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The manuscript offers a methodology to solve the local problem derived from the homogenization technique,
considering composite materials with generalized periodicity and imperfect spring contact at the interface. The
general expressions of the local problem for an anisotropic composite with perfect and imperfect contact at the
interface are derived. The analytical solutions of the local problems are obtained by solving a system of partial
differential equations. In order to validate the model, the effective properties of the structure presented in the
literature are obtained as particular cases. The solution of the local problem is used to extend the study to more
complex structures, such as, wavy laminates shell composites with imperfect spring type contact at the interface.
Also, the results are compared with the results for perfect and imperfect contact models available in the lit-
erature.

1. Introduction

Smarts materials composites present great potential for applications
in aerospace, textile and bioengineering industries [1,2]. The devel-
opment of new technologies in these areas has brought an increase in
the use of composite materials and this in turn has brought the ex-
pansion and improvement of mathematical and computational
methods. One of the main objective of the mathematical and compu-
tational methods is the calculation of the effective properties (elasticity,
conductivity, etc.) [3–6]. The most common mathematical methods
used to compute the effective properties include finite elements method
(FEM) [7], Fourier series [8] and multi-scale asymptotic homogeniza-
tion methods [9–11]. Some authors have used discrete singular con-
volution method (DSC) for the free vibration analysis of rotating conical
shells [12].

Multilayered shells are the most popular composite structures due to
their good mechanical properties [13]. Many authors have focused their
work on the influence of the geometrical structure of the multilayered
composite [14–16]. Also, it have been considered different specific
structures, as cylindrical [17,18], spherical [19,20] or truncated conical
shell [21]. On the other hand, important studies have been developed in

order to see the influence of the contact behavior in the interface of the
components on the global properties of the composite [22–24]. The
imperfect spring type contact is one of the most widely studied pro-
blems. Many authors have been modeling the imperfect contact on fi-
brous composites with specific geometrical characteristics [25–27].

Many studies have focused their investigation to particular cases of
the properties of the composite elements. The most common compo-
nents are considered isotropic due to its wide appearance in problems
of physics and the mechanics of solids [28]. On the other hand, some
authors have extended the study of the composite structures to other
types of materials (orthotropic, monoclinic, etc). In [10] the asymptotic
homogenization method was used to find the effective elastic properties
of composite with monoclinic components. According to [29], the DSC
reports accurate results for the solution of problems considering or-
thotropic laminated canonical and cylindrical shells. In [30,31], the
authors study the stability of a cylindrical shell composite with com-
ponents of ceramic, functionally graded materials (FGM) and metal
layers. these studies consider the thickness variation for the FGM layer.
Some models have presented the thickness variation of the layers as a
parametric function of the coordinates [32].

In this contribution, the material coefficients of an elastic

⁎ Corresponding author.
E-mail address: guinovart@ucf.edu (D. Guinovart-Sanjuán).

T

Analysis of effective elastic properties for shell 
with complex geometrical shapes

1



composites are assumed to be rapidly oscillating and periodic functions
of a curvilinear coordinates system. The two scales asymptotic homo-
genization method is used to find the homogeneous problem associated
to the equilibrium problem of the system [20,32]. This work gives an
approach to analyze the heterogeneous elastic problem in curvilinear
structures with general anisotropy, and perfect/imperfect contact at the
interface. During the homogenization process, the general expression of
the local problems is obtained, considering an generalized periodic
anisotropic structure. In previous works, the methods used to solve the
local problems were restricted to structures with generalized periodi-
city but considering perfect contact at the interface [33] or to rectan-
gular laminated composites and isotropic components [11]. As an ex-
tension of these contributions, a methodology to solve the local
problem for a composite with generalized periodicity, imperfect spring
type contact at the interface and anisotropic components is presented.
The analytical expression of the local functions are given as a solution
of linear equations. In order to validate the present approach, the ef-
fective coefficients reported in [10] for a “Chevron” structure with
perfect contact at the interface are obtained as special case.The effec-
tive coefficients reported in [33] are compared with the results ob-
tained for the imperfect contact case (spring type). As an extension of
[34], the effective coefficients of three dimensional wavy laminate
composite with imperfect contact at the interface are derived.

The paper is organized as follows. In Section 2, the asymptotic
homogenization method is used to derive the general expression of the
local problem and the interface conditions. The effective coefficient of a
laminate shell composite is introduced in Section 3, where the geometry
of the structure is described by a function � �→ϱ: 3 , [33]. Also, the
local problem for anisotropic components of the composite with perfect
contact at the interface is obtained as a system of linear equations. In
Section 4, the local problem is extended to the case of imperfect contact
at the interface (spring type) and the system of partial differential
equations associated to the local problem is solved. Finally, the Sections
5, 6 illustrate some examples and applications of the described meth-
odology.

2. Asymptotic homogenization method for linear curvilinear

elastic problem

In [32,34], the equilibrium elastic problem for a curvilinear com-
posite structure = ∪Ω Ω Ω1 2, bounded by the surfaces S S,1 2, is studied.
The general expression for the imperfect contact case is given by

+ =σ f| 0, in Ω,ij
j

i (1)

with boundary conditions

= =u u S σ n S Son , on ,i i
ij

j
i0

1 0 2 (2)

and interface conditions

=σ n K u[[ ]], on Γ,ij
j

ij
j (3)

=σ n[[ ]] 0, on Γ.ij
j (4)

Here (%)|j denotes the contravariant derivative, f i is the vector of the
body forces, ui is the displacement vector, nj is outward unit normal
vector of the surface S2 or Γ and ui

0 and Si
0 are the prescribed values of

the displacement and the stress in S1 and S2, respectively. The surface Γ
is the interface between the two components of the composite. The
matrix = KK [ ]ij characterizes the imperfect contact in Γ and the order
ofK is −O ε( )1 and〚%〛=(%)(2)- (%)(1) denotes the jump at the interface
Γ. In particular case when the components of → ∞KK, ij , the problem
(1)–(4) reduces to the perfect contact case at the interface.

In order to derive the expression of a homogenized problem asso-
ciated to (1)–(4), the two-scales asymptotic homogenization method
(AHM) is used. In [32,33], a methodology to derive the expression of
the following local problems is shown,

+ = = ∪C C N Y Y Y(ϱ ϱ ϱ ) 0, on ,q j
ijlk

p n
ijmn

m p
lk

q j q, , | , | 1 2 (5)

where Y is the unit cell, Y Y,1 2 are the components of the unit cell and
=ϱ (ϱ , ϱ , ϱ )1 2 3 is the function that described the geometry of the com-

posite.
In [34], the two-scales asymptotic homogenization method is ex-

tended to the imperfect contact case and the following general ex-
pression of the imperfect spring type interface condition for Nm

lk was
introduced
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(6)

where ≡K K ε( )ij ij .
Finally, solving the local problem (5)–(6), the general expression of

the homogenized problem is

+ =C v f( )| 0,e
ijkl

k l j
i

, (7)

= =v u S C v n S Son , ( | ) on ,i i e
ijkl

k l j i
0

1
0

2 (8)

where the effective coefficient =C C[ ]e
ijkl has the following expression

by components [32]

= + ∂
∂C x C C
N

y
( ) ϱ .e

ijkl ijkl ijmn
p n

m
kl

p
,

(9)

In the following sections, different techniques are presented in order
to solve the local problems (5) and (6) for perfect and imperfect spring
contact type case at the interface.

3. Effective coefficient of a generalized stratified periodic

composite with perfect contact condition

Consider a stratified laminated shell composites, where the peri-
odicity (stratified) function ϱ has the property: � �→ϱ: m 1 with
=m 2, 3 [33].

Now we consider the case when the elastic tensor ≡ ( )C C
x

ε

ϱ( ) , and

the stratified function � �→ϱ: 3 , i.e. ≡ x x xϱ ϱ( , , )1 2 3 . Substituting this
expression of ϱ into (9) and using the Voigt notation, the following
equation can be obtained
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The Eq. (10) is a generalization of the results presented in [33,11] (for
instance, see formula (3.35) in [33]).

3.1. Local problems

In this section, the local problem for a perfect contact case is solved,
i.e. → ∞K ij in (6). From (5), the following problems for the local
functions ∂ ∂N y/j

a , where =a 1, 2, 3, 4, 5, 6 and =j 1, 2, 3 are derived
in the Voigt’s notation [10],
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where
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Integrating Eqs. (11)–(13) with respect to the variable y and solving
for the local functions ∂ ∂N y/j

a , the following system of equations is
obtained
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where λj
a denotes the integration constant. The system of linear Eqs.

(14)–(16) can be written in the matrix form as

= −× × × ×λD N b[ ] ,ij
a a a

3 3 3 1 3 1 3 1 (17)
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The local functions ∂ ∂N y/j
a are obtained analytically as solutions of

the system (17) as follows
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where =D Ddet[ ]ij .
The local functions depend on the unknown constants λi

a. In order
to find the expression of λi

a, the average operator is applied in both
sides of the Eqs. (18)–(20). Taking into account that 〈∂ ∂ 〉 =N y/ 0j

a , the
following system of equations for λi

a is obtained
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Finally, the local functions ∂ ∂N y/j
a are derived from the Eqs.

(18)–(20), once the problem (21) is solved. On the other hand, the

effective coefficients Ce
ab are computed from (10) using the analytical

expressions (18)–(20) for the local functions ∂ ∂N y/j
a .

3.2. Numerical comparison. “Chevron” structures

The purpose of this section is to validate the proposed model using
the results reported in [10]. In this case, a two-dimensional and two-
phase laminate with perfect contact at the interface is studied, see
Fig. 1. The two main components of this composite are metal, with
Young modulus (GPa) 72.4 and Poisson ratio 0.33, and ceramic with
420 Young modulus (GPa) and 0.25 Poisson ratio. The geometry of this
structure is described by the function = −x x x x θϱ( , ) tan1 2 2 1 , where θ

takes the values =θ π/61 and =θ π/32 in the regions I and II, respec-
tively.

Now, consider that the fraction volume of the components are 90%
Metal and 10% Ceramic in regions I and II. Solving the local problem
(18)–(20) and substituting the solutions in (10), the following effective
coefficients are obtained for region I and II respectively,

=
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C
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,e
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.e
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(23)

After this first step of homogenization, the effective properties of the
composite have been derived with different values in region I and II for
=θ π/61 and =θ π/32 , respectively. Now, I and II can be considered as

two different materials with their corresponding elastic properties
given by (22) and (23), respectively. A new heterogeneous composite is
studied using I and II as elements. So, a second homogenization can be
used, in order to obtain a global effective coefficient, as described in
[10], where I has the 75% and II has the 25% of the fraction volume.
Here, the effective elastic tensor for the global composite becomes

=
⎛
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−

−
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⎟
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C
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60.536 120.330 57.505 0 0 0.328
59.010 57.505 144.202 0 0 1.303
0 0 0 33.499 2.189 0
0 0 0 2.189 36.766 0

6.119 0.328 1.303 0 0 35.291

.e

(24)

These results coincided with the results reported in [10].

4. Effective coefficient of a generalized stratified periodic

composite with imperfect contact at the interface

In this section, the solution of the local problem (5) and (6) for a

Fig. 1. Chevron structure, two microscale composites with laminate structure,
forming angles θ1 and θ2 as is described in [10].
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structure with imperfect contact at the interface with stratified gen-
eralized periodicity is presented, see Fig. 2. First, consider that C is
constant along each component of the unit cell = ∪Y Y Y1 2. Due to
∂ ∂ =b y/ 0i

a for all =a 1, 2, 3, 4, 5, 6 and =i 1, 2, 3, the system
(11)–(13) becomes

∂
∂ + ∂

∂ + ∂
∂ =D

N

y
D

N

y
D

N

y
0,

a a a

11

2
1
2 12

2
2
2 13

2
3
2 (25)

∂
∂ + ∂

∂ + ∂
∂ =D

N

y
D

N

y
D

N

y
0,

a a a

21

2
1
2 22

2
2
2 23

2
3
2 (26)

∂
∂ + ∂

∂ + ∂
∂ =D

N

y
D

N

y
D

N

y
0.

a a a

31

2
1
2 32

2
2
2 33

2
3
2 (27)

From (25)–(27), we get
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where the upper-scripts (·) , (·)(1) (2) represent the value of the function
on Y1 and Y2 respectively. Due to the periodicity of the function Ni

a, we
have

= =N y N y( ) ( ) 0,i
a

i
a

1 2

where y1 and y2 are the boundary surfaces, i.e. ∈y y y[ , ]1 2 . Therefore

= − = −B A y B A y, .i
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1
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2

Now, rewriting the imperfect interface condition (6), taking into ac-
count the expression of Ni

a given in (28) and considering that
� �→ϱ: 3 , the following ×6 6 system can be derived

=W A P[ ] ,ij
a (29)

where = A A A A A AA P[ , , , , , ] ,a a a a a a T a
1
(1)

2
(1)

3
(1)

1
(2)

2
(2)

3
(2) is the vector of

independents terms of each equation and W[ ]ij are the coefficients of A
in each of the equations, the expression of Pa and W[ ]ij are shown in
Appendix A. Solving the system (29), the local functions are obtained
and substituted into (10), the effective coefficients for imperfect contact
at the interface are derived.

4.1. Numerical comparison. Rectangular laminate composite with imperfect
contact

In order to validate the result above mentioned, a rectangular la-
minated shell composite is considered as described in section 6.1 of
[34], where ∂ ∂ = ∂ ∂ =x xϱ/ ϱ/ 01 2 and ∂ ∂ =xϱ/ 13 . The unit cell is com-
posed of two layers of isotropic materials, first, aluminum with Young
modulus 72.04 and Poisson ratio = 0.3, the other element is reinforced
carbon fiber with Young modulus 150 and Poisson ratio = 0.35. The
volume fraction of each element in the unit cell is 50%. The matrix K
that characterizes the imperfect contact takes the following non-

vanishing values = =K K µ ε/11 22 and = +K λ µ ε( 2 )/33 , where = =λ µ 1

and =ε 0.01, [34]. Substituting these values in (29), the local function
are obtained. From (10), the effective coefficient for spring type im-
perfect contact has a perfect match with the result reported in [34] for
rectangular laminates composite.

5. Effective properties for two-dimensional wavy composite with

imperfect contact at the interface

In [33], a methodology to derive the effective coefficients for a two-
phase two-dimensional wavy composite is introduced, for a structure
with perfect contact at the interface and isotropic components. This
procedure was extended in [32] to composite with imperfect contact,
where the imperfection is modeled considering a third thin layer be-
tween the elements (soft and hard interface). On the other hand, in [34]
the two-scales asymptotic homogenization method is used to find the
expression of the local problem and the effective coefficient of a lami-
nate composite (no wavy) with spring type contact at the interface and
isotropic elements. The generalization of all these works presented in
Section 4 for a laminate composite with generalized periodicity, spring
type imperfect contact at the interface and anisotropic components is
used to derive some particular cases. The effective coefficients obtained
using (10), and the solution of the system (29) for a composite with
mechanical imperfect contact spring type with generalized coordinates
is compared with the perfect contact case reported in [33,32].

Consider two-phase structure where the geometry is described by
the function

= − ⎛⎝ ⎞⎠x x x H
πx

L
ϱ( , ) sin

2
,1 2 2

1

(30)

where H is a parameter related to the oscillation, L is the length of the
unit cell, [33], (see Fig. 2). The two elements Ω , Ω1 2 of the composite
are aluminum with Young modulus =E 72.041 GPa, Poisson ratio
=ν 0.351 (volume fraction 80%) and stainless steel with Young modulus
=E 206.741 GPa, Poisson ratio =ν 0.31 (volume fraction 20%), respec-

tively.
An imperfect contact spring type between the layers is considered

(see Fig. 2). The matrix K characterized the imperfection and it has the
following expression

= ⎡
⎣
⎢⎢ +

⎤
⎦
⎥⎥

−ε
µ

µ

λ µ

K

0 0

0 0

0 0 2

,1

(31)

where = + = +µ µ µ λ λ λ µ λ0.8 0.2 , 0.8 0.2 ; ,1 2 1 2 1 1 and µ λ,2 2 are the
Lame’s constant of the elements Ω1 and Ω2 respectively. In order to
compare for different values of the matrix K, the parameter ε takes the
following values [0.05, 0.01, 0.001].

In Fig. 3, a comparison between the effective coefficientsCe
23 andCe

66

reported in [32] for a laminate wavy composite with perfect contact at
the interface and the corresponding coefficients considering mechanical
imperfect contact spring type at the interface are shown, for the values
of =ε [0.05, 0.01, 0.001]. The approximation to the perfect contact case
is illustrated when →ε 0, i.e. → ∞K ij .

6. Three-dimensional bi-periodical wavy structures

As a final application of the present study described in this paper, a
general three-dimensional wavy structure is considered, where
� �→ϱ: 3 and the expression is given by

⎜ ⎟ ⎜ ⎟= − ⎛
⎝

⎞
⎠−

⎛
⎝

⎞
⎠x x x x H

π

L
x H

π

L
xϱ( , , ) sin

2
sin

2
,1 2 3 3 1

1
1 2

2
2

(32)

where H H,1 2 denote the heights of the oscillations in the structure and
L L,1 2 are are the periods lengths of the wavy forx1 and x2 respectively,
(Fig. 4a). The wavy function (32) is a generalization of the structure

Fig. 2. Unit cell wavy laminate composite with imperfect contact at the inter-
face.
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composite studied in [33], where the considered geometry for the wavy
structure is constant with respect to x2 and the oscillation is only re-
garding to x1 (Fig. 4b). The Fig. 4b can be derived from (32) taking

=H 02 .
In order to study the influence of the geometry in the elastic prop-

erties, the effective coefficients Ce
11 and Ce

56 are computed, considering
spring type imperfect contact at the interface of the composite. The
obtained results are compared with the perfect contact case described
in Section 3. Two numerical experiments are considered where the
isotropic material constituents used are stainless steel (with Young’s
modulus, =E 206.741 GPa, Poisson ratio, =ν 0.31 ) with thickness
=V 0.21 (volume fraction) and aluminum (with Young’s modulus
=E 72.042 GPa, Poisson ratio =ν 0.352 ) with thickness =V 0.82 . The

geometry of the composites are described by (32) with parameters,
heights = =H H 0.251 2 and lengths of the periodicities = =L L 11 2 for
structure Fig. 4a. The example when heights = =H H0.25, 01 2 and
length of the periodicity =L 11 , Fig. 4b, is studied in [32].

The matrix that characterize the imperfect contact of the structure is
given in (31), with = = =ε K K µ1/100, 11 22 and = +K λ µ233 , where
=µ 37.25 and =λ 73.66. In Table 1 and Table 2 the effective coeffi-

cients Ce
11 and Ce

56 are computed considering spring type imperfect
contact at the interface using the methodology described in Section 4.
The obtained results are compared with the perfect contact case at the
interface for the points of ∈x x( , ) [0, 0.15, 0.3, 0.45]1 2

2.

7. Conclusions

In the paper, a methodology to solve the local problem of a laminate
shell composite with generalized periodicity, imperfect spring type
contact at the interface and anisotropic elements is given. The analy-
tical expression for the local functions are obtained. As an extension of
[33,32], the local problem is solved considering a generalized wavy
structure, where the components are anisotropic materials. The
asymptotic homogenization method is used to derive the results pre-
sented in [10] for the case of a “Chevron” structure with perfect contact
at the interface. On the other hand, the general expression of the local
problem for a structure composed by anisotropic elements, imperfect
spring type contact at the interface and with generalized periodicity is
derived. For the particular case of laminate shell composite, the local
problem was a reduce to a system of ×6 6 of linear equations. The
analytical expressions for the local functions are expressed as a solution
of the system. Finally, in order to validate the model, the effective
coefficient of a three dimensional wavy structure is computed and the
results are compared with the results in [33,32,34] as particular cases.

This method allows us to obtain the model equation for the homo-
genized problem of a wider range of shell structures with generalized
periodicity. It allows us to study the elastic equilibrium equation for
several structures with imperfect contact between the components. This
methodology can also be extended considering variable imperfection
along the structure or to another kind of composites as piezoelectric,

Fig. 3. Comparison of the effective coefficients Ce
23 and Ce

66 for composite with spring type imperfect contact at the interface for =ε [0.05, 0.01, 0.001] and the perfect
contact case.

Fig. 4. Heterogeneous curvilinear wavy laminated structures.
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thermoelectric, with several applications in civil and mechanic en-
gineering. Furthermore, the study could be extended to nonlinear
constitutive laws of the materials and study membranes, which has
important applications in biomedicine to study cornea, aorta, skin
membranes, etc.
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Appendix A. Components of the matrix and the vector of the system (29)

The expressions ∂
∂
∗
x

ϱ

i
, for =i 1, 2, 3 denote the value of the functions ∂

∂x
ϱ

i
at the interface surface =∗y Γ and y y,1 2 denote the boundary surfaces of

Y Y,1 2 respectively.
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Table 1

Comparison of the effective coefficientCe
11 considering perfect contact (PC) and imperfect contact (IC) at the interface. Where the rows denote the variation along the

x1 direction and the columns in the x2 direction.

x2\x1 0 0.15 0.30 0.45

Method PC IC(100) PC IC(100) PC IC(100) PC IC(100)

0 135.23 129.66 140.10 136.85 143.97 141.82 135.68 130.41
0.15 132.84 127.14 137.25 134.24 142.47 140.89 133.16 127.79
0.30 131.82 126.01 135.37 132.41 141.11 139.82 132.04 126.56
0.45 134.92 129.34 139.81 136.59 143.83 141.76 135.36 130.09

Table 2

Comparison of the effective coefficientCe
56 considering perfect contact (PC) and imperfect contact (IC) at the interface. Where the rows denote the variation along the

x1 direction and the columns in the x2 direction.

x2\x1 0 0.15 0.30 0.45

Method PC IC(100) PC IC(100) PC IC(100) PC IC(100)

0 −0.337 −0.174 1.018 1.209 2.245 2.450 −0.227 −0.061
0.15 −0.891 −0.777 0.206 0.350 1.934 2.096 −0.838 −0.721
0.30 0.779 0.713 0.263 0.176 −1.152 −1.255 0.773 0.705
0.45 0.418 0.259 −0.946 −1.133 −2.245 −2.447 0.311 0.149
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