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Abstract

The elastic properties of a spherical heterogeneous structure with isotropic periodic components is analyzed and a

methodology is developed using the two-scale asymptotic homogenization method (AHM) and spherical assemblage

model (SAM). The effective coefficients are obtained via AHM for two different composites: (a) composite with perfect

contact between two layers distributed periodically along the radial axis; and (b) considering a thin elastic interphase

between the layers (intermediate layer) distributed periodically along the radial axis under perfect contact. As a result,

the derived overall properties via AHM for homogeneous spherical structure have transversely isotropic behavior.

Consequently, the homogenized problem is solved. Using SAM, the analytical exact solutions for appropriate boundary

value problems are provided for different number of layers for the cases (a) and (b) in the spherical composite. The

numerical results for the displacements, radial and circumferential stresses for both methods are compared considering

a spherical composite material loaded by an inside pressure with the two cases of contact conditions between the layers

(a) and (b).
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1. Introduction

The mathematical modeling of composite materials is necessary to develop new types of structure with
improved characteristics such as strength, lightness and durability. Multi-layered shells are the most popu-
lar composite structures [1, 2]. They have an important role in engineering, aeronautics and automotive, being
lightweight structures resulting from the need to reduce fuel consumption and exhaust emissions [3, 4]. Another
important application for shell composites is in the textile industry. Textile composite materials have recently
received considerable attention, due to their structural advantages of high specific strength and high specific
stiffness as well as their improved resistance to impact [5, 6]. Textile composites have an important application
in sports, where the development of new materials via physical and mathematical design has changed the usual
perspective and strategy. For example, the development of new, resistant, aerodynamic and elastic balls has
improved the attractiveness of sports such as soccer [7] and baseball [8,9].

It is well known that the presence of interfaces plays a crucial role in the behavior of composite
structures and in recent years there has been considerable interest in the study of composites with imperfect
interfaces [10, 11].

In this work, the elastic properties of a spherical laminated shell composite are studied together with
the influence of the stress and strain distributions for two different composites: (a) composite with perfect
contact between two layers distributed periodically along the radial axis; and (b) considering a thin elastic
interphase (intermediate layer) between the layers distributed periodically along the radial axis under perfect
contact [12, 13]. The two-scale asymptotic homogenization method (AHM) is a powerful tool to obtain the effec-
tive elastic properties of laminated shell composites, being suitable to take into account the above-mentioned
cases (a) and (b) [14–16]. The expressions of the effective coefficients for a laminated shell composite consid-
ered in the cases (a) and (b) using AHM are obtained. As a consequence of the homogenization process the
derived overall properties for homogeneous spherical structure have transversely isotropic behavior [17, 18].
This symmetry class provides an excellent framework for the constitutive model development of many types of
composites, including soft tissues [19, 20]. The general solution of the homogenized equilibrium equation for
a transversely isotropic structure is obtained and the expression of the stress tensor is computed. Besides, the
analytical exact solutions for appropriate boundary value problems are provided using the spherical assemblage
model (SAM), reported in [13], but now extended to different number of layers for the cases (a) and (b) in the
spherical composite. The solution of the elastic problem for a spherical structure is presented for the two cases
(a) and (b). In particular, the solutions for the displacements, radial and angular stresses fields obtained by AHM
and SAM are compared for different numbers of layers.

2. Statement of the heterogeneous elastic problem

A laminated shell composite � ⊂ R
3 is considered with infinite number of layers periodically distributed along a

preferential direction [21, 22], bounded by the surfaces Ŵ1 Ŵ2, Ŵ1 ∩Ŵ2 = ∅, where the axis x3 is perpendicular to
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the layers of the media. The three-dimensional equilibrium problem on an elastic body is given by the equations

divσ + f = 0, on �, (1)

u = u0 on Ŵ1, σ · n = S0 on Ŵ2, (2)

[[u]] = 0 on Ŵ, (3)

[[σσσ · n]] = 0 on Ŵ, (4)

where σ is the stress tensor, f is a body force density vector acting on �, u is the displacement vector, n is
the normal vector of Ŵ2, u0 and S0 are the given displacement on Ŵ1 and surface load on Ŵ2, respectively,
[[•]] = •(1) − •(2) denotes the difference of the function values at the interface Ŵ between the components of
the composite [12, 16, 23, 24].

The problem (1)–(2) can be reformulated in terms of the displacement vector u using the Hooke’s law which
relates the stress–strain and the Cauchy’s formula

div (C : ∇u) + f = 0, on �, (5)

u = u0 on Ŵ1, (C : ∇u) n = S0 on Ŵ2. (6)

[[u]] = 0 on Ŵ, (7)

[[(C : ∇u) · n]] = 0 on Ŵ, (8)

where “:” denotes the scalar–tensor product and ∇ represent the covariant derivative operator.
In order to obtain equivalent equations with non-oscillating coefficients, the two-scale AHM is

used [21, 25, 26].

2.1. The two-scale AHM

The asymptotic expansion for a curvilinear coordinates system is

u = v + αN1∇v + α2N2∇2v . . . (9)

where α = l/L is a small parameter associated with rapid fluctuations in the microstructure or local property,
where l is the microscopic scale associated with the heterogeneities and L is the macroscopic scale characterizing
the extent of the structure, v ≡ v(x) is a continuous function and N i = N i(y) are periodic functions for the
variable y = x/α ∈ Y, where Y is the periodic or unit cell. For the perfect contact model between the layers
〈N i〉 = 0 (see [21, 22, 25, 26]).

Substituting the expansion (9) into the equations (5), (6), (8) and solving a set of problems, the fourth-order
tensor of the effective coefficients, h, can be determined [21, 22, 25, 27]

h =
〈

C + ∂

∂y
N1 : C

〉

, (10)

where 〈•〉 is the average operator given by the expression

〈•〉 = 1

VY

∫

Y

•dy,

where VY is the volume of Y. The average is affected by the thickness and the distribution of the layer along the
unit cell Y. Therefore, the effective coefficients are different depending on the thickness of the materials. The
components of the effective coefficients (10) are given by the expression

hijkl =
〈

Cijkl + Cijm3

∂Nklm

∂y3

〉

, (11)
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and the local function N1 is obtained solving the local problem

∂

∂y

(

C + ∂

∂y
N1 : C

)

= 0, on Y. (12)

For a curvilinear laminated shell composite, where the layers are periodical distributed perpendicular to the
x3 axis, the local problem (12) in terms of components is given by the equation

∂

∂y3

(

Ci3kl + Ci3m3

∂Nklm

∂y3

)

= 0, on Y. (13)

The coefficients of the local problem are different depending on the number of materials and the thickness
of each layer.

2.2. Composite with isotropic layers with perfect contact

Considering a laminated shell composite with isotropic layers distributed perpendicularly to the x3 axis with
perfect contact at the interface Ŵ, i.e. continuity of the displacements and the stresses (7)–(8), then the solution
of the local problem (13) is given by the expression

∂Nmnk

∂x3

= C−1
m3i3

〈

C−1
i3p3

〉−1 〈

C−1
p3q3Cq3nk

〉

− C−1
m3i3Ci3nk . (14)

Substituting the expression (14) into the equation (11) the non-zero components of the effective coefficients
h are

h1111 = 〈C1111〉 +
〈

C1133(C3333)−1
〉2〈

(C3333)−1
〉−1

−
〈

(C1133)2(C3333)−1
〉

,

h1122 = 〈C1122〉 +
〈

C1133(C3333)−1
〉 〈

(C3333)−1
〉−1

×
〈

C2233(C3333)−1
〉

−
〈

C1133C2233(C3333)−1
〉

,

h1133 =
〈

C1133(C3333)−1
〉 〈

(C3333)−1
〉−1

, (15)

h2233 =
〈

C2233(C3333)−1
〉 〈

(C3333)−1
〉−1

,

h2222 = 〈C2222〉 +
〈

C2233(C3333)−1
〉2〈

(C3333)−1
〉−1

−
〈

(C2233)2(C3333)−1
〉

,

h3333 =
〈

(C3333)−1
〉−1

h2323 =
〈

(C2323)−1
〉−1

h1313 =
〈

(C1313)−1
〉−1

,

h1212 = 〈C1212〉 .

The effective tensor h with average components (15) has a transversely isotropic behavior if the layers have
isotropic behavior, therefore, h1111 = h2222, h1133 = h2233, h2323 = h1313 and the h1212 = (h1111 − h1122) /2, thus,
only five coefficients are linearly independent; this result is proved in [21, Chap. 5].

3. Homogenized equilibrium equation in a spheric shell

An homogeneous spheric shell made of transversely isotropic material has non-zero stress components

σθθ = h1111

1

r
ur + h1122

1

r
ur + h1133ur,r, (16)

σϕϕ = h1122

1

r
ur + h1111

1

r
ur + h1133ur,r, (17)

σrr = h1133

1

r
ur + h2233

1

r
ur + h3333ur,r, (18)
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Figure 1. Spherical composite element with two layers loaded by a uniform internal pressure.

implying that σθθ = σϕϕ .
If the body force vector f in equation (5) is neglected, then the equilibrium equation under axial-symmetric

loading conditions is

ur,rr + 2

r
ur,r + 2 (h1133 − h1122 − h1111)

r2h3333

ur = 0, (19)

whose solution is
ur = c1rz1 + c2rz2 , (20)

with

z1,2 =
(

−1 ±
√

1 − 8B
)

/2,

B = (h1133 − h1122 − h1111) /h3333 and c1, c2 real numbers. For an homogeneous spheric shell made of materials
with an isotropic behavior the values of z1,2 are 1 and −2.

4. Pressurized SAM

A spherical composite element made of two concentric shells is now considered. The internal shell has inner
radius Ri and thickness t and the external shell has outer radius Re and same thickness t. The inner surface
r = Ri of the heterogeneous body is loaded by an internal pressure p, thus

σrr = −p, (21)

whereas the external spherical surface r = Re is free of traction, see Figure 1.
In the following, the subscript i denotes quantities associated with the internal shell and the subscript e

quantities associated with the external shell. The materials of the two shells are assumed to be linearly elastic,
the elastic moduli of the internal shell are µi, κi and those of the external spherical shell are µe, κe.

The three-dimensional homogeneous, isotropic linear elastic equations for each layer have the following
general solution in terms of spherical coordinates r, θ , φ (see [28]):

ur = αr + β

r2
, (22)

ǫrr = α − 2
β

r3
, ǫθθ = ǫφφ = α + β

r3
, (23)

σrr = 3κα − 4µ
β

r3
, σθθ = σφφ = 3κα + 2µ

β

r3
, (24)

where α and β are constants to be determined. The solutions (23)–(24) are given within each shell for
appropriate values of the elastic moduli and different values of the constants α, β.

Two different cases of composites are studied. In the first case (a), note that the contact between the two
shells is modeled as perfect, and in the second case (b), an elastic intermediate interphase is inserted between
the two shells with perfect contact.

In the following, the cases (a) and (b) are solved using a SAM. The model proposed by SAM has been
obtained in [13] as an asymptotic model of a thin curved elastic adhesive.
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4.1. Case (a): perfect contact between the inner and the outer shells

Under perfect contact conditions between the two shells, the radial stress and displacement are continuous at
the common interface of radius R0 := Ri + t = Re − t. Using equations (22) and (24), the following set of
boundary (25) and (28) and contact (26) and (27) conditions is obtained:

3κiαi − 4µi

βi

R3
i

= −p, (25)

3κiαi − 4µi

βi

R3
0

= 3κeαe − 4µe

βe

R3
0

, (26)

αiR0 + βi

R2
0

= αeR0 + βe

R2
0

, (27)

3κeαe − 4µe

βe

R3
e

= 0. (28)

These conditions uniquely determine αi, βi for the inner shell and αe, βe for the outer shell. Given these four
constants, the relations (22) and (24) provide the displacement and stress fields in each shell.

4.2. Case (b): contact via an elastic layer between the inner and the outer shells

It is now assumed that the contact between the inner and the external shell is provided by the presence of a thin
elastic interphase of radius R0, Ri < R0 < Re and small thickness ε ≫ t, inserted between the two shells. The
interphase is in perfect contact with the two adjacent shells at the common surfaces r = R0 ± ε and each shell
is made of a linear isotropic material with elastic moduli µ, k, see Figure 1.

Taking into account the general relations (22) and (24), the following set of boundary (29) and (34) and
contact (30)–(33) conditions is now obtained

3κiαi − 4µi

βi

R3
i

= −p, (29)

3κiαi − 4µi

βi

(R0 − ε)3
= 3κα − 4µ

β

(R0 − ε)3
, (30)

3κα − 4µ
β

(R0 + ε)3
= 3κeαe − 4µe

βe

(R0 + ε)3
, (31)

αi(R0 − ε) + βi

(R0 − ε)2
= α(R0 − ε) + β

(R0 − ε)2
, (32)

α(R0 + ε) + β

(R0 + ε)2
= αe(R0 + ε) + βe

(R0 + ε)2
, (33)

3κeαe − 4µe

βe

R3
e

= 0. (34)

These conditions uniquely determine αi, βi for the inner shell, α, β for the interphase and αe, βe for the outer
shell. Given these six constants, the relations (22) and (24) again provide the displacement and stress fields
inside the two shells and the interphase.

5. Comparison of the numericals results

In the present section, the numerical results obtained via AHM and SAM for the two cases (a) and (b) of the
pressurized spherical shells assemblage presented in the above section are compared. The comparison is given
in terms of radial displacement, radial and angular stresses. The values of the material parameters used in the
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Table 1. Comparison of the normalized radial stress σrr for the points Ri, R0 and Re computed using AHM and SAM for two, four,

eight and an infinite number of layers with perfect contact (case (a)).

Methods σrr(·)/p

Ri R0 Re

SAM(2 layers) –1 –0.08964 0

SAM(4 layers) –1 –0.3948 0

SAM(8 layers) –1 –0.3953 0

SAM +∞ –1 –0.3969 0

AHM –1 –0.3959 0

calculations are taken as the following:

µi = 10µe, µ = 10xµe, (35)

νi = 0.2, νe = 0.35, ν = 0.3, (36)

t = R0/10, ε = R0/100, (37)

where the non-indexed constants are the interphase elastic parameters of the models (b) described in previous
subsections. So, the elastic properties for case (a) are constant for the variable x.

The variable x = log10(µ/µe) is introduced to model different stiffness ratios between the material of the
adhesive interphase and the material of the external shell. In particular, for a fixed Lamé constant of the external
shell µe, the adhesive interphase becomes softer as µ → 0 and correspondingly x → −∞; conversely, the limit
x → +∞ corresponds to a rigid adhesive.

The numerical results of the displacement via AHM are computed using the solution of the equation (19)
considering the homogenized coefficients from equation (15). The circumferential and radial stresses
are computed using the equations (16) and (18), respectively, considering the effective coefficients of
equation (15).

The two models presented in the previous section, under pressurized SAM, the radial displacement and
the radial and angular stresses are computed solving the two system sets of boundary and contact conditions
(25)–(28) and (29)–(34).

5.1. Numerical results for case (a)

A spherical shell composite model is considered with thickness 2t. Two layers, one external “e” and one internal
“i” have been distributed periodically inside the thickness of this composite. In addition a layer sequence is
constructed considering an assemblage with more layers as follows:

2 layers: i /e
4 layers: i /e /i /e
8 layers: i /e /i /e /i /e /i /e

The numerical results obtained via AHM are based on the solution (20) with boundary conditions
given by (21) in the inner surface and free traction in the external surface. The results are compared using
SAM for the above-mentioned distribution of layers sequences and infinite number of layers.

In Table 1, the normalized radial stress obtained via SAM for two, four and eight layers is compared with
AHM using (18). The case of infinite numbers of layers computed by SAM has been computed considering the
results obtained in [29, Equations (51)]. Note the good agreement between the two proposed methods.

The circumferential stress in a thin spherical shell under internal pressure is given by the well-known
estimation

σθθ = 2pr

4T
, (38)

where r is the radius and T = 2t is the thickness of the composite [30]. Based on the equilibrium considerations
[31, Chap. 9], the estimation (38) can be applied to the spherical composite assemblage considered in this work.
It has to be remarked that equation (38) provides an approximate value of the hoop stress, because (38) neglects
the elastic behavior of the shells constituting the composite and the contact between them. On the other hand,
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Table 2. Comparison of the normalized angular stress σθθ for the points Ri, R0 and Re computed using AHM, SAM for two, four,

eight and an infinite number of layers and hoop stress formula (38) with perfect contact (case (a)).

Methods σθθ (·)/p

Ri R0 Re

SAM(2 layers) 4.0389
3.5837 (i)

0.4510(e)
0.4062

SAM(4 layers) 4.3070
3.4955 (i)

0.2850(e)
0.4177

SAM(8 layers) 4.4697
3.5916 (i)

0.2981(e)
0.4255

SAM +∞ 2.3794 2.0091 1.7935

AHM 2.3957 2.0071 1.7875

Hoop stress 2.2500 2.2500 2.2500

Table 3. Comparison of the normalized displacement ur for the points Ri, R0 and Re computed using AHM and SAM for two, four,

eight and an infinite number of layers with perfect contact (case (a)).

Methods µeur(·)/(pR0)

Ri R0 Re

SAM(2 layers) 0.1287 0.1202 0.1076

SAM(4 layers) 0.1367 0.1198 0.1106

SAM(8 layers) 0.1416 0.1230 0.1127

SAM +∞ 0.1641 0.1423 0.1297

AHM 0.1470 0.1267 0.1151

estimates of this type are widely used by engineers and thus it is worth comparing with the results given by
equations (16) and (24).

In Table 2, a comparison of the normalized σθθ computed via AHM, SAM and the hoop stress using
equation (38) is shown. The stress σθθ is computed via AHM and SAM using equations (16) and (24),
respectively, for two, four, eight and an infinite number of layers.

The results obtained using SAM show a discontinuity of σθθ in R0 for two, four and eight layers, see Table 2.
Otherwise, the case of infinite number of layers SAM +∞ is continuous because it corresponds to the case of a
homogenized material. A good coincidence between the results obtained by AHM and SAM +∞ is appreciated.

In Table 3, the normalized displacements ur obtained using AHM and SAM for two, four, eight and infinite
number of layers are shown. The displacement function is computed via AHM using the equation (20) for a
transversely isotropic structure. The values of ur are obtained via SAM using the equation (23) and the solution
of the system (25)–(28). A good agreement between the two methods is observed.

The average behavior of the σθθ is studied due to the discontinuity of the function at the interfaces points
(see Table 2, SAM), the following operator is introduced to computed the average of the numerical curves

ϕ̂ = 1

2
(ϕ(Ri) + ϕ(Re)) , (39)

where ϕ is taken to denote the displacement ur, the radial stress σrr or the angular stress σθθ .
In Table 4, the average normalized stresses and radial displacement computed for the above sequences via

SAM and AHM are reported. Note that the average normalized radial displacement augments as the number
of layers increases and the value computed by SAM +∞ provides an upper bound, as is expected. This is not
the case of the angular stress but this discrepancy is believed to appear due to the choice of average (39) which
is not able to capture the oscillating behavior of the angular stress inside the thickness of the composite as the
number of layers increases. Indeed, the mean value given by the following expression is introduced

ϕ̄ = 1

R2
0

∫ Re

Ri

ϕ(r)r dr. (40)
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Table 4. Comparison of average (according to Equation (39)) normalized stresses and radial displacement in a hollow composite

assemblage with an increasing number n of layers with perfect contact. The inner surface of the composite is subject to the pressure

p, equation (21), the external surface of the composite is free traction. The values for case SAM +∞ have been computed by using

equation (51) of [29].

Methods σ̂rr/p σ̂θθ/p µeûr/(pR0)

SAM(2 layers) –0.5 2.2226 0.1182

SAM(4 layers) –0.5 2.3624 0.1237

SAM(8 layers) –0.5 2.4476 0.1271

SAM +∞ –0.5 2.0865 0.1469

AHM –0.5 2.0916 0.1311

Table 5. Comparison of average (according to equation (40)) normalized stresses and radial displacement in an hollow composite

assemblage for an increasing number n of layers with perfect contact. The inner surface of the composite is subject to the pressure p

(cf. equation (21)), the external surface of the composite is free traction. The values for case SAM +∞ have been computed by using

Equations (51) of [29].

n σ̄rr/p σ̄θθ/p µeū/(pR0)

SAM(2 layers) –0.0523 0.4050 0.0237

SAM(4 layers) –0.0664 0.4050 0.0245

SAM(8 layers) –0.0743 0.4050 0.0250

SAM +∞ –0.0829 0.4050 0.0287

AHM –0.0828 0.4050 0.0255

The values listed in Table 5 are obtained using the mean value (40). Table 5 shows that all of the average
(according to (40)) normalized values estimated for SAM +∞ provide upper or lower (depending on the sign)
bounds for the values computed by SAM with two, four and eight layers. The good coincidence between the
results obtained via AHM and SAM +∞ is noticeable.

5.2. Numerical results for case (b)

A spherical shell composite with thickness 2t is considered in which two layers “i” and “e” have a thin interphase
between the laminates. The layers and the interphase with perfect contact are distributed periodically inside the
thickness and along the radial axis. The structure is studied with boundary conditions given by (21) in the inner
surface and free traction in the external surface.

In order to compare the results obtained via AHM and SAM, the angular and radial stresses are computed at
the points Ri, R0, Re of the spherical structure for different number of layers. The sequences of the layers used
to calculate the stresses and the displacements via SAM have the following distribution of the layers inside the
thickness

2 layers: i /TI /e
4 layers: i /TI /e /i /TI /e
8 layers: i /TI /e /i /TI /e /i /TI /e /i /TI /e

where (TI) is the thin interphase between the layers “i” and “e”.
The numerical results are computed for the values x = log(µ/µe) ∈ [−3, 3] and the elastic parameters given

in (35)–(36). As with the above case (case (a)), the numerical results for case (b) obtained via AHM are based
on the solution (20). The functions computed via SAM are derived from the solution of the system (29)–(34)
considering the aforementioned distribution for two, four and eight layers. The case of an infinite number of
layers computed by SAM is studied considering the results reported in [29, Equations (51)].

Figure 2 shows the behavior of the normalized radial stress σrr at R0 for different values of the parameter x.
The computation of σrr via AHM is computed using the equation (18). The results are compared with the values
obtained via SAM for two, four, eight and an infinite number of layers, using the corresponding equation (24). A
good agreement between the curves is appreciated, except for SAM two layers. This is due to the microstructure
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Figure 2. Normalized radial stress σrr at R0 for case (b) using AHM and SAM with two, four, eight and an infinite number of layers.

Figure 3. Normalized angular stress σθθ at Re for case (b) using AHM and SAM with two, four, eight and an infinite number of

layers.

above described, the adhesive interphase (TI) lies at r = R0 (the middle surface of the composite) for SAM two
layers, whereas for more layers than two, the adhesive interphase does not lie on R0.

In Figure 3, a comparison between the normalized σθθ at Re computed via AHM and SAM for two, four,
eight and an infinite number of layers is shown. The computation via SAM are obtained from the corresponding
equation (24). The values of σθθ computed using AHM is given by equation (16). A good agreement of the
behavior of the curves obtained via AHM and SAM for infinite number of layer is appreciated.

Figure 4 shows the behavior of the normalized displacement ur at Ri. The curves are determined using AHM
and SAM for two, four, eight and an infinite number of layers following a similar idea: the displacement function
is computed via AHM using equation (20) and via SAM (23).

A good coincidence between both methods can be observed, especially with the results obtained by AHM
and SAM +∞ show a perfect match for the values of the parameter x ∈ [−1, 2]. The differences between
AHM and SAM +∞ for x out of [−1, 2] is related to the convergence difficulties of the AHM for high-contrast
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Figure 4. Normalized displacement ur at Ri for case (b) using AHM and SAM with two, four, eight and an infinite number of layers.

composite [32, 33]. Finally, if the thickness of the interphase layer is considered very small, then the curves
given in Figures 2, 3 and 4 show a constant behavior given in Tables 1, 2 and 3, respectively.

6. Conclusions

In this work, the equilibrium problem of a multi-layered laminated spherical composite has been solved using
the two-scale AHM and SAM. The numerical computations were made considering two different conditions
of contact at the interface of the layers: (a) perfect contact condition and (b) elastic interphase layer between
the inner and the outer shells. During the homogenization process, the global behavior of a shell composite
made of isotropic layers has transversely isotropic symmetry. The solution of the homogeneous problem for a
transversely isotropic elastic spherical structure has been obtained. The results of the displacement, radial and
circumferential stress obtained by AHM have been compared with the same obtained fields using the method
proposed in [13] (SAM). Both methods show good agreement between their solution and with the experimental
estimate reported in [30]. The computational cost for a great number of layers is not a problem for the AHM
model. This results opens the possibility to extend the computation to composites made of a large number of lay-
ers, with the aim to apply the computation and the model in a particular group of materials and bio-composites,
veins, arteries and cornea. The study of the elastic properties of the cornea and veins is an important objective
in medicine today. Considering this idea the formulation of a mathematical model of the cornea and aorta will
be addressed in a future work by taking into account composites exhibiting different types of geometries and
imperfect contact conditions at the interfaces.
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