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Introduction

Smarts materials composites present great potential for applications in aerospace, textile and bioengineering industries [START_REF] Prasath | Effect of interphase and thermal environment on the effective properties of Macro-Fiber Composites (MFC)[END_REF][START_REF] Chatzigeorgiou | Effective mechanical properties of aligned fuzzy fiber composites[END_REF]. The development of new technologies in these areas has brought an increase in the use of composite materials and this in turn has brought the expansion and improvement of mathematical and computational methods. One of the main objective of the mathematical and computational methods is the calculation of the effective properties (elasticity, conductivity, etc.) [START_REF] Sevostianov | On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity[END_REF][START_REF] Srinivas | The effective magnetoelectric coefficients of polycrystalline multiferroic composites[END_REF][START_REF] Lim | Thermo-elastic effects on shear correction factors for functionally graded beam[END_REF][START_REF] Viet | Effective Young's modulus of carbon nanotube/epoxy composites[END_REF]. The most common mathematical methods used to compute the effective properties include finite elements method (FEM) [START_REF] Amirpour | Analytical solutions for elastic deformation of functionally graded thick plates with in-plane stiffness variation using higher order shear deformation theory[END_REF], Fourier series [START_REF]Eigenstrain and Fourier series for evaluation of elastic local fields and effective properties of periodic composites[END_REF] and multi-scale asymptotic homogenization methods [START_REF] Tsalis | Effective properties of multiphase composites made of elastic materials with hierarchical structure[END_REF][START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF][START_REF] Pobedrya | Mechanics of composite materials[END_REF]. Some authors have used discrete singular convolution method (DSC) for the free vibration analysis of rotating conical shells [START_REF] Civalek | An efficient method for free vibration analysis of rotating truncated conical shells[END_REF].

Multilayered shells are the most popular composite structures due to their good mechanical properties [START_REF] Qian | Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method[END_REF]. Many authors have focused their work on the influence of the geometrical structure of the multilayered composite [START_REF] Alibeigloo | Effect of viscoelastic interface on three-dimensional static and vibration behavior of laminated composite plate[END_REF][START_REF] Tsalis | Homogenization of elastoplastic composites with generalized periodicity in the microstructure[END_REF][START_REF] Tsalis | Effective behavior of thermo-elastic tubes with wavy layers[END_REF]. Also, it have been considered different specific structures, as cylindrical [START_REF] Han | Elasticity, shell theory and finite element results for the buckling of long sandwich cylindrical shells under external pressure[END_REF][START_REF] Tsukrov | Effective stiffness and thermal expansion coefficients of unidirectional composites with fibers surrounded by cylindrically orthotropic matrix layers[END_REF], spherical [START_REF] Christensen | Effective properties for single size, rigid spherical inclusions in an elastic matrix[END_REF][START_REF] Guinovart-Sanjuán | Assessment of models and methods for pressurized spherical composites[END_REF] or truncated conical shell [START_REF] Sofiyev | On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundations[END_REF]. On the other hand, important studies have been developed in order to see the influence of the contact behavior in the interface of the components on the global properties of the composite [START_REF] Nazarenko | Energy-based definition of equivalent inhomogeneity for various interphase models and analysis of effective properties of particulate composites[END_REF][START_REF] Vinh | Homogenization of rough two-dimensional interfaces separating two anisotropic solids[END_REF][START_REF] Vinh | Homogenization of very rough interfaces separating two piezoelectric solids[END_REF]. The imperfect spring type contact is one of the most widely studied problems. Many authors have been modeling the imperfect contact on fibrous composites with specific geometrical characteristics [START_REF] Kuo | Effective moduli of multiferroic fibrous composites with springtype imperfect interfaces under generalized plane strain with transverse electromagnetic fields[END_REF][START_REF] Würkner | Numerical study of effective elastic properties of fiber reinforced composites with rhombic cell arrangements and imperfect interface[END_REF][START_REF] Zhu | Three-dimensional numerical modelling by XFEM of spring-layer imperfect curved interfaces with applications to linearly elastic composite materials[END_REF].

Many studies have focused their investigation to particular cases of the properties of the composite elements. The most common components are considered isotropic due to its wide appearance in problems of physics and the mechanics of solids [START_REF] Medeiros | Effective properties evaluation for smart composite materials[END_REF]. On the other hand, some authors have extended the study of the composite structures to other types of materials (orthotropic, monoclinic, etc). In [START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF] the asymptotic homogenization method was used to find the effective elastic properties of composite with monoclinic components. According to [START_REF] Civalek | Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach[END_REF], the DSC reports accurate results for the solution of problems considering orthotropic laminated canonical and cylindrical shells. In [START_REF] Sofiyev | The stability of a three-layered composite conical shell containing a FGM layer subjected to external pressure[END_REF][START_REF] Sofiyev | The stability of cylindrical shells containing an FGM layer subjected to axial load on the pasternak foundation[END_REF], the authors study the stability of a cylindrical shell composite with components of ceramic, functionally graded materials (FGM) and metal layers. these studies consider the thickness variation for the FGM layer. Some models have presented the thickness variation of the layers as a parametric function of the coordinates [START_REF] Guinovart-Sanjuán | Effective properties of regular elastic laminated shell composite[END_REF].

In this contribution, the material coefficients of an elastic composites are assumed to be rapidly oscillating and periodic functions of a curvilinear coordinates system. The two scales asymptotic homogenization method is used to find the homogeneous problem associated to the equilibrium problem of the system [START_REF] Guinovart-Sanjuán | Assessment of models and methods for pressurized spherical composites[END_REF][START_REF] Guinovart-Sanjuán | Effective properties of regular elastic laminated shell composite[END_REF]. This work gives an approach to analyze the heterogeneous elastic problem in curvilinear structures with general anisotropy, and perfect/imperfect contact at the interface. During the homogenization process, the general expression of the local problems is obtained, considering an generalized periodic anisotropic structure. In previous works, the methods used to solve the local problems were restricted to structures with generalized periodicity but considering perfect contact at the interface [START_REF] Tsalis | Homogenization of structures with generalized periodicity[END_REF] or to rectangular laminated composites and isotropic components [START_REF] Pobedrya | Mechanics of composite materials[END_REF]. As an extension of these contributions, a methodology to solve the local problem for a composite with generalized periodicity, imperfect spring type contact at the interface and anisotropic components is presented.

The analytical expression of the local functions are given as a solution of linear equations. In order to validate the present approach, the effective coefficients reported in [START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF] for a "Chevron" structure with perfect contact at the interface are obtained as special case.The effective coefficients reported in [START_REF] Tsalis | Homogenization of structures with generalized periodicity[END_REF] are compared with the results obtained for the imperfect contact case (spring type). As an extension of [START_REF] Guinovart-Sanjuán | Behavior of laminated shell composite with imperfect contact between the layers[END_REF], the effective coefficients of three dimensional wavy laminate composite with imperfect contact at the interface are derived. The paper is organized as follows. In Section 2, the asymptotic homogenization method is used to derive the general expression of the local problem and the interface conditions. The effective coefficient of a laminate shell composite is introduced in Section 3, where the geometry of the structure is described by a function → ϱ: 3 , [START_REF] Tsalis | Homogenization of structures with generalized periodicity[END_REF]. Also, the local problem for anisotropic components of the composite with perfect contact at the interface is obtained as a system of linear equations. In Section 4, the local problem is extended to the case of imperfect contact at the interface (spring type) and the system of partial differential equations associated to the local problem is solved. Finally, the Sections 5, 6 illustrate some examples and applications of the described methodology.

Asymptotic homogenization method for linear curvilinear elastic problem

In [START_REF] Guinovart-Sanjuán | Effective properties of regular elastic laminated shell composite[END_REF][START_REF] Guinovart-Sanjuán | Behavior of laminated shell composite with imperfect contact between the layers[END_REF], the equilibrium elastic problem for a curvilinear composite structure =∪ ΩΩ Ω 1 2 , bounded by the surfaces SS , 1 2 , is studied. The general expression for the imperfect contact case is given by

+= σ f |0 , i n Ω , ij j i (1)
with boundary conditions

== u uS σ n SS on , on , i i ij j i 0 1 0 2 (2) 
and interface conditions
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Here (%)| j denotes the contravariant derivative, f i is the vector of the body forces, u i is the displacement vector, n j is outward unit normal vector of the surface S 2 or Γ and u i 0 and S i 0 are the prescribed values of the displacement and the stress in S 1 and S 2 , respectively. The surface Γ is the interface between the two components of the composite. The matrix = K K [] ij characterizes the imperfect contact in Γ and the order of K is -O ε ( ) 1 and 〚%〛 =(%) (2) -(%) (1) denotes the jump at the interface Γ. In particular case when the components of

→∞ K K, ij
, the problem (1)-( 4) reduces to the perfect contact case at the interface.

In order to derive the expression of a homogenized problem associated to (1)-( 4), the two-scales asymptotic homogenization method (AHM) is used. In [START_REF] Guinovart-Sanjuán | Effective properties of regular elastic laminated shell composite[END_REF][START_REF] Tsalis | Homogenization of structures with generalized periodicity[END_REF], a methodology to derive the expression of the following local problems is shown,

+= = ∪ CC N YYY (ϱϱ ϱ ) 0 , o n , qj ijlk pn ijmn mp lk qj q ,, | , |1 2 (5) 
where Y is the unit cell, Y Y , 12 are the components of the unit cell and = ϱ ( ϱ,ϱ,ϱ) 123 is the function that described the geometry of the com- posite.

In [START_REF] Guinovart-Sanjuán | Behavior of laminated shell composite with imperfect contact between the layers[END_REF], the two-scales asymptotic homogenization method is extended to the imperfect contact case and the following general expression of the imperfect spring type interface condition for N m lk was introduced 
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In the following sections, different techniques are presented in order to solve the local problems ( 5) and ( 6) for perfect and imperfect spring contact type case at the interface.

Effective coefficient of a generalized stratified periodic composite with perfect contact condition

Consider a stratified laminated shell composites, where the periodicity (stratified) function ϱ has the property: → ϱ: m 1 with = m 2, 3 [START_REF] Tsalis | Homogenization of structures with generalized periodicity[END_REF]. Now we consider the case when the elastic tensor ≡ ( )

C C

x ε ϱ( ) , and the stratified function → ϱ: 3 , i.e. ≡ xxx ϱ ϱ( , , ) 12 3 . Substituting this expression of ϱ into (9) and using the Voigt notation, the following equation can be obtained 

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ =+ ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ ∂ ∂ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ ∂ ∂ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ ∂ ∂ CC C x C x C x N y C x C x C x N y C x C x C x N y ϱϱϱ ϱϱϱ ϱϱϱ .
The Eq. ( 10) is a generalization of the results presented in [START_REF] Tsalis | Homogenization of structures with generalized periodicity[END_REF][START_REF] Pobedrya | Mechanics of composite materials[END_REF] (for instance, see formula (3.35) in [START_REF] Tsalis | Homogenization of structures with generalized periodicity[END_REF]).

Local problems

In this section, the local problem for a perfect contact case is solved, i.e. →∞ K ij in [START_REF] Viet | Effective Young's modulus of carbon nanotube/epoxy composites[END_REF]. From (5), the following problems for the local functions ∂

∂ N y / j a
, where = a 1, 2, 3, 4, 5, 6 and = j 1, 2, 3 are derived in the Voigt's notation [START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF],
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where
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Integrating Eqs. ( 11)-( 13) with respect to the variable y and solving for the local functions ∂ ∂ N y / j a , the following system of equations is obtained
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where λ j a denotes the integration constant. The system of linear Eqs. ( 14)-( 16) can be written in the matrix form as

=- × ×× × λ D Nb [ ] , ij aa a 33 31 31 31 (17) 
where are obtained analytically as solutions of the system (17) as follows 
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where = DD det[ ] ij . The local functions depend on the unknown constants λ i a . In order to find the expression of λ i a , the average operator is applied in both sides of the Eqs. ( 18)- [START_REF] Guinovart-Sanjuán | Assessment of models and methods for pressurized spherical composites[END_REF]. Taking into account that 〈∂ ∂ 〉 = Ny / 0 j a , the following system of equations for λ i a is obtained

= × ×× λ AB , aa 3331 31 (21) 
where Finally, the local functions ∂ ∂ N y / j a are derived from the Eqs. ( 18)-( 20), once the problem ( 21) is solved. On the other hand, the effective coefficients C e ab are computed from (10) using the analytical expressions ( 18)-( 20) for the local functions ∂ ∂ N y / j a .
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Numerical comparison. "Chevron" structures

The purpose of this section is to validate the proposed model using the results reported in [START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF]. In this case, a two-dimensional and twophase laminate with perfect contact at the interface is studied, see Fig. 1. The two main components of this composite are metal, with Young modulus (GPa) 72. [START_REF] Srinivas | The effective magnetoelectric coefficients of polycrystalline multiferroic composites[END_REF] 18)-( 20) and substituting the solutions in [START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF], the following effective coefficients are obtained for region I and II respectively, , respectively. Now, I and II can be considered as two different materials with their corresponding elastic properties given by ( 22) and ( 23), respectively. A new heterogeneous composite is studied using I and II as elements. So, a second homogenization can be used, in order to obtain a global effective coefficient, as described in [START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF], where I has the 75% and II has the 25% of the fraction volume.

= ⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ C 131.
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Here, the effective elastic tensor for the global composite becomes 
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These results coincided with the results reported in [START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF].

Effective coefficient of a generalized stratified periodic composite with imperfect contact at the interface

In this section, the solution of the local problem ( 5) and ( 6) for a Fig. 1. Chevron structure, two microscale composites with laminate structure, forming angles θ 1 and θ 2 as is described in [START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF].

structure with imperfect contact at the interface with stratified generalized periodicity is presented, see Fig. 2. First, consider that C is constant along each component of the unit cell =∪ Y YY 1 2 . Due to ∂ ∂= by /0 i a for all = a 1, 2, 3, 4, 5, 6 and = i 1, 2, 3, the system (11)-( 13) becomes
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From ( 25)-( 27), we get
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(2) 2 [START_REF] Medeiros | Effective properties evaluation for smart composite materials[END_REF] where the upper-scripts (•) , (•)

(1) (2) represent the value of the function on Y 1 and Y 2 respectively. Due to the periodicity of the function N i a ,we have
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where y 1 and y 2 are the boundary surfaces, i.e. ∈ yy y [, ] 12 . Therefore
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Now, rewriting the imperfect interface condition [START_REF] Viet | Effective Young's modulus of carbon nanotube/epoxy composites[END_REF], taking into account the expression of N i a given in [START_REF] Medeiros | Effective properties evaluation for smart composite materials[END_REF] and considering that → ϱ: 3 , the following × 66 system can be derived

= W AP [ ] , ij a (29) 
where ,,,,] ,
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is the vector of independents terms of each equation and W [ ] ij are the coefficients of A in each of the equations, the expression of P a and W [ ] ij are shown in Appendix A. Solving the system (29), the local functions are obtained and substituted into [START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF], the effective coefficients for imperfect contact at the interface are derived.

Numerical comparison. Rectangular laminate composite with imperfect contact

In order to validate the result above mentioned, a rectangular laminated shell composite is considered as described in section 6.1 of [START_REF] Guinovart-Sanjuán | Behavior of laminated shell composite with imperfect contact between the layers[END_REF] , where == λ µ 1 and = ε 0.01, [START_REF] Guinovart-Sanjuán | Behavior of laminated shell composite with imperfect contact between the layers[END_REF]. Substituting these values in [START_REF] Civalek | Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach[END_REF], the local function are obtained. From [START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF], the effective coefficient for spring type imperfect contact has a perfect match with the result reported in [START_REF] Guinovart-Sanjuán | Behavior of laminated shell composite with imperfect contact between the layers[END_REF] for rectangular laminates composite.

Effective properties for two-dimensional wavy composite with imperfect contact at the interface

In [START_REF] Tsalis | Homogenization of structures with generalized periodicity[END_REF], a methodology to derive the effective coefficients for a twophase two-dimensional wavy composite is introduced, for a structure with perfect contact at the interface and isotropic components. This procedure was extended in [START_REF] Guinovart-Sanjuán | Effective properties of regular elastic laminated shell composite[END_REF] to composite with imperfect contact, where the imperfection is modeled considering a third thin layer between the elements (soft and hard interface). On the other hand, in [START_REF] Guinovart-Sanjuán | Behavior of laminated shell composite with imperfect contact between the layers[END_REF] the two-scales asymptotic homogenization method is used to find the expression of the local problem and the effective coefficient of a laminate composite (no wavy) with spring type contact at the interface and isotropic elements. The generalization of all these works presented in Section 4 for a laminate composite with generalized periodicity, spring type imperfect contact at the interface and anisotropic components is used to derive some particular cases. The effective coefficients obtained using [START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF], and the solution of the system (29) for a composite with mechanical imperfect contact spring type with generalized coordinates is compared with the perfect contact case reported in [START_REF] Tsalis | Homogenization of structures with generalized periodicity[END_REF][START_REF] Guinovart-Sanjuán | Effective properties of regular elastic laminated shell composite[END_REF].

Consider two-phase structure where the geometry is described by the function

=- ⎛ ⎝ ⎞ ⎠ xx x H πx L ϱ(, ) s i n 2 , 12 2 1 (30) 
where H is a parameter related to the oscillation, L is the length of the unit cell, [33], (see Fig. 2). The two elements Ω,Ω An imperfect contact spring type between the layers is considered (see Fig. 2). The matrix K characterized the imperfection and it has the following expression

= ⎡ ⎣ ⎢ ⎢ + ⎤ ⎦ ⎥ ⎥ - ε µ µ λµ K 00 00 00 2 , 1 (31) 
where are the Lame's constant of the elements Ω 1 and Ω 2 respectively. In order to compare for different values of the matrix K, the parameter ε takes the following values [0.05, 0.01, 0.001].

=+
In Fig. 3, a comparison between the effective coefficients C e 23 and C e 66 reported in [START_REF] Guinovart-Sanjuán | Effective properties of regular elastic laminated shell composite[END_REF] for a laminate wavy composite with perfect contact at the interface and the corresponding coefficients considering mechanical imperfect contact spring type at the interface are shown, for the values of = ε [0.05, 0.01, 0.001]. The approximation to the perfect contact case is illustrated when → ε 0, i.e. →∞ K ij .

Three-dimensional bi-periodical wavy structures

As a final application of the present study described in this paper, a general three-dimensional wavy structure is considered, where → ϱ: 3 and the expression is given by

⎜ ⎟ ⎜ ⎟ =- ⎛ ⎝ ⎞ ⎠ - ⎛ ⎝ ⎞ ⎠ xxx x H π L xH π L x ϱ(, , ) s i n 2 sin 2 , 12 3 3 1 1 12 2 2 ( 32 
)
where HH , 1 2 denote the heights of the oscillations in the structure and LL , 12 are are the periods lengths of the wavy forx 1 and x 2 respectively, (Fig. 4a). The wavy function ( 32) is a generalization of the structure Fig. 2. Unit cell wavy laminate composite with imperfect contact at the interface. composite studied in [START_REF] Tsalis | Homogenization of structures with generalized periodicity[END_REF], where the considered geometry for the wavy structure is constant with respect to x 2 and the oscillation is only re- garding to x 1 (Fig. 4b). The Fig. 4b can be derived from [START_REF] Guinovart-Sanjuán | Effective properties of regular elastic laminated shell composite[END_REF] taking = H 0 2 . In order to study the influence of the geometry in the elastic properties, the effective coefficients C e 11 and C e 56 are computed, considering spring type imperfect contact at the interface of the composite. The obtained results are compared with the perfect contact case described in Section 3. , Fig. 4b, is studied in [START_REF] Guinovart-Sanjuán | Effective properties of regular elastic laminated shell composite[END_REF]. The matrix that characterize the imperfect contact of the structure is given in [START_REF] Sofiyev | The stability of cylindrical shells containing an FGM layer subjected to axial load on the pasternak foundation[END_REF], with == = εK K µ 1/100, 11 22 and

=+ K λ µ 2 33
, where = µ 37.25 and = λ 73.66.I nTable 1 and Table 2 the effective coeffi- cients C e 11 and C e 56 are computed considering spring type imperfect contact at the interface using the methodology described in Section 4. The obtained results are compared with the perfect contact case at the interface for the points of ∈ xx ( , ) [0, 0.15, 0.3, 0.45] 

Conclusions

In the paper, a methodology to solve the local problem of a laminate shell composite with generalized periodicity, imperfect spring type contact at the interface and anisotropic elements is given. The analytical expression for the local functions are obtained. As an extension of [START_REF] Tsalis | Homogenization of structures with generalized periodicity[END_REF][START_REF] Guinovart-Sanjuán | Effective properties of regular elastic laminated shell composite[END_REF], the local problem is solved considering a generalized wavy structure, where the components are anisotropic materials. The asymptotic homogenization method is used to derive the results presented in [START_REF] Tsalis | Multiscale homogenization of multilayered structures[END_REF] for the case of a "Chevron" structure with perfect contact at the interface. On the other hand, the general expression of the local problem for a structure composed by anisotropic elements, imperfect spring type contact at the interface and with generalized periodicity is derived. For the particular case of laminate shell composite, the local problem was a reduce to a system of × 66 of linear equations. The analytical expressions for the local functions are expressed as a solution of the system. Finally, in order to validate the model, the effective coefficient of a three dimensional wavy structure is computed and the results are compared with the results in [START_REF] Tsalis | Homogenization of structures with generalized periodicity[END_REF][START_REF] Guinovart-Sanjuán | Effective properties of regular elastic laminated shell composite[END_REF][START_REF] Guinovart-Sanjuán | Behavior of laminated shell composite with imperfect contact between the layers[END_REF] as particular cases.

This method allows us to obtain the model equation for the homogenized problem of a wider range of shell structures with generalized periodicity. It allows us to study the elastic equilibrium equation for several structures with imperfect contact between the components. This methodology can also be extended considering variable imperfection along the structure or to another kind of composites as piezoelectric, Fig. 3. Comparison of the effective coefficients C e 23 and C e 66 for composite with spring type imperfect contact at the interface for = ε [0.05, 0.01, 0.001] and the perfect contact case. Fig. 4. Heterogeneous curvilinear wavy laminated structures. thermoelectric, with several applications in civil and mechanic engineering. Furthermore, the study could be extended to nonlinear constitutive laws of the materials and study membranes, which has important applications in biomedicine to study cornea, aorta, skin membranes, etc. Table 1 Comparison of the effective coefficient C e 11 considering perfect contact (PC) and imperfect contact (IC) at the interface. Where the rows denote the variation along the x 1 direction and the columns in the x 2 direction. 
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⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ +- * * * * * * * * * * W C x C x C x nC x C x C x nC x C x C x nK y y ϱϱϱ ϱ ϱ ϱ ϱ ϱ ϱ () 12 16(1) 1 12(1) 2 14(1) 3 1 66(1) 1 26(1) 2 46(1) 3 2 56(1) 1 25(1) 2 45(1) 3 31 2 1 
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ +- * * * * * * * * * * W C x C x C x nC x C x C x nC x C x C x nK y y ϱϱϱ ϱ ϱ ϱ ϱ ϱ ϱ ( ) 13 
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ +- *
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ +- * * * * * * * * * * W C x C x C x nC x C x C x nC x C x C x nK y y ϱϱϱ ϱ ϱ ϱ ϱ ϱ ϱ () 25 
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ +- *
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ +- *
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ +- *

Table 2

Comparison of the effective coefficient C e 56 considering perfect contact (PC) and imperfect contact (IC) at the interface. Where the rows denote the variation along the

x 1 direction and the columns in the x 2 direction. 

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ +- *
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ +- *
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ +- * * * * * * * * * * W C x C x C x nC x C x C x nC x C x C x
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ + ⎛ ⎝ ∂ ∂ + ∂ ∂ + ∂ ∂ ⎞ ⎠ +- * * * * * * * * * * W C x C x C x nC x C x C x nC x C x C x

  ,

	a 1	aa 1122 33	aa 2232 13	aa 3312 23
		aa 1123 32	aa 2212 33	aa 3313 22

  ,

	a 2	aa 1123 31	aa 2233 11	aa 3313 21
		aa 1121 33	aa 2213 31	aa 3311 23

  ,

	a 3	aa 1121 32	aa 2231 12	aa 3311 22
		aa 1122 31	aa 2232 11	aa 3312 21

  and Poisson ratio 0.33, and ceramic with 420 Young modulus (GPa) and 0.25 Poisson ratio. The geometry of this structure is described by the function

			xx ϱ(, ) 12	=-x x 2 1 t a n θ	, where θ
	takes the values = θπ /6 1	and	= θπ /3

2 in the regions I and II, respectively. Now, consider that the fraction volume of the components are 90% Metal and 10% Ceramic in regions I and II. Solving the local problem (

  posed of two layers of isotropic materials, first, aluminum with Young modulus 72.04 and Poisson ratio = 0.3, the other element is reinforced carbon fiber with Young modulus 150 and Poisson ratio = 0.35. The volume fraction of each element in the unit cell is 50%. The matrix K that characterizes the imperfect contact takes the following non-

				vanishing values	K 11	== Kµ ε / 22	and	K 33	=+ λµ ε (2 ) /
	, where ∂ ∂= ∂∂= xx ϱ/ ϱ/ 12	0	and ∂ ∂= x ϱ/	1		

3

. The unit cell is com-
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