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Abstract

Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release
data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (July
2014–July 2017). This is the third data release for SDSS-IV, and the fifteenth from SDSS (Data
Release Fifteen; DR15). New data come from MaNGA – we release 4824 datacubes, as well as the
first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis
products (e.g. stellar and gas kinematics, emission line, and other maps) from the MaNGA Data
Analysis Pipeline (DAP), and a new data visualisation and access tool we call “Marvin”. The next
data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release
no new data here, but we document updates and corrections to their data processing pipelines. The
release is cumulative; it also includes the most recent reductions and calibrations of all data taken by
SDSS since first light. In this paper we describe the location and format of the data and tools and cite
technical references describing how it was obtained and processed. The SDSS website (www.sdss.org)
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2 SDSS Collaboration

has also been updated, providing links to data downloads, tutorials and examples of data use. While
SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–
2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for
many years beyond the collection of data.
Subject headings: Atlases — Catalogs — Surveys

1. INTRODUCTION
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Paris 6, Université Denis Diderot Paris, 4 place Jussieu, 75252
Paris CEDEX, France

52 Department of Physics and Astronomy, Bates College, 44
Campus Avenue, Lewiston, ME 04240, USA

53 McDonald Observatory, The University of Texas at Austin,
1 University Station, Austin, TX 78712, USA

54 European Southern Observatory, Karl-Schwarzschild-Str.
2, 85748 Garching, Germany

55 Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre
de Recherche Astrophysique de Lyon UMR5574, F-69230
Saint-Genis-Laval France

56 Instituto de Astronomı́a y Ciencias Planetarias, Universi-
dad de Atacama, Copayapu 485, Copiapó, Chile
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EDR, in June 2001 (Stoughton et al. 2002) and have
been heavily used by astronomers and the broader pub-
lic since that time (Raddick et al. 2014a,b). Here we
present the fifteenth public data release from SDSS, or
DR15, made publicly available on 10th December 2018.

SDSS has been marked by four phases so far, with
plans for a fifth. Details are available in the papers de-
scribing SDSS-I (EDR, DR1–DR5; York et al. 2000),
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SDSS-II (DR6–DR7; Frieman et al. 2008; Yanny et al.
2009), SDSS-III (DR8–DR12; Eisenstein et al. 2011), and
SDSS-IV (DR13–DR15; Blanton et al. 2017). Kollmeier
et al. (2017) describe the plans for SDSS-V, to start in
mid-2020.

The data releases contain information about SDSS op-
tical broad band imaging, optical spectroscopy, and in-
frared spectroscopy. Currently, SDSS-IV conducts opti-
cal and infrared spectroscopy (using two dedicated spec-
trographs; Smee et al. 2013; Wilson et al. 2018) at the
2.5-meter Sloan Foundation Telescope at Apache Point
Observatory (APO; Gunn et al. 2006) and infrared spec-
troscopy at the du Pont Telescope at Las Campanas Ob-
servatory (LCO; Bowen & Vaughan 1973).

SDSS-IV began observations in July 2014, and consists
of three programs:

1. The extended Baryon Oscillation Spectroscopic
Survey (eBOSS; Dawson et al. 2016) is surveying
galaxies and quasars at redshifts z ∼ 0.6–3.5 for
large scale structure. It includes two major sub-
programs:

• SPectroscopic IDentification of ERosita
Sources (SPIDERS; Dwelly et al. 2017)
investigates the nature of X-ray emitting
sources, including active galactic nuclei and
galaxy clusters.

• Time Domain Spectroscopic Survey (TDSS;
Morganson et al. 2015) is exploring the phys-
ical nature of time-variable sources through
spectroscopy.

2. Mapping Nearby Galaxies at APO (MaNGA;
Bundy et al. 2015) uses integral field spectroscopy
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(IFS) to study a representative sample of ∼10,000
nearby galaxies.

3. APOGEE-2 (the second phase of the APO Galac-
tic Evolution Experiment or APOGEE; Majewski
et al. 2017) performs a large-scale and systematic
investigation of the entire Milky Way Galaxy with
near-infrared, high-resolution, and multiplexed in-
strumentation.

SDSS-IV has had two previous data releases (DR13
and DR14; Albareti et al. 2017; Abolfathi et al. 2018
respectively), containing the first two years of eBOSS,
MaNGA, and APOGEE-2 data and new calibrations of
the SDSS imaging data set.

DR15 contains new reductions and new data from
MaNGA. This release includes the first three years of
MaNGA data plus a new suite of derived data products
based on the MaNGA data cubes, a new data access tool
for MaNGA known as Marvin, and data from a large an-
cillary programme aimed at improving the stellar library
available for MaNGA (MaStar; the MaNGA Stellar Li-
brary).

The full scope of the data release is described in Sec-
tion 2, and information on data distribution is given in
Section 3. Each of the sub-surveys is described in its
own section, with MaNGA in Section 4 and APOGEE-2
and eBOSS (including SPIDERS and TDSS) in Section
5.1 and 5.2, respectively. We discuss future plans for
SDSS-IV and beyond in Section 6. Readers wanting a
glossary of terms and acronyms used in SDSS can find
one at https://www.sdss.org/dr15/help/glossary/.

2. SCOPE OF DATA RELEASE 15

As with all previous SDSS public data releases, DR15 is
cumulative and includes all data products that have been
publicly released in earlier SDSS data releases. All previ-
ous releases are archived online to facilitate science repli-
cation; however we recommend new users always make
use of the latest DR (even when using older data) to en-
sure they are using the most recent reduction routines.
The scope of DR15 is shown in Table 1, and its compo-
nents can be summarized as follows.

1. MaNGA integral-field spectroscopic data from 285
plates, including 119 plates observed between 26
September 2016 (MJD 57658) and 29 June 2017
(MJD 57934) that are newly released data in DR15.
This data set is identical to the internally released
MaNGA Product Launch-7 (MPL-7), and contains
the same set of galaxies but processed with a differ-
ent version of the reduction pipeline as the earlier
internally released MPL-6. DR15 contains 4824
reconstructed 3D data cubes, of which 4688 are
target galaxies (the remainder are ancillary targets
which include galaxies, parts of galaxies, and some
deep sky fields). This dataset includes 67 repeat
observations, so that the total number of unique
galaxies in this data release is 4621. Most of these
galaxies are part of the MaNGA main sample, but
ancillary target galaxies are also included in this
count (see Table 4 for a summary of these).

2. In addition to the MaNGA data cubes, DR15 also
releases for the first time data products generated

by the Data Analysis Pipeline (see section 4.1.2).
These products are available for all data cubes in
DR15, with the exception of the cubes generated
by some ancillary programs (i.e., Coma, IC342 and
M31) if they do not have redshifts (e.g. sky fields).

3. Alongside the new MaNGA data, and data prod-
ucts, DR15 also marks the launch of Marvin: a new
tool to visualize and analyze MaNGA datacubes
and maps (see section 4.2).

4. DR15 is the first public data release for the
MaNGA Stellar Library MaStar (see section 4.3),
containing 3326 optical stellar spectra.

5. In addition to updates to two previously released
Value Added Catalogs (VACs), DR15 also includes
six new VACs contributed by the MaNGA team
(see Table 2). This brings the total number of
VACs in the SDSS public data releases to 40.

6. Finally, DR15 includes a re-release of all previ-
ous versions of SDSS data releases. This includes
the most recent data releases for APOGEE-2 and
eBOSS (described in Abolfathi et al. 2018, DR14),
and the most recent release of the SDSS imag-
ing data (described in Albareti et al. 2017, DR13).
Data of previous SDSS surveys are also included:
the Legacy Spectra were finalized in DR8 (Aihara
et al. 2011), and the SEGUE-1 and SEGUE-2 spec-
tra in DR9 (Ahn et al. 2012). The MARVELS
spectra were last re-reduced for DR12 (Alam et al.
2015).

3. DATA DISTRIBUTION

The DR15 data can be accessed through a variety of
mechanisms, depending on the type of data file and the
needs of the user. All data access methods are described
on the SDSS Web site (https://www.sdss.org/dr15/
data_access), and we also provide tutorials and exam-
ples for accessing and working with SDSS data products
at (https://www.sdss.org/dr15/tutorials. We de-
scribe our four main data access mechanisms below.

All raw and processed imaging and spectroscopic data
can be accessed through the Science Archive Server
(SAS, (https://data.sdss.org/sas/dr15). This site
includes intermediate data products and VACs. The
SAS is a file-based system, from which data can be
directly downloaded by browsing, or in bulk mode us-
ing rsync, wget or Globus Online. Bulk download-
ing methods are outlined at https://www.sdss.org/
dr15/data_access/bulk. All data files available on
the SAS have a data model (https://data.sdss.org/
datamodel), which provides a detailed overview of the
content of each data file.

Processed optical and infrared spectra, as well as pro-
cessed imaging, can also be accessed on the SAS through
the Science Archive Webapp (SAW), an interactive web
application (webapp; http://dr15.sdss.org links to
the DR15 version). In DR15, the SAW is serving MaS-
tar spectra for the first time. Through this webapp, users
can display individual spectra and overlay model fits in-
cluded on the SAS. There is a search option available to
select spectra based on e.g., plate number, coordinates,

https://www.sdss.org/dr15/help/glossary/
https://www.sdss.org/dr15/data_access
https://www.sdss.org/dr15/data_access
https://www.sdss.org/dr15/tutorials
https://data.sdss.org/sas/dr15
https://www.sdss.org/dr15/data_access/bulk
https://www.sdss.org/dr15/data_access/bulk
https://data.sdss.org/datamodel
https://data.sdss.org/datamodel
http://dr15.sdss.org
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TABLE 1
Reduced SDSS-IV spectroscopic data in DR15

Target Category # DR13 # DR13+14 # DR13+14+15

eBOSS
LRG samples 32968 138777 138777

ELG Pilot Survey 14459 35094 35094
Main QSO Sample 33928 188277 188277

Variability Selected QSOs 22756 87270 87270
Other QSO samples 24840 43502 43502

TDSS Targets 17927 57675 57675
SPIDERS Targets 3133 16394 16394

Standard Stars/White Dwarfs 53584 63880 63880

APOGEE-2
All Stars 164562 263444 263444

NMSU 1-meter stars 894 1018 1018
Telluric stars 17293 27127 27127

APOGEE-N Commissioning stars 11917 12194 12194
MaNGA Cubes 1390 2812 4824
MaNGA main galaxy sample:

PRIMARY v1 2 600 1278 2126
SECONDARY v1 2 473 947 1665

COLOR-ENHANCED v1 2 216 447 710
MaStar (MaNGA Stellar Library) 0 0 3326
Other MaNGA ancillary targets1 31 121 324

1 Many MaNGA ancillary targets were also observed as part of the main galaxy sample, and are
counted twice in this table; some ancillary targets are not galaxies.

TABLE 2
New or Updated Value Added Catalogs

Description Section Reference(s)

Mini data release, 31 July 2018
eBOSS DR14 QSO LSS catalogs §5.2 Ata et al. (2018)
eBOSS DR14 LRG LSS catalogs §5.2 Bautista et al. (2018)
Optical Emission Line Properties and Black Hole Mass §5.3 Coffey et al. (2018)

Estimates for SPIDERS DR14 Quasars
Open Cluster Chemical Abundance and Mapping Catalog §5.1.2 Donor et al. (2018)
DR15, 10 December 2018
GEMA-VAC: Galaxy Environment for MaNGA VAC §4.5.4 M. Argudo-Fernandez et al. (in prep).
MaNGA Spectroscopic Redshifts §4.5.5 Talbot et al. (2018)
MaNGA Pipe3D: Spatially resolved and integrated §4.5.1 Sánchez et al. (2016, 2018)

properties of DR15 MaNGA galaxiesa

MaNGA Firefly Stellar Populations a §4.5.1 Goddard et al. (2017a); Wilkinson et al. (2017); Parikh et al. (2018)
MaNGA PyMorph DR15 photometric catalog §4.5.2 Fischer et al. (2018)
MaNGA Morphology Deep Learning DR15 catalog §4.5.2 Domı́nguez Sánchez et al. (2018)
HI-MaNGA Data Release 1 §4.5.3 Masters et al. (2018)
MaNGA Morphologies from Galaxy Zoo §4.5.2 Willett et al. (2013); Hart et al. (2016)

aupdate to DR14 VAC

redshift or ancillary observing program. Searches can be
saved for future references as permalinks. Spectra can
be directly downloaded from the SAS through the we-
bapp, and links are included to the SkyServer Explore
page for each object. The user can select SDSS data re-
leases back to DR8 (the SAW was originally developed
during SDSS-III so serves data from that phase of SDSS
onwards only), but is encouraged to always use the most
recent data release at https://data.sdss.org/home.

MaNGA datacubes and maps are not available in the
SAW, but can be visualized and analyzed through Mar-
vin. Marvin, described in detail in § 4.2, provides links
to the SAS for downloading data files, as well as the Sky-
Server Explore page.

The Catalog Archive Server (CAS; Thakar 2008;
Thakar et al. 2008) stores the catalogs of DR15: these in-
clude photometric, spectroscopic and derived properties.
Some of the VACs also have catalogs that are stored on

the CAS. The CAS can be accessed through the Sky-
Server webapp (https://skyserver.sdss.org), which
provides Explore tools as well as the option of browser-
based queries in synchronous mode. CASJobs (https:
//skyserver.sdss.org/casjobs) is suitable for more
extensive queries, which are executed in asynchronous
or batch mode, and offers users personal storage space
for query results (Li & Thakar 2008). The CAS is in-
tegrated with SciServer (https://www.sciserver.org),
which offers several data-driven science services, includ-
ing SciServer Compute: a system that allows users to
run Jupyter notebooks in Docker containers, directly ac-
cessing the SDSS catalogs.

All the data reduction software that is used by the
various SDSS-IV teams to reduce and process their data
(including links to the Marvin Repository on Github)
is publicly available at https://www.sdss.org/dr15/
software/products.

https://data.sdss.org/home
https://skyserver.sdss.org
https://skyserver.sdss.org/casjobs
https://skyserver.sdss.org/casjobs
https://www.sciserver.org
https://www.sdss.org/dr15/software/products
https://www.sdss.org/dr15/software/products
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4. MANGA

The MaNGA survey uses a custom built instrument
(Drory et al. 2015) which feeds fibers from a suite of
hexagonal bundles into the BOSS spectrograph (Smee
et al. 2013). Over its planned five years of operations
MaNGA aims to get data for ∼10,000 nearby galaxies
(Law et al. 2015; Yan et al. 2016b,a; and see Wake et al.
(2017) for details on the sample selection).

DR15 consists of MaNGA observations taken dur-
ing the first three years of the survey (up to Summer
2017) and nearly doubles the sample size of fully-reduced
galaxy data products previously released in DR14 (Abol-
fathi et al. 2018). These data products include raw data,
intermediate reductions such as flux-calibrated spectra
from individual exposures, and final data cubes and
row-stacked spectra (RSS) produced using the MaNGA
Data Reduction Pipeline (DRP; Law et al. 2016). DR15
includes DRP data products for 4,824 MaNGA cubes
distributed amongst 285 plates, corresponding to 4,621
unique galaxies plus 67 repeat observations and 118 spe-
cial targets from the ancillary programs (see §4.4). Un-
like in previous data releases, data cubes and summary
RSS files are no longer produced for the twelve 7-fiber
mini-bundles on each plate that target bright stars and
are used to derive the spectrophotometric calibration
vector for each exposure (see Yan et al. 2016b); these
observations will from here on instead be included in the
MaStar stellar spectral library (see §4.3).

In addition, for the first time DR15 includes the re-
lease of derived spectroscopic products (e.g., stellar kine-
matics, emission-line diagnostic maps, etc.) from the
MaNGA Data Analysis Pipeline (K. Westfall et al., in
prep; F. Belfiore et al., in prep), see §4.1.2.

We provide the sky footprint of MaNGA galaxies re-
leased in DR15 in Figure 1; while the projected final sur-
vey footprint is shown overlaid on the footprint of other
relevant surveys and for two different expectations for
weather at the telescope in Figure 2.

4.1. MaNGA Data and Data Products

4.1.1. The Data Reduction Pipeline

The MaNGA Data Reduction Pipeline (DRP) is
the IDL-based software suite that produces final flux-
calibrated data cubes from the raw dispersed fiber spec-
tra obtained at APO. The DRP is described in detail
by Law et al. (2016) and consists of two stages. The
‘2d’ DRP processes individual exposures, applying bias
and overscan corrections, extracting the one-dimensional
fiber spectra, sky-subtracting and flux-calibrating the
spectra, and combining information from the four indi-
vidual cameras in the BOSS spectrographs into a single
set of row-stacked spectra (mgCFrame files) on a com-
mon wavelength grid. The ‘3d’ DRP uses astrometric
information to combine the mgCFrame fiber spectra from
individual exposures into a composite data cube on a
regularized 0.5′′ grid, along with information about the
inverse variance, spaxel mask, instrumental resolution,
and other key parameters. The mgCFrame per-exposure
files are produced on both linear and logarithmic wave-
length grids directly from the raw detector pixel sam-
pling, and used to construct the corresponding logarith-
mic and linearly-sampled data cubes.

The DRP data products release in DR15 are largely

similar to those released in DR13 and DR14 (and iden-
tical to the internal collaboration release MPL-7), and
consist of multi-extension FITS files giving the flux, in-
verse variance, mask, and other information for each ob-
ject. The metadata from all of our observations is sum-
marized in a FITS binary table, “drpall-v2 4 3.fits”,
detailing the coordinates, targeting information, redshift,
data quality, etc. The version of the MaNGA DRP used
for DR15 (v2 4 31) incorporates some significant changes
compared to the DR14 version of the pipeline (v2 1 2).
These changes include:

• The MaNGA DRP has been extended to produced
one-dimensional reduced spectra for each of the
MaStar targets observed during bright time; de-
tails of these modifications are described in §4.3.

• DR15 introduces some significant changes in the
overall flux calibration relative to DR13/DR14
(and relative to the description by Yan et al.
2016b). Foremost among these is the use of BOSZ
stellar spectral models (Bohlin et al. 2017) instead
of the original Kurucz templates built in 2003 to
derive the spectrophotometric calibration based on
contemporal observations of standard stars with
the MaNGA 7-fiber mini-bundles. Since the BOSZ
templates picked by the pipeline are bluer by 0.03
mag in SDSS u− r color than the original Kurucz
2003 templates, this change slightly increases the
overall flux blue-ward of 4000 Åin the MaNGA data
cubes. Test observations of hot white dwarfs com-
pared to ideal blackbody models generally show
better performance using the new BOSZ calibra-
tion (as illustrated in Figure 3). Additionally, the
throughput loss vector applied to the observational
data is now smoother at many wavelengths; high-
frequency basis spline fits are still used in telluric
regions, but the spline has a much lower frequency
outside the telluric regions to avoid introducing ar-
tifacts due to slight template mismatches. This
significantly reduces the amount of artificially high
frequency low level (∼ few percent) variations seen
in the resulting spectra from earlier versions. The
list of telluric regions is also updated.

• Many aspects of the spectral line-spread func-
tion (LSF) estimation in the DRP have changed
in DR15 in order to improve the level of agree-
ment with independent estimates (observations of
bright stars and galaxies previously observed at
higher spectral resolution, observations of the so-
lar spectrum, etc.). These changes include the
use of a Gaussian comb method to propagate
LSF estimates through the wavelength rectifica-
tion step, computation of both pre-pixelized and
post-pixelized LSF estimates2, improved interpola-
tion over masked regions, and a modified arc lamp

1 https://svn.sdss.org/public/repo/manga/mangadrp/tags/
v2_4_3

2 i.e., whether the best-fit Gaussian model of the lines is de-
termined by evaluation at the pixel midpoints (post-pixellized) or
integrated over the pixel boundaries (pre-pixelized). The two tech-
niques can differ at the 10% level for marginally undersampled
lines, and the appropriate value to use in later analyses depends
on the fitting algorithm.

https://svn.sdss.org/public/repo/manga/mangadrp/tags/v2_4_3
https://svn.sdss.org/public/repo/manga/mangadrp/tags/v2_4_3
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Fig. 1.— The sky distribution (Mollewiede equatorial projection for Dec > −20◦) of MaNGA plates released in DR15 (purple). This
is overlaid on a plot of all possible MaNGA plates (in grey). MaNGA targets are selected from a sample with SDSS-I photometry and
redshifts; hence this footprint corresponds to the Data Release 7 imaging data (Abazajian et al. 2009). Each plate contains 17 MaNGA
targets, and around 30% of all possible plates will be observed in the full 6-year survey. The most likely final footprint is indicated in
Figure 2

Fig. 2.— The sky distribution (in a rectangular projection for clarity) of the MaNGA projected final footprint overlaid with information
about other surveys. Because MaNGA targets are selected from a sample with SDSS-I photometry and redshifts, the selection of all possible
plates (grey) corresponds to the Data Release 7 imaging data (Abazajian et al. 2009). Each plate contains 17 MaNGA targets, and around
30% of all possible plates will be observed in the full 6-year survey; this plot indicates the likely final footprint for (a) typical weather
condition (Tier 1) and (b) good weather conditions (Tier 2). Completed plates noted on this plot show all observed plates at the time this
was created; which is approximately one year of observing more than is being released in DR15. Where those plates are not filled in they
have HI follow-up from the HI-MaNGA program (Masters et al. 2018; some, but not all of these data are released as a VAC in DR15 - see
§4.5.3). For the most up-to-date version of this plot see https://www.sdss.org/surveys/manga/forecast/

reference line list to improve LSF estimation and
wavelength calibration in the far blue by rejecting
poor-quality lines. The DRP data products contain
additional extensions to describe this new informa-
tion, including a 3D cube describing the effective
LSF at each spaxel within the MaNGA data cube
as a function of wavelength; this combines the in-
formation known about the LSF in each individual
fiber spectrum to describe the net effect of stack-
ing spectra with slightly different resolution. The
LSF changes and assessment against various ob-
servational calibrators will be described in greater
detail by D. Law et al. (in prep).

• The DRP data cubes now contain extensions de-

scribing the spatial covariance introduced in the
data cubes by the cube building algorithm. This
information is provided in the form of sparse cor-
relation matrices at the characteristic wavelengths
of the SDSS griz filters, and can be interpolated to
estimate the correlation matrix at any other wave-
length in the MaNGA data cubes. Note that the
DR14 paper incorrectly stated that those data in-
cluded these extensions. They did not (the team-
internal MPL-5 which is the most similar MPL to
DR14 did, but DR14 itself did not), so this is the
first release of these extensions.

• The DRPall summary file for DR15 contains ten
additional columns with respect to DR14. These

https://www.sdss.org/surveys/manga/forecast/
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Fig. 3.— This figure illustrates the flux calibration difference be-
tween DR14 and DR15 MaNGA data reductions. The upper panel
shows the spectra for an Oke standard, HZ 21, a T=100,000 K
star (Oke & Shipman 1971; Reynolds et al. 2003), as given by the
CALSPEC database (black) and by MaNGA in DR14 (red) and
DR15 (blue) averaging over 9 exposures taken on plate 7444. The
small difference at the blue wavelengths can be seen more obvi-
ously in the bottom panel where we divide these three spectra by
a T=100,000 K blackbody spectrum normalized at 6000-6100A.
Ignoring the absorption lines, this provides a test to our flux cal-
ibration. Using the BOSZ templates in DR15, the resulting con-
tinuum of this white dwarf agrees much better with the blackbody
spectrum below 5000A, significantly improved compared to DR14,
which uses the version of the Kurucz models (Kurucz 1979; Kurucz
& Avrett 1981) which were produced in 2003, and to CALSPEC.
(One can also compare this with Figure 9 of Yan et al. (2016b)).

columns include an estimate of the targeting red-
shift z that is used as the starting guess by the
DAP when analyzing the MaNGA data cubes. z is
generally identical to the NASA-Sloan Atlas (NSA)
(Blanton et al. 2011) catalog redshift for the ma-
jority of MaNGA galaxies, but the origin of the
redshift can vary for galaxies in the ∼ 25 MaNGA
ancillary programs. Additional columns include a
variety of estimates of the volume weights for the
MaNGA primary and secondary galaxy samples.

• Additional under-the-hood modifications to the
DRP have been made for DR15 that provide minor
bug fixes and performance improvements. These
include modifications to the reference pixel flat-
fields for certain MJDs, updates to the reference
bias and bad pixel masks, better rejection of sat-
urated pixels, updates to the algorithms governing
weighting of the wavelength rectification algorithm
near ultra-bright emission lines, etc. A detailed
change-log can be found in the DRP online repos-
itory.3

When working with the MaNGA data, note that there
are several quality-control features that should be used
to ensure the best scientific quality output. First, each
MaNGA data cube has a FITS header keyword DRP3QUAL
that describes the overall quality of the cube (identify-
ing issues such as focus problems, flux calibration prob-

3 https://svn.sdss.org/public/repo/manga/mangadrp/tags/
v2_4_3/RELEASE_NOTES

lems, large numbers of dead fibers, etc.). About 1% of
the data cubes are flagged as significantly problematic
(i.e., have the CRITICAL quality bit set) and should
be treated with extreme caution. Additionally, there is
a 3d mask extension to each data cube that contains
spaxel-by-spaxel information about problematic regions
within the cube. This mask identifies issues such as dead
fibers (which can cause local glitches and holes within
the cube), foreground stars that should be masked by
analysis packages such as the DAP, etc. Although the
vast majority of cosmic rays and other transient features
are detected by the DRP and flagged (either for removal
or masking), lower-intensity glitches (e.g, where the edge
of a cosmic ray track intersects with a bright emission
line) can sometimes be missed and propagate into the
final datacubes where they show up as unmasked hot
pixels. Future improvements to the DRP may further
address this issue, but caution is thus always advised
when searching for isolated emission features in the data
cubes.

For information on downloading MaNGA data in DR15
please see §3; new for DR15 is the Marvin interface to
MaNGA data (see §4.2 below).

4.1.2. The Data Analysis Pipeline

The MaNGA data-analysis pipeline (DAP) is the
SDSS-IV software package that analyzes the data pro-
duced by the MaNGA data-reduction pipeline (DRP).
The DAP currently focuses on “model-independent”
properties; i.e., those relatively basic spectral properties
that require minimal assumptions to derive. For DR15,
these products include stellar and ionized-gas kinematics,
nebular emission-line fluxes and equivalent widths, and
spectral indices for numerous absorption features, such
as the Lick indices (Worthey & Ottaviani 1997; Trager
et al. 1998) and D4000 (Bruzual A. 1983). Examples
of the DAP provided measurements and model fits are
shown in Figure 4, discussed through the rest of this Sec-
tion.

An overview of the DAP is provided by K. Westfall et
al., (in prep). There, we describe the general workflow of
the pipeline, explain the detailed algorithm used for each
of its primary products, provide high-level assessments
of its performance, and describe the delivered data prod-
ucts in detail. In-depth assessments of the stellar kine-
matics, ionized-gas kinematics, emission-line fluxes, and
emission-line equivalent widths are provided by K. West-
fall et al., (in prep), and F. Belfiore et al., (in prep). All
survey-provided properties are currently derived from the
datacubes sampled in constant steps of the logarithm of
wavelength (i.e., the LOGCUBE files). However, the core
functions are developed to consider each spectrum largely
independently.

The DAP allows for a number of different options
when analyzing the data, which we refer to as the analy-
sis mode or DAPTYPE. In DR15, the DAPTYPE joins the
keywords identifying the type of spatial binning ap-
plied (e.g., Voronoi binned to S/N& 10, VOR10), the
parametric form of the line-of-sight velocity distribution
(LOSVD) used for the stellar kinematics (a Gaussian
function, GAU), and the template set used to model the
stellar continuum (a hierarchically clustered distillation
of the MILES stellar library, MILESHC). For DR15, two
DAPTYPEs have been made available, VOR10-GAU-MILESHC

https://svn.sdss.org/public/repo/manga/mangadrp/tags/v2_4_3/RELEASE_NOTES
https://svn.sdss.org/public/repo/manga/mangadrp/tags/v2_4_3/RELEASE_NOTES
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Fig. 4.— Example data provide by the MaNGA data-analysis pipeline (DAP) for MaNGA observation 8138-12704, MaNGA ID 1-
339041, following the hybrid binning approach (DAPTYPE is HYB10-GAU-MILESHC). The left columns shows maps, or images, of some of the
DAP derived quantities. Namely, from top to bottom, the stellar velocity field, Hα flux, and D4000 spectral index, where the measured
value is indicated by the colorbar to the right of each map panel. The effective beam size for the MaNGA observations (FWHM∼2.′′5) is
shown by the gray circle in the bottom left of each map panel. Three spaxels are highlighted and labeled as (a), (b), and (c), according
to their spectra plotted in the right column. Each spectrum panel shows the observed MaNGA spectrum (black), stellar-continuum-only
model (blue), and best-fitting (stars+emission lines) model (red); the residuals between the data (black) and the model (red) are shown in
gray. Note that the red and blue lines are identical except for regions with nebular emission. A few salient emission and absorption features
are marked in each panel. Inset panels provide a more detailed view of the quality of the fitted models in the regions highlighted with gray
boxes. The spectrum panels only show the spectral regions fit by the DAP, which is limited by the MILES spectral range for DR15.

and HYB10-GAU-MILESHC. That is, only the binning ap-
proach differs between the two available DAPTYPEs, pri-
marily distinguishing whether or not the main analysis
steps are performed on binned spectra or individual spax-
els. The stellar LOSVD is always assumed to be Gaus-
sian, and the 42 templates resulting from a hierarchical
clustering analysis of the MILES stellar library (Sánchez-
Blázquez et al. 2006; Falcón-Barroso et al. 2011) are al-
ways used for the continuum templates; details regarding
the latter is discussed in K. Westfall et al., (in prep).

In the first mode (VOR10-GAU-MILESHC), the spaxels
are binned using the Voronoi-binning scheme from Cap-
pellari & Copin (2003) to a minimum g-band S/N of 10
per spectral pixel. The first mode then performs all sub-
sequent analysis on those binned spectra. Alternatively,

the second mode (HYB10-GAU-MILESHC) only performs
the stellar kinematics on the binned spectra; the subse-
quent emission-line and spectral-index measurements are
all performed on the individual spaxels. This “hybrid”
binning approach is likely the approach that most users
will want to use in their analysis. The main exception
to this is if any subsequent analyses depend on, e.g., the
availability of emission-line models for the binned spec-
tra, as is the case for the FIREFLY VAC (Wilkinson et al.
2017, see §4.5.1). The example data shown in Figure 4
is for observation 8138-12704 following from the hybrid
binning approach. Close inspection of the stellar velocity
field will show that outermost regions have been binned
together, all showing the same stellar velocity measure-
ment. However, the Hα flux and D4000 maps have mea-
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surements for each spaxel.
The DAP is executed for all observations obtained

by the MaNGA survey; however, some observations,
primarily those obtained for our ancillary science pro-
grams, do not have all the required parameters currently
needed as input by the DAP. Additionally, a few obser-
vations (<0.3%) trip corner failure modes of the DAP
leading to errors in the construction of its main output
files. These issues mean that not all LOGCUBE files pro-
vided by the DRP have associated DAP products. For
those observations that are successfully analyzed (4718
in total), the DAP provides two main output files for
each DAPTYPE, the MAPS file and the model LOGCUBE
file. Examples of how to access and plot the data in
these files are provided in a set of tutorials on the data-
release website at https://www.sdss.org/dr15/manga/
manga-tutorials/dap-tutorial/.

The MAPS file contains all of the derived properties or-
ganized as a series of maps, or images, that have the
same on-sky projection as a single wavelength channel
in the analyzed DRP LOGCUBE file. The images in the
left panels of Figure 4 are example maps taken from the
DAP MAPS file for observation 8138-12704. The maps are
organized in a series of extensions grouped by the mea-
surement they provide. Some extensions contain a single
image with all of the relevant data, whereas other ex-
tensions have multiple images, one for, e.g., each of the
measured emission lines. For example, the STELLAR VEL
extension has a single image with the measured single-
component stellar velocity measured for each spatial bin
(like that shown in Figure 4), while the SPECINDEX exten-
sion has 46 images, organized similarly to the wavelength
channels in the DRP datacubes (the D4000 map shown
in Figure 4 is in the 44th channel of the SPECINDEX ex-
tension).

The DAP-output model LOGCUBE file provides both the
S/N-binned spectra and the best-fitting model spectra.
From these files, users can plot the best-fitting model
spectra against the data, as demonstrated in Figure 4,
as an assessment of the success of the DAP. This is par-
ticularly useful when a result of the fit, e.g. the Hα flux,
seems questionable. Indeed, K. Westfall et al., in prep,
note regimes where the DAP has not been appropriately
tailored to provide a successful fit; this is particularly
true for spectra with very broad emission lines, such as
the broad-line regions of AGN. Users are encouraged to
make sure they are well aware of these limitations in
the context of their science goals. Finally, in combina-
tion with the DRP LOGCUBE file, users can use the model
LOGCUBE data to construct emission-line-only or stellar-
continuum-only data cubes by subtracting the relevant
model data.

Although we have endeavored to make the output data
user-friendly, there are a few usage quirks of which users
should be aware:

1. As with all SDSS data products, users are strongly
encouraged to understand and use the provided
quality flags, for these data provided as masks.
The mask bits provide important information as
to whether or not users should trust the provided
measurements in their particular use case. The
conservative approach of ignoring any measure-
ment where the mask bit is nonzero is safe, at

least in the sense of not including any measure-
ments we know to be dubious. However, the DAP
makes use of an UNRELIABLE flag that is intended
to be more of a warning that users should con-
sider how the measurements affect their science as
opposed to an outright rejection of the value. The
UNRELIABLE flag is put to limited use in DR15, only
flagging measurements that hinge on bandpass in-
tegrals (emission-line moments and non-parametric
equivalent widths, and spectral indices) where any
pixels are masked within the bandpass. However,
this bit may become more extensively used in fu-
ture releases as we continue to vet the results of the
analysis. A more extensive discussion of the mask
bits and their usage is provided by K. Westfall et
al., (in prep).

2. To keep the format of the output files consistent
with the DRP LOGCUBE files, the binned spectra
and binned-spectra measurements are repeated for
each spaxel within a given bin. This means that,
e.g., the stellar velocity dispersion measured for a
given binned spectrum is provided in the output
DAP map at the location of each spaxel in that bin.
Of course, when analyzing the output, one should
most often only be concerned with the unique mea-
surements for each observation. To this end, we
provide an extension in the MAPS file that provides
a “bin ID” for each spaxel. Spaxels excluded from
any analysis (as in the buffer region during the dat-
acube construction) are given a bin ID of -1. This
allows the user to select all the unique measure-
ments by finding the locations of all unique bin
ID values, ignoring anything with a bin ID of -1.
Tutorials for selecting the unique measurements in
the DAP output maps are provided via the data-
release website at https://www.sdss.org/dr15/
manga/manga-tutorials/dap-tutorial/.

3. Corrections are provided for a few quantities in
the MAPS file that have not been applied to the data
in the output files. The stellar velocity dispersion
and ionized-gas velocity dispersions are provided
as measured from the core pPXF software (Cappel-
lari & Emsellem 2004; Cappellari 2017) used by
the DAP. This means that any instrumental effects
present during the fitting process are also present in
the output data. For both the stellar and ionized-
gas dispersions, we have estimated the instrumen-
tal corrections for each measurement and provided
the result in extensions in the MAPS file. These
corrections should be applied when using the data
for science. For the velocity dispersion measure-
ments, our purpose in not applying the corrections
ourselves is to allow the user freedom in how they
deal with measurements of the dispersion that are
below our measurement of the instrumental reso-
lution. Such issues can be pernicious at low ve-
locity dispersion and the treatment of these data
can have significant effects on, e.g., the construc-
tion of a radially averaged velocity dispersion pro-
file (see K. Westfall et al., in prep. who discuss
this at length, and also Penny et al. 2016 who dis-
cuss this issue for dwarf galaxies). Corrections are

https://www.sdss.org/dr15/manga/manga-tutorials/dap-tutorial/
https://www.sdss.org/dr15/manga/manga-tutorials/dap-tutorial/
https://www.sdss.org/dr15/manga/manga-tutorials/dap-tutorial/
https://www.sdss.org/dr15/manga/manga-tutorials/dap-tutorial/
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also provided (but not applied) for the spectral in-
dices to convert the measurement to zero velocity
dispersion at the spectral resolution of the MILES
stellar templates (Beifiori et al. 2011) used during
the stellar-continuum fit. Additional detail regard-
ing these corrections is provided in K. Westfall et
al., (in prep.) and tutorials demonstrating how to
apply them to the data are provided via the data-
release website.

4. In the hybrid binning scheme, the stellar kinemat-
ics are performed on the binned spectra, but the
emission-line fits are performed on the individual
spaxels. When comparing the model to the data,
the user must compare the emission-line modeling
results to the DRP LOGCUBE spectra, not the binned
spectra provided in the DAP model LOGCUBE file,
unless the “binned” spectrum is actually from a
single spaxel. Tutorials for how to overplot the
correct stellar-continuum and emission-line models
are provided via the data-release website.

Finally, similar to the DRPall file provided by the
MaNGA DRP, the DAP constructs a summary table
called the DAPall file. This summary file collates use-
ful data from the output DAP files, as well as providing
some global quantities drawn from basic assessments of
the output maps, that may be useful for sample selection.
For example, the DAPall file provides the luminosity-
weighted stellar velocity dispersion and integrated star-
formation rate within 1 Re. The sophistication of these
measurements are limited in some cases. For example,
the star-formation rate provided is simply based on the
measured Hα luminosity and does not account for in-
ternal attenuation or sources of Hα emission that are
unrelated to star formation, as such we caution users to
make use of this for science only after understanding the
implications of this caveat. Development and refinement
of DAPall output will continue based on internal and
community input. Additional discussion of how these
properties are derived is provided by K. Westfall et al.,
(in prep).

4.2. Marvin Access to MaNGA

Marvin (Cherinka et al. 2018)4 is a new tool designed
for streamlined access to the MaNGA data, optimized
for overcoming the challenges of searching, accessing,
and visualizing the complexity of the MaNGA dataset.
Whereas previous generations of SDSS took spectra only
of the centers of galaxies, MaNGA takes many spectra
of each galaxy, in a hexagonal grid across the face of
each (IFU bundle), which are combined into a final data
cube. This means that for each object there is not a
single spectrum, but in fact a suite of complex results in
one or more data cubes. The motivation of Marvin arises
from the additional complexity of MaNGA data, namely,
the spatial interconnectivity of its spectra.
Marvin allows the user to:

• access reduced MaNGA datacubes local, remotely,
or via a web interface.

• access and visualize data analysis products.

4 https://www.sdss.org/dr15/manga/marvin/

• perform powerful queries on metadata.

• abstract the MaNGA datamodel and write code
which is agnostic to where the data actually lives.

• make better visualization and scientific decisions by
mitigating common mistakes when accessing these
type of data.

Marvin has two main components: a webapp and
a Python package of tools, both using an underlying
Marvin API (or Application Programming Interface).
The webapp, Marvin Web5, provides an easily accessible
interface for searching the MaNGA dataset and visual
exploration of individual MaNGA galaxies. The Marvin
suite of Python tools, Marvin Tools, provides seamless
programmatic access to the MaNGA data for more in-
depth scientific analysis and inclusion in your science
workflow. Marvin contains a multi-modal data access
system that provides remote access to MaNGA files or
sub-data contained within, download MaNGA files to
work with on the users local machine, and seamlessly
transition between the two with a negligible change in
syntax.

Existing 3d data cube visualizers in astronomy, as well
as in other scientific disciplines, often come as standalone
desktop applications designed to visualize and interact
with individual files local to a client machine. However,
these tools are highly specific, limited to exploring files
one at a time, and still require manually downloading
all data locally. While Marvin is a tool for 3d cube vi-
sualization, its focus is on streamlined data access from
local or remote sources, with a clear separation of com-
ponents into browser-based visualization and program-
matic data tools, rather than on providing yet another
desktop-based cube viewer. Marvin’s design allows for
users to rapidly explore and access the data in a manner
of their choosing, whilst still providing enough flexibility
to, if desired, plug the data into existing cube viewers
available in the astronomy community.

The components of Marvin are described in more detail
in the Marvin paper (B. Cherinka et al. in prep.) as well
as in the Marvin documentation6, which also contains
tutorials and example Jupyter notebooks. In addition,
we briefly introduce them below.

4.2.1. Marvin Web

The Marvin Web provides quick visual access to the
set of MaNGA galaxies. It provides a dynamic, inter-
active, point-and-click view of individual galaxies to ex-
plore the output from the MaNGA DRP and DAP (§4.1.1
§4.1.2 respectively), along with galaxy information from
the NSA catalog (Blanton et al. 2011) 7.

We show a screen-shot of the View-Spectra page of
Marvin Web in Figure 5. By clicking anywhere within
the galaxy IFU bundle on the SDSS three-color image,
or any Data Analysis 2D Map, the user can explore the
spectrum at that location for quick inspection. The visu-
alized spectrum is interactive as well, allowing panning
and zooming.

5 https://dr15.sdss.org/marvin
6 https://sdss-marvin.readthedocs.io/en/stable/
7 https://www.sdss.org/dr15/manga/

manga-target-selection/nsa/

https://www.sdss.org/dr15/manga/marvin/
https://dr15.sdss.org/marvin
https://sdss-marvin.readthedocs.io/en/stable/
https://www.sdss.org/dr15/manga/manga-target-selection/nsa/
https://www.sdss.org/dr15/manga/manga-target-selection/nsa/
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Additional pages Marvin Web provides are:

• a Query page, for searching the MaNGA dataset
through an SQL-like interface.

• a Plate page, containing all MaNGA galaxies ob-
served on a given SDSS plate.

• and an Image Roulette page, for randomly sam-
pling images of MaNGA galaxies.

Tutorials for navigating Marvin Web can be
found at https://www.sdss.org/dr15/manga/
manga-tutorials/marvin-tutorial/marvin-web/.
Marvin Web is designed as a gateway to entry into real

MaNGA data, providing commonly-desired functionality
all in one location, as well as code snippets to help tran-
sition users into a more programmatic environment using
the Marvin Tools.

4.2.2. The Marvin Tools

Marvin Tools provides a programmatic interaction
with the MaNGA data, enabling rigorous and repeatable
science-grade analyses. Marvin Tools come in the form
of a Python package that provides convenience classes
and functions that simplify the processes of searching,
accessing, downloading, and interacting with MaNGA
data, selecting a sample, running user-defined analysis
code, and producing publication quality figures.

The Marvin Tools are a pip-installable product, pack-
aged under sdss-marvin, with full installation instruc-
tions at the Marvin documentation8, and source code on
Github9.

Overall, Marvin Tools allow for easier access to the
data without knowing much about the data model, by
seamlessly connecting all the MaNGA data products,
eliminating the need to micromanage a multitude of files.
The user can do all their analysis from one interface.

4.2.3. Queries in Marvin

Both Marvin Web and Tools provide interfaces for
searching the MaNGA dataset through a Structured
Query Language (SQL)-like interface, either via a web-
form or a Python class. The Marvin Query system uses
a simplified SQL syntax that focuses only on a filter con-
dition using boolean logic operators, and a list of param-
eters to return. This eliminates the need to learn the
full SQL language and the detailed MaNGA database
layout. With this query system, users can make queries
across the entire MaNGA sample using traditional global
galaxy properties (functionality to perform intra-galaxy
queries using individual spaxel measurements is planned
for a future release). Tutorials for querying with Marvin

can be found for the web10 and for the tools11.

4.3. MaStar: A Large and Comprehensive Stellar
Spectral Library

8 https://sdss-marvin.readthedocs.io/en/stable/
installation.html

9 https://github.com/sdss/marvin
10 https://www.sdss.org/dr15/manga/manga-tutorials/

marvin-tutorial/marvin-web/
11 https://sdss-marvin.readthedocs.io/en/stable/query.

html

Stellar spectral libraries are an essential tool for many
fields in astronomy. They are especially useful for mod-
eling spectra of external galaxies, including fitting for
redshift and stellar kinematics, fitting the continuum to
isolate emission lines, and calculating stellar population
models (e.g. Leitherer et al. 1999; Bruzual & Charlot
2003; Maraston 2005; Vazdekis et al. 2010; Conroy &
Gunn 2010; Conroy 2013) for deriving age, metallicity,
and stellar mass of the stellar populations from inte-
grated light spectra. They are also useful for Galactic
astronomy and stellar astronomy. Although theoretical
spectral libraries have been substantially improved over
the years, they are still not realistic enough for certain
stellar types (e.g. very cold stars and Carbon stars) due
to the incomplete line list and difficult-to-model physical
effects, such as convection, microturbulence, and devi-
ations from plane-parallel geometry and local thermo-
dynamic equilibrium (non-LTE). Therefore, empirical li-
braries are still needed for many applications and for cal-
ibrating the theoretical models, provided one is able to
assign robust stellar parameters to the empirical spectra.

At the beginning of the MaNGA survey, there were
no empirical stellar libraries available covering the whole
MaNGA wavelength range with a spectral resolution that
is equal to or higher than that of MaNGA. Current state-
of-the-art empirical stellar libraries also have some other
shortcomings. Some libraries have issues with flux cali-
bration or telluric subtraction. Furthermore, all existing
libraries have limited stellar parameter space coverage,
lacking sufficient sampling in especially cool dwarfs, car-
bon stars, metal-poor stars, and very hot stars. They
also do not sufficiently sample the [α/Fe] vs. [Fe/H] space
(see Maraston & Strömbäck 2011) for a discussion of all
these problems). These issues prompted us to take ad-
vantage of a parallel observing opportunity in SDSS-IV
for assembling an empirical stellar spectral library that
samples a wider stellar parameter space with a larger
number of stars than any previous library, and matches
MaNGA’s wavelength coverage and spectral resolution.

Included in this data release is the first version of the
MaNGA Stellar Library (MaStar). These observations
are performed by piggybacking on the APOGEE-2N ob-
servations during bright time. MaNGA fiber bundles are
plugged along with APOGEE fibers on these APOGEE-
led plates to observe selected stars. As a result, the MaS-
tar stellar spectra are observed using exactly the same
instrument as MaNGA galaxies so they provide an ideal
set of templates for modeling stellar continuum and stel-
lar populations in MaNGA galaxies.

The program has so far observed several thousands of
stars, each with several epochs of observation. The ver-
sion we are releasing in DR15 includes 8646 good quality
spectra for 3321 unique stars, which cover a wide range
in stellar parameter space. The details of the target se-
lection, data reduction, flux calibration, and stellar pa-
rameter distribution are described by Yan et al. (2018).
Here we provide a brief summary.

4.3.1. Target Selection

A good target selection is essential for achieving a
wide sampling of stellar parameter space. We aim to
cover the stellar parameter space as completely as possi-
ble and sample it roughly evenly. We base our selection
primarily on existing stellar parameter catalogs, includ-

https://www.sdss.org/dr15/manga/manga-tutorials/marvin-tutorial/marvin-web/
https://www.sdss.org/dr15/manga/manga-tutorials/marvin-tutorial/marvin-web/
https://sdss-marvin.readthedocs.io/en/stable/installation.html
https://sdss-marvin.readthedocs.io/en/stable/installation.html
https://github.com/sdss/marvin
https://www.sdss.org/dr15/manga/manga-tutorials/marvin-tutorial/marvin-web/
https://www.sdss.org/dr15/manga/manga-tutorials/marvin-tutorial/marvin-web/
https://sdss- marvin.readthedocs.io/en/stable/query.html
https://sdss- marvin.readthedocs.io/en/stable/query.html
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Fig. 5.— Screenshot of the galaxy maps view of the Marvin Web for the MaNGA galaxy 12-193481 (Mrk 848). The SDSS three-color
image of the galaxy is shown in the top left part of the figure. The upper right panel shows the spectrum of the spaxel at the position
(37,37), which corresponds to the center of the bundle (shown by the red dot). The maps show: (lower left) stellar kinematics; (lower
middle) Hα emission line flux; and (lower right) D4000 spectral index for this galaxy based on its unbinned spectral data cube from the
MaNGA DAP (see §4.1.2).

ing APOGEE-1 and -2 (Majewski et al. 2017), SEGUE
(Yanny et al. 2009), and LAMOST (Luo et al. 2015).
Given the field plan of APOGEE-2, we select all the stars
available in these catalogs in the planned APOGEE-2
footprint. For each star, we count its neighboring stars
in stellar parameter space (Teff , log g, [Fe/H]) and assign
it a selection weight that is inversely proportional to its
number of neighbors. The number of APOGEE-2 tar-
geting designs for each field is also taken into account.
We then draw our targets randomly in proportion to the
normalized selection weight. This method flattens the
stellar parameter space distribution and picks rare stars
in those fields where they are available.

In fields without stars with known stellar parame-
ters, we use spectral energy distribution (SED) fitting
to search for hot and cool stars to patch the stellar pa-
rameter distribution at the hot and cool ends.

The targets are required to have g or i-band magni-
tude brighter than 17.5 in order to achieve a signal-to-
noise greater than 50 per pixel in 3 hours of integration,
although not all fields have the same integration time or
the same number of visits. They are also required to be
fainter than 12.7 magnitude in both g and i-band in order
to stay below the saturation limit of the detector for 15
minute exposures. We later lowered the saturation limit
to 11.7 to include more luminous stars, with a slight off-
set in fiber placement for stars with magnitudes between
11.7 and 12.7. This slight offset does not affect our flux
calibration due to our unique calibration procedure.

These magnitude limits yield relatively few OB stars
and blue supergiants, as they have to be very distant
or very extincted to fall within this magnitude range.
Therefore, currently we are adjusting our exposure time
in certain fields to expand our parameter space distribu-
tion in the blue and luminous end. The first version of
the library does not have many such stars but we will
improved on this for the final version which we expect to
come out in the final SDSS-IV Data Release.

4.3.2. Observations

Observations for MaStar are obtained in a similar fash-
ion to the MaNGA observations except that they are con-
ducted under bright time and without dithering. Since
we are piggybacking on APOGEE-2, if APOGEE-2 vis-
its a field multiple times, we would obtain multiple visits
for the stars on that plate as well. Therefore, some stars
have many visits and some stars have only 1 visit. Each
visit of APOGEE-2 is typically 67 minutes long, which
would allow us to take four 15-minutes exposures, un-
less interrupted by weather or other reasons. Each plate
has 17 science targets and 12 standard stars, same as
MaNGA. We take flat and arc frames before each visit.

4.3.3. Data Reduction

The reduction of the MaStar data is handled by the
MaNGA Data Reduction Pipeline (DRP; see §4.1.1, Law
et al. 2016). It has two stages. The first stage pro-
cesses the raw calibration frames and science frames
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to produce the sky-subtracted, flux-calibrated, camera-
combined spectra for each fiber in each exposure. The
second stage differs between MaNGA galaxy data and
MaStar stellar data. For MaStar stellar data, we eval-
uate the flux ratios among fibers in a bundle as a func-
tion of wavelength, and constrain the exact location of
the star relative to the fiber positions. This procedure
helps us derive the light loss due to the finite fiber aper-
ture as a function of wavelength. The procedure takes
into account the profile of the PSF and the differential
atmosphere refraction. It is similar to how we handle
flux calibration in MaNGA data (Yan et al. 2016b). We
then correct the spectra for this aperture-induced light
loss and arrive at the final flux-calibrated stellar spectra.
Comparison with photometry shows that our relative flux
calibration are accurate to 5% between g and r -band,
and to 3% between r and i, and between i and z bands.

For each star, we combine the spectra from multiple
exposures on the same night, and refer to these combined
spectra as “visit spectra”. We do not combine spectra
from different nights together for the same star because
they can have different instrumental resolution vectors
and some stars could be variable stars. By summer 2017,
we have obtained 17,309 visit-spectra for 6,042 unique
stars. Because not all visit-spectra are of high quality, as
we will discuss below, we selected only those with high
quality and present this subset as the primary set to be
released. The primary set contains 8646 visit spectra for
3321 unique stars.

The final spectra are not corrected for foreground dust
extinction. Users should make these corrections before
using them.

4.3.4. Quality Control

A stellar library requires strict quality control. We
have a number of quality assessment carried out in the
pipeline to flag poor quality spectra. We identify cases
having low S/N, bad sky subtraction, high scattered
light, low PSF-covering fraction, uncertain radial veloc-
ity measurement, and/or those with problematic flux cal-
ibration. Each spectrum we release has an associated
quality bitmask (MJDQUAL for each visit spectrum) giv-
ing these quality information. We provide a summary of
these in Table 3 and describe them in more detail here.

A large fraction of the observed stars have problematic
flux calibration due to the fact that the standard stars
on those plates have much less extinction than given by
the Schlegel et al. (1998, SFD) dust map. In the flux
calibration step of the MaNGA pipeline, we assume the
standard stars are behind the Galactic dust, and we com-
pare the observed spectra of the standard stars with the
dust-extincted theoretical models to derive the instru-
ment throughput curve. This assumption is valid for all
galaxy plates which are at high Galactic latitude and
have relatively faint standard stars, placing them at a
safe distance behind most of the dust. However, this as-
sumption fails for many fields targeted by MaStar, which
are at low Galactic latitudes. Stars at low Galactic lati-
tude are quite likely to be found in front of some fraction
of the dust in that direction. Thus, when applying the
extinction given by SFD, we overly redden the theoret-
ical models and arrives at an incorrect flux calibration
for these field. We have a solution to this problem which
will be incorporated into the MaStar pipeline in the fu-

ture. In the current release, the spectra for these stars
are just flagged as having poor flux calibration (bit 5 of
MJDQUAL).

A significant fraction of the spectra also have unreli-
able radial velocity estimates. We used a rather limited
set of templates in our derivation of the radial velocities.
Thus stars with very hot or very cool effective tempera-
ture, and those with very high and low surface gravity,
are more likely to be affected by this issue. These can
be identified by checking bit 6 of the MJDQUAL bitmask.
All spectra are shifted to rest-frame according to the re-
ported heliocentric radial velocity, regardless of whether
the measurement is robust or not.

In addition to these automated checks, we carried out a
visual inspection campaign to ensure the quality of each
spectrum. Using the Zooniverse Project Builder inter-
face12, we started a private project for visually inspect-
ing the spectra. A total of 28 volunteers from within the
collaboration participated in the campaign, 10,797 visit
spectra were inspected, each by at least 3 volunteers,
to check for issues in flux calibration, sky subtraction,
telluric subtraction, emission lines, etc. The results are
input to the data reduction pipeline to assign the final
quality flags.

The primary set of spectra we are releasing contains
only those spectra that are deemed to have sufficient
quality to be useful. We have excluded from the pri-
mary set those spectra with problematic sky subtraction
(bit 1 of MJDQUAL), low PSF covering fraction (bit 4),
poor flux calibration (bit 5), or low S/N (bit 9), and
those identified as problematic by visual inspection (bit
7). The primary set still contains spectra with unreliable
heliocentric velocity measurement (bit 6), whose spectra
would still be in the observed frame. It also contains
spectra with strong emission lines (bit 8), some of which
are intrinsic to the star. In addition, stars flagged to have
high scattered light in the raw frame (bit 2) are also in-
cluded as they may not be affected significantly. Other
bits that are not mentioned above were never set in the
current data release. The users are strongly advised to
check the quality flags when using the spectra. Detailed
information about the quality flags can be found in Yan
et al. (2018).

In addition to these basic quality checks, we are test-
ing the spectra by running them through a population
synthesis code (Maraston 2005). This procedure, which
will be described in C. Maraston et al. (in prep)., allows
us to test the total effect of goodness of spectra plus as-
signed stellar parameters and will be crucial for the joint
calculation of stellar parameters and stellar population
models. Relevant to this description, this method allows
us to spot bad or highly-extincted spectra.

4.3.5. Stellar Parameter Distribution

Robust assignment of stellar parameters to the stars
are also critical for the stellar library. Our targets are
selected from heterogeneous sources. Those selected
from APOGEE, SEGUE, and LAMOST have parame-
ters available from their respective catalogs. However,
they are measured with different methods and may not
be consistent with each other. They also have different

12 https://www.zooniverse.org/lab

https://www.zooniverse.org/lab
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TABLE 3
Qualitiy Control Bits MJDQUAL for MaStar.

See §4.3.4 for full explanation.

Bit Description

1 Problematic sky subtraction
2 High scattered light in the raw frame
4 Low PSF covering fraction
5 Poor flux calibration
6 Unreliable radial velocity estimates
7 Flagged as unreliable from visual inspection
8 Strong emission lines
9 Low S/N

boundaries applied in the determination of the param-
eters. For our target selection purpose, we have made
small constant corrections to the parameters to remove
the overall systematic difference. These slightly adjusted
parameters are included in the catalog we release. How-
ever, the correction are done independent of detailed
stellar types. As a result, the parameters from differ-
ent catalogs can still have subtle stellar-type-dependent
systematic differences. For individual stars, they could
be used to determine the rough stellar type. But for the
library as a whole, we caution against using these input
parameters to compare the stars or to construct stellar
population models with them.

We are still in the process of determining stellar pa-
rameters for all the stars in the MaStar library, in a
way that is as homogeneous as possible. This is not an
easy task, because for stars with different stellar types
we need to rely on different spectral features and dif-
ferent methodology. Although these are not yet avail-
able in this version of the library, we present here the
extinction-corrected Hertzsprung-Russell (HR) diagram
for our stars using photometry and parallax from Gaia
DR2 (Gaia Collaboration et al. 2018; Evans et al. 2018)
and Gaia-parallax-based distance estimates from Bailer-
Jones et al. (2018). This provides a rough idea of our
stellar parameter coverage. Here we only plot stars that
are either in directions with a total E(B−V ) less than 0.1
mag or more than 300pc above or below the Milky Way
mid-plane so that we can use the total amount of dust
measured by Schlegel et al. (1998) for the extinction cor-
rection reliably. The photometry of our targets also come
from various sources including PanSTARRS1 (Chambers
et al. 2016), APASS13, SDSS, Gaia DR1 (Gaia Collabo-
ration et al. 2016), and Tycho-2 (Høg et al. 2000) for a
few stars. For stars with PanSTARRS1 photometry, we
converted them to SDSS using the formula provided by
Finkbeiner et al. (2016). For APASS, we assume they are
in SDSS filters already. For all the other non-SDSS stars,
we use Gaia DR2 photometry to derive the magnitudes
in SDSS gri bands according to the conversion given by
Evans et al. (2018). In Figure 6, we show the r-band
absolute magnitude (Mr) vs. g − i for these stars. The
color-coding are based on our preliminary measurement
of metallicity using the ULySS pipeline (Koleva et al.
2009, 2011) with MILES (Sánchez-Blázquez et al. 2006)
as the training set.

From Figure 6, we can see that the current released
subset of MaStar library already has a very good cover-
age across the HR diagram for a wide range of metallici-

13 https://www.aavso.org/apass

Fig. 6.— Extinction-corrected HR diagram for MaStar targets,
color-coded by our preliminary measurement of metallicity. The
g, r,and i bands are in the SDSS photometry system. The ab-
solute magnitudes are derived using parallax-based distance esti-
mates from Bailer-Jones et al. (2018). Only stars for which we are
able to get an approximate extinction correction are included here.
This Figure is reproduced from Yan et al. (2018).

ties. But there is significant room for improvement. We
need to cover more stars at the luminous end of the red
giant branch and at the blue end of the main sequence.
These will be added in future versions of the library.

4.3.6. Data Access and usage information

The MaStar data for this release can be found
in two main files: the “mastarall” and the
“mastar-goodspec” files. Both files can be found on
the SAS (https://dr15.sdss.org/sas/dr15/manga/
spectro/mastar/v2_4_3/v1_0_2/, with datamodels
at https://data.sdss.org/datamodel/files/MANGA_
SPECTRO_MASTAR/DRPVER/MPROCVER/.

The “mastarall” file contains four summary tables of
the basic information about the stars and of the infor-
mation about their one or more visits. They include the
identifier (MaNGAID), astrometry, photometry, target-
ing bitmask which indicates source of photometry, input
stellar parameters, plate, IFU, modified Julian date of
the visit, derived heliocentric velocity, and spectral qual-
ity information. MaNGAID is the identifier to identify
unique stars, except in a few cases where the same star
was assigned two different MaNGAIDs. These are docu-
mented in detail online and in Yan et al. (2018).

The “mastar-goodspec” file contains the primary set

https://www.aavso.org/apass
https://dr15.sdss.org/sas/dr15/manga/spectro/mastar/v2_4_3/v1_0_2/
https://dr15.sdss.org/sas/dr15/manga/spectro/mastar/v2_4_3/v1_0_2/
https://data.sdss.org/datamodel/files/MANGA_SPECTRO_MASTAR/DRPVER/MPROCVER/
https://data.sdss.org/datamodel/files/MANGA_SPECTRO_MASTAR/DRPVER/MPROCVER/
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of high quality visit spectra. In addition to identifica-
tion information, we provide the wavelength, flux, in-
verse variance, mask, spectral resolution vector, and the
spectral quality bitmask.

MaStar spectra can also be visualized in the SAW (see
§3 for details).

4.4. Other Ancillary Programs

We refer the reader to the DR13 paper (Albareti et al.
2017) for the most complete list of MaNGA ancillary
programs14. These approved programmes make use of
∼5% of MaNGA bundles, and provide in Table 4 an up-
dated list of the number of bundles available in each doc-
umented sample.

There are three new ancillary programs for DR15.
These provide observations in fields of IC 342, M31
as well as data for a selection of SN1a Hosts (MANGA
TARGET3 target bits 20, 21 and 26, respectively).

The IC342 program will uniformly mosaic the disk of
IC 342 using 61 plates, following an initial pilot program
of 3 plates that target individual HII regions across the
disk. This galaxy serves as a local reference with 30 pc
resolution that can inform our understanding of the un-
resolved physics in the ∼ 1 kpc resolution main MaNGA
survey.

The M31 ancillary program targets regions in M31
where the underlying physical properties are well-
constrained from resolved stellar population analyses,
provided by the Panchromatic Hubble Andromeda Trea-
sury (PHAT; Dalcanton et al. 2012). The MaNGA obser-
vations include 18 regions ( 50-100 pc in size) that sam-
ple a wide range of environmental conditions, including
ancient and recent star formation history, dust column,
dust geometry, and metallicity. These observations pro-
vide a link between resolved stellar populations and the
inferred properties of unresolved stellar populations, and
can be used to assess the ability of spectral fitting codes
to recover key physical parameters.

The SNIa Hosts ancillary program will observe Type
Ia supernova (SNIa) host galaxies to investigate causes
of the intrinsic variation of SNIa. SNIa show a spread
in absolute magnitude, but can be standardized by tak-
ing into account relationships like luminosity-decline rate
and SNIa color to reduce the spread to 0.12 mag. Re-
search over the past several years indicates that some of
this remaining spread correlates with global host galaxy
properties such as stellar mass, star-formation history,
and metallicity (e.g. Lampeitl et al. 2010; Gupta et al.
2011; Hayden et al. 2013; Rigault et al. 2013) caus-
ing concerns about biases in cosmological measurements.
This project will obtain MaNGA data for roughly 40
SNIa host galaxies in order to look for correlations with
SNIa peak absolute magnitude and host galaxy proper-
ties like metallicity and star formation rate averaged over
the whole galaxy and at the location of the SNIa.

DR15 also incorporates a second Milky Way Analogs
program (target bit 23), which is similar to the exist-
ing program described in DR13, but uses morphological
information, rather than star formation rates, in combi-
nation with galactic stellar mass to select analogs.

14 also see http://www.sdss.org/dr15/manga/
manga-target-selection/ancillary-targets

4.5. Value Added Catalogs

As was the case previously in DR14, there are a
large number of Value Added Catalogs (VACs) linked to
MaNGA data released in DR15. These either represent
additional processing of DRP or DAP output, or follow-
up programs or other data useful in combination with
MaNGA data. We summarize new or updated VACs be-
low.

4.5.1. Spectral Modeling

In DR15 there are new releases for both the FIREFLY
(Goddard et al. 2017a) and Pipe3D (Sánchez et al. 2016)
stellar population modeling and emission line analysis
VACs. Full details of both can be found in the DR14
paper (and references therein), so we give only updates
specific to this DR15 release version below.

For DR15 Pipe3D version 2.4.3 was run over the
MaNGA DR15 dataset. The main difference with re-
spect to version 2.1.2 (used in DR14) besides the num-
ber of analyzed galaxies, was to solve a bug in deriva-
tion of the equivalent widths of the analyzed emission
lines. The current Pipe3D VAC provides two different
types of data products: (1) A catalog comprising 94
different parameters measured for each of 4660 galax-
ies (all galaxies in MaNGA cubes for which Pipe3D
was able to derive the main stellar population, emission
line and kinematics properties); and (2) a set of 4660
datacubes manga.Pipe3D.cube.fits presenting a set of
spatially resolved parameters. The parameters are the
same as they were in the DR14 version (Sánchez et al.
2018). More detail is available on the data release web-
site https://www.sdss.org/dr15/manga/manga-data/
manga-pipe3d-value-added-catalog/.

The major update to FIREFLY with respect to DR14
is the extension of the stellar population modeling
grid based on the models of Maraston & Strömbäck
(2011). The new catalog uses a finer metallic-
ity grid with the following grid values: [Z/H] =
−2.3,−1.9,−1.6,−1.2,−0.9,−0.6,−0.3, 0.0, 0.3. The
new version of the VAC also provides geometrical
information so that maps can be produced directly
from the VAC (a python plotting routine is avail-
able from the data release website). The entire
VAC is available as either a single fits file contain-
ing all measurements, or smaller fits files with se-
lected subsets of the derived parameters. More detail
on the catalog is provided on the data release web-
site https://www.sdss.org/dr15/manga/manga-data/
manga-firefly-value-added-catalog/ and in God-
dard et al. (2017a) and Parikh et al. (2018).

4.5.2. Morphology and Photometry of MaNGA Targets

As part of DR15 we release one photometry VAC and
two morphology VACs.

The PyMorph catalog provides photometric parame-
ters obtained from Sersic and Sersic+Exponential fits to
the 2D surface brightness profiles of the MaNGA DR15
galaxy sample. It uses the PyMorph algorithm for deter-
mining the fits which has been extensively tested (Meert
et al. 2013; Fischer et al. 2017; Bernardi et al. 2017),
and PyMorph reductions of SDSS DR7 galaxies (Abaza-
jian et al. 2009) are available (the UPenn SDSS Phot-
Dec Catalog: Meert et al. 2015, 2016). We have re-run

http://www.sdss.org/dr15/manga/manga-target-selection/ancillary-targets
http://www.sdss.org/dr15/manga/manga-target-selection/ancillary-targets
https://www.sdss.org/dr15/manga/manga-data/manga-pipe3d-value-added-catalog/
https://www.sdss.org/dr15/manga/manga-data/manga-pipe3d-value-added-catalog/
https://www.sdss.org/dr15/manga/manga-data/manga-firefly-value-added-catalog/
https://www.sdss.org/dr15/manga/manga-data/manga-firefly-value-added-catalog/
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TABLE 4
Summary of MaNGA Ancillary Programs with Data in DR15

Ancillary Program Observeda BITNAME binary digit

Luminous AGN 25c AGN BAT 1
AGN OIII 2
AGN WISE 3

AGN PALOMAR 4
Void Galaxies 3 VOID 5
Edge-On Star-forming Galaxies 20 EDGE ON WINDS 6
Close Pairs and Mergers 57d PAIR ENLARGE 7

PAIR RECENTER 8
PAIR SIM 9

PAIR 2IFU 10
Writing MaNGA (public outreach) 1 LETTERS 11
Massive Nearby Galaxies 23 MASSIVE 12
Milky Way Analogs 4 MWA 13

0 MW ANALOG 23
Dwarf Galaxies in MaNGA 22 DWARF 14
Brightest Cluster Galaxies 24 BCG 17
MaNGA Resolved Stellar Populations 1 ANGST 18
Coma 68 DEEP COMA 19
IC 342 50 IC342 20
M31 18 M31 21
SNIa Hosts 1 SN1A HOST 26

aThese are bundle counts, not always unique galaxies
bThese are bundle counts, not always unique galaxies
cCount for 1,2,3,4 combined
dCount for 7,8,9,10 combined

PyMorph for all the galaxies in the MaNGA DR15 sample.
These re-runs incorporate three improvements: they use
the SDSS DR14 images, improved bulge-to-disk decom-
position by slightly modifying our criteria when using
PyMorph (see Fischer et al. 2018. for details), and all the
fits in this catalog have been visually inspected for addi-
tional reliability (we recommend using “flag fit”). The
catalog contains these fits for the g, r, and i bands. One
important caveat to note is that position angles (PA) are
reported relative to the SDSS imaging camera columns,
which are not aligned with North, so a correction is
needed to convert to true position angles. To convert
to the usual convention where North is up, East is left
(note that the MaNGA datacubes have North up, East
right) set PAMaNGA = 90 deg−PAPyMorph − PASDSS,
where PAPyMorph is the value given in this catalogue,
and PASDSS is the SDSS camera column position angle
with respect to North.

A curated version of the Galaxy Zoo crowdsourced
classifications containing an entry for all MaNGA tar-
get galaxies is released in DR15. This catalog contains
galaxy classifications previously released in Willett et al.
(2013, which was selected from the SDSS DR7 galaxy
catalog) as well as new unpublished classifications for
MaNGA targets missing from that list. All morphologi-
cal identifications are provided based on the citizen sci-
entist input using the improved technique for aggrega-
tion and debiasing described in (Hart et al. 2016). This
accounts better for redshift bias in the detailed classifica-
tions of spiral arms, bars than the version used in Willett
et al. (2013). For a simple conversion between Galaxy
Zoo classifications and modern (bulge-sized based) T-
types see details in Willett et al. (2013), which also in-
cludes general advice on how to best use Galaxy Zoo
classifications for science.

A second morphology catalog is provided that has been
obtained with the help of “Deep Learning” models. The

models were trained (making use of Galaxy Zoo mor-
phologies, as well as morphologies from Nair & Abra-
ham 2010) and tested on SDSS-DR7 images (Domı́nguez
Sánchez et al. 2018). The morphological catalog contains
a series of Galaxy Zoo like attributes (edge-on, barred,
bulge prominence and roundness), as well as a T-Type
and a finer separation between pure elliptical and S0
galaxies.

4.5.3. HI-MaNGA - HI 21cm Follow-up for MaNGA

The first data release of “HI-MaNGA”, the HI followup
project for MaNGA is provided as a VAC in DR15. This
follow-up program is presented in Masters et al. (2018)
and is the result of single dish radio 21cm HI obser-
vations of MaNGA galaxies using the Robert C. Byrd
Green Bank Telescope (GBT). The depth of this observ-
ing is aimed to be similar to the Arecibo Legacy Fast
Arecibo L-band Feed Array (ALFALFA) blind HI survey
(Haynes et al. 2018) which covers some of the MaNGA
footprint (see Figure 2) with a goal of enabling studies
to use HI data from both surveys. In this first release,
data are provided for 331 MaNGA galaxies observed
in the 2016 GBT observing seasons under project code
AGBT16A 95. Total HI masses, and line widths (measured
with five different common techniques) are provided for
all detections, while HI mass upper limits (assuming a
line width of 200km/s) are provided for non-detections.
HI-MaNGA has observed an additional ∼ 1800 MaNGA
galaxies in the 2017 observing season (under project code
AGBT17A 12); these data will be released in a future VAC.
The sky distribution of all MaNGA galaxies observed by
this program is shown in Figure 2.

4.5.4. GEMA-VAC; Galaxy Environment for MaNGA Value
Added Catalog

The environment in which a galaxy resides plays an
important role in its formation and evolution. Galaxies
evolve as a result of intrinsic processes (i.e. their nature -
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this includes processes such as internal secular evolution,
feedback of various kinds etc), but they are also exposed
to the influences of their local and large-scale environ-
ments (i.e. how they are “nurtured”). We present a
the Galaxy Environment for MaNGA Value-Added Cat-
alog (GEMA-VAC) which provides a quantification of
the the local and large-scale environments of all MaNGA
galaxies in DR15. There are many different definitions of
environment and there are also several ongoing projects
within the MaNGA team exploring the influence the en-
vironment on galaxy properties. With this VAC we aim
to join and coordinate efforts so that the entire astro-
nomical community can benefit from the products. The
GEMA-VAC catalog will be described in more detail in
M. Argudo-Fernández et al (in prep). We describe the
contents of the VAC briefly below.

We estimate the tidal strength parameter for MaNGA
galaxies in pairs/mergers (B. Hsieh et al., in prep.),
the tidal strengths exerted by galaxies in the catalog
of galaxy groups in Yang et al. (2007), and tidal forces
exerted by nearby galaxies in two different fixed aper-
ture volume limited samples (namely 1 and 5 Mpc pro-
jected distances within a line-of-sight velocity difference
of ∆ v ≤ 500 km s−1 Argudo-Fernández et al. 2015).
Estimations of the local densities with the distance to
the 5th nearest neighbor are also provided. The local
density within N nearest neighbors include the correc-
tions explained in Goddard et al. (2017b) following the
methodology described in Etherington & Thomas (2015).
To have a more general picture of the environment, we
also provide a characterization of the cosmic web envi-
ronment which can be used to identify galaxies in clus-
ters, filaments, sheets, or voids, as explained in Zheng
et al. (2017). The full details of the reconstruction of
these density and tidal fields are described in Wang et al.
(2009) and Wang et al. (2012).

4.5.5. MaNGA Spectroscopic Redshifts

We present a Value-Added Catalog that contains the
best-fit spectroscopic redshift and corresponding model
flux for each MaNGA spectrum that has sufficient signal-
to-noise. We provide the mean of the spectroscopic red-
shifts sampled within the inner high signal-to-noise re-
gion of the MaNGA galaxies, which can be compared
to the single-valued NSA catalog redshift. Since the
MaNGA instrument uses the BOSS spectrograph, our
results are derived by iterative application of the BOSS
pipeline’s spec1d software (Bolton et al. 2012) to pre-
cisely measure the redshift using the higher signal-to-
noise measurements as a prior to the algorithm, which
allows us determine good redshifts on spectra that would
not otherwise have sufficient signal-to-noise to result in
a good redshift. Since the MaNGA survey uses an IFU,
the radial velocity profile of the galaxy can significantly
impact the redshift of each spectra. Thus the spectro-
scopic redshifts can both be a benefit to galaxy kine-
matic measurements and improve the accuracy of spectra
modeling and analysis. The authors of this Value-Added
Catalog have used the spectroscopic redshifts to search
for background emission lines to discover strong gravita-
tional lenses in MaNGA (Talbot et al. 2018).

5. OTHER SURVEY DATA AND PRODUCTS

5.1. APOGEE-2

SDSS DR15 includes no new APOGEE data. The cur-
rently available set of APOGEE Survey data consists of
the first two years of SDSS-IV APOGEE-2 (Jul 2014-
Jul 2016) as well as the entirety of SDSS-III APOGEE-1
(Aug 2011-Jul 2014) and is an exact duplicate of that
data which was released in DR14. DR15-associated
APOGEE documentation builds upon that from DR14
with extended explanations and the addition of infor-
mation and relevant text (e.g., a description of the
New Mexico State University (NMSU) 1.0m Telescope).
Note that the DR15 APOGEE data model has remained
largely the same with only slight revisions to the text for
clarity. Described below are the APOGEE technical pa-
pers that contain details which should assist users in the
exploitation of APOGEE data as well as provide further
understanding as to data quality (Zasowski et al. 2017;
Holtzman et al. 2018; Jönsson et al. 2018; Pinsonneault
et al. 2018; Wilson et al. 2018). Additionally, details are
provided on the recently-generated Value-Added Catalog
(VAC) from Donor et al. (2018), which contains a cata-
log of identified APOGEE open cluster members. There
are currently 4 VACs that rely upon APOGEE DR14
in order to extend and enhance the standard APOGEE
data release products (DR14 APOGEE TGAS Catalog,
APOGEE Red Clump Catalog, APOGEE DR-14 Based
Distance Estimations, and OCCAM).15

5.1.1. Technical Papers

Two new APOGEE-related technical papers are high-
lighted below: the instrument paper from Wilson
et al. (2018) that relays an extensive description of
the APOGEE spectrographs, and the APOKASC pa-
per from Pinsonneault et al. (2018) that details the
APOGEE spectroscopic follow-up of Kepler stars.

APOGEE Instrument Paper
The forthcoming publication from Wilson et al. (2018)
describes the design and performance of the near in-
frared, fiber-fed, multi-object, high resolution APOGEE
spectrographs. Since 2011, the first APOGEE instru-
ment has been in operation on the 2.5-m Sloan Tele-
scope at the Apache Point Observatory in New Mex-
ico, USA (a Northern hemisphere site). Several key
innovations were made during the development of the
APOGEE instrument which include a multi-fiber con-
nection system known as a ’gang-connector’ which allows
for the simultaneous disconnection and reconnection of
300 fibers; hermetically sealed feedthroughs to permit
fibers to pass through the cryostat wall continuously; the
first cryogenically-deployed mosaic volume phase holo-
graphic grating; and, a massive refractive camera that
is comprised of large-diameter mono-crystalline silicon
and fused silica elements. Specifically for the North-
ern spectrograph, Wilson et al. (2018) reports on the
following: the performance of the 2.5-m Sloan Founda-
tion Telescope in the near infrared wavelength regime;
the cartridge and fiber systems; the optical and optome-
chanical systems; the detector arrays and electronic con-
trols; the cryostat; the instrument control system; cali-
bration procedures; instrument optical performance and

15 More information regarding all available APOGEE VACs in-
cluding brief descriptions and the corresponding authors may be
found in the SDSS online documentation (http://www.sdss.org/
dr15/data_access/value-added-catalogs/).

http://www.sdss.org/dr15/data_access/value-added-catalogs/
http://www.sdss.org/dr15/data_access/value-added-catalogs/
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stability; and, lessons learned. The final sections of Wil-
son et al. (2018) provide similar details on the second
APOGEE spectrograph located at the 2.5-m du Pont
Telescope at Las Campanas Observatory in Chile. This
second (Southern hemisphere-based) instrument, a close
copy of the first, has been operating since April 2017.
Wilson et al. also contains multiple appendices for the
interested user.

The Second APOKASC Catalog
Over both the APOGEE-1 and APOGEE-2 Surveys, a
joint effort known as the APOGEE Kepler Asteroseis-
mic Science Consortium (APOKASC) APOGEE has en-
gaged in a spectroscopic follow-up of stars in the Kepler
field. Pinsonneault et al (submitted) presents the sec-
ond APOKASC Catalog of stellar properties for a sam-
ple of 6681 evolved stars with APOGEE spectroscopic
parameters and Kepler asteroseismic data analyzed us-
ing five independent techniques. The APOKASC data
includes evolutionary state, surface gravity, mean den-
sity, mass, radius, age and the spectroscopic and aster-
oseismic measurements used to derive them. As shown
in Figure 7, the APOKASC catalog asteroseismic log g
values and evolutionary state classifications allow for a
clear distinction between Red Giant Branch (RGB) and
Red Clump (RC) members. Pinsonneault et al. (2018)
employ a new empirical approach for combining astero-
seismic measurements from different methods, calibrat-
ing the inferred stellar parameters, and estimating un-
certainties. With high statistical significance, they find
that asteroseismic parameters inferred from the different
pipelines have systematic offsets that are not removed by
accounting for differences in their solar reference values.
Pinsonneault el al. includes theoretically motivated cor-
rections to the large frequency spacing (∆ν) scaling rela-
tion as well as calibrates the zero point of the frequency
of maximum power (νmax) relation to be consistent with
masses and radii for members of star clusters. For most
targets, the parameters returned by different pipelines
are in much better agreement than would be expected
from the pipeline-predicted random errors, but 22% of
them had at least one method not return a result and a
much larger measurement dispersion. This supports the
usage of multiple analysis techniques for asteroseismic
stellar population studies.

In the SDSS DR14 data release paper (Abolfathi et al.
2018), brief references were made to the Holtzman et al.
(2018) and Jönsson et al. (2018) publications. For the
benefit of users, concise descriptions of each are now pro-
vided. Please note that in addition to the DR15 Docu-
mentation, users should refer to these publications for de-
tailed information regarding the Data Reduction Pipeline
(DRP) and the APOGEE Stellar Parameter and Chem-
ical Abundance Pipeline (ASPCAP) as well as to under-
stand data quality and performance.

SDSS/APOGEE DR13 and DR14 Pipeline Pro-
cessing and Data Description
Holtzman et al. (2018) describes the data and analy-
sis methodology used for the SDSS/APOGEE Data Re-
leases 13 and 14 as well as highlights differences from the
DR12 analysis presented in Holtzman et al. (2015). For
example, the work demonstrates some improvement in

Fig. 7.— Spectroscopic effective temperature (from APOGEE
DR14) versus asteroseismic surface gravity (log g) in the
APOKASC sample by asteroseismic evolutionary state. Red clump
(RC; core He-burning) stars are signified in blue while Red Giant
Branch (RGB; H-shell or double shell burning) stars are shown
in red. The two populations have a clear offset in this plot, with
RC stars having higher surface gravity at the same temperature
compared to RGB stars.

the handling of telluric absorption and persistence in the
DR13/DR14 versions of APOGEE-2 data as opposed to
DR12. Holtzman et al. (2018) details the derivation and
calibration of stellar parameters, chemical abundances,
and respective uncertainties, along with the ranges over
which calibration was performed. The work reports some
known issues with the public data related to the calibra-
tion of the effective temperatures (DR13), surface gravity
(DR13 and DR14), and C and N abundances for dwarfs
(DR13 and DR14). Holtzman et al. (2018) also discusses
how results from The Cannon (Ness et al. 2015) are in-
cluded in DR14 and compares those with the values from
ASPCAP.

Comparison of SDSS/APOGEE DR13 and
DR14 Values to Optical Results
Jönsson et al. (2018) evaluates the ASPCAP perfor-
mance for both the DR13 and DR14 APOGEE datasets
with 160,000 and 270,000 stars, respectively. A compari-
son of the ASPCAP-derived stellar parameters and abun-
dances is done to analogous values inferred from optical
spectra and analysis with a subset of several hundred
stars. For most elements, Jönsson et al. (2018) find that
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the DR14 ASPCAP results have systematic differences
with the comparison samples of less than 0.05 dex (me-
dian) and random differences of less than 0.15 dex (stan-
dard deviation). These departures are attributed to a
combination of the uncertainties in both the comparison
samples as well as the ASPCAP-analysis. Specifically,
in comparison to the optical data, Jönsson et al. (2018)
find that magnesium is the most accurate alpha-element
derived by ASPCAP while nickel is the most accurate
Fe-peak element (excluding iron).

Additionally in Abolfathi et al. (2018), detailed in-
formation was provided regarding the recently-published
APOGEE-2 Targeting Paper from Zasowski et al. (2017)
Users are encouraged to consult Zasowski et al. for spe-
cific details and insight regarding APOGEE-2 targeting.

5.1.2. New Value-Added Catalog - OCCAM

The Open Cluster Chemical Analysis and Mapping
(OCCAM) Survey generates a VAC of open cluster mem-
bers as targeted in both APOGEE-1 and APOGEE-2
fields. To establish membership probabilities, the cata-
log combines APOGEE DR14 DRP-derived radial veloci-
ties (RV) and ASPCAP-derived metallicities with proper
motion (PM) data from Gaia DR2. This first VAC from
the OCCAM Survey includes 19 open clusters, each with
4 or more APOGEE members. The OCCAM VAC con-
sists of two components: a set of bulk cluster properties
which include motions (RV, PM) as well as robust av-
erage element abundance ratios; and, a set of member-
ship probabilities for all stars considered in the analysis
of the 19 open clusters. For further information on the
OCCAM Survey please consult Donor et al. (2018).

5.2. eBOSS, TDSS and SPIDERS

There are no new reduced eBOSS data included in this
data release; the VACs which are released are based on
previously released eBOSS spectra. The final eBOSS
spectroscopic sample will be released in DR16. For more
details on what’s coming in DR16 see §6.1.

DR14 marked the first cosmological sample from
eBOSS, consisting of spectra predominantly of luminous
red galaxies (LRG) and quasars. These data enabled the
first baryon acoustic oscillation (BAO) measurement in
the 1 < z < 2 redshift range from quasars (Ata et al.
2018) and a 2.6% precision constraint on the distance
scale using the clustering of LRG’s (Bautista et al. 2018).
These measurements reflect the two primary goals for
early eBOSS science, yet are only a subset of the results
from the two-year eBOSS sample. The large-scale struc-
ture catalogs for both of these studies were released in
July 2018 and were not described in the 14th Data Re-
lease publication. These value-added catalogs can now
be accessed from the DR14 site16 and from this new re-
lease in the parallel location. These catalogs contain all
necessary information such as the window function, sys-
tematic quantities, completeness estimates and correc-
tions for close-pairs and redshift failures to reproduce
those clustering measurements, similar to the catalogs
from the final BOSS sample (Reid et al. 2016).

The publications that document the DR14 target se-
lection algorithms (Myers et al. 2015; Prakash et al. 2016;

16 https://data.sdss.org/sas/ebosswork/eboss/lss/
catalogs/DR14/

Palanque-Delabrouille et al. 2016) will also describe the
LRG and quasar samples for the final eBOSS sample.
Several new algorithms for the spectroscopic data reduc-
tions were implemented in DR14 (Hutchinson et al. 2016;
Jensen et al. 2016); we will further improve sky subtrac-
tion with higher order models to the fiber-to-fiber sky
model, flux calibration with new models for standard
stars, and spectral extraction to account for cross-talk
such as that found in (Hemler et al. 2018, submitted) for
the final sample. A new method to improve the classi-
fication of galaxy spectra (Hutchinson et al. 2016) was
implemented in DR14 and new methods for classifying
emission line galaxies (ELG) and quasars are being con-
sidered for the final sample.

5.3. Optical Emission Line Properties and Black Hole
Mass Estimates for SPIDERS DR14 Quasars

This VAC, released in DR15, contains optical spectral
properties for all X-ray selected SPIDERS quasars re-
leased in DR14. The SPIDERS DR14 catalog is based on
a clean sample of 9399 sources from the Second ROSAT
All-Sky Survey catalog (2RXS; Boller et al. 2016) and
1413 sources from the first XMM-Newton Slew survey
catalog (XMMSL1; Saxton et al. 2008) with optical spec-
tra available. X-ray sources were matched to ALL-
WISE infrared counterparts using the Bayesian algo-
rithm “NWAY” (Salvato et al. 2018), which were then
spectroscopically identified using SDSS (Dwelly et al.
2017). Visual inspection results for each object in this
sample are available from a combination of literature
sources and the SPIDERS group, which provide both
reliable redshifts and source classifications. A spectral
fitting code has been produced which fits the spectral
regions around the Hβ and MgII emission lines and pro-
vides both line and continuum properties, bolometric lu-
minosity estimates, as well as single-epoch black hole
mass estimates. This VAC includes X-ray flux measure-
ments, visual inspection results, optical spectral proper-
ties, black hole mass estimates, and additional derived
quantities for all SPIDERS DR14 quasars. For more de-
tails see Coffey et al. (2018).

6. FUTURE PLANS

SDSS-IV has a full 2 years of operations remaining, and
is planning a further two public data releases. The next
data release, DR16, is now scheduled for December 2019
and will comprise data taken by both the APOGEE-N
and APOGEE-S instruments through July 2018 as well
as being the final complete data release for eBOSS op-
erations. The final, complete release, DR18 (which will
follow an internal only DR17) is planned for December
2020.

6.1. eBOSS

The eBOSS schedule was recently accelerated in order
to achieve its cosmological goals earlier than previously
planned. This acceleration began on January 1, 2018
and continues through February 16, 2019, at which time
eBOSS will complete its program significantly ahead of
the start of the Dark Energy Spectroscopic Instrument
(DESI) survey (DESI Collaboration et al. 2016). Un-
der the original schedule, eBOSS and MaNGA divided
the dark time roughly equally. Under the new sched-
ule, eBOSS will control all the dark time in January and

https://data.sdss.org/sas/ebosswork/eboss/lss/catalogs/DR14/
https://data.sdss.org/sas/ebosswork/eboss/lss/catalogs/DR14/
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February 2018, will return to the original schedule for
March through July 2018, and will control all the dark
time from August 2018 through February 16, 2019.

The total time scheduled for eBOSS in this period
amounts to 1540 hours. Historical weather patterns in-
dicate that 50% of this time will allow for open dome
with seeing and transparency conducive to spectroscopy.
Based on the 1158 plates completed from July 1, 2014
until June 30, 2018, we project the final data sample to
include the spectra from observations covering 302 ELG
plates and more than 1200 LRG/quasar plates. These
observations will define the complete ELG sample fol-
lowing the selection algorithms in Raichoor et al. (2017).
The final LRG and quasar samples will cover a volume
roughly 2.3 times larger than the two-year cosmology
samples released and analyzed in DR14.

The final eBOSS sample will enable precision measure-
ments of BAO in the clustering of galaxies, quasars, and
the Lyman-α forest. The final sample will also enable
new measurements of redshift space distortions in the
anisotropic clustering of galaxies and quasars over the
redshift range 0.6 < z < 2.2. The next data release
has been scheduled around the expected time that these
analyses will complete. This data release will be the last
to include new eBOSS data. Also included will be the
value-added catalogs that allow others to reproduce the
final cosmology measurements.

6.2. SPIDERS

At the completion of the eBOSS survey, SPIDERS will
have only obtained spectra from the ongoing followup
program of ROSAT and XMM-Newton sources. Contin-
uing at the current pace, at the end of the survey SPI-
DERS will have collected about 12000 new spectra of X-
ray selected AGN and 40000 spectra of member galaxies
of about 5000 clusters over the final eBOSS area.

The delayed launch of the eROSITA satellite (Predehl
et al. 2014), combined with the accelerated program for
obtaining eBOSS spectra mean that it will not be possi-
ble to obtain redshifts for eROSITA targets during rou-
tine eBOSS operations. The eROSITA Performance Ver-
ification data set is currently planned to be available by
early-mid 2019 and should consist of 120 sq deg, with
100-140 targets per sq deg. To address at least part of
the original goals of SPIDERS involving eROSITA fol-
lowup we plan to dedicate a special set of 12 plates for
these targets, however this plan cannot be confirmed un-
til February 2019.

6.3. TDSS

The accelerated pace for eBOSS discussed above cor-
respondingly accelerates TDSS, which also relies on the
BOSS spectrographs, using a small portion (about 5%)
of the optical fibers piggybacking on eBOSS plates.
TDSS observations will thus effectively also conclude
with eBOSS data collection in about mid-February of
2019, and with SDSS-IV/TDSS data to be included in
the future DR16. Although all three main components of
TDSS – the optical spectroscopic follow-up of PS1 pho-
tometric imaging variables (e.g., see Morganson et al.
2015, Ruan et al. 2016), repeat Few-Epoch Spectroscopy
(FES) of selected subclasses of stars and quasars antic-
ipated or suspected to reveal spectroscopic variability

(e.g., see MacLeod et al. 2018), and the more recently
initiated TDSS Repeat Quasar Spectroscopy (RQS; also
see MacLeod et al. 2018) program – thereby also have
been accelerated toward completion, in practice this ad-
vance is such that SDSS-IV data collection for the TDSS
RQS program in particular is now nearing completion17.
The TDSS RQS program obtains multi-epoch spectra
for thousands of known quasars (and with larger sam-
ple size, and greater homogeneity and less a priori bias
to specific quasar subclasses than the TDSS FES pro-
grams), all of which have at least one earlier epoch of
SDSS spectroscopy already available in the SDSS archive.
The RQS program especially addresses quasar spectral
variability on multi-year timescales, and in addition to
its own potential for new discoveries of phenomena such
as changing-look quasars or broad absorption line (BAL)
variability and others, will also provide a valuable (and
timely) resource for planning of yet larger scale multi-
epoch quasar repeat spectral observations anticipated for
the Black Hole Mapper program in the future SDSS-V
(see §6.6 below). From data taken for the RQS SDSS-IV
program to date, we expect RQS to add another recent
epoch of spectroscopy for ∼16000 SDSS quasars, sam-
pling across a broad range of properties including red-
shift, luminosity, and quasar subclass type.

6.4. MaNGA

MaNGA will continue to take observations for the next
two years of SDSS-IV operations. The time trade with
eBOSS has slowed the rate of observations during 2018;
however, it will provide an overall increase in the to-
tal observing time allocation for MaNGA by 8%. The
projected final survey footprint, assuming we continue
nominal survey operations through July 2020, is shown
for two different expectations for weather at the tele-
scope and overlaid on other relevant surveys in Figure 2.
We expect to exceed our original goal of 10,000 galaxies
slightly under nominal weather conditions.

6.5. APOGEE-2

The APOGEE-2 Survey continues to acquire obser-
vations from both the Northern and Southern hemi-
spheres. SDSS-IV Data Release 16 will contain the first
APOGEE-2 data from the Southern instrument. For
DR16, a variety of improvements are planned to both the
DRP and the APOGEE Stellar Parameters and Chem-
ical Abundance Pipeline (ASCAP). A new atomic line
list will be generated (which will include transitions of
Ce II and Nd II) and a new molecular list will be as-
sembled(which will be more extensive in size and will
incorporate FeH features). An expansion of the stel-
lar atmosphere model grid is underway which will entail
the inclusion of higher surface gravities, lower carbon
abundances, and higher nitrogen abundances. Note that
Model Atmospheres in Radiative and Convective Scheme
(MARCS18) models (Gustafsson et al. 2008) will be em-
ployed for both the M and GK grids, ensuring a smooth
transition across an effective temperature range of ap-
proximately Teff = 2500 − 6000K. Additionally, some

17 This is primarily just because RQS piggybacks on a subset of
eBOSS plates which received recent heavy emphasis

18 http://marcs.astro.uu.se
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tweaking of the data processing and derivation proce-
dure will occur. Planned modifications include the im-
provement of the LSF determination (with the poten-
tial employment of on-the-fly LSF derivation), a better
methodology for the extraction of the individual element
abundances, and an improved technique for filling holes
in the stellar atmosphere model grid.

6.6. SDSS-V

Preparations for the fifth generation of SDSS are un-
derway, with SDSS-V anticipated to begin operations in
2020 (Kollmeier et al. 2017) . SDSS-V will collect data
at both APO and LCO using the existing APOGEE and
BOSS spectrographs on the 2.5-meter telescopes, as well
as new optical spectrographs dedicated to integral field
spectroscopy on new smaller telescopes. The current
SDSS plugplate system will be replaced with robotic fiber
positioners in the focal planes of the 2.5-meter telescopes.

SDSS-V comprises three primary projects: the Milky
Way Mapper, the Black Hole Mapper, and the Local
Volume Mapper. The Milky Way Mapper will use the
APOGEE and BOSS spectrographs to observe 4-5 mil-
lion stars in the Milky Way and Local Group, probing
questions of galaxy formation and evolution, stellar as-
trophysics, and stellar system architecture. The Black
Hole Mapper will use the BOSS spectrographs to mea-
sure masses for∼1200 supermassive black holes via rever-
beration mapping (e.g. Grier et al. 2017), determine spec-
tral variability for ∼25,000 quasars, and provide identi-
fications and redshifts for ∼400,000 X-ray sources de-
tected by eROSITA (Predehl et al. 2014). The Local
Volume Mapper will collect integral field spectroscopy
using new, R ∼ 4000 optical spectrographs coupled to
small telescopes at APO and LCO. These spectra will
span ∼3000 deg2 of sky in the Milky Way midplane,
the Magellanic Clouds, and other Local Group galax-
ies at high spatial resolution, with the goal of tracing
ISM physics and stellar-ISM energy exchange on differ-
ent physical scales in a range of galactic environment.

6.7. Long Term Sustainability of the SDSS Archives

Starting in 2017, the Science and Catalog Archive
Teams have been proceeding on a roadmap toward a sus-
tainable data archive,19 designed to protect the legacy of
SDSS Data.

Some of the steps on this roadmap, which are currently
receiving attention, include:

• Archival Quality Storage: The Science Archive
Server (SAS) file system was not designed to last
beyond warranty of the disks, and disk corruption
issues require meticulous and time intensive repair.
The SAS Team is currently implementing a ceph-
based archival quality object storage system (Weil
et al. 2006) similar to that used by organizations
specializing in big data (e.g. Google and Amazon)
providing complete internal redundancy, support
for geographical distribution, internal failure de-
tection and self recovery, and inexpensive backup
in cloud-based big data object storage systems.

• Science Archive Database: The census of what
is contained on the SAS is managed through a

19 Funded by a dedicated grant from the Sloan Foundation

Python system with a database which records the
hundreds of millions of file paths, file sizes, and file
verification checksums. This system is currently
being re-implemented to allow a more seamless and
high speed data access.

• Migrating the SDSS Software Repository to
GitHub: The SDSS subversion software reposi-
tory, currently served along-side the SAS, will be
replaced by repositories copied into a GitHub orga-
nization (https://github.com/sdss), with GitHub
Teams created to manage repository access con-
trol, with public release of software including open
source licensing, starting with DR15 (e.g. Marvin
and the underlying code “Marvin’s Brain”).

• SDSS Software Framework Development:
The Data and Operations Teams are currently
designing a new software framework to provide
Python-based tools, including improved data ac-
cess, database access, data model documentation
and machine-readability.

• SDSS Software Containers: Portable images
of SDSS systems have been developed and imple-
mented on docker hub, and are currently used at
NERSC for the Science Archive Mirror and JHU for
Science Archive Webapp development (e.g. Marvin
at JHU). The data team is now looking at develop-
ing a new wave of such virtual machines to replicate
the experience of working on an SDSS computer at
the University of Utah.

6.7.1. Modernizing SkyServer

The SkyServer has been the primary online web portal
to the Catalog Archive Server (CAS) since the beginning
of SDSS, and although it underwent a significant facelift
in 2007, it is now woefully outdated in terms of its layout
and the user experience, and generally in terms of its us-
ability and accessibility. The SkyServer has been due for
a rewrite with modern web technology for several years
now, and we are finally undertaking this daunting task
as we wind down SDSS-IV and look forward to SDSS-V.
One of the biggest constraints that makes this a difficult
enterprise is the large user base that the SkyServer has
built over the past 15+ years. We do not want to com-
pletely rearrange the site in such a way that users do
not recognize it any more, and more importantly, we do
not want to break all the functionality that works very
well currently in spite of the outdated interface. In short,
we want to adopt a philosophy of going from “working
to working” versions as we modernize the site. We list
below the specific changes we are currently working on.

• Upgrade Technology: First and foremost, we
are upgrading the web technology underneath the
SkyServer. This includes everything from the ver-
sion of HTML and CSS that it was originally writ-
ten in, to the way that the SkyServer website code
is logically organized. We are going toward the
MVC (model-view-controller) paradigm that mod-
ern websites use to produce modular, reusable and
robust web applications.

• Portability: The SkyServer has been a Microsoft
Windows application developed with the .NET
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framework all along. This has made it very dif-
ficult to port even the front end to any other plat-
form. Now, with the availability of .NET Core, we
have the opportunity to migrate the website to a
portable platform that can not only run in Linux,
but can also be Dockerized.

• Usability: Usability standards have changed con-
siderably since the time when the SkyServer origi-
nally came online. In spite of significant upgrades
to different parts of the SkyServer over the years,
there has not been a comprehensive reexamination
of the usability aspects. We aim to rectify this as
we redesign the user interface. Usability changes
will include effective presentation of information,
compatibility with all browsers, responsiveness of
page loads, and consistency of display modes (e.g,
opening a new tab for results from a query and/or
bringing the results pane to the front).

• Accessibility: Accessibility pertains to the versa-
tility of the website and how responsive and easy
it is to use and work with for users that are re-
stricted in various ways. This ranges from users
on mobile devices to users with restricted access to
the internet as well as users with impaired vision or
other handicaps. Incorporating modern web design
standards and technologies will mostly take care
of these aspects, but we will pay special attention
to make sure that the SkyServer can be used by
as many people as possible anywhere in the world
there is internet access.

• Integrate SkyServer and Voyages: The Sky-
Server has an extensive educational sections that
contains several levels of classroom exercise based
on SDSS data. These are known collectively as
the SkyServer Projects. Voyages is a SkyServer
“spinoff” website that has become quite popular
and presents several virtual “voyages” through the
SDSS data for non-scientist audiences. The Voy-
ages website is a much more modern web applica-
tion that is based on a content management system
(CMS) - WordPress. This allows new pages and
functionality to be added to Voyages much more
easily than SkyServer. As part of the SkyServer
modernization, we are migrating all the SkyServer
student projects to Voyages and using the same
CMS (WordPress) for SkyServer too. We are also
integrating Voyages further with SkyServer so that
it uses the SkyServer API to run queries on the
SDSS data.

• Streamline CAS ⇔ SAS Interface: There are
hooks currently between SkyServer/Voyages and
the Science Archive Server, but they are awkward
at best. The SAS API has recently been upgraded,
and the points of access to SAS data that currently
exist in SkyServer and Voyages will be updated to
use the proper SAS API calls.

These steps will help ensure the availability of SDSS
data to astronomers for years to come, and long beyond
the current funded plans for SDSS-IV and SDSS-V. The

CAS data and access tools will at that point be well-
positioned to be readily integrated into existing data cen-
ters for a minimal incremental cost.
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José Sánchez-Gallego and Anne-Marie Weijmans and
attended by Amy Jones, Ben Murphy, Bonnie Souter,
Brian Cherinka, David Stark, David Law, Dan Lazarz,
Gail Zasowski, Joel Brownstein, Jordan Raddick, Julie
Imig, Karen Masters, Kyle Westfall, Maria Argudo-
Fernández, Michael Talbot, Rachael Beaton, Renbin Yan
and Sten Hasselquist (as well as Becky Smethurst, Rita
Tojeiro, Ben Weaver and Ani Thaker via video link).

This research made use of astropy, a community-
developed core python (http://www.python.org)
package for Astronomy (Robitaille et al. 2013); ipython
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et al. 2009, ApJS, 182, 543

Abolfathi, B., Aguado, D. S., Aguilar, G., et al. 2018, ApJS, 235,
42

Ahn, C. P., Alexandroff, R., Allende Prieto, C., et al. 2012, ApJS,
203, 21

Aihara, H., Allende Prieto, C., An, D., et al. 2011, ApJS, 193, 29
Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015, ApJS,

219, 12
Albareti, F. D., Allende Prieto, C., Almeida, A., et al. 2017,

ApJS, 233, 25
Argudo-Fernández, M., Verley, S., Bergond, G., et al. 2015, A&A,

578, A110
Ata, M., Baumgarten, F., Bautista, J., et al. 2018, MNRAS, 473,

4773
Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G.,

& Andrae, R. 2018, AJ, 156, 58
Bautista, J. E., Vargas-Magaña, M., Dawson, K. S., et al. 2018,

ApJ, 863, 110
Beifiori, A., Maraston, C., Thomas, D., & Johansson, J. 2011,

A&A, 531, A109
Bernardi, M., Fischer, J.-L., Sheth, R. K., et al. 2017, MNRAS,

468, 2569
Blanton, M. R., Kazin, E., Muna, D., Weaver, B. A., &

Price-Whelan, A. 2011, AJ, 142, 31
Blanton, M. R., Bershady, M. A., Abolfathi, B., et al. 2017, AJ,

154, 28
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