
HAL Id: hal-02021176
https://hal.science/hal-02021176

Submitted on 15 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymmetric Oxidation of Giant Vesicles triggers
Curvature-associated Shape Transition and

Permeabilization. Running title: Oxidation of Vesicles
produces Curvature

Julien Heuvingh, Stéphanie Bonneau

To cite this version:
Julien Heuvingh, Stéphanie Bonneau. Asymmetric Oxidation of Giant Vesicles triggers Curvature-
associated Shape Transition and Permeabilization. Running title: Oxidation of Vesicles produces
Curvature. Biophysical Journal, 2009, 97 (11), pp.2904-2912. �hal-02021176�

https://hal.science/hal-02021176
https://hal.archives-ouvertes.fr


Asymmetric Oxidation of Giant Vesicles triggers 

Curvature-associated Shape Transition and 

Permeabilization. 
 

 

Heuvingh, Julien 
1
; Bonneau, Stéphanie 

2
 

 

Running title: Oxidation of Vesicles produces Curvature 

 

Keywords: Photosensitizer, Lipids, Budding, GUV, PDT, Liposome. 

 

1. Université Paris Diderot, PMMH, UMR7636 CNRS/ ESPCI/ Université Pierre et Marie 

Curie, 10 rue Vauquelin, Paris, France. 

2. Université Pierre et Marie Curie, ANBio, FRE3207 CNRS, 4 place Jussieu, Paris, France. 

 

Both authors are corresponding authors 

julien.heuvingh@espci.fr 

stephanie.bonneau@upmc.fr 



 

Abstract (200 words) 

 

Oxidation of unsaturated lipids is a fundamental process involved in cell bioenergetics as well 

as in cell death. Using giant unilamellar vesicles and a chlorin photosensitizer, we 

asymmetrically oxidized the outer or inner monolayers of lipid membranes. We observed 

different shape transitions such as oblate to prolate and budding, which are typical of 

membrane curvature modifications. The asymmetry of the shape transitions is in accordance 

with a lowered effective spontaneous curvature of the leaflet being targeted. We interpret this 

effect as a decrease in the preferred area of the targeted leaflet compared to the other, due to 

the secondary products of oxidation (cleaved-lipids). Permeabilization of giant vesicles by 

light-induced oxidation is observed after a lag and is characterized in relation with the 

photosensitizer concentration. We interpret permeabilization as the opening of a pore above a 

critical membrane tension, resulting from the budding of vesicles. The evolution of 

photosensitized giant vesicle lysis tension was measured and yields an estimation of the 

effective spontaneous curvature at lysis. Additionally photo-oxidation was shown to be 

fusogenic. 

 

 

INTRODUCTION 

 

The oxidation of unsaturated lipids is of great interest, both from the biological and medical 

points of view (1-5). It may be generated in enzymatic or non-enzymatic reactions involving 

short-lived activated chemical species known as "reactive oxygen species" (ROS) (6). In cells, 

ROS are generated during the normal respiration process involving oxygen, oxidases and 

electron transport in mitochondria or the endoplasmic reticulum. Peroxidation of unsaturated 

lipids may be responsible, in vivo, for pathological processes such as drug-induced 

phototoxicity, arthrosclerosis and aging (3, 4). At cellular level, oxidation of lipids is involved 

in dysfunctions such as enhanced permeability, changes in membrane fluidity or release of 

lysosomal enzymes. In addition, the presence of oxidized phospholipids in lipidic membranes 

induces changes in their physical properties (7, 8).  

 

The photochemical induction of oxidation is an effective way of inducing oxidation processes 

(6). It is supported by the ability of certain molecules, called photosensitizers, to generate 

ROS upon light irradiation. The specificity and preferential retention of certain 

photosensitizers by tumors, as compared to normal surrounding tissues, are the basis of an 

anti-tumoral therapy, the photodynamic therapy (PDT) (9). At high level, such light-induced 

molecular damage leads to the targeted cell’s death. More recently, photosensitizer-induced 

lipid oxidation has been used to deliver macromolecular therapeutic agents to their 

intracellular targets by an approach called Photochemical Internalization (PCI) (10). After the 

uptake by endocytosis, the degradation of the macromolecules in lysosomes is greatly reduced 

by the photodynamic destabilization of the endoctytic vesicles membrane, increasing their 

biological activity. 

 

The short half-life and limited diffusion length of the photo-induced ROS necessitate the close 

association of photosensitizers with the target site. For example, chlorin-generated subcellular 

singlet oxygen lifetime has been experimentaly measured between 4.50.5 µs and 172 µs 

(11). ROS typicaly diffuse less than 0.1 µm in a biological environment (12, 13). Due to the 

localized action of photosensitizers, the characteristics of their interaction with lipidic 

membranes are an important parameter controlling the effects of the photosensitizer-induced 

lipid oxidation (14). For tetrapyrrole photosensitizers, the ability to cross membranes is 

governed by the charge of their lateral chains (15-17). The chlorin e6 (Ce6), a second 



generation photosensitizer is not able to cross the biological membranes (18, 19). This allows 

an asymmetric labeling of the membrane, where the photosensitizer interacts only with the 

monolayer in contact with the photosensitizer solution. We thus labeled model membranes, 

Giant Unilamellar Vesicles (GUV) composed of dioleoylphosphatidylcholine (DOPC), which 

is an unsaturated lipid. Under light-induced oxidation, we observed morphological transitions 

and permeation of the GUV. 

 

Morphological transitions in GUV have previously been observed in response to pH 

difference between compartments (20, 21), change in temperature (22), grafting of polymers 

on the membrane (23), ion adsorption on the lipid heads (24) or photoizomerisation of 

azobenzene-containing amphiphiles (25). One of the first models to account for various 

morphologies in vesicles was the spontaneous curvature model introduced by Helfrich (26). 

Increasing the spontaneous curvature induces membrane budding outside the GUV, whereas a 

decrease of the spontaneous curvature down to negative values induces a stomatocyte shape 

or budding inside the vesicle. Refinement of the theoretical comprehension of vesicle shape 

transitions led to the area-difference elasticity (ADE) model which takes into account the area 

difference between the two monolayers (27, 28). Any vesicle can then be defined by an 

area/volume ratio and a term of effective spontaneous curvature, which contains the area 

difference between the monolayers and the spontaneous local curvature. These two 

parameters give a phase diagram of vesicle shape that has been explored (22). For 

area/volume ratio corresponding to nearly spherical vesicles, an increase of the effective 

spontaneous curvature leads to shape transitions from an oblate ellipsoïd to a prolate ellipsoïd, 

and then to a pear and to a budding vesicle. Reducing the effective spontaneous curvature 

leads to a stomatocyte shape or inside budding.  

  

DOPC membranes are essentially water permeable (40 µm/s (29)) and not permeable to polar 

solutes such as sugar at the time length involved in these experiments (6 10
-5

 µm/s (30)). Due 

to osmotic equilibrium, the very slow permeability ensures a constant volume for vesicles. A 

much higher solute permeability is possible via pores, holes in the membrane allowing free 

flow. These pores have been observed in GUV (31, 32). They are energetically unfavorable 

because of the high cost of the exposition to water of hydrophobic lipid tails at the rim of the 

pore (33, 34).  

 

In this work, we photochemically induce the lipid oxidation in DOPC-GUV. The 

photosensitizer used, Ce6, allows a symmetric as well as an asymmetric targeting of the 

membrane bilayers and a fine control of the location of the oxidation. The induced 

morphological transitions are corelated to the targeted leaflet and show a decrease in the 

spontaneous curvature of the targeted leaflet. The eventual permeabilization of the membrane 

has been measured and can be linked to the tension due to the budding of vesicles.  

 

 

MATERIALS AND METHODS 

  

Chemicals. All chemicals were purchased from Sigma (USA), except 

dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) from 

Avanti Polar Lipids (USA), and chlorin e6 from Porphyrin Products (USA). Chlorin stock 

solution (5 mM) was prepared in ethanol and keept at –18 °C. The experimental Ce6 aqueous 

solutions were prepared, used without delay and handled in the dark. The osmolarity of the 

solutions was checked with an osmometer (Roebling, Germany). 

 

GUV formation. GUV were formed by the electroswelling method (35). DOPC in 

chlorophorm was deposed on ITO-covered glass plates. A chamber was made from two such 



glass plates and a Teflon spacer of 4 mm; the solvent was dried in vacuum. The chamber was 

filled then with a solution of 300 mM sucrose and an AC field of 1 Volt and 8Hz was applied 

between the plates for 4 hours. For DOPC versus DPPC comparison, electroformation took 

place at 50°C, above the transition temperature of DPPC. 

For observation, the GUV were mixed with a 300 mM glucose solution. The density 

difference between sucrose and glucose caused the GUV to sediment to the bottom of the 

chamber. The difference in optical index between sucrose inside and glucose outside the 

vesicle allowed phase contrast microscopy observation.  

 

Chlorin labeling. Giant Vesicles were asymmetrically labeled with chlorin. The chlorin 

molecules were present outside the vesicles, inside the vesicles or both outside and inside. 

The concentrations of chlorin used were 2.5, 5, 12.5, 25, 50 and 125 M. The measured pH of 

the solutions was 5.1  0.2. For chlorin present outside the vesicles, chlorin was diluted in the 

glucose solution before mixing with GUV. For chlorin present inside the vesicles, GUV were 

prepared with a sucrose solution containing chlorin in the chamber and subsequently rinsed. 

Rinsing was achieved by mixing the GUV with the glucose solution and carefully 

centrifuging them twice (25g for 20 min.). At the typical lipid concentration in GUV solution 

(~10
-6

 M), the majority of the chlorin is unbound. This fact, combined with the high exchange 

rate of the chlorin with the bulk medium (19) ensures the exit of the sensitizer from the 

membrane outer leaflet and its rinsing. GUV with symmetrical chlorin distribution were 

prepared with a sucrose solution containing chlorin in the chamber and then mixed with a 

chlorin-containing glucose solution. 

 

Observation and illumination. GUV were observed under a Nikon Eclipse TE2000-U inverted 

microscope equipped with a 1.3NA 100x oil objective. Illumination was provided by a 100 W 

Hg-arc lamp with a 465-495 nm bandpass filter. Images were acquired with a Basler A602f 

digital camera using Labview (National Instruments, USA). Images were analyzed using 

Image J (NIH, USA) and Scilab (INRIA, France, www.scilab.org).  

 

Tension measurement. Micropipettes were made from
 
borosilicate glass capillary GC100–15 

tubing (1.0-mm outside
 
diameter x 0.58-mm wall thickness x 7-cm length, Harvard apparatus

 

Ltd., Kent, UK) using a pipette puller (Sutter instruments,
 
model P-2000). A homemade 

microforge was used to tune their inner diameter from 2.3 to 5.3 µm. Pipettes were coated 

with
 
bovine serum albumin and rinsed extensively. Prior to experiments, the pipettes were

 

filled with the glucose solution. A suction pressure was applied in the pipette by hydrostatic 

pressure. The suction pressure P produces a tension  in the membrane such as  

P.DP/ 4(1-DP/DV)  (1) 

where DP and DV are respectively the diameters of the pipette and of the vesicle (33).  

 

Statistics. Correlation between the radius and permeabilization time of vesicle were analyzed 

by a t test on the regression analysis with a statistical significance of 0.01. When the two 

parameters correlated, the time was “corrected” i.e. deduced from the regression using a 

radius of 3.98 µm, which is the mean GUV radius of our samples. When no correlation was 

found, the average over the vesicles was simply used. 

 

 

RESULTS 

 

Shape Transitions 

We prepared giant vesicles with different localizations of chlorin e6 regarding the leaflets. As 

chlorin molecules have a high affinity for lipids and do not flip-flop at the time scale involved 

in these experiments (18, 19), Ce6 labels only the leaflet directly in contact with the 



photosensitizer solution. Thus, GUV labeled with Ce6 in the outer, the inner and both leaflets 

were studied. 

Upon illumination, all vesicles containing photosensitizers underwent major shape transitions 

within a few to a hundred seconds after illumination start (see Fig. 1). Vesicles with 

photosensitizer in the inner leaflet showed shape transitions from oblate to prolate ellipsoïds, 

pear shape deformations and budding of small vesicles outside the GUV. Vesicles in the 

prolate shape fluctuated during tens of seconds until the budding of vesicles put them out of 

prolate shape. Vesicles with photosensitizer in the outer leaflets typically showed deformation 

for a short time (< 2 seconds) followed by an invagination or budding of a small vesicle inside 

the GUV. The budded vesicles were visible as light dots contrasting with the GUV inner 

medium. Vesicles with Ce6 in both leaflets show all of the above-mentioned shape transitions. 

Finally, vesicles with no Ce6 showed none of these shape transitions for over 15 minutes. A 

quantification of these shape transitions is presented in Fig. 2. These results are in accordance 

with a lowered spontaneous curvature of the leaflet in which photo-oxidation occurs. 

 

Permeabilization 

Vesicles with chlorin in the outer or both leaflets undergo permeabilization. The contrast 

between the vesicle and the surrounding solution gradually fades away until there is no phase 

difference between inside and outside medium and the vesicle is barely observable by its 

membrane. This is a signature of the sucrose diffusion from the inner medium to the outer 

medium and its replacement by glucose from the outer medium (36). A small portion of the 

vesicles (<10%) burst or leaked abruptly in a non-gradual fashion. We quantified the contrast 

fading, which typically varies like a decreasing exponential (Fig. 3 left).  

c=c0 exp(-(t-t0)/  

where c is the concentration of sucrose in the inner medium, c0 its initial concentration, t0 the 

initial time of the experiment and  the characteristic time of the diffusion process.  

In accordance with Eq. 2, we extracted a starting and a characteristic leaking time. The 

exponential fit is in good agreement with the data (R2 >0.95 for over 87% of the vesicles and 

R2>0.9 for over 96% of the vesicles). The characteristic and starting times were compared 

with the vesicle radius. The starting time is statistically independent of the vesicle size, except 

at the highest concentration of Ce6 (50 and 125 µM outside the vesicle). The characteristic 

time depends on the vesicle radius at all concentrations. The dependence is stronger for high 

concentrations than for low (R
2
=0.69 for 125 µM, R

2
=0.22 for 2.5 µM). 

The starting and characteristic permeabilization times decrease when the quantity of chlorin is 

increased for GUV with photosensitizers in the outer medium (Fig. 3 right). A plateau is 

evidenced over 25 µM. The permeabilization is slower for vesicles photosensitized on both 

leaflets. In the case of vesicles with photosensitizer only in the inner medium, vesicles are not 

permeabilized after 15 minutes, except for the higher concentration of 125 µM. At this 

concentration, permeabilization is 3 times longer for vesicles bearing Ce6 on their inner 

leaflet than for vesicles bearing Ce6 on their outer leaflet. All vesicles had a spherical shape 

(showing tension) before the start of permeabilization. 

In order to verify that the permeabilization was mainly due to the oxidation of the lipid 

unsaturation, we compared the photosensitization effect on DOPC and DPPC, which is a 

saturated phospholipid. The experiment was conducted at 50°C, above the transition 

temperature of DPPC. The vesicles were in presence of 25 µM Ce6 and illuminated by a 100 

W Hg-arc lamp during two seconds without any filter. Contrary to the DOPC-GUV, the 

DPPC-GUV did not permabilize for more than 5 minutes (see Fig. S1 in the Supporting 

Material). The DOPC-GUV lost half of their contrast in 44 s ± 25 s, whereas more than 70% 

of the DPPC-GUV retained more than half of their contrast 300s after illumination. No 

systematic shape changes were detected with DPPC-GUV. 

 

 



Lysis tension 

Micropipette experiments were conducted to estimate the lysis tension of photosensitized 

DOPC-GUV. Vesicles in presence of 50 µM Ce6 in the outer medium were held by a 

micropipette and a suction pressure between 50 and 500 Pascal was applied, corresponding to 

a membrane tension from 0.05 to 0.5 mN/m (see materials and methods section). We kept the 

vesicle’s tension constant and illuminated the sample. After a few seconds of illumination the 

vesicle’s integrity was compromised, i.e. it disappeared inside the pipette. This is interpreted 

as the opening of a hole in the membrane, allowing the inside solution to leave the vesicle and 

the membrane to be sucked inside the pipette. The time between illumination and 

permeabilization were recorded and is presented in Fig. 4. It can be thought as the evolution 

of lysis tension over time. The time at which the vesicles permeabilize in experiments without 

pipettes is plotted on the same graph. This time corresponds to the time at which vesicles 

tensed at 0.15 mN/m leaked. Vesicles tensed in presence of Ce6 without illumination did not 

break for several minutes. 

 

Fusion 

Fusion of giant vesicles in contact with each other occurred frequently for GUV of more than 

10 µm radius at the highest concentrations (125 µM) in outer leaflets. The contacts between 

these GUV lead to fusion in 71% of the cases (35 fusion events). See Movie S1 in the 

Supporting Material. We observed less than 5% of fusion between vesicles of less than 10 µm 

radius at 50 µM Ce6 and below. A more precise quantification of fusion proved difficult as 

the number of contacts is highly dependant on the size and density of the vesicle preparation. 

After micropipette experiments, when the vesicles were gradually aggregated by the 

evaporation in the experimental chamber, fusion occurred at a dramatically accelerated rate 

when illuminated. 

 

 

DISCUSSION 

 

Photo-oxidation products 

 

The chlorin e6 is a photosensitizer: it interacts very efficiently with light to produce reactive 

species (singlet oxygen and radicals) from its long-life triplet state. In ethanol, its quantum 

yield for 
1
O2 production is important (around 0.65 (37)). In unsaturated lipids, excitation of a 

photosensitizer generates peroxides (38), which is highly unstable in presence of any trace of 

transition metal (39). In our microscopy experiments, it will spontaneously decay to a free 

radical lipid, which pulls out a hydrogen from another unoxidized unsaturated lipid, creating a 

new free radical and a hydroxylated lipid. The combination of molecular oxygen with the new 

free radical leads again to the removing of a hydrogen from another lipid and produces again 

free radical and lipid peroxide. The lipid peroxidation is thus a radical chain reaction leading 

to the formation of intermediate hydroperoxide (Fig. 5). Hydroperoxyl group induces 

hydrophilicity in the chains of lipids.  

 

If it remains in the hydrocarbon region of the membrane bilayer, hydroperoxyl group should 

drastically change the membrane architecture by increasing the cross-section area of its lipid 

tails. The peroxide lipid would therefore have a packing parameter above one and would 

increase the relaxed area of the leaflet in which they are present. However, indirect evidences 

on polyunsaturated lipids have suggested that the peroxide group may more likely be near the 

water/membrane interface (40). In this case, the peroxide lipid will have a packing parameter 

below one and will still increase the leaflet relaxed area. Additionally, in presence of trace 

amounts of catalytic transition metals (e.g. Fe
2+

), the photo-oxidation of biological lipidic 

systems results in a myriad of secondary products (39, 41). For monounsaturated fatty acids 



(like are the hydrocarbon chains of DOPC), these major final products correspond to the 

cleavage of the carbon chain near the initial position of the double bound and give an alkene 

or an aldehyde (41). Such cleaved-lipids present a strongly modified geometry as compared to 

DOPC. They correspond to a packing parameter below one and to a decrease of the relaxed 

area in the leaflet in which they are present. They are also known to favor pore formation 

(33).  

 

Changes in effective spontaneous curvature  

 

The light-induced shapes observed in the vesicles containing photosensitizer in the inner 

leaflet (prolate, pears, external budding) correspond to shapes of higher effective spontaneous 

curvature in the ADE model. The large and slow fluctuations observed in this case are also 

typical of an increase of the effective spontaneous curvature near the budding transition (42). 

The internal budding observed when the photosensitizer is in the outer leaflet corresponds to a 

lower effective spontaneous curvature. The variety of shape transitions observed is therefore 

qualitatively in accordance with a lowered effective spontaneous curvature of the leaflet 

which is photosensitized.  

 

More precisely, the effective spontaneous curvature in the ADE model is composed of two 

terms which cannot be experimentally separated. The first is the spontaneous curvature of the 

lipids linked to their packing parameter; the second is the difference in area between the two 

leaflets. Increasing the area of the external leaflet or changing its lipids towards cone shapes 

will increase the effective spontaneous curvature, whereas decreasing the area of the external 

leaflet or changing its lipids towards inverted cone shapes will decrease the effective 

spontaneous curvature. The effect on the membrane effective spontaneous curvature will be 

inversed if the internal leaflet is changed.  

The products of lipid peroxidation discussed above will have contradicting effects on the 

effective spontaneous curvature of the leaflet. Lipid peroxides, while having a negative 

packing spontaneous curvature, will raise the leaflet effective spontaneous curvature by 

increasing its area. Inversely, cleaved-lipids have a positive packing spontaneous curvature 

but will lower the leaflet effective spontaneous curvature by decreasing its area. We need to 

estimate the magnitude of these effects on GUV membranes. 

The effective spontaneous curvature can be expressed in the ADE model as: 

A

A
CC

0

00
h





  (3) 

where  is the ratio between the local and non-local bending rigidity, h is the thickness of a 

leaflet, C0* and C0 are respectively the effective spontaneous curvature of the membrane and 

the spontaneous curvature, and A0 is the optimal area difference between the two 

monolayers and A is the area of the membrane (28). 

To compare the effect of lipid geometry on leaflet area increase, we use a simple geometric 

model, in which the cross section area is increased from A/N to (A + A0)/N at the position of 

the lipid double bond (N is the number of lipids in a leaflet). The spontaneous curvature of 

this lipid will then be equal to 

A

A
C

0

0
h

1 
   (4) 

and the effective spontaneous curvature to 

 

A

A
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0
h

1 



  (5)  

This curvature is positive if A0 is positive for DOPC as  =1.2 (22). The area increase is 

therefore dominant over the lipids packing spontaneous curvature.  



The formation of lipid peroxide consequently increases the leaflet effective spontaneous 

curvature. This is true whether the peroxide is located at the water/membrane interface or in 

the membrane bulk. Likewise, the formation of cleaved-lipids will decrease the leaflet 

effective spontaneous curvature. Although both of these chemical products will likely be 

present in the photosensitized membrane, our results indicate that the cleaved-lipids have the 

dominant effect on membrane spontaneous curvature, triggering the morphological transitions 

described here. 

 

Permeabilization  

Permeabilization of photosensitized GUV was observed via the contrast fading as sucrose left 

the vesicle interior. The sucrose flux through a circular opening in the membrane is: 

v=2Dsc  (6) 

where D is the diffusion coefficient of sucrose, s the radius of the aperture, and c the 

concentration in the inner medium (see Eq. 2) (34, 38). We assumed the external sucrose 

concentration to be zero, as the internal volume is negligible compared to the outer volume. 

The concentration in the inner medium obeys dc = v dt /V (V is the volume of the vesicle) 

and decreases exponentially with a characteristic time of V/2Ds.  

The experimental data from the permeabilizations of individual GUV are indeed well fitted by 

such a decreasing exponential as shown in Fig. 2. The fact that permeabilization occurs 

suddenly, after 20 to 100 seconds of exposition, and the following exponential decay in 

sucrose concentration are both in good agreement with a pore opening scenario. Based on the 

above model, the diameter of a pore is estimated to be between 16 nm and 43 nm for a typical 

vesicle ( between 10.4 s and 27.5 s for a chlorin concentration above 12.5 µM; R = 4 µm). 

These pore sizes are in the same range as the ones measured in electroporation of red blood 

cell ghosts (43) or the ones calculated for stretched giant vesicles (44). 

 

 

 

Permeabilization and tension 

Permeabilization and formation of a pore can be triggered by membrane tension. Membrane 

tension can be described as the combination of two contributions: an entropic tension due to 

the damping of thermal fluctuation modes, and an elastic term coming from the increased 

distance between the lipids. When measuring the area variation of a GUV while increasing the 

membrane tension (via micropipettes), these two contributions are visible successively. First 

the membrane entropic “ruffles” are smoothed, corresponding to a soft exponential rise in 

area, then the membrane stretches, corresponding to a linear increase of area (45). Eventually 

the stretching will break the membrane above a critical stress. The lysis stress for DOPC-

GUV was measured to be 9.9 ± 2.6 mN/m (29). Unsurprisingly, photo-oxidation lowers the 

critical stress of DOPC vesicles as shown in our experiments. We observe that the mean time 

of membrane rupture during photo-oxidation decreases when the tension is increased, which 

is interpreted as a reduction of lysis tension with the photo-oxidation duration. The starting 

time of vesicle permeabilization when no suction is externally applied corresponds to a lysis 

tension of 0.15 mN/m. Therefore we hypothesize that when no external tension is applied, the 

vesicle tenses itself up to a tension of 0.15 ± 0.05 mN/m at which it lyses. We will show in the 

next paragraph how this tension can be reached through shape transition and budding. The 

fact that it takes longer for a vesicle to lyse when an external tension below 1 mN/m is applied 

can be explained by a partial suppression of budding due to this preexisting tension (46). 

Interestingly, the measured lysis tension of 0.15 mN/m corresponds to the transition between 

thermal smoothing and stretching (see Fig. 2 in (45)), i.e. lysis occurs at the slightest 

stretching.  

 

Budding and Tension  



In our experiments, the lipid oxidation on a GUV’s external leaflet triggers a shape transition 

from a prolate form to a closed stomatocyte or internal budding. The volume/area ratio of the 

vesicle after internal budding will be that of a sphere. The ADE model, describing shape 

transitions due to curvature modifications, assumes the area to be constant and does not take 

into account any stretching of the membrane. Such description is perfectly valid for moderate 

changes in the curvature. However above a certain level of curvature, the energy released 

from the budding will become important compared to the energy in the thermal fluctuations of 

the membrane. The vesicle would then be able to bud by tensing itself and taking area from 

the ripples of the membrane. We compare these two energies, in a manner similar to (47), in 

order to estimate the minimum effective spontaneous curvature required to tense the vesicle 

up to its lysis tension . 

 

The energy gained when budding a vesicle of radius r from a vesicle of radius R (r<<R) is: 

Hb=8kc (1- C0
*
r)     (7) (see appendix) 

where kc is the bending rigidity of the membrane (see detailed calculation in appendix). 

The energy necessary to entropically stretch a membrane from a tension 0 to a tension  is:  

 0
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
     (8) 

where A is the area of the giant vesicle, and kB is the Boltzmann constant. 

 

According to our hypothesis, the area gain from thermal fluctuation will be equal to the area 

of the budding vesicle: 
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For small buds (r<<R (8kc/kBT)
1/2

 ~250 nm), the stretching energy simplifies to :  

Hs 
2
         (11) 

The total energy is then given by:

H =Hb+HS 
2
  + 8 kc (1- C0*r)    (12) 

It will be minimum for r= kcC0* /at which  

H kc (1- C0*
2
 kc/2)     (13) 

Budding will therefore be favorable for C0*> (2 kc)
1/2

 

Therefore, budding can be responsible for the vesicle’s tension increase up to the observed 

lysis tension of 0.15 ± 0.05 mN/m, if the effective spontaneous curvature is above 42 µm
-1

 

(±19 µm
-1

). Expressed in terms of area difference, this corresponds to a decrease of 2.3% 

(±1.1%) of one of the monolayer area as compared to the other. 

 

It is tempting to explain the different permeabilization behavior between GUV 

photosensitized on their outer or inner leaflet by the difference between external and internal 

budding. Due to external budding, GUV photosensitized on their inner leaflet will loose both 

area and volume, while GUV photosensitized on their outer leaflet will loose area and gain 

volume due to internal budding. This will result in more stretching when the outer leaflet is 

targeted than when the inner leaflet is. However, taking into account the size difference 

between the budding and the original vesicle (typically 1/5
th

 as in Fig. 1), the change in 

volume is small compared to the change in area. 

 

Recent publications showed that the GUV electroformation method used in these experiment 

can lead to a small degree of lipid peroxidation (8). The presence of peroxidized lipids in our 



vesicles prior to photosensitization should have no effect on our results as long as it is 

symmetric regarding the leaflet localization.  

 

Conclusion 

The asymmetrical shape transitions observed in photosensitized GUV reveal changes in their 

membrane spontaneous curvature. These modifications are in accordance with the presence of 

cleaved-lipids by-products of oxidation. Permeabilization and a decrease of lysis tension were 

also characterized. We developped a model linking the budding due to the spontaneous 

curvature change to a tension of the membrane up to the lysis level where membranes are 

permeated. These findings might shed a new light on some membrane permeation 

phenomenon involved in biomedecine photodynamic approaches and in cell oxidative stress. 
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APPENDIX 

We calculate in this appendix the energy gained from budding a vesicle.  

The ADE model Hamiltonian is:  

 

   202

c2

021c AACCCH
Ah2

k
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2

1
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
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Were C1 and C2 are the local curvatures of the vesicle, C0 the spontaneous curvature of the 

membrane, A is the area difference between the outer and the inner leaflet, and A0 is the 

prefered area difference between the leaflets. Oxidation will change lipid area from the outer 

leaflet from A to A+A0, and the spontaneous curvature of the outer membrane lipids from 

essentially 0 to C0. 

 

For a sphere of radius R: 
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For a sphere of radius R’ plus an internal bud of radius r<<R (we keep the total area constant 

so that R’
2
+r

2
=R

2
): 
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Assuming 1/R<<C0, the energy difference when budding is then: 
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 (17)

It can be simplified as follows: 
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  the effective spontaneous curvature.
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Figure 

 

Figure 1 

 
Time sequences of giant vesicles with photosensitizers targeted to the outer leaflet (upper 

row) or to the inner leaflet (lower row). The bar is 10 micrometers; the time lapse between 

two images is 1 second. In the first sequence of the upper row (phase contrast microscopy), a 

GUV photosensitized in its outer leaflet endures a short time deformation (second image) 

followed by a budding towards the inside (white arrow). In the second sequence of the upper 

row (fluorescence of chlorin) a GUV photosensitized in its outer leaflet endures a deformation 

(second image) followed by multiple budding towards the inside (white arrows). In the 

sequence of the lower row (phase contrast microscopy), three giant vesicles photosensitized in 

their inner leaflet show deformations: the upper vesicle exhibits a transition from oblate to 

prolate (due to the projection, oblate appears as circle and prolate as ellipse) whereas the two 

other vesicles are deformed into pear shapes. These shape transitions are followed by a 

budding to the outside on each GUV (black arrows). The morphology transitions observed 

when the outer leaflet is targeted denote a decrease of the membrane’s equivalent curvature, 

while those observed when the inner leaflet is targeted denote an increase of the membrane’s 

equivalent curvature. 

 

Figure 2 

 
Proportion of each type of photoinduced morphology transition as a function of 

photosensitizer localization. From top to bottom, outward budding (white dots on black), 

oblate to prolate transition (close dots), long-time fluctuations (>20s) (spaced dots), short-

time fluctuations (<2s) (wide hatching), inward budding (close hatching). 



The mid-line between long-time and short-time fluctuations materializes the separation 

between events associated with an increase of the effective spontaneous curvature (above the 

line) and those associated with a decrease of the effective spontaneous curvature (below the 

line). 

 

Figure 3 

 
Permeabilization of vesicles. Left: typical evolution of the contrast between the inside and 

outside of a photosensitized vesicle at 25 µM Ce6 in the outer medium. The decay of the 

contrast shows equilibrium between the inside solute (sucrose) and the outside solute 

(glucose). The experimental points are fitted by a decreasing exponential, from which are 

extracted a starting and a characteristic times of permeabilization. Center and right: starting 

time (t0) and characteristic time () of permeabilization for 50-120 vesicles for each 

concentration of Ce6. Upward triangles are vesicles with Ce6 in the outer medium, downward 

triangles are vesicles with Ce6 in the inner medium, and diamonds are in both media. The 

dependence on the vesicle radius is corrected (for  at all concentrations and for t0 at 50 and 

125 µM outer medium)  

  

Figure 4 

 
Evolution of lysis tension over time during photodamage. The time after the start of the 

illumination at which lysis occurs was recorded for different membrane tensions (113 vesicles 

total). The boxes boundaries are the upper and lower quartiles (median 50% inside the box). 

The whiskers boundaries are the upper and lower deciles (median 80% inside the whisker). 

 

Figure 5 



 
Diagram of the lipid photo-oxidation processes in the vesicle membrane. The lipid oxidation, 

initiated via singlet oxygen, is a chain reaction.  


