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Abstract
This paper aims to study the variability of indoor CO2 concentration due to occupant behaviour and physical parameter 
uncertainties. A case study, conducted in a mechanically ventilated detached house, is presented with an uncertainty and 
sensitivity analysis (Monte Carlo method with a Latin hypercube sampling). Uncertainties related to occupant behaviour 
are described by combining four types of scenarios: occupation, generation of CO2 per person, indoor doors, and outdoor 
windows’ openings. The uncertainty analysis showed that despite an acceptable average room CO2 concentration, large vari-
ations, due to input parameter uncertainties, are observed in CO2 instantaneous concentrations. Moreover, during occupied 
periods, average value is relatively important (higher than 1300 ppm). Occupants spent around 30% of the time at CO2 con-
centrations over 1500 ppm. Large output uncertainties are reached on the cumulative CO2 concentration and time fraction 
spent over 1500 ppm. The sensitivity analysis highlights the strong influence of the parameters related to bedrooms (number 
of occupants, night generation of CO2) and of the kitchen extracted airflow rate. It also shows that low-level air change rates 
in bedrooms are mainly caused by an incorrect air distribution in the building. Potential solutions to reduce both concentra-
tions and uncertainties are discussed.

Keywords  Uncertainty analysis · Sensitivity analysis · Mechanical exhaust ventilation · Indoor air quality · Occupant 
behaviour · Residential buildings

Introduction

In the current energy context, energy efficiency measures 
tend towards the reduction of ventilation and leakage airflow 
rates in buildings. Indoor air quality (IAQ), which can be 
affected by this reduction, is also a major preoccupation. 
Indeed, IAQ is an essential element of occupant comfort 
and health [1]. Unlike temperature, it is rarely measured, 
and thus, users can only rely on their perception. Moreover, 
it is difficult for occupants to control IAQ for a long period, 
especially in winter when the fact that opening windows 
enters in conflict with thermal comfort and energy savings. 
Consequently, quantifying IAQ variability in buildings is 
highly important. This variability can be quantified by an 
uncertainty and sensitivity analysis.

Although uncertainty and sensitivity analyses have been 
conducted by many authors on building energy perfor-
mances [2–11], few publications discuss the effect of input 
parameter uncertainties on residential building indoor air 
quality. Laverge et al. [12] compared different mechanical 
exhaust ventilation systems in accordance with five stand-
ards on five different dwelling typologies. A probability-
based approach was considered for several input variables 
(such as façade orientation, CO2 production by occupants, 
number of occupants, and occupancy schedules). A Monte 
Carlo approach was used with 100 simulations. This study 
reveals that for the Belgian, Dutch, and French standards, 
occupation time with an excess CO2 concentration higher 
than 1000 ppm is less than 5%. The authors demonstrated 
the high importance of air transfer grilles between rooms 
to reach a satisfactory airflow rate distribution. They also 
showed the weak importance of boundary conditions (e.g., 
wind speed and direction) in case of relatively small size 
trickle ventilators (as in the British, French, and ASHRAE 
standards). This conclusion is consistent with another study, 
where different ventilation strategies were compared [13]. 
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This study showed that the performance of controlled air-
supply opening size systems is less affected, by variable 
conditions such as climate or occupancy, than systems with 
controlled air exhaust. A sensitivity analysis was conducted 
by Richieri et al. [14] to assess the impact of the envelope 
airtightness on airflow patterns. The authors reported that 
poor airtightness can modify the airflow pattern in the house 
and can also lead to a fraction of the air entering the house 
by air inlets lower than 30% (and infiltration higher than 
70%) for a mechanical exhaust ventilation system.

Das et al. [15] conducted a sensitivity analysis on particu-
late matter (PM2.5) concentration in a single-storey flat with 
natural ventilation in England. A Latin hypercube sampling 
method as well as a linear regression and various sensitivity 
tests were used. The study pointed out the principal influent 
parameters on PM2.5 concentration in the flat (i.e., internal 
deposition rate, infiltration rate, ambient external concen-
tration, window opening, PM2.5 generation rate, and indoor 
temperature). Hyun et al. [16] investigated the uncertainty 
of the air change rate in a naturally ventilated building using 
the Monte Carlo method with a Latin hypercube sampling. 
The results indicate that uncertainty is high and that influ-
ential parameters are related to weather conditions (wind 
velocity and outdoor temperature), occupant behaviour 
(window opening area), and model parameters (discharge 
coefficient, flow exponent, local terrain constant, and wind 
velocity profile exponent). These publications demonstrate 
the growing interest in residential building indoor air qual-
ity particularly under uncertainty. However, some studies 
considered closed windows and indoor doors [12, 14], did 
not integrate input uncertainties [14], or were performed on 
a natural ventilation system [15, 16].

The objective and the novelty of this paper are to conduct 
an uncertainty and sensitivity analysis on a mechanically 
ventilated detached house to investigate the variability of 
indoor CO2 concentration due to occupant behaviour and 
physical parameter uncertainties. This way, the most influent 
parameters on indoor CO2 concentration will be identified. 
Their value should be known and measured as much as pos-
sible to limit the variability on the results and to improve 
the accuracy of building simulation results. Furthermore, 
the best practices to reduce the indoor CO2 concentration 
could be deduced by identifying actions on the most influ-
ent parameters. An original approach is used for the input 
parameter uncertainties related to occupant behaviour by 
combining four types of scenarios: occupation (time and 
occupancy level), generation of CO2 per person, and indoor 
doors and outdoor windows openings. This analysis is based 
on the Monte Carlo method with a Latin hypercube sampling 
(LHS).

We are aware that carbon dioxide (CO2) concentration 
does not provide a complete indication of IAQ [17]. Indeed, 
it does not describe various phenomena (such as absorption/

desorption and deposition) nor constant or occupant-inde-
pendent sources (such as emissions from building materials 
and furniture). However, CO2 has the advantage of captur-
ing the dynamic effect of occupant contaminant genera-
tion. Used by many authors [12, 16, 18, 19], it also has the 
advantage of being a good indicator for bio-effluents accept-
ance [17] and consequently for the ventilation efficiency to 
exhaust this indoor pollution.

The definition of an acceptable CO2 concentration as 
well as its impact on health and cognitive functions is not 
fixed [1, 20]. The level selected as a limit (acceptance and 
comfort) in the present paper is 1500 ppm, based on the 
recommendation of Satish et al. [21] and on the German 
standard DIN 1946-2 [22]. This value is in accordance with 
the ANSI/ASHRAE Standard 62.1 [23] that indicates that 
a CO2 concentration lower than about 700 ppm above out-
door will satisfy a substantial majority of visitors entering 
the room with respect to human bio-effluents (body odour).

In recent years, the number of relatively cheap indoor 
climate measuring instruments, that can detect CO2, is 
increasing rapidly in private households. Thus, improving 
the knowledge of CO2 in dwelling is a relevant subject for 
occupants to be able to interpret the importance of their 
measurements.

The first part of this paper defines the methodology and 
tools used for sampling and for sensitivity and uncertainty 
analysis. The modelling approach, including a description of 
the case study and input parameters, as well as the indicators 
used to characterise indoor CO2 concentration are detailed 
in the following part. Finally, the results, which consist of 
both an uncertainty and a sensitivity analysis, are presented.

Methodology

With the objective of investigating the variability of indoor 
CO2 concentration, the following methodology is applied. 
The Monte Carlo method is selected, because both uncer-
tainty and sensitivity analyses can be performed with this 
method. First, the modelling approach and input parame-
ters as well as related uncertainty distributions are defined 
(“Case study and modelling”). Uncertainties on occupancy 
schedule, doors and windows opening, and closing times are 
considered for occupant behaviour variability. Uncertainties 
on physical parameters include building characteristics such 
as air leakage and air inlet areas, building parameters such 
as ventilation flow rate, temperature set point, heater power, 
and wind pressure coefficients. Afterwards, the Latin hyper-
cube sampling (LHS) method is used to build a sample of 
model input parameters. Among the different methods avail-
able, LHS sampling method has been chosen, since it allows 
exploring the input parameter space with a relatively reduced 
sample size. This method is particularly convenient to get a 
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quick estimate of sensitivity indices when a few number of 
parameters has been selected and model evaluation cost is 
high [24, 25]. The sampling process is the generation of a 
set of model input parameters that will be used to perform 
the Monte Carlo analysis. For constant physical parameters, 
values from the sampling are used directly in the simulation. 
Occupant behaviour scenarios are also constructed from this 
sample that provides time and level variables. There are no 
fixed criteria for the sample size depending on the number 
of parameters. Some authors recommend that sample size 
should be at least the number of parameters multiplied by 
a factor of 4/3 [16] or 3/2 [26, 27]. The chosen size of the 
sample is here 500 for 178 parameters. LHS is implemented 
in Python with a matrix generated by the software R [28].

Once the simulations run, using the defined indicators 
(“Indicators of indoor CO2 concentration”), results are pro-
cessed to conduct an uncertainty and sensitivity analysis. 
Uncertainty is characterised by means of graphical analysis 
(relative frequency and cumulative probability graphs) and 
by the calculation of average and standard deviation values 
for the defined indicators. A global sensitivity analysis is 
carried out to study the influence of input parameters vari-
ability on indoor CO2 concentration indicators. It consists 
of a simultaneous variation of all input parameters on their 
whole variation interval. Standardised regression coeffi-
cients (SRC) are chosen to rank and quantify the effects of 

input parameters on indoor CO2 concentration indicators 
[29]. They are calculated by a linear regression with the least 
square method. A sign is added to the SRC depending on the 
sign of the associated regression coefficient. The coefficient 
of determination (R2) is used to evaluate the validity of the 
linear regression [3, 10]. Figure 1 describes the methodology 
and software used.

Case study and modelling

Case study

The chosen case study (Fig. 2) is based on the N2 house of 
the Fraunhofer Institute in Holzkirchen (Germany) used in 
the IEA Annex 58 [30].

Although no CO2 concentration measurements were per-
formed, this house is selected because of the availability of 
building characteristics that are presented in a previous paper 
[32]. Some modifications have been performed. In this study, 
the house is considered to be in Bordeaux (France) using 
TMY3 weather data from IWEC (International Weather for 
Energy Calculations). The ventilation system is adapted to 
the French standard (Fig. 3) [33, 34]. Only the ground floor 
is studied. A constant temperature (equal to indoor set point) 
is fixed as a boundary condition for the cellar and the attic.

Fig. 1   Methodology and soft-
ware used

Fig. 2   South view of the house 
[31]
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Model

The simulation is carried out for a period of 7 days during 
winter (from December 18 to December 24). This period 
has been chosen, because in winter, windows are usually 
opened less often, potentially leading to higher indoor pol-
lutant concentration from internal sources [15]. It is per-
formed in Dymola (Modelica language) using the validated 
Modelica Buildings library [35, 36]. A multi-zone approach 
with one zone per room is applied. The modelling meth-
odology is detailed in a previous paper [32]. The Dymola 
built-in Esdirk45a solver is used with a tolerance of 10−6. 
Input parameters described in the following sections are 
pre-processing before being entered in the model (Fig. 1). 
Model outputs consist of the room CO2 concentrations that 
are used to compute the indicators of indoor CO2 concentra-
tion defined in “Indicators of indoor CO2 concentration”.

Constant and modelling parameters

Ventilation system: air leakage area

Fresh air is supplied to the building from air inlets located 
in the two bedrooms and in the living room. Air leakage 
through the building envelope and window openings also 
contribute to fresh air supply. Stale air is mechanically 
extracted in the kitchen and the bathroom (Fig. 3). The con-
stant extracted flow rates are set to 105 m3/h (kitchen) and 
30 m3/h (bathroom) according to the French regulation [33, 
34].

French regulation also requires that the fresh airflow 
rate entering the building by vents and infiltration, at a 
rated pressure difference of 20 Pa, should be at least equal 
to the extracted flow rate. For this type of building, the 
prescribed inlet flow rate, under a pressure difference of 
20 Pa, is 60 m3/h in the living room and 30 m3/h in each 
bedroom [37]. Using the Bernoulli’s equation [35]

where V̇  is the airflow rate (m3/s), Cd is the discharge coef-
ficient (–), A is the air inlet area (m2), ΔP is the pressure 
difference (Pa), m is the flow coefficient (–), and ρ is the air 
density (kg/m3). Considering Cd = 0.65 and m = 0.5 (large 
crack [35]), it leads to an air inlet area of 44.4 cm2 for the 
living room and of 22.2 cm2 for each bedroom.

n50 (air exchange through the building envelope at a 
50 Pa pressure difference) measured value is 1.62 air 
changes/hour (ac/h). A global air leakage area is computed 
with Cd = 0.65 and using [38]:

Then, this area is distributed (Table 1) in each room 
proportionally to windows and doors perimeters [32].

Concerning the air circulation in the building, the 
French regulation recommends an undercut of 2 cm for 
the kitchen door and of 1 cm for the other doors [37].

(1)V̇ = CdAΔP
m
√

2∕𝜌,

(2)A = V̇

√

𝜌∕(2ΔP)

Cd

.

Fig. 3   Ground floor plan (modi-
fied from [31])
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Doors and windows

Doors and windows are modelled with the DoorDiscretize-
dOperable model included in the Airflow package of the 
Modelica Buildings library [35].

The inlet air area and the air leakage area are both 
included in the windows closed area (Fig. 3). The following 
parameters are used [14, 35, 39]:

–	 Kitchen and Bathroom windows : Cd = 0.65 and m = 0.65 
(closed), Cd = 0.65 and m = 0.5 (open).

–	 Other windows (including inlet air area) and doors: 
Cd = 0.65 and m = 0.5 (closed or open).

Other parameters

The indoor air temperature set point is fixed to 20 °C [40]. 
An ambient external CO2 concentration of 400  ppm is 
assumed. It is equal to the mean yearly value measured in 
Paris [41]. This value is also close to 380 ppm assumed 
by Hyun et al. [16] in Seoul and to the range 340-460 ppm 
used by Calì et al. [42] in Aachen, Germany. The electric 

heater power is fixed to 2000 W [30]. The wind pressure 
coefficient at zero wind incidence angle (Cp0) is considered 
equal to 0.6 [43].

Scenarios

Four types of scenarios are defined: occupation, genera-
tion of CO2 per person, indoor doors and outdoor windows 
openings.

Occupation

A deterministic schedule is fixed for each room. This sched-
ule, similar for all the days of the week, is based on a family 
of four people (2 adults and two teenagers), and it is based 
on time and number of occupants variables (respectively, 
tNbedroom and No_occNbedroom in Fig. 4).

Generation of CO2 per person

The generation of CO2 per person is defined on two peri-
ods of the day to take into account a low-level night activ-
ity. Metabolic rate is assumed to be 1.5 MET (Metabolic 
Equivalent of Task) between 6 h and 22 h (daytime) and 0.9 
at night [44, 45]; this corresponds, respectively, to a CO2 
generation of 0.39 and 0.23 l/min [23]. These values are in 
the same range as the previous studies [19, 46, 47] (Fig. 10 
in Appendix).

Indoor doors and outdoor windows

Indoor doors and outdoor windows are considered to be 
closed by default. Doors are set as opened (with a mean 
opening fraction of 0.8) for a typical period of 5 min when 

Table 1   Leakage areas

Air leakage 
area (cm2)

Whole ground floor 165.1
Living room (windows 2 and 3) 61.6
Living room (window 1) 17.2
Bathroom 17.2
South and north bedroom 17.2
Kitchen, lobby 17.2

Fig. 4   Schedule for the occupancy of the North bedroom
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the number of occupants in the room is changing. Win-
dows are also opened for 5 min following a determined 
schedule. The opening is performed using two time vari-
ables, one for the opening and another one for the closing.

Uncertainties

Constant parameters

In this study, only the uncertainties that would have a pos-
sible impact on CO2 concentration are considered. Average 
and standard deviation values for the design and physi-
cal parameters are presented in Table 2. They are chosen 
according to the literature [2, 3, 6, 40, 41]. Truncated nor-
mal distributions bounded between ± 2σ are generated with 
the OpenTURNS software [48]. The number of this type 
of parameters is equal to 25.

Scenarios

An uncertainty distribution is set for each time and occu-
pancy-level variable (respectively, tNbedroom and No_occ-
Nbedroom in Fig. 4) [49]. In the sampling process, different 
values for all variables are fixed following the chosen uncer-
tainty distribution. Then, for each simulation, a different 
scenario is randomly built. The result, after the sampling 
process, is presented in Fig. 11 (“Appendix”).

An uncertainty distribution is also set for each time and 
opening fraction variable of indoor doors and outdoor win-
dows. The indoor doors schedule is linked to changes in 
the deterministic occupancy schedule. Doors and windows 
schedules (after the sampling) are presented in Figs. 12 and 
13 (“Appendix”).

Average and standard deviation values for occupant 
behaviour parameters used in the scenarios are presented in 
Table 3. A negligible standard deviation is set for the frac-
tion of the door or window closed (0) to prevent a constant 
opening fraction that would lead to an important opening 
area. As for the design and physical parameters, truncated 
normal distributions bounded between ± 2σ are generated. 
However, with this distribution, negative values are obtained 
for the zero value of the number of occupants. Either setting 
a truncated distribution between 0 and +2σ or replacing the 
negative values by zero could solve this issue. We choose 
the second solution to limit the mean value that will not be 
in both cases equal to zero [as it can be observed in Fig. 11 
(“Appendix”)]. The number of occupant behaviour param-
eters is equal to 153.

Indicators of indoor CO2 concentration

Several indicators and criteria can be used for the characteri-
sation of indoor CO2 concentration [50]. We selected three 
indicators: the average CO2 concentration, the time fraction 
spent over a limit concentration, and the cumulative CO2 
concentration.

Three different average CO2 concentrations are consid-
ered: room and house CO2 concentrations ( CO2r , CO2av,r ), 

Table 2   Uncertainty of design and physical parameters

Average (µ) Standard 
deviation 
(σ)

Windows, doors dimensions 0.935, 1.11, 1.23, 
1.54, 1.98, 
2.37 m

1 cm

Kitchen door undercut dimension 2 cm 0.5 cm
Other doors undercut dimension 1 cm 0.25 cm
Ventilation flow rate 30, 105 m3/h 10%
Air inlet area 22.2 cm2 10%
Leakage area 17.2, 61.6 cm2 25%
Wind pressure coefficient at zero 

wind incidence angle (Cp0)
0.6 0.1

Ambient external CO2 concentration 400 ppm 10%
Indoor temperature 20 °C 1 °C
Electric heater power 2000 W 10%

Table 3   Uncertainty of the 
occupant behaviour parameters

Average (µ) Standard 
deviation 
(σ)

Time (doors, windows opening/closing) 0 to 24 h 5 min
Time (occupation, generation of CO2 by person) 0 to 24 h 30 min
Fraction of the door or window closed 0 2.10−6

Fraction of the door or window open 0.8 0.1
Generation of CO2 by person 0.39 and 0.23 (l/min) 10%
Number of occupants (bedroom) 0, 1, 2 0.25
Number of occupants (other room) 0, 1, 2, 4 0.5
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occupied room and house CO2 concentrations ( CO2r,occ , 
CO2av,r,occ ), and CO2 concentration averaged by occupant 
( CO2av,occ).

First, the average room and house CO2 concentrations are 
calculated for the whole period (1 week):

with nroom , the total number of rooms in the house, CO2 , the 
CO2 concentration (ppm), Nocc , the number of occupants, 
Δt , the time step, Vr , the room volume, t0 and tend , respec-
tively, the start and stop time of the simulation.

Second, the average room and house CO2 concentrations 
are computed considering only the occupied rooms:

with � = 0 if Nocc ≤ 0.5 and � = 1 if Nocc > 0.5 ∶

with Vr,occ , the occupied room volume. If a room is not occu-
pied ( Nocc ≤ 0.5 ) during the whole period, neither its CO2 
concentration nor its volume is taken into account in the 
average.

Third, the occupant average CO2 concentration is calcu-
lated considering the whole period:

The time fraction spent by an occupant over a limit con-
centration ( l1 ) is defined as

The cumulative CO2 concentration (in ppm.h) is the num-
ber of hours when CO2 concentration is over a limit ( l1 ) 
multiplied by the excess CO2 above this limit [51]:

(3)CO2r =

∑tend
t=t0

CO2
t
r
Δt

tend − t0

(4)CO2av,r =

∑

r∈nroom
VrCO2r

∑

r∈nroom
Vr

(5)CO2r,occ =

∑tend
t=t0

�CO2
t
r
Δt

∑tend
t=t0

�Δt

(6)CO2av,r,occ =

∑

r∈nroom
VrCO2r,occ

∑

r∈nroom
Vr,occ

(7)CO2av,occ =

∑tend
t=t0

∑

r∈nroom
CO2

t
r
∗ Nocc

t
r

∑tend
t=t0

∑

r∈nroom
Nocct

r

.

(8)ft,c>l1 =

∑tend
t=t0

∑

r∈nroom
Nocc(if CO2t

r
> l1)

t
r
Δt

∑tend
t=t0

∑

r∈nroom
Nocc

t
r
Δt

.

(9)

CO2cum>l1 =

tend
�

t=t0

∑

r∈nroom
Nocc(if CO2t

r
> l1)

t
r
∗ (CO2t

r
− l1)Δt

∑

r∈nroom
Nocc(if CO2t

r
> l1)

t
r

.

Results and discussion

Uncertainty analysis

Rooms CO2 concentration

The average number of occupants in the house is 2.96. The 
repartition of occupants over the presence period in the 
house and for the 500 simulations is 27% in the north bed-
room, 24% in the south bedroom, 28% in the living room, 
11% in the kitchen, and 10% in the bathroom. Figure 5 
presents the average (solid line), 5th and 95th percentiles 
(dotted lines) CO2 concentrations in each room for the 500 
simulations.

We can observe, in Fig. 5, relatively high CO2 con-
centrations (> 1500 ppm), particularly in the bedrooms. 
Indeed, the major part of output airflow rate air is extracted 
in the kitchen (105 out of 135 m3/h, Fig. 3). However, due 
to the leaks and floor geometry, only a small fraction of 
this flow rate is coming from the bedrooms. The concen-
tration difference between both bedrooms is mainly due 
to a dominant wind coming from South–East direction 
(Fig. 6) that causes an increase in the south bedroom inlet 
flow rate during the first 6 days. On the 7th day (from 
144 h), a North–West wind leads to a lower pressure on 
the south bedroom walls and consequently to a lower inlet 
flow rate that conducts to high CO2 values. The opening 
of the north bedroom window at night has a relatively low 
influence (< 350 ppm) on the concentration. The corridor 
concentration is often elevated due to a dilution from the 
bedrooms. The peaks in concentration in the lobby are 
due to dilution from the living room under unfavourable 
wind direction.

The fast CO2 concentration drops are principally related 
to window openings (for example, in the morning in the 
bedrooms). High amplitudes between 5th and 95th percen-
tile values are observed. For example, the concentration 
in the north bedroom at 30 h is varying between 2300 and 
4600 ppm depending on input parameters. Moreover, the 
intervals between the 5th and 95th percentiles are differ-
ent among the rooms with a highest value in the north 
bedroom.

In Table 4, the average room CO2 concentration varies 
from 694 ppm in the living room to 1236 ppm in the north 
bedroom. The house volume average is 849 ppm. The 
highest average and standard deviation values are reached 
in the bedrooms and the bathroom. From these results, the 
ventilation system seems to provide an acceptable indoor 
CO2 concentration to the occupants. However, these rela-
tively low average values are mostly explained by the fact 
that the house is almost empty during the daytime. Consid-
ering only the occupied periods (Table 5), average values 
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are higher with problematic concentrations (> 1500 ppm) 
reached in the bedrooms. Thus, the ventilation system does 
not provide, during the occupied period, an adequate fresh 
airflow rate to maintain an average concentration below 
1500 ppm in the bedrooms. Several authors also mentioned 

frequent high indoor CO2 concentrations in bedrooms. 
Koffi et al. [18, 52], in a deterministic multi-zone model 
study, also observed an elevated CO2 concentration (48% 
of the occupancy duration spent at a concentration higher 
than 2460 ppm) in the bedroom occupied by two adults 

Fig. 5   Average (solid line), 5th and 95th percentiles (dotted lines) CO2 concentrations in each room

Fig. 6   Wind rose: Speed distribution (m/s) (left) and frequency distribution (right) for the studied week in Bordeaux (France)
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with a similar ventilation system. Jensen et al. [53] noted, 
during a 10-day field test, that 31% of CO2 concentration 
measurements were higher than 1560 ppm in the bedroom 
of a mechanically ventilated house. Laverge et al. [54] also 
measured average CO2 concentrations above 1200 ppm 
above ambient in bedrooms of mechanically ventilated 

houses and the average reported bedrooms concentration 
has a similar profile, as shown in Fig. 5.

Instantaneous CO2 concentration by occupant

Figure 7 presents the relative frequency and cumulative 
probability of the instantaneous CO2 concentration for all 
the occupants of the 500 simulations. It shows a relatively 
large dispersion of the concentration with a probability of 
0.4 for an occupant to be exposed to a CO2 concentration 
below 1000 ppm and of 0.7 below 1500 ppm. Furthermore, 
concentrations higher than 5000 ppm are reported. Lower 
values are reported by Laverge et al. [12] in a numerical 
study comparing different standards conducted on 150 m2 
dwellings located in Belgium. These lower values compared 
to the present study can be explained by differences in the 
building configurations and occupation scenarios.

Average occupant CO2 concentration, time fraction, 
and cumulative CO2 concentration

The average occupant CO2 concentration ( CO2av,occ ), time 
fraction spent over 1500 ppm ( ft,c>1500 ), and cumulative 
CO2 concentration over 1500 ppm ( CO2cum>1500 ), defined 
in “Indicators of indoor CO2 concentration”, are computed 
for each simulation of 1 week. The relative frequency and 
cumulative probability of the average occupant CO2 concen-
tration ( CO2av,occ ) and time fraction spent over 1500 ppm are 
presented in Figs. 8 and 9.

In Fig. 8, the average occupant CO2 concentration is 
between 950 and 1900 ppm. Due to averaging, this interval 
is logically smaller than the instantaneous concentration 
(Fig. 7). Therefore, the use of average indicators should be 
done cautiously, because it can hide important disparities. In 
Fig. 9, we can observe a large variability of the results with 
10–50% of an occupant week spent at a CO2 concentration 

Table 4   Average and standard deviation of the weekly average room 
CO2 concentrations

Average room CO2 
concentrations (ppm)
(CO2r , CO2av,r)

Average (µ) Standard 
deviation (σ)

Standard 
deviation (σ) 
in %

North bedroom 1236 222 18.0
South bedroom 999 163 16.3
Living room 694 69 9.9
Kitchen 706 77 10.9
Bathroom 881 169 19.2
Volume average 849 79 9.3

Table 5   Average and standard deviation of the weekly average occu-
pied room CO2 concentrations

Average occupied 
room CO2 concen-
trations (ppm)
(CO2r,occ , 
CO2av,r,occ)

Average (µ) Standard 
deviation (σ)

Standard 
deviation (σ) 
in %

North bedroom 1760 258 14.7
South bedroom 1585 196 12.4
Living room 858 102 11.9
Kitchen 872 115 13.2
Bathroom 1344 244 18.2
Volume average 

(not considering 
empty rooms)

1168 101 8.6

Fig. 7   Relative frequency and cumulative probability of CO2 concentration for all the occupants of the 500 simulations
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over 1500 ppm. This shows that, for some input parameter 
configurations, important periods of discomfort can occur.

Table 6 shows the average and standard deviation of 
some indoor CO2 concentration indicators. The average 
occupant CO2 concentration (1349 ppm) is higher than the 
occupied room volume average (1168 ppm). This means 
that rooms, where concentrations are important are occu-
pied by more than one person ( Nocc > 0.5 ). Indeed, this 
first indicator describes more precisely the concentration 
to which occupants are exposed. It can be noted the high 
standard deviations of both the time fraction spent over 

1500 ppm and the cumulative CO2 concentration. These 
are mainly due to high CO2 concentration variations that 
can be observed in Fig. 5. These two unaverage indica-
tors are, furthermore, related to safety (due to the possible 
cumulative effect of exposure to high CO2 concentration) 
and comfort (taking into account concentration higher than 
1500 ppm) [50]. Therefore, providing a guaranty that the 
cumulative CO2 concentration and the time fraction spent 
by an occupant above a certain concentration are below a 
limit value is challenging with uncertain input parameters.

Fig. 8   Relative frequency and cumulative probability of weekly average occupant CO2 concentration

Fig. 9   Relative frequency and cumulative probability of time fraction spent over a CO2 concentration of 1500 ppm

Table 6   Average and standard 
deviation of the output 
indicators

Average (µ) Standard 
deviation (σ)

Standard 
deviation (σ) 
in %

Average occupant CO2 concentration (ppm) ( CO2av,occ) 1349 144 10.7
Time fraction spent over 1500 ppm (-)
( ft,c>1500)

0.31 0.08 24.4

Cumulative CO2 concentration over 1500 ppm (ppm.h) 
( CO2cum>1500)

77,895 27,150 34.9
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These first results show that although acceptable aver-
age room CO2 concentration values can be observed, high 
concentrations are reached temporally in some rooms and 
average values considering the occupant are also elevated 
(higher than 1300 ppm). Thus, for some input parameter 
configuration, discomfort can often be felt. As a result of the 
input parameter uncertainties, elevated amplitudes between 
5th and 95th percentiles values are observed in instantane-
ous concentrations. The time spent by an occupant at a CO2 
concentration over 1500 ppm is around 30%, which is impor-
tant. We also highlight that large output uncertainties can be 
reached, especially on unaverage indicators (cumulative CO2 
concentration and time fraction spent by an occupant over a 
limit concentration). These results show the importance of 
the choice of input parameters or/and to conduct an uncer-
tainty analysis. To determine which input parameters mainly 
affect the indicator uncertainties, a sensitivity analysis is 
conducted in the following part.

Sensitivity analysis

Rooms CO2 concentrations

Standardised regression coefficients (SRC) and regres-
sion coefficients (R2) are computed for the average CO2 
concentration for each room (Tables 7, 8, 9, 10, 11). Only 
the occupied periods are considered in this analysis. The 

R2 coefficients, with values close to or over 0.9, indicate 
that the regression model provides a good estimation of the 
output [3].

In all the rooms (Tables 7, 8, 9, 10, 11), we can notice that 
the number of occupants and the generation of CO2 per per-
son are more influential than the extracted flow rate. This is 
mainly due to the nominal and uncertainty values chosen for 
the flow rates and to the fact that an increase of the extracted 
flow rate will not necessarily lead to a significant increase 
of the inlet fresh air in the considered room. In fact, increas-
ing the extracted flow rate can cause, in relation with the 
airflow pattern (Fig. 3), the transportation of CO2 from other 
occupied rooms (for example, in the bathroom, kitchen, and 

Table 7   SRCs and R2 coefficient for the average north and south bedrooms CO2 concentration

CO2 Weekly average − Occupied room ( CO2r,occ ) North Bedroom CO2 Weekly average − Occupied room ( CO2r,occ ) South Bedroom

Parameter Mean value SRC (%) Parameter Mean value SRC (%)

No_Occ North Bedroom 2 20.4 No_Occ South Bedroom 2 34.1
Generation of CO2 by person (night) 0.23 l/min 14.1 Generation of CO2 by person (night) 0.23 l/min 21.0
Leakage area Liv. Room 6.16. 10−3 m2 10.0 Leakage area South Bedroom 1.72. 10−3 m2 − 7.3
Extracted flow rate (Kitchen) 105 m3/h − 9.0 Door undercut dimension 0.01 m − 4.8
No_Occ North Bedroom 1 5.5 Ambient CO2 concentration 400 ppm 3.3
Leakage area North Bedroom 1.72. 10−3 m2 − 4.2 Leakage area Liv. Room 6.16. 10−3 m2 3.3
R2 = 0.95 R2 = 0.97

Table 8   SRCs and R2 coefficient for the average living room and kitchen CO2 concentration

CO2 Weekly average − Occupied room ( CO2r,occ ) Living Room CO2 Weekly average − Occupied room ( CO2r,occ ) Kitchen

Parameter Mean value SRC (%) Parameter Mean value SRC (%)

No_Occ Liv. Room 2 27.1 No_Occ Kitchen 1 27.6
Ambient CO2 concentration 400 ppm 14.7 Ambient CO2 concentration 400 ppm 9.8
Generation of CO2 by person (day) 0.39 l/min 11.4 Generation of CO2 by person (day) 0.39 l/min 7.9
No_Occ Liv. Room 0 − 6.5 No_Occ Liv. Room 0 6.5
Occupation time Liv. Room 20 h − 4.4 No_Occ Liv. Room 2 5.1
Extracted flow rate (Kitchen) 105 m3/h − 3.3 Occupation time Kitchen 20 h 3.3
R2 = 0.88 R2 = 0.90

Table 9   SRCs and R2 coefficient for the average bathroom CO2 con-
centration

CO2 Weekly average − Occupied room ( CO2r,occ ) Bathroom

Parameter Mean value SRC (%)

No_Occ Bathroom 1 40.8
Leakage area Bathroom 1.72 × 10−3 m2 − 6.1
Generation of CO2 by person (day) 0.39 l/min 5.7
No_Occ Bathroom 0 − 4.9
Occupation time Bathroom 6 h − 3.5
Time, generation of CO2 6 h − 3.1
R2 = 0.87
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corridor). This increase can also have a relatively limited 
impact on a room CO2 concentration if the leakage and air 
inlet areas are considerably larger in other rooms.

In bedrooms (Table 7), important parameters are unsur-
prisingly the number of occupants and the generation of CO2 
per person at night. Bedrooms and living room leakage areas 
as well as the door undercut dimension are also significant. 
Higher leakage areas in bedrooms can increase the inlet 
fresh airflow rate, a reduction of living room leakage area 
and an increase of the door undercut area can contribute to a 
better air distribution respecting the expected airflow pattern 
in the building, as shown in Fig. 3.

Kitchen extracted flow rate is not an influential factor in 
the south bedroom. As this room is upwind (Fig. 6), it is 
likely that wind effects prevail over the mechanical extrac-
tion [55]. This effect is amplified by the constant extracted 
volumetric flow rate considered in the model. In reality, the 
extracted flow rate can actually increase as a result of an 
overpressure caused by the wind. The bathroom extracted 
flow rate, which has a lower nominal value than the kitchen 
one, is not a major influential factor.

The ambient CO2 concentration is the second important 
parameter in the living room (Table 8). This is due to the 
existence of important air inlet and leakage areas in this 
room. Increasing the low level (0) of occupancy can lead to 
a reduction of the average CO2 concentration. Indeed, this 
increase can change the state of the room from unoccupied 

to occupied and thus add to the average concentration low 
CO2 values when few occupants are in the room. Since both 
the living room and the kitchen are mainly occupied during 
the daytime, only the number of occupants and the genera-
tion of CO2 per person during this period are relevant. The 
number of occupants in the living room and the ambient 
CO2 concentration increase the kitchen CO2 concentration. 
This is due to the airflow pattern that results in a flow from 
the living room to the kitchen. Moreover, the kitchen air 
inlet area is considerably lower than the undercut door area. 
Therefore, the fresh air coming from outside is limited and 
both the extracted flow rate and the leakage area do not con-
siderably impact the kitchen CO2 concentration.

In the bathroom (Table 9), the door undercut area is 
smaller than the kitchen one, so the leakage area has here 
a larger impact on CO2 concentration. However, as for the 
kitchen, the extracted flow rate is not significant, since the 
major part of the inlet flow rate is coming from other poten-
tially polluted rooms.

This first part of the sensitivity analysis, performed 
on room CO2 concentrations, provides some interesting 
insights to reduce concentrations and uncertainties in the 
presented model configuration. First, an increase in the 
kitchen extracted flow rate can improve the air change rate, 
but would be energy consuming. Moreover, although this 
increase would reduce the average house CO2 concentration, 
it may not be the most effective way to reduce CO2 exposure 

Table 10   SRCs and R2 coefficient for the weekly occupied room volume average and occupant CO2 concentrations

CO2 (Weekly occupied room volume average) ( CO2av,r,occ) CO2 by occupant (Weekly average) ( CO2av,occ)

Parameter Mean value SRC (%) Parameter Mean value SRC (%)

Generation of CO2 by person (night) 0.23 l/min 13.9 Generation of CO2 by person (night) 0.23 l/min 17.1
Ambient external CO2 concentration 400 ppm 13.6 No_Occ North Bedroom 2 14.8
Generation of CO2 by person (day) 0.39 l/min 9.2 Extracted flow rate (Kitchen) 105 m3/h − 8,1
No_Occ Liv. Room 2 8.1 No_Occ South Bedroom 2 7.6
Extracted flow rate (Kitchen) 105 m3/h − 8.0 No_Occ Kitchen 0 − 6.9
No_Occ North Bedroom 2 5.2 Ambient external CO2 concentration 400 ppm 6.6
R2 = 0.93 R2 = 0.95

Table 11   SRCs and R2 coefficient for the time fraction spent over 1500 ppm and for the cumulative CO2 concentration over 1500 ppm

Time fraction CO2 > 1500 ppm ( ft,c>1500) Cumulative CO2 concentration over 1500 ppm (ppm.h) ( CO2cum>1500)

Parameter Mean value SRC (%) Parameter Mean value SRC (%)

No_Occ South Bedroom 2 17.2 Generation of CO2 by person (night) 0.23 l/min 21.2
Generation of CO2 by person (night) 0.23 l/min 15.4 No_Occ North Bedroom 2 18.5
No_Occ Kitchen 0 − 7.3 Leakage area Liv. Room 6.16.10−3 m2 13.9
No_Occ North Bedroom 2 6.3 Extracted flow rate (Kitchen) 105 m3/h − 11.0
No_Occ Liv. Room 0 − 5.0 Door undercut dimension 0.01 m − 5.7
Extracted flow rate (Kitchen) 105 m3/h 4.5 No_Occ South Bedroom 2 3.3
R2 = 0.93 R2 = 0.95
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in the bedrooms due to airflows in the building. The CO2 
concentration in bedrooms and its uncertainty would be 
reduced by the following measures: increasing the door 
undercuts and reducing the living room inlet and leakage 
areas (better air distribution respecting the expected airflow 
pattern) or increasing the inlet air area in the bedrooms. This 
last solution could also be applied in the bathroom, as it 
would have a beneficial effect on the bathroom CO2 con-
centration. The use of CO2 or presence detection controlled 
air inlet vents could reduce both the concentrations and the 
uncertainties. A numerical study conducted by Laverge et al. 
[13] concludes that CO2-controlled inlets can reduce both 
the exposure to high CO2 concentration and the building 
energy demand. The CO2 concentrations and uncertainties 
can also be reduced by the use of a balanced ventilation 
system that would provide an adjusted air inlet flow rate in 
the different rooms [18]. Furthermore, both balanced venti-
lation and CO2 controlled inlet systems are less sensitive to 
outdoor conditions [13, 14].

Average CO2 concentration, time fraction, and cumulative 
CO2 concentration

Standardised regression coefficients (SRC) and regression 
coefficients (R2) are computed for the weekly occupied room 
volume average and occupant CO2 concentrations (Table 10) 
and for the time fraction spent over 1500 ppm and cumula-
tive CO2 concentration over 1500 ppm (Table 11). The R2 
coefficients, with values over 0.9, indicate that the regres-
sion model provides a good estimation of the output [3]. In 
Table 10, we observe that several influential parameters on 
the average CO2 concentration are related to the bedrooms. 
Some differences between the two average concentrations 
are observed depending on the calculation of the indicator. 
In the volume average, the number of occupants in the living 
room is relatively important due to the large volume of this 
room. In contrast, the ambient external CO2 concentration 
and the diurnal generation of CO2 per person have a low 
relative impact on the occupant CO2 concentration. Actu-
ally, the second indicator is more sensitive to the high CO2 
concentrations reached in the most occupied rooms such as 
the bedrooms at night (Fig. 5). Due to the averaging by occu-
pant, increasing the low level (0) of occupancy in the kitchen 
can conduct to a reduction of the average CO2 concentration 
by adding more occupants and low CO2 values. The same 
phenomenon explains the reduction of the time fraction 
spent over 1500 ppm with the low level (0) of occupancy in 
the kitchen and in the living room (Table 11).

Since the highest concentrations are reached at night in 
the bedrooms, both the time fraction spent over 1500 ppm 
and the cumulative CO2 concentration over 1500 ppm are 
affected by the number of occupants in the bedrooms and 
the generation of CO2 per person at night (Table 11). The 

living room leakage area and the door undercut dimension 
are also significant for the cumulative CO2 concentration 
over 1500 ppm. They both can lead to a better air distribu-
tion in the building respecting the expected airflow pattern 
(Fig. 3) and thus can contribute to an increase of the air 
change rate in the bedrooms. In a numerical study on the 
concentration of particulate matter (PM2.5) in a single-storey 
flat, Das et al. [15] also showed that the infiltration rate, the 
ambient external concentration, and the internal pollutant 
generation rate are some of the principal determinants in 
the contaminant concentration. Interestingly, some predomi-
nant parameters affecting the indoor CO2 concentration can 
also be predominant in sensitivity studies regarding build-
ing energy consumption, such as the air change rate and the 
occupancy [5] or the number of occupants in the bedroom 
[10]. The impact of these parameters is, nevertheless, oppo-
site; increasing the air change rate or reducing the occupancy 
will lead to a positive reduction of the CO2 concentration but 
to an increase of the heating demand.

Finally, time variables for CO2 generation, occupation, 
windows, and doors have a low influence. This can be due 
to the fact that their impacts last a shorter period than other 
variables, to the relatively low standard deviation associ-
ated with these values (5 and 30 min) and to the very fast 
variation of the CO2 concentration following an opening. 
However, the combined effect of several time variables can 
be significant and it might be of interest to investigate it in a 
further study. Indeed, a numerical study conducted by Hyun 
et al. [16] found out that the window opening area due to the 
occupant behaviour is the second dominant parameter in the 
simulation of a naturally ventilated building.

This second part of the sensitivity analysis, performed 
on several indicators, highlights the strong influence of the 
bedroom-related parameters in the presented model con-
figuration. Considering perfect air mixing in the building, a 
steady-state CO2 concentration around 800 ppm would be 
reached in the building at night under average conditions. 
Therefore, the high concentrations observed are more due to 
the air distribution than to an insufficient extracted flow rate. 
In addition, increasing the extracted flow rate would lead to 
a higher energy consumption. The solutions suggested in the 
previous section to reduce the bedrooms or the whole build-
ing CO2 concentrations and uncertainties are thus relevant.

Conclusion

With the aim of investigating the variability of indoor 
CO2 concentration due to occupant behaviour and physi-
cal parameter uncertainties, an uncertainty and sensitivity 
analysis has been conducted in a mechanically ventilated 
detached house.
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First, the variability of indoor CO2 concentration is quan-
tified through an uncertainty analysis. Despite acceptable 
average room CO2 concentration, large variations, due to 
input parameter uncertainties, are observed in CO2 instan-
taneous concentrations. Moreover, average occupant value is 
relatively important (higher than 1300 ppm). On the studied 
period, the time spent by an occupant at a CO2 concentration 
over 1500 ppm is around 30%, which is important. We also 
highlight that large output uncertainties are reached with 
a standard deviation of 24.4% for the time fraction spent 
by an occupant over 1500 ppm and 34.9% for the cumula-
tive CO2 concentration over 1500 ppm. These results high-
light the unpredictability of the real world and thus show 
the importance of the choice of input parameters or/and to 
conduct an uncertainty analysis. Indeed, the peak concen-
tration may not be adequately represented by averages, and 
moreover, airflow between rooms can make concentrations 
in individual rooms much higher than the house average. 
Second, to determine which input parameters mainly affect 
the variability, a sensitivity analysis has been performed on 
room CO2 concentrations and several indoor CO2 concen-
tration indicators. It highlights the strong influence of the 
bedroom-related parameters (number of occupants, genera-
tion of CO2 at night) and of the kitchen extracted flow rate. 
Therefore, to improve the modelling of indoor CO2 concen-
tration in a comparable case study, it could be useful to have 
these parameter values as precise as possible or to include 
their uncertainties. The sensitivity analysis also shows that 
the low-level air change rates in the bedrooms are mainly 
caused by an incorrect air distribution in the building. The 
CO2 concentrations and uncertainties could be reduced by 
increasing the door undercuts, reducing the living room inlet 
and leakage areas, and increasing the bedroom inlet areas. 
For this type of ventilation system, it could be of interest to 
measure the air leakage in each room and calibrate the air 
inlet area accordingly to reach the expected airflow pattern. 
The presence or CO2 controlled air inlets or balanced ven-
tilation systems could be potential solutions to reduce both 
the concentrations and uncertainties.

It would be of interest to extend such study on different 
buildings, over a longer period of time and considering sev-
eral base case scenarios (for example, with the indoor doors 
always open or closed, or with the outdoor windows always 
closed, or with other time and level variables). It would also 
be of interest to consider temperature differences and leakage 
in the attic and cellar or other probability distributions. Fur-
thermore, the approach developed in this study is not intended 
to provide definitive conclusions on the uncertainties related 
to the indoor CO2 concentration but rather to target the most 
influential parameters on which it will be necessary to improve 
the knowledge (limiting the uncertainties). This study particu-
larly points out the need for a more precise characterisation of 
the occupant behaviour. This characterisation could be inspired 

by methods developed in studies on the determinants of energy 
consumptions of the household sector [56–59]. Moreover, 
future buildings will be built with some connected objects, 
such as thermostats or CO2 sensors. These are potential solu-
tions to develop the knowledge of occupant behaviour. But 
also, improving the knowledge of CO2 in dwelling is a relevant 
subject for occupants to be able to interpret the importance 
of their measurements. Furthermore, other contaminants and 
indicators could be implemented to improve the characterisa-
tion of the IAQ. This way, more information would be pro-
vided on uncertainties related to the IAQ and other solutions 
to improve indoor air quality would be identified. Finally, the 
approach developed in this paper could be generalized at the 
building design phase, by focusing on reducing most influen-
tial parameters uncertainties.
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Appendix

Figures 10, 11, 12, and 13.

Fig. 10   CO2 production per person schedule [mean (solid line), mini-
mum and maximum (dotted line)] for the 500 simulations
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Fig. 11   Occupancy schedule [mean (solid line), 5th and 95th percentiles (dotted line)] for the 500 simulations
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Fig. 12   Interior doors opening schedule [mean (solid line), minimum and maximum (dotted line)] for the 500 simulations
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