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Abstract. We propose a simulation-based technique, in the spirit of
Statistical Model Checking, for approximate verification of probabilis-
tic models with parametric transitions, and we focus in particular on
parametric Markov chains. Our technique is based on an extension of
Monte Carlo algorithms that allows to approximate the probability of
satisfying a given finite trace property as a (polynomial) function of the
parameters of the model. The confidence intervals associated with this
approximation can also be expressed as a function of the parameters. In
the paper, we present both the theoretical foundations of this technique
and a prototype implementation in Python which we evaluate on a set
of benchmarks.

1 Introduction

Nowadays, modelling and abstracting are widely accepted as crucial steps in
the understanding and study of real-life systems. In many cases, it is necessary
to incorporate probabilities in the models to cope with uncertainty, to abstract
complex behaviour, or to introduce randomness. Markov chains and Markov
decision processes, in particular, have been widely studied.

Statistical model checking. Though exact methods are known for such models
they usually require solving huge equation systems, and therefore have scalabil-
ity issues with the biggest models. A way to avoid this complexity is to consider
approximation techniques through simulation. In particular, Monte Carlo simu-
lation techniques allow to infer the real behaviour of the system via independent
simulations up to a computable precision.

Parametric Markov Chains. The values given to probabilistic transitions can
have a huge impact on the behaviour of the system. In the early stages of de-
velopment, it may therefore be useful to have an insight on how the values of
transition probabilities affect the system in order to be able to set the best value
in terms of convergence speed for example. To this purpose, parametric Markov
chains have been introduced in [1]. They allow to replace the probability val-
ues given to transitions by parameter variables, and therefore to be able to give
guarantees on the system for all possible values of the parameters.



Results. The aim of this paper is to apply Monte Carlo simulation to para-
metric Markov chains in order to approximate the probability of the considered
property as a polynomial function of the parameters. In addition, we also derive
a confidence interval on the obtained probabilities as a polynomial function of
the parameters. Aside from using parameterized models, which comes in par-
ticular with better flexibility in the modelling, robustness of the results, and
usability at the earliest stages of conception, the expected benefits of our new
approach are largely those of such simulation techniques for non-parameterized
Markov chains: better scalability through a reduced memory footprint, a com-
plexity that is largely independent of the model complexity (be it in terms of
size of the state-space, or of features used as long as they are executable). More
specific to our approach, since we derive polynomial function approximations,
where exact methods lead to rational functions, these results should be easier to
post-process. Finally the complexity of our approach is largely independent of
the number of parameters.

In order to experimentally confirm the interest of our approach we have
implemented it in a (fairly crude) prototype in Python, and we report very
encouraging results on case-studies from the literature.

Related work. Model checking and parameter synthesis for parametric Markov
chains have been widely studied in the last decade [2–5]. To the best of our
knowledge, all existing works on this topic focus on exact techniques which either
produce constraints on the parameter values [4, 5] or compute the probability of
satisfying a given property as a rational function of the parameters [2, 3]. While
these techniques have the advantage of precision, they only scale to models
having few parameters. We conjecture that the approximation technique we
propose in this paper will be advantageous in the context on models with a
larger number of parameters because it allows to produce polynomial instead of
rational functions.

On the other hand, Statistical Model Checking has, to the best of our knowl-
edge, never been applied to parametric models as such. The closer existing tech-
niques are reinforcement learning algorithms combined with Statistical Model
Checking, which have been applied in the context of non-deterministic and prob-
abilistic models such as Markov decision processes [6] (where non-determinism
could be replaced with parameters). While these techniques allow to compute
the best (or worst) probability of satisfying a given property, they do not provide
error precision or confidence intervals. Moreover, since they only compute an ap-
proximation of the best (or worst) probability, they do not provide a complete
analysis of the effect of non-deterministic choice (or parametric transitions) on
the satisfaction of the given property. This is something which is easily provided
using our technique.

Organization of the paper. In Section 2, we introduce the basic definitions re-
lated to the problem we study. Section 3 then introduces the parametric setting,
and our main theoretical contribution. We then report on our prototype imple-
mentation and its use on several examples in Section 4. We give some leads for



the improvement of our approach and prototype in Section 5 and, finally, we
conclude in Section 6.

2 Definitions

As usual, the set of real numbers and the set of natural numbers are respectively
written R and N. Given two real numbers a < b, the closed, semi-open and open
intervals representing all real values between a and b are respectively written
[a, b], (a, b], [a, b) and (a, b).

Definition 1 (Markov chain). A Markov chain (MC, for short) is a tuple
M = (S, s0, P ) where S is a denumerable set of states, s0 ∈ S is the initial state
and P : S×S → [0, 1] is the transition probability function such that for all state
s ∈ S,

∑
s′∈S P (s, s′) = 1.

A run of a Markov chain is a sequence of states s0s1 . . . such that for all
i, P (si, si+1) > 0. Given a finite run ρ = s0s1 . . . sn, its length, written |ρ|
represents the number of transitions it goes through (including repetitions). Here
|ρ| = n. We write ΓM(l) (or simply Γ (l) when M is clear from the context) for
the set of all finite runs of length l, and ΓM for the set of all finite runs i.e.
ΓM = ∪l∈NΓM(l). As usual we define the probability measure, written PM, on
runs based on the sigma-algebra of cylinders (see e.g. [7]). This gives us that for
any finite run ρ = s0s1 . . . sn, PM(ρ) = Πn

i=1P (si−1, si). In the rest of the paper,
we only consider finite runs.

Example 1 (Examples of properties). In this paper, we consider properties on
bounded runs and we aim at computing approximations for the following values:

Reachability PM(♦≤ls). A run ρ = s0s1 . . . is said to reach a state s in less
than l steps, written ρ |= ♦≤ls, if there exists i ≤ l such that si = s.

Safety PM(�=lE). A run ρ = s0s1 . . . is said to be safe for a set of states
E ⊆ S during l steps, written ρ |= �=lE, if for all i ≤ l, si ∈ E.

Expected reward ElM(r). Given a reward function r : Γ (l) → R we write
ElM(r) =

∑
ρ∈Γ (l) PM(ρ)r(ρ) for the expected value of r on the runs of

length l.

Notice that for any property ϕ ⊆ Γ (l), PM(ϕ) = ElM(1ϕ) where 1ϕ is the
reward function such that 1ϕ(ρ) = 1 if ρ ∈ ϕ and 0 otherwise. In the following
of the paper we will thus only consider properties of the form ElM(r).

Given two Markov chains M1 = (S1, s10, P
1) and M2 = (S2, s20, P

2) we say
thatM1 andM2 have the same structure if (S1, s10) = (S2, s20) and for all state
s, s′ ∈ S1, P 1(s, s′) > 0 if and only if P 2(s, s′) > 0.

3 Approximation in parametric Markov chains

We now move to our main contribution: a simulation-based method for approx-
imate verification of parametric Markov chains based on Monte Carlo. We start
by recalling the vocabulary and main definitions in the context of parametric
Markov chains.



3.1 Parametric Markov chains

Given a finite set of parameters X we write Poly(X) for the set of all real (multi-
variate) polynomials on X. Given a parameter valuation v ∈ RX and a polynomial
f ∈ Poly(X), the evaluation of f under valuation v is written f(v).

Definition 2 (Parametric Markov chain). A Parametric Markov chain (writ-
ten pMC for short) is a tuple M = (S, s0, P,X) such that S is a finite set of
states, s0 ∈ S is the initial state, X is a finite set of parameters, and P : S×S →
Poly(X) is a parametric transition probability function.

Remark 1 (Rational function). Notice that in the definition of pMC given above,
we restrict ourselves to real (multivariate) polynomials on X. However, all our
results could naturally be extended to rational functions instead, i.e. functions
of the form d/q where d, q ∈ Poly(X).

Let M be a pMC and v ∈ RX be a valuation of the parameters of M.
Let Pv be the transition probability function obtained under valuation v, i.e.
Pv(s, s

′) = P (s, s′)(v) for all s, s′ ∈ S. We say that v is a valid parameter
valuation with respect to M if the tuple (S, s0, Pv) is a Markov chain, i.e. v
defines valid probability distributions for the transitions of M. If v is a valid
parameter valuation w.r.t M, the resulting Markov chain is written Mv.

Remark 2 (Consistency). Notice that one can obtain the set of all valid param-
eter valuations as the result of a set of constraints stating that each transition
has a probability between 0 and 1 and that the sum of outgoing transition prob-
abilities is 1 for all states. The problem asking whether a pMC admits valid
parameter valuations, and computing them is called the consistency problem. In
this paper, we do not address the consistency problem further and refer instead
the interested reader to [4] where this problem is addressed in the more general
context of parametric interval Markov chains.

Given a pMC M, a run ρ of M is a sequence of states s0s1 . . . such that for
all i ≥ 0, P (si, si+1) 6= 0 (i.e. the probability is either a strictly positive real
constant or a function of the parameters). As for Markov chains we write ΓM(l)
the set of all finite runs of length l and ΓM the set of all finite runs.

Observe that for any valid parameter valuation v, ΓMv (l) ⊆ ΓM(l) since v
may assign 0 to some transition probabilities.

Example 2. A pMC M1 = (S, s0, P,X) is given as an example in Figure 1. In
this figure, we have S = { 0 . . . 4 }, s0 = 0, and X = { p, q, r }. As depicted,
some of the transitions are parametric. For instance, P (1, 0) = p. Let v be the
parameter valuation such that v(p) = v(q) = 0.5 and v(r) = 0. According to
the definition above, v is a valid parameter valuation forM1. Indeed, under this
parameter valuation, all the transitions have values between 0 and 1 and the
probabilities of the outgoing transitions of all states sum up to 1. The resulting
Markov chain Mv

1 is given in Figure 2.
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Fig. 2: MC Mv
1 for parameter valua-

tion v such that v(p) = v(q) = 0.5 and
v(r) = 0

An example of run in M1 is ρ = 0, 1, 2, 2. The length of ρ is |ρ| = 3. As
explained above, remark that ρ is not a run of Mv

1 because the probability of
the transition going from 1 to 2 has been set to 0 due to the parameter valuation
v. On the other hand, all runs of Mv

1 are also runs of M.

3.2 Monte Carlo for parametric Markov chains

We start by recalling the central limit theorem, which is at the heart of our
approach.

Theorem 1 (The central limit theorem (see e.g. [8])). Let X1, X2, . . .
be a sequence of independent and identically distributed random variables, each
having mean γ and variance σ2. Then the distribution of

X1 + · · ·+Xn − nγ
σ
√
n

tends to the standard normal distribution as n→∞. That is, for −∞ < a <∞,

lim
n→∞

P
(
X1 + · · ·+Xn − nγ

σ
√
n

≤ a
)

=
1√
2π

∫ a

−∞
e−x

2/2dx.

The aim of this paper is to propose a statistical verification method, based on
Monte Carlo, for approximating the expected value of a given reward function
r on the runs Γ (l) of a given pMC M. In order to provide some intuition,
we briefly recall how standard Monte Carlo analysis works in the context of
statistical model checking of Markov chains. In this context, a set of n samples
of the runs of the MC is produced. Each of these samples is evaluated, yielding
a value 1 if it satisfies the desired property and 0 otherwise. According to the
central limit theorem, the mean value of the samples provides a good estimator
of the probability that a random run satisfies the desired property. Moreover,
the central limit theorem provides a confidence interval that only depends on
the number of samples (provided this number is large enough).



Unfortunately, as the transition probabilities are not known a priori in the
context of pMCs, this technique cannot be applied directly (since we cannot
produce samples according to the parametric transition probabilities). The in-
tuition of the method we propose here is to fix the transition probabilities to an
arbitrary function f , which we call normalization function, and to use these tran-
sition probabilities in order to produce samples of the pMCM. However, instead
of evaluating the obtained runs by directly using the desired reward function r,
we define a new (parametric) reward function r′ that takes into account the para-
metric transition probabilities. We show that, under any parameter valuation v,
the evaluation of the mean value of r′ on the set of samples is a good estimator
for the expected value of the reward r on Mv. The central limit theorem also
allows to produce parametric confidence intervals. Contrary to standard Monte
Carlo applied to Markov chains, the precision of the obtained approximation not
only depends on the size of the sample, but also on the choice of parameter val-
uation as well as on the chosen normalization function. These issues are further
discussed in Section 5.

In the following, we introduce some notations, then move to the random
variable corresponding to our new parametric reward function, and finally show
the correctness of our approach. Along the rest of the section, we consider a
pMC M = (S, s0, P,X) and a reward function r : ΓM → R.

Given a function f : S × S → [0, 1] we say that f is valid w.r.t M if for all
states s,

∑
s′∈S f(s, s′) = 1. Given a valid function w.r.t M, let Mf be the MC

obtained fromM by replacing P by f . Examples of such valid functions include
the evaluation of the parametric transition probability by a valid valuation, or
the function uM such that, for each state, the distribution on its successors is
uniform for all successors allowed in M (it respects the structure of M). In the
following, f is called a normalization function and, in particular, uM is called
the uniform normalization function. The choice of a good normalization function
is discussed in Section 5.

Let Pa : ΓM → Poly(X) be a parametric reward function defined inductively
as follows: Pa(s0) = 1 and for all run ρss′ ∈ ΓM, Pa(ρss′) = Pa(ρs)P (s, s′).
Note that Pa can be seen as the counterpart of P for parametric Markov chains.
Indeed for any valid valuation v and any run ρ ∈ ΓMv we have

PMv (ρ) = Pa(ρ)(v). (1)

We now define the parametric reward function r′ that will allow us to estimate
the expectation of r. Given any valid normalization function f and any run
ρ ∈ ΓM, let r′ be such that

r′(ρ) =
Pa(ρ)

PMf (ρ)
r(ρ).

We now prove our main result. Let ρ ∈ ΓMf (l) be a random sample of Mf

and let Y be the random variable defined as follows Y = r′(ρ) = Pa(ρ)
PMf (ρ)r(ρ).

The following computation shows that, under any valid parameter valuation
v such that Mf and Mv have the same structure, we have E(Y )(v) = ElMv (r).



E(Y )(v) =

 ∑
ρ∈ΓMf (l)

PMf (ρ)y(ρ)

 (v) (2)

=

 ∑
ρ∈ΓMf (l)

PMf (ρ)
Pa(ρ)

PMf (ρ)
r(ρ)

 (v) (3)

=
∑

ρ∈ΓMf (l)

Pa(ρ)(v)r(ρ) (4)

=
∑

ρ∈ΓMf (l)

PMv (ρ)r(ρ) (5)

=
∑

ρ∈ΓMv (l)

PMv (ρ)r(ρ) (6)

= ElMv (r) (7)

(2) is obtained by definition of the expected value and of the distribution of Y ;
(3) is obtained by definition of the random variable Y ; (4) is direct because we
only consider runs ρ such that PMf (ρ) 6= 0; (5) is a consequence of (1); and
finally, since ΓMv (l) = ΓMf (l) because Mv has the same structure as Mf we
obtain (6).

Our adaptation of the Monte Carlo technique for pMC is thus to estimate
the expected value of Y in order to obtain a good estimator for the expectation
of r.

Let ρ1, . . . , ρn be a set of n runs of length l of Mf . Let Yi be the random
variable with values in Poly(X) such that Yi = r′(ρi). Notice that the Yi are inde-
pendent copies of the random variable Y . The random variables Yi are therefore
independent and identically distributed. Let γ be the parametric function giving
their mean value and σ2 be the parametric function giving their variance.

By the results above, for all valid parameter valuation v such that Mv and
Mf have the same structure, ElMv (r) = E(Y )(v) = E(

∑n
i=1 Yi/n)(v) = γ(v).

Our parametric approximation of the expected value is therefore

γ̂ =

n∑
i=1

Yi/n.

We now use the central limit theorem in order to compute the confidence
intervals associated to this estimation. As for the estimation γ̂ itself, the obtained
confidence intervals will be given by parametric functions.

Since the random variables (Yi) are independent and identically distributed,
each having mean γ and variance σ2, the expected value and variance of their
sum Y1+· · ·+Yn is as follows: E(Y1+· · ·+Yn) = nγ and V ar(Y1+· · ·+Yn) = nσ2.
Recall that both γ and σ are parametric functions. Let Z be the (parametric)



random variable such that

Z =
(Y1 + · · ·+ Yn − nγ)√

nσ2
.

By the central limit theorem, Z(v) tends toward the standard normal distri-
bution N (0, 1), for all valid parameter valuation v such that Mv and Mf have
the same structure, as n → ∞. Therefore, for all valid parameter valuation v
such thatMv andMf have the same structure, assuming that n is large enough,
we obtain that

P(−z ≤ Z(v) ≤ z) ≈ ϕϕϕ(z)−ϕϕϕ(−z) = 2ϕϕϕ(z)− 1,

where ϕϕϕ(z) =
∫ z
−∞ exp(−x2/2)dx/(

√
2π) is the cumulative distribution function

of the standard normal distribution N (0, 1). As a consequence, by definition of
Z, we obtain that for all valid parameter valuation v such that Mv and Mf

have the same structure, and for n large enough,

2ϕϕϕ(z)− 1 ≈ P
(
γ(v)− z σ(v)√

n
≤ γ̂(v) ≤ γ(v) + z

σ(v)√
n

)
.

The (parametric) random interval I = (γ̂ − zσ/
√
n, γ̂ + zσ/

√
n) is called a

confidence interval for γ with level 2ϕϕϕ(z) − 1. Typically we use z = 1.96 since
2ϕϕϕ(1.96) − 1 = 0.95 (or z = 2.56 for which the level is 0.99). According to our
hypothesis, this (parametric) confidence interval is only valid for valid parameter
valuations v such that Mv and Mf have the same structure.

At this point, it is important to recall that the size of the confidence interval
for γ̂ is also parametric: it is equal to 2 · z σ√

n
. Indeed, the value of σ depends

both on the valuation of the parameters and on the choice of the normalization
function. We now explain how to compute a parametric estimation of σ. From
classical probability theory, we know that an unbiased estimator for the variance
σ2 is:

σ̂2 =
1

(n− 1)

n∑
i=1

Y 2
i −

n

(n− 1)
γ̂2.

For n large enough, the (parametric) confidence interval associated to our
estimation γ̂ of γ can therefore be estimated by the (parametric) interval I =
(γ̂−zσ̂/

√
n, γ̂+zσ̂/

√
n). The (parametric) size of this interval is therefore given

by 2zσ̂/
√
n. Thus, for an estimation of γ with a confidence interval of level 0.95

(for a large enough value of n), the (parametric) size of the confidence interval
for the estimation of the variance is 3.92σ̂/

√
n. Recall that σ̂ is a parametric

function that also depends on the choice of the normalization function.

4 Implementation

We implemented our technique in python to validate the approach. All the
experiments have been realized on a 2,5 GHz Intel Core i7 processor. The
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Fig. 3: Results on pMC M1.

prototype is still in the early development stages, thus we only experimented
with the uniform normalization function as well as with valid valuation nor-
malization functions. Moreover, the size of the samples is set manually. This
implementation aims at validating our approach and not at competing with
tools such as PARAM [9] or PROPhESY [2]. No optimizations have been im-
plemented and we believe that this prototype could obtain much better re-
sult with simple optimizations. The code (still in development) is available at
https://github.com/paulinfournier/MCpMC.

4.1 Toy example

We first tested our program on the pMC M1 given in example 2. The consid-
ered property is the probability of reaching state 4. The results of our program
on this example are presented in Figure 3a. The number of simulations was set
to 10 000 and the length of the run bounded to 100. The normalization func-
tion used is the uniform normalization. We also give in Figure 3b the graphical
representation of the theoretical probability of reaching state 4. The parsing of
the model took around 3ms and the simulations took around 17 seconds. The
memory consumption of the program is depicted in Figure 4. Note that even if
the program uses around 80MiB of memory, most of it is due to the loading of
python libraries. A careful analysis of the memory consumption shows that the
actual model only uses 0.7MiB, the simulations use 6.5MiB and the figure uses
around 4MiB. The memory consumption could thus be easily reduced by using
a lighter programming language with a better handling of memory such as C.

To show that our method is transparent with regard to the number of param-
eters we extended this model with 100 parameters {p0, ..., p99}. Since q remains
the same and r is always 1− (p+ q), this new model is equipped with a total of
101 parameters. We therefore consider an unfolding of the pMC given in Figure 1



Fig. 4: Graphical representation of the memory consumption

of depth 101. Each time we enter a copy of state 1 or 3, new parameters are used.
For example, the nth copy of states 1 and 3 use parameter qn mod 100 instead of
q. The result of the experiment is shown in Figure 5. Since there are too many
dimensions to plot in 2D, we only plot the result with respect to parameter q
for random valuations of the parameters in (pi). The number of simulations and
simulation length are set as before. Note that the size and shade of the confi-
dence intervals are not what one could expect but this is due to the fact that
each point is evaluated for a different random valuation of the parameters in (pi).
The important point of this experiment is that the results were obtained in 21
second, which is approximately the same as with only 2 parameters. Note that
this increase in time is due to a slight increase in the complexity of the model
(the states are not really duplicated but we have to keep track of the current
depth in order to consider the right parameters in each simulation).

4.2 Zeroconf

The Zeroconf model, taken from the PARAM website3, models the management
of a network. When a new host joins the network, it randomly selects an address
among K potential candidates. If there are already m hosts in the network the
probability of collision is q = m/K, which is a parameter of the model. In order
to detect collisions, the new host asks the others whether the address is free. If he
receives a positive answer, then the new hosts considers that his address is valid.
The second parameter of the model is the probability p that the new hosts does
not receive an answer. In this case, the new host retries at most n times (here
n = 140). In case the new host does not receive an answer after n attempts, he
decides that his address is valid. We consider the expected number of attempts
until the address is considered valid (either because of positive answer or because
of the absence of answers after n attempts). In Figure 6 we present the results

3 See https://depend.cs.uni-saarland.de/tools/param/casestudies/



Fig. 5: Extension of M1 with 101 parameters

of our approach for 10 000 simulations, the uniform normalization function and
for a simulation length of 500. Using our prototype, the experiment took around
60s. In Figure 6, we present as well the result obtained with PARAM (taken from
their website). Remark that the shape of the distribution we obtain is similar to
the one obtained with PARAM. The size of the confidence intervals are given as
the color of the points.

Fig. 6: Results for the zeroconf model obtained with our implementation (left)
and taken from the PARAM website (right).

4.3 The crowds protocol

The Crowds protocol [10] aims at preserving anonymity of Internet users. To do
so, each message is sent via random routes, with the assumption that a corrupted



Fig. 7: Results on the Crowds protocol model for our implementation (left) and
from the PARAM website (right).

router can only see the local sender of a message. This protocol guarantees
that the probability of a corrupted router observing the real sender (and not
just routing another user’s message) is small. A model of this protocol as been
proposed in Prism [11] and later extended with two parameters in [9]. One
parameter PF represents the probability of forwarding a message to a random
selected member (and therefore the probability of delivering the message directly
to the receiver is 1−PF ). The other parameter badC represents the probability
of a router being corrupted. The reward function we are interested in corresponds
to the probability of dishonest router observing the real sender more than other
crowd members.

Figure 7 represents the output of our approach on this model for 10 000
simulations, using the uniform normalization function. This experiment was done
with the same values as used on the PARAM website, that is 5 honest crowd
members and 7 different path reformulates4. The simulation time took around
6 minute and used around 80MiB (again most of it due to loading of python
libraries). Again, one can observe that the shape of the obtained distribution
is similar to the one obtained with PARAM. The only zones where the two
distributions are slightly different are those where the confidence intervals we
produced are the largest.

5 Potential improvements

In this section we explore some variants of our technique in order to tackle some
of its inherent problems.

5.1 Choice of normalization function

The choice of the normalization function f has a huge impact on the convergence
speed of our method. Figure 9 illustrates this on a simple example where the

4 See https://depend.cs.uni-saarland.de/tools/param/casestudies/ for details
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Fig. 9: Impact of the choice of the normalization
function f on the size of confidence intervals.

property tested is the reachability of state win in the three state pMC given
Figure 8. In Figure 9, where the number of simulations is set to 500, we can see
that with a normalization function assigning 0.99 to p the confidence intervals
are much larger (in particular for small values of p) than with a normalization
function assigning 0.01 to p.

This can be explained by the following computation that bounds the variance
of Y .

V ar(Y )(v) =
(
ElMf (Y 2)− ElMf (Y )2

)
(v) (8)

=

 ∑
ρ∈ΓMf (l)

PMf (ρ)y(ρ)2

 (v)− ElMv (r)2 (9)

=
∑

ρ∈ΓMf (l)

Pa(ρ)(v)2r(ρ)2/PMf (ρ)− ElMv (r)2 (10)

=
∑

ρ∈ΓMf (l)

PMv (ρ)r(ρ)2PMv (ρ)/PMf (ρ)− ElMv (r)2 (11)

≤ m
∑

ρ∈ΓMf (l)

PMv (ρ)r(ρ)2 − ElMv (r)2 (12)

= mElMv (r2)− ElMv (r)2 (13)

= (m− 1)ElMv (r2) + V arlMv (r) (14)

Where m = maxρ∈ΓMf (l),r(ρ)6=0 PMv (ρ)/PMf (ρ).
In the example, with the normalization function assigning 0.99 to p we have

m = (1− p)/0.01 = 100− 100p, thus for small values of p the obtained variance



is great. On the contrary, considering the normalization function assigning 0.01
to p, we have m = (1− p)/0.99, which is always quite small.

Following this remark, a good direction to improve the implemented proto-
type would be to automatically choose the normalization function minimizing
m. Note that such a normalization function can be hard to compute, but one
could first use the uniform normalization function then find which valid valuation
maximizes the size of the confidence interval and restart an evaluation for this
valid valuation. This technique may produce good results since the size of the
confidence intervals decreases only with the square root of the number of runs.
Thus decreasing m may be faster than increasing the number of simulations.

5.2 Modification of the structure

Notice that our technique is valid only for valuations such that Mf and Mv

have the same structure. Indeed, to obtain the approximation of the parametric
expected value we divide by the number of runs. However, when evaluating this
parametric expected value on valuations modifying the structure of the MC
Mf , it may be the case that some of the runs are impossible for this valuation.
For example, any run that takes a transition with a parametric probability p
is impossible to obtain for a valuation v such that v(p) = 0, although it may
appear in the simulations of Mf if f(p) 6= 0.

To address this problem, instead of dividing by the total number of runs
obtained when simulating under the normalization function f , we can divide by
the number of runs that are possible for the considered valuation v. Formally,
instead of the estimator (

∑n
i=1 Yi)/n, we can use (

∑n
i=1 Yi)/N where N is the

function of v defined by:

N(v) = |{i|PMv (ρi) > 0}|

This can be computed on-the-fly. Defining the estimated variance and the
random confidence interval with the same technique would give us a parametric
approximation technique which is valid for any valid valuation (regardless of
structure preservation). Note however that this is valid only if the structure of
Mf allows more runs than the the structure of Mv i.e. if ΓMv (l) ⊆ ΓMf (l).
Otherwise, this technique only gives an approximation of ElMv (r(ρ)|ρ ∈ ΓMf (l)).

Notice also that this is useful only if N(v) is large enough. Indeed if N(v) <<
n it may be more relevant to estimate Y for a normalization function giving the
same structure as Mv.

5.3 Complement of the property

In classic Monte Carlo, there is no need to consider the complement of the
property. Indeed, when one approaches both the probability of ϕ and that of ¬ϕ
by γ̂ and γ̂¬ respectively, it is always the case that γ̂ = 1− γ̂¬. In our approach
however, since the probabilities of the runs are normalized, this does not always
hold. Consider for example the pMC given figure 8 with a normalization function



such that p = 1 − ε with ε close to 0. With high probability, our approach
would give that the probability of reaching win is γ̂ = 0 since it would miss
the run reaching win which has a really low probability for this normalization
function (note that this problem only appears if the number of simulations is
not big enough). However, if we estimate the negation as well, we have γ̂¬ =
(n∗p/(1− ε))/n = p/(1− ε), which is much closer to the truth for any valuation
with p 6≈ 1.

It is thus relevant to consider both the property and its negation when con-
sidering a parametric approximation of a probability. Note that this holds only
for the approximation of a probability and not for the general expected value
of a reward. Note also that this is a good example of the importance of a good
normalization function.

To implement this in practice, one could approach both the probabilities of
ϕ and ¬ϕ and whenever γ̂¬(v) 6≈ 1− γ̂(v) one could either increase the number
of simulations or restart the approximation for the normalization function v.

6 Conclusion

In this paper, we have presented a new technique for statistical model checking
of parametric Markov chains. This technique is based on a parametric adapta-
tion of the standard Monte Carlo analysis. We show that our technique allows
to approximate the expected value associated to any reward function by a poly-
nomial function of the parameters, and propose as well a parametric confidence
interval for the estimation. Compared to exact model-checking techniques, the
technique we propose here offers the same benefits as standard simulation tech-
niques for non-parametric models: better scalability and a complexity which is
largely independent of the model complexity (be it in the size of the state space,
in the type of features used, or in the number of parameters). Contrary to ex-
isting statistical model checking techniques for non-deterministic systems (such
as the one presented in [6]), the one we propose in this paper allows to compute
parametric confidence intervals, which offers a guarantee of the precision of our
estimations. Finally, our technique has been implemented in a prototype tool
using the Python language and has been tested on a set of benchmarks with
encouraging results.

In the future, we plan on continuing the development of our prototype in
a more efficient way in order to produce an extensive study both of the effi-
ciency and of the accuracy of our technique compared to classical exact model
checking techniques for pMCs. In particular, we plan on implementing the im-
provements presented in Section 5. We also plan on applying our technique to
Markov Decision Processes, where nondeterminism could be replaced with pa-
rameters in order to study optimal schedulers. In this context, the parameters
could be placed directly inside the model, or used inside a controler modeling
the environment.
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