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Stabilization of the Korteweg-de Vries equation with

internal time-delay feedback

Julie Valein∗

February 15, 2019

Abstract

The aim of this work is to study the exponential stability of the nonlinear Korteweg-de

Vries equation in the presence of a delayed internal feedback. We first consider the case

where the weight of the feedback with delay is smaller than the weight of the feedback

without delay and prove the local exponential stability result by two methods: the first

one by a Lyapunov method (which holds for restrictive length of the domain but allow to

have an estimation on the decay rate) and the second one by an observability inequality for

any length (without estimation of the decay rate). We also prove a semiglobal stabilization

result for any length. Secondly we study the case where the support of the feedback without

delay is not included in the feedback with delay and give a local exponential stability result

if the weight of the delayed feedback is small enough. Some numerical simulations are given

to illustrate these results.

Keyword: KdV equation, stabilization, delay

1 Introduction and main results

The Korteweg-de Vries equation (KdV) equation is the nonlinear dispersive partial differential

equation yt+yx+yxxx+yyx = 0, which models, in the absence of damping, the (unidirectional)

propagation of a water wave of small amplitude in a bounded channel. The domains of appli-

cations of this equation are various: collision of hydromagnetic waves, ion acoustic waves in a

plasma, acoustic waves on a crystal lattice or even subparts of the cardiovascular system... The

KdV equation has been the subject of intensive research (see for instance [BW83], [RZ09],...).

The first work concerning the exponential stabilization of the nonlinear KdV equation (without

delay) on a bounded domain is [Zha94], with a boundary damping and where the length of the
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spatial domain is L = 1. It is well-known that the length of the domain plays an important role

in the controllability or the stability questions of the KdV equation. For instance, if L = 2π,

there exists a solution (y(x, t) = 1−cosx) of the linearized system around 0 which has a constant

energy. More generally, for a length belonging to the set of critical lengths

N =

{
2π

√
k2 + kl + l2

3
, k, l ∈ N∗

}
,

we can construct an initial data whose the corresponding solution of the linear KdV equation

has a constant energy. Nevertheless, in the case of non critical length (i.e. L 6∈ N ), it is not

necessary (see [PMVZ02]) to introduce a boundary feedback law as in [Zha94] to have the local

exponential stability of the nonlinear KdV equation. Moreover, it is proved in [PMVZ02] and

[Paz05] that for any critical length, adding a localized damping in the nonlinear KdV equation

allows to have a local exponential stability result, and even a semi-global stability result by

working directly with the nonlinear system.

We also refer to [CCS15] and [TCSC16] in which the asymptotic stability for the nonlinear KdV

equation for the first critical lengths (2kπ, k ∈ N∗) and a special second one (2π
√

7
3 ) have been

proven without any feedback law. The rapid stabilization (or how to construct a feedback law

which stabilizes the system at a prescribed decay rate) has been studied in [KS08] and [CC13] by

the backstepping method, and in [CL14] by an integral transform. Finally a related interesting

question is the global stabilization of a nonlinear KdV equation with a saturating distributed

control studied recently in [MCPA17].

The main goal of this paper is to study the stabilization of the following nonlinear KdV equation

with an internal feedback delayed term



yt(x, t) + yxxx(x, t) + yx(x, t) + y(x, t)yx(x, t) + a(x)y(x, t) + b(x)y(x, t− h) = 0,

x ∈ (0, L), t > 0,

y(0, t) = y(L, t) = yx(L, t) = 0, t > 0,

y(x, 0) = y0(x), x ∈ (0, L),

y(x, t) = z0(x, t), x ∈ (0, L), t ∈ (−h, 0),

(1.1)

where h > 0 is the (constant) delay, L > 0 is the length of the spacial domain, y(x, t) is the

amplitude of the water wave at position x at time t, and a = a(x) and b = b(x) are nonnegative

functions belonging to L∞(0, L). We will also assume that supp b = ω, where supp b is the

support of the function b, and

b(x) ≥ b0 > 0 a.e. in ω (1.2)

where ω is an open, nonempty subset of (0, L).
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In the case without delay (i.e. b = 0) it is well-known (see for instance [PMVZ02]) that for every

T > 0, L > 0 and y0 ∈ L2(0, L), the system (1.1) is locally well-posed in

B := C([0, T ], L2(0, L)) ∩ L2(0, T,H1
0 (0, L)).

We will give in Section 2 the proof of well-posedness for the case with delayed internal condition

(i.e. b 6= 0).

The challenge on the specific topic of our contribution, beyond the difficulty of dealing with

a nonlinear equation, is to prove that under appropriate conditions, a delay in the internal

feedback of this equation will not destabilize the system [Dat88]. Very recently, the robustness

with respect to the delay of the boundary stability of the nonlinear KdV equation has been

study in [BCV18], where the boundary condition is yx(L, t) = αyx(0, t) + βyx(0, t − h). The

authors obtain, under appropriate condition on the weights of the feedbacks with and without

delay (i.e. |α|+ |β| < 1), the locally exponentially stability result for non critical length. Note

that no condition about the size of the delayed weight α with respect to the non delayed weight

β is required. The aim of this present work is to extend these results to internal damping with

delay for any length and to study if we need a restrictive assumption on a and b.

We first assume that the coefficients a and b comply to the following limitation:

∃c0 > 0, b(x) + c0 ≤ a(x) in ω. (1.3)

Note that (1.2) and (1.3) imply that ω = supp b ⊂ supp a and

a(x) ≥ b0 + c0 > 0 in ω. (1.4)

We define the Hilbert space of the initial and delayed data H := L2(0, L)×L2((0, L)× (−h, 0)),

endowed with the norm defined for all (y, z) ∈ H by

‖(y, z)‖2H =

∫ L

0

y2(x)dx+

∫ L

0

∫ 0

−h
ξ(x)z2(x, s)dxds,

where ξ is a nonnegative function in L∞(0, L) chosen such that supp ξ = supp b = ω and

b(x) + c0 ≤ ξ(x) ≤ 2a(x)− b(x)− c0 in ω. (1.5)

Note that this choice of ξ is possible due to (1.3).

Let us now give the following definition of the energy of system (1.1), chosen because it corre-

sponds to the norm of (y(·, t), y(·, t+ ·)) on H:

E(t) =

∫ L

0

y2(x, t)dx+ h

∫
ω

∫ 1

0

ξ(x)y2(x, t− hρ)dρdx, (1.6)
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where ξ ∈ L∞(0, L) is defined by (1.5). The first part of the energy E corresponds to the natural

energy of the KdV equation, and the second part is classical when considering internal delayed

terms, as in [NP06] for the wave partial differential equations.

Note also that, in [NP06], dealing with the wave equation, there are some restrictions about the

weights of the feedbacks with or without delay similarly to (1.3), i.e. the weight of the feedback

with delay is smaller than the weight of the feedback without delay. Actually, it is also the case

for hyperbolic and parabolic partial differential equations in [NV10] and even for the Schrödinger

equation (which is a dispersive equation, just like KdV) in [NR11]. This kind of assumption

is necessary in these cases and if they are not satisfied, it can be shown that instabilities may

appear (see for instance [Dat88], [DLP86] with a = 0, or [NP06] in the more general case for

the wave equation). However it is not the case for the delayed boundary stabilization of the non

linear KdV equation (see [BCV18]).

Our first main result is obtained for a restricted assumption on the length L but yields local expo-

nential stability of the solution of system (1.1) with an estimation of the decay rate stated below.

Theorem 1. Assume that a and b are nonnegative functions belonging to L∞(0, L) satisfying

(1.2) and (1.3), and assume that the length L fulfills

L < π
√

3. (1.7)

Then, there exists r > 0 sufficiently small, such that for every (y0, z0) ∈ H satisfying

‖(y0, z0)‖H ≤ r,

the energy of system (1.1), denoted E and defined by (1.6), decays exponentially. More precisely,

there exist two positive constants γ and κ such that

E(t) ≤ κE(0)e−2γt, t > 0,

where for µ1, µ2 sufficiently small

γ ≤ min

{
(9π2 − 3L2 − 2L3/2rπ2)µ1

6L2(1 + Lµ1)
,

µ2

2h(µ2 + ‖ξ‖L∞(0,L))

}
, (1.8)

κ ≤
(

1 + max

{
Lµ1,

µ2

b0

})
.

This theorem will be proved in a constructive manner, allowing an estimation of the decay rate γ.

The proof (similar to [BCV18] for a delayed boundary feedback) uses an appropriate Lyapunov

functional build with coefficients µ1 and µ2 and detailed in Section 3. Moreover, note that when

the delay h becomes larger, then the decay rate γ is smaller.
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Remark 1. The coefficients µ1 and µ2 depend on the Lyapunov functional we will use in the

proof of the stability result. Nevertheless, one can have an estimation of both r, µ1 and µ2 in

the proof of Theorem 1 below.

On the other hand, our second main result is obtained simply for any lengths (contrary to

[BCV18] which holds only for non critical lengths) and gives generic local exponential stability

of the solution of system (1.1).

Theorem 2. Assume that L > 0 and that a and b are nonnegative functions belonging to

L∞(0, L) satisfying (1.2) and (1.3). Then, there exists r > 0 such that for every (y0, z0) ∈ H
satisfying

‖(y0, z0)‖H ≤ r,

the energy of system (1.1), denoted E and defined by (1.6), decays exponentially. More precisely,

there exist two positive constants ν and κ such that

E(t) ≤ κE(0)e−νt, t > 0.

The proof of this theorem relies on an observability inequality and the use of a contradiction

argument. Thus, the value of the decay rate can not be estimated precisely in this approach.

Moreover, contrary to [BCV18], we prove a semi-global stabilization result for any length, work-

ing directly with the nonlinear system (1.1), without passing by the linear system.

Theorem 3. Assume that a and b are nonnegative functions belonging to L∞(0, L) satisfying

(1.2) and (1.3). Let L > 0 and R > 0. There exists C = C(R) > 0 and µ = µ(R) > 0 such that

E(t) ≤ CE(0)e−µt, t > 0,

for any solution of (1.1) with ‖(y0, z0)‖H ≤ R.

The semi-global character of this result comes from the fact that even if we are able to chose

any radius R for the initial data, the decay rate µ depends on R.

Finally, we give a local stabilization result in the case where supp b 6⊂ supp a. To do that,

following Nicaise and Pignotti in [NP14], we consider a ”close” auxiliary problem whose the

energy is decreasing and we use a classical perturbation result of Pazy [Paz12].

Theorem 4. Assume that a and b are nonnegative functions belonging to L∞(0, L) satisfying

(1.2) and assume that the length L fulfills (1.7). Let ξ > 1. Then there exist δ > 0 (depending

on ξ, L, h) and r > 0 sufficiently small such that if

‖b‖L∞(0,L) ≤ δ,
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for every (y0, z0) ∈ H satisfying

‖(y0, z0)‖H ≤ r,

the energy of system (1.1), denoted E and defined by (1.6) with ξ(x) = ξb(x), decays exponen-

tially.

It is interesting to note that we can take a = 0 in Theorem 4. Note also that Theorem 3 and

Theorem 4 are new with respect to [BCV18].

Section 2 is devoted to the preliminary step dealing with the well-posedness and regularity of

the solutions of our specific system coupling the KdV equation and a delayed internal feedback.

Section 3 will develop the proof of a first quantified exponential stabilization result stated in

Theorem 1 while the proof of our second stabilization result, stated in Theorem 2, will be detailed

in Section 4. The semi-global stabilization result stated in Theorem 3 is proved in Section 5.

The study of the case supp b 6⊂ supp a of Theorem 4 is done in Section 6. Some remarks and

numerical simulations are presented in Section 7.

2 Well-posedness and regularity results

2.1 Study of the linear equation

We begin by proving the well-posedness of the KdV equation linearized around 0, that writes
yt(x, t) + yxxx(x, t) + yx(x, t) + a(x)y(x, t) + b(x)y(x, t− h) = 0, x ∈ (0, L), t > 0,

y(0, t) = y(L, t) = yx(L, t) = 0, t > 0,

y(x, 0) = y0(x), x ∈ (0, L),

y(x, t) = z0(x, t), x ∈ (0, L), t ∈ (−h, 0).

(2.9)

Following Nicaise and Pignotti [NP06], we set z(x, ρ, t) = y|ω (x, t− ρh) for any x ∈ ω, ρ ∈ (0, 1)

and t > 0. Then z satisfies the transport equation
hzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ ω, ρ ∈ (0, 1), t > 0,

z(x, 0, t) = y|ω (x, t), x ∈ ω, t > 0,

z(x, ρ, 0) = z0|ω (x,−ρh), x ∈ ω, ρ ∈ (0, 1).

(2.10)

We equipped the Hilbert space H = L2(0, L)× L2(ω × (0, 1)) with the inner product〈 y

z

 ,

 ỹ

z̃

〉 =

∫ L

0

yỹ dx+ h

∫
ω

∫ 1

0

ξ(x)zz̃ dρdx,

for any (y, z), (ỹ, z̃) ∈ H, where ξ is a nonnegative function in L∞(0, L) such that supp ξ =

supp b = ω and (1.5) holds. We denote by ‖·‖H the associated norm and this new norm is

clearly equivalent to the usual norm on H since ξ(x) > b(x) ≥ b0 > 0 on ω (see (1.5)).

6



We then rewrite (2.9) and (2.10) as a first order system: Ut(t) = AU(t), t > 0,

U(0) = U0 ∈ H,
(2.11)

where U =

 y

z

, U0 =

 y0

z0|ω (·,−h ·)

, and where the operator A is defined by

AU =

 −yxxx − yx − ay − bz̃(·, 1)

− 1
h zρ

 ,

where z̃(·, 1) ∈ L2(0, L) is the extension of z(·, 1) by zero outside ω, with domain

D(A) =
{

(y, z) ∈ H3(0, L)×L2(ω,H1(0, 1))
∣∣ y(0) = y(L) = yx(L) = 0, z(x, 0) = y|ω (x) in ω

}
.

Theorem 5. Assume that a and b are nonnegative functions belonging to L∞(0, L) satisfying

(1.2) and (1.3), and that U0 ∈ H. Then there exists a unique mild solution U ∈ C([0,+∞), H)

for system (2.11). Moreover if U0 ∈ D(A), then the solution is classical and satisfies

U ∈ C([0,+∞), D(A)) ∩ C1([0,+∞), H).

Proof. We first prove that the operator A is dissipative. Let U = (y, z) ∈ D(A). Then we have

〈AU,U〉 = −
∫ L

0

yxxxy dx−
∫ L

0

yxy dx−
∫ L

0

a(x)y2dx−
∫
ω

b(x)z(x, 1)y(x)dx

−
∫
ω

∫ 1

0

ξ(x)zρ(x, ρ)z(x, ρ) dxdρ

=

∫ L

0

yxxyx dx− [yxxy]L0 −
1

2
[y2]L0 −

∫ L

0

a(x)y2dx−
∫
ω

b(x)z(x, 1)y(x)dx− 1

2

∫
ω

ξ(x)[z2]10dx

=
1

2
[y2x]L0 −

∫ L

0

a(x)y2dx−
∫
ω

b(x)z(x, 1)y(x)dx− 1

2

∫
ω

ξ(x)z2(x, 1)dx+
1

2

∫
ω

ξ(x)y2(x)dx

≤ −y2x(0) +

∫
ω

(
−a(x) +

b(x)

2
+
ξ(x)

2

)
y2(x)dx−

∫
(0,L)\ω

a(x)y2(x)dx

+

∫
ω

(
b(x)

2
− ξ(x)

2

)
z2(x, 1)dx.

If we take ξ such that (1.5) holds (which is possible due to (1.3)), then −a(x) + b(x)
2 + ξ(x)

2 < 0

and b(x)
2 −

ξ(x)
2 < 0 in ω, and −a(x) ≤ 0 in (0, L) \ ω. Consequently 〈AU,U〉 ≤ 0, which means

that the operator A is dissipative.

Secondly we show that the adjoint of A, denoted by A∗, is also dissipative. It is not difficult to

prove that the adjoint is defined by

A∗U =

 yxxx + yx − ay + ξ(x)z̃(·, 0)

1
h zρ

 , U =

 y

z

 ∈ D(A∗),
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with domain

D(A∗) =
{

(y, z) ∈ H3(0, L)×L2(ω,H1(0, 1))
∣∣y(0) = y(L) = yx(0) = 0, z(x, 1) = − 1

ξ(x)
b(x)y|ω (x) in ω

}
.

Then for all U = (y, z) ∈ D(A∗), we have

〈A∗U,U〉 =

∫ L

0

yxxxy dx+

∫ L

0

yxy dx−
∫ L

0

a(x)y2dx+

∫
ω

ξ(x)z(x, 0)y(x)dx+

∫ 1

0

∫
ω

ξ(x)zρz dxdρ

= − 1

2
[y2x]L0 −

∫ L

0

a(x)y2dx+

∫
ω

ξ(x)z(x, 0)y(x)dx+
1

2

∫
ω

1

ξ(x)
b2(x)y2(x)dx− 1

2

∫
ω

ξ(x)z2(x, 0)dx

≤ −1

2
y2x(L) +

∫
ω

(
−a(x) +

1

2ξ(x)
b2(x) +

ξ(x)

2

)
y2(x)dx−

∫
(0,L)\ω

a(x)y2(x)dx ≤ 0,

since, due to (1.5), we have in ω

−a(x) +
1

2ξ(x)
b2(x) +

ξ(x)

2
< −a(x) +

b(x)

2
+
ξ(x)

2
≤ 0.

Finally, since A is a densely defined closed linear operator, and both A and A∗ are dissipative,

then A is the infinitesimal generator of a C0 semigroup of contractions on H (see for instance

[Paz12]), which finishes the proof.

We denote by {S(t), t ≥ 0} the semigroup of contractions associated with A. In the following,

by abusing the notation, we identify z0|ω and z0, and the real C is a positive constant that

can depend on T , h, ‖a‖L∞(0,L) and ‖b‖L∞(0,L). Let us now detail a few a priori estimates and

regularity estimates of the solutions of systems (2.9) and (2.10).

Proposition 1. Assume that (1.2) and (1.3) are satisfied. Then, the map

(y0, z0(·,−h ·)) 7→ S(·)(y0, z0(·,−h ·)) (2.12)

is continuous from H to B×C([0, T ], L2(ω× (0, 1))), and for (y0, z0(·,−h ·)) ∈ H, the following

estimates hold∫ T

0

∫ L

0

a(x)y2(x, t)dxdt+

∫ T

0

∫
ω

z2(x, 1, t)dxdt

≤ C
(
‖y0‖2L2(0,L) + ‖z0(·,−h ·)‖2L2(ω×(0,1))

)
, (2.13)

‖y0‖2L2(0,L) ≤ C
(
‖y‖2L2(0,T,L2(0,L)) + ‖yx(0, ·)‖2L2(0,T ) + ‖z0(·,−h ·)‖2L2(ω×(0,1))

)
, (2.14)

‖z0(·,−h ·)‖2L2(ω×(0,1)) ≤ ‖z(·, ·, T )‖2L2(ω×(0,1))+
1

h
‖z(·, 1, ·)‖2L2(ω×(0,T )) . (2.15)

Proof. • First of all, for any (y0, z0(·,−h ·)) ∈ H, Theorem 5 brings S(.)(y0, z0(·,−h ·)) =

(y, z) ∈ C([0, T ], H) and as the operator A generates a C0 semigroup of contractions we get for

all t ∈ [0, T ],∫ L

0

y2(x, t)dx+ h

∫
ω

∫ 1

0

ξ(x)z2(x, ρ, t)dxdρ ≤
∫ L

0

y20(x)dx+ h

∫
ω

∫ 1

0

ξ(x)z20(x,−ρh)dxdρ.

(2.16)
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Let p ∈ C∞([0, 1] × [0, T ]), q ∈ C∞([0, L] × [0, T ]) and (y, z) ∈ D(A). Then multiplying (2.10)

by pz and (2.9) by qy, and using some integrations by parts we get

∫ 1

0

∫
ω

(
p(ρ, T )z2(x, ρ, T )− p(ρ, 0)z20(x,−ρh)

)
dxdρ− 1

h

∫ T

0

∫ 1

0

∫
ω

(hpt + pρ)z
2dxdρdt

+
1

h

∫ T

0

∫
ω

(
p(1, t)z2(x, 1, t)− p(0, t)y2(x, t)

)
dxdt = 0 (2.17)

∫ L

0

(
q(x, T )y2(x, T )− q(x, 0)y20(x)

)
dx−

∫ T

0

∫ L

0

(qt + qx + qxxx)y2dxdt+ 3

∫ T

0

∫ L

0

qxy
2
xdxdt

+

∫ T

0

q(0, t)y2x(0, t)dt+ 2

∫ T

0

∫ L

0

a(x)qy2dxdt+ 2

∫ T

0

∫ L

0

b(x)qy(x, t)y(x, t− h)dxdt = 0.

(2.18)

• Let us first choose p(ρ, t) ≡ ρ in (2.17). Then we obtain

∫ 1

0

∫
ω

ρ
(
z2(x, ρ, T )− z20(x,−ρh)

)
dxdρ− 1

h

∫ T

0

∫
ω

∫ 1

0

z2dρdxdt+
1

h

∫ T

0

∫
ω

z2(x, 1, t)dxdt = 0

and thanks to (2.16) we get∫ T

0

∫
ω

z2(x, 1, t)dxdt ≤ C
(
‖y0‖2L2(0,L) + ‖z0(·,−h ·)‖2L2(ω×(0,1))

)
. (2.19)

Secondly, if we choose q(x, t) ≡ 1 in (2.18), then we get,

∫ L

0

(
y2(x, T )− y20(x)

)
dx+

∫ T

0

y2x(0, t)dt+2

∫ T

0

∫ L

0

a(x)y2dxdt+2

∫ T

0

∫ L

0

b(x)y(x, t)y(x, t−h)dxdt = 0,

which implies

2

∫ T

0

∫ L

0

a(x)y2dxdt ≤ ‖y0‖2L2(0,L) + 2

∫ T

0

∫ L

0

b(x) |y(x, t)| |y(x, t− h)| dxdt.

Therefore, since∫ T

0

∫ L

0

b(x) |y(x, t)| |y(x, t− h)| dxdt ≤ 1

2

∫ T

0

∫ L

0

b(x)y2(x, t)dxdt+
1

2

∫ T

0

∫ L

0

b(x)y2(x, t− h)dxdt

≤
∫ T

0

∫ L

0

b(x)y2(x, t)dxdt+
1

2

∫ L

0

∫ 0

−h
b(x)y2(x, t)dxdt

=

∫ T

0

∫ L

0

b(x)y2(x, t)dxdt+
1

2

∫
ω

∫ 0

−h
b(x)z20(x, ρ)dρdx

we get, using (2.16), that∫ T

0

∫ L

0

a(x)y2dxdt ≤ C
(
‖y0‖2L2(0,L) + ‖z0(·,−h ·)‖2L2(ω×(0,1))

)
,

that concludes the proof of (2.13).
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• Taking now q(x, t) ≡ x in (2.18), we can write∫ L

0

x
(
y2(x, T )− y20(x)

)
dx−

∫ T

0

∫ L

0

y2dxdt+ 3

∫ T

0

∫ L

0

y2xdxdt

+ 2

∫ T

0

∫ L

0

xa(x)y2dxdt+ 2

∫ T

0

∫ L

0

xb(x)y(x, t)y(x, t− h)dxdt = 0

and we have

3

∫ T

0

∫ L

0

y2x(x, t)dxdt ≤ L ‖y0‖2L2(0,L) + (1 + 2L ‖b‖L∞(0,L))

∫ T

0

∫ L

0

y2dxdt

+ L ‖b‖L∞(0,L)

∫ 0

−h

∫
ω

z20(x, t)dxdt.

Using (2.16), we obtain that there exists C > 0 such that

‖yx‖2L2(0,T,L2(0,L)) ≤ C
(
‖y0‖2L2(0,L) + ‖z0(·,−h ·)‖2L2(ω×(0,1))

)
that brings, together with (2.16), the continuity of the map (2.12).

• Choosing q(x, t) ≡ T − t in (2.18) yields easily inequality (2.14) since it writes

−
∫ L

0

Ty20(x)dx+

∫ T

0

∫ L

0

y2dxdt+

∫ T

0

(T − t)y2x(0, t)dt

+ 2

∫ T

0

∫ L

0

(T − t)a(x)y2dxdt+ 2

∫ T

0

∫ L

0

(T − t)b(x)y(x, t)y(x, t− h)dxdt = 0,

and since we use the fact that

2

∫ T

0

∫ L

0

(T − t)b(x)y(x, t)y(x, t− h)dxdt ≤ T

∫ T

0

∫ L

0

b(x)y2(x, t)dxdt

+T

∫ T

0

∫ L

0

b(x)y2(x, t− h)dxdt

≤ 2T

∫ T

0

∫ L

0

b(x)y2(x, t)dxdt

+T ‖b‖L∞(0,L)

∫ 0

−h

∫
ω

z20(x, t)dxdt.

• Finally, taking p(ρ, t) = 1 in (2.17) brings inequality (2.15) since it writes∫ 1

0

∫
ω

(
z2(x, ρ, T )− z20(x,−ρh)

)
dxdρ+

1

h

∫ T

0

∫
ω

(
z2(x, 1, t)− y2(x, t)

)
dxdt = 0.

By density of D(A) in H, the results extend to arbitrary (y0, z0(·,−h ·)) ∈ H.

2.2 KdV linear equation with a source term

Consider now the KdV linear equation with a right hand side:
yt(x, t) + yxxx(x, t) + yx(x, t) + a(x)y(x, t) + b(x)y(x, t− h) = f(x, t), x ∈ (0, L), t > 0,

y(0, t) = y(L, t) = yx(L, t) = 0, t > 0,

y(x, 0) = y0(x), x ∈ (0, L),

y(x, t) = z0(x, t), x ∈ (0, L), t ∈ (−h, 0).

(2.20)
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Proposition 2. Assume that (1.2) and (1.3) hold. For any (y0, z0(·,−h ·)) ∈ H and f ∈
L1(0, T, L2(0, L)), there exists a unique mild solution (y, y(·, t−h ·)) ∈ B×C([0, T ], L2(ω×(0, 1)))

to (2.20). Moreover, there exists C > 0 independent of T such that

‖(y, z)‖2C([0,T ],H) ≤ C
(
‖(y0, z0(·,−h ·))‖2H + ‖f‖2L1(0,T,L2(0,L))

)
, (2.21)

‖yx‖2L2(0,T,L2(0,L)) ≤ C(1 + T )
(
‖(y0, z0(·,−h ·))‖2H + ‖f‖2L1(0,T,L2(0,L))

)
. (2.22)

Proof. The well-posedness of system (2.20) in C([0, T ], H), when we rewrite it as a first order

system (see (2.11)) with source term (f(·, t), 0), and the proof of (2.21), stem from A being the

infinitesimal generator of a C0-semigroup of contractions on H (see [Paz12]).

The proof of (2.22) follows exactly the steps of the proof of Proposition 1 (see the third step).

One has to pay attention to the right hand side terms that are not homogeneous anymore (but

involve the source f) and to note that∣∣∣∣∣
∫ T

0

∫ L

0

fydxdt

∣∣∣∣∣ ≤
∫ T

0

‖f‖L2(0,L) ‖y‖L2(0,L) dt ≤ max
t∈[0,T ]

‖y(t)‖L2(0,L)

∫ T

0

‖f‖L2(0,L) dt

≤ 1

2
max
t∈[0,T ]

‖y(t)‖2L2(0,L) +
1

2
‖f‖2L1(0,T,L2(0,L)) .

2.3 Global existence of the solution of the nonlinear system

We endow the space B with the norm

‖y‖B = max
t∈[0,T ]

‖y(., t)‖L2(0,L) +

(∫ T

0

‖y(., t)‖2H1
0 (0,L)

dt

)1/2

.

To prove the well-posedness result of the nonlinear system (1.1), we exactly follow [PMVZ02]

(see also [CC04], [Cer14]).

The first step is to show that the nonlinearity term yyx can be considered as a source term of

the linear equation (2.20):

Proposition 3. Let y ∈ B. Then yyx ∈ L1(0, T, L2(0, L)) and the map

y ∈ B 7→ yyx ∈ L1(0, T, L2(0, L))

is continuous. In particular, there exists K > 0 such that, for any y, ỹ ∈ B, we have∫ T

0

‖yyx − ỹỹx‖L2(0,L) ≤ KT
1/4 (‖y‖B + ‖ỹ‖B) ‖y − ỹ‖B .
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Proof. The proof can be found in [PMVZ02], which is a variant of Proposition 4.1 of [Ros97]

(see also [Cer14]). The proof is given here for the sake of completeness. Applying triangular

inequality and Cauchy-Schwarz inequality, we have

‖yyx − ỹỹx‖L1(0,T,L2(0,L)) ≤
∫ T

0

‖(y − ỹ)yx‖L2(0,L) dt+

∫ T

0

‖(yx − ỹx)ỹ‖L2(0,L) dt

≤
∫ T

0

‖y − ỹ‖L∞(0,L) ‖yx‖L2(0,L) dt

+

∫ T

0

‖yx − ỹx‖L2(0,L) ‖ỹ‖L∞(0,L) dt

≤ ‖y − ỹ‖L2(0,T,L∞(0,L)) ‖y‖L2(0,T,H1(0,L))

+ ‖y − ỹ‖L2(0,T,H1(0,L)) ‖ỹ‖L2(0,T,L∞(0,L)) .

Using Gagliardo-Niremberg’s inequality (‖y‖L∞(0,L) ≤ C ‖y‖
1
2

L2(0,L) ‖yx‖
1
2

L2(0,L) for every y ∈
H1

0 (0, L)) and Cauchy-Schwarz inequality, we have

‖ỹ‖L2(0,T,L∞(0,L)) =

(∫ T

0

‖ỹ‖2L∞(0,L) dt

) 1
2

≤ C

(∫ T

0

‖ỹ‖L2(0,L) ‖ỹx‖L2(0,L) dt

) 1
2

≤ C ‖ỹ‖
1
2

L∞(0,T,L2(0,L))

(∫ T

0

‖ỹx‖L2(0,L) dt

) 1
2

≤ CT
1
4 ‖ỹ‖

1
2

L∞(0,T,L2(0,L)) ‖ỹ‖
1
2

L2(0,T,H1(0,L)) .

Consequently, we have

‖yyx − ỹỹx‖L1(0,T,L2(0,L)) ≤ CT
1
4 ‖y − ỹ‖

1
2

L∞(0,T,L2(0,L)) ‖y − ỹ‖
1
2

L2(0,T,H1(0,L)) ‖y‖L2(0,T,H1(0,L))

+CT
1
4 ‖y − ỹ‖L2(0,T,H1(0,L)) ‖ỹ‖

1
2

L∞(0,T,L2(0,L)) ‖ỹ‖
1
2

L2(0,T,H1(0,L)) ,

which finishes the proof.

Remark 2. Proposition 4.1 of [Ros97] states that if y ∈ L2(0, T,H1(0, L)) =: L2(H1), then

yyx ∈ L1(0, T, L2(0, L)) and there exists K > 0 such that, for any y, ỹ ∈ L2(H1), we have∫ T

0

‖yyx − ỹỹx‖L2(0,L) ≤ K
(
‖y‖L2(H1) + ‖ỹ‖L2(H1)

)
‖y − ỹ‖L2(H1) .

We prove the following proposition:

Proposition 4. Let L > 0 and assume that (1.2) and (1.3) hold. Then for every (y0, z0(·,−h·)) ∈
H, there exists a unique y ∈ B solution of system (1.1).

Proof. We closely follow [PMVZ02] (see also [Paz05]): we can obtain the global existence of mild

solution by proving the local (in time) existence and using the decay of the energy to obtain the

global existence of solution.

Indeed, if we prove the local (in time) existence and uniqueness of solution of (1.1), global

existence will then be an immediate consequence of the decay of the energy

E(t2) ≤ E(t1) ≤ E(0), ∀0 < t1 < t2,
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provided by the facts that E(t) = ‖U(t)‖2H and A generates a C0 semigroup of contractions on

H.

We are then reduced to prove the local (in time) existence and uniqueness of solution of (1.1).

Let (y0, z0(·,−h·)) ∈ H. Given y ∈ B, we consider the map Φ : B → B defined by Φ(y) = ỹ

where ỹ is solution of
ỹt(x, t) + ỹxxx(x, t) + ỹx(x, t) + a(x)ỹ(x, t) + b(x)ỹ(x, t− h) = −y(x, t)yx(x, t), x ∈ (0, L), t > 0,

ỹ(0, t) = ỹ(L, t) = ỹx(L, t) = 0, t > 0,

ỹ(x, 0) = y0(x), x ∈ (0, L),

ỹ(x, t) = z0(x, t), x ∈ (0, L), t ∈ (−h, 0).

Clearly y ∈ B is a solution of (1.1) if and only if y is a fixed point of the map Φ.

From (2.21), (2.22) and Proposition 3, we get

‖Φ(y)‖B = ‖ỹ‖B ≤ C(1 +
√
T )

(
‖(y0, z0(·,−h·))‖H+

∫ T

0

‖yyx(t)‖L2(0,L)dt

)
≤ C(1 +

√
T )
(
‖(y0, z0(·,−h·))‖H + T

1
4 ‖y‖2B

)
≤ C(1 +

√
T ) ‖(y0, z0(·,−h·))‖H + 2CT

1
4 ‖y‖2B ,

with T < 1. Moreover, for the same reasons, we have

‖Φ(y1)− Φ(y2)‖B ≤ C(1 +
√
T )

∫ T

0

‖−y1y1,x + y2y2,x‖L2(0,L) dt

≤ C(1 +
√
T )T

1
4 (‖y1‖B + ‖y2‖B) ‖y1 − y2‖B .

We consider Φ restricted to the closed ball {y ∈ B, ‖y‖B ≤ R} with R > 0 to be chosen later.

Then

‖Φ(y)‖B ≤ C(1+
√
T ) ‖(y0, z0(·,−h·))‖H+2CT

1
4R2 and ‖Φ(y1)− Φ(y2)‖B ≤ 2C(1+

√
T )T

1
4R ‖y1 − y2‖B .

So if we take R = 2C ‖(y0, z0(·,−h·))‖H and T > 0 satisfying

√
T + 8C2 ‖(y0, z0(·,−h·))‖H T

1
4 < 1 and T < min

{
1,

1

(4CR)4

}
,

then ‖Φ(y)‖B < R and ‖Φ(y1) − Φ(y2)‖B ≤ C1‖y1 − y2‖B, with C1 < 1. Consequently, we can

apply the Banach fixed point theorem and the map Φ has a unique fixed point.

3 Lyapunov approach for a first local stabilization result

The goal of this section is to prove our first main result, presented in Theorem 1. We will

basically detail the proof of the exponential stability of the solution of system (1.1), which is

based on the appropriate choice of a candidate Lyapunov functional. A first step is the following

proposition concerning the energy of the system.
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Proposition 5. Let (1.2) and (1.3) be satisfied. Then, for any regular solution of (1.1) the

energy E defined by (1.6) is non-increasing and there exists a positive constant C1 such that

d

dt
E(t) ≤ −C1

[
y2x(0, t) +

∫ L

0

a(x)y2(x, t)dx+

∫
ω

y2(x, t− h)dx

]
≤ 0. (3.23)

Proof. Differentiating (1.6) and using (1.1), we obtain,

d

dt
E(t) = −2

∫ L

0

y(x, t)(yxxx + yx + yyx + ay)(x, t)dx− 2

∫ L

0

b(x)y(x, t)y(x, t− h)dx

−2

∫ 1

0

∫
ω

ξ(x)y(x, t− hρ)∂ρy(x, t− hρ)dρ

= − y2x(0, t)− 2

∫ L

0

a(x)y2(x, t)dx− 2

∫ L

0

b(x)y(x, t)y(x, t− h)dx+

∫
ω

ξ(x)y2(x, t)dx

−
∫
ω

ξ(x)y2(x, t− h)dx

≤ − y2x(0, t) +

∫
ω

(−2a(x) + b(x) + ξ(x)) y2(x, t)dx− 2

∫
(0,L)\ω

a(x)y2(x)dx

+

∫
ω

(b(x)− ξ(x)) y2(x, t− h)dx.

As in the proof of Theorem 5, assumptions (1.4) and (1.5) (due to (1.2)-(1.3)) end the proof.

This result on the energy of the system does not yield the exponential stability we are seeking.

Therefore, we choose now the following candidate Lyapunov functionnal (similar to that one of

[BCV18]):

V (t) = E(t) + µ1V1(t) + µ2V2(t), (3.24)

where µ1 and µ2 are positive constants that will be fixed small enough later on, E is the energy

defined by (1.6), V1 is defined by

V1(t) =

∫ L

0

xy2(x, t)dx, (3.25)

and V2 is defined by

V2(t) = h

∫
ω

∫ 1

0

(1− ρ)y2(x, t− hρ)dxdρ, (3.26)

for any regular solution of (1.1).

It is clear that the two energies E and V are equivalent, in the sense that

E(t) ≤ V (t) ≤
(

1 + max

{
Lµ1,

µ2

b0

})
E(t) (3.27)

(see (1.2) and (1.5)).
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Proof of Theorem 1. Let y be a regular solution of (1.1) with (y0, z0(·,−h·)) ∈ H satisfying

‖(y0, z0(·,−h·))‖H ≤ r. Differentiating (3.25) and using (1.1), we obtain by using several inte-

grations by parts

d

dt
V1(t) = −2

∫ L

0

xy(x, t)(yxxx + yx + yyx + ay)(x, t)dx− 2

∫ L

0

xb(x)y(x, t)y(x, t− h)dx

= −2

∫ L

0

y2x(x, t)dx+ 2 [y(x, t)yx(x, t)]
L
0 −

∫ L

0

y2x(x, t)dx+
[
xy2x(x, t)

]L
0

+

∫ L

0

y2(x, t)dx+
2

3

∫ L

0

y3(x, t)dx− 2

∫ L

0

xa(x)y2(x, t)dx− 2

∫ L

0

xb(x)y(x, t)y(x, t− h)dx

= −3

∫ L

0

y2x(x, t)dx+

∫ L

0

y2(x, t)dx+
2

3

∫ L

0

y3(x, t)dx

− 2

∫ L

0

xa(x)y2(x, t)dx− 2

∫
ω

xb(x)y(x, t)y(x, t− h)dx.

Moreover, differentiating (3.26), using an integration by parts, we obtain

d

dt
V2(t) = 2h

∫
ω

∫ 1

0

(1− ρ)y(x, t− hρ)∂ty(x, t− hρ)dρdx

= −2

∫
ω

∫ 1

0

(1− ρ)y(x, t− hρ)∂ρ (y(x, t− hρ)) dρdx

= −
∫
ω

[
(1− ρ)y2(x, t− hρ)

]1
0
dx−

∫
ω

∫ 1

0

y2(x, t− hρ)dρdx

=

∫
ω

y2(x, t)dx−
∫
ω

∫ 1

0

y2(x, t− hρ)dρdx.

Consequently, with the proof of Proposition 5, for any γ > 0, we have

d

dt
V (t) + 2γV (t) ≤

∫
ω

(−2a(x) + b(x) + ξ(x) + µ1Lb(x) + µ2) y2(x, t)dx

− 2

∫
(0,L)\ω

a(x)y2(x, t)dx+

∫
ω

(b(x)− ξ(x) + µ1Lb(x)) y2(x, t− h)dx

+ (µ1 + 2γ + 2γµ1L)

∫ L

0

y2(x, t)dx− 3µ1

∫ L

0

y2x(x, t)dx

+
2

3
µ1

∫ L

0

y3(x, t)dx+

∫
ω

∫ 1

0

(2γξ(x)h+ 2γµ2h− µ2) y2(x, t− hρ)dρdx.

Using Poincaré inequality, (‖y‖L2(0,L) ≤ L
π ‖yx‖L2(0,L) for y ∈ H1

0 (0, L)), we obtain that

d

dt
V (t) + 2γV (t) ≤

∫
ω

(−2a(x) + b(x) + ξ(x) + µ1Lb(x) + µ2) y2(x, t)dx

+

∫
ω

(b(x)− ξ(x) + µ1Lb(x)) y2(x, t− h)dx+

(
L2 (µ1 + 2γ + 2γµ1L)

π2
− 3µ1

)∫ L

0

y2x(x, t)dx

+
2

3
µ1

∫ L

0

y3(x, t)dx+

∫
ω

∫ 1

0

(2γξ(x)h+ 2γµ2h− µ2) y2(x, t− hρ)dρdx.

Using (1.5), it is sufficient to take µ1 and µ2 sufficiently small to have −2a(x) + b(x) + ξ(x) +

µ1Lb(x) + µ2 ≤ 0 and b(x)− ξ(x) + µ1Lb(x) ≤ 0 for x ∈ ω. More precisely, we can take

µ1 ≤ inf
x∈ω

{
2a(x)− b(x)− ξ(x)

Lb(x)
,
ξ(x)− b(x)

Lb(x)

}
,
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µ2 ≤ inf
x∈ω
{2a(x)− b(x)− ξ(x)− µ1Lb(x)} .

For instance, by (1.5), we can take

0 < µ1 <
c0

L ‖b‖L∞(0,L)

, 0 < µ2 < c0 − Lµ1 ‖b‖L∞(0,L) .

Moreover, using Cauchy-Schwarz inequality, Proposition 5 and since H1
0 (0, L) ⊂ L∞(0, L), we

have: ∫ L

0

y3(x, t)dx ≤ ‖y(., t)‖2L∞(0,L)

∫ L

0

|y(x, t)|dx

≤ L
√
L ‖yx(., t)‖2L2(0,L) ‖y(., t)‖L2(0,L)

≤ L3/2 ‖(y0, z0(·,−h·))‖H ‖yx(., t)‖2L2(0,L)

≤ L3/2 r ‖yx(., t)‖2L2(0,L) .

Consequently, we have

d

dt
V (t) + 2γV (t) ≤ Υ‖yx(t)‖2L2(0,L) +

∫
ω

∫ 1

0

(2hγ(µ2 + ξ(x))− µ2) y2(x, t − hρ)dxdρ

where Υ =
L2 (2γ (1 + Lµ1) + µ1)

π2
− 3µ1 +

2L3/2rµ1

3
.

Since L satisfies the constraint (1.7), it is possible to choose r small enough to have r <
3(3π2 − L2)

2L3/2π2
. Then one can choose γ > 0 such that (1.8) holds in order to obtain

d

dt
V (t) + 2γV (t) ≤ 0, ∀t > 0.

Integrating over (0, t) and using (3.27), we finally obtain that

E(t) ≤
(

1 + max

{
Lµ1,

µ2

b0

})
E(0)e−2γt, ∀t > 0.

By density of D(A) in H, the results extend to arbitrary (y0, z0(·,−h·)) ∈ H.

Remark 3. On the size of the delay. As one can deduce from (1.8), when the delay h

increases, the decay rate γ decreases.

Remark 4. On the length of the spacial domain. The condition L <
√

3π is a technical

one and comes from the choice of the multiplier x in the expression of V1. To find a better

multiplier is an open problem as far as we know.

In the next section we will prove a stabilization result for any lengths but without any bound

on the decay rate.

16



4 Second local stabilization result - Observability approach

This section aims at proving our second main result, stated in Theorem 2, which is obtained

simply for any lengths and gives generic exponential stability of the solution of system (1.1).

The proof relies on an observability inequality and the use of a contradiction argument. It will

need several steps in order to handle the nonlinearity of the KdV equation under consideration.

4.1 Proof of the stability of the linear equation

We first prove the following observability result.

Theorem 6. Assume that (1.2) and (1.3) are satisfied. Let L > 0 and T > h. Then there

exists C > 0 such that for all (y0, z0(·,−h ·)) ∈ H, we have the observability inequality∫ L

0

y20(x)dx+ h

∫
ω

∫ 1

0

ξ(x)z20(x,−hρ)dxdρ

≤ C

(∫ T

0

y2x(0, t)dt+

∫ T

0

∫ L

0

a(x)y2(x, t)dxdt+

∫ T

0

∫
ω

z2(x, 1, t)dxdt

)
(4.28)

where (y, z) = S(.)(y0, z0(·,−h ·)).

Proof. We proceed by contradiction as in [Ros97] (see also [BCV18]). Let us suppose that (4.28)

is false. Then there exists a sequence

(
(yn0 , z

n
0 (·,−h ·))

)
n

⊂ H such that

∫ L

0

(yn0 )2(x)dx+ h

∫
ω

∫ 1

0

ξ(x)(zn0 )2(x,−hρ)dxdρ = 1

and∫ T

0

(ynx )2(0, t)dt+

∫ T

0

∫ L

0

a(x)(yn)2(x, t)dxdt+

∫ T

0

∫
ω

(zn)2(x, 1, t)dxdt→ 0 as n→ +∞,
(4.29)

where (yn, zn) = S(yn0 , z
n
0 (·,−h ·)). Thanks to Proposition 1, (yn)n is a bounded sequence in

L2(0, T,H1(0, L)), and then ynt = −ynx−ynxxx−ayn−bzn(·, 1, ·) is bounded in L2(0, T,H−2(0, L)).

Due to a result of Simon [Sim87], the set {yn}n is relatively compact in L2(0, T, L2(0, L)) and

we may assume that (yn)n is convergent in L2(0, T, L2(0, L)).

We now prove that if T > h, (zn0 (·,−h ·))n is a Cauchy sequence in L2(ω× (0, 1)). Indeed, since

zn(x, ρ, T ) = yn|ω (x, T − ρh), if T > h, we have∫
ω

∫ 1

0

(zn(x, ρ, T ))2dxdρ =

∫
ω

∫ 1

0

(yn(x, T − ρh))2dxdρ ≤ 1

h

∫
ω

∫ T

0

(yn(x, t))2dtdx.

Using (2.15), for T > h we have∫
ω

∫ 1

0

(zn0 )2(x,−hρ)dρdx ≤ 1

h

∫ T

0

∫
ω

(zn)2(x, 1, t)dxdt+
1

h

∫
ω

∫ T

0

(yn)2(x, t)dxdt.
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Thus (zn0 (·,−h ·))n is a Cauchy sequence in L2(ω × (0, 1)) using also (4.29) and (1.4). Thanks

to (2.14) and (4.29), we deduce that (yn0 )n is a Cauchy sequence in L2(0, L).

Let (y0, z0(·,−h ·)) = lim
n→∞

(yn0 , z
n
0 (·,−h ·)) in H and (y, z) = S(.)(y0, z0(·,−h ·)). By using

Proposition 1,∫ T

0

∫ L

0

a(x)(yn)2(x, t)dxdt+

∫ T

0

∫
ω

b(x)(zn)2(x, 1, t)dxdt

→
∫ T

0

∫ L

0

a(x)y2(x, t)dxdt+

∫ T

0

∫
ω

b(x)z2(x, 1, t)dxdt.

Thus we have that
∫ L
0
y20(x)dx + h

∫
ω

∫ 1

0
ξ(x)z20(x,−hρ)dxdρ = 1 and

∫ T
0

∫ L
0
a(x)y2(x, t)dxdt +∫ T

0

∫
ω
b(x)z2(x, 1, t)dxdt = 0. As z(x, 1, t) = y(x, t− h) = 0 in ω × (0, T ) we deduce that z0 = 0

and z = 0. Moreover y = 0 on ω × (0, T ) (see (1.4)). Consequently y is solution of the linear

equation 
yt(x, t) + yxxx(x, t) + yx(x, t) = 0, x ∈ (0, L), t > 0,

y(0, t) = y(L, t) = yx(L, t) = 0, t > 0,

y(x, 0) = y0(x), x ∈ (0, L),

with y = 0 in ω× (0, T ), where we recall that ω is a nonempty open subset of (0, L). Therefore,

by the Holmgrem’s uniqueness theorem, y ≡ 0 in (0, L)× (0, T ).

Then we obtain a contradiction, which ends the proof of Theorem 6.

From observability inequality (4.28), one can deduce the exponential stability of the KdV linear

system (2.9), stated here:

Theorem 7. Let L > 0. Assume that (1.2) and (1.3) are satisfied. Then, for every (y0, z0(·,−h ·)) ∈
H, the energy of system (2.9), denoted by E and defined by (1.6), decays exponentially. More

precisely, there exist two positive constants ν and κ such that E(t) ≤ κE(0)e−νt, for all t > 0.

Proof. We follow the same kind of proof as in [NP06]. Let (y0, z0(·,−h ·)) ∈ D(A). Integrating

(3.23) between 0 and T > h, we have

E(T )− E(0) ≤ −C1

(∫ T

0

y2x(0, t)dt+

∫ T

0

∫ L

0

a(x)y2(x, t)dxdt+

∫ T

0

∫
ω

y2(x, t− h)dxdt

)
,

which is equivalent to∫ T

0

y2x(0, t)dt+

∫ T

0

∫ L

0

a(x)y2(x, t)dxdt+

∫ T

0

∫
ω

y2(x, t−h)dxdt ≤ 1

C1
(E(0)− E(T )) . (4.30)

As the energy is non-increasing, we have, using the observability inequality (4.28) and (4.30),

E(T ) ≤ E(0) ≤ C

(∫ T

0

y2x(0, t)dt+

∫ T

0

∫ L

0

a(x)y2(x, t)dxdt+

∫ T

0

∫
ω

y2(x, t− h)dxdt

)
≤ C

C1
(E(0)− E(T )) ,
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which implies that

E(T ) ≤ γE(0), with γ =
C
C1

1 + C
C1

< 1. (4.31)

Using this argument on [(m − 1)T,mT ] for m = 1, 2, ... (which is valid because the system is

invariant by translation in time), we will get

E(mT ) ≤ γE((m− 1)T ) ≤ · · · ≤ γmE(0).

Therefore, we have E(mT ) ≤ e−νmTE(0) with ν = 1
T ln 1

γ = 1
T ln

(
1 + C1

C

)
> 0. For an arbitrary

positive t, there exists m ∈ N∗ such that (m−1)T < t ≤ mT , and by the non-increasing property

of the energy, we conclude that

E(t) ≤ E((m− 1)T ) ≤ e−ν(m−1)TE(0) ≤ 1

γ
e−νtE(0).

By density of D(A) in H, we deduce that the exponential decay of the energy E holds for any

initial data in H.

4.2 Stability of the nonlinear equation

We consider in this section the more general case than in Theorem 1 for any L > 0, and prove

the exponential decay of small amplitude solutions of the nonlinear KdV equation (1.1):

Proof of Theorem 2. The proof follows [Cer14] for the stabilization of the nonlinear KdV equa-

tion with internal feedback without delay. Consider initial data ‖(y0, z0(·,−h·))‖H ≤ r with r

chosen later. The solution y of (1.1) can be written as y = y1 + y2 where y1 is solution of
y1t (x, t) + y1xxx(x, t) + y1x(x, t) + a(x)y1(x, t) + b(x)y1(x, t− h) = 0, x ∈ (0, L), t > 0,

y1(0, t) = y1(L, t) = y1x(L, t) = 0, t > 0,

y1(x, 0) = y0(x), x ∈ (0, L),

y1(x, t) = z0(x, t), x ∈ (0, L), t ∈ (−h, 0),

and y2 is solution of
y2t (x, t) + y2xxx(x, t) + y2x(x, t) + a(x)y2(x, t) + b(x)y2(x, t− h) = −y(x, t)yx(x, t), x ∈ (0, L), t > 0,

y2(0, t) = y2(L, t) = y2x(L, t) = 0, t > 0,

y2(x, 0) = 0, x ∈ (0, L),

y2(x, t) = 0, x ∈ (0, L), t ∈ (−h, 0).

More precisely, y1 is solution of (2.9) with initial data (y0, z0(·,−h ·)) ∈ H and y2 is solution of

(2.20) with initial data (0, 0) and right-hand side f = −yyx ∈ L1(0, T, L2(0, L)). Using (4.31),

Proposition 2 and Remark 2, we have

‖(y(T ), z(T ))‖H ≤
∥∥(y1(T ), z1(T ))

∥∥
H

+
∥∥(y2(T ), z2(T ))

∥∥
H

≤ γ ‖(y0, z0(·,−h ·))‖H + C ‖yyx‖L1(0,T,L2(0,L))

≤ γ ‖(y0, z0(·,−h ·))‖H + C ‖y‖2L2(0,T,H1(0,L)) ,

(4.32)
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with 0 < γ < 1. The aim is now to deal with the last term of the previous inequality. For that,

we multiply the first equation of (1.1) by xy and integrate to obtain

3

∫ T

0

∫ L

0

y2x(x, t)dxdt+

∫ L

0

xy2(x, T )dx+ 2

∫ T

0

∫ L

0

a(x)xy2(x, t)dxdt

=

∫ T

0

∫ L

0

y2(x, t)dxdt+

∫ L

0

xy20(x)dx−2

∫ T

0

∫ L

0

b(x)xy(x, t)y(x, t−h)dt+
2

3

∫ T

0

∫ L

0

y3(x, t)dxdt.

Consequently, by the fact that E is non increasing (see (3.23)), we have∫ T

0

∫ L

0

y2x(x, t)dxdt ≤ T + L

3
‖(y0, z0(·,−h·))‖2H

+
2L

3

∫ T

0

∫
ω

b(x) |y(x, t)y(x, t− h)| dxdt+
2

9

∫ T

0

∫ L

0

|y(x, t)|3dxdt.

As H1(0, L) embeds into C([0, L]) and using Cauchy-Schwarz inequality and (3.23), we have∫ T

0

∫ L

0

|y|3(x, t)dxdt ≤
∫ T

0

‖y‖L∞(0,L)

∫ L

0

y2(x, t)dxdt

≤
√
L

∫ T

0

‖y‖H1(0,L)

∫ L

0

y2(x, t)dxdt

≤
√
L ‖y‖2L∞(0,T,L2(0,L))

∫ T

0

‖y‖H1(0,L) dt

≤
√
LT ‖(y0, z0(·,−h·))‖2H ‖y‖L2(0,T,H1(0,L)) .

Moreover, using again (3.23), we have∫ T

0

∫
ω

b(x) |y(x, t)y(x, t− h)| dxdt ≤
‖b‖L∞(0,L)

2

(∫ T

0

∫
ω

y2(x, t)dxdt+

∫ T

0

∫
ω

y2(x, t− h)dxdt

)
≤ ‖b‖L∞(0,L)

∫ T

0

∫ L

0

y2(x, t)dxdt

+
‖b‖L∞(0,L)

2

∫ 0

−h

∫
ω

z20(x, t)dxdt

≤ ‖b‖L∞(0,L)

(
T +

1

2

)
‖(y0, z0(·,−h·))‖2H .

Consequently, we have∫ T

0

∫ L

0

y2x(x, t)dxdt ≤

(
T + L

3
+
L ‖b‖L∞(0,L) (2T + 1)

3

)
‖(y0, z0(·,−h·))‖2H

+
2
√
LT

9
‖(y0, z0(·,−h·))‖2H ‖y‖L2(0,T,H1(0,L)) .

Using Young’s inequality, there exists C > 0 such that∫ T

0

∫ L

0

y2x(x, t)dxdt ≤ C
(
‖(y0, z0(·,−h·))‖2H + ‖(y0, z0(·,−h·))‖4H

)
. (4.33)

Therefore, gathering (4.32) and (4.33), there exists C > 0 so that

‖(y(T ), z(T ))‖H ≤ ‖(y0, z0(·,−h·))‖H
(
γ + C ‖(y0, z0(·,−h·))‖H + C ‖(y0, z0(·,−h·))‖3H

)
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which implies

‖(y(T ), z(T ))‖H ≤ ‖(y0, z0(·,−h·))‖H
(
γ + Cr + Cr3

)
.

Given ε > 0 small enough such that γ+ ε < 1, we can take r small enough such that r+ r3 < ε
C ,

in order to have

‖(y(T ), z(T ))‖H ≤ (γ + ε) ‖(y0, z0(·,−h·))‖H ,

with γ + ε < 1. The end of the proof follows the same lines as in the linear case (see after

(4.31)).

5 Semi-global stabilization result

The goal of this section is to prove Theorem 3 using directly the nonlinear system (1.1). The two

main difficulties to the semi-global stabilization result are the pass to the limit in the nonlinear

term and the fact that this nonlinear term do not allow to use Holmgrem’s theorem. Instead

we will use the following unique continuation property for the nonlinear system due to Saut and

Scheurer [SS87]:

Theorem 8. Let u ∈ L2(0, T,H3(0, L)) be a solution of

ut + ux + uxxx + uux = 0

such that

u(x, t) = 0, ∀t ∈ (t1, t2), ∀x ∈ ω,

where ω is an open nonempty subset of (0, L). Then

u(x, t) = 0, ∀t ∈ (t1, t2), ∀x ∈ (0, L).

To prove Theorem 3, in order to use Theorem 8, we have to show that the limit solution in the

contradiction argument is in L2(0, T,H3(0, L)).

Proof of Theorem 3. We follow [Paz05] (see also [Cer14]). Let y be the solution of (1.1). We

note that, using (3.23), (4.30) holds. Consequently, if we succeed to prove the observability

inequality (4.28) for the nonlinear system (1.1), then we will obtain the exponential decay of

the energy E for the solution of the nonlinear system as in the proof of Theorem 7.

We are then reduced to prove the observability inequality (4.28) for the nonlinear system (1.1).

First, since
∫ L
0
y2yxdx = 1

3 [y3]L0 = 0, we can obtain, similarly to (2.18) with q ≡ 1,∫ L

0

y2(x, t)dx−
∫ L

0

y20(x)dx+

∫ t

0

y2x(0, s)ds

+ 2

∫ t

0

∫ L

0

a(x)y2(x, s)dxds+ 2

∫ t

0

∫ L

0

b(x)y(x, s)y(x, s− h)dxds = 0.
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By integrating this last equation between 0 and T , we have

T

∫ L

0

y20(x)dx ≤
∫ T

0

∫ L

0

y2(x, t)dxdt+ T

∫ T

0

y2x(0, t)dt

+ 2T

∫ T

0

∫ L

0

a(x)y2(x, t)dxdt+ 2T

∫ T

0

∫ L

0

b(x)y(x, t)y(x, t− h)dxdt.

Using the fact that∫ T

0

∫ L

0

b(x)y(x, t)y(x, t− h)dxdt

≤
‖b‖L∞(0,L)

2

∫ T

0

∫
ω

y2(x, t)dxdt+
1

2

∫ T

0

∫
ω

b(x)y2(x, t− h)dxdt,

and (1.4), there exists C > 0 such that

T

∫ L

0

y20(x)dx ≤ ‖y‖2L2((0,L)×(0,T )) + T

∫ T

0

y2x(0, t)dt

+ C

∫ T

0

∫ L

0

a(x)y2(x, t)dxdt+ C

∫ T

0

∫
ω

b(x)y2(x, t− h)dxdt. (5.34)

Moreover, integrating (2.15) between 0 and T , we have,

T

∫ 1

0

∫
ω

z20(x,−hρ)dρdx ≤
∫ T

0

∫ 1

0

∫
ω

z2(x, ρ, t)dxdρdt+
T

h

∫ T

0

∫
ω

y2(x, t− h)dxdt,

with, if T > h, using (1.2) and (1.4),∫ T

0

∫ 1

0

∫
ω

z2(x, ρ, t)dxdρdt =

∫ T

0

∫ 1

0

∫
ω

y2(x, t− ρh)dxdρdt =
1

h

∫ T

0

∫ t

t−h

∫
ω

y2(x, u)dxdudt

≤ T

h

∫ T

−h

∫
ω

y2(x, u)dxdu

=
T

h

∫ T−h

−h

∫
ω

y2(x, u)dxdu+
T

h

∫ T

T−h

∫
ω

y2(x, u)dxdu

≤ T

h

∫ T

0

∫
ω

(
y2(x, t) + y2(x, t− h)

)
dxdt

≤ C

∫ T

0

∫ L

0

a(x)y2(x, t)dxdt+ C

∫ T

0

∫
ω

b(x)y2(x, t− h)dxdt.

Gathering these estimates with (5.34), we see that it suffices, in order to prove the observability

inequality (4.28) for the nonlinear system (1.1), to prove that for any T,R > 0 there exists

K > 0 (which depends on R and T ) such that

K ‖y‖2L2((0,L)×(0,T )) ≤
∫ T

0

y2x(0, t)dt+

∫ T

0

∫ L

0

a(x)y2(x, t)dxdt+

∫ T

0

∫
ω

b(x)y2(x, t− h)dxdt

(5.35)

for the solutions of the nonlinear system (1.1) with ‖(y0, z0(·,−h·))‖H ≤ R. We do that by a

contradiction argument. We assume that (5.35) does not hold and we built a sequence (yn)n ⊂ B
solution of (1.1) with ‖(yn0 , zn0 (·,−h·))‖H ≤ R such that

lim
n→+∞

‖yn‖2L2((0,L)×(0,T ))

‖ynx (0, ·)‖2L2(0,T ) +
∫ T
0

∫ L
0
a |yn|2 dxdt+

∫ T
0

∫
ω
b |yn(x, t− h)|2 dxdt

= +∞.
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We define λn = ‖yn‖L2((0,L)×(0,T )) and vn = yn

λn
. Then, vn satisfies

vnt (x, t) + vnxxx(x, t) + vnx (x, t) + λnv
n(x, t)vnx (x, t) + a(x)vn(x, t)

+b(x)vn(x, t− h) = 0,

vn(0, t) = vn(L, t) = vnx (L, t) = 0,

(5.36)

‖vn‖L2((0,L)×(0,T )) = 1 (5.37)

and

‖vnx (0, ·)‖2L2(0,L) +

∫ T

0

∫ L

0

a |vn|2 dxdt+

∫ T

0

∫
ω

b(x) |vn(x, t− h)|2 dxdt −→n→+∞ 0. (5.38)

Using the fact that ∫ T

0

∫ L

0

(T − t)(vn)2vnxdxdt = 0,

we have, as for the linear case (see (2.14)) that

‖vn(·, 0)‖2L2(0,L) ≤ C
(
‖vn‖2L2(0,T,L2(0,L)) + ‖vnx (0, ·)‖2L2(0,T ) + ‖vn(·,−h·)‖2L2(ω×(0,1))

)
,

with, if T > h and since (1.2) holds,

‖vn(·,−h·)‖2L2(ω×(0,1)) = h

∫ 0

−h

∫
ω

|vn(x, t)|2 dxdt

≤ h
∫ T−h

−h

∫
ω

|vn(x, t)|2 dxdt ≤ h
∫ T

0

∫
ω

b(x) |vn(x, t− h)|2 dxdt.

Gathering this with (5.37) and (5.38), we see that (vn(·, 0))n is bounded in L2(0, L). Moreover,

we note that (λn)n is bounded in R since, due to (3.23),

λn = ‖yn‖L2((0,L)×(0,T )) ≤ T ‖(y
n
0 , z

n
0 (·,−h·))‖H ≤ TR.

Consequently, using the same inequality as (4.33) for (5.36), (vn)n is bounded in L2(0, T,H1(0, L)).

We also notice that (vnvnx )n is a subset of L2(0, T, L1(0, L)), since by Cauchy-Schwarz inequality,

we have

‖vnvnx‖L2(0,T,L1(0,L)) ≤ ‖v
n‖C([0,T ],L2(0,L)) ‖v

n‖L2(0,T,H1(0,L)) .

All these are used to show that vnt = −(vnxxx + vnx + λnv
nvnx + avn + bvn(t− h)) is bounded in

L2(0, T,H−2(0, L)) and consequently using a result of Simon [Sim87], the set {vn}n is relatively

compact in L2(0, T, L2(0, L)) and a subsequence of (vn)n, also denoted by (vn)n, converges

strongly in L2(0, T, L2(0, L)) to a limit v verifying ‖v‖L2(0,T,L2(0,L)) = 1. Furthermore, by weak

lower semicontinuity, we have

‖vx(0, ·)‖2L2(0,L) +

∫ T

0

∫ L

0

a |v|2 dxdt+

∫ T

0

∫
ω

b(x) |v(x, t− h)|2 dxdt

≤ lim inf
n→∞

(
‖vnx (0, ·)‖2L2(0,L) +

∫ T

0

∫ L

0

a |vn|2 dxdt+

∫ T

0

∫
ω

b(x) |vn(x, t− h)|2 dxdt

)
= 0
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and therefore

v(x, t) = 0 in ω × (−h, T ) and vx(0, t) = 0 in (0, T ).

Since (λn)n is bounded, we can also extract a subsequence, still denoted by (λn)n, which con-

verges to λ ≥ 0. Consequently, the limit v satisfies

vt(x, t) + vxxx(x, t) + vx(x, t) + λv(x, t)vx(x, t) = 0, x ∈ (0, L), t ∈ (0, T ),

v(0, t) = v(L, t) = vx(L, t) = 0, t ∈ (0, T ),

v(x, t) = 0, x ∈ ω, t ∈ (0, T ),

vx(0, t) = 0, t ∈ (0, T ),

‖v‖L2(0,T,L2(0,L)) = 1.

We then distinguish two cases:

• First case: λ = 0. Then the system satisfied by v is linear and we can apply Holmgrem’s

theorem to get that the solution v is trivial, which contradicts ‖v‖L2(0,T,L2(0,L)) = 1.

• Second case: λ > 0. We then prove that in fact v ∈ L2(0, T,H3(0, L)). For that, we

consider u = vt. Then u satisfies

ut(x, t) + uxxx(x, t) + ux(x, t) + λu(x, t)vx(x, t) + λv(x, t)ux(x, t) = 0, x ∈ (0, L), t ∈ (0, T ),

u(0, t) = u(L, t) = ux(L, t) = 0, t ∈ (0, T ),

u(x, t) = 0, x ∈ ω, t ∈ (0, T ),

ux(0, t) = 0, t ∈ (0, T ),

u(x, 0) = −v′(x, 0)− v′′′(x, 0)− λv(x, 0)v′(x, 0) ∈ H−3(0, L).

Using Lemma A.2 of [Cer14], we get that the initial data u(·, 0) ∈ L2(0, L) and so u =

vt ∈ B. We deduce that vxxx = −vt − vx − λvvx ∈ L2(0, T, L2(0, L)) and then that

v ∈ L2(0, T,H3(0, L)). Applying Theorem 8, we obtain that the solution v is trivial,

which contradicts ‖v‖L2(0,T,L2(0,L)) = 1 and ends the proof.

6 Third local stabilization result

In this section, we prove the exponential stability of (1.1) in the case where ω = supp b 6⊂ supp a.

In this case, the derivative of the energy E defined by (1.6) satisfies

d

dt
E(t) = −y2x(0, t)− 2

∫
supp a

a(x)y2(x, t)dx− 2

∫
ω

b(x)y(x, t)y(x, t− h)dx+

∫
ω

ξ(x)y2(x, t)dx

−
∫
ω

ξ(x)y2(x, t− h)dx

≤ −y2x(0, t)− 2

∫
supp a

a(x)y2(x, t)dx+

∫
ω

(b(x) + ξ(x))y2(x, t)dx+

∫
ω

(b(x)− ξ(x))y2(x, t− h)dx,

24



and so the energy is not decreasing in general due to the term b(x) + ξ(x) > 0 on ω.

Following [NP14], we consider the next auxiliary problem, which is ”close” to (1.1) but whose

the energy is decreasing:

yt(x, t) + yxxx(x, t) + yx(x, t) + y(x, t)yx(x, t) + a(x)y(x, t)

+b(x)y(x, t− h) + ξb(x)y(x, t) = 0, x ∈ (0, L), t > 0,

y(0, t) = y(L, t) = yx(L, t) = 0, t > 0,

y(x, 0) = y0(x), x ∈ (0, L),

y(x, t) = z0(x, t), x ∈ (0, L), t ∈ (−h, 0),

(6.39)

where ξ is a positive constant. Then we consider the energy defined by (1.6) with ξ(x) = ξb(x),

i.e.

E(t) =

∫ L

0

y2(x, t)dx+ hξ

∫
ω

∫ 1

0

b(x)y2(x, t− hρ)dρdx. (6.40)

Then the derivative of this energy E satisfies

d

dt
E(t) = −y2x(0, t)− 2

∫
supp a

a(x)y2(x, t)dx− 2

∫
ω

b(x)y(x, t)y(x, t− h)dx− 2ξ

∫
ω

b(x)y2(x, t)dx

+ξ

∫
ω

b(x)y2(x, t)dx− ξ
∫
ω

b(x)y2(x, t− h)dx

≤ −y2x(0, t)− 2

∫
supp a

a(x)y2(x, t)dx+

∫
ω

(b(x)− ξb(x))y2(x, t)dx

+

∫
ω

(b(x)− ξb(x))y2(x, t− h)dx ≤ 0

taking ξ > 1, for any regular solution.

We would like to use the classical perturbation result of Pazy [Paz12]:

Theorem 9. Let X be a Banach space and let A be the infinitesimal generator of a C0 semigroup

T (t) on X satisfying ‖T (t)‖ ≤ Meωt. If B is a bounded linear operator on X, then A + B is

the infinitesimal generator of a C0 semigroup S(t) on X satisfying ‖S(t)‖ ≤Me(ω+M‖B‖)t.

The strategy to treat the case supp b 6⊂ supp a is then the following: we first prove the exponential

stability for (6.39) linearized around 0 by the Lyapunov approach for all L <
√

3π (allowing

to have an estimation of the decay rate), then we show the exponential stability of (2.9) using

Theorem 9 for all L <
√

3π and for ‖b‖L∞(0,L) small enough. Finally we obtain the local

exponential stability of the nonlinear system (1.1) for all L <
√

3π and for ‖b‖L∞(0,L) small

enough using the same proof as in Section 4.2.
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6.1 Exponential stability for a linear auxiliary system by the Lyapunov

approach

We first consider the system (6.39) linearized around 0:

yt(x, t) + yxxx(x, t) + yx(x, t) + a(x)y(x, t) + b(x)y(x, t− h) + ξb(x)y(x, t) = 0,

x ∈ (0, L), t > 0,

y(0, t) = y(L, t) = yx(L, t) = 0, t > 0,

y(x, 0) = y0(x), x ∈ (0, L),

y(x, t) = z0(x, t), x ∈ (0, L), t ∈ (−h, 0).

(6.41)

As in Section 2, setting z(x, ρ, t) = y|ω (x, t− ρh) for any x ∈ ω, ρ ∈ (0, 1) and t > 0, z satisfies

the transport equation (2.10). We equipped the Hilbert space H = L2(0, L) × L2(ω × (0, 1))

with the inner product〈 y

z

 ,

 ỹ

z̃

〉 =

∫ L

0

yỹ dx+ hξ

∫
ω

∫ 1

0

b(x)zz̃ dρdx,

for any (y, z), (ỹ, z̃) ∈ H and where ξ > 1.

We then rewrite (6.41) as a first order system: Ut(t) = A0U(t), t > 0,

U(0) = U0 ∈ H,
(6.42)

where U =

 y

z

, U0 =

 y0

z0|ω (·,−h ·)

, and where the operator A0 is defined by

A0U =

 −yxxx − yx − ay − ξby − bz̃(·, 1)

− 1
h zρ

 ,

with domain

D(A0) =
{

(y, z) ∈ H3(0, L)×L2(ω,H1(0, 1))
∣∣ y(0) = y(L) = yx(L) = 0, z(x, 0) = y|ω (x) in ω

}
.

Theorem 10. Assume that a and b are nonnegative functions in L∞(0, L) satisfying (1.2) and

that U0 ∈ H. Let ξ > 1. Then there exists a unique mild solution U ∈ C([0,+∞), H) for system

(6.42). Moreover if U0 ∈ D(A0), then the solution is classical and satisfies

U ∈ C([0,+∞), D(A0)) ∩ C1([0,+∞), H).

Proof. We follow the proof of Theorem 5. We first prove that the operator A0 is dissipative.
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Let U = (y, z) ∈ D(A0). Then we have

〈A0U,U〉 =
1

2
[y2x]L0 −

∫ L

0

a(x)y2dx−
∫
ω

ξb(x)y2dx−
∫
ω

b(x)z(x, 1)y(x)dx− ξ

2

∫
ω

b(x)z2(x, 1)dx

+
ξ

2

∫
ω

b(x)y2(x)dx

≤ −y2x(0)−
∫
supp a

a(x)y2(x)dx+
1

2

∫
ω

b(x) (1− ξ) y2(x)dx+
1

2

∫
ω

b(x) (1− ξ) z2(x, 1)dx.

If we take ξ > 1, then 〈A0U,U〉 ≤ 0, which means that the operator A0 is dissipative.

Secondly we show that the adjoint of A0, denoted by A∗0, is also dissipative. It is not difficult

to prove that the adjoint is defined by

A∗0U =

 yxxx + yx − ay − ξby + ξbz̃(·, 0)

1
h zρ

 , U =

 y

z

 ∈ D(A∗0),

with domain

D(A∗0) =
{

(y, z) ∈ H3(0, L)×L2(ω,H1(0, 1))
∣∣y(0) = y(L) = yx(0) = 0, z(x, 1) = −1

ξ
y|ω (x) in ω

}
.

Then for all U = (y, z) ∈ D(A∗0),

〈A∗0U,U〉 = −1

2
[y2x]L0 −

∫ L

0

a(x)y2dx−
∫
ω

ξb(x)y2dx+

∫
ω

ξb(x)z(x, 0)y(x)dx

+
1

2ξ

∫
ω

b(x)y2(x)dx− ξ

2

∫
ω

b(x)z2(x, 0)dx

≤ −1

2
y2x(L)−

∫
supp a

a(x)y2(x)dx+

∫
ω

b(x)

(
−ξ

2
+

1

2ξ

)
y2(x)dx,

and, since ξ > 1, we have − ξ2 + 1
2ξ < 0.

Finally, the facts that A0 is a densely defined closed linear operator, and both A0 and A∗0 are

dissipative, imply that A0 is the infinitesimal generator of a C0 semigroup of contractions on

H, which finishes the proof.

We denote by {T (t), t ≥ 0} the semigroup of contractions associated with A0.

To prove the exponential stability of (6.41), we closely follow Section 3. More precisely, we

choose the following candidate Lyapunov functionnal:

V (t) = E(t) + µ1V1(t) + µ2V2(t), (6.43)

where µ1 and µ2 are positive constants that will be fixed small enough later on, E is the energy

defined by (6.40), V1 is defined by (3.25) and V2 is defined by

V2(t) = h

∫
ω

∫ 1

0

(1− ρ)b(x)y2(x, t− hρ)dxdρ, (6.44)

for any regular solution of (6.41).
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It is clear that the two energies E and V are equivalent, in the sense that

E(t) ≤ V (t) ≤
(

1 + max

{
Lµ1,

µ2

ξ

})
E(t). (6.45)

Proposition 6. Assume that a and b are nonnegative functions in L∞(0, L) satisfying (1.2)

and that the length L fulfills (1.7). Let ξ > 1. Then, for every (y0, z0(·,−h·)) ∈ H, the energy

of system (6.41), denoted E and defined by (6.40), decays exponentially. More precisely, there

exist two positive constants α and β such that

E(t) ≤ βE(0)e−2αt, t > 0,

where, for µ1, µ2 sufficiently small,

α ≤ min

{
µ2

2h(ξ + µ2)
,
µ1(3π2 − L2)

2L2(1 + µ1L)

}
, (6.46)

β =

(
1 + max

{
Lµ1,

µ2

ξ

})
.

Proof. Let y be a regular solution of (6.41). Differentiating (3.25) and using (6.41), we obtain

by using several integrations by parts and as in the proof of Theorem 1

d

dt
V1(t) = −3

∫ L

0

y2x(x, t)dx+

∫ L

0

y2(x, t)dx− 2

∫
supp a

xa(x)y2(x, t)dx

− 2

∫
ω

ξxb(x)y2(x, t)dx− 2

∫
ω

xb(x)y(x, t)y(x, t− h)dx.

Moreover, differentiating (6.44), using an integration by parts, we obtain

d

dt
V2(t) =

∫
ω

b(x)y2(x, t)dx−
∫
ω

∫ 1

0

b(x)y2(x, t− hρ)dρdx.

Consequently, for any α > 0, we have

d

dt
V (t) + 2αV (t) ≤ −2

∫ L

0

a(x)(1 + µ1x)y2(x, t)dx+

∫
ω

b(x) (1− ξ + µ2 + µ1L) y2(x, t)dx

+

∫
ω

b(x) (1− ξ + µ1L) y2(x, t− h)dx+ (µ1 + 2α+ 2αµ1L)

∫ L

0

y2(x, t)dx

− 3µ1

∫ L

0

y2x(x, t)dx+

∫
ω

∫ 1

0

b(x) (2αξh+ 2αµ2h− µ2) y2(x, t− hρ)dρdx.

Using Poincaré inequality, we obtain that

d

dt
V (t) + 2αV (t) ≤

∫
ω

b(x) (1− ξ + µ2 + µ1L) y2(x, t)dx

+

∫
ω

b(x) (1− ξ + µ1L) y2(x, t− h)dx+

(
L2

π2
(µ1 + 2α+ 2αµ1L)− 3µ1

)∫ L

0

y2x(x, t)dx

+

∫
ω

∫ 1

0

b(x) (2αξh+ 2αµ2h− µ2) y2(x, t− hρ)dρdx.
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Then, we choose µ1 > 0, µ2 > 0 and α > 0 such that

µ1 <
ξ − 1

L
, µ2 < ξ − 1− Lµ1 and α < min

{
µ2

2h(ξ + µ2)
,
µ1(3π2 − L2)

2L2(1 + µ1L)

}
.

This is possible by (1.7). Therefore we obtain

d

dt
V (t) + 2αV (t) ≤ 0, ∀t > 0.

Integrating over (0, t) and using (6.45), we finally obtain that

E(t) ≤
(

1 + max

{
Lµ1,

µ2

ξ

})
E(0)e−2αt, ∀t > 0.

By density of D(A) in H, the results extend to arbitrary (y0, z0(·,−h·)) ∈ H.

6.2 Exponential stability for the linear system using a perturbation

argument

We consider now the linear system (2.9) in the case where supp b = ω 6⊂ supp a that we can

rewrite as the first system order (2.11). It is clear that the corresponding operator A satisfy

A = A0 +B,

with domain D(A) = D(A0) and where the bounded operator B is defined by

BU =

 ξby

0

 , U =

 y

z

 ∈ H.
Proposition 7. Assume that a and b are nonnegative functions in L∞(0, L) satisfying (1.2)

and assume that (1.7) holds. Let ξ > 1. Then for every U0 ∈ H, there exists a unique mild

solution U ∈ C([0,+∞), H) for system (2.9), and for every U0 ∈ D(A), the solution is classical

and satisfies U ∈ C([0,+∞), D(A)) ∩ C1([0,+∞), H). Moreover there exists δ > 0 (depending

on ξ, L, h) such that if

‖b‖L∞(0,L) ≤ δ,

then, for every (y0, z0(·,−h·)) ∈ H the energy of system (2.9), denoted E and defined by (6.40),

decays exponentially. More precisely, there exist two positive constants ν and β (defined in

Proposition 6) such that

E(t) ≤ βE(0)e−2νt, t > 0.

Proof. It suffices to apply Theorem 9 and to note that, using Proposition 6 and the fact that

‖B‖ = ξ ‖b‖L∞(0,L), we have

−α+
√
βξ ‖b‖L∞(0,L) < 0⇔ ‖b‖L∞(0,L) ≤

α

ξ
√
β
.

Remark 5. Note that if h is large, the choice of b is such that ‖b‖L∞(0,L) is small, due to

(6.46).
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6.3 Local exponential stability for the nonlinear system (1.1)

We finally obtain the local exponential stability result enounced in Theorem 4 by considering

the nonlinear KdV equation (1.1) in the case where supp b = ω 6⊂ supp a.

Proof of Theorem 4. It suffices to adapt the proofs of Sections 2.3 and 4.2.

Remark 6. In order to apply Theorem 9, we need to have an estimation of the decay rate α of

the linear auxiliary system (6.41). That is why we use a Lyapunov method and we assume that

(1.7) holds. If we prove an observability inequality as in Section 4 (which holds without restriction

on the length of the domain), we do not have an estimation of the observability constant C in

(4.28) since we use a contradiction argument. The decay rate of the linear auxiliary system

is then given by α = 1
T ln

(
1 + C1

C

)
(see the proof of Theorem 7) and we should verify that

−α +
√
βξ ‖b‖L∞(0,L) < 0. But the observability constant C may depend on ‖b‖L∞(0,L) and

so this assumption is difficult to verify. To remove the assumption (1.7) in the case where

supp b = ω 6⊂ supp a is, to our knowledge, an open question.

7 Conclusion and remarks

In this paper, we studied the robustness with respect to the delay of the stabilization of the

nonlinear KdV equation with internal feedbacks. We first considered the case of the support

of the weight of the internal feedback with delay b is included in the support of the weight of

the internal feedback without delay a and when b is strictly smaller than a. We proved the

local exponential stability result by two methods: the first one by a Lyapunov approach giving

an estimation of the decay rate but with a technical limitation on the length of the domain

(i.e. L <
√

3π) and a second one by an observability inequality which holds for any length

(but without information on the exponential decay rate). We also obtained the semiglobal

stabilization result for all length. Secondly we considered the case where the support of the

weight of the internal feedback with delay b is not included in the support of the weight of the

internal feedback without delay a. In this case, if b is small enough (and even if a = 0), we

showed that the nonlinear system is locally exponentially stable when L <
√

3π.

To illustrate these results, we present now some numerical simulations. Adapting the numerical

scheme of [CG01] (see also [BCV18]), and using the parameters T = 10, L = 3, h = 2 and initial

conditions y0(x) = 1− cos(2πx) and z0(x, ρ) = (1− cos(2πx)) cos(2πρh) with supp a = supp b =

(0, L/5) and where a and b are constant on their support, we obtain the following figure, that

represents t 7→ ln(E(t)) for different values of a and b. We can see that when there is no feedback

(a = b = 0), the energy is exponentially decreasing, and if the feedback without delay increases

(a = 1 and b = 0), the energy is quickly exponentially decreasing. Moreover if the coefficient of
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delay b increases, then the energy is not exponentially decreasing, except if b is very small (for

instance b = 0.1) or if b is smaller than a (a = 4, b = 1). More precisely, with a = 0, b = 10

or a = b = 10, before that the delay acts (t < 2), the energy decays exponentially, which is not

longer the case when b is effective (t > 2). Consequently Figure 1 illustrates Theorems 1 and 4.

Figure 1: Representation of t 7→ ln(E(t)) for different values of a and b.

We finish this paper by considered the cases of mixed internal and boundary dampings with

delay.

The most simple case is the case where we have an internal feedback without delay and a

boundary feedback with delay, i.e.

yt(x, t) + yxxx(x, t) + yx(x, t) + y(x, t)yx(x, t) + a(x)y(x, t) = 0, x ∈ (0, L), t > 0,

y(0, t) = y(L, t) = 0, t > 0,

yx(L, t) = βyx(0, t− h), t > 0,

y(x, 0) = y0(x), x ∈ (0, L),

yx(0, t) = z0(t), t ∈ (−h, 0),

where |β| < 1 (see [BCV18] for an explanation of this assumption), and where a is a nonnegative

function in L∞(0, L) such that a(x) ≥ a0 > 0 a.e. in ω an open nonempty subset of (0, L). In

this case, it is sufficient to combine [Paz05] and [BCV18] to obtain the local exponential stability

result for every non critical length (i.e. L /∈ L =

{
2π
√

k2+kl+l2

3 , k, l ∈ N∗
}

).

If we consider now the case of an internal feedback with delay and a boundary feedback without
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delay, i.e. 

yt(x, t) + yxxx(x, t) + yx(x, t) + y(x, t)yx(x, t) + b(x)y(x, t− h) = 0,

x ∈ (0, L), t > 0,

y(0, t) = y(L, t) = 0, t > 0,

yx(L, t) = αyx(0, t), t > 0,

y(x, 0) = y0(x), x ∈ (0, L),

y(x, t) = z0(x, t), x ∈ (0, L), t ∈ (−h, 0),

(7.47)

where |α| < 1 (see [Zha94]), and where b is a nonnegative function in L∞(0, L) such that

b(x) ≥ b0 > 0 a.e. in supp b = ω an open nonempty subset of (0, L) and where ‖b‖L∞(0,L) is

small enough. Then we can follow Section 6 to obtain the local exponential stability result for

every L <
√

3π. For that, we introduce the following auxiliary exponentially stable system

yt(x, t) + yxxx(x, t) + yx(x, t) + y(x, t)yx(x, t) + b(x)y(x, t− h) + ξb(x)y(x, t) = 0,

x ∈ (0, L), t > 0,

y(0, t) = y(L, t) = 0, t > 0,

yx(L, t) = αyx(0, t), t > 0,

y(x, 0) = y0(x), x ∈ (0, L),

y(x, t) = z0(x, t), x ∈ (0, L), t ∈ (−h, 0),

with the energy defined by (6.40) and ξ > 1. Note that we can take α = 0 here.

An interesting question to investigate is to remove the technical assumption (1.7) in Theorem 4

or for (7.47). An other subject of future research could be the study of the stability of the KdV

equation with a delay in the nonlinear term.
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[CC04] J-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation

with critical lengths, J. Eur. Math. Soc. (JEMS) 6 (2004), no. 3, 367–398.

[CC13] E. Cerpa and J-M. Coron, Rapid stabilization for a Korteweg-de Vries equation from

the left Dirichlet boundary condition, IEEE Trans. Automat. Control 58 (2013), no. 7,

1688–1695.

[CCS15] J. Chu, J-M. Coron, and P. Shang, Asymptotic stability of a nonlinear korteweg–de

vries equation with critical lengths, Journal of Differential Equations 259 (2015), no. 8,

4045–4085.

[Cer14] E. Cerpa, Control of a Korteweg-de Vries equation: a tutorial, Math. Control Relat.

Fields 4 (2014), no. 1, 45–99.

[CG01] T. Colin and M. Gisclon, An initial-boundary value probleme that approximate the

quarter-plane problem for the korteweg-de vries equation., Non linear analysis theory, meth-

ods and applications (2001), no. 46, 869–892.

[CL14] J-M. Coron and Q. Lü, Local rapid stabilization for a Korteweg-de Vries equation with

a Neumann boundary control on the right, J. Math. Pures Appl. (9) 102 (2014), no. 6,

1080–1120.

[Dat88] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small

time delays in their feedbacks, SIAM J. Control Optim. 26 (1988), no. 3, 697–713.

[DLP86] R. Datko, J. Lagnese, and M. P. Polis, An example on the effect of time delays in

boundary feedback stabilization of wave equations, SIAM J. Control Optim. 24 (1986), no. 1,

152–156.

[KS08] M. Krstic and A. Smyshlyaev, Backstepping boundary control for first-order hyperbolic

{PDEs} and application to systems with actuator and sensor delays, Systems & Control

Letters 57 (2008), no. 9, 750 – 758.

[MCPA17] S. Marx, E. Cerpa, C. Prieur, and V. Andrieu, Global stabilization of a Korteweg-de

Vries equation with saturating distributed control, SIAM J. Control Optim. 55 (2017), no. 3,

1452–1480.

[NP06] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a

delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45 (2006), no. 5,

1561–1585.

33



[NP14] S. Nicaise and C. Pignotti, Stabilization of second-order evolution equations with time

delay, Math. Control Signals Systems 26 (2014), no. 4, 563–588.

[NR11] S. Nicaise and S. Rebiai, Stabilization of the Schrödinger equation with a delay term in

boundary feedback or internal feedback, Port. Math. 68 (2011), no. 1, 19–39.

[NV10] S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded

feedback with delay, ESAIM Control Optim. Calc. Var. 16 (2010), no. 2, 420–456.

[NVF09] S. Nicaise, J. Valein, and E. Fridman, Stability of the heat and of the wave equations

with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S 2 (2009), no. 3,

559–581.

[Paz05] A.F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with

localized damping, ESAIM Control Optim. Calc. Var. 11 (2005), no. 3, 473–486.

[Paz12] A. Pazy, Semigroups of linear operators and applications to partial differential equations,

44, (2012) Springer Science & Business Media.

[PMVZ02] G. Perla Menzala, C. F. Vasconcellos, and E. Zuazua, Stabilization of the Korteweg-

de Vries equation with localized damping, Quart. Appl. Math. 60 (2002), no. 1, 111–129.

[Ros97] L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a

bounded domain, ESAIM Control Optim. Calc. Var. 2 (1997), 33–55 (electronic).

[RZ09] L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation:

recent progresses, J. Syst. Sci. Complex. 22 (2009), no. 4, 647–682.

[Rus78] D.L. Russell, Controllability and stabilizability theory for linear partial differential equa-

tions: recent progress and open questions, Siam Review, 20(4),(1978), 639–739.

[SS87] J.C. Saut, and B. Scheurer, Unique continuation for some evolution equations, J. Differ-

ential Equations 66 (1987), no. 1, 118–139.

[Sim87] J. Simon, Compact sets in the space Lp(0, T ;B), Ann. Mat. Pura Appl. (4) 146 (1987),

65–96.

[TCSC16] S. Tang, J. Chu, P. Shang, and J-M. Coron, Asymptotic stability of a korteweg–de

vries equation with a two-dimensional center manifold, Advances in Nonlinear Analysis

(2016).

[Zha94] B. Y. Zhang, Boundary stabilization of the Korteweg-de Vries equation, Control and

estimation of distributed parameter systems: nonlinear phenomena (Vorau, 1993), Internat.

Ser. Numer. Math., vol. 118, Birkhäuser, Basel, 1994, pp. 371–389.
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