-
vides the best prediction performance. The network graph for
Silver Spring is diagramed above these dates, with a directed
edge from weather to Silver Spring. On day 28, the optimal
resilience model changes, with the weather being replaced
with the Rockville data stream. On day 83, the network
updates again to depend on the weather data stream and day
106 to the Germantown data stream. As discussed above, in
implementing this system delay between model analysis and
model selection may be necessary to improve system stability.
Selecting the best model with a user-specified periodicity will
reduce the likelihood of rapidly alternating between models
due to small variations in data. For example, the Montgomery
County city-to-city network may be re-evaluated on a weekly
basis.

V. DISCUSSION AND CONCLUSION

This paper presents a dynamic network model for improv-
ing smart city resilience to data loss. The system utilizes
the Granger causality test to identify statistically significant
shared temporal trends across multivariate data streams and
utilizes VAR to capitalize on those trends to ensure improved
data prediction in the case of data loss. Each data stream
is provided a ranking of potential resilience models with
the top performing model selected for implementation in
the network. If the top model can no longer be executed
for a particular data stream, the next best model is selected.
Iterative evaluation of the system provides a dynamic, self-
adaptability to changes in data quality, loss of data streams,
and the addition of new information flows.

The network model is demonstrated on City-based daily
crime rates reported in eight cities across Montgomery
County, MD as well as a daily weather data stream. The opti-
mal resilience network is identified and successfully demon-
strated. It is shown that utilizing shared temporal trends
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between cities provides improved crime rate prediction and
resilience to data loss, compared to the use of city-based AR,
with a maximum improvement of 7.8 % found in Silver
Spring, an average improvement of 4.7 % for all cities, and
an average improvement of 5.6 % for cities with high crime
rates. The Granger causality test is demonstrated to accurately
indicate predictive causality among 61 % of models with all
the best performing and second-best models correctly identi-
fied as predictively causal. Additionally, the weather is shown
to be a top choice for a supporting data stream by both the
Granger causality test and VAR performance. This reinforces
the finding that weather is a good predictor of crime rates.
It was also qualitatively found that small city-to-city distances
are a good indicator that temporal trends between city pairs
will provide utility in VAR models.

The proposed solution is versatile and applicable to a wide
variety of data types and application areas. While demon-
strated with an inter-city network, the system can be imple-
mented on other data stream networks such as distributed
local clouds in Smart City environment and can be used as
an input to recommendation engines sensitive to dynamically
changing environments. Due to the use of common statistical
methods, this network system can also be scaled on common
platforms. Future work on the system will investigate the use
of time-varying coefficients in VAR to enhance dynamic per-
formance. The current study will also be expanded to explore
the impact of mixed frequency data on system performance.
Of additional interest is the use of data stream assigned ‘trust’
weights, which will allow the user to increase the impact of
trusted data sources over those with lower reliability.
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