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Abstract

We study the conjecture of Jarque and Villadelprat stating that every center of a planar polynomial
Hamiltonian system of even degree is nonisochronous. This conjecture has already been proved for
quadratic and quartic systems. Using the correction of a vector field to characterize isochronicity
and explicit computations of this quantity for polynomial vector fields, we are able to describe a
very large class of nonisochronous Hamiltonian systems of even arbitrarily large degree.
Keywords: elsarticle.cls, BTEX, Elsevier, template
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1. Introduction and main results

1.1. The Jarque-Villadelprat conjecture

In this paper, we study centers of planar polynomial Hamiltonian systems in the real case. In
particular we focus on isochronous centers. Our main concern is the following conjecture stated

by Jarque and Villadelprat in [20]:

Let X be a real polynomial Hamiltonian vector field of the form:
X(x,y) = =0, H(z,y)0z + 0. H(x,y)dy, (z,y) € R?, (1)

where H(x,y) is a real polynomial in the variables x and y. The maximum degree of the polyno-

mials 0, H and 9y H is the degree of the Hamiltonian vector field.
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Conjecture : FEvery center of a planar polynomial Hamiltonian system of even degree is mon-

isochronous.

The conjecture is known to be true for quadratic systems thanks to a result of Loud in [22] and
in the quartic case by a result of Jarque-Villadelprat in [20]. The proof of Jarque and Villadelprat
is based on a careful study of the bifurcations set and seems difficult to extend to an arbitrary
degree. The conjecture is open for the other cases despite partial results in this direction obtain
by B. Schuman in [27, 28] using an explicit computation of the first coefficients of the Birkhoff
normal form and Chen and al. [3] proving what they call a weak version of the conjecture, i.e.

that any vector fields having only even components is nonisochronous.

Different strategies can be used to go further toward this conjecture. A first class of methods
can be called geometric and are related to some special features of Hamiltonian or isochronous
centers. We can mention for example the work of L. Gavrilov [19] and P. Mardesic, C. Rousseau
and B. Toni [23]. Up to now, these methods are unable to reproduce some special results obtained
by B. Schuman [27, 28] for classes of polynomial vector fields of arbitrary degree. Another class of
methods can be called analytic and are more or less all dealing with the computations of quantities
which can be obtained algorithmically like period constants [16] and coefficients of normal forms [8]
(see also [17]). However, such methods are usually assumed to be intractable when one is dealing
with a vector field of arbitrary large degree (see for example [20] p.337). This is indeed the case
when one has no informations on the algebraic structure of these coefficients. Then one is reduced
to compute Grobner bases or to use the elimination method. However, one is quickly limited by
the computational complexity and the memory size need to perform these computations. Existing

results are restricted to polynomials of order 5.

A natural problem is then to look for methods allowing us to bypass these technical limitations.
In the analytic setting, this can be done for (pre)normal forms or other local analytic objects
using the mould formalism introduced by J. Ecalle in the 70 ([10],[11], see also [5]) which allows an
efficient algorithmic construction of these objects but also a very precise analysis of the coefficients.

The idea is to separate in these coefficients what is universal and what is not.

1.2. Main results

In this paper, using the formalism of moulds (see [10], [11]) and a particular object attached
to a vector field called the correction defined by Ecalle and Vallet in [14]. In particular, we obtain

a partial answer to the conjecture for arbitrarily large degree.
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It is well known that isochronicity of a real center is equivalent to its linearisability (see [2],
theorem 3.3, p.12). A main property of the correction is that it gives a very useful criterion for
linearisability. Indeed, a vector field is linearisable if and only if its correction is zero. As the cor-
rection possesses an algorithmic and explicit form which is easily calculable using mould calculus
we are able to give more informations on the isochronous set. This strategy was already used by

one of us in [6].

In the following, we use the classical complex representation of real vector fields (see [21]).

Let us denote by X, = i(z0, — £0z) and X, = P.(z,%)0, + P.(x,Z)0z with x € C, P, is a

T . .
homogeneous polynomial of degree r, P.(x,Z) = Y py—j_1 2" /7.
j=0

We formulate our main results (Theorem 1 to Theorem 4) whose proofs are postpone in Section

Theorem 1. Let X be a non trivial real Hamiltonian vector field of even degree 2n given by:

X = Xpin + ix,.
r=2
If X satisfies one of the following conditions :
a) there exists 1 <r <n —1 such that p;; =0 fori=1,...,r — 1 and Im(p,,) > 0,
b) pii=0fori=1,...,n—1,

then the vector field is nonisochronous.

As a consequence we deduce that:

X = Xiin + Xo,
X = Xjin + X2 + X3 + X4 with Im(py 1) > 0,

X = Xiin + Xo +X3 + X4 + X5 + X6 with P11 > 0 or P11 = 0 and Im(pgyg) > O,

are nonisochronous.

As a corollary, we obtain the weak version of the Jarque-Villadelprat conjecture proved by X.

Chen and al. [3]:

Corollary 1 (weak Jarque-Villadelprat conjecture). Let X be a non trivial real Hamiltonian

vector field of even degree 2n given by
X:Xlin+X2+X4+"'+X2n7

then X is nonisochrnous.
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The proof follows easily from Theorem 1 as for all  =1,...,n — 1, we have p; ; = 0 due to the

fact that there exists no odd components.
Theorem 2. Let X be a non trivial real Hamiltonian vector field of the form:
X = Xpin + X + ... + Xoy,
fork>2 21>k andl < k—1. Then X is nonisochronous.
Using this last theorem, without any conditions we have that:
X = Xiin + Xa,
X = Xyin + X3+ Xy,
X = Xiin + Xy + X5 + Xo,
or more funny
92
X =Xpin+ 2 X;

i=47
are nonisochronous. We see that Theorem 1 and Theorem 2 are complementary to each other.

Mixing the proofs of Theorem 1 and Theorem 2 we obtain:

Theorem 3. Let X be a non trivial real polynomial Hamiltonian vector field on the form:

m 2((571_1)
XZle-‘er-l-...-‘erl-i-Z Z X;

n=1 j=cn

where k> 2,21 >k, 1 <k—1, m>1 and the sequence c, is defined by :
c1 =4l and Yn>2, ¢, =4(cp-1—1), (2)
Then X is nonisochronous.
A first example of nonisochronous vector field given by the last theorem is:
X = Xpin + Xo + Xy + X5 + Xo.

Theorem 4. Let k > 2 and | < k — 1, a real polynomial Hamiltonian vector field denoted by X

on one of these two forms:
r4+n

DX = Xign + Xi 4 o+ Xot + Xosa + ) X
where r > 21 + 2 and Im(p;;) > 0 or
r+n
)X = Xjin X+ o+ X+ Xu + )X,
m=r

where Xo; is nontrivial, v > 41, with Im(po—1,21—1) > 0, are nonisochronous.

Using Theorem 3 and Theorem 4 we easily deduce the classical result that homogeneous per-

turbations of a linear center are non isochronous (see [27]) as well its generalization (see [28, 6]).
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1.3. Plan of the paper

In Section 2, we give following J. Ecalle and B. Vallet [14] the definition of the correction of
a vector field and remind some of its properties. We then look more specifically to the correc-

tion of polynomial real vector fields. We derive explicit formula allowing us to analyse its structure.

In Section 3, we prove that the set of isochronous Hamiltonian centers is an affine variety which
can be explicitly described. We also prove that this variety is invariant under a non trivial torus

action.
In Section 4, we give the proofs of our main results and some technical Lemmas.

We then discuss several perspectives for this work.

2. Correction of vector fields and Hamiltonian systems

2.1. Correction of a vector field

In this section, we remind the definition of the correction of a vector field following the work
of J. Ecalle and B. Vallet [14]. In particular, we give the mould expansion of the correction, which
plays a central role in our approach to study the linearisability. It must be noted that all these

computations can be made in arbitrary dimension.

2.1.1. The correction of a vector field
We denote by X an analytic vector field on C” at 0:
X= Y X;@)o,
1<j<v

with X;(0) =0 and X, (x) € C{z}. We can write the vector field X in its prepared form:

Definition 1. A wvector field X is said to be in prepared form if it is given by

X=Xun+ Y. Bn (3)
neA(X)

where Xy, 1s the linear part of X in diagonal form

v
Xiin = Z Ajx Oy (4)
j=1
the B, are homogeneous differential operators of degree n = (ny,...,n,) € Z", where all n;
are integer except one which can be —1, satisfying for all monomial ™ = x"* ...z, where
xz=(x1,...,2,) €CY, m=(my,...,m,) € N, the equality
B,(z™) = ﬁn7mx"+m, Bn.m € CY, (5)
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and A(X) € ZV is the set of the degree of the operators By, in the decomposition of X.

From the point of view of Analysis, homogeneous differential operators are more tractable. An
operator B,, is said to be homogeneous of degree n = (ny,ns) if for all monomial z'y* we have

B, (z'yF) = gLk . gratlynatk with gbk ¢ C.

In [14], J.Ecalle and B.Vallet introduce the correction of a vector field following previous works

of G.Gallavotti [18] and H.Eliasson [15] in the Hamiltonian case.

Let us consider a vector field in prepared form. The correction is defined as follows([14], p.258):

Definition 2. Let X be a vector field in prepared form with linear part X;;,. The correction of

X, denoted by Carr(X) is the vector field solution of the following problem:

Find a vector field Z such that
X—Z~ Xli’m and [Xlina Z] = 0, (6)

where for two vector fields A and B, we denote A ~ B if the vectors fields A and B are formally

conjugate.

The second condition implies that Carr(X) is only made of resonant terms.

In [14], Ecalle and Vallet prove that the correction of a vector field admits a mould expansion.

Precisely, let us denote by A*(X) the set of the words given by the letters in A(X) using the

concatenation morphism conc on letters :
conc: A(X)P — A*(X)
N1y, Mp) M7 - N2 - - N

for any integer p.

In the following, a word is denoted by n1 - na - ... - n, Or NiNg...Np.
Remark 1. The length of the word ny...n, is p. The word of length 0 is denoted by (.

Definition 3. The set A*(X) is composed by all the words of all lengths that is, if n € A*(X)
there exists an integer p > 0 such that n = conc(ny,...,n,) where nj € A(X) for j =1,...,p. We
denote AP(X) the set of words of length p.
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For alln =ny - ...-n, € A*(X), we denote:
B,=B,, 0..0B,,. (7)
The correction can be written as ([14], Lemma 3.2 p.267):

Carr(X) = Z Carr” By, (8)
neA*(X)

where Carr™ € C for all n € A*(X), or simply

Carr(X) = Z Carr® B, (9)

following Ecalle’s notations (see [10] and [5]).

The mapping

Carr® : (10)

is called a mould (see [10, 11] and [5]).

The main point is that the mould Carr® can be computed algorithmically using a recursive

formula on the length of words.

Precisely for all n € A(X), let us denote by w(n) the quantity:
w(n) = (n, A),

where the (.,.) is the usual scalar product on C" and A = (A1,...,A,) are the eigenvalues of Xj;,.
We can extend w to a morphism from (A*(X), conc) to (C, +), i.e. foralln = ny.ns...n, € A*(X),

n; € A(X),i=1,...,r, we have
wn)=wni)+ - +wn.). (11)

The quantity w(n) is called the weight of the letter n.
We have the following theorem (formula 3.42 in [14]):

Theorem 5 (Variance formula). The mould of the correction is given by the formula for any word
=11 e Np?
w(ng)Cary™m2emr 4 Carp™ 28N = Z Carr™<Carr®. (12)
nibe=n
The proof of this theorem is nontrivial. It follows from the variance formula for a vector field

discussed in ([14], Prop 3.1 p.270). The variance of a vector field gives many different way to
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compute the mould of the correction.

The main consequence of the previous Theorem is the universal character of the mould of the

correction. Precisely, following the definition of universality used in [5], we have :

Theorem 6 (Universality of the Correction’s mould). There exists a one parameter family of
complex functions C, : D, C C" — C, r € N such that for all X the correction’s mould Carr®
defined on A(X)* is given for alln € A(X)* such that i(n) =r, r € N by

Car™ — Cr(w(ny),...,wn.)), if wm)=0, 19

0 otherwise.

This property is fundamental concerning our problem as the computation of these coefficients
is done once and for all and does not depends on the value of the coefficients entering the poly-
nomials but on the alphabet generated by the vector field. Up to our knowledge only the mould
formalism is able to produce such kind of coefficients allowing to write the correction (this is not

the case for example dealing with the classical Lie framework).

As for prenormal forms (see [13]), a specific role is played by resonant terms:
Definition 4. A word n € A*(X) is said to be resonant if w(n) = 0.

In the following, we give explicit expressions for Cy, Cy and Cs.

2.1.2. The mould of the correction

The following theorem concerns precisely the length 1,2 and 3 :

Theorem 7. The universal correction functions C, : C" — C of Theorem 6 are given forr =1,2,3

by
1 .

1 if 21 =0, - 1f2’1—|-2220,2’1750,

Ci(z) = Ca(z1,22) = 1 (14)
0 otherwise. 0 otherwise.
1 .

—, if 21 +20+23=0, 21 #0, 21 + 22 #0,

Cy(z1, 22, 23) = { 21(21 +22) (15)

0 otherwise.

The proof is based on explicit computations which are summarized in the following Lemmas

whose proof are given in Appendix.

We can remark that the values of the correction’s mould depend on the weight of the letters.
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Lemma 1. The mould Carr® verifies :
1) Carr? =0,
2)If n is non resonant, Carr™ =0,

3)If n=nq..n, is such that there exists j satisfying w(n;) = 0 then Carr™ = 0.
Moreover, we have:

Lemma 2. 1) If w(n) =0, Carr™ =1,
2) If w(ng - no) = 0 with w(ny) = —w(ng) # 0, we have Carr™ ™2 = — 1

w(ni)”’

3) If w(ny - ng - n3) =0 with w(n;) #0 j =1,2,3, we have Carr™ ™23 =

1
w(ni)(w(ni)+w(n2))

We refer to Appendix B.2 and Appendix B.3 for the proofs.

2.1.3. Some computations of the correction mould

Let us consider the quadratic case, i.e.
X = Xiin + X, (16)

where Xj;, is diagonal with eigenvalues (i, —i) and X5 is a homogeneous polynomial vector field

of degree 2 given by

X, = (p170:c2 +po1zy +p—1, 2y?)0, + (q27_1a:2 +qo12Y + G1,0)0y. (17)
We have:
Lemma 3. The alphabet generated by X5 is given by

A(X)={n1 =(1,0), n_1 =(0,1), n3 =(2,-1), n_3 =(—1,2)}. (18)

Proof. The alphabet generated by X, is related to the decomposition of X5 in homogeneous

differential operators. A simple rearrangement of terms proves that

X2 =B,0) + By + B-1,2) + Bz, (19)
where
B1,0) = (p1,0202 + q1,0¥9,), Bo,1y = y(po,120: + q0,1y0y), (20)
B(—1,2) = p—1,2y28x7 B(2,—1) = Q2,—19323y-
This concludes the proof. O
All the letters in A(X) are non resonant. Indeed, we have
wlng) =1, wn_1) = —i, w(ng) = 3i, w(n_s) = —3i. (21)

As a consequence, the correction mould is always zero in length 1.

In length 2 however, some resonant combinations are possible. We have
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Word n | Carr™
ny-n_q 7
n_i-ni —1

i
ng-nN_3 3

—i
n-3-M3 |73

In length 4, the correction mould is given by :

Word n Carr® Word n Carr™
nN_g-n_3z-nsg-ns gTZ ny-n_z-n_1-n3 %Z
n_s-n_1-n1- N3 % ny-nN_3-nip-np %Z
n_g-n-1-mM3- N1 ﬁ ny-mn-z-n3g-n-1 é
n_g-nyp-n_1-n3 % ny-n_1-Nn_3-n3 0
Nn_3-Ny-Ny- N1 é ny-N_q1-N_1-N1 0
n_s-ni-ng-n_i % ny-N—_1-Ny1-N_1 —1
n_z-ng-n_3z-ns % ny-n_1-n3-nN_3 0
N_3-N3-N_1-N1 0 ny-Ni-N_3g-n %
n_sg-ns-niy-n_1 0 ny-nNy-N—q1-N_1 %
n_3-ns-ng-n_s 0 ny-Nnyp-Nyp-N_3 %’L
N_1:-M_3-N1°N3 ﬁ ny-ng-nN-3-nN_1 1%
Nn_1-M_3-N3- N1 ;2’ Nny-N3-MN_1-N_3 %21
n_i1-M_1-N_1-N3 % N3 -N_3-N_3-nN3 0
n_i-m—1-Nn1-N1 _71 ng-m_z-n_1-n1 0
N_1-MN_1-N3 -N_q i ng-M_g-ni-N_1 0
n_i1-nip-n_3-ns 0 N3 -N_3-N3-N_3 %
n_i1-Nn1-N_1-N1 ) Nnyg-Nn_1-N_3-nN1 é
n_i1-myp-nyp-nN_q1 0 ng-m_1-Nn_1-N_1 %l
N_1-N1-N3-N_3 0 ng-N_1-M1-N_3 %i
n_i1-Nns-n_3-n %2 N3 -N1p-N_3-N_1 17*21
Ny mgen_yon_y | & Ng - Ny N_1-N_3 =
n_i1-mnag-nyp-nN_3s % ng-ng-N_3-N_3 5%1

2.2. Correction

of a polynomial vector field

2.2.1. Prepared form and alphabet

Let X a polynomial vector field in C? of the form:

l

X =X+ Y_ X,

r=2

10
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with
Xr = Pr(x,y)az +Qr($7y)ayv (23)

where P, and @), are homogeneous polynomials of degree r such that:
P( Zpk L k"Y', Qp (2, y) qu kko1z’ Y, (24)

In the following, we describe explicitly the prepared form of X, the set A(X) and the operators
B,.

Lemma 4. For all r > 2, we can associate an alphabet to the vector field X,, written A(X,) given
by:
AX) =A{(r,-1), (-1,r), (k—1,r—k) withk=1,...,r}.

Moreover, we get from A(X,) the set denoted B(X,) of the homogeneous differential operators

given by the decomposition :

B(fl,r) = p—l,ryram
B(r,fl) = QT,flxrayv

Blr—1r—k) = " Y F 0h—1,r— 6200 + Qh—1,r—1y0y)

with ke {1,...,r}.

Proof. We first rewrite any vector field X,, » = 2,...,[, in order to make apparent the order, in
term of differential operators, of all its components. We have :

T

Pr(xa y)am + Qr(x,y)ay = Z (pk—l,r—kxk Lyr= k:l,a + Qr—k,k— 1xr kykilyay) +p—1,ryraz + qh_lwraya

k=1
T

(Ote—1,0—1) + Opr—r 1)) + O(—1,) + O(r.—1),
k=1

with
Oh—1,r—k) = Pr—1r— k" Yy 20,
O(r—k,k—l) = (Jrfk,kflmrikykilyayv
O(—l,r) = p—l,ryrazv

O(nfl) = QT,—lxray-

We want to know if there exists some operators of the same degree among the operators
O(k—1,r—k) and O(T_k7k_1). If it is the case, we gather them in a same operator of the form

12
B(nl,nQ) =" y" (P(nl,n2)waz + Q(nlmz)yay).

11
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For that, we have to solve the equation
k—l=r—k (25)

where k, k € {1,...,r}. As ke {1,..,r}, r— ke {0,...,7 — 1} hence r — k+1¢ {1,...,r}. So there

always exists solutions. This concludes the proof. O
Example 1. We consider the vector field X = X, + Xo + X3 where

X5 = (p1o7® 4+ poazy + p-1,29°) Oz + (41,22 + q.07y + qo,1y7) Oy,
X3 = (p2,0$3 + P11’y + po2ry® + p-1,3y°) O + (qg,—19€3 + @2,07°y + a7y’ + %293) Oy.

Hence we obtain the three following alphabets :

A(XQ):{(27_1)’ (1,0), (071)5 (_172)}7
A(X?)):{(?)v_l)’ (270)7 (1’1)7 (072)7 (_1a3)}'

For example, we also have the elements of the set B(X3) :

B, o1y = 43,120y,

B(2,0) = @ (p2,0205 + q2,049y) ,

Bi,1y = oy (xp1,120, + q1,190y)

Bio,2) = y* (Po,220y + qo,2y0y) ,

B(—1,3) = P—1,3y38z~
Definition 5. We define the degree of a vector fields as the maximum of the degree of its defining
polynomial.
In a same way, we define the degree of the homogeneous differential operators B, or of a Lie

bracket of B, which appear in the decomposition of X. We denote by deg(By,) (resp. deg([By]))
the degree of B,, (resp. [Bn]).

m
Lemma 5. Let X be a vector fields of the form X = Xy, + > X, then X admits the alphabet
r=2

AX) = ngA(XT) and B(X), the set of homogeneous differential operators of X, is given by
B(X) = @2B(Xr).
Proof. For all n = (n',n?) € A(X), we define the application :

p:A(X) =N

n = (n',n?) — n' +n?

For every r > 2, for all n € A(X,), we have p(n) = r — 1, so Vr,7’ , such that r # r’, we have
A(X,) N A(X,r) = 0 because p(A(X,)) # p(A(X,+)). Moreover, as Der(C?) = @ Der,(C?) and

r>1

B(X,) C Der,(C?) , then B(X,)NB(X,/) =0 if r # 1. O

12
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The elements of the alphabet A(X) are named letter.

2.2.2. Depth

As we have a one-to-one correspondence between (A*(X), conc) and (B*(X),0):
AY(X) — B*(X),
n=ny-..-np.—By=By,0..08, ,
the degree of [By,] gives a natural notion of depth for the words defined by:
Definition 6. We denote by p: A*(X) — N the mapping defined by:
p() = deg([Ba]) — 1.
Lemma 6. The mapping p is a morphism from (A*(X), conc) in (N, +).
Proof. We prove it by induction on the length of the words. Let nq,ns € A(X),
p(n1 - n2) = deg([Bn, Bn,]) — 1
= deg(By,) + deg(B,) —1—1

= p(n1) + p(n2).
Let n; € A(X) and n € A*(X), so:

p(ny-n) = deg([BnuBn]) -1
- deg(Bnl) + deg(Bn) -1-1

= p(n1) + p(n).

O
2.2.3. The projection Theorem and rewriting of a mould expansion
Let M(X) be a mould series, i.e. an expression of the form
MX)= Y M"By, (26)

neA*(X)
where M*® is an alternal mould ([14]), i.e. M(X) is primitive([29], p.17) and then a vector field.
In this case, using the projection theorem ([29], p.28), the mould series M(X) can be expressed in

the following form :

M) =30 S B (27)
r>1 neA*(X)
I(n)=r
where
[Bn] = [Bm-unr] = ['“[[Bnuan]aan]v ~-~]aBm~71]anr]- (28)
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We can reorganize this sum using the depth as follows:

M(X) =D My(X), (29)
a>1
where
My(X)= > M"Bn. (30)
ncA*(X)
p(n)=d

A useful consequence is that the equation M(X) = 0 is equivalent to M4(X) =0 for all d > 1.

2.2.4. Ezpression of the correction and criterion of linearisability
The main property of the correction is that it provides a useful and simple criterion of lineariz-

ability. Indeed, we have by definition of the correction (see [14], p.258) :
Lemma 7. A vector field X is linearizable if and only if Carr(X) = 0.

Using the above decomposition, we obtain an explicit criterion for linearizability writing

Carr(X) as :

Carr(X) = Z Z Carr®By, | = ZC’arrp(X).
p>1 | neA*(X) p>1
p(n)=p

Theorem 8. A vector fields X is linearizable if and only if Carr,(X) =0 Vp > 1.

In the following, we derive some properties of the quantities Carr,(X).

2.3. Correction of real polynomial Hamiltonian vector fields

2.3.1. General properties

An interesting property of the correction is that we just have to consider the even depth,

indeed:

Theorem 9. Let X be a real Hamiltonian vector fields as above. Its correction in odd depth is
zero, i.e.

Carreop11(X) =0, (31)
for all integer p.
This theorem is a consequence of the following lemma, :

Lemma 8. For a resonant word n, the related Lie bracket is on the form :

p(n)

[Bn] = (zy) 2 (Ppxzdy + Quny0y).

14
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Proof. For all resonant word n = n; - ... - n,, the related Lie bracket is :

[Bn] = 2> "y (Paz0y + Qny0y).

where nj = (n},n?). As n is resonant, we have :

wn)=wni) + ...+ wn,)
=i(Xn-3n) =0,

then Y"n; = Y n7 = a € N. We just have to remark that p(n) = p(n1) + ... + p(n,) =
1 2 _ — p(n)
Yonj + Y n3 = 2a, then a = B2, O

As a consequence, we can restrict our attention to the even components of the correction. For a

given integer p, terms in C'arry, can be decomposed with respect to the length of words. Precisely,

we have
Carry(X) = Carrp1(X) + -+ -+ Carrp p(X), (32)
where
Carrp;(X)= Y Carr™By, (33)
neA*(X)

p(n)=p,l(n)=j
forj=1,...,p.
The main point is that of course, this is a finite sum. Indeed, as each differential operator
entering in the definition are at least of depth one, we can not have more than a word of length p

as for all j € N*, n € A*(X) such that I(n) = j, we have p(n) > j.

Moreover, some of these terms are easily determined.

Lemma 9. Let p € N*, we have

Carrapop(X) = Carrgpop(Xa),
p
Ca?“?"gp’Q(X) = CGJT’I’QP’Q(XPJA) + Z C’(Jl”l“gp’g()(r7 )(—Q]D,TJFQ)7 (34)
r=2
Carrep1(X) = Carrey(Xopt1) = Bpp-

This Lemma has important implications on the following, as it gives the maximal degree of
the homogeneous vector fields X, entering in the computation of a given correction term. In

particular, for Carrg, we have no terms coming from the X, with r > 2p + 2.

The proof of Lemma 9 is based on the properties of the set of resonant words with respects to

length and depth.
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Proof. i) The first equality easily follows from the fact that an element of depth 2p and length 2p

is necessarily made of elements of depth 1 corresponding to operators in Xos.

ii) The second equality is a direct rewriting of the definition for a length 2 contribution to the
correction term of depth 2p. We denoted by W(X,.) the set of weights coming from the component
X, of X and given by :

WX,) = {(n, )yn € A(X,)}. (35)

The first term comes from the following decomposition lemma:

Lemma 10. For every r > 2, W(X,.) can be decomposed in the following way :
W(X,) =WHX,) UW™ (X,) UW°(X,),

where WT(X,.) is the set of positive weights coming from X,., W~ (X,.) = -W*(X,.) and W°(X)
is the set of the zero weight.

This decomposition shows the interaction between each homogeneous component X; interven-
ing in Carre, 2(X). In length 2, as any weight as its symmetric counterpart, we always have a

contribution of Xp;.

iii) The third equality follows directly from a computation:

Lemma 11. A component X,., r > 2, produces a resonant letter in A(X) if and only if r is odd.

r—1 7-—1)

In this case, the letter is unique and given by ng = ("5, 5

Proof. Let r > 2 be fixed. By Lemma 4 we know the set of letters produced by X,. The two
letters (—1,r) and (r, —1) are never resonant. For the other ones given by (k — 1,7 — k), one must
solve the equation of resonance

2% —r—1=0, (36)

for k =1,...,r. This equation has a unique solution given by

r+1
k =
=, (37
which is valid, as £ must be an integer, only when r is odd. O
This concludes the proof of Lemma 9. O
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2.8.2. Euxplicit computation and the fundamental Lemma

300 We now explicit the quantities Carr,(X) when X is a real Hamiltonian polynomial vector field.

Let X a polynomial vector field in C? of the form:

d
X = Xiin + Y (Pr(2, )02 + Qu(2,9)9,) (38)
r=2
where P, and @, are homogeneous polynomials of degree r.

Lemma 12. The complez vector field (38) corresponds to a real vector field if for allr =2,...,d,

305 we have

Py =djan i=0,...,r =1, j=r—i. (30)

The proof follows easily from the fact that = y and Q,.(z,y) = P.(z,y) which gives
Qr(x,y) = P.(y,x) for all r =2, ... d.

Real Hamiltonian systems satisfy moreover the following conditions:

si0 Lemma 13. The complex vector field (38) corresponds to a real Hamiltonian vector fields if

conditions (89) are satisfied and moreover if for all T =2,... d, we have

r—i+1 )
Piclr—i == Preii-1, 1= I...,m (40)

We give some examples of relations between the coefficients in X5 and X3 :

Example 2. For the vector field X5 defined above, we have :

— _1 ",
P10 = 9 DPo,1,
P-12 =q2,—1.

For the vector field X3, we have :

— _1 ",
P2,0 = 3 DPo,25
P11 = —DP1,1,
P-1,3 =q3,—1-

Under the two previous conditions on the coefficients we have:

Lemma 14 (Fundamental Lemma). Let X be a real Hamiltonian vector fields of the form X =

2r—1
W(x0y —y0y) + Y, (Pj(x,y)0r + Pj(x,y)0y) with T =1y, then :
j=r

. - r(r+1) 9 r 9

C r—1)(X) =Dr—1p-1+ E 5 Pk—1,r—k|" t ——D-1,r

arra(r—1)(X) = pr—1,—1 +1 r—k 1>2\pk 1r—k| , l\p 1]
k:{;?{+1

17
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Proof. The computation of the correction in depth 2(k — 1) requires to know which operators
appear in it and the alphabet. In this depth, there are just the homogeneous differential operators
from the polynomial P, and the resonant letter from the polynomial Po,_1.

The alphabet given by P, is A(X,) = {(r,-1),(-1,r),(k—1,r — k) with k=1, ...,r}.

We also have the homogeneous differential operators :

B_1,1) =P-1,Y 0w, Br—1) = @r.—12" 0y, Bt—1,r—1) = "y F (Ph—1,r— k205 + Qh—1,r—1y0y)

with k € {1,...,r}.

Here the resonant words are :

So the Lie brackets associated, using the real and Hamiltonian conditions, are:

rir+1)2k—r—1 .
[B—1,r—k)> Bir—kk—1)] = " z(k e )|pk717r7k|2($y) Y20y — y0,)

= —[Br—k,k—1)s Bh—1,r—k)]s

[B(—1,1): Bir.—1)] = —r|p—1,+*(zy)" " (20, — ydy) = —[B(r,—1), B(—1,1)-
The mould of the correction in this resonant word are:

(k—1,r—k)-(r—k,k—1) _ ;
Carr %y _1
Carr(—1m)-(r=1) — _~*
r+1

The only resonant letter in Poi 1 is p,—1,,—1 with the operator B, _1,_1) = pr—1,-1 (xy) (20, —
y0y). Using the alternality of the mould Carr® and the skew-symmetric of the Lie brackets, we

get the formula :

, : r(r+1) 9 T 9

C N X)=pr_1,4-1+ ——=Pk—1.r—k|" + 1

arra(z—1)(X) = pro1p-1 +1 E r—k 1>2\pk 1r—k| , 1\17 1]
k:[%]ﬂ

2.3.3. Ezxamples of computations

We give examples of computations of the correction.

18



The quadratic case. We consider the real Hamiltonian vector field :
X = Xyn + X2

We remind that the alphabet is given by A(Xs) = {(1,0),(0,1),(2,—1),(—1,2)} (see Section

2.1.3) and is non resonant.
320 The first none trivial correction term is then in depth 2.

The correction in depth 2 is given by:

Carre(X) = Carrg 2(X)
= Z Carr™ By

neA*(X)
p(n)=2
w(n)=0

1 , ,
—2 (CW(LO) O B 0).0y + Carr@D @O B o 1 0o

+OCL7“’I"(2’71)'(71’2)3[(27_1),(_1)2)] + CCL’I“T’(i1’2).(2"71)3[(_1)2).(27_1)]> .

2>_

By the Fundamental Lemma, we finally have :

. 2
CCLT‘TQ(X> Ex (6|p1’0 2 + §|p,1,2
The cubic case. We consider the real Hamiltonian vector field :

X = Xpin + Xo + X3

with X5 = (p1,02%+po12y+p—1,2y%)0: + (g2, 122+ qo12y+q1,0)9y and X5 = (pe,oz®+pl, 1oy +
po.22y? + p-1,3Y) 00 + (g3,-12° + q2,07%y + @113y + 0,29°) 9.

As above, the first none trivial correction is in depth 2 :
Carre(X) = Carre1(X3) + Carra 2(X2).

The only operator which is of depth 2 from X3 is given by its resonant letter (1, 1) and the operator

B11 = zy(p1,120; + q1,1y90y. So, using the previous result on the quadratic case, we have :
. 9 2 2
Carry(X) =p11+i | 6[piol” + g\p—1,2| .
In depth 4, we have :

C(Z?“T‘4(X) = C’a7"7"472(X3, Xg) -+ CQTT473(X3,X2,X2) + +CCLT?"474(X2,X2,X2, X2)
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The different Carr; ;(X) are given by :
: 2, 3 2
Carry 2(X3, X3) = i(12[p2,0|° + Z|p71,3| )s
, _ 26 _ _
Carry 3(Xs3, X2, Xp) = —i(120Im(p2,0p7 o) + gfm(P—L:sP—l,zpl,o) + 40Im(p2,0p—1,2P1,0))
. 8
CQTT474(X2, XQ, XQ, XQ) =1 (—144p170|4 —+ 12\p1,0|2|p,1’2\2 — §|p,1’2‘4 —+ 40R6(p172p8,1)> .
The quartic case. We consider the real Hamiltonian vector field :

X = Xpin + Xo + X3+ Xy

with X5 and X3 as above and Xy = (p3 02* +po123y+p1,22%y% +po 32y +p-1,4y*) 0 + (qs, 12 +
43,07%y + q2,17%Y* + q122Y> + qo,3y*) D,y
The correction in depth 2 is the same as the cubic case.
In depth 4, we have :
Carry(X) = Carry o(Xa, Xo) + Carry 2(Xs, X3)

+ C(I’I"T‘473(X3, Xg, XQ) + OCLT’I"474(X2, Xg, XQ, )(2)7
where Carry 2(Xy, Xo) is given by :
Carryo(Xa, Xo) =i (12Re(p2,191,0) + 8Re(ps op—1,2)) -

Maple program. For the interested readers, we can send some Maple program to compute the

correction of a polynomial vector fields. The program can be found in [25].

3. The isochronous center affine variety

In this part, we prove that the set of isochronous center is a rational affine variety which
is invariant under a non trivial C* action. This affine variety is moreover explicitly described.
We also give estimates on the growth of the degree of each rational polynomials entering in this

description as well as the growth of the rational coefficients.

3.1. Affine variety of isochronous center

We consider real vector fields written in complex form as X = Xj;,, + P(z,y)0; + Q(z,y)0y

where P and @ are polynomials with coefficients in C such that P(z,y) = Q(y,z). We denote by

N(d) the number of independent coefficients defining P and by p any element of this set. By the

reality condition, the coefficient of () can be deduced from those of P. We then identify the set of
d—1)(d+4

complex polynomials of a given degree d with CV(9) | where N (d) is given by N(d) = %

We denote by %, the set of polynomial perturbations (P,Q) of degree d such that X is

linearizable. The set .2 can be seen as a subset of CV(@) . Precisely, we have :
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Theorem 10 (Geometric structure). For all d > 2, the set £y of isochronous centers is an affine

variety over Q in CN(4),
The proof is based on a precise description of the algebraic form of the correction. For all

n € A*(X), let us denote by P(n) and Q(n) the coefficients given by Lemma 8 and satisfying

p(n)

[Bu] = (zy) = (P(n)20; + Q(n)yd,).

We have :

Theorem 11 (Algebraic structure). For all p € N* the correction term Carrq,(X) has the form

Carrap(X) = (2y)” | Cazy (p)ad. + Cay (P)ydy| (41)
where
2p 1
Cazp(p) = Z ECGQp,i(p)v (42)
i=1
with
Cagpi(p) == Z Carr™P(n), i=1,...,2p. (43)
neA*(X)

p(n)=2p, l(n)=i
The quantities Cagp;(p), @ = 1,...,2p, are explicit polynomials of degree i in the coefficients
of P with coefficients in Q if i is even and iQ otherwise. Moreover, these polynomials can be

computed algorithmically using recursive formula.

The proof of this theorem is a consequence of two results. First, nested Lie brackets have a

very special shapes which can be easily computed. Precisely, we have :

Lemma 15. For all n € A*(X), the coefficients P(n) and Q(n) are polynomials in Z[CN(4)] of
degree [(n) and defined recursively on the length of n by

P(nm) = (In|" —n')p,P(n)+ | n|? ¢,P(n) — n’p,Q(n),
Q(nn) = (In[*-n?)g;Qn)+ [ n|' p,Q(n) —n'g,P(n).
where for n=mny - ... - n, € A*(X), we let |nJ! =nl + ... +nd, j = 1,2 with n; = (n},n?).

(R K2

Second, the correction mould can also be computed by a recursive formula from which we

deduce :

Lemma 16. For all n € A*(X), the mould Carr™ belongs to Q if I(n) is odd and iQ if I(n)is

even.

The proof of Theorem 11 easily follows.
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3.1.1. Proof of Theorem 10
Using Theorem 11 and the characterization of isochronous centers given by Theorem 8, the set

L4 is defined by the zero set of an infinite family of polynomials over CN(4) given by
Lq= {P e CVD Cayy(X) =0, p > 1} . (45)

We define the ascending chain of ideals Ij, generated by (Cas(p),...,Cask(p)) in C[p]. By the
Hilbert Basis Theorem (see [4], Theorem 4, p.77), there exists an M(d) € N* such that Iy =
Inge1 = ... We denote by Z; the resulting ideal. As a consequence, the set £; can be obtained

as (see [4], Definition 8,p.81)
Lo=V(I)) = {p cCND | f(p)=0forall fe zd} , (46)
and corresponds to the affine variety (see [4], Proposition 9 p.81) defined by
La=V(fi, . Fua) = {p eCVD | fi(p)=0foralli=1,.. .7s(d)}, (47)

where the finite family of polynomials f;, i = 1,...,s(d) is a generating set of Z;. As the polyno-

mials defining this variety have coefficients in Q or ¢Q this concludes the proof.

Remark 2. Theorem 10 together with Theorem 11 gives explicit informations on the degree as
well as on the growth of the rational coefficients entering in the definition of the affine variety. A
natural question is up to which extend these informations can be used to provide a natural upper
bound on the number of generators for the ideal generating Ly thanks to a constructive version of

the Hilbert basis theorem. This will be explored in another work.

3.2. C*-invariance

The resonant, character of the correction has an interesting consequence on the rational alge-

braic variety of isochronous center. Indeed, let us consider the following action of C* :

Definition 7. Let A € C*, we denote by T\ the map

Ty gN@D o gN @

Pe = )\w(.)po
where o is an arbitrary letter.

We extend this action for all monomials p,, = p7*...pP", with n is a word n; - ... - n,., we have:

Tx(pa) = Tr(pT"--Pi"),

_ )\w(nl)+...+w(nr)pn

= \wmp
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We denoted by [Bn| = [Bn,....n,.] = (my)w(P(n)xﬁm + Q(n)yd,) where, as we have just

r

shown, P(n) and Q(n) are polynomial in the coefficient of B,,, ..., By,

lemma which show the C*-invariance:

Lemma 17. For all resonant word n, we have :

T\(P(n)) = P(n) and TA\(Q(n)) = Q(n).
Proof. By definition of a resonant word, we have w(n) = 0. So :

T (pn) = )‘w(n)pn = /\Opn = Pn-

Finally we can generalise this lemma in the following corollary :

We have the following

Corollary 2. For all A € C*, the algebraic variety £, of the isochronous centers is invariant

under the action of T.

Proof. To prove this corollary we just have to remind that only the resonant word contribute to

the linearisability. We can conclude by the above lemma.

4. Proof of the main results

4.1. Proof of Theorem 1

O

Let X be a real Hamiltonian vector field of even degree 2n of the form :

2n
X = Xiin + Y_X,.
r=2

For each X,., we can associate its depth as follows :

X, Depth

Xo 1

X3 2

X3 3

X2n71 2n — 2
X2n 2n —1

By Theorem 7, we are only interested by the even depth. As a consequence, we look for all possible

combinations of arbitrary length which give rise under Lie bracket to an even depth vector field.

In the following, we denote by [Xj,, ..., Xk, | the set of operators that one obtain by nested Lie

brackets of homogeneous differential operators B,,, coming from Xy, ¢ = 1,...,r. As an example,

we have :
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X, and [X,, X,/] Depth
X 2
[X27X2} 2

X5

(X4, X5]
[X3, X3]
[X3, X2, Xo]

L~ S NN

X7

Xe, Xo]

X5, X3]

X4, X4

X5, X, Xo)

X4, X3, Xo)

Xy, Xo, Xo, X5]

X3, Xo, X0, X5, X5]
Xa, Xo, Xo, Xa, Xo, Xo]

(o> B I« E > N« N« N« N« I @ )

[
[
[
[
[
[
[
[

The correction in depth 2 is given by :
Carry(X) = Carry 1(X3) + Carrg 2(X2),

As the depth is a morphism we have the contribution of the Lie bracket of X5, we also have the

contribution of the resonant letter of X3. By the Fundamental Lemma, the correction is given by

. 2
Carra(X) =p1a+1i <6|p1,0|2 + 3|p—1,2|> .
By the linearisation criterion, we must have Carrs(X) = 0. This implies that

Re(pi1) = 0,

(48)
—Im(pl,l )

6[p10f* + 5[p-12].

As X is real and Hamiltonian, the first equation is always satisfied. The second one has only a
non trivial solution if and only if Im(p11) < 0. The situation when Im(pi 1) > 0 leads to two
distinct cases. When I'm(p; 1) = 0, the Birkhoff sphere reduce to 0 and we obtain Xs = 0. When

Im(p1,1) > 0, the equation can not be satisfied and the vector field is then nonisochronous.

Assume that p;; = 0 then X5 = 0 and we are reduce to the case
X = Xpin + Xg+ -+ X, (49)

As p11 = 0, the first non zero term of the correction is Carry(X). By the fundamental Lemma,

the term Carry(X) has exactly the same algebraic structure than the preceding Carra(X) = 0
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case. The role of X5 is played by X3 and the role of the resonant term of X3 is played by the
resonant term of X5. Here again, we recover the same dichotomy between the case Im(p22) =0
and Im(pz2) > 0. In the first case, we obtain that X3 = 0 and we are leaded to the same sit-
uation as before. Otherwise if Im(ps2) > 0 the term Carry(X) can not be zero and we have a

nonisochronous center.

The preceding discussion is representative of the general strategy of proof. Let us assume that
pj; = 0for j =1,...,7 — 1. Then, we prove by induction that Xy = --- = X,_; = 0. In order to

finish the proof, two cases must be discussed depending the value of r.

Case 1 : 7 <n— 1. The component Xo,; is non trivial due to the condition Im(p, ) > 0.

By the Fundamental Lemma and the linearisability criterion, we must have

. - r(r+1) 2 r 2
r X)= rr T 1 a0 —1,r— —— |P-1,r -
Carryr(X) = pryr +i . [;;]_H (r—k—+1)? lpr—1,r—&|” + 1 Ip—1,r| 0 (50)
=17z

As Im(p,) > 0, this equality can not be satisfied and X is nonisochronous.

Case 2 : r =n — 1. In this case, we are reduced to an homogeneous perturbation of degree
2n and the correction is given by
T
r(r+1 r
Carrap—2(X) = Z ())2|pk1,rk2 + m|}7—1,r|2 =0

— 1
(1 (r—k+

As X5, is nontrivial, this equation can not be satisfied and X is nonisochrnous.

This concludes the proof of the Theorem.

4.2. Proof of Theorem 2

The proof follows the lines of those of Theorem 1. We have to distinguish two cases : k is even

or odd.

Case 1: k is even. The vector field X, does not contain resonant terms. As a consequence,
its first contribution to the correction appears in depth 2(k — 1) corresponding to resonant Lie
brackets of homogeneous differential operators in Xy of length two. As | < k — 1, this implies
that 21 — 1 < 21 < 2(k —1). The even component between X} and Xs; will come into play in the
correction only with a greater depth as 2(k — 1) by Lie brackets of length at least two. In the
same way, for odd components, the resonant term will intervene in the correction with a strictly

smaller depth in length one and the other terms in depth greater than 2(k — 1) by a Lie brackets
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of length at least two.

As a consequence, the correction term coming from an even k is given by :

T

Carryp—1)(X) =i Z

r(r+1 T
L P S )
k=["t]+1

(r—k+1)
In order to satisfy the linearisability criterion, we must have Carryx—1) = 0. If the component
X} is non trivial then the system is already non isochronous. Otherwise, we have X = 0 and we

are leaded to the same problem but with an odd component.

Case 2 : k is odd. In this case the vector field X} contain a resonant homogeneous operator.

Let us write kK = 2m + 1 then B,, ,, is of depth 2m and weight zero. We have
Carrg_1(X) = Carrgm(X) = Bpm. (52)

By the linearisability criterion, Carry_1(X) = 0 and the resonant term B,, ,,, in X}, is zero. The
contribution of X, in length 2 follows the same argument as for the even case and we deduce that

finally X} = 0.

As a consequence, we can prove by induction that in order to be linearisable the components
X4, ..., X9 must be zero. But, by assumption, we have that X5; is non trivial. As a consequence,

the vector field X is necessarily nonisochronous.

4.8. Proof of Theorem 3

The strategy of proof follows those of Theorem 2. The main observation is that there exists
no interactions between each family of vector fields {Xg,..., Xo} and { X, ,..., Xo,—1)}, n =

1,...,m. Indeed, let us first analyse the depth of all these objects. We have :
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X, Depth

X k—1
Xkt1 k
Xor_1 20— 2
Xy 20 —1
0 0
Xy 41 -1

Xgi—2 81 —3

Cm — 1

X2(cm71) 2(C7n - 1) -1

Following the same lines as for Theorem 2, we see that the arguments based on the contributions
of a given component belonging to {Xk,..., X9} are valid. In other words, we easily proved
that in order to be linearisable, then one must have X = --- = X5;_o = 0. The last argument
concerning Xo; is also satisfies because the first contribution of X5; to the correction is of length
two and depth 4/ —2 which is not disturbed by terms of the remaining family {X.,,..., Xo(, -1)}

n=1,...,m as the minimal contribution of these terms to the correction is in depth 47 — 1.

As a consequence, a vector fields of this type will be linearisable if X} =--- = Xg, = 0.

By the same argument, we see that there exists no interaction between the family {X,,,...

..oy Xo(c,—1y} and the remaining one {X,,..., X5, -1}, n = 2,...,m. We deduce that a lin-

n? "

earisable vector field of this type must satisfy X., =--- = Xy, _1).

By induction, we easily deduce that a vector field of this type is linearisable if and only if all
the components vanish. As by assumption we are considering a non trivial vector field, we are

leaded to a contradiction and the vector field is necessarily nonisochronous.

5. Conclusion and perspectives

5.1. Toward a complete proof of the Jarque-Villadelprat conjecture

Our main results give a very strong support to the Jarque-Villadelprat conjecture. The re-

maining cases always deal with the role of the resonant term in the deformation of the Birkhoff’s
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spheres. However, the phenomenon which is working for a quartic perturbation, which was pre-
cisely studied by Jarque and Villadelprat using geometrical methods, must applies in the same way
for arbitrary degrees. Indeed, as we have seem in our derivation of the main results, the algebraic
structure of the correction during the cancellation process does not change and can be closely
investigated. We have then some directions in order to solve completely the Jarque-Villadelprat

conjecture :
e Can we prove using an extension of our method the quartic case ?

e Can we extend the geometrical method of Jarque-Villadelprat in the cases which are let open

by our work ?
e Can we prove the remaining cases using other methods ?

We believe that a better understanding of the algebraic structure of the correction will be of

importance in order to go further.

5.2. Effective Hilbert basis and the isochronous centers affine variety

A second aspect of our work is the explicit and algorithmic description of the isochronous
center affine variety. As already said, we have informations about the growth of the degree and
the coefficients entering in the description of this variety. A natural question is then to look for
effective version of the Hilbert basis theorem in order to get some informations about the minimal
number of generators of the ideal. The isochronous centers seem to be more tractable than the
usual center. However, it is clear that any advance in this direction will have consequences on
the local 16th Hilbert problem. Indeed, the same kind of combinatoric and tools can be used to

obtain analogous information for centers of polynomial vector fields (see [8]).

5.8. Isochronicity for complex Hamiltonian systems

In [21], the authors study isochronicity of complex Hamiltonian systems when the linear part
has for spectrum (1, —1). Our method and results extend naturally to this case and give an explicit
and algorithmic description of the isochronous centers affine variety. This will be the subject of a
forthcoming work.

Appendix A. Notations
e A(X) alphabet associated to a vector field X;

o A*(X) set of words given by the alphabet A(X);

e 3(X) set of homogeneous differential operator associated to a vector fields X;
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Carr(X) the correction associated to a vector fields X;

Carr® the mould of the correction;

n element of A(X);

n element of A*(X);

B,, element of B(X);

B, element of (B(X),o);

w the weight application;

p the depth application;

ping the application which inverts the two components of a letter;

ret the application on word which inverts the order of the letters;

Appendix B. Properties of the Correction’s mould

The proofs of Lemma 1 and 2 use the definition of the mould of the correction using the
variance formula (12) and also an alternative one based on the knowledge of the mould of a given

prenormal form that we remind in the next Section.

Appendiz B.1. An alternative definition of the correction

We first remind the composition of two moulds M*® and N*® (see [5], Definition II1.44 p.347):

(MeoN = 3" 37 Mlerllnl e Nt s N (B.1)
1<k<(n)w1 Wi
*
where 3~ means the sum on all the decomposition of the word n in k words. Moreover, || w; ||
Wie.. Wk
is a letter obtained by the word w; summing all its letter if the alphabet is provided with a law of

semi-group.

The neutral element for the composition of moulds is denoted by I°® and is defined by I™ =1

if {(n) =1 and I™ =0 for ¢(n) # 1.

To prove the different results about the correction, we use another equivalent definition of the
mould of the correction related to the choice of a given prenormal form (see [14], p.267 Lemma
3.2) an

I* — Carr™ = lim ((I®*—M*®)°")" (B.2)

n——+oo
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where n =ny - ... -n, and M* is a mould associated to a given prenormal form.

In the following, we often use the mould Tram® associated to the trimmed prenormal form

(see [13], [5] and [24]) and defined by

Tram® =0, Tram™ = (Sam®)'™, (B.3)
where Sam?® is a mould defined as follows: Let P, be the family of Poincaré functions P =
{P,}ren» defined by G. Morin in (]24],§.7.9.1 p.114-115) by

Pi(2) 1 ifz=0, (B.4)
1(2) = .
0 otherwise.

and for r > 2 by

1 " wtk(r— k) — zgp1 — o — 20 .
—1)" k f *\T
Zl"'ZTI;( ) (k—D!(r—k+1)! ) if ze(CY),
Pz, ) = (=n~! 1 . (B.5)
’ ’ f X2
(i—1)!(7‘—i)!21...zi_1zi+1...27.’ ! ZGS’
0 otherwise,
where S,.; = (C*)i=1 x {0} x (C*)" .
The mould Sam?® is defined by (see [24], Lemma 7.9.9., p.115):
1 if n=20,
Sam® = (B.6)
P.(w(ni),...,w(n,)) if n=ny...n., r>1
Moreover we have :
™ Carr™® = ((I. _ M.)O r)n _ ((I. _ M.)o r+k)n (B?)

where k£ € N.

Now, we can prove the Lemma 1 and Lemma 2.

Appendiz B.2. Proof of Lemma 1

1) Using the formula (B.2) for the correction via a given prenormal form mould M*®, we obtain

for the word n =0 :

1" — Carr® = ((1%) — M*)*°)°

10 MO,

as I" = M? = 0, we deduce that Carr? = 0.
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2) Let n = n; - ... - n, be a non resonant word of length r, i.e. w(n) # 0, then we have :
" — Carr® = ((I®* — Sam®)° )", (B.8)
If n is a letter i.e £(n) = 1, such that w(n) # 0 then

m _— Carr® = ((I' —M')o l)n
— (I. _ MQ)HnH(Io _ Mo)n’

where MInll = p/m — 0 and 1™ = Inl = 1 hence 1 — Carr™ = 1 and Carr® = 0.

If the length of n is greater than 2, the variance formula gives:

™ — Carr™ = ((I* — M®*)° ™)™
—Carr™ = ((I* = M®*)° "+1)"
= ((I* = M*) o (I* = M*)° )"
= ((I* = M®) o (I* = Carr®))®

> (= p)llendbderlicre — Capryer (10 = Carr®)™*.

1<k<r wi-...wr=n
By induction, we assume the result is true in length » — 1. As n is non resonant, for any given
decomposition in k£ sub-words n = w; ... wy, there exists at least one of these sub-words which

is non resonant, let says w; of length {(w;) < I(n) such that IV —Carr*s = 0 as long as l(w;) > 2.

If this sub-word w; is a letter, then the decomposition is made of at least two terms, i.e.
k > 2, and all the remaining sub-words are either resonant or non resonant. and the quantity
(1* — Me)llorll-ecllwill-llwell reduces to —M®)Iwill-ws-lwel " However, the mould M* is zero
over non resonant words as it corresponds to a prenormal form, so that —M')”w1 oo llwkll =

and Carr®™ = 0.

3) We prove this result by induction on the length. If /(n) = 2, n = ny - na. If n; is resonant,

as n is resonant, no is also resonant. So we have :

Carr® = —(I”“” — C’arr”“”)([“ — Carr™)

(B.10)
—(ImlFlin2ll — Cgpplmal-Inally(7m — Carpmn)(1m2 — Carrn2).

As [0l — Carrlinll = 1 — 1 =0 and I — Carr™ = 0, we have Carr™ = 0 if £(n) = 2.

Now we assume that the result is satisfied for all words of length < r — 1, » > 3. We con-

sider n = ny -...-n, such that w(n) = 0, [(n) = r > 3 and at least one letter, let says n; is resonant.

31



570

580

We have to study the following equality,
—Carr® = [(I*—M*)°"]",
= > S (I = Me)lwllllorli(7e — Carr®)wr. (I® — Carr®)wr

1<k<r wi-...wr=n

(B.11)
There exists an integer [ such that n; appears in the decomposition of one w; for 1 <1 < k.
Either {(w;) = 1, so w; = n; and I*" — Carr*t =1—1 =0, or {(w;) > 2, so by the induction

hypothesis Carr®t = 0 and I** = 0 by definition. As a consequence, we obtain that Carr™ = 0.

Appendiz B.3. Proof of Lemma 2
Appendiz B.3.1. The mould Carr® in length 1

Let n a letter such that w(n) = 0. By the above definition,
—Carr®=1" - M",

so Carr™ = M™, where M* is a prenormal form. We can take for example the mould Tram® (see

[5]), which is the mould of the Poincaré-Dulac normal form. So Carr™ = Tram™ = 1.

Appendiz B.3.2. The mould Carr® in length 2
Lemma 18. Ifn € A(X)* is such that I(n) = 2, w(n) = 0, we have the following possibilities:
1. If all the letters have zero weight, i.e. w(n;) =0 for all i =1,2,3, then Carr™ = 0.

2. If all the letters have a non zero weight then Carr™ = 1/w(ny).

Proof. If w(niny) = 0, we have w(n;) = —w(n2) as w is a morphism. Using the variance formula,
we have :

w(ny)Carr™ ™ 4+ Carr™ "2 = Carr™ Carr™. (B.12)

As w(n;) # 0, we have Carr™ = Carr™ = 0 so that

w(ny)Carr™ ™ 4 Carr™*m = (. (B.13)
We then obtain
w(ng)Carr™ ™ = —Carr™*" = 1. (B.14)
As a consequence, we have
-1
Carr™™? = . (B.15)
w(ng)

We can also prove this result using the alternative definition :
™ — Carr™™ = — M* 02)"1'”2

((r°
((1* = M%) o (I* = Carr*))™ "2
=

I° — M') [l "2”( — Carr®)™ 24

+

(I* - M')””1|| H"ZH( — Carr®)™ (I®* — Carr®)™
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As above we will use the mould Tram® in length 2, Carr™ ™2 = Tram™ ™2 = RO

w(ny) = —w(ng), we finally have :

1

w(ng)

Carr™™ =

As we can see the result differs by a multiplication by —1. It is due to the fact in [13] and [14],
the nested Lie brackets are taken in this form [By,,.. .n,.] = [Bn., [Bn,_1;|---[Bnys Bn,|..]] whereas
in [7] and [5] we consider [B,,....n,] = [---[Bnys Bnals -], Bn,_1], Bn,]. And we have the relation:

T

[Bn, [Bn, 15 [-+:[Bny» Bny ]|l

(71)T+1 [Bnl ) an]a ]7 Bnr—l]’ Bnr]
585 ]

Appendiz B.3.3. The mould Carr® in length 3

Using the variance formula we obtain for a word n = ninsng of length 3 the following equality:

W(Tll)CQTT‘nl'nz.nB 4 Oar,’n(n1+n2).n3 = Carr™ ™ Carr™ + Carr™ Carrn2ms. (B16)
One can prove the following lemma:

soo Lemma 19. Ifn € A(X)* is such that [(n) = 3, w(n) = 0, we have the following possibilities:

1. If all the letters have zero weight, i.e. w(n;) =0 for all i =1,2,3, then Carr™ = 0.

2. If there exists a letter a € {n1,n2,n3} such that w(a) =0 and w(b) # 0 for b € {n1,n2,n3}\
{a}, then Carr™ = 0.

3. If all the letters have a non zero weight, i.e. w(n;) #0, i =1,2,3, then

ni-nen3g __ 1
Carr = oD@ 1w (B.17)

ses  Proof. 1) This case follows from Lemma ?77.
2) Let us take for example a = ngy such that w(ng) = 0, then w(ning) = 0 and w(ng) = —w(nq).
As a consequence, using (B.16) and the fact that Carr™ = 1, we obtain
w(ng)Carr™ ™2 s 4 Carr(Mm¥m2)ns — Carrmms 4 Carr™ Carr™ ™, (B.18)

Let us assume that n; is such that w(ny) # 0, then Carr™ = 0 and the previous equality reduces

s00 tO

w(ny)Carr™ ™2 s = Carr™ ™ — Capr(™m+n2)mns, (B.19)

Using the expression of the mould Carr® in length 2, we have
Carr™™ = —1/w(ny), Carr™M¥™™ms = _1/u(ny +ny) = —1/w(ny). (B.20)
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We deduce easily that
w(ny)Carr™m2ms =0, (B.21)

and as a consequence Carr™ ™2™ = ().

The same computations prove that Carr™ = 0 if w(nz) = 0 and w(ny) # 0.

The remaining case, i.e. w(n;) = 0 and w(ng) # 0, can be deduced from the alternality of the

mould Carr® which induces the following equality (see [5],§.4.1 p.331):
Carr™™2"s 4+ Carr™?"™™ 4 Carr™™™ = (. (B.22)

The second and third terms are zero thanks to our previous computations. As a consequence, we

obtain Carr™™" =0 if w(n) =0, w(ni) = 0 and w(ng) # 0.

3) From now on, let us assume that all the w(n;) are non zero. Then using formula (B.16) and

the fact that Carr™ = 0 and Carr™ = 0, we obtain
w(ny)Carr™ ™23 4 Capr(mtn2)ns — g, (B.23)

Using the expression of Carr(®1+72)"s we deduce that
1
Carr™m2ms — . B.24
) (@) + (na) (20

Asin length 2, we can give an alternative proof using the mould Tram® to compute the correction

Jrimens _ Cgppmin2ns = ((I' — Tram?®)° 3)n1-n2-n3
= ((I. - T?“am.)o 4)n1'n2.n3 (B 25)
= (I* —Tram®)o (I* — Carr®)"rm2ns .
= —Tramnim2ms,
nynang __ nina Mg 1
So Carr™ ™2 = Tram™ 2" = ECRICICIEECIE O
Appendix C. Technical results
Appendiz C.1. Proof of Theorem 11
For all i =1,...,2p, we have using the Theorem of projection
1 n
Carrep(X) = T Z Carr™[By],
neA*(X)
p(n)=2p, l(n)=i
n p(n)
=G > Carey) T Pwad Q)

neA*(X)
p(n)=2p,l(n)=i
1 n
= E(xy)p Z Carr™(P(n)zd, + Q(n)yd,).
: neA*(X)
p(n)=2p, L(n)=i
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By definition of Cagy, ;(X) we obtain
1 -
Carra, (X) = = (xy)” {cagp,i(X)xam + cazp,i(X)yay} . (C.2)

Appendiz C.2. Proof of Lemma 15

Let B, = Bpt n2) = a (Pn0z 4 qny0y) and By, = B(n1 2y = amym (Pmx0z + gmy0y)-
Then, the Lie brackets of B,, and B,, is :

1 12 2
[Bnm} = [BnaBm] =z" tm yn m (Pn,mxam + Qn,myay)a

1 2
= gl ynml® (P 20y + Qumydy)

where P, , and @, are polynomials in the coefficients of B,, and B,,, precisely :

Pn,m = (ml - nl)pnpm + m2anm - n2an'ma
Qn,m = (m2 - nQ)Qan + mlanm - n1anm-

We easily prove by induction that all the Lie bracket in any length are of the above form.
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