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Higher order interfacial effects for elastic waves in one dimensional 
phononic crystals via the Lagrange-Hamilton's principle

F. Lebon a, R. Rizzoni b, *
a Aix-Marseille University, CNRS, Centrale Marseille, LMA, Marseille, France 

b Department of Engineering, University of Ferrara, Italy

This work proposes new transmission conditions at the interfaces between the layers of a three-

dimensional composite structures. The proposed transmission conditions are obtained by applying the

asymptotic expansion technique in the framework of Lagrange-Hamilton's principle. The proposed

conditions take into account interfacial effects of higher order, thus representing an extension of the

classical zero-thickness interface models. In particular, the (small) thickness of the interface together

with its inertia, stiffness and anisotropy are accounted for. The effect of the transmission conditions on

the band structure of BlocheFloquet waves propagating in a one dimensional phononic crystal is dis-

cussed based on numerical results.

1. Introduction

Phononic crystals are composites with a periodic structure

made of materials with different elastic constants and densities. In

these composites, elastic waves with frequencies within a specific

range (the phononic bandgap) are not allowed to propagate.

Therefore, phononic crystals present innovative filtering properties

and offer possibilities for controlling sound and heat propagation

(Kushwaha et al., 1993; Jensen, 2003; Ghazaryan and Piliposyan,

2011; Maldovan, 2013).

Many authors have studied the effect of material properties on

phononic band gaps (see (Vasseur et al., 2001; Wu et al., 2004;

Maldovan, 2013; Chen et al., 2014) and references therein) and

found that microstructured materials are able to control sound,

whereas to control heat, nanostructures are generally required. For

a fine-scaled material with a large ratio of interfacial region to the

bulk, the influence of surface characteristics can be substantial and

it is thus fundamental to propose reliable and efficient models able

to account for interfacial effects.

In the literature, a very large number of interface model have

been developed (see, for example (Challamel and Girhammar, 2011;

Benveniste and Miloh, 2001; Hashin, 2002; Klarbring, 1991; B€ovik,

1994; Lebon and Zaittouni, 2010; Nairn, 2007; Benveniste, 2013; Li

et al., 2015)). We can classify these models into two large families:

phenomenological models, essentially built from experimental

data, and deductivemodels based onmicro-mechanical analyses. In

the present paper, we deal with the second family.

The application of asymptotic techniques to obtain models of

interfaces is now well established (Benveniste, 2006; Krasuki and

Lenci, 2000; Lebon et al., 1997; Rizzoni and Lebon, 2012, 2013;

Rizzoni et al., 2014; Serpilli, 2015; Serpilli and Lenci, 2016). The

idea behind this application is the replacement of a thin, elastic,

anisotropic interphase by a proper interfacemodel; the equivalence

between the two models is established by studying the asymptotic

behavior of the interphase as its thickness becomes smaller and

smaller. In Section 2, the problem of a composite made of three

deformable solids (two adherents and a thin interphase) perfectly

bonded together is introduced in the framework of elastodynamics.

The Lagrangian problem is introduced and expanded with respect

to the small parameter (the interphase thickness). In Section 3, four

sub-problems are studied, allowing us to derive the interfacial

displacement and traction jump relations at each level of expan-

sion. In particular, higher order levels of the expansion are taken

into account.

In Section 4, the jump relations are reformulated into a general

elastic imperfect interface model in such a way that they take
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simpler and compact but equivalent forms, particularly convenient

for later use. It is also shown that the present formulation unifies

and extends four widely used interface models, the perfect inter-

face, the mass interface, the spring interface and the spring-mass

interface, thus representing an enrichment of the classical inter-

face models due to high order interfacial effects. Notably, the

presence of first order derivates of the displacement and stress

vector fields make the proposed imperfect interface model

nonlocal in character.

In Section 5, the imperfect interface model is applied to estimate

the interfacial effects of the periodic structure on bandgaps of a

one-dimensional phononic crystal with imperfect contacts be-

tween the two constituent layers. The standard transfer matrix

approach is employed (Lekner, 1994; Rokhlin and Wana, 1991;

Rokhlin and Wang, 1992). In particular, an additional interlayer

matrix is introduced, taking into account the imperfect contact. The

dispersion equation is solved numerically and the dispersion curves

are shown in the Brillouin zone. The band gaps of the phononic

crystal with imperfect contact are compared with those obtained

with perfect contact. In particular, the effects of the small thickness

of the imperfect interface, of its inertia and stiffness on the band

structure of the laminated phononic crystal are discussed on the

basis of the numerical results.

2. Statement of the problem

In the following a composite body made of three deformable

solids, two elastic adherents and a thin elastic adhesive, is

considered (cf. Fig. 1). At the initial time t1; the composite occupies

the bounded domain Uε depending on a small parameter εwhich is

the constant thickness of the adhesive. An orthonormal Cartesian

basis ðO; e1; e2; e3Þ is introduced and x ¼ ðx1; x2; x3Þ is taken to

denote the position of a particle. The adhesive occupies the initial

domain Bε, defined by Bε ¼
n�

x1; x2; x3Þ2U
ε

:

���x3
���< ε

2

o
. We take

vBε to denote the boundary of Bε, which is supposed to be suffi-

ciently smooth. Thus, the origin of the Cartesian basis lies at the

center of the adhesive midplane and the x3� axis runs perpen-

dicular to the open bounded set S ¼ fðx1; x2; x3Þ2U
ε

: x3 ¼ 0g;

which in the following will be called the interface. The adherents

occupy respectively the initial domains U
ε

±
defined by

U
ε

±
¼
n�

x1; x2; x3Þ2U : ±x3 >
ε

2

o
. We take vU

ε

±
to denote the

boundary of Uε

±
, which is supposed to be sufficiently smooth. The

two-dimensional domains Sε
±

are taken to denote the interfaces

between the adhesive and the adherents,

Sε
±
¼
n�

x1; x2; x3Þ2U : x3 ¼ ±
ε

2

o
. On a part S±g of the boundary

vU
ε=Sε

±
, an external time-dependent load g±ðt; xÞ; t2ðt1; t2Þ; is

applied, and on a part S±u of vU
ε=Sε

±
such that S±g ∩S

±

u ¼ Ø, the

displacement is imposed to vanish. Moreover, it is assumed that

S±u∩B
ε ¼ Ø, S±g ∩B

ε ¼ Ø and S±u∪S
±

g ∪S
ε

±
¼ vU

ε

±
. We take Sε

l
to denote

vBε=Sε
±
. The part of the boundary Sε

l
is force free. A time-dependent

body force f±ðt; xÞ; t2ðt1; t2Þ; is applied in U
ε

±
. Let g± and f± be

assumed regular functions on ½t1; t2� � Sg and ½t1; t2� � U
ε

±
; respec-

tively. In the following, uεðt; xÞ is taken to denote the displacement

field, sεðt; xÞ the Cauchy stress tensor and eðuεÞ the strain tensor.

Under the small strain hypothesis we have eijðu
εÞ ¼ 1

2 ðu
ε

i;j
þ uε

j;i
Þ,

where the comma is the partial derivative.

The two adherents and the adhesive are supposed to be elastic,

thus

s
ε ¼ a±eðu

εÞ in Uε

±
; (1)

s
ε ¼ bεeðuεÞ in Bε: (2)

The elasticity tensors a± and bε have the usual properties of

symmetry, Sijhk ¼ Shkij ¼ Sjikh, and of positivity, i.e. there exists a>0

such that

Sijhkeijehk >aeijeij; eij ¼ eji: (3)

We take r± and zε to denote the strictly positive volumetric mass

densities in the adherents and in the adhesive, respectively, and ½½��

to denote the jump along Sε
±
. The equations governing the motion

of the composite structure are written as follows:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

s
ε

ij;j þ f ±
i
¼ r

±
€uεi in ½t1; t2� � U

ε

±
;

s
ε

ijnj ¼ g±
i

on ½t1; t2� � S±g ;

s
ε

ij;j ¼ zε€uε in ½t1; t2� � Bε;��
uεi
��

¼ 0 on ½t1; t2� � Sε
±
;

uεi ¼ 0 on ½t1; t2� � S±u ;
s
ε

ij ¼ a±
ijhk

ehkðu
εÞ in ½t1; t2� � U

ε

±
;

s
ε

ij ¼ bεijhkehkðu
εÞ in ½t1; t2� � Bε;

uεi ¼ Uε

i ; for t ¼ t1; in Uε;
_uεi ¼ v

ε

i ; for t ¼ t1; in Uε;

(4)

where _ui and €ui are the first and second derivatives in time of ui;

respectively, and Ui (resp. vi) are the initial displacement (resp.

velocity) data. It is remarked here, that (4) implies that ½½sε
i
�� ¼ 0 on

½t1; t2� � Sε
±
. Note that bε

ijhk
and zε can depend on ε. If

f ±2L2ð½t1; t2�;H
1ðUε;R3ÞÞ and g±2L2ð½t1; t2�;H

1ðS±g ;R
3ÞÞ, then

problem (4) has an unique solution in H1ð½t1; t2�;H
1ðUε;R3ÞÞ

(Ciarlet, 1976; Lions and Magenes, 1968). In the following, we take

kk to denote the usual euclidian norm in R3. The Lagrangian is

introduced

L ðuεÞ ¼ Tεð _u
ε

Þ � EεðuεÞ; (5)

where Tε is the total kinetic energy, sum of the kinetic energies of

the adherents and the adhesive,

Tεð _u
ε

Þ ¼ Tεþð _u
ε

Þ þ Tε�ð _u
ε

Þ þ TεBð _u
ε

Þ;

Tε

±
ð _u

ε

Þ ¼
1

2

Z

U
ε

±

r
±
jj _u

ε

jj2dx;

TεBð _u
ε

Þ ¼
1

2

Z

Bε

zεk _u
ε

k2dx;

(6)

and Eε is the total potential energy

Fig. 1. Geometry of the composite. Initial reference configuration made of two ad-

herents in perfect contact with a thin adhesive (a); corresponding rescaled configu-

ration with an adhesive of unit thickness (b); limit configuration obtained as the

thickness ε of the adhesive goes to zero (c).
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EεðuεÞ ¼ Eεþðu
εÞ þ Eε�ðu

εÞ þ EεBðu
εÞ;

Eε
±
ðuεÞ ¼

1

2

Z

U
ε

±

a±ðeðu
εÞÞ:eðuεÞdx�

Z

U±

f±:uεdx�

Z

S±g

g±:uεdsx;

EεBðu
εÞ ¼

1

2

Z

Bε

bεðeðuεÞÞ:eðuεÞdx:

(7)

The Lagrange-Hamilton's principle states that among admissible

motions, the actual motion of the material is such that

d

Zt2

t1

L
εdt ¼ 0: (8)

Under suitable regularity assumptions on the domains Uε

±
;Bε; S

and on the fields f±;g±; vε;uε; the Lagrange-Hamilton's principle is

equivalent to the equation of motions (4) (Bedford, 1985; Seliger

and Whitham, 1968).

3. A general asymptotic approach

Since the thickness of the interphase is very small, it is natural to

seek the solution of problem (4, 8) using asymptotic expansions

with respect to the parameter ε. In particular, the following

asymptotic series are assumed:

(
uε ¼ u0 þ ε u1 þ ε

2 u2 þ ε
3 u3 þ o

�
ε
3
�

s
ε ¼ s

0 þ ε s
1 þ ε

2
s
2 þ ε

3
s
3 þ o

�
ε
3
�
:

(9)

The domain is then rescaled using a classical change of variable

(Ciarlet, 1997; Lebon and Rizzoni, 2011):

ðz1; z2; z3Þ ¼ pðx1; x2; x3Þ :¼
�
x1; x2; x3ε

�1
�
; ðx1; x2; x3Þ2Bε;

(10)

ðz1; z2; z3Þ ¼ bpðx1; x2; x3Þ :¼
�
x1; x2; x3±

ε

2
H
1

2

�
; ðx1; x2; x3Þ2U

ε

±
;

(11)

and let B be the rescaled interphase

B ¼

	
ðz1; z2; z3Þ2R3 : ðz1; z2Þ2S;

����z3
����<

1

2



; (12)

and bU± the rescaled adherents. The displacement fields from the

rescaled adherents and from the rescaled interphase are

buε

±
ðz1; z2; z3; tÞ :¼

�
uε

+bp�1
�
ðz1; z2; z3Þ; ðz1; z2; z3Þ2

bU±;

(13)

uεðz1; z2; z3; tÞ :¼
�
uε

+p�1
�
ðz1; z2; z3Þ; ðz1; z2; z3Þ2B; (14)

respectively. The conditions of perfect adherence at the interfaces

Sε
±
can be written as

buε

±

�
z1; z2;±

1

2
; t

�
¼ uε

�
z1; z2;±

1

2
; t

�
; ðz1; z2Þ2S; (15)

uε

�
x1;x2;

�
±
ε

2

�H
;t

�
¼buε

±
z1;z2;

�
±
1

2

�H

;t

!
; ðx1;x2Þ;ðz1;z2;tÞ2S;

(16)

uε

�
x1;x2;

�
±
ε

2

�
±

;t
�
¼uε

�
z1;z2;

�
±
1

2

�
±

;t

�
; ðx1;x2Þ;ðz1;z2Þ2S:

(17)

Using these notations, the kinetic and potential energies can be

re-written as

T
ε

�
_bu
ε

±
; _u

ε
�

¼ T
ε

þ

�
_bu
ε

þ

�
þ T

ε

�

�
_bu
ε

�

�
þ T

ε

B

�
_u
ε
�
;

T
ε

±

�
_bu
ε

±

�
¼

1

2

Z

bU±

r
±

��� _bu
ε

±

���
2
dz;

T
ε

B

�
_u
ε
�

¼
1

2

Z

B

εzε
��� _u

ε

���
2
dz;

(18)

E
ε
�buε

±
;uε


¼ E

ε

þ

�buε

þ



þE

ε

�

�buε

�



þE

ε

Bðu
εÞ;

E
ε

±

�buε

±



¼
1

2

Z

bU±

a±
�
e
�buε

±




:e
�buε

±



dz�

Z

bU±

bf
±

:buε

±
dz�

Z

bSg

bg±
:buε

±
dsz;

E
ε

Bðu
εÞ ¼

1

2

Z

B

εbεðeðuεÞÞ:eðuεÞdz;

(19)

where bf
±

and bg±
are the rescaled body and surface forces. We as-

sume that

zε ¼ z0 þ εz1 þ oðεÞ; (20)

Kε;jl ¼ K
jl
0 þ εK

jl
1 þ oðεÞ; (21)

where

K
ε;jl
ki

:¼ bεijkl: (22)

The rescaled kinetic and potential energies in the adhesive then

become

T
ε

B

�
_u
ε
�

z

Z

B

1

2

�
εz0 þ ε

2z1
��

_u
ε
�2

dz; (23)

E
ε

Bðu
εÞz

Z

B

1

2

�
ε
�1K33

0

�
uε

;3

�
:uε

;3 þ
�
K33
1

�
uε

;3

�
:uε

;3

þ 2Ka3
0

�
uε

;a

�
:uε

;3

�
þ ε

�
2Ka3

1

�
uε

;a

�
:uε

;3 þ Kab
0

�
uε

;a

�
:uε

;b

�

þ ε
2Kab

1

�
uε

;a

�
:uε

;b

�
dz; (24)

respectively, and correspondingly the Lagrangian becomes

L
^ε
�
buε

±
;uε; _bu

ε

±
; _u

ε
�
¼ T

ε

�
_bu
ε

±
; _u

ε
�
� E

ε
�buε

±
;uε


: (25)

The Lagrange-Hamilton's principle is now written as

3



d

Zt2

t1

L
^ ε

dt ¼ 0 (26)

Substituting the change of variables into the expression of the

displacement and stress fields the following asymptotic expansions

are deduced

8
>>><

>>>:

bsε

¼ bs0
þ ε bs1

þ ε
2 bs2

þ ε
3 bs3

þ o
�
ε
3
�

buε

±
¼ bu0

±
þ ε bu1

±
þ ε

2 bu2
±
þ ε

3 bu3
±
þ o
�
ε
3
�

s
ε ¼ s

0 þ ε s
1 þ ε

2
s
2 þ ε

3
s
3 þ o

�
ε
3
�

uε ¼ u0 þ ε u1 þ ε
2 u2 þ ε

3 u3 þ o
�
ε
3
�
;

(27)

in the rescaled adhesive and adherents, respectively. Accordingly,

the kinetic energy takes the form

T
ε

±

�
_bu
ε

±

�
¼ T

0
±

�
_bu
0

±

�
þ εT

1
±

�
_bu
0

±
; _bu

1

±

�
þ ε

2
T

2
±

�
_bu
1

±

�
þ o
�
ε
2
�
;

T
0
±

�
_bu
0

±

�
¼

1

2

Z

bU±

r
±
k _bu

0

±
k2dz;

T
1
±

�
_bu
0

±
; _bu

1

±

�
¼

Z

bU±

r
±

�
_bu
0

±
,
_bu
1

±

�
dz;

T
2
±

�
_bu
0

±
; _bu

1

±
; _bu

2

±

�
¼

1

2

Z

bU±

r
±

�
k _bu

1

±
k2 þ 2 _bu

0

±
: _bu

2

±

�
dz;

T
ε

B

�
_u
ε
�
¼ εT

1
B

�
_u
0
�
þ ε

2
T

2
B

�
_u
0
; _u

1
�
þ o
�
ε
2
�
;

T
1
B

�
_u
0
�
¼

1

2

Z

B

z0
��� _u

0
���
2
dz;

T
2
B

�
_u
0
; _u

1
�
¼

1

2

Z

B

�
2z0
�
_u
0
,
_u
1
�
þ z1 k _u

0
k2
�
dz;

(28)

and the potential energy becomes

E
ε

±

�buε

±



¼ E

0
±

�
bu0
±

�
þ εE

1
±

�
bu0
±
; bu1

±

�
þ ε

2
E

2
±

�
bu0
±
; bu1

±
; bu2

±

�
þ o
�
ε
2
�
;

E
0
±

�
bu0
±

�
¼

1

2

Z

bU±

a±

�
e
�
bu0
±

��
:e
�
bu0
±

�
dz�

Z

bU±

bf
±

:bu0
±
dz�

Z

bSg

bg±
:bu0

±
dsz;

E
1
±

�
bu0
±
; bu1

±

�
¼

Z

bU±

a±

�
e
�
bu0
±

��
:e
�
bu1
±

�
dz�

Z

bU±

bf
±

:bu1
±
dz�

Z

bSg

bg±
:bu1

±
dsz;

E
2
±

�
bu0
±
; bu1

±
; bu2

±

�
¼

1

2

Z

bU±

a±

�
e
�
bu1
±

��
:e
�
bu1
±

�
dzþ

Z

bU±

a±

�
e
�
bu0
±

��
:e
�
bu2
±

�
dz

�

Z

bU±

bf
±

:bu2
±
dz�

Z

bSg

bg±
:bu2

±
dsz;

(29)

E
ε

Bðu
εÞ ¼ ε

�1
E

�1
B

�
u0
�
þ E

0
B

�
u0;u1

�
þ εE

1
B

�
u0;u1;u2

�
þ ε

2
E

2
B

�
u0;u1;u2;u3

�
þ o
�
ε
2
�
;

E
�1
B

�
u0
�
¼

1

2

Z

B
K33
0

�
u0
;3

�
:u0

;3dz;

E
0
B

�
u0;u1

�
¼

1

2

Z

B

�
2K33

0

�
u0
;3

�
:u1

;3 þ K33
1

�
u0
;3

�
:u0

;3 þ 2Ka3
0

�
u0
;a

�
:u0

;3

�
dz;

E
1
B

�
u0;u1;u2

�
¼

1

2

Z

B

�
K33
0

�
u1
;3

�
:u1

;3 þ 2K33
0

�
u0
;3

�
:u2

;3 þ 2K33
1

�
u0
;3

�
:u1

;3 þ 2Ka3
0

�
u0
;a

�
:u1

;3 þ 2Ka3
0

�
u1
;a

�
:u0

;3 þ 2Ka3
1

�
u0
;a

�
:u0

;3

þKab
0

�
u0
;a

�
:u0

;b

�
dz (30)
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E
2
B

�
u0;u1;u2;u3

�
¼

1

2

Z

B

�
2K33

0

�
u0
;3

�
:u3

;3 þ 2K33
0

�
u1
;3

�
:u2

;3

þKab
0

�
u0
;a

�
:u0

;b þ K33
1

�
u1
;3

�
:u1

;3 þ 2K33
1

�
u0
;3

�
:u2

;3 þ 2Ka3
0

�
u1
;a

�
:u1

;3

þ Kab
0

�
u1
;a

�
:u0

;b þ 2Ka3
1

�
u0
;a

�
:u1

;3 þ 2Ka3
1

�
u1
;a

�
:u0

;3

þ Kab
0

�
u0
;a

�
:u1

;b þ 2Ka3
0

�
u0
;a

�
:u2

;3 þ 2Ka3
0

�
u2
;a

�
:u0

;3

�
dz

(31)

In conclusion, the Lagrangian is expanded as follows

L
^ ε

�
buε

�
¼ ε

�1
L

�1ðu0Þ þ L
0

 
_bu
0

±
; bu0

±
;u0;u1

!

þ εL
1 _bu

0

±
; _bu

1

±
; _u

0

±
; bu0

±
; bu1

±
;u0;u1;u2

!

þ ε
2
L

2 _bu
1

±
; _u

0

±
; _u

1

±
; bu0

±
; bu1

±
; bu2

±
;u0;u1;u2;u3

!

þ o
�
ε
2
�
:

(32)

In order to minimize the Lagrangian, we suppose that it is

possible to minimize each term in the expansion (32) indepen-

dently, i.e. the Lagrange-Hamilton's principle on �L
ε

is assumed to

be equivalent to

d

Zt2

t1

L
idt ¼ 0; i ¼ �1;0;1;2: (33)

A justification of this assumption relies on previous results ob-

tained in the static case, where it has been shown that it is sufficient

to consider only the minimization of the highest order energy term

to derive all the Euler-Lagrange equations governing the problem

(Rizzoni et al., 2014).

We recall that this last equation can be written as

d

dt

v

v _qk
L

i �
v

vqk
L

i ¼ 0; i ¼ �1;0;1;2; (34)

where qk2fu0;u1;u2;u3; bu0
±
; bu1

±
; bu2

±
g are the generalized co-

ordinates. The generalized coordinates defined on the rescaled

adhesive, u0;u1;u2;u3; are assumed to belong to V
i
; subsets of

H1ð½t1; t2�;H
1ðBÞÞ; the set of vector-valued functions continuous and

differentiable as many times as necessary on ½t1; t2� � B satisfying

the boundary and initial conditions:

V
i
¼
n
u2H1

�h
t1; t2

i
;H1

�
B;R3

��
; u ¼ bui

on S± �
h
t1; t2

i
;

u ¼ U
i
in
n
t1

o
� B; _u ¼ vi in

n
t1

o
� B
o
; i ¼ 1; 2;… (35)

with S± ¼ S� f±1=2g: In the rescaled adherents, the displacement

fields bu0
±
; bu1

±
; bu2

±
are assumed to belong to the following sets of

kinematically admissible displacements

bV
i
¼
n
bu2H1

�h
t1; t2

i
;H1

�
bUþ∪

bU�;R
3
��

: bu

¼ 0 on
h
t1; t2

i
� bS

±

u ; (36)

bu ¼ ui on ½t1; t2� � S±; bu ¼ bU
i
in ft1g �

�
bUþ∪

bU�

�
;

_bu ¼ bv i
in
n
t1

o
�
�
bUþ∪

bU�

� o
; i ¼ 1; 2;…

(37)

Note that in the definition of sets V
i
and bV

i
the initial conditions

have be expanded using notations proposed in (27).

Minimization of L �1 At order �1, the Lagrangian is

L
�1
�
u0
�
¼ �

1

2

Z

B

K33
0

�
u0
;3

�
:u0

;3dz: (38)

In view of equation (34), one obtains

Z

B

K33
0

�
u0
;3

�
:v dz ¼ 0; c v2V

0
(39)

which, if K33
0 s0; implies (Lebon and Rizzoni, 2010, 2011)

u0
;3 ¼ 0 in ½t1; t2� � B: (40)

We take ½�� to denote the jump along B in the third direction, i.e.

½f�� ¼ f

�
t; z1; z2;

1
2

�
� f

�
t; z1; z2;�

1
2

�
. Thus, we have

h
u0
i�

¼ 0 in ½t1; t2� � S: (41)

Note, that the condition of perfect adherence between the ad-

hesive and the adherents, at order 0, gives

u0ðt; x1; x2;0
±Þ ¼ bu0

±

�
t; z1; z2;±

1

2

�
¼ u0

�
t; z1; z2;±

1

2

�
; (42)

s
0
i3ðt; x1; x2;0

±Þ ¼ bs0
i3

�
t; z1; z2;±

1

2

�
¼ s

0
i3

�
t; z1; z2;±

1

2

�
; i

¼ 1;2;3;

(43)

where the Taylor series along the x3� direction of uε and s
ε have

been taken into account together with the asymptotic expansions

(9). Thus,

h
u0
i
¼ 0 in ½t1; t2� � S: (44)

Here, the symbol ½� is taken to denote the jump across S in the

limit configuration.

Minimization of L
0 In view of (40) the Lagrangian at order

0 simplifies as

L
0 ¼

1

2

Z

bU±

r
±

���bu0
±

���
2
dz�

1

2

Z

bU±

a±

�
e
�
bu0
±

��
:e
�
bu0
±

�
dz

þ

Z

bU±

bf
±

:bu0
±
dzþ

Z

bSg

bg±
:bu0

±
dsz:

(45)

Thus, equations (34) and (40) give after integration by parts
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�

Z

bU±

�
r
±

€bu
0

±
� div

�
a±

�
e
�
bu0
±

���
� bf

±
�
:v dz�

Z

bSg

�
a±

�
e
�
bu0
±

��
n

� bg±
�
:v dsz

þ

Z

Sþ

aþ

�
e
�
bu0
þ

��
e3,v dsz �

Z

S�

a�

�
e
�
bu0
�

��
e3,v dsz

¼ 0 cv2bV
0
: (46)

Using standard arguments and taking into account the consti-

tutive equations in the adherents and the initial condition, we

obtain the classical equations of motion posed only in the

adherents

8
>>>>>>>>>><

>>>>>>>>>>:

bs0
ij;j þ

bf
±

i ¼ r
±

€bu
0

i in ½t1; t2� �
bU±;

bs0
ijnj ¼ bg

±

i on ½t1; t2� �
bS
±

g ;

bu0
i ¼ 0 on ½t1; t2� �

bS
±

u ;

bs0
ij ¼ a±

ijhk
ehk

�
u0
�

in ½t1; t2� �
bU±;

bu0
i ¼ bU

0

i on ft1g �
bU±;

_bu
0

i ¼ bv0i on ft1g �
bU±:

(47)

The term
R
Sþ
bs0

e3,vdsz �
R
S�
bs0

e3,vdsz ¼ 0 implies that
R
S½bs

0
��e3,vdsz and the continuity condition (42) gives ½bs0

��e3 ¼ 0.

Thus, the problem at order 0 in the limit configuration obtained for

ε/0 can be written as

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

s
0
ij;j þ f ±

i
¼ r

±
€u0i in ½t1; t2� � U±;

s
0
ijnj ¼ bg

±

i on ½t1; t2� � S±g ;

u0i ¼ 0 on ½t1; t2� � S±u ;

s
0
ij ¼ a±

ijhk
ehk

�
u0
�

in ½t1; t2� � U±;
�
u0i

i
¼ 0 on ½t1; t2� � S;

�
s
0
i3

i
¼ 0 on ½t1; t2� � S;

u0i ¼ U0
i on ft1g �

bU±;

_u0i ¼ v
0
i on ft1g �

bU±;

(48)

where U± ¼ fðx1; x2; x3Þ2U : ±x3 >0g. As a conclusion, a dynamic

problem with perfect adhesion between the adherents is obtained

at the order 0.

Minimization of L 1 Using the relations obtained in the previ-

ous sections, the Lagrangian at order 1 becomes

L
1 ¼

Z

Sþ

bs0
e3,bu

1
dsz �

Z

S�

bs0
e3,bu

1
dsz

�

Z

B

�
1

2
K33
0

�
u1
;3

�
:u1

;3 þ Ka3
0

�
u0
;a

�
:u1

;3

�
dz; (49)

up to terms in bu0
;u0 which are considered constant because the

fields bu0
;u0 are determined at the lower order by solving (47).

Thus,

Z

S

bs0
e3,½v�

�dsz �

Z

B

�
K33
0

�
u1
;3

�
þ Ka3

0

�
u0
;a

�

�
�
:w;3dz cv2bV

1
;w2V

1
: (50)

This last equation and the condition of perfect adherence be-

tween the adhesive and the adherents at order 1 in the rescaled

configuration (see the last equality in (52) below) imply that u1
;3 is

independent of z3 or, equivalently, that the jump ½u1�� is indepen-

dent of z3 and it is given by

h
u1
i�

¼
�
K33
0

��1�
bs0

e3 � Ka3
0 u0

;a

�
: (51)

Note that the inertial forces have no influence on this last result.

The conditions of perfect adherence between the adhesive and

the adherents, written at order 1 for the limit and the rescaled

configurations, give

u1ðt; x1; x2;0
±Þ±

1

2
u0
;3ðt; x1; x2;0Þ ¼ bu1

±

�
t; z1; z2;±

1

2

�

¼ u1
�
t; z1; z2;±

1

2

�
(52)

s
1
i3ðt; x1; x2;0

±Þ±
1

2
s
0
i3;3ðt; x1; x2;0Þ ¼ bs1

i3

�
t; z1; z2;±

1

2

�

¼ s
1
i3

�
t; z1; z2;±

1

2

�
(53)

where i ¼ 1;2;3 and the Taylor series along the x3� direction of uε

and s
ε have been taken into account together with the asymptotic

expansions (9). Thus,

h
u1
i
¼
�
K33
0

��1�
s
0e3 � Ka3

0 u0
;a

�
� <u0

;3 > (54)

where < f > ¼ 1
2 ðfð0

þÞ þ fð0�Þ.

Minimization of L 2 Using the relations obtained in the previ-

ous sections, the Lagrangian at order 2 can be written as

L
2 ¼

Z

bU±

r
±

1

2

�����

�����
_bu
1

±

�����

�����

2!
dzþ

Z

B

�
z0
�
_u
0
,
_u
1
��

dz

�
1

2

Z

bU±

a±

�
e
�
bu1
±

��
:e
�
bu1
±

�
dz�

1

2

Z

B

�
2K33

0

�
u1
;3

�
:u2

;3

þ2Ka3
0

�
u1
;a

�
:u1

;3 þ Kab
0

�
u1
;a

�
:u0

;b þ Kab
0

�
u0
;a

�
:u1

;b

þ 2Ka3
0

�
u0
;a

�
:u2

;3

�
dz; (55)

up to (constant) terms in bu0
;u0: Note also that, in view of (51), the

term u1
;3 is completely given in terms of u0 and thus it can also be

considered constant. Equations (34) and (3) applied to bu1
±
and u1

give after integration by parts

Z

bU±

0

B@r
±
bu€
1

±
� div

�
a±

�
e
�
bu1
±

���
1

CA:vdz�

Z

Sþ

bs1
e3,vdsz

þ

Z

S�

bs1
e3,vdsz þ

Z

S±g

bs1
n,vdsz þ

Z

B
z0u€

0
,wdz

þ

Z

B

�
K3a
0

�
u1
;3

�
þ Kba

0

�
u0
;b

��
:w;adz ¼ 0;cv2bV

1
;cw2V

1
:

(56)

From latter equation, using standard arguments, one obtains
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8
>>>>>>>>>><

>>>>>>>>>>:

bs1
ij;j ¼ r

±

€bu
1

i in ½t1; t2� �
bU±;

bs1
ijnj ¼ 0 on ½t1; t2� �

bS
±

g ;

bu1
i ¼ 0 on ½t1; t2� �

bS
±

u ;

bs1
ij ¼ a±

ijhk
ehk

�
bu1
�

in ½t1; t2� �
bU±;

bu1
i ¼ bU

1

i on ft1g �
bU±;

_bu
1

i ¼ bv1i on ft1g �
bU±:

(57)

Using integration by parts (cf. the termsw;a) and the continuity

of the displacements at order 1 at the surfaces S±; one obtains

h
bs1
i�
e3 ¼ z0€u

0
� K3a

0

�
u1
;3

�
� Kba

0

�
u0
;b

�
(58)

which, in view of (51), becomes

h
bs1
i�
e3 ¼ z0€u

0
� K3a

0

�
K33
0

��1
bs0
;ae3 �

�
K3a
0

�
K33
0

��1
Kb3
0

þ Kba
0

�
u0
;ab: (59)

Using the continuity conditions, the above conditions can be

rephrased on the limit domain obtained as ε/0 :

Note that forces concentrated on the edge of S emerge from the

latter calculation

F ¼ Kba
0

�
u0
;b

�
na þ K3a

0

h
u1
i
na (61)

In conclusion, a contact law of imperfect interface is obtained in

(60), prescribing the jumps of the displacement and stress fields at

the order 1 in terms of the corresponding fields solution of the

elastodynamics problems at order 0. Note that the inertial terms at

order 0 enter the imperfect interface law.

4. Condensed interface law

The interface laws calculated at the order zero and at the order

one can be condensed in a single formulation accounting for both

contributions. Indeed, combining the asymptotic expansions (9),

the matching conditions (42), (52), the fifth and the sixth of the

equation (48) and the fifth and the sixth of the equation (60), the

jumps of displacement and stress vector fields across the interface

in the limit configuration can be rewritten as:

½uε�zε

�
K33

��1�
hsεie3 � Ka3

<uε

;a >

�
� ε<uε

;3 > ; (62)

½sεe3�zεzεh€u
ε

i � εK3a
�
K33

��1
<s

ε

;a > e3 (63)

� ε

�
K3a

�
K33

��1
Kb3 þ Kba

�
<uε

;ab > � ε<s
ε

;3 > :

Note the use of the average operator < ,> introduced to take

into account the discontinuity of the stress and displacement fields

s
εi3 and uε established at order one.

It is important to note that the imperfect interface model

characterized by the relations (62) and (63) includes as special

cases four widely used interface models: the perfect interface, the

mass interface, the spring interface and the spring-mass interface.

To see this, we first consider the case in which the interface

stiffness is much lower than that of the adherent stiffness. This case

can be formulated as follows:

Kjl ¼ ε
~K
jl
; (64)

where ~, will denote quantities independent of ε: If zε ¼ ~z; then

accounting for (64) in (62) and (63) it can be obtained that, to

within an error of order OðεÞ;

hsεie3z
~K
33
½uε�; (65)

½sεe3�z0: (66)

These two equations represent the classical spring interface

model. If zε ¼ 1=ε ~z; then, accounting for (64) in (62) and (63), it can

be deduced that, to within an error of order OðεÞ;

hsεie3z
~K
33
½uε�; (67)

½sεe3�z
~z< €u

ε

> ; (68)

which represent the spring-mass interface model. In the case of a

stiff interface, accounting for

Kjl ¼ ~K
jl

(69)

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

s
1
ij;j ¼ r

±
€u1i in ½t1; t2� � U±;

s
1
ijnj ¼ 0 on

h
t1; t2

i
� S±g ;

u1i ¼ 0 on
�
t1; t2

�
� S±u ;

s
1
ij ¼ a±

ijhk
ehk

�
u1
�

in ½t1; t2� � U±;�
u1i

�
¼

��
K33
0

��1�
s
0e3 � Ka3

0 u0
;a

��

i

�
D
u0i;3

E
on ½t1; t2� � S;

�
s
1
i3

�
¼ z0€u0i �

�
K3a
0

�
K33
0

��1
s
0
;ae3 þ

�
K3a
0

�
K33
0

��1
Kb3
0 þ Kba

0

�
u0
;ab

�

i

�<s
0
i3;3 > on ½t1; t2� � S;

u1i ¼ U1
i on ft1g �

bU±;

_u1i ¼ vi on ft1g �
bU±:

(60)
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and zε ¼ ~z in (62) and (63), it can be proved that, to within an error

of order OðεÞ;

½uε�z0; (70)

½sεe3�z0; (71)

relations representing the behavior of a perfect interface. Finally,

accounting for (69) and zε ¼ 1=ε ~z in (62) and (63), it can be shown

that, to within an error of order OðεÞ;

½uε�z0; (72)

½sεe3�z
~z< €u

ε

> ; (73)

which is a formulation of the mass interface model.

As a final remark, it is important that the presence of first order

derivates of the displacement and stress vector fields make re-

lations (62) and (63) nonlocal in character.

The implicit and nonlocal formulation given by relations (62)

and (63) thus represents an enrichment of the classical interface

models, obtained by taking into account high order effects. The

formulation will be adopted in the application to phononic crystals

proposed in the next Section.

5. Band gaps in 1-D phononic crystals with imperfect

interfaces

Consider an one-dimensional phononic crystal, a periodic array

of homogeneous isotropic adherent layers U± of two types as in

Fig. 2. The layers are separated by identical material interfaces

whose behavior is modeled the contact conditions (62) and (63).

The x3 axis is perpendicular to the layers and the ðx1; x2Þ coordinate

plane is parallel to the layers. The period of the array is l ¼ lþ þ l�;

where l± are the thicknesses of the two layers. The mass densities

and the elastic constants of the two layers, taken to be isotropic, are

denoted by r
±
and l±;m±; respectively.

We consider the propagation along the x3� axis of time-

harmonic (shear, SH, and longitudinal, P) elastic waves through

the periodic array. The displacement in the material is assumed to

have only a 1� component for the shear wave and a 3� component

for the longitudinal wave. The two components inside the layers

are denoted by u± and satisfy the motion equations

u
00

±
þ k2r

±
u± ¼ 0; x32U

n
±
; n ¼ 0;±1;±2;…; (74)

where

k± ¼ u=ct ; ct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
±

�
r
±

q
(75)

for SH waves and

k± ¼ u=cl; cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
l± þ 2m

±


�
r
±

q
(76)

for P waves. The symbol u is the circular frequency and the prime in

(74) denotes differentiationwith respect to the x3� coordinate. The

solutions of equation (74) are

u±ðx3Þ ¼ A±exp
ik±x3 þ B±exp

�ik±x3 ; (77)

with A±;B± constant coefficients. The stress inside the layers (the

component s13 for SH waves and the component s33 for P waves)

are

sðx3; tÞ ¼ r
±
c2
±
u0± ¼ ir

±
c2
±
k±
�
A±exp

ik±x3 � B±exp
�ik±x3

�
: (78)

The interfaces separating the different layers are described by

the laws (62), (63), inwhich thematrix K is chosen to correspond to

an isotropic behavior. Thus, denoted with l and m the elastic con-

stants entering thematrixK; denotedwith z themass density of the

interface and with ε its (small) thickness, the contact conditions

(62), (63) specialized to the case of propagation of SH and P waves

reduce to

½u� ¼ ε

�
r�c

2
�

.
g� 1

�
u0�=2þ ε

�
rþc

2
þ

.
g� 1

�
u0þ=2; (79)

½s� ¼ �ε

�
zu2ðu� þ uþÞ þ r�c

2
�u

00
� þ rþc

2
þu

00
þ

�.
2: (80)

where g ¼ m for the SH wave (for which u ¼ u1; s ¼ s13) and

g ¼ lþ 2m for the P wave (for which u ¼ u3; s ¼ s33). In view of (77,

78), one has that u0± ¼ s±=ðr±c
2
±
Þ and u

00

± ¼ �k2
±
u0± ¼ �r

±
u2u0±;

thus the contact conditions (79, 80) can be rewritten as

½u� ¼ a�s� þ aþsþ; (81)

½s� ¼ b�u� þ bþuþ; (82)

with

a± ¼
�
1=g� 1

.�
r
±
c2
±

��
ε=2; (83)

b± ¼ �
�
z� r

±



u
2
ε=2: (84)

Solving the system of equations (81) and (82) with respect to uþ
and sþ gives

�
uþ
sþ

�
¼ Tε

�
u�
s�

�
; (85)

with

Tε :¼

�
1 �aþ

�bþ 1

��1�
1 a�
b� 1

�
(86)

The transfer matrix of the imperfect interface obeying the

transmission conditions (79, 80).

Within layer U
n
±
; it follows from (77) and (78) that the

displacement u
ðnÞ
± and the stress s

ðnÞ
± on the left and the right sur-

face of the layer are related by
Fig. 2. Sketch of a 1D phononic crystal as a layered periodic structure obtained by

alternating different layers separated by higher order imperfect interfaces.
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0

@u
ðnÞ
±;R

s
ðnÞ
±;R

1

A ¼ T±

0

@u
ðnÞ
±;L

s
ðnÞ
±;L

1

A; (87)

where the subscript L and R denote the left and right surface of each

layer and

T± :¼

�
cosðk±l±Þ sinðk±l±Þ

��
ur

±
c±



�ur
±
c±sinðk±l±Þ cosðk±l±Þ

�
: (88)

According to the Bloch-Floquet theory in a periodic structure,

the displacement and the stress on the right surface of layer Un
±
are

related to the displacement and the stress on the right surface of

layer Un�1
±

0

@u
ðnÞ
±;R

s
ðnÞ
±;R

1

A ¼ expihl

0

@u
ðn�1Þ
±;L

s
ðn�1Þ
±;L

1

A; (89)

with h the Bloch parameter. Inserting equations (86)e(88) into

equation (89) leads to the dispersion equation

det
�
TþT

εT�T
ε � expihlI

�
¼ 0: (90)

We now numerically solve the dispersion equation and obtain

the band gaps in the first Brillouin zone for a composite made of

alternating layers of Pb and epoxy. We adopt the same values of the

geometrical and material parameters as in (Zheng and Wei, 2009):

l� ¼ 42:3 GPa; m� ¼ 14:9 GPa r� ¼ 11600 kg m�3; l�

¼ 10 mm;

(91)

lþ ¼ 4:43 GPa; mþ ¼ 1:59 GPa rþ ¼ 1180 kg m�3; lþ

¼ 10 mm:

(92)

The material properties of the thin layer are assumed to be as

follows:

< l> :¼ 1=2ðl� þ lþÞ; <m> :¼ 1=2ðm� þ mþÞ; < r> :

¼ 1=2ðr� þ rþÞ:

(93)

To check the soundness of the interface law obtained in the

present paper, Fig. 3 proposes a comparison between the band gaps

of the phononic crystal obtained without using the interface law,

i.e. by considering three different layers of finite thickness, and the

bands gaps calculated for two layers separated by an interface

obeying (62)e(63). For the comparison, ε has been chosen equal to

1:0� 10�3l: Fig. 3 shows that the interface law yields accurate re-

sults for the chosen geometrical and material parameters.

We now discuss the effect of the parameters z; l and m of the

imperfect interface model on the band gaps. To do so, three cases

are considered with corresponding values of the geometrical and

material parameters listed in Table 1.

Case I considers the effect of an imperfect interface of increasing

thickness, subcase ε ¼ 0 corresponding to perfect contact of the

layers. Case II simulates an interface of increasing stiffness, starting

from a soft interface behavior. Case III takes into account the effect

of a density increase. Wave bands and band gaps of the phononic

crystal with imperfect interface are shown in Fig. 4 for the case I, in

Fig. 5 for the case II and in Fig. 6 for the case III. In the Figures, the

solid lines and the dashed lines represent the dispersion curves of

SH and P waves, respectively.

Due to the vanishing of the thickness ε; plot (a) of Fig. 4 repre-

sents the band structure of a phononic crystal with perfect contact

between the layers. In this case, three band gaps for SH waves

propagation and two band gaps for P waves propagation are

observed in the considered frequency range. As the thickness of the

interfacial layer increases, two new band gaps appear between the

original first and second band gaps of SHwaves. The new band gaps

Fig. 3. Comparison between the band gaps for a one-dimensional phononic crystal

made of three layers and the band gaps calculated for two layers separated by an

interface. In the two situations, ε is 1:0� 10�3l: The large dashed lines and the tiny

dotted lines represent the dispersion curves of SH and P waves, respectively, for the

crystal made of three layers. The solid lines and the small dashed lines represent the

dispersion curves of SH and P waves, respectively, for the crystal made of two layers

separated by the interface.

Table 1

Chosen values of elastic coefficients, density and thickness of the imperfect interface

model.

Case ε=l l=< l>m=<m> z=< r>

I 0 1.0 1.0

1:0� 10�3

5:0� 10�3

1:0� 10�2

II 1:0� 10�3 1:0� 10�2 1.0

5:0� 10�2

1:0� 10�1

5:0� 10�1

III 1:0� 10�3 1.0 1:0� 10�2

1:0� 10�1

1.0

1:0� 10þ1
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become more and more wide as the thickness increases and the

band structure gradually evolves from a propagating mode to a

localized one. The occurrence of a new band gap is also observed for

P waves. As the interface stiffness decreases, the system is more

dispersive, in agreement with the numerical results obtained in

(Brito-Santana et al., 2015). A similar behavior is noted in Fig. 5

when the interface stiffness decreases moving from a hard inter-

face behavior (d) to a softer one (a). The evolution of the band

structure due to an interface of increasing density is shown in Fig. 6

and, again, new band gaps appear and the flat lines indicate

localized modes.

The results presented in Figs. 4e6 are in agreement with the

findings of (Zheng and Wei, 2009), where the classical interface

models, the perfect interface, the mass interface, the spring inter-

face and the spring-mass interface, are studied separately and then

compared.

6. Discussion and conclusion

In this paper, a model of imperfect interface has been derived

from the asymptotic study of a three phase composite with

perfectly bonding conditions between two adherents and an

Fig. 4. Case I. Band gaps for a one-dimensional phononic crystal with imperfect interfaces of increasing interface thickness: a) ε=l ¼ 0; b) ε=l ¼ 1:0� 10�3; c) ε=l ¼ 5:0� 10�3; d)

ε=l ¼ 1:0� 10�2: The solid lines and the dashed lines represent the dispersion curves of SH and P waves, respectively.
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adhesive. It is shown that, if the stiffness of the glue is not too small,

at the first order in the expansion (the order 0) a model of perfect

interface is obtained. The expansion at the next levels yields a

model of imperfect interface (at the order 1) taking into account the

inertial terms from the lower order and the partial derivatives of

the displacement and the stress vector fields. The laws obtained in

the present paper generalize to the dynamic case the imperfect

contact laws given in (Licht et al., 2013; Rizzoni et al., 2014) and

represent an unification and extension of the four classical interface

models, the perfect interface, the mass interface, the spring inter-

face and the spring-mass interface.

In (B€ovik, 1994), B€ovik addresses the modeling of thin layers in

both elastic and acoustic scattering problems. Here, we are inter-

ested on the first type of problems. In his derivation, the thin layer

is replaced by single surface of discontinuity modeled by a set of

boundary conditions of the order ε B€ovik, 1994, eqns. (35) and (36).

B€ovik's derivation is essentially based on a continuation of the field

variables from the adherents into the thin layer. In other words, the

thin layer is eliminated and it is replaced by an interface positioned

at the location of Swith the two adherents being extended up to it.

As a consequence, the material properties of the adherents appear

in the interface laws together with those of the thin layers and the

Fig. 5. Case II. Band gaps for a one-dimensional phononic crystal with imperfect interfaces of increasing interface stiffness: a) l=< l> ;m=<m> ¼ 1:0� 10�2; b) l=< l> ;m=<m> ¼

5:0� 10�2; c) l=< l> ;m=<m> ¼ 1:0� 10�1; d) l=< l> ;m=<m> ¼ 5:0� 10�1 : The solid lines and the dashed lines represent the dispersion curves of SH and P waves, respectively.
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interface model produces the perfect contact conditions when the

material is the same in the adherents and in the thin layer, cf. B€ovik,

1994, eqns. (35) and (36).

The derivation of our interface law (62)e(63) is based on a

different approach, the matched asymptotic expansions. This

technique makes use of asymptotic expansions, in particular within

the thin layer. The resulting interface law is implicit, nonlocal and

explicitly dependent on the elastic properties and mass density of

the thin layer (cf. (62)e(63)). Moreover, in view of its implicitly

character, the interface law (62)e(63) also depends on the elastic

properties and mass density of the adherents. This can be clearly

seen in the one-dimensional example considered in Section 5, cf.

(81)e(84). Note also that if the same material properties for the

thin layer and the adherents are inserted into (83)e(84), then the

coefficients a± and b± vanish and the perfect interface model is

reobtained.

In the authors’ opinion, the vanishing of the right-hand sides for

the same material properties for the thin layer and the adherents

can not be considered a general property of an interface law

modeling a thin layer. Consider for example the one-dimensional

case of a bar made of two different materials, a thin linear elastic

adhesive layer of thickness ε occupying the interval ð�ε=2;þε=2Þ

Fig. 6. Case III. Band gaps for a one-dimensional phononic crystal with imperfect interfaces of increasing interface density: a) z=< r> ¼ 1:0� 10�2; b) z=< r> ¼ 1:0� 10�1; c)

z=< r> ¼ 1:0; d) z=< r> ¼ 1:0� 10þ1: The solid lines and the dashed lines represent the dispersion curves of SH and P waves, respectively.
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and two linear elastic adherents occupying the two intervals

ð�l=2� ε=2;�ε=2Þ and ðþε=2; l=2þ ε=2Þ: The composite bar is

loaded by two opposite forces F at its ends. From the analytical

solution of the equilibrium problem, it can be easily seen that the

jump ½u� :¼ uðþε=2Þ � uð�ε=2Þ is equal to Fε=E; with E the elastic

modulus of the thin layer. This result is clearly independent of the

elastic moduli of the two adherent bars. Actually, in the literature, it

has been proved that the jump of the displacement is of order ε

even if adhesive and adherents are made of the same material. This

has been rigorously shown by Licht and Michaille via a Gamma-

convergence analysis (Licht and Michaille, 1997). Numerical evi-

dence of this fact has been given for example in (Dumont et al.,

1999, 2014; Lebon et al., 1997).

Note also that B€ovik's interface law B€ovik, (1994), eqns. (35) and

(36) and the interface law (62)e(63) give similar results when the

elastic moduli of the thin layer are much lower than those of the

adherents, because they both reduce to the spring-type model. This

can be easily seen by assuming the elastic moduli of the thin layer

to linearly depend on the thickness ε and then by neglecting the

terms of higher order in ε in the two interface models. We believe

that an original and interesting feature of the interface law

(62)e(63) is the possibility of incorporating several classical inter-

face laws, as already described in Section 4.

The effects of the proposed transmission conditions on the band

structure of BlocheFloquet waves propagating in an one dimen-

sional phononic crystal have been discussed on the basis of nu-

merical results. In agreement with (Zheng and Wei, 2009), our

results can be interpreted as the equivalence of the binary phononic

crystals with imperfect interface and a ternary system in which the

third layer hasmass, elasticity and a small thickness, as indicated by

the results presented in Fig. 3. However, our treatment of a binary

phononic crystals with imperfect interface allows to simulta-

neously consider the effects of the density, stiffness and geomet-

rical parameters on the band structure and it is thus expected to

provide theoretical bases for band gap design of ternary or even

quaternary or higher (by taking into account different interfacial

properties) layered periodic structures.
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