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Advanced analytical techniques to characterize 
materials for electrochemical capacitors

Zifeng Lin 
1,  2 , Pierre-Louis Taberna 

1,  2 and Patrice Simon 
1,  2,  3,  ∗

This review covers recent developments in advanced analytical
techniques to characterize materials for electrochemical
capacitors. For double layer capacitors, examples of the use of
in situ X-ray photoelectron spectroscopy (XPS), pulsed
electrochemical mass spectrometry (PEMS) technique,
temperature-programmed desorption coupled with mass
spectroscopy (TPD-MS) technique, in situ NMR spectroscopy,
and in situ dilatometry measurement are presented, for
studying carbon/electrolyte interface with a focus onto
electrolyte ions con nement in nanopores and changes during
ageing. For the pseudocapacitive system, in situ X-ray
(neutron) diffraction or scattering, in situ dilatometry technique,
cavity micro-electrode, in situ Raman spectroscopy, TPD-MS
technique, and electrochemical quartz crystal microbalance
(EQCM) technique have been employed for studying materials
structure, electrochemical kinetic, interface interaction, and
ions adsorption/desorption. These advanced analytical
techniques probe insight into charge storage mechanisms, and
guiding the fast development of supercapacitors.
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Introduction
During the past 15 years, major scienti c advances have
been made in the  eld of Electrochemical Capacitors
(ECs) which led to a 2-fold increase of the energy den- 
sity of carbon-based (EDLCs) or to the development
of high-rate pseudocapacitive materials. These advances

have been mainly achieved thanks to the use of analytical
techniques, used in combination with in situ electrochem- 
ical conventional methods and/or with modeling. In this
review, some advanced techniques, as well as their roles
in studying charge storage mechanisms are introduced.

Electrochemical double layer capacitors
In Electrical Double Layer Capacitors (EDLCs), capaci- 
tive storage is achieved through ion adsorption of an elec- 
trolyte onto high surface area porous carbon electrodes
[1] . Then, most of the electrochemical process in EDLCs
occurs at the carbon/electrolyte interface. The analytical
techniques used in EDLCs mainly focus on this interface.

One of the important parameters of ECs is the operating
voltage window, which drives the energy density of the
system. In situ X-ray Photoelectron Spectroscopy (XPS)
technique has been used to study the stability of the car- 
bon/electrolyte interface during electrochemical polariza- 
tion of CDC carbons in ionic liquid electrolyte [2,3] . By
tracking the change in the C1s and N1s energy levels,
Lust and co-workers identi ed the reaction mechanism
responsible for the electrolyte degradation at high poten- 
tial ( > 3.6 V), which involves the oxidative dimerization
of the imidazolium cation via N –N bond formation [2] .
Another technique recently developed for monitoring gas
evolution during the operation of supercapacitors is the
pulsed electrochemical mass spectrometry (PEMS) tech- 
nique [4 

•

] , as presented in Figure 1 . PEMS technique al- 
lows for fast quantitative measurement of low gas produc- 
tion during supercapacitor cycling or ageing. Batisse and
Raymundo [4 

•

] evidenced and quanti ed the formation
of CO, CO 2 and H 2 at the positive and negative electrode
during supercapacitor cells ageing at constant voltages in
aqueous electrolytes. Furthermore, they could correlate
gas production to the change of each electrode poten- 
tial versus reference during ageing. Ageing mechanisms
in porous carbon electrodes strongly depend on the pres- 
ence of surface functional groups on the carbon surface, as
well as the carbon structure (presence of defects) and tex- 
ture (surface area and pore size distribution). Here also,
many advances have been achieved within the past 10
years.

A key technique for analyzing the carbon surface is
the temperature-programmed desorption coupled with
mass spectroscopy (TPD-MS) technique [4 

•

–7] . TPD- 
MS technique allows for measuring the surface group na- 
ture and content as well as the active surface area (ASA)



Figure 1 

Observation of gas evolution at electrode/electrolyte interface by a modi ed pulsed electrochemical mass spectrometry (PEMS) method. Adapted
with permission from ref. [4 •] . Copyright © 2017 American Chemical Society.

which accounts for the presence of carbon active sites: de- 
fects such as dislocations, stacking faults or atom vacan- 
cies mainly located in the edge planes [7] . Using carbon
onions with controlled defect and surface group contents
as model materials, a direct correlation was reported be- 
tween the number of defects on the carbon surface mea- 
sured by TPD-MS and the capacitance in both aqueous
and non-aqueous electrolytes. Surprisingly, the contribu- 
tion of the surface defects to the capacitance was found to
be higher than that of the functional surface groups, even
in aqueous electrolytes. These results show that the sur- 
face defects content also affects the carbon capacitance.

Besides the carbon structure and surface group content,
the electrochemical performances of porous carbons are
also controlled by the carbon texture: speci c surface area,
pore volume, pore size, pore size distribution. Back to 15
years ago, the carbon-speci c surface area SSA was mainly
calculated from N 2 gas sorption isotherms at 77 K using
the Brunauer–Emmett–Teller (BET) equation. The evi- 
dence of the capacitance increase in carbon pores less than
1 nm [8–10] highlighted the need for re ning the charac- 
terization methods to  nely measure the porous volume
and pore size in the ultra-microporous range ( < 1 nm).

Following recommendations of the IUPAC, the BET
equation is not suitable for the measurement of speci c
surface area of microporous carbons [11] . Instead, for mi- 
croporosity assessment, CO 2 sorption at 273 K should be
preferred to alleviate kinetics restrictions observed dur- 
ing measurements at low temperature with (77 K with
N 2 ) [11] . In the same way, calculation of the SSA us- 
ing quenched solid density functional theory (QS-DFT)
avoids the fundamental limitations of the BET theory
[12] . Finally, the porous volume accessible to ions should
be considered, that is the porous volume of pores larger
than the size of the desolvated ion [13] . Based on the pre- 
vious recommendations, Jäckel et al. [13] propose to use
CO 2 gas for measuring porous volume below 0.9 nm and
N 2 gas for pores > 0.9 nm. The change of the capacitance
normalized to QS-DFT SSA versus accessible pore size
shows a capacitance increase in pores less than 1 nm size
for various porous carbons in non-aqueous electrolytes (in
acetonitrile- or propylene carbonate-based electrolyte).
Initially reported in 2006 using a series of porous carbons
with controlled pore size [10] , the origin of the capaci- 
tance increase in carbon nanopores has been extensively
studied since that time mainly by using new or advanced
in situ techniques. Beyond the capacitance increase, the



Figure 2 

In situ NMR spectroscopy experiments carried out at different charge states allow quanti cation of the number of charges storing species. Adapted
with permission from ref. [15] . Copyright © 2013 American Chemical Society.

work was directed toward the understanding of the ion
transport and adsorption in con ned carbon nanopores
( < 1 nm), i.e. where there is no room for the building of a
diffuse layer. In situ NMR spectroscopy experiments dur- 
ing electrochemical polarization of porous carbons in NaF
aqueous electrolyte have shown that ions could access
subnanometer pores with partial anion dehydration under
polarization [14] . Using dedicated electrochemical cell, as
shown in Figure 2 , in situ NMR experiments during po- 
larization also evidenced different charge storage mech- 
anisms depending on the electrode polarity [15–19 

••

] .
Counter ion adsorption was found at the negative elec- 
trode (X = 1) and ion exchange at the positive (X = 0) [18] ,
con rming results obtained using electrochemical quartz
crystal microbalance technique under a gravimetric mode
[20] . In addition, the effective ionic diffusion coef cients
inside the carbon nanopores were decreased by two or- 
ders of magnitude compared with bulk electrolyte [19 

••

] ;
this was explained by the increase of the ion population
in pores. As a result, the charging mechanism (counter ion
adsorption versus ion exchange) affects the ion transport
kinetics in con ned nanopores.

Conventional techniques have been also developed to
study ion transfer in porous carbons. Interestingly, in situ
dilatometry measurement during electrochemical polar- 
ization shows also an asymmetric behavior with respect to
the electrode polarization, the electrode thickness change
being more important during negative polarization [21] .
Recently, Presser et al. improved the technique by cou- 
pling in situ dilatometry together with X-ray absorption
spectroscopy (XAS) [22 

••

] [21] . First, they con rmed the
asymmetric swelling of porous carbon electrodes during

electrochemical polarization in aqueous electrolytes. Also,
thanks to the use of porous carbon with hierarchical micro- 
porous/mesoporous structure, most of the volume change
could be assigned to the presence of pores less than 1 nm
size. The origin of the asymmetry was attributed to the
increase of the C –C bonds due to electron injection into
the carbon during negative polarization. This echoes the
increase in the ion population reported by Forse and co- 
workers by in situ NMR spectroscopy [15] , leading to
the decrease of the ionic diffusion coef cient in carbon
nanopores.

Finally, the development of in situ X-ray or neutron scat- 
tering techniques has been particularly successful for
studying ion adsorption in carbon nanopores [23 

••

–25] .
Prehal et al. [24] used CsCl aqueous electrolyte to study
the ion adsorption in nanoporous carbons under polariza- 
tion. By coupling SAXS and Monte Carlo modeling, they
evidenced the ion partial desolvation when con ned in
carbon nanopores. The extent of desolvation and con ne- 
ment was found to increase with the applied potential, in
agreement with previous studies [26] , which gives hints
to explain the capacitance increase in carbon nanopores.
Also, Futamura et al. recently showed the existence of
co-ion pairs when the ionic liquid electrolyte was con-
 ned into carbon pores of 0.7 nm size, that is when the
ion size is close to the pore size [25] . Such an improved
co-ion pairing was the consequence of the partial break- 
ing of the electrostatic Coulombic repulsion interactions
between co-ions thanks to the creation of image charges
in the carbon. They could con rm the creation of a “super
ionic” state such as predicted by Kornyshev and Kondrat
from modeling [27] .



Figure 3 

Schematic of the cavity micro-electrode. Adapted with permission from ref. [40] .

As one can see, the more we advance in the understand- 
ing of the ion con nement effect in nanopores, the more
things get complex. There is still a lot to understand in
this  eld and all these analytical tools will be of great help
to keep on moving in this direction.

Pseudocapacitive and high charge–discharge
rate materials
Pseudocapacitive materials store the charge through
fast, non-diffusion-limited redox reactions. Also, different
from amorphous porous carbon materials used in EDLCs,
most of the pseudocapacitive materials show organized
crystalline structure. So, most of the conventional tech- 
niques based on X-ray diffraction or scattering used to
characterize battery electrode materials have been em- 
ployed with pseudocapacitive materials. We will then
just brie#y mention some examples. In situ XRD has
been extensively used to study the swelling/contraction
of pseudocapacitive materials during ion intercalation/de- 
intercalation, such as in MnO 2 , NiO x , or MXene [28–30] .
Without surprise, the electrode material volume changes
are driven by electrostatic repulsion between the layers
or the steric effects coming from ion intercalation/de- 
intercalation to balance the charge [29] . In monocrys- 
talline Nb 2 O 5 operating in non-aqueous electrolytes, the
intercalation/de-intercalation process volume change is
driven by steric effect (swelling during intercalation, con- 
traction during de de-intercalation) [31] . X-ray absorp- 
tion was used to evidence the change of the Ti oxidation

state during charge/discharge of Ti 3 C 2 T x MXene elec- 
trode [32,33] , as well as in other materials [34,35] .

Differently, micro-electrodes or cavity micro-electrodes
tools ( Figure 3 ) are well-suited for the electrochemical
characterization of high-rate pseudocapacitive materials.
Thanks to the small amount of materials tested, a large
range of potential scan rates (v) can be explored—from
few mV s −1 up to few V s −1 —which was extremely useful
for studying the electrochemical kinetics of pseudocapac- 
itive reactions [36–38] . The deconvolution of the current
into non-diffusion limited surface process (changing with
v) and diffusion-limited (changing with v 1/2 ) has made it
possible to extract the pseudocapacitive contribution to
the total current at each potential, which helps in optimiz- 
ing the structures to design high-rate materials [36–39] .

Another original initiative comes from Hu et al. , who
used Raman spectroscopy to characterize the charge stor- 
age during polarization of Ti 3 C 2 T x MXene electrodes
in SO 4 

2 − ions containing aqueous electrolyte of various
cations [41 

••

] . MXenes are 2-Dimensional materials pio- 
neered by Barsoum and co-workers [42] , which contains
O- and F- surface terminations. Those groups come from
the synthesis process, that is etching of MAX phase in
the #uorine-containing acidic solutions [33] . It was found
that hydronium ions in sulfuric acid could bond with
the oxygen-containing terminations of the Ti 3 C 2 T x MX- 
ene negative electrode upon reduction (oxidation) while
debonding occurs upon oxidation (reduction) [41 

••

] . This



imidazolium-based ionic liquid electrolyte [47] . MXene
electrode swelling was measured during negative polar- 
ization, suggesting the preferential insertion of cations.
Under positive polarization, the electrode contracts even
further compared to the un-polarized sample, suggest- 
ing an ion exchange mechanism. Similar results were ob- 
tained from in situ XRD measurements [28] and a molec- 
ular dynamics simulation study [48] , which con rm the
difference in the charge storage mechanism with the elec- 
trode polarity. Also, the modest capacitance suggests a ma- 
jor contribution from the double layer.

New analytical tools based on the electrochemical quartz
crystal microbalance (EQCM) technique have also been
developed to study energy storage materials that offer in- 
teresting opportunities in the EC area. Differently from
the gravimetric EQCM, the EQCM with dissipation mon- 
itoring (EQCM-D) operated with multiple overtones of
the resonance frequency, thus probing a wide range of
penetration depth δn [49,50] . The structural parameters of
the electrodes can be obtained by measuring the change
in the resonance frequency 1F and the change in the
full-width at half-height of the resonance peak 1W over
a wide range of overtone numbers n, and  tting the

process is accompanied by a change in the oxidation state 
of Ti from Ti ( + III) down to Ti( + II). The redox reaction 
on Ti explains the extremely high capacitance Ti 3 C 2 T x 
MXene can reach in acidic electrolytes [33,43].  In con- 

trast, in neutral electrolytes, only double layer adsorption 
occurs without charge transfer on Ti atoms [41 

••

].  Broad- 

ening the use of in situ Raman spectroscopy technique to 
other materials could bring new insights in the pseudoca- 
pacitive charge storage mechanism.

The discovery of 2D MXene materials has boosted the 
research in pseudocapacitive materials. One of the key 
features of MXenes is the presence of surface oxygen 
and #uorine terminations on their surface. The TPD- 

MS technique has been successfully used to measure 
the change of the amount and the nature of these 
groups during hydrazine intercalation into Ti 3 C 2 T x MX- 

ene material [44].  The capacitance of MXene in the 
non-aqueous electrolyte is well behind that in the aque- 
ous acidic electrolytes [45] and the charge storage mech- 

anism of MXenes in non-aqueous electrolytes is still 
unclear [28,46].  In situ dilatometry technique, which is 
well-suited for 2D materials, has been used to measure 
the swelling/expansion of Ti 3 C 2 T x MXene electrode in

Figure 4 

Gravimetric and non-gravimetric applications of EQCM-D for the characterization of energy-storage electrodes. (Bottom panel) Acoustic waves for
fundamental frequency and its 3rd overtone. Adapted with permission from ref. [49] . Copyright © 2018 American Chemical Society.



hydrodynamic equations. Structural parameters include
electrode  lm density or thickness, permeability length,
particles radius and coverage density ( Figure 4 ) [49] . This
technique is an ef cient tool for tracking in one shot
the geometrical change in the electrodes (contraction or
swelling, morphological changes) as well as the change in
reaction mechanisms (formation of passive layers or elec- 
trolyte decomposition) [51 

••

] .

Another technique derived from EQCM is called AC- 
electrogravimetry or AC-EQCM [52] . The AC-EQCM
technique consists of achieving gravimetric EQCM mea- 
surements at a steady state (constant potential for in- 
stance) and over-impose a sinusoidal perturbation to
the bias signal such as achieved in electrochemical
impedance spectroscopy. Differently from gravimetric
EQCM, AC-EQCM allows the deconvolution of a global
gravimetric ECQM response into individual cations, an- 
ions, and solvent molecules contributions by plotting the
dQ/dE (Q: charge, E: potential) or dm/dE (m: mass, E: po- 
tential) transfer functions; this is one key advantage of this
technique which can track the electrochemical activity of
one type of anion (cation) in a mixture of anions (cations)
[53] . Some papers have just been published describing
the use of AC-EQCM to study pseudocapacitive mate- 
rials [54 

•

] . The possibility for differentiating the ion con- 
tributions present great interest for studying the charge
storage reaction mechanisms in various electrolytes.
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