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Abstract

We study the conjecture of Jarque and Villadelprat stating that every center of a planar polynomial

Hamiltonian system of even degree is nonisochronous. This conjecture has already been proved for

quadratic and quartic systems. Using the correction of a vector �eld to characterize isochronicity

and explicit computations of this quantity for polynomial vector �elds, we are able to describe a

very large class of nonisochronous Hamiltonian systems of even arbitrarily large degree.
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1. Introduction and main results

1.1. The Jarque-Villadelprat conjecture

In this paper, we study centers of planar polynomial Hamiltonian systems in the real case. In

particular we focus on isochronous centers. Our main concern is the following conjecture stated

by Jarque and Villadelprat in [20]:5

Let X be a real polynomial Hamiltonian vector �eld of the form:

X(x, y) = −∂yH(x, y)∂x + ∂xH(x, y)∂y, (x, y) ∈ R2, (1)

where H(x, y) is a real polynomial in the variables x and y. The maximum degree of the polyno-

mials ∂xH and ∂yH is the degree of the Hamiltonian vector �eld.
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Conjecture : Every center of a planar polynomial Hamiltonian system of even degree is non-

isochronous.

The conjecture is known to be true for quadratic systems thanks to a result of Loud in [22] and

in the quartic case by a result of Jarque-Villadelprat in [20]. The proof of Jarque and Villadelprat15

is based on a careful study of the bifurcations set and seems di�cult to extend to an arbitrary

degree. The conjecture is open for the other cases despite partial results in this direction obtain

by B. Schuman in [27, 28] using an explicit computation of the �rst coe�cients of the Birkho�

normal form and Chen and al. [3] proving what they call a weak version of the conjecture, i.e.

that any vector �elds having only even components is nonisochronous.20

Di�erent strategies can be used to go further toward this conjecture. A �rst class of methods

can be called geometric and are related to some special features of Hamiltonian or isochronous

centers. We can mention for example the work of L. Gavrilov [19] and P. Mardesic, C. Rousseau

and B. Toni [23]. Up to now, these methods are unable to reproduce some special results obtained25

by B. Schuman [27, 28] for classes of polynomial vector �elds of arbitrary degree. Another class of

methods can be called analytic and are more or less all dealing with the computations of quantities

which can be obtained algorithmically like period constants [16] and coe�cients of normal forms [8]

(see also [17]). However, such methods are usually assumed to be intractable when one is dealing

with a vector �eld of arbitrary large degree (see for example [20] p.337). This is indeed the case30

when one has no informations on the algebraic structure of these coe�cients. Then one is reduced

to compute Grobner bases or to use the elimination method. However, one is quickly limited by

the computational complexity and the memory size need to perform these computations. Existing

results are restricted to polynomials of order 5.

35

A natural problem is then to look for methods allowing us to bypass these technical limitations.

In the analytic setting, this can be done for (pre)normal forms or other local analytic objects

using the mould formalism introduced by J. Ecalle in the 70 ([10],[11], see also [5]) which allows an

e�cient algorithmic construction of these objects but also a very precise analysis of the coe�cients.

The idea is to separate in these coe�cients what is universal and what is not.40

1.2. Main results

In this paper, using the formalism of moulds (see [10], [11]) and a particular object attached

to a vector �eld called the correction de�ned by Ecalle and Vallet in [14]. In particular, we obtain

a partial answer to the conjecture for arbitrarily large degree.

45
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It is well known that isochronicity of a real center is equivalent to its linearisability (see [2],

theorem 3.3, p.12). A main property of the correction is that it gives a very useful criterion for

linearisability. Indeed, a vector �eld is linearisable if and only if its correction is zero. As the cor-

rection possesses an algorithmic and explicit form which is easily calculable using mould calculus

we are able to give more informations on the isochronous set. This strategy was already used by50

one of us in [6].

In the following, we use the classical complex representation of real vector �elds (see [21]).

Let us denote by Xlin = i(x∂x − x̄∂x̄) and Xr = Pr(x, x̄)∂x + Pr(x, x̄)∂x̄ with x ∈ C, Pr is a

homogeneous polynomial of degree r, Pr(x, x̄) =
r∑
j=0

pr−j−1,jx
r−j x̄j .55

We formulate our main results (Theorem 1 to Theorem 4) whose proofs are postpone in Section

4.

Theorem 1. Let X be a non trivial real Hamiltonian vector �eld of even degree 2n given by:

X = Xlin +

2n∑
r=2

Xr

If X satis�es one of the following conditions :

a) there exists 1 ≤ r < n− 1 such that pi,i = 0 for i = 1, ..., r − 1 and Im(pr,r) > 0,60

b) pi,i = 0 for i = 1, ..., n− 1,

then the vector �eld is nonisochronous.

As a consequence we deduce that:

X = Xlin +X2,

X = Xlin +X2 +X3 +X4 with Im(p1,1) ≥ 0,

X = Xlin +X2 +X3 +X4 +X5 +X6 with p1,1 > 0 or p1,1 = 0 and Im(p2,2) > 0,

are nonisochronous.

As a corollary, we obtain the weak version of the Jarque-Villadelprat conjecture proved by X.65

Chen and al. [3]:

Corollary 1 (weak Jarque-Villadelprat conjecture). Let X be a non trivial real Hamiltonian

vector �eld of even degree 2n given by

X = Xlin +X2 +X4 + · · ·+X2n,

then X is nonisochrnous.
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The proof follows easily from Theorem 1 as for all i = 1, . . . , n− 1, we have pi,i = 0 due to the

fact that there exists no odd components.

Theorem 2. Let X be a non trivial real Hamiltonian vector �eld of the form:

X = Xlin +Xk + ...+X2l,

for k ≥ 2, 2l ≥ k and l ≤ k − 1. Then X is nonisochronous.70

Using this last theorem, without any conditions we have that:

X = Xlin +X2,

X = Xlin +X3 +X4,

X = Xlin +X4 +X5 +X6,

or more funny

X = Xlin +
92∑
i=47

Xi

are nonisochronous. We see that Theorem 1 and Theorem 2 are complementary to each other.

Mixing the proofs of Theorem 1 and Theorem 2 we obtain:75

Theorem 3. Let X be a non trivial real polynomial Hamiltonian vector �eld on the form:

X = Xlin +Xk + ...+X2l +

m∑
n=1

2(cn−1)∑
j=cn

Xj

where k ≥ 2, 2l ≥ k, l ≤ k − 1, m ≥ 1 and the sequence cn is de�ned by :

c1 = 4l and ∀n ≥ 2, cn = 4(cn−1 − 1), (2)

Then X is nonisochronous.

A �rst example of nonisochronous vector �eld given by the last theorem is:

X = Xlin +X2 +X4 +X5 +X6.

Theorem 4. Let k ≥ 2 and l ≤ k − 1, a real polynomial Hamiltonian vector �eld denoted by X

on one of these two forms:

i)X = Xlin +Xk + ...+X2l +X2l+1 +

r+n∑
m=r

Xm

where r ≥ 2l + 2 and Im(pl,l) > 0 or

ii)X = XlinXk + ...+X2l +X4l−1 +

r+n∑
m=r

Xr

where X2l is nontrivial, r ≥ 4l, with Im(p2l−1,2l−1) > 0, are nonisochronous.

Using Theorem 3 and Theorem 4 we easily deduce the classical result that homogeneous per-

turbations of a linear center are non isochronous (see [27]) as well its generalization (see [28, 6]).80
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1.3. Plan of the paper

In Section 2, we give following J. Ecalle and B. Vallet [14] the de�nition of the correction of

a vector �eld and remind some of its properties. We then look more speci�cally to the correc-

tion of polynomial real vector �elds. We derive explicit formula allowing us to analyse its structure.

85

In Section 3, we prove that the set of isochronous Hamiltonian centers is an a�ne variety which

can be explicitly described. We also prove that this variety is invariant under a non trivial torus

action.

In Section 4, we give the proofs of our main results and some technical Lemmas.90

We then discuss several perspectives for this work.

2. Correction of vector �elds and Hamiltonian systems

2.1. Correction of a vector �eld

In this section, we remind the de�nition of the correction of a vector �eld following the work95

of J. Ecalle and B. Vallet [14]. In particular, we give the mould expansion of the correction, which

plays a central role in our approach to study the linearisability. It must be noted that all these

computations can be made in arbitrary dimension.

2.1.1. The correction of a vector �eld

We denote by X an analytic vector �eld on Cν at 0:

X =
∑

1≤j≤ν

Xj(x)∂xj

with Xj(0) = 0 and Xj(x) ∈ C{x}. We can write the vector �eld X in its prepared form:100

De�nition 1. A vector �eld X is said to be in prepared form if it is given by

X = Xlin +
∑

n∈A(X)

Bn (3)

where Xlin is the linear part of X in diagonal form

Xlin =

ν∑
j=1

λjxj∂xj , (4)

the Bn are homogeneous di�erential operators of degree n = (n1, . . . , nν) ∈ Zν , where all ni

are integer except one which can be −1, satisfying for all monomial xm = xm1
1 . . . xmνm , where

x = (x1, . . . , xν) ∈ Cν , m = (m1, . . . ,mν) ∈ Nν , the equality105

Bn(xm) = βn,mx
n+m, βn,m ∈ Cν , (5)
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and A(X) ∈ Zν is the set of the degree of the operators Bn in the decomposition of X.

From the point of view of Analysis, homogeneous di�erential operators are more tractable. An

operator Bn is said to be homogeneous of degree n = (n1, n2) if for all monomial xlyk we have

Bn(xlyk) = βl,kn · xn1+lyn2+k with βl,kn ∈ C.

110

In [14], J.Ecalle and B.Vallet introduce the correction of a vector �eld following previous works

of G.Gallavotti [18] and H.Eliasson [15] in the Hamiltonian case.

Let us consider a vector �eld in prepared form. The correction is de�ned as follows([14], p.258):

De�nition 2. Let X be a vector �eld in prepared form with linear part Xlin. The correction of115

X, denoted by Carr(X) is the vector �eld solution of the following problem:

Find a vector �eld Z such that

X − Z ∼ Xlin, and [Xlin, Z] = 0, (6)

where for two vector �elds A and B, we denote A ∼ B if the vectors �elds A and B are formally

conjugate.120

The second condition implies that Carr(X) is only made of resonant terms.

In [14], Ecalle and Vallet prove that the correction of a vector �eld admits amould expansion.

Precisely, let us denote by A∗(X) the set of the words given by the letters in A(X) using the

concatenation morphism conc on letters :

conc : A(X)p → A∗(X)

(n1, ..., np) 7→ n1 · n2 · ... · np.

for any integer p.125

In the following, a word is denoted by n1 · n2 · ... · np or n1n2...np.

Remark 1. The length of the word n1...np is p. The word of length 0 is denoted by ∅.

De�nition 3. The set A∗(X) is composed by all the words of all lengths that is, if n ∈ A∗(X)

there exists an integer p ≥ 0 such that n = conc(n1, ..., np) where nj ∈ A(X) for j = 1, ..., p. We130

denote Ap(X) the set of words of length p.
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For all n = n1 · ... · nr ∈ A∗(X), we denote:

Bn = Bn1
◦ ... ◦Bnr . (7)

The correction can be written as ([14], Lemma 3.2 p.267):

Carr(X) =
∑

n∈A∗(X)

CarrnBn, (8)

where Carrn ∈ C for all n ∈ A∗(X), or simply

Carr(X) =
∑
•
Carr•B• (9)

following Ecalle's notations (see [10] and [5]).135

The mapping

Carr• :
A(X)∗ −→ C,

n 7−→ Carrn,
(10)

is called a mould (see [10, 11] and [5]).

The main point is that the mould Carr• can be computed algorithmically using a recursive140

formula on the length of words.

Precisely for all n ∈ A(X), let us denote by ω(n) the quantity:

ω(n) = 〈n, λ〉,

where the 〈., .〉 is the usual scalar product on Cn and λ = (λ1, . . . , λν) are the eigenvalues of Xlin.

We can extend ω to a morphism from (A∗(X), conc) to (C,+), i.e. for all n = n1.n2 . . . nr ∈ A∗(X),

ni ∈ A(X), i = 1, . . . , r, we have145

ω(n) = ω(n1) + · · ·+ ω(nr). (11)

The quantity ω(n) is called the weight of the letter n.

We have the following theorem (formula 3.42 in [14]):

Theorem 5 (Variance formula). The mould of the correction is given by the formula for any word

n = n1 · ... · nr:

ω(n1)Carrn1,n2,...,nr + Carrn1+n2,n3,...nr =
∑

n1bc=n

Carrn1cCarrb. (12)

The proof of this theorem is nontrivial. It follows from the variance formula for a vector �eld150

discussed in ([14], Prop 3.1 p.270). The variance of a vector �eld gives many di�erent way to
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compute the mould of the correction.

The main consequence of the previous Theorem is the universal character of the mould of the

correction. Precisely, following the de�nition of universality used in [5], we have :155

Theorem 6 (Universality of the Correction's mould). There exists a one parameter family of

complex functions Cr : Dr ⊂ Cr → C, r ∈ N such that for all X the correction's mould Carr•

de�ned on A(X)∗ is given for all n ∈ A(X)∗ such that l(n) = r, r ∈ N by

Carrn =

 Cr(ω(n1), . . . , ω(nr)), if ω(n) = 0,

0 otherwise.
(13)

This property is fundamental concerning our problem as the computation of these coe�cients

is done once and for all and does not depends on the value of the coe�cients entering the poly-160

nomials but on the alphabet generated by the vector �eld. Up to our knowledge only the mould

formalism is able to produce such kind of coe�cients allowing to write the correction (this is not

the case for example dealing with the classical Lie framework).

As for prenormal forms (see [13]), a speci�c role is played by resonant terms:165

De�nition 4. A word n ∈ A∗(X) is said to be resonant if ω(n) = 0.

In the following, we give explicit expressions for C1, C2 and C3.

2.1.2. The mould of the correction

The following theorem concerns precisely the length 1,2 and 3 :

Theorem 7. The universal correction functions Cr : Cr → C of Theorem 6 are given for r = 1, 2, 3170

by

C1(x) =

 1 if z1 = 0,

0 otherwise.
C2(z1, z2) =

 −
1

z1
if z1 + z2 = 0, z1 6= 0,

0 otherwise.
(14)

C3(z1, z2, z3) =


1

z1(z1 + z2)
, if z1 + z2 + z3 = 0, z1 6= 0, z1 + z2 6= 0,

0 otherwise.
(15)

The proof is based on explicit computations which are summarized in the following Lemmas

whose proof are given in Appendix.

175

We can remark that the values of the correction's mould depend on the weight of the letters.
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Lemma 1. The mould Carr• veri�es :

1) Carr∅=0,

2)If n is non resonant, Carrn = 0,

3)If n = n1...nr is such that there exists j satisfying ω(nj) = 0 then Carrn = 0.180

Moreover, we have:

Lemma 2. 1) If ω(n) = 0, Carrn = 1,

2) If ω(n1 · n2) = 0 with ω(n1) = −ω(n2) 6= 0, we have Carrn1·n2 = − 1
ω(n1) ,

3) If ω(n1 · n2 · n3) = 0 with ω(nj) 6= 0 j = 1, 2, 3, we have Carrn1·n2·n3 = 1
ω(n1)(ω(n1)+ω(n2)) .

We refer to Appendix B.2 and Appendix B.3 for the proofs.185

2.1.3. Some computations of the correction mould

Let us consider the quadratic case, i.e.

X = Xlin +X2, (16)

where Xlin is diagonal with eigenvalues (i,−i) and X2 is a homogeneous polynomial vector �eld

of degree 2 given by

X2 = (p1,0x
2 + p0,1xy + p−1, 2y2)∂x + (q2,−1x

2 + q0,1xy + q1,0)∂y. (17)

We have:190

Lemma 3. The alphabet generated by X2 is given by

A(X) = {n1 = (1, 0), n−1 = (0, 1), n3 = (2,−1), n−3 = (−1, 2)} . (18)

Proof. The alphabet generated by X2 is related to the decomposition of X2 in homogeneous

di�erential operators. A simple rearrangement of terms proves that

X2 = B(1,0) +B(0,1) +B(−1,2) +B(2,−1), (19)

where

B(1,0) = x(p1,0x∂x + q1,0y∂y), B(0,1) = y(p0,1x∂x + q0,1y∂y),

B(−1,2) = p−1,2y
2∂x, B(2,−1) = q2,−1x

2∂y.
(20)

This concludes the proof.195

All the letters in A(X) are non resonant. Indeed, we have

ω(n1) = i, ω(n−1) = −i, ω(n3) = 3i, ω(n−3) = −3i. (21)

As a consequence, the correction mould is always zero in length 1.

In length 2 however, some resonant combinations are possible. We have
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Word n Carrn

n1 · n−1 i

n−1 · n1 −i

n3 · n−3
i
3

n−3 · n3
−i
3

200

In length 4, the correction mould is given by :

Word n Carrn

n−3 · n−3 · n3 · n3
−i
54

n−3 · n−1 · n1 · n3
−i
12

n−3 · n−1 · n3 · n1
i

12

n−3 · n1 · n−1 · n3
i
6

n−3 · n1 · n1 · n1
i
6

n−3 · n1 · n3 · n−1
−i
6

n−3 · n3 · n−3 · n3
i

27

n−3 · n3 · n−1 · n1 0

n−3 · n3 · n1 · n−1 0

n−3 · n3 · n3 · n−3 0

n−1 · n−3 · n1 · n3
i

12

n−1 · n−3 · n3 · n1
−i
12

n−1 · n−1 · n−1 · n3
i
6

n−1 · n−1 · n1 · n1
−i
2

n−1 · n−1 · n3 · n−1
−i
2

n−1 · n1 · n−3 · n3 0

n−1 · n1 · n−1 · n1 i

n−1 · n1 · n1 · n−1 0

n−1 · n1 · n3 · n−3 0

n−1 · n3 · n−3 · n1
−i
6

n−1 · n3 · n−1 · n−1
i
2

n−1 · n3 · n1 · n−3
i
6

Word n Carrn

n1 · n−3 · n−1 · n3
−i
6

n1 · n−3 · n1 · n1
−i
2

n1 · n−3 · n3 · n−1
i
6

n1 · n−1 · n−3 · n3 0

n1 · n−1 · n−1 · n1 0

n1 · n−1 · n1 · n−1 −i

n1 · n−1 · n3 · n−3 0

n1 · n1 · n−3 · n1
i
2

n1 · n1 · n−1 · n−1
i
2

n1 · n1 · n1 · n−3
−i
6

n1 · n3 · n−3 · n−1
i

12

n1 · n3 · n−1 · n−3
−i
12

n3 · n−3 · n−3 · n3 0

n3 · n−3 · n−1 · n1 0

n3 · n−3 · n1 · n−1 0

n3 · n−3 · n3 · n−3
−i
27

n3 · n−1 · n−3 · n1
i
6

n3 · n−1 · n−1 · n−1
−i
6

n3 · n−1 · n1 · n−3
−i
6

n3 · n1 · n−3 · n−1
−i
12

n3 · n1 · n−1 · n−3
i

12

n3 · n3 · n−3 · n−3
i

54

2.2. Correction of a polynomial vector �eld

2.2.1. Prepared form and alphabet

Let X a polynomial vector �eld in C2 of the form:205

X = Xlin +

l∑
r=2

Xr, (22)
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with

Xr = Pr(x, y)∂x +Qr(x, y)∂y, (23)

where Pr and Qr are homogeneous polynomials of degree r such that:

Pr(x, y) =

r∑
k=0

pk−1,r−kx
kyr−k, Qr(x, y) =

r∑
l=0

qr−k,k−1x
r−kyk. (24)

In the following, we describe explicitly the prepared form ofX, the set A(X) and the operators

Bn.

Lemma 4. For all r ≥ 2, we can associate an alphabet to the vector �eld Xr, written A(Xr) given

by:

A(Xr) = {(r,−1), (−1, r), (k − 1, r − k) with k = 1, ..., r}.

Moreover, we get from A(Xr) the set denoted B(Xr) of the homogeneous di�erential operators

given by the decomposition :

B(−1,r) = p−1,ry
r∂x,

B(r,−1) = qr,−1x
r∂y,

B(k−1,r−k) = xk−1yr−k(pk−1,r−kx∂x + qk−1,r−ky∂y)

with k ∈ {1, ..., r}.210

Proof. We �rst rewrite any vector �eld Xr, r = 2, . . . , l, in order to make apparent the order, in

term of di�erential operators, of all its components. We have :

Pr(x, y)∂x +Qr(x, y)∂y =

r∑
k=1

(
pk−1,r−kx

k−1yr−kx∂x + qr−k,k−1x
r−kyk−1y∂y

)
+ p−1,ry

r∂x + qr,−1x
r∂y,

=

r∑
k=1

(O(k−1,r−k) + Õ(r−k,k−1)) + O(−1,r) + O(r,−1),

with

O(k−1,r−k) = pk−1,r−kx
k−1yr−kx∂x,

Õ(r−k,k−1) = qr−k,k−1x
r−kyk−1y∂y,

O(−1,r) = p−1,ry
r∂x,

O(r,−1) = qr,−1x
r∂y.

We want to know if there exists some operators of the same degree among the operators

O(k−1,r−k) and Õ(r−k,k−1). If it is the case, we gather them in a same operator of the form

B(n1,n2) = xn
1

yn
2

(p(n1,n2)x∂x + q(n1,n2)y∂y).

11



For that, we have to solve the equation215

k − 1 = r − k̃ (25)

where k, k̃ ∈ {1, ..., r}. As k̃ ∈ {1, ..., r}, r− k̃ ∈ {0, ..., r− 1} hence r− k̃+ 1 ∈ {1, ..., r}. So there

always exists solutions. This concludes the proof.

Example 1. We consider the vector �eld X = Xlin +X2 +X3 where

X2 =
(
p1,0x

2 + p0,1xy + p−1,2y
2
)
∂x +

(
q−1,2x

2 + q1,0xy + q0,1yr
)
∂y,

X3 =
(
p2,0x

3 + p1,1x
2y + p0,2xy

2 + p−1,3y
3
)
∂x +

(
q3,−1x

3 + q2,0x
2y + q1,1xy

2 + q0,2y
3
)
∂y.

Hence we obtain the three following alphabets :

A(X2) = {(2,−1), (1, 0), (0, 1), (−1, 2)},

A(X3) = {(3,−1), (2, 0), (1, 1), (0, 2), (−1, 3)}.

For example, we also have the elements of the set B(X3) :

B(3,−1) = q3,−1x
3∂y,

B(2,0) = x2 (p2,0x∂x + q2,0y∂y) ,

B(1,1) = xy (xp1,1x∂x + q1,1y∂y) ,

B(0,2) = y2 (p0,2x∂x + q0,2y∂y) ,

B(−1,3) = p−1,3y
3∂x.

De�nition 5. We de�ne the degree of a vector �elds as the maximum of the degree of its de�ning

polynomial.

In a same way, we de�ne the degree of the homogeneous di�erential operators Bn or of a Lie220

bracket of Bn which appear in the decomposition of X. We denote by deg(Bn) (resp. deg([Bn]))

the degree of Bn (resp. [Bn]).

Lemma 5. Let X be a vector �elds of the form X = Xlin +
m∑
r=2

Xr then X admits the alphabet

A(X) =
m
∪
r=2

A(Xr) and B(X), the set of homogeneous di�erential operators of X, is given by

B(X) =
m
∪
r=2
B(Xr).225

Proof. For all n = (n1, n2) ∈ A(X), we de�ne the application :

p : A(X)→ N

n = (n1, n2) 7→ n1 + n2.

For every r ≥ 2, for all n ∈ A(Xr), we have p(n) = r − 1, so ∀r, r′ , such that r 6= r′, we have

A(Xr) ∩ A(Xr′) = ∅ because p(A(Xr)) 6= p(A(Xr′)). Moreover, as Der(C2) =
⊕
r≥1

Derr(C2) and

B(Xr) ⊂ Derr(C2) , then B(Xr) ∩ B(Xr′) = ∅ if r 6= r′.
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The elements of the alphabet A(X) are named letter .

2.2.2. Depth230

As we have a one-to-one correspondence between (A∗(X), conc) and (B∗(X), ◦):

A∗(X)→ B∗(X),

n = n1 · ... · nr 7→ Bn = Bn1
◦ ... ◦Bnr ,

the degree of [Bn] gives a natural notion of depth for the words de�ned by:

De�nition 6. We denote by p : A∗(X)→ N the mapping de�ned by:

p(n) = deg([Bn])− 1.

Lemma 6. The mapping p is a morphism from (A∗(X), conc) in (N,+).

Proof. We prove it by induction on the length of the words. Let n1, n2 ∈ A(X),

p(n1 · n2) = deg([Bn1Bn2 ])− 1

= deg(Bn1
) + deg(Bn2

)− 1− 1

= p(n1) + p(n2).

Let n1 ∈ A(X) and n ∈ A∗(X), so:

p(n1 · n) = deg([Bn1 , Bn])− 1

= deg(Bn1
) + deg(Bn)− 1− 1

= p(n1) + p(n).

2.2.3. The projection Theorem and rewriting of a mould expansion

LetM(X) be a mould series, i.e. an expression of the form235

M(X) =
∑

n∈A∗(X)

MnBn, (26)

where M• is an alternal mould ([14]), i.e. M(X) is primitive([29], p.17) and then a vector �eld.

In this case, using the projection theorem ([29], p.28), the mould seriesM(X) can be expressed in

the following form :

M(X) =
∑
r≥1

1

r

∑
n∈A∗(X)

l(n)=r

Mn[Bn], (27)

where

[Bn] = [Bn1...nr ] = [...[[Bn1
, Bn2

], Bn3
], ...], Bnr−1

], Bnr ]. (28)

13



We can reorganize this sum using the depth as follows:240

M(X) =
∑
d≥1

Md(X), (29)

where

Md(X) =
∑

n∈A∗(X)

p(n)=d

MnBn. (30)

A useful consequence is that the equationM(X) = 0 is equivalent toMd(X) = 0 for all d ≥ 1.

2.2.4. Expression of the correction and criterion of linearisability

The main property of the correction is that it provides a useful and simple criterion of lineariz-

ability. Indeed, we have by de�nition of the correction (see [14], p.258) :245

Lemma 7. A vector �eld X is linearizable if and only if Carr(X) = 0.

Using the above decomposition, we obtain an explicit criterion for linearizability writing

Carr(X) as :

Carr(X) =
∑
p≥1

 ∑
n∈A∗(X)

p(n)=p

CarrnBn

 =
∑
p≥1

Carrp(X).

Theorem 8. A vector �elds X is linearizable if and only if Carrp(X) = 0 ∀p ≥ 1.

In the following, we derive some properties of the quantities Carrp(X).

2.3. Correction of real polynomial Hamiltonian vector �elds

2.3.1. General properties250

An interesting property of the correction is that we just have to consider the even depth,

indeed:

Theorem 9. Let X be a real Hamiltonian vector �elds as above. Its correction in odd depth is

zero, i.e.

Carr2p+1(X) = 0, (31)

for all integer p.255

This theorem is a consequence of the following lemma :

Lemma 8. For a resonant word n, the related Lie bracket is on the form :

[Bn] = (xy)
p(n)
2 (Pnx∂x +Qny∂y).

14



Proof. For all resonant word n = n1 · ... · nr, the related Lie bracket is :

[Bn] = x
∑
n1
jy

∑
n2
j (Pnx∂x +Qny∂y).

where nj = (n1
j , n

2
j ). As n is resonant, we have :

ω(n) = ω(n1) + ...+ ω(nr)

= i
(∑

n1
j −

∑
n2
j

)
= 0,

then
∑
n1
j =

∑
n2
j = α ∈ N. We just have to remark that p(n) = p(n1) + ... + p(nr) =∑

n1
j +

∑
n2
j = 2α, then α = p(n)

2 .

As a consequence, we can restrict our attention to the even components of the correction. For a

given integer p, terms in Carr2p can be decomposed with respect to the length of words. Precisely,260

we have

Carrp(X) = Carrp,1(X) + · · ·+ Carrp,p(X), (32)

where

Carrp,j(X) =
∑

n∈A∗(X)

p(n)=p, l(n)=j

CarrnBn, (33)

for j = 1, . . . , p.

The main point is that of course, this is a �nite sum. Indeed, as each di�erential operator

entering in the de�nition are at least of depth one, we can not have more than a word of length p265

as for all j ∈ N∗, n ∈ A∗(X) such that l(n) = j, we have p(n) ≥ j.

Moreover, some of these terms are easily determined.

Lemma 9. Let p ∈ N∗, we have

Carr2p,2p(X) = Carr2p,2p(X2),

Carr2p,2(X) = Carr2p,2(Xp+1) +

p∑
r=2

Carr2p,2(Xr, X2p−r+2),

Carr2p,1(X) = Carr2p(X2p+1) = Bp,p.

(34)

This Lemma has important implications on the following, as it gives the maximal degree of270

the homogeneous vector �elds Xr entering in the computation of a given correction term. In

particular, for Carr2p we have no terms coming from the Xr with r ≥ 2p+ 2.

The proof of Lemma 9 is based on the properties of the set of resonant words with respects to

length and depth.275
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Proof. i) The �rst equality easily follows from the fact that an element of depth 2p and length 2p

is necessarily made of elements of depth 1 corresponding to operators in X2.

ii) The second equality is a direct rewriting of the de�nition for a length 2 contribution to the280

correction term of depth 2p. We denoted byW(Xr) the set of weights coming from the component

Xr of X and given by :

W(Xr) = {〈n, λ〉, n ∈ A(Xr)}. (35)

The �rst term comes from the following decomposition lemma:

Lemma 10. For every r ≥ 2, W(Xr) can be decomposed in the following way :

W(Xr) =W+(Xr) ∪W−(Xr) ∪W0(Xr),

where W+(Xr) is the set of positive weights coming from Xr, W−(Xr) = −W+(Xr) and W0
r (X)

is the set of the zero weight.285

This decomposition shows the interaction between each homogeneous component Xl interven-

ing in Carr2p,2(X). In length 2, as any weight as its symmetric counterpart, we always have a

contribution of Xp+1.

iii) The third equality follows directly from a computation:290

Lemma 11. A component Xr, r ≥ 2, produces a resonant letter in A(X) if and only if r is odd.

In this case, the letter is unique and given by n0 = ( r−1
2 , r−1

2 ).

Proof. Let r ≥ 2 be �xed. By Lemma 4 we know the set of letters produced by Xr. The two

letters (−1, r) and (r,−1) are never resonant. For the other ones given by (k− 1, r− k), one must

solve the equation of resonance295

2k − r − 1 = 0, (36)

for k = 1, ..., r. This equation has a unique solution given by

k =
r + 1

2
, (37)

which is valid, as k must be an integer, only when r is odd.

This concludes the proof of Lemma 9.
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2.3.2. Explicit computation and the fundamental Lemma

We now explicit the quantities Carrp(X) when X is a real Hamiltonian polynomial vector �eld.300

Let X a polynomial vector �eld in C2 of the form:

X = Xlin +

d∑
r=2

(Pr(x, y)∂x +Qr(x, y)∂y) , (38)

where Pr and Qr are homogeneous polynomials of degree r.

Lemma 12. The complex vector �eld (38) corresponds to a real vector �eld if for all r = 2, . . . , d,

we have305

pi,j = qj,i, i = 0, . . . , r − 1, j = r − i. (39)

The proof follows easily from the fact that x̄ = y and Qr(x, y) = Pr(x, y) which gives

Qr(x, y) = Pr(y, x) for all r = 2, . . . , d.

Real Hamiltonian systems satisfy moreover the following conditions:

Lemma 13. The complex vector �eld (38) corresponds to a real Hamiltonian vector �elds if310

conditions (39) are satis�ed and moreover if for all r = 2, . . . , d, we have

pi−1,r−i = −r − i+ 1

i
pr−i,i−1, i = 1, . . . , r. (40)

We give some examples of relations between the coe�cients in X2 and X3 :

Example 2. For the vector �eld X2 de�ned above, we have :

p1,0 =
−1

2
p̄0,1,

p−1,2 = q̄2,−1.

For the vector �eld X3, we have :

p2,0 =
−1

3
p̄0,2,

p1,1 = −p̄1,1,

p−1,3 = q̄3,−1.

Under the two previous conditions on the coe�cients we have:

Lemma 14 (Fundamental Lemma). Let X be a real Hamiltonian vector �elds of the form X =

i(x∂x − y∂y) +
2r−1∑
j=r

(Pj(x, y)∂x + Pj(x, y)∂y) with x̄ = y, then :

Carr2(r−1)(X) = pr−1,r−1 + i

 r∑
k=[ r+1

2 ]+1

r(r + 1)

(r − k + 1)2
|pk−1,r−k|2 +

r

r + 1
|p−1,r|2

 .
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Proof. The computation of the correction in depth 2(k − 1) requires to know which operators

appear in it and the alphabet. In this depth, there are just the homogeneous di�erential operators

from the polynomial Pr and the resonant letter from the polynomial P2r−1.

The alphabet given by Pr is A(Xr) = {(r,−1), (−1, r), (k − 1, r − k) with k = 1, ..., r}.

We also have the homogeneous di�erential operators :

B(−1,r) = p−1,ry
r∂x, B(r,−1) = qr,−1x

r∂y, B(k−1,r−k) = xk−1yr−k(pk−1,r−kx∂x + qk−1,r−ky∂y)

with k ∈ {1, ..., r}.

Here the resonant words are :

((k − 1, r − k), (r − k, k − 1)),

((r − k, k − 1), (k − 1, r − k)),

((−1, r), (r − 1)),

((r,−1), (−1, r)).

So the Lie brackets associated, using the real and Hamiltonian conditions, are:

[B(k−1,r−k), B(r−k,k−1)] =
r(r + 1)(2k − r − 1)

(r − k + 1)2
|pk−1,r−k|2(xy)r−1(x∂x − y∂y)

= −[B(r−k,k−1), B(k−1,r−k)],

[B(−1,r), B(r,−1)] = −r|p−1,r|2(xy)r−1(x∂x − y∂y) = −[B(r,−1), B(−1,r)].

The mould of the correction in this resonant word are:

Carr(k−1,r−k)·(r−k,k−1) =
i

2k − r − 1
,

Carr(−1,r)·(r,−1) =
−i
r + 1

.

The only resonant letter in P2k−1 is pr−1,r−1 with the operator B(r−1,r−1) = pr−1,r−1(xy)r−1(x∂x−

y∂y). Using the alternality of the mould Carr• and the skew-symmetric of the Lie brackets, we

get the formula :

Carr2(k−1)(X) = pr−1,r−1 + i

 r∑
k=[ r+1

2 ]+1

r(r + 1)

(r − k + 1)2
|pk−1,r−k|2 +

r

r + 1
|p−1,r|2

 .

2.3.3. Examples of computations315

We give examples of computations of the correction.
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The quadratic case. We consider the real Hamiltonian vector �eld :

X = Xlin +X2

We remind that the alphabet is given by A(X2) = {(1, 0), (0, 1), (2,−1), (−1, 2)} (see Section

2.1.3) and is non resonant.

The �rst none trivial correction term is then in depth 2.320

The correction in depth 2 is given by:

Carr2(X) = Carr2,2(X)

=
∑

n∈A∗(X)

p(n)=2

ω(n)=0

CarrnBn

=
∑

n∈A∗(X)

p(n)=2

ω(n)=0

1

`(n)
CarrnB[n]

=
1

2

(
Carr(1,0)·(0,1)B[(1,0)·(0,1)] + Carr(0,1)·(1,0)B[(0,1)·(1,0)]

+Carr(2,−1)·(−1,2)B[(2,−1)·(−1,2)] + Carr(−1,2)·(2,−1)B[(−1,2)·(2,−1)]

)
.

By the Fundamental Lemma, we �nally have :

Carr2(X) = i

(
6|p1,0|2 +

2

3
|p−1,2|2

)
.

The cubic case. We consider the real Hamiltonian vector �eld :

X = Xlin +X2 +X3

with X2 = (p1,0x
2 +p0,1xy+p−1, 2y2)∂x+(q2,−1x

2 +q0,1xy+q1,0)∂y and X3 = (p2,0x
3 +p1, 1x2y+

p0,2xy
2 + p−1,3y

3)∂x + (q3,−1x
3 + q2,0x

2y + q1,1xy
2 + q0,2y

3)∂y.

As above, the �rst none trivial correction is in depth 2 :

Carr2(X) = Carr2,1(X3) + Carr2,2(X2).

The only operator which is of depth 2 from X3 is given by its resonant letter (1, 1) and the operator

B1,1 = xy(p1,1x∂x + q1,1y∂y. So, using the previous result on the quadratic case, we have :

Carr2(X) = p1,1 + i

(
6|p1,0|2 +

2

3
|p−1,2|2

)
.

In depth 4, we have :

Carr4(X) = Carr4,2(X3, X3) + Carr4,3(X3, X2, X2) + +Carr4,4(X2, X2, X2, X2).
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The di�erent Carri,j(X) are given by :

Carr4,2(X3, X3) = i(12|p2,0|2 +
3

4
|p−1,3|2),

Carr4,3(X3, X2, X2) = −i(120Im(p2,0p̄
2
1,0) +

26

3
Im(p̄−1,3p−1,2p̄1,0) + 40Im(p2,0p−1,2p1,0))

Carr4,4(X2, X2, X2, X2) = i

(
−144|p1,0|4 + 12|p1,0|2|p−1,2|2 −

8

9
|p−1,2|4 + 40Re(p−1,2p

3
0,1)

)
.

The quartic case. We consider the real Hamiltonian vector �eld :

X = Xlin +X2 +X3 +X4

with X2 and X3 as above and X4 = (p3,0x
4 +p2,1x

3y+p1,2x
2y2 +p0,3xy

3 +p−1,4y
4)∂x+(q4,−1x

4 +

q3,0x
3y + q2,1x

2y2 + q1,2xy
3 + q0,3y

4)∂y.

The correction in depth 2 is the same as the cubic case.

In depth 4, we have :

Carr4(X) = Carr4,2(X4, X2) + Carr4,2(X3, X3)

+ Carr4,3(X3, X2, X2) + Carr4,4(X2, X2, X2, X2),

where Carr4,2(X4, X2) is given by :

Carr4,2(X4, X2) = i (12Re(p2,1p̄1,0) + 8Re(p3,0p−1,2)) .

Maple program. For the interested readers, we can send some Maple program to compute the

correction of a polynomial vector �elds. The program can be found in [25].

3. The isochronous center a�ne variety

In this part, we prove that the set of isochronous center is a rational a�ne variety which325

is invariant under a non trivial C∗ action. This a�ne variety is moreover explicitly described.

We also give estimates on the growth of the degree of each rational polynomials entering in this

description as well as the growth of the rational coe�cients.

3.1. A�ne variety of isochronous center

We consider real vector �elds written in complex form as X = Xlin + P (x, y)∂x + Q(x, y)∂y330

where P and Q are polynomials with coe�cients in C such that P (x, y) = Q(y, x). We denote by

N(d) the number of independent coe�cients de�ning P and by p any element of this set. By the

reality condition, the coe�cient of Q can be deduced from those of P . We then identify the set of

complex polynomials of a given degree d with CN(d), whereN(d) is given byN(d) =
(d− 1)(d+ 4)

2
.

335

We denote by Ld the set of polynomial perturbations (P,Q) of degree d such that X is

linearizable. The set L can be seen as a subset of CN(d). Precisely, we have :
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Theorem 10 (Geometric structure). For all d ≥ 2, the set Ld of isochronous centers is an a�ne

variety over Q in CN(d).

The proof is based on a precise description of the algebraic form of the correction. For all

n ∈ A∗(X), let us denote by P (n) and Q(n) the coe�cients given by Lemma 8 and satisfying

[Bn] = (xy)
p(n)
2 (P (n)x∂x +Q(n)y∂y).

We have :340

Theorem 11 (Algebraic structure). For all p ∈ N∗ the correction term Carr2p(X) has the form

Carr2p(X) = (xy)p
[
Ca2p(p)x∂x + Ca2p(p)y∂y

]
, (41)

where

Ca2p(p) =

2p∑
i=1

1

i!
Ca2p,i(p), (42)

with

Ca2p,i(p) :=
∑

n∈A∗(X)

p(n)=2p, l(n)=i

CarrnP (n), i = 1, . . . , 2p. (43)

The quantities Ca2p,i(p), i = 1, . . . , 2p, are explicit polynomials of degree i in the coe�cients

of P with coe�cients in Q if i is even and iQ otherwise. Moreover, these polynomials can be345

computed algorithmically using recursive formula.

The proof of this theorem is a consequence of two results. First, nested Lie brackets have a

very special shapes which can be easily computed. Precisely, we have :

Lemma 15. For all n ∈ A∗(X), the coe�cients P (n) and Q(n) are polynomials in Z[CN(d)] of

degree l(n) and de�ned recursively on the length of n by350

P (nn) = (| n |1 −n1)pnP (n)+ | n |2 qnP (n)− n2pnQ(n),

Q(nn) = (| n |2 −n2)qnQ(n)+ | n |1 pnQ(n)− n1qnP (n).
(44)

where for n = n1 · ... · nr ∈ A∗(X), we let |n|j = nj1 + ...+ njr, j = 1, 2 with ni = (n1
i , n

2
i ).

Second, the correction mould can also be computed by a recursive formula from which we

deduce :

Lemma 16. For all n ∈ A∗(X), the mould Carrn belongs to Q if l(n) is odd and iQ if l(n)is

even.355

The proof of Theorem 11 easily follows.
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3.1.1. Proof of Theorem 10

Using Theorem 11 and the characterization of isochronous centers given by Theorem 8, the set

Ld is de�ned by the zero set of an in�nite family of polynomials over CN(d) given by

Ld =
{
P ∈ CN(d), Ca2p(X) = 0, p ≥ 1

}
. (45)

We de�ne the ascending chain of ideals Ik generated by 〈Ca2(p), . . . , Ca2k(p)〉 in C[p]. By the360

Hilbert Basis Theorem (see [4], Theorem 4, p.77), there exists an M(d) ∈ N∗ such that IM =

IM+1 = . . . . We denote by Id the resulting ideal. As a consequence, the set Ld can be obtained

as (see [4], De�nition 8,p.81)

Ld = V(Id) =
{
p ∈ CN(d) | f(p) = 0 for all f ∈ Id

}
, (46)

and corresponds to the a�ne variety (see [4], Proposition 9 p.81) de�ned by

Ld = V(f1, . . . , fs(d)) =
{
p ∈ CN(d) | fi(p) = 0 for all i = 1, . . . , s(d)

}
, (47)

where the �nite family of polynomials fi, i = 1, . . . , s(d) is a generating set of Id. As the polyno-365

mials de�ning this variety have coe�cients in Q or iQ this concludes the proof.

Remark 2. Theorem 10 together with Theorem 11 gives explicit informations on the degree as

well as on the growth of the rational coe�cients entering in the de�nition of the a�ne variety. A

natural question is up to which extend these informations can be used to provide a natural upper

bound on the number of generators for the ideal generating Ld thanks to a constructive version of370

the Hilbert basis theorem. This will be explored in another work.

3.2. C∗-invariance

The resonant character of the correction has an interesting consequence on the rational alge-

braic variety of isochronous center. Indeed, let us consider the following action of C∗ :

De�nition 7. Let λ ∈ C∗, we denote by Tλ the map

Tλ : CN(d) → CN(d)

p• 7→ λω(•)p•

where • is an arbitrary letter.375

We extend this action for all monomials pn = pn1
1 ...pnrr , with n is a word n1 · ... · nr, we have:

Tλ(pn) = Tλ(pn1
1 ...pnrr ),

= λω(n1)+...+ω(nr)pn

= λω(n)pn.
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We denoted by [Bn] = [Bn1·...·nr ] = (xy)
p(n)
2 (P (n)x∂x + Q(n)y∂y) where, as we have just

shown, P (n) and Q(n) are polynomial in the coe�cient of Bn1 , ..., Bnr . We have the following

lemma which show the C∗-invariance:

Lemma 17. For all resonant word n, we have :

Tλ(P (n)) = P (n) and Tλ(Q(n)) = Q(n).

Proof. By de�nition of a resonant word, we have ω(n) = 0. So :

Tλ(pn) = λω(n)pn = λ0pn = pn.

Finally we can generalise this lemma in the following corollary :380

Corollary 2. For all λ ∈ C∗, the algebraic variety Ld of the isochronous centers is invariant

under the action of Tλ.

Proof. To prove this corollary we just have to remind that only the resonant word contribute to

the linearisability. We can conclude by the above lemma.

4. Proof of the main results385

4.1. Proof of Theorem 1

Let X be a real Hamiltonian vector �eld of even degree 2n of the form :

X = Xlin +

2n∑
r=2

Xr.

For each Xr, we can associate its depth as follows :

Xr Depth

X2 1

X3 2

X3 3

... ...

X2n−1 2n− 2

X2n 2n− 1

By Theorem 7, we are only interested by the even depth. As a consequence, we look for all possible

combinations of arbitrary length which give rise under Lie bracket to an even depth vector �eld.390

In the following, we denote by [Xk1 , . . . , Xkr ] the set of operators that one obtain by nested Lie

brackets of homogeneous di�erential operators Bni coming from Xki , i = 1, . . . , r. As an example,

we have :
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Xr and [Xr, Xr′ ] Depth

X3 2

[X2, X2] 2

X5 4

[X4, X2] 4

[X3, X3] 4

[X3, X2, X2] 4

X7 6

[X6, X2] 6

[X5, X3] 6

[X4, X4] 6

[X5, X2, X2] 6

[X4, X3, X2] 6

[X4, X2, X2, X2] 6

[X3, X2, X2, X2, X2] 6

[X2, X2, X2, X2, X2, X2] 6

The correction in depth 2 is given by :

Carr2(X) = Carr2,1(X3) + Carr2,2(X2),

As the depth is a morphism we have the contribution of the Lie bracket of X2, we also have the

contribution of the resonant letter of X3. By the Fundamental Lemma, the correction is given by

Carr2(X) = p1,1 + i

(
6|p1,0|2 +

2

3
|p−1,2|

)
.

By the linearisation criterion, we must have Carr2(X) = 0. This implies that395  Re(p1,1) = 0,

−Im(p1,1) = 6|p1,0|2 + 2
3 |p−1,2|.

(48)

As X is real and Hamiltonian, the �rst equation is always satis�ed. The second one has only a

non trivial solution if and only if Im(p1,1) < 0. The situation when Im(p1,1) ≥ 0 leads to two

distinct cases. When Im(p1,1) = 0, the Birkho� sphere reduce to 0 and we obtain X2 = 0. When

Im(p1,1) > 0, the equation can not be satis�ed and the vector �eld is then nonisochronous.

400

Assume that p1,1 = 0 then X2 = 0 and we are reduce to the case

X = Xlin +X3 + · · ·+Xr. (49)

As p1,1 = 0, the �rst non zero term of the correction is Carr4(X). By the fundamental Lemma,

the term Carr4(X) has exactly the same algebraic structure than the preceding Carr2(X) = 0
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case. The role of X2 is played by X3 and the role of the resonant term of X3 is played by the

resonant term of X5. Here again, we recover the same dichotomy between the case Im(p2,2) = 0405

and Im(p2,2) > 0. In the �rst case, we obtain that X3 = 0 and we are leaded to the same sit-

uation as before. Otherwise if Im(p2,2) > 0 the term Carr4(X) can not be zero and we have a

nonisochronous center.

The preceding discussion is representative of the general strategy of proof. Let us assume that410

pj,j = 0 for j = 1, ..., r − 1. Then, we prove by induction that X2 = · · · = Xr−1 = 0. In order to

�nish the proof, two cases must be discussed depending the value of r.

Case 1 : r < n− 1. The component X2r+1 is non trivial due to the condition Im(pr,r) > 0.

By the Fundamental Lemma and the linearisability criterion, we must have415

Carr2r(X) = pr,r + i

 r∑
k=[ r+1

2 ]+1

r(r + 1)

(r − k + 1)2
|pk−1,r−k|2 +

r

r − 1
|p−1,r|2

 = 0 (50)

As Im(pr,r) > 0, this equality can not be satis�ed and X is nonisochronous.

Case 2 : r = n − 1. In this case, we are reduced to an homogeneous perturbation of degree

2n and the correction is given by

Carr2n−2(X) =

r∑
k=[ r+1

2 ]+1

r(r + 1)

(r − k + 1)2
|pk−1,r−k|2 +

r

r − 1
|p−1,r|2 = 0

As X2n is nontrivial, this equation can not be satis�ed and X is nonisochrnous.

This concludes the proof of the Theorem.420

4.2. Proof of Theorem 2

The proof follows the lines of those of Theorem 1. We have to distinguish two cases : k is even

or odd.

Case 1: k is even. The vector �eld Xk does not contain resonant terms. As a consequence,425

its �rst contribution to the correction appears in depth 2(k − 1) corresponding to resonant Lie

brackets of homogeneous di�erential operators in Xk of length two. As l ≤ k − 1, this implies

that 2l − 1 < 2l ≤ 2(k − 1). The even component between Xk and X2l will come into play in the

correction only with a greater depth as 2(k − 1) by Lie brackets of length at least two. In the

same way, for odd components, the resonant term will intervene in the correction with a strictly430

smaller depth in length one and the other terms in depth greater than 2(k − 1) by a Lie brackets
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of length at least two.

As a consequence, the correction term coming from an even k is given by :

Carr2(k−1)(X) = i

 r∑
k=[ r+1

2 ]+1

r(r + 1)

(r − k + 1)2
|pk−1,r−k|2 +

r

r − 1
|p−1,r|2

 . (51)

In order to satisfy the linearisability criterion, we must have Carr2(k−1) = 0. If the component435

Xk is non trivial then the system is already non isochronous. Otherwise, we have Xk = 0 and we

are leaded to the same problem but with an odd component.

Case 2 : k is odd. In this case the vector �eld Xk contain a resonant homogeneous operator.

Let us write k = 2m+ 1 then Bm,m is of depth 2m and weight zero. We have440

Carrk−1(X) = Carr2m(X) = Bm,m. (52)

By the linearisability criterion, Carrk−1(X) = 0 and the resonant term Bm,m in Xk is zero. The

contribution of Xk in length 2 follows the same argument as for the even case and we deduce that

�nally Xk = 0.

As a consequence, we can prove by induction that in order to be linearisable the components445

Xk, . . . , X2l must be zero. But, by assumption, we have that X2l is non trivial. As a consequence,

the vector �eld X is necessarily nonisochronous.

4.3. Proof of Theorem 3

The strategy of proof follows those of Theorem 2. The main observation is that there exists

no interactions between each family of vector �elds {Xk, . . . , X2l} and {Xcn , . . . , X2(cn−1)}, n =450

1, . . . ,m. Indeed, let us �rst analyse the depth of all these objects. We have :
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Xr Depth

Xk k − 1

Xk+1 k
...

...

X2l−1 2l − 2

X2l 2l − 1

0 0

X4l 4l − 1
...

...

X8l−2 8l − 3

... ...

Xcm cm − 1
...

...

X2(cm−1) 2(cm − 1)− 1

Following the same lines as for Theorem 2, we see that the arguments based on the contributions

of a given component belonging to {Xk, . . . , X2l} are valid. In other words, we easily proved

that in order to be linearisable, then one must have Xk = · · · = X2l−2 = 0. The last argument455

concerning X2l is also satis�es because the �rst contribution of X2l to the correction is of length

two and depth 4l−2 which is not disturbed by terms of the remaining family {Xcn , . . . , X2(cn−1)},

n = 1, . . . ,m as the minimal contribution of these terms to the correction is in depth 4l − 1.

As a consequence, a vector �elds of this type will be linearisable if Xk = · · · = X2l = 0.460

By the same argument, we see that there exists no interaction between the family {Xc1 , . . .

. . . , X2(c1−1)} and the remaining one {Xcn , . . . , X2(cn−1)}, n = 2, . . . ,m. We deduce that a lin-

earisable vector �eld of this type must satisfy Xc1 = · · · = X2(c1−1).

465

By induction, we easily deduce that a vector �eld of this type is linearisable if and only if all

the components vanish. As by assumption we are considering a non trivial vector �eld, we are

leaded to a contradiction and the vector �eld is necessarily nonisochronous.

5. Conclusion and perspectives

5.1. Toward a complete proof of the Jarque-Villadelprat conjecture470

Our main results give a very strong support to the Jarque-Villadelprat conjecture. The re-

maining cases always deal with the role of the resonant term in the deformation of the Birkho�'s
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spheres. However, the phenomenon which is working for a quartic perturbation, which was pre-

cisely studied by Jarque and Villadelprat using geometrical methods, must applies in the same way

for arbitrary degrees. Indeed, as we have seem in our derivation of the main results, the algebraic475

structure of the correction during the cancellation process does not change and can be closely

investigated. We have then some directions in order to solve completely the Jarque-Villadelprat

conjecture :

• Can we prove using an extension of our method the quartic case ?

• Can we extend the geometrical method of Jarque-Villadelprat in the cases which are let open480

by our work ?

• Can we prove the remaining cases using other methods ?

We believe that a better understanding of the algebraic structure of the correction will be of

importance in order to go further.

5.2. E�ective Hilbert basis and the isochronous centers a�ne variety485

A second aspect of our work is the explicit and algorithmic description of the isochronous

center a�ne variety. As already said, we have informations about the growth of the degree and

the coe�cients entering in the description of this variety. A natural question is then to look for

e�ective version of the Hilbert basis theorem in order to get some informations about the minimal

number of generators of the ideal. The isochronous centers seem to be more tractable than the490

usual center. However, it is clear that any advance in this direction will have consequences on

the local 16th Hilbert problem. Indeed, the same kind of combinatoric and tools can be used to

obtain analogous information for centers of polynomial vector �elds (see [8]).

5.3. Isochronicity for complex Hamiltonian systems

In [21], the authors study isochronicity of complex Hamiltonian systems when the linear part495

has for spectrum (1,−1). Our method and results extend naturally to this case and give an explicit

and algorithmic description of the isochronous centers a�ne variety. This will be the subject of a

forthcoming work.

Appendix A. Notations

• A(X) alphabet associated to a vector �eld X;500

• A∗(X) set of words given by the alphabet A(X);

• B(X) set of homogeneous di�erential operator associated to a vector �elds X;
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• Carr(X) the correction associated to a vector �elds X;

• Carr• the mould of the correction;

• n element of A(X);505

• n element of A∗(X);

• Bn element of B(X);

• Bn element of (B(X), ◦);

• ω the weight application;

• p the depth application;510

• ping the application which inverts the two components of a letter;

• ret the application on word which inverts the order of the letters;

Appendix B. Properties of the Correction's mould

The proofs of Lemma 1 and 2 use the de�nition of the mould of the correction using the

variance formula (12) and also an alternative one based on the knowledge of the mould of a given515

prenormal form that we remind in the next Section.

Appendix B.1. An alternative de�nition of the correction

We �rst remind the composition of two moulds M• and N• (see [5], De�nition III.44 p.347):

(M• ◦N•)n =
∑

1≤k≤`(n)

∗∑
ω1·...·ωk

M‖ω1‖·...·‖ωk‖ ×Nω1 × ...×Nωk (B.1)

where
∗∑

ω1·...·ωk
means the sum on all the decomposition of the word n in k words. Moreover, ‖ wj ‖520

is a letter obtained by the word ωj summing all its letter if the alphabet is provided with a law of

semi-group.

The neutral element for the composition of moulds is denoted by I• and is de�ned by In = 1

if `(n) = 1 and In = 0 for `(n) 6= 1.525

To prove the di�erent results about the correction, we use another equivalent de�nition of the

mould of the correction related to the choice of a given prenormal form (see [14], p.267 Lemma

3.2) an

In − Carrn = lim
n→+∞

((I• −M•)◦ r)n (B.2)
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where n = n1 · ... · nr and M• is a mould associated to a given prenormal form.530

In the following, we often use the mould Tram• associated to the trimmed prenormal form

(see [13], [5] and [24]) and de�ned by

Tram∅ = 0, T ramn = (Sam•)l(n), (B.3)

where Sam• is a mould de�ned as follows: Let Pr be the family of Poincaré functions P =

{Pr}r∈N∗ de�ned by G. Morin in ([24],§.7.9.1 p.114-115) by535

P1(z) =

 1 if z = 0,

0 otherwise.
(B.4)

and for r ≥ 2 by

Pr(z1, . . . , zr) =



1

z1 . . . zr

r∑
k=1

(−1)r−k
zk(r − k)− zk+1 − · · · − zr

(k − 1)!(r − k + 1)!
, if z ∈ (C∗)r,

(−1)r−1

(i− 1)!(r − i)!
1

z1 . . . zi−1zi+1 . . . zr
, if z ∈ Sr,i,

0 otherwise,

(B.5)

where Sr,i = (C∗)i−1 × {0} × (C∗)r−i.

The mould Sam• is de�ned by (see [24], Lemma 7.9.9., p.115):

Sam• =

 1 if n = ∅,

Pr(ω(n1), . . . , ω(nr)) if n = n1 . . . nr, r ≥ 1.
(B.6)

Moreover we have :540

In − Carrn = ((I• −M•)◦ r)n = ((I• −M•)◦ r+k)n (B.7)

where k ∈ N.

Now, we can prove the Lemma 1 and Lemma 2.

Appendix B.2. Proof of Lemma 1

1) Using the formula (B.2) for the correction via a given prenormal form mould M•, we obtain

for the word n = ∅ :

I∅ − Carr∅ = ((I•)−M•)◦0)∅

= I∅ −M∅,

as I∅ = M∅ = 0, we deduce that Carr∅ = 0.545
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2) Let n = n1 · ... · nr be a non resonant word of length r, i.e. ω(n) 6= 0, then we have :

In − Carrn = ((I• − Sam•)◦ r)n, (B.8)

If n is a letter i.e `(n) = 1, such that ω(n) 6= 0 then

In − Carrn = ((I• −M•)◦ 1)n

= (I• −M•)‖n‖(I• −M•)n,
(B.9)

where M‖n‖ = Mn = 0 and In = I‖n‖ = 1 hence 1− Carrn = 1 and Carrn = 0.

550

If the length of n is greater than 2, the variance formula gives:

In − Carrn = ((I• −M•)◦ r)n

−Carrn =
(
(I• −M•)◦ r+1

)
n

= ((I• −M•) ◦ (I• −M•)◦ r)n

= ((I• −M•) ◦ (I• − Carr•))n

=
∑

1≤k≤r

∑
w1·...·wk=n

(I• −M•)‖w1‖·...·‖wk‖(I• − Carr•)w1 ...(I• − Carr•)wk .

By induction, we assume the result is true in length r − 1. As n is non resonant, for any given

decomposition in k sub-words n = w1 . . . wk, there exists at least one of these sub-words which

is non resonant, let says wj of length l(wj) < l(n) such that Iwj−Carrwj = 0 as long as l(wj) ≥ 2.

If this sub-word wj is a letter, then the decomposition is made of at least two terms, i.e.555

k ≥ 2, and all the remaining sub-words are either resonant or non resonant. and the quantity

(I• −M•)‖w1‖·...·‖wj‖·...·‖wk‖ reduces to −M•)‖w1‖·...·wj ·...·‖wk‖. However, the mould M• is zero

over non resonant words as it corresponds to a prenormal form, so that −M•)‖w1‖·...·wj ·...·‖wk‖ = 0

and Carrn = 0.

560

3) We prove this result by induction on the length. If `(n) = 2, n = n1 · n2. If n1 is resonant,

as n is resonant, n2 is also resonant. So we have :

Carrn = −(I‖n‖ − Carr‖n‖)(In − Carrn)

−(I‖n1‖·‖n2‖ − Carr‖n1‖·‖n2‖)(In1 − Carrn1)(In2 − Carrn2).
(B.10)

As I‖n‖ − Carr‖n‖ = 1− 1 = 0 and In1 − Carrn1 = 0, we have Carrn = 0 if `(n) = 2.

Now we assume that the result is satis�ed for all words of length ≤ r − 1, r ≥ 3. We con-565

sider n = n1 · ... ·nr such that ω(n) = 0, l(n) = r ≥ 3 and at least one letter, let says nj is resonant.
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We have to study the following equality,

In − Carrn = [(I• −M•)◦ r]n ,

=
∑

1≤k≤r

∑
w1·...·wk=n

(I• −M•)‖w1‖·...·‖wk‖(I• − Carr•)w1 ...(I• − Carr•)wk .

(B.11)

There exists an integer l such that nj appears in the decomposition of one wl for 1 ≤ l ≤ k.

Either `(wl) = 1, so wl = nj and I
wl − Carrwl = 1 − 1 = 0, or `(wl) ≥ 2, so by the induction570

hypothesis Carrwl = 0 and Iwl = 0 by de�nition. As a consequence, we obtain that Carrn = 0.

Appendix B.3. Proof of Lemma 2

Appendix B.3.1. The mould Carr• in length 1

Let n a letter such that ω(n) = 0. By the above de�nition,

In − Carrn = In −Mn,

so Carrn = Mn, where M• is a prenormal form. We can take for example the mould Tram• (see

[5]), which is the mould of the Poincaré-Dulac normal form. So Carrn = Tramn = 1.575

Appendix B.3.2. The mould Carr• in length 2

Lemma 18. If n ∈ A(X)∗ is such that l(n) = 2, ω(n) = 0, we have the following possibilities:

1. If all the letters have zero weight, i.e. ω(ni) = 0 for all i = 1, 2, 3, then Carrn = 0.

2. If all the letters have a non zero weight then Carrn = 1/ω(n1).

Proof. If ω(n1n2) = 0, we have ω(n1) = −ω(n2) as ω is a morphism. Using the variance formula,580

we have :

ω(n1)Carrn1·n2 + Carrn1+n2 = Carrn1Carrn2 . (B.12)

As ω(ni) 6= 0, we have Carrn1 = Carrn2 = 0 so that

ω(n1)Carrn1·n2 + Carrn1+n2 = 0. (B.13)

We then obtain

ω(n1)Carrn1·n2 = −Carrn1+n2 = −1. (B.14)

As a consequence, we have

Carrn1·n2 =
−1

ω(n1)
. (B.15)

We can also prove this result using the alternative de�nition :

In1·n2 − Carrn1·n2 =
(
(I• −M•)◦2

)n1·n2

= ((I• −M•) ◦ (I• − Carr•))n1·n2

= (I• −M•)‖n1·n2‖(I• − Carr•)n1·n2+

+ (I• −M•)‖n1‖·‖n2‖(I• − Carr•)n1(I• − Carr•)n2 .
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As above we will use the mould Tram• in length 2, Carrn1·n2 = Tramn1·n2 = ω(n2)−ω(n1)
ω(n1)ω(n2) . As

ω(n1) = −ω(n2), we �nally have :

Carrn1·n2 =
1

ω(n1)
.

As we can see the result di�ers by a multiplication by −1. It is due to the fact in [13] and [14],

the nested Lie brackets are taken in this form [Bn1·...·nr ] = [Bnr , [Bnr−1 , [...[Bn2 , Bn1 ]..]] whereas

in [7] and [5] we consider [Bn1·...·nr ] = [...[Bn1
, Bn2

], ...], Bnr−1
], Bnr ]. And we have the relation:

[Bnr , [Bnr−1 , [...[Bn2 , Bn1 ]..]] = (−1)r+1[Bn1 , Bn2 ], ...], Bnr−1 ], Bnr ].

585

Appendix B.3.3. The mould Carr• in length 3

Using the variance formula we obtain for a word n = n1n2n3 of length 3 the following equality:

ω(n1)Carrn1·n2·n3 + Carr(n1+n2)·n3 = Carrn1·n3Carrn2 + Carrn1Carrn2·n3 . (B.16)

One can prove the following lemma:

Lemma 19. If n ∈ A(X)∗ is such that l(n) = 3, ω(n) = 0, we have the following possibilities:590

1. If all the letters have zero weight, i.e. ω(ni) = 0 for all i = 1, 2, 3, then Carrn = 0.

2. If there exists a letter a ∈ {n1, n2, n3} such that ω(a) = 0 and ω(b) 6= 0 for b ∈ {n1, n2, n3} \

{a}, then Carrn = 0.

3. If all the letters have a non zero weight, i.e. ω(ni) 6= 0, i = 1, 2, 3, then

Carrn1·n2·n3 =
1

ω(n1)(ω(n1) + ω(n2))
. (B.17)

Proof. 1) This case follows from Lemma ??.595

2) Let us take for example a = n2 such that ω(n2) = 0, then ω(n1n3) = 0 and ω(n3) = −ω(n1).

As a consequence, using (B.16) and the fact that Carrn2 = 1, we obtain

ω(n1)Carrn1·n2·n3 + Carr(n1+n2)·n3 = Carrn1·n3 + Carrn1Carrn2·n3 . (B.18)

Let us assume that n1 is such that ω(n1) 6= 0, then Carrn1 = 0 and the previous equality reduces

to600

ω(n1)Carrn1·n2·n3 = Carrn1·n3 − Carr(n1+n2)·n3 . (B.19)

Using the expression of the mould Carr• in length 2, we have

Carrn1·n3 = −1/ω(n1), Carr(n1+n2)·n3 = −1/ω(n1 + n2) = −1/ω(n1). (B.20)
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We deduce easily that

ω(n1)Carrn1·n2·n3 = 0, (B.21)

and as a consequence Carrn1·n2·n3 = 0.

The same computations prove that Carrn = 0 if ω(n3) = 0 and ω(n1) 6= 0.605

The remaining case, i.e. ω(n1) = 0 and ω(n2) 6= 0, can be deduced from the alternality of the

mould Carr• which induces the following equality (see [5],§.4.1 p.331):

Carrn1n2n3 + Carrn2n1n3 + Carrn2n3n1 = 0. (B.22)

The second and third terms are zero thanks to our previous computations. As a consequence, we

obtain Carrn1n2n3 = 0 if ω(n) = 0, ω(n1) = 0 and ω(n2) 6= 0.610

3) From now on, let us assume that all the ω(ni) are non zero. Then using formula (B.16) and

the fact that Carrn1 = 0 and Carrn2 = 0, we obtain

ω(n1)Carrn1·n2·n3 + Carr(n1+n2)·n3 = 0. (B.23)

Using the expression of Carr(n1+n2)·n3 we deduce that

Carrn1·n2·n3 =
1

ω(n1)(ω(n1) + ω(n2))
. (B.24)

As in length 2, we can give an alternative proof using the mould Tram• to compute the correction615

:

In1·n2·n3 − Carrn1·n2·n3 =
(
(I• − Tram•)◦ 3

)n1·n2·n3

=
(
(I• − Tram•)◦ 4

)n1·n2·n3

= (I• − Tram•) ◦ (I• − Carr•)n1·n2·n3

= −Tramn1·n2·n3 .

(B.25)

So Carrn1·n2·n3 = Tramn1·n2·n3 = 1
ω(n1)(ω(n1)+ω(n2)) .

Appendix C. Technical results

Appendix C.1. Proof of Theorem 11

For all i = 1, . . . , 2p, we have using the Theorem of projection620

Carr2p,i(X) =
1

i!

∑
n∈A∗(X)

p(n)=2p, l(n)=i

Carrn[Bn],

=
1

i!

∑
n∈A∗(X)

p(n)=2p, l(n)=i

Carrn(xy)
p(n)
2 (P (n)x∂x +Q(n)y∂y),

=
1

i!
(xy)p

∑
n∈A∗(X)

p(n)=2p, l(n)=i

Carrn(P (n)x∂x +Q(n)y∂y).

(C.1)
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By de�nition of Ca2p,i(X) we obtain

Carr2p,i(X) =
1

i!
(xy)p

[
Ca2p,i(X)x∂x + Ca2p,i(X)y∂y

]
. (C.2)

Appendix C.2. Proof of Lemma 15

Let Bn = B(n1,n2) = xn
1

yn
2

(pnx∂x + qny∂y) and Bm = B(m1,m2) = xm
1

ym
2

(pmx∂x + qmy∂y).

Then, the Lie brackets of Bn and Bm is :

[Bnm] := [Bn, Bm] = xn
1+m1

yn
2+m2

(Pn,mx∂x +Qn,my∂y),

= x|nm|
1

y|nm|
2

(Pn,mx∂x +Qn,my∂y)

where Pn,m and Qn,m are polynomials in the coe�cients of Bn and Bm, precisely :

Pn,m = (m1 − n1)pnpm +m2qnpm − n2pnqm,

Qn,m = (m2 − n2)qnqm +m1pnqm − n1qnpm.

We easily prove by induction that all the Lie bracket in any length are of the above form.

References

[1] A. Cima, F. Maosas, J. Villadelprat, Isochronicity for several classes of Hamiltonian systems.625

J. Di�erential Equations 157 (1999), no. 2, 373-413.

[2] J. Chavarriga, M. Sabatini, A survey of isochronous centers, Qual. Theory Dyn. Syst. 1 (1999),

1-70.

[3] Y. Chen, V. G.Romanovski, W. Zhang, Non-isochronicity of the center for polynomial Hamil-

tonian systems with even degree nonlinearities, Nonlinear Analysis 68 (2008), p. 2769-2778.630

[4] D.A. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms, An introduction to compu-

tational algebraic geometry and commutative algebra, Fourth Edition, Springer, 2015.

[5] J. Cresson, Calcul Moulien, Annales de la Faculté des Sciences de Toulouse Mathématiques

Vol. XVIII, no. 2, 2009, pp. 307-395.

[6] J. Cresson, Obstruction à la linéarisation des champs de vecteurs polynomiaux. Canad. Math.635

Bull. 45 (2002), no. 3, 355-363.

[7] J. Cresson, J.Raissy, About the Trimmed and the Poincaré-Dulac Normal Form of Di�eomor-

phisms, Bollettino U.M.I (9) V (2012), 55-80.

[8] J. Cresson, B. Schuman, Formes normales et problème du centre, Bulletin des Sciences Math-

ématiques 125, no.3, 235-252, 2001.640

35



[9] Ecalle J., Singularités non abordables par la géométrie, Ann. Inst. Fourier, 42 (1-2), 1992,

73-164.

[10] Ecalle J., Les fonctions résurgentes, Vol.1, Les algèbres de fonctions résurgentes, Publications

Mathématiques d'Orsay, (1981).

[11] Ecalle J., Les fonctions résurgentes, Vol.3, L'équation du pont et la classi�cation analytique645

des objets locaux, Publications Mathématiques d'Orsay, (1985).

[12] Ecalle J., Schlomiuk D., The nilpotent and distinguished form of resonant vector �elds or

di�eomorphisms, Ann. Inst. Fourier 43 5 (1993) 1407-1483.

[13] J. Ecalle, B. Vallet, Prenormalization, correction, and linearization of resonant vector �elds

or di�eomorphisms, Prepublication d'Orsay (1995) 101.p.650

[14] J. Ecalle, B. Vallet, Correction an linearization of resonant vector �elds and di�eomorphisms,

Math. Z. 229 (1998) 249-318.

[15] L. H. Eliasson, Hamiltonian systems with linear normal form near an invariant torus, in

Nonlinear Dynamics Turchetti Ed., World Scienti�c� , Singapore, 1989.

[16] J-P. Francoise, R. Pons, Les conditions du centre pour un champ de vecteurs quadratiques,655

CRAS 318 (1994), p. 909-912.

[17] J-P. Francoise, Géométrie analytique et systèmes dynamiques, PUF, 1995.

[18] G.. Gallavotti, A criterion of integrability for perturbed nonresonant harmonic oscillators,

"wick ordering" of the perturbations in classical mechanics and invariance of the frequency

spectrum, Communication in Mathematical Physics Vol. 87, p.365-383, 1982.660

[19] L. Gavrilov, Isochronicity of plane polynomial Hamiltonian systems, Nonlinearity 10 (1997)

433-448.

[20] X. Jarque, J. Villadelprat, Nonexistence of isochronous centers in planar polynomial Hamil-

tonian systems of degree four. J. Di�erential Equations 180 (2002), no. 2, 334-373.

[21] J. Llibre, V. G. Romanovski. Isochronicity and linearizability of planar polynomial Hamilto-665

nian systems. J. Di�erential Equations 259 (2015), no. 5, 1649-1662.

[22] W.S. Loud, Behaviour of the period of solutions of certain plane autonomous systems near

centers, Contrib. Di�erential Equations 3 (1964) 21-36.

[23] P. Mardesic, C. Rousseau, B. Toni, Linearisation of isochronous centers, J. Di�erential equa-

tions 121 (1995), 67-108.670

36



[24] G. Morin, Calcul moulien et théorie des formes normales classiques et renormalisés, Ph.D.,

Observatoire de Paris, 2010.

[25] J. Palafox, Calcul moulien, arbori�cation, symétries et applications, Ph.D. Université de Pau

et des Pays de l'Adour, Juin 2018.

[26] C. Reutenauer, Free Lie algebras, London Math. Soc. Monographs, new series 7 (1993).675

[27] B. Schuman, Sur la forme normale de Birkho� et les centres isochrones. C. R. Acad. Sci. Paris

Sér. I Math. 322 (1996), no. 1, 21-24.

[28] B. Schuman, Une classe d'hamiltoniens polynomiaux isochrones. Canad. Math. Bull. 44

(2001), no. 3, 323-334.

[29] J-P. Serre, Lie algebras and Lie groups, W.C. Benjamin Inc (1965).680

[30] M. Urabe, Potential forces which yield periodic motions of a �xed period, J. Math. Mech. 10

(1961) 569-578.

37




