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Gregory Antoni∗, Frédéric Lebon and Thierry Désoyer

Return Mapping Algorithms (RMAs) for Two-Yield
Surface Thermoviscoplastic Models Using the
Consistent Tangent Operator

Abstract: The return mapping algorithms (RMAs) presen-
ted here are designed for use with pressure-dependent
thermoviscoplastic constitutive models involving irre-
versible effects associated with solid–solid phase trans-
formations. During the volume solid–solid phase trans-
formations occurring under mechanical loads, an “anom-
alous” plasticity, the so-called “transformation-induced
plasticity” (TRIP), is generated at much lower stress levels
than those related to the yield stress of the material
in the context of the classical plasticity. TRIP mechan-
isms are superimposed on the classical plasticity which
is liable to occur in the case of metallic materials. Based
on a non-standard generalized material framework, two
different models are presented in which an “associat-
ive” plastic flow is introduced in the context of classical
plasticity and a “non-associative” flow rule in the con-
text of TRIP-like plasticity. In this paper, a complete
algorithmic treatment of these two rate-dependent con-
stitutive models is therefore proposed with the associated
consistent tangent operator for dealing the quasi-surface
irreversible solid–solid transformations which can appear
in metal alloys during specific thermomechanical solicit-
ations. The predictive abilities of the presented numer-
ical procedure for modelling this kind of the irrevers-
ible solid–solid transformations involving two plasticity
processes are tested and assessed by performing a two-
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dimensional finite-element analysis on some numerical
examples.
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1 Introduction
The return mapping algorithms (RMAs) are widely used
in non-linear structural problems (see [1–4]) for provid-
ing accurate, efficient and robust iterative methods
associated with numerical integration procedure [5, 6].
RMAs have been classically presented for solving rate-
independent (see [7–9]) and rate-dependent (see [10–12])
elastoplastic problems, and their field of application has
also been advantageously extended to non-associated
plasticity rules (see [13, 14]) and arbitrary yield criteria
without losing their unconditional stability. In order to
preserve a quadratic convergence rate with the use of
Newton–Raphson method, a consistent tangent operator
(CTO) (see [2, 15]) – which has also been called the consist-
ent tangent modulus or linearizationmodulus – is usually
employed with RMAs.

In this paper, two thermomechanical models are
developed for predicting the behaviour of materials
undergoing quasi-surface irreversible (permanent) solid–
solid phase transformations which are also known as
“Tribological Transformation of Surface” (TTS) (see for
example [16]) or “Tribological Surface Transformations”
(TSTs) (see [17]). Over the years, some of the French rail-
road network’s rails have been affected by the physical
changes of TSTs type on the tread of rails in straight line.
Although the physical origin of TSTs has not yet been
clearly established, it seems likely that the mechanical
loads combined with the thermal effects resulting from
the wheel/rail contact may play a crucial role (see [18]).
The two thermomechanical models presented here are
able to take into account the initiation and development
of these TSTs, especially in the immediate vicinity of the
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top of the rails on which the trains run (see [19]), based
on the main assumption that the friction occurring in the
wheel/rail contact area – where the thermal effects are
considerable – is strongly associated with the mechanical
loading mainly applied, i.e., that TSTs are due to ther-
momechanical coupling processes (see [17, 20]). During
the solid–solid phase transformations which occur under
mechanical loads, an “anomalous” plastic flow, which is
also known as TRIP (transformation-induced plasticity)
(see [21–25]), generally occurs even at much lower stress
levels than the initial yield stress (the softest phase) of the
material in question. Indeed, this TRIP-like mechanism
can be superimposed on the classical plasticity behaviour
which are always present in metallic materials. For sev-
eral years now, TRIP processes have been widely studied
and successfully modelled (see, for example, [26–30]).

In the previous studies, the theoretical point of view
of these thermomechanical models has been mainly
addressed. Especially, the admissible thermodynamic fea-
ture has been investigated (for example, see [20] for a first
tentative model and [31, 32] for two other models strongly
inspired by the former). Derived from TRIP mechanism,
thesemodels have been extended to include thermomech-
anical coupling so that they can be used to account for
TSTs. The present study focuses more specifically on the
numerical point of view on these models involving both
TRIP-like and classical plasticity processes. The imple-
mentation of these models is based on a RMA-type pro-
cedure (see for example [1, 3, 4]) adapted here to take into
account TSTs including these two irreversible processes
(TRIP-like and classical plasticity). A CTO (see [4]) is also
proposed for using with the RMAs. This paper is organized
as follows: (i) the constitutive equations governing these
two thermomechanical models are presented in Section 2,
(ii) the numerical integration associated with the pro-
posedmodels is developed in Section 3, (iii) the relevance
of this numerical procedure in terms of predictive abilities
is tested and discussed by performing a two-dimensional
finite-element analysis on some examples in Section 4.

2 Thermoviscoplastic constitutive
models: continuum framework

2.1 State equations

This section deals with the constitutive equations gov-
erning two thermomechanical models involving irrevers-
ible solid–solid phase transformations and the effects
associated with these processes. Within a continuum
framework (see [33, 34]) and assuming the presence of

small perturbations, two types of state variables are intro-
duced here: (i) the “observable variables” which are:
(i)-(1) the absolute temperature T; (i)-(2) the total second-
order symmetric strain-tensor (:) which can be written in
terms of thermoelastic (:el and :th) and (visco)inelastic
(:pc and :pz) strain variables such as : = :el + :th +
:pc + :pz; (ii) the “internal variables” for describing the
irreversible solid–solid phase transformations and the

classical hardening of the material: (ii)-(1) z =
1d
1 ∈ [0, 1],

which is the mass fraction of the daughter phase (where
1d and 1 are the partial mass density of the daughter
phase and the total mass density, respectively); (ii)-(2) v,
which is an isotropic hardening variable associated with
classical plasticity.

Each of the above strain tensors, : (resp. :∗ with
∗ = el, th, pc, pz) is decomposed into its spherical

1
3
Tr(:)G

(resp.
1
3
Tr(:∗G)) and deviatoric parts e (resp. e∗; see [35]):

: =
1
3
Tr(:)G + e ; :∗ =

1
3
Tr(:∗)G + e∗ ;

:th = !(T – Ti)G ; :pc = epc ; :pz = –
1
3
g(z)G + epz

with g(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

37
& z (1st model)

z
& (2nd model)

(1)

where G denotes the metric tensor (in the case of any
canonical basis, G = I where I is a second-order sym-
metric identity tensor; see [35]), Tr(⋆) is the trace oper-
ator associated with the variable ⋆, (:el,:th,:pc,:pz) are
the (second-order) elastic, thermal, classical plastic and
TRIP-like strain tensors, respectively, Ti is the initial tem-
perature, ! is the thermal expansion coefficient (with is
identical in both phases and temperature independent),
g(z) denotes the density change resulting from TRIP-like
processes, & is a material parameter characterizing the
change in the density occurring during the phase trans-
formations and 7 is a material parameter associated with
changes in the density (see [32] for more details).

Assuming that the material under consideration is
initially untransformed (zi = 0 and epzi = 0) and unplas-
ticized (vi = 0 and epci = 0), the Helmholtz-free energy
potential per unit mass, 8, is decomposed into the terms
corresponding to the thermal leaks (the irreversible part),
the free energy at constant temperature which can be
immediately recovered by an elastic unloading process
(the reversible part) and the hardening associated with
the classical plasticity and the latent heat of irreversible
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solid–solid phase transformation. The state equations are
(see [34]) as follows:

8 = –C:
(T – Ti)2

2Ti
+

1
21i

3+ + 2,
3

[
Tr(:) + g(z)

]2
+
,
1i
[
(e – epc – epz) : (e – epc – epz)

]
+

1
21i

hv2

–
1
1i
(3+ + 2,)!(T – Ti)

[
Tr(:) + g(z)

]

+
;M
1i

[
T
2
z2 –

(
T – Tz

i
)
z
]
+ 8i

S = –
∂8
∂T

3 = –PG + s

P = –1 ∂8
∂Tr(:) = –

1
1i

(3+ + 2,)
3

[
Tr(:) + g(z) – 3! (T – Ti)

]

s = 1∂8
∂e =

1
1i
2, (e – epz – epc)

ϒm = –
1
1i

∂8
∂m

(2)

where S denotes the local specific entropy,ϒm denotes the
“thermodynamic forces” (so-called stress-like variables)
associated with the variables m = (epc, epz, v, z), 3 is
the Cauchy stress tensor, –P and s are the spherical and
deviatoric parts of the (second-order symmetric) Cauchy
stress-tensor 3, respectively, C:, , and + are the specific
heat capacity and Lamé constants, respectively (which
are identical in both phases and independent of the tem-
perature T),

∂†
∂⋆

denotes the first partial derivative of †
with respect to the variable ⋆, “:” represents the double
inner product, Tz

i is the solid–solid phase transformation
temperature, h is a material parameter characterizing the
linear isotropic hardening associated with classical plasti-
city, ; andM are material parameters associated with the
solid–solid phase transformation and 1i ≅ 1 and 8i are
both the initial density and Helmholtz-free energy of the
material per unit mass.

2.2 Yield functions and equations of
evolution

In order to define the equations of evolution of the internal
variable associated with TRIP-like processes (z and epz)

and classical plasticity processes (v and epc), two yield
functions f pz and f pc, which depend on the temperature,
stress and internal variables, are introduced. Following
the classical rate-dependent approaches (such as those
used in viscoplasticity or viscodamage, for example), the
yield functions account for the evolution of the dissipat-
ive processes (i.e. f pz > 0 and/or f pc > 0) and can be
used to define the resulting elastic domain in terms of
f pz ≤ 0 and f pc ≤ 0 (where the coupled relations f pz = 0
and f pc = 0 represent the boundary of elastic domain; see
[33, 34]).

The two yield functions associated with both TRIP-
like f pz and classical plasticity f pc processes are defined
as follows (see [33]):

f pz =

⎧⎪⎪⎨
⎪⎪⎩

3eq + 37P –
(
3yz(T) + &"z

)
(1st model)

T
Tz
i
– exp

(
–

〈P〉+
9

)
(2nd model)

f pc = 3eq –
(
3yp + hv

)
(3)

where 3yz(T) = exp
(
(Ti – T)

Ti

)
3̄i is the TRIP-like yield

stress (with 3yz(T) = 3̄i when T = Ti), " is a material
parameter associated with the hardening process, 9 is a
material parameter characterizing a “pressure sensitivity”

level (see [32] for more details), 3eq =
(
3
2
s : s

) 1
2 is the

Von Mises equivalent stress and 3yp is the classical yield
stress and 〈.〉+ are the Macaulay brackets (〈x〉+ = x when
x ≥ 0 and 〈x〉+ = 0 when x < 0) .

In the case of viscoinelastic case (which is here plastic
type, i.e. viscoplastic), the equations of evolution are:

ėpc = v̇npc = v̇
3

2 3eq
s

ėpz = v̇npz = ṗ
3

2 3eq
s

ż = & ṗ

(4)

where “∗̇ =
∂∗
∂t

” denotes the total time derivative asso-
ciated with the variable ∗, npc and v̇ (resp. npz and ṗ)
are the flow direction tensors and viscoinelastic multipli-
ers (so-called inelastic Lagrange multipliers) associated
with the classical viscoplasticity (resp. TRIP-like) process
which are defined as:
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v̇ =
〈
f pc(3, v)

〉+
.3yp

ṗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈
f pz(3, z;T)

〉+
' 3̄i

H(1 – z)H(3eq + 37P

+;M
[
(1 – z)T – Tz

i
]
) (1st model)

〈1 – z〉+
'

〈
f pz(T,P)

〉+ H(3eq + P

+;M
[
(1 – z)T – Tz

i
]
) (2nd model)

(5)

where . (resp. ') denotes the characteristic time of the vis-
cous effects associated with the classical plasticity (resp.
TRIP-like) process and H(.) is Heaviside step function
(with H(x) = 1 when x ≥ 0 and H(x) = 0 when x < 0);
see Appendix 1.2 for some additional comments.

3 Constitutive models: discrete
framework

3.1 Integration scheme: Return mapping
algorithm (RMA)

The constitutive equations involved in twomodels presen-
ted in this study (see Section 2) are implemented numer-
ically using a RMA, [1–4, 36–38]. The following notation is
used for this purpose:
– the quantities denoted by (⋆)(k)n+1 correspond to the (k)th

equilibrium iteration at time tn+1.
– the quantities denoted by (⋆)n are known at time tn.

Moreover, the quantities not corresponding to (⋆)(k)
are assumed to be given by the previous equilibrium
computation step.

– the incremental finite step B(⋆)(k)n+1 gives the quantity
”⋆” between time tn and the (k)th equilibrium iteration
at time tn+1, i.e. B(⋆)(k)n+1 = (⋆)(k)n+1 – (⋆)n.

When the evolution problem is addressed in terms
of discrete incremental approach with a time step Btn+1,
the thermomechanical constitutive equations reduce to a
rule which yields 3(k)

n+1, where the mechanical state Sn =
(Tn, Tr(:n), en, epzn , epcn , zn, vn,3n) at time tn and the temper-
ature increment BTn+1 (or temperature Tn+1 at time tn+1) are
known and for any given strain increment B:(k)n+1 such as:

3(k)
n+1 = R(Sn,B:(k)n+1;Tn+1) (6)

where R denotes the use of RMA (see [4, 39]).
The main steps in the RMA procedure applied to two

thermomechanical models presented here can be sum-
marized as follows:

(i) The “trial” thermoelastic stress tensor 3el,(k)
n+1 which

is decomposed into spherical and deviatoric parts,
Pel,(k)n+1 and sel,(k)n+1 , respectively (see eqs. (2)), are calcu-
lated as follows:

3el,(k)
n+1 = –Pel,(k)

n+1 G + sel,(k)n+1

with Pel,(k)
n+1 = –

[
1
3
Tr(3n) + *Tr(B:(k)n+1) – 3 * !BTn+1

]

and sel,(k)n+1 = sn + 2,Be(k)n+1
(7)

where sn = 3n –
1
3
Tr(3n)G (resp. en = :n –

1
3
Tr(:n)G)

is the stress (resp. strain) deviator tensor at time tn
and * =

(3+ + 2,)
3

is the bulk modulus.

(ii) The following two yield criteria (see eq. (3)) are tested
(see Figure 2 and also [39]):

1. If f pz(3el,(k)
n+1 , pn;Tn+1) ≤ 0 (resp. f pz(Tn+1,Pel,(k)

n+1 ) ≤ 0) in
the first (resp. second) model and f pc(3el,(k)

n+1 , vn) ≤ 0,
then the incrementwill be purely elastic, i.e. Bp(k)n+1 = 0,
Bv(k)n+1 = 0 and we then go directly to [(iv)-(a)].

2. If f pz(3el,(k)
n+1 , pn;Tn+1) > 0 (resp. f pz(Tn+1,Pel,(k)

n+1 ) > 0) in
the first (resp. second) model and f pc(3el,(k)

n+1 , vn) ≤ 0,
then the increment will be a “TRIP-like” one (due only
to solid–solid phase transformation), i.e. Bp(k)n+1 > 0,
Bv(k)n+1 = 0 and we then go to [(iii)-(a)-(1)] (resp. [(iii)-
(b)-(1)]) in the case of the first (resp. second) model.

3. If f pz(3el,(k)
n+1 , pn;Tn+1) > 0 (resp. f pz(Tn+1,Pel,(k)

n+1 ) > 0) in
the first (resp. second) model and f pc(3el,(k)

n+1 , vn) > 0,
then the increment will be both a “TRIP-like” and a
classical thermoviscoplastic one (due to solid–solid
phase transformation and classical plasticity), i.e.
Bp(k)n+1 > 0, Bv(k)n+1 > 0 and we then go to [(iii)-(a)-(2)]
(resp. [(iii)-(b)-(2)]) in the case of the first (resp.
second) model.

4. If f pz(3el,(k)
n+1 , pn;Tn+1) ≤ 0 (resp. f pz(Tn+1,Pel,(k)

n+1 ) ≤ 0) in
the first (resp. second) model and f pc(3el,(k)

n+1 , vn) > 0,
then the increment will be a classical thermovisco-
plastic one (resulting only from classical plasticity),
i.e. Bp(k)n+1 = 0, Bv(k)n+1 > 0 and then we go to [(iii)-(a)-(3)]
(resp. [(iii)-(b)-(3)]) in the case of the first model (resp.
second model).

(iii) Based on eq. (5), Bp(k)n+1 ≥ 0 and Bv(k)n+1 ≥ 0 are computed
as follows: (i.e. for [(ii)-(2,3,4)]; see Figure 2 and also [39]):
(a) With the first model:
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Figure 1: Geometrical interpretation of RMA: (a) using a pressure-dependent elasto(visco)plastic model in the (G, n)-plane (where
n = s

‖s‖ =
√
3
2

s
3eq

is the unit normal vector in the deviatoric space with respect to the yield surface and ‖ ⋆ ‖ is Euclidean norm); (b) using a

classical elasto(visco)plastic model (with isochoric plasticity in the deviatoric space; see [39]).

(1) in the case of a “TRIP-like” iteration (corres-
ponding only to the TRIP-like processes) (i.e. for
[(ii)-(2)]):

Bp(k)n+1 =
f pz(3el,(k)

n+1 , pn;Tn+1)

3, + 9 * 72 + & 2" + ' 3̄i
Btn+1

; Bv(k)n+1 = 0

(8)

and we then go to [(iv)-(b)]
(2) in the case of a “TRIP-like” and classical

thermoviscoplastic iteration (corresponding to
the TRIP-like processes and classical plasticity)
(i.e. for [(ii)-(3)]):

Bp(k)n+1 =
B̃C̃(k)

n+1 – ÃẼ(k)
n+1

Ã
(
B̃ –

ÃD̃
B̃

) –
C̃(k)
n+1

Ã

Bv(k)n+1 =

ÃẼ(k)
n+1

B̃
– C̃(k)

n+1

B̃ –
ÃD̃
B̃

(9)

where

Ã = –3, – 9 * 72 – & 2" – 3̄i '
Btn+1

; B̃ = –3, ;

C̃(k)
n+1 = f pz(3el,(k)

n+1 , pn;Tn+1) ; D̃ = –3, – h –
3yp .
Btn+1

Ẽ(k)
n+1 = f pc(3el,(k)

n+1 , vn)

and we then go to [(iv)-(b)]

(3) in the case of a classical thermoviscoplastic iter-
ation (corresponding only to classical plasticity)
(i.e. for [(ii)-(4)]):

Bv(k)n+1 =
f pc(3el,(k)

n+1 , vn)

3, + h +
3yp .
Btn+1

; Bp(k)n+1 = 0 (10)

and we then go to [(iv)-(b)]

(b) With the second model:
(1) in the case of a “TRIP-like” iteration (correspond-

ing only to the TRIP-like processes) (for [(ii)-(2)]):

Bp(k)n+1 =Btn+1
〈1 – zn〉+

'

(
Tn+1
Tz
i

– exp
(
–

〈Pn〉+
9

))

H(Pn) Bv(k)n+1 = 0 (11)

and we then go to [(iv)-(b)]
(2) in the case of a “TRIP-like” and classical ther-

moviscoplastic iteration (corresponding to the
TRIP-like processes and classical plasticity) (for
[(ii)-(2)]):

Bp(k)n+1 =Btn+1
〈1 – zn〉+

'

(
Tn+1
Tz
i

– exp
(
–

〈Pn〉+
9

))

H(Pn) Bv(k)n+1 =
f pc(3el,(k)

n+1 , vn)

3, + h +
3yp .
Btn+1

(12)

and we then go to [(iv)-(b)]
(3) in the case of a classical thermoviscoplastic iter-

ation (corresponding only to classical plasticity)
(for [(ii)-(3)]):
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Figure 2: Flowchart for the numerical integration of the constitutive equations involved in two models.

Bv(k)n+1 =
f pc(3el,(k)

n+1 , vn)

3, + h +
3yp .
Btn+1

; Bp(k)n+1 = 0 (13)

and we then go to [(iv)-(b)]

(iv) Updating the mechanical state Sn+1 (see eqs. (2) and
(4)- (5)) gives (see Figure 2 and also [39]):
(a) in the case of a thermoelastic iteration (i.e. for

[(ii)-(a)-(1)] and [(ii)-(b)-(1)]):

3(k)
n+1 = 3el,(k)

n+1 ; :pz,(k)n+1 = :pzn ; :pc,(k)n+1 = :pcn ;
z(k)n+1 = zn ; v(k)n+1 = vn

(14)

(b) in the case of a thermoelastoviscoplastic iter-
ation (i.e. for [(iii)-(a)-(2,3,4)] and [(iii)-(b)-
(2,3,4)]):

3(k)
n+1 = –

[
Pel,(k)n+1 – * g

(
Bz(k)n+1

)]
G + sel,(k)n+1

–2,
[
B:pz,(k)n+1 + B:pc,(k)n+1

]
;

:pz,(k)n+1 = :pzn + B:pz,(k)n+1 ; :pc,(k)n+1 = :pcn + B:pc,(k)n+1 ;

z(k)n+1 = zn + &Bp(k)n+1 ; v(k)n+1 = vn + Bv(k)n+1
(15)

with the increment of classical plastic (resp.
TRIP-like) strain B:pc,(k)n+1 (resp. B:pz,(k)n+1 ) and the
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increment of mass fraction Bz(k)n+1 which are given
by (see eq. (4); see also Appendix 1.3 for some
additional comments):

B:pc,(k)n+1 =
3
2

Bv(k)n+1(
3el,(k)n+1

)
eq

sel,(k)n+1 ;

B:pz,(k)n+1 =
3
2

Bp(k)n+1(
3el,(k)n+1

)
eq

sel,(k)n+1 ; Bz(k)n+1 = &Bp(k)n+1

(16)

3.2 The Newton–Raphson method and its
variants with a consistent tangent
operator

3.2.1 Overall equilibrium problem: The
Newton–Raphson method

The classical Newton–Raphson algorithm used to solve
the overall equilibrium problem requires the use of a
global tangent operator which is also called the ”global
tangent modulus” or ”global tangent stiffness” (Figure 3-
(a)). In order to ensure a quadratic convergence, the
global tangent operator must have as its main feature to
be compatible with Newton–Raphson method. Therefore,
the local tangent operator, which is determined at each
integration point in the structure and then assembled
to form the global tangent operator, must also have
the property of being “consistent” with the integration
scheme used for the local inelasticmaterial behaviour (see
[39]). However, in the case of some non-linear structural
problems (involving a large number of finite elements),
the classical Newton–Raphson method can no longer be
envisaged since it involves a prohibitively long computing
time due to the factorization of the global stiffness matrix
(associatedwith the tangent operator) which is updated at
each loading increment (see [40]). To address this issue, a
modified Newton–Raphson method [41] (in which a con-
stant tangent operator, such as the elastic operator, is
used) is taken to be an effective solution, and although
it does not lead to a quadratic convergence, the calcula-
tion time required is much shorter than with the classical
method (Figure 3-(b)).

For solving a non-linear problem with the Newton–
Raphson procedure (to (k + 1)th iteration at time tn+1), the
overall equilibrium must check:

{R(k+1)
n+1 } = {0}⇐⇒

[
K

(k)
n+1

]
{$u(k+1)n+1 }

= –{R(k)
n+1} = {Fex

n+1} – {F in,(k)
n+1 } (17)

Figure 3: Geometrical interpretation of the Newton–Raphson
method for overall equilibrium problem with (a) exact tangent
operator,
(b) constant tangent operator (elastic type; see [33, 39]); Notations:
{u0n+1} = {un} and {F in,(0)

n+1 } = {F in
n }.

where {∗} (resp. [∗]) denotes a quantity of vector type

(resp. matrix type),
[
K

(k)
n+1

]
=
[

∂ {R}
∂ {u}

](k)
n+1

=
Nelem∑
j=1

[
K

(k)
n+1

]
j

is the global tangent stiffness matrix to (k)th iteration at
time tn+1 (with Nelem is the total number of elements in
the structure considered), {$u(k+1)n+1 } = {u(k+1)n+1 } – {u(k)n+1} =
{Bu(k+1)n+1 } – {Bu(k)n+1} is the (unknown) increment displace-
ment vector to (k + 1)th iteration at time tn+1, {Fex

n+1} is
the vector of external (applied) forces at time tn+1, {F in,(k)

n+1 }
is the vector of internal forces to (k)th iteration at time
tn+1 and {R(k)

n+1} (resp.{R(k+1)
n+1 }) is the residual force vec-

tor to (k)th (resp. (k + 1)th) iteration at time tn+1 which
characterizes the imbalance of the equilibrium equation
(i.e. the overall equilibrium of the structure is reached
when the Euclidean norm of the residue equilibrium

7



||{R(k+1)
n+1 }|| is less than a tolerance parameter pTOL

such as ||{R(k+1)
n+1 }|| ≤ pTOL).

3.2.2 Local consistent tangent operator (CTO)

In this section, we propose to develop the local CTO (see
Figure 4; for example [2]; [4]; [39]) associated only with
the first model T (k)

n+1(Sn,B:(k)n+1;Tn+1) (which is a fourth-
order tensor; see [32]) at constant temperature T = Tn+1,
i.e.:

T
(k)
n+1(Sn,B:(k)n+1;Tn+1) =

∂ 3(k)
n+1

∂B:(k)n+1

∣∣∣∣∣
T=Tn+1

=
∂ R(Sn,B:(k)n+1;Tn+1)

∂B:(k)n+1
(18)

In line with Section 2, the Cauchy stress tensor 3(k)
n+1 =

R(Sn,B:(k)n+1;Tn+1) reads as follows:

3(k)
n+1 = 3n + E : B:(k)n+1 + *

[
g
(
Bz(k)n+1

)
– 3!BTn+1

]
G

– 2,
(
Bepz,(k)n+1 + Bepc,(k)n+1

)
(19)

where E = 3 * (G ⊗ G) + 2,
[
G ⊠ G –

1
3
G ⊗ G

]
denotes the

elastic stiffness operator (fourth-order tensor associated
with Hooke’s law) and ⊗ (resp. ⊠) is the classical (resp.

Figure 4: Geometrical interpretation of the local CTO T (k)
n+1 (see [39]).

non-classical) tensorial product (see [35]) such that in any
canonical basis {ei ⊗ ej ⊗ ek ⊗ el}, i.e. [G ⊗ G]ijkl = $ij$kl
(resp. [G ⊠ G]ijkl =

1
2
($ik$jl + $jk$il)) (see [39]).

After combining eqs. (18) and (19), the local CTO T (k)
n+1

reduces to:

T
(k)
n+1(Sn,B:(k)n+1;Tn+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E if the thermoelastic
evolution occurs
(case [ii]-(1); see
Section 3.1)

E – P (k)
n+1 else (case [ii]-(2,3,4);

see Section 3.1)
(20)

where P is the operator of ”inelastic-corrections” (i.e.
fourth-order tensor caused by the irreversible processes;
see [39]) which reads:
1. in the case of a “TRIP-like” iteration (corresponding

only to TRIP-like processes; case [(ii)-(2)], see Sec-
tion 3.1):

P
(k)
n+1 = 3,

(
3, a(k)n+1 – b(k)n+1

)⎛⎜⎝ sel,(k)n+1(
3el,(k)n+1

)
eq

⊗
sel,(k)n+1(
3el,(k)n+1

)
eq

⎞
⎟⎠

+ 2, b(k)n+1

[
G ⊠ G –

1
3
G ⊗ G

]
+ 9*272a(k)n+1 (G ⊗ G)

– 9 * ,7 a(k)n+1

⎛
⎜⎝ sel,(k)n+1(

3el,(k)n+1

)
eq

⊗ G + G ⊗ sel,(k)n+1(
3el,(k)n+1

)
eq

⎞
⎟⎠
(21)

with

a(k)n+1 =
1(

3, + 9 * 72 + & 2" + ' 3̄i
Btn+1

) ;

b(k)n+1 = 3, Bp(k)n+1(
3el,(k)n+1

)
eq

(22)

2. in the case of a “TRIP-like” and classical thermovis-
coplastic iteration (corresponding to both TRIP-like
and classical plasticity processes; i.e. case [(ii)-(3)], see
Section 3.1):

8



P
(k)
n+1 = ã(k)n+1

⎛
⎜⎝ sel,(k)n+1(

3el,(k)n+1

)
eq

⊗
sel,(k)n+1(
3el,(k)n+1

)
eq

⎞
⎟⎠

+b̃

⎡
⎢⎣
⎛
⎜⎝ sel,(k)n+1(

3el,(k)n+1

)
eq

⊗ G

⎞
⎟⎠ +

⎛
⎜⎝G ⊗ sel,(k)n+1(

3el,(k)n+1

)
eq

⎞
⎟⎠
⎤
⎥⎦

+c̃(k)n+1

[
G ⊠ G –

1
3
G ⊗ G

]
+ d̃G ⊗ G

(23)

with

ã(k)n+1 = 3,

⎡
⎢⎢⎢⎢⎣
3,
(
Ã
B̃
– 1
)

(
B̃ –

ÃD̃
B̃

) –
2Bp(k)n+1(
3el,(k)n+1

)
eq

+
3,
(
B̃ – Ã

)

Ã
(
B̃ –

ÃD̃
B̃

) –
3,
Ã

⎤
⎥⎥⎥⎥⎦ ;

b̃ =
9 * ,
Ã

⎛
⎜⎜⎜⎝

B̃ – Ã

B̃ –
ÃD̃
B̃

– 1

⎞
⎟⎟⎟⎠ ; c̃(k)n+1 = 12,2 Bp(k)n+1(

3el,(k)n+1

)
eq

;

d̃ =
(3 *)2 72

Ã

⎡
⎢⎢⎢⎣

B̃

B̃ –
ÃD̃
B̃

– 1

⎤
⎥⎥⎥⎦

and

Ã = –3, – 9 * 72 – & 2" – 3̄i '
Btn+1

; B̃ = –3, ;

D̃ = –3, – h –
3yp .
Btn+1

3. in the case of a classical thermoviscoplastic iteration
(corresponding only to the framework of classical plas-
ticity; i.e. case [(ii)-(4)], see Section 3.1):

P
(k)
n+1 = 3,

(
3,ã – b̃(k)n+1

)⎛⎜⎝ sel,(k)n+1(
3el,(k)n+1

)
eq

⊗
sel,(k)n+1(
3el,(k)n+1

)
eq

⎞
⎟⎠

+ 2, b̃(k)n+1

[
G ⊠ G –

1
3
G ⊗ G

]
(24)

with

ã =
1(

3, + h +
3yp .
Btn+1

) ; b̃(k)n+1 = 3, Bv(k)n+1(
3el,(k)n+1

)
eq

4 Numerical examples
Using the numerical procedure presented in Section 3,
these models have been implemented in the finite-
element software Code_Aster (which is developed by
French nuclear power company known as EDF Group).
This section is devoted to test, assess and discuss both
the predictive abilities associated with RMA numerical
procedure involving two plasticity type processes (see
Section 2) on some numerical examples.

4.1 Geometry and boundary conditions

Let K be a two-dimensional material domain (square in
shape, measuring 100mm on the side) in the x – y plane.
The boundary of K denoted by ∂K will be divided into six
line segments (see Figure 5-(a)):

∂K = [AB] ∪ [BC] ∪ [CD] ∪ [DE] ∪ [EF] ∪ [FA] (25)

where [BC] denotes a part of the upper side of the square,
which is 100mm in length. In K, a finite-element mesh
composed of approximately 3000 quadratic TR6 triangu-
lar elements is generated with a more highly refined mesh
in the vicinity of the line segment [BC] (see Figure 5-(b))
where the loading is applied. This mesh is systematically
used in all the numerical simulations presented in this
section.

4.2 Preliminary thermal problem (PB1)

We consider here a weak thermomechanical coupling
with the presented two models (see Section 3), i.e.
the temperature field affects unilaterally the mechan-
ical fields. Due to the thermal boundary conditions (see
Eq. 26), the temperature field acting in K can therefore be
computed without any mechanical considerations.

Neglecting the source terms corresponding to ther-
moelasticity, classical plasticity and irreversible solid–
solid phase transformations and considering the case
of steady-state conduction, the heat equation reduces
simply toDiv(Grad(T)) = 0 (withDiv(†) andGrad(‡) being
the divengence and gradient operators associatedwith the

9



Figure 5: (a) Two-dimensional material domain (square in shape, measuring 100mm on each side) in the x – y plane (origin: o) and boundary
conditions pertaining at [BC]; (b) Zoom of the refined mesh.

Figure 6: (a) Steady temperature field for thermal problem PB1 (with temperature unit is Kelvin K).

variable † and ‡, respectively). Using of standard linear
thermal subroutine associated with the finite-element
Code_Aster enables to provide the corresponding temper-
ature field which is plotted in Figure 6. When dealing with
this purely thermal problem PB1 (where the mechanical
boundary conditions do not need to be taken into account
in ∂K), the temperature field is assumed to be a plane field
and the thermal boundary conditions are such that:

T = Ti = 300K on [AB] ∪ [CD] ∪ [DE] ∪ [EF] ∪ [FA]
T = Tg = 450K on [BC] (26)

The maximum temperature (i.e. imposed externe
temperature Tg) is equal to 450K at [BC], whereas the

temperature on the other sides of the square remains to
the room temperature (i.e. initial temperature Ti) which is
300K.

4.3 Thermomechanical problem (PB2)

In this thermomechanical problem (PB2), the temperature
field calculated in the preliminary thermal problem (PB1)
(see Section 4.2) is used as an initial data, i.e. the tem-
perature field associated with the subproblem PB1 (see
e.g. [42]) noted T0 is used here as a known parameter.
Therefore, the Cauchy stress tensor 3 can be written as
follows:
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3 = 30 + *Tr(:)G + 2,
(
e – epc

)
with 30 = *

[
g(z(T0)) – 3 ! (T0 – Ti)

]
G – 2, epz(T0) (27)

where 30 denote the thermal prestresses associated with
PB1, z(T0) and epz(T0) represent the variable z and epz
which depend on the temperature field T0 associated with
PB1.

Under the plane strain assumption, the mechanical
boundary conditions are as follows (see [34]):

u = 0 on [EF] ; 3⋅n = 3nn + 3t = 0
on [AB] ∪ [CD] ∪ [DE] ∪ [FA] ;
3⋅n = –3⋅ey = –3ney – ‖3t‖ex on [BC]

with 3n = Ṗg t
(
1 –
(
x
5

)2
) 1
2

and ‖3t‖ = , |3n|

where Ṗg = 100MPa.s–1 and , = 0.3 (28)

where 3⋅n = 3nn+3t denotes the stress vector, 3n = (3⋅n).n
(resp. 3t) is the normal (resp. tangential) component asso-
ciated with stress vector, x (resp. t) is the spatial (resp.
time) variable, Ṗg is the value of the maximum pressure
rate, “⋅” is the simple inner product, ‖ ⋆ ‖ is the Euclidean
norm, | ∗ | is the absolute-value function (|x| = x when
x < 0, |x| = x when x ≥ 0) and (ex, ex) is the orthonormal
basis. It is important to emphasize that (i) an additional
relation between normal and tangential stresses is con-
sidered here i.e. ‖3t‖ = , |3n| where , is a parameter; (ii)
it can be deduced from eq. (28) that the maximum of pres-
sure 3n = Pg is reached in the centre of [BC] (i.e. when
x = 0 then Pg = 1000MPa at time t = 10 s) and the min-
imum is achieved on the edge of [BC] (i.e. when x = ±5mm
then Pg = 0MPa at time t = 10 s).

The materials simulated in the two models have
the following mechanical parameters in common (corres-
ponding to a standard steel type; see [34]):

+ = 115 × 103MPa ; , = 77 × 103MPa ;
1i = 78 × 10–7kg.mm–3 ;
! = 12.10–6 K–1 ; 3yp = 400MPa ; h = 2 × 104MPa ;
. = 2.5 × 102s ; $ = 0 (29)

On the other hand, the specific mechanical parameters to
each model are (see [32]):

7 = 1
3
; 3̄i = 75MPa ; & = 102 ; " = 5MPa ;

' = 13 × 102s ; (first model)
Tz
i = 1000K ; 9 = 700MPa ; & = 102 ;

' = 103s (second model) (30)

4.4 Discussion and results

The z-field at time t = 10 s, when P(x = 0) = 1000MPa, is
plotted in Figure 7-(a) (resp. Figure 7-(b)) in the case of the
first (resp. second) model. Note that with the first model
(see Figure 7-(a), a complete transformation is obtained
(i.e. z = 1) in the region where the thermomechanical
loading is applied. The z-field observed in Figure 7-(a),
along the o – y axis, is extended down to a depth of about
5mm, z = zmax = 1 which shows that the material is fully
transformed (only one phase is present in this region).
However, at a depth of 5 < y ≤ 5 mm, amixed zone occurs,
where the parent and daughter phases are both present.
Beyond this depth, at around y ≈ 50mm, only the initial,
untransformed material (i.e. z = 0) could be observed. In
the case of the second model (see Figure 7-(b)), the trans-
formation occurs in the immediate vicinity of the surface
[BC] where the thermomechanical loading is applied. The
z-field observed in Figure 7-(b) is quite non-uniform, on
the o – y axis such as: (i) z = zmax ≈ 28 × 10–2 when y = 0,
which corresponds only to a partial transformation occur-
ring at the place where the thermomechanical loading is
applied; (ii) z = 13.10–2 when y ≈ 35 × 10–1 mm. Beyond
a depth of around 6mm, which is the maximum depth
transformed, the transformation is zero (i.e. z = zmin = 0)
and therefore the material is still in the initial state.
The v-field obtained with the first and second models at
time t = 10 s is plotted in Figure 8-(a) and Figure 8-(b). It is
worth noting that, in line with the numerical implementa-
tion (see Section 3), the results obtained with the models
show that TRIP-like and classical plasticity processes are
highly correlated. As can be seen from Figure 8-(a), the
first model gives v = vmax ≈ 62 × 10–4 on [BC], where
the thermomechanical loading is applied. Concerning the
second model (Figure 8-(b)), v = vmin = 0 at [BC] and a
maximum value vmax is reached around 21 × 10–3 in K.

In short, these results show that the first model can
predict the occurrence of a complete “quasi-uniform”
phase transformation (i.e. z = 1) near the surface where
the thermomechanical loading is applied. The second
model is able to predict a transformed region which has a
smaller depth than that given by the first model, i.e. z ≠ 1,
∀x ∈ K.

On the other hand, even if the region near the surface
where the transformation occurs is overestimated (with
both models) in comparison with the experimental data
obtained on the TSTs in the wheel/rail contact area –
where the maximum depth of TSTs hardly ever exceeded
10–1mm in practice (see [19]) – the problem studied here
does not take into account neither nonlinear contact with
the dry and lubricated friction (see e.g. [43]) nor the strong
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(a)

(b)

Figure 7: z-field for thermal-mechanical problem PB2 at time t = 10 s predicted by the first model (a) and the second model (b).

multiphysics coupling (see e.g. [44]) – here, thermomech-
anical type – which can certainly play a role in TST
predictions.

The obtained results here confirm the numerical abil-
ities of RMAs developed for use with the proposed thermo-
mechanical models for predicting quasi-surface irrevers-
ible solid–solid phase transformations in the presence
of two plasticity mechanisms. These different simula-
tions are carried out using a modified Newton–Raphson
procedure with a constant tangent operator (here, the
elastic operator, see Section 3.2) in a total number of 16
incremental step with each model (where the number of
incremental steps is chosen for providing a suitable con-
vergence for each step and therefore do not perform a sub-
step procedure). The Euclidean relative norm of the resid-

ual force vector
‖{R(k+1)

n+1 }‖
‖{R(k)

n+1}‖
with a tolerance pTOL = 10–6

resulted in the convergence of the finite-element solution

i.e.:
‖{R(k+1)

n+1 }‖
‖{R(k)

n+1}‖
≤ 10–6 (see [45]). The convergence of the

relative norm associated with the residual vector at five
incremental steps out of 16 performed with each model is
shown in Tables 1 and 2 (with the first and second mod-
els, respectively). The results presented in Table 1 clearly
show the occurrence of a non-quadratic convergence pro-
cess (with the elastic operator) for residual norm in the
case of the first model. Those presented in Table 2 show
that although the elastic operator is used in the second
model, it gives a satisfactory convergence rate. Indeed,
the non-linear processes involved when the first model
is used are higher than in the case of the second model
which means that the use of the elastic operator with the
second model has sufficed to obtain a suitable conver-
gence rate (i.e. quasi-quadratic), which is not the case
with the first model. Based on both these non-linear pro-
cesses and the use of an elastic operator, the first model
required a reasonablemaximumnumber of iterations dur-
ing all the incremental steps in order to converge towards
the solution of the displacement vector associated with
the problem studied.
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(a)

(b)

Figure 8: v-field for thermal-mechanical problem PB2 at time t = 10 s predicted by the first model (a) and the second model (b).

Table 1: Relative norm of the residual force vector
‖{R(k+1)n+1 }‖
‖{R(k)n+1}‖

at some of the steps performed with the first

model.

Iteration (k) Third step Fifth step Seventh step Eleventh step Fourteen step
0 6.4901E-02 1.2631E-01 2.9511E-02 7.0043E-02 1.2664E-01
1 3.7643E-03 9.3909E-03 6.7415E-04 4.1950E-03 1.3985E-02
2 3.2192E-04 4.7753E-03 5.8018E-05 1.5301E-03 9.4971E-03
3 3.8773E-05 4.4985E-03 4.8591E-05 7.3359E-04 7.8342E-03
4 6.2836E-05 3.6453E-03 1.2140E-06 1.8236E-04 7.0522E-03
5 1.0178E-06 3.6556E-03 3.5130E-08 1.3221E-05 8.6781E-04
6 1.6449E-07 2.5014E-03 1.1421E-06 1.2036E-04
7 3.1181E-04 1.0488E-07 1.7778E-05
8 4.2088E-05 2.6261E-06
9 5.8927E-06 3.9029E-07
10 8.4919E-07

5 Conclusion
In this paper, a numerical procedure is presented, based
on RMA for dealing with two-yield surface thermovisco-
plastic constitutive models. The two thermomechanical
models developed in the consistent continuum framework

can be used for predicting the quasi-surface irreversible
solid–solid phase transformations which can occur in
some practical problems such as TSTs on the railroad net-
work’s rails, for example. Apart from the classical plastic
behaviour which always occurs in metallic materials,
these models account for TRIP-like processes occurring
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Table 2: Relative norm of the residual force vector
‖{R(k+1)n+1 }‖
‖{R(k)n+1}‖

at some of the steps performed with the second

model.

Iteration (k) Third step Fifth step Seventh step Eleventh step Fourteenth step
0 8.2293E-04 8.0649E-04 3.0661E-03 2.6114E-03 5.9755E-04
1 1.9353E-06 2.8524E-06 3.6353E-05 3.5783E-05 4.5425E-07
2 5.5642E-16 5.5643E-16 3.7097E-16 5.5651E-16

during solid–solid phase transformations under mechan-
ical loading conditions. In order to simulate these two
processes numerically, a complete algorithmic treatment
is presented, based on the use of two rate-dependent
constitutive models along with the associated CTO. The
numerical abilities associated with the algorithmic pro-
cedures used in the proposed models are tested, assessed
and discussed on some examples. The obtained res-
ults show that these models can be able to predict the
quasi-surface irreversible solid–solid phase transforma-
tions involving two plasticity type processes.

A Comments
A.1 For Section 2

(S2)-(i) Concerning the yield functions associated with
TRIP-like processes, we consider a Drucker–
Prager type (see [33]) for the first model and a
non-standard type for the second model (which
is based on the observed physical arguments by
[18]).

(S2)-(ii) For the internal state variables associated with
classical viscoplastic (epc) and TRIP-like (epz
and z) processes, an “associative” and a “non-
associative” flow rule are adopted (eqs. (4)- (5))
(see [33, 34]).

(S2)-(iii) The two thermomechanical models presented
here are thermodynamically consistent (see [17,
32]), i.e. they comply with the second principle
of thermodynamics (see [34]).

A.2 For Section 3

(S3)-(i) A strong thermomechanical coupling exists
between the thermal and mechanical evolu-
tions through Ṫ and 3̇ and are not taken
into account here in the numerical imple-
mentation. Therefore, the source terms present
in the heat equation – corresponding to the

thermoelastic, classical plastic and irreversible
solid-solid phase transformation processes – are
neglected. Indeed, throughout this section, we
consider only a weak thermomechanical coup-
ling, i.e. the thermal effects affect unilaterally
the mechanical evolution and this leads to the
temperature Tn and its increment, BTn+1 = Tn+1 –
Tn, are assumed to be known at time tn.

(S3)-(ii) For the sake of numerical simplicity, the latent
heat due to the solid–solid phase transforma-
tion is not taken into consideration here, i.e.
$ = 0.

(S3)-(iii) The RMA procedures, used with for these two
models, are based on the following two-fold
condition (see [32]):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f pz(3el,(k)
n+1 , pn;Tn+1) – f pz(3(k)

n+1, pn

+Bp(k)n+1;Tn+1) ≥ 0 (1st model)

f pz(Tn+1,Pel,(k)
n+1 ) – f pz(Tn+1,P(k)

n+1) ≥ 0 (2sd model)

and

f pc(3el(k)
n+1 , vn;Tn+1) – f pc(3(k)

n+1, vn + Bv(k)n+1;Tn+1) ≥ 0
(31)

Using eq. (3), we can see that f pz (in the first model)
and f pc are two convex functions with respect to the
couple of variables (3, p) and (3, v), i.e.:
– in the case of classical plasticity process:

∂f pc

∂3 (3(k)
n+1) : (3el(k)

n+1 – 3(k)
n+1) –

∂f pc

∂p
(vn + Bv(k)n+1)Bv

(k)
n+1

= Bv(k)n+1︸ ︷︷ ︸
≥ 0

⎡
⎢⎣9,

2
s(k)n+1 : s(k)n+1(
3eq,(k)n+1

)2 + h

⎤
⎥⎦

︸ ︷︷ ︸
> 0

≥ 0 (32)

– in the case of TRIP-like process (for the first model):

14



∂f pz

∂3 (3(k)
n+1) : (3el(k)

n+1 – 3(k)
n+1) –

∂f pz

∂p
(pn + Bp(k)n+1)Bp

(k)
n+1

= Bp(k)n+1︸ ︷︷ ︸
≥ 0

⎡
⎢⎣9,

2
s(k)n+1 : s(k)n+1(
3eq,(k)n+1

)2 + 9* 72 + & 2"

⎤
⎥⎦

︸ ︷︷ ︸
> 0

≥ 0 (33)

Therefore, we can see that eq. (31)-(a) and (31)-(c)
are automatically found to have with the above property
(eqs. (32) and (33)).

– in the case of secondmodel, eq. (31)-(b) is also satisfied
since that:

Pel(k)
n+1 – P(k)

n+1 = * Bz(k)n+1
& ≥ 0 with Bz(k)n ≥ 0,

* > 0 and & > 0 (34)

(S3)-(iv) When RMA step [(ii)-(2)] has been checked,
then the response of the model is pressure-dependent
elasto(visco)plastic (see [11, 12]) due only to the TRIP-like
process (Figure 1(a)). Therefore, the “trial” elastic stress
tensor, 3el

n+1, is subject to an “oblique projection” onto the
yield surface f pz(3(k)

n+1, pn+1;Tn+1). However, when RMA
step [(ii)-(4)] is satisfied, then the model is elastovisco-
plastic due to only the classical, isochoric plastic process
(Figure 1(b)): the “trial” elastic stress deviator tensor,
seln+1, is subject here to a “normal projection” onto the
yield surface f pc(3(k)

n+1, vn+1;Tn+1). It is worth noting that
the RMA is associated with case (b) of Figure 1 known as
“Radial Return Algorithm” (see for example [46, 47])

(S3)-(v) The rate-dependent case is used in the RMAs with
both models as follows:

Bp(k)n
Btn+1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈
f pz(3(k)

n+1, p
(k)
n+1;Tn+1)

〉+
'3̄i

H(1 – &p(k)n+1) (1st model)

〈
1 – &p(k)n+1

〉+
'

〈
f pz(Tn+1,P(k)

n+1)
〉+
H(P(k)

n+1) (2nd model)

and

Bv(k)n
Btn+1

=

〈
f pc(3(k)

n+1, v
(k)
n+1)

〉+
.3yp

(35)

Rate-independent cases, where the viscous effects are
negligible, can be treated like rate-dependent cases when
the characteristic times of the viscous effects tend to zero,

i.e. ' �→ 0 (in the case of TRIP-like processes) and
. �→ 0 (in that of classical plasticity); see [33, 34, 48].
Therefore, the rate-independent inelastic case can be con-
sidered as a limiting case of rate-dependent inelastic (so-
called viscoinelastic) [48], e.g. the classical instantaneous
plasticity is a borderline case of the viscoplasticity.

In the rate-independent case (e.g. in classical plasti-
city), the elastic/plastic regime under loading/unloading
condition is determined by Kuhn–Tucker relations such
as:

f ≤ 0 , +̇ ≥ 0 and +̇ f = 0 (36)

In line with eq. (36), we can see that (i) an elastic
regime is obtained when f < 0 and +̇ = 0; (ii) an
elastoplastic regime is achieved when f = 0 and +̇ ≥ 0;
(iii) a fully plastic regime is reached when f = 0 and +̇ > 0.
In the case of rate-independent plasticity (known as clas-
sical instantaneous plasticity), the plastic multiplier +̇ is
obtained with the consistency condition: f = ḟ = 0.

In order to use the same approach in the rate-
dependent case, the yield functions associated with TRIP-
like and classical plasticity processes (eq. (35)) can be
written in the following form (see [48]):
– f pz(3(k)

n+1, pn+1;Tn+1) ≤ 0 in the first model (resp.
f pz(Tn+1,P(k)

n+1) = 0 in the second model) is replaced

by f̃ pz(3(k)
n+1, pn+1;Tn+1) = f pz – '3̄i

Bp(k)n+1
Btn+1

≤ 0 (resp.

f̃ pz(Tn+1,P(k)
n+1) = f pz –

'
(1 – &p(k)n+1)

Bp(k)n+1
Btn+1

≤ 0).

– f pc(3(k)
n+1, vn+1) ≤ 0 is replaced by f̃ pc(3(k)

n+1, vn+1) = f pc –

.3yp
Bv(k)n+1
Btn+1

≤ 0

(S3)-(vi) In the second model, a semi-explicit approach is
used to implement the RMA. Indeed, an implicit approach
is considered with RMA procedure, except when solving
the consistency condition (where the approach is expli-
cit):

Bp(k)n+1
Btn+1

=
〈
1 – &pn

〉+
'

〈
f pz(Tn+1,P(k)

n )
〉+

H(P(k)
n ) (37)

(S3)-(vii) Figure 2 shows a flowchart with main steps for
the numerical integration of the constitutive equations
involved in two models.
(S3)-(viii) In the first model, and in the case of a ther-
moelastoviscoplastic iteration (i.e. case [(ii)-(2,3,4)]; see
Section 3.1), the fourth-order tensor P has symmetry
properties. In the classical thermoviscoplastic iteration
(i.e. case [(ii)-(3)]; see Section 3.1) corresponding only to
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classical plasticity processes, the fourth-order tensor P
has the same symmetry properties than the elastic oper-
ator E , i.e. P is a fourth-order symmetric operator (see
[39]).
(S3)-(ix) Figure 4 shows the geometrical interpretation of
local CTO T (k)

n+1 in line with eq. (20) (see [39]).
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