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This paper proposes a vision-integrated navigation system to guide an aircraft on the final

glide path. It makes use of onboard vision systems which track runway features and estimate a

6D aircraft pose with respect to a runway to land. The proposed vision-integrated navigation

system will allow an aircraft to continue the final approach procedure by maintaining the

navigation precision in case of possible degradation or failure of ILS or GNSS/SBAS sensors.

In order to handle a non-negligible delay of such vision-based measurements due to the image

processing time, an error-sate Kalman filter (ESKF) framework incooporating time-delayed

measurements is established. The proposed delayed-measurement ESKF framework uses a

fact that camera image acquisitions are triggered and notified without delay, and performs

the back-propagation of the estimated state forward in time to prepare in advance for the

future correction step when the corresponding measurement becomes available. The vision-

integrated navigation system based on this framework was developed and its functionality is

validated in simulations. Its estimation performance will be flight-evaluated with two different

vision systems onboard a fixed-wing UAV experimental platform, and flight evaluation results

will be presented in the final paper.

I. Introduction
Despite an overall decrease tendency in both the number of fatal accidents and fatalities in commercial aircraft

operations, 452 accidents still happened in the last five years (2012-2016) resulting more than 2000 onboard fatalities[1].

According to different statistical survey reports on commercial aircraft accidents, nearly half of the fatal accidents

happened during the final approach/landing flight phases. Therefore, enhancing airplane flight safety and autonomy

level during such critical operation phases is an important key to the accident rate reduction, which is a common goal

of the world civil aviation.

In order to contribute towards this global goal of the aircraft accident rate reduction, a Europe-Japan collaborative

research project called VISION∗ (Validation of Integrated Safety-enhanced Intelligent flight cONtrol) has been launched

in 2016. This 3-year VISION project has objectives of investigating, developing, and above all validating advanced

aircraft Guidance, Navigation and Control (GN&C) solutions that can automatically detect and overcome some critical

flight situations. VISION project tackles two different types of fault recovery scenarios focusing on the final approach

phase; i) Flight control performance recovery from actuator or sensor failures (e.g. control jamming or authority

deterioration, loss of airspeed information), and ii) Navigation and guidance performance recovery from sensor failures

(e.g. degradation of GPS/SBAS or ILS) or flight path obstruction. For the first set of scenarios, different Fault

Detection and Diagnosis/Fault Tolerant Control(FDD/FTC) approaches are proposed and flight-evaluated on a full-

scale manned aircraft[2][3]. For the second set of scenarios, onboard vision-aided navigation and guidance approaches

are developped and flight-validated on a fixed-wing UAV (Unmanned Aerial Vehicle). These new GN&C solutions

will improve the robustness and self-adaptability of current aircraft flight systems, and hence will contribute to ease
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the pilot’s task and stress in handling such anomalies. This paper presents the preliminary outcomes of the work on

the vision-integrated navigation system in case of possible sensor failures, performed for the second scenario set in the

VISION project.

Recent large commercial airplanes are equipped with onboard cameras, which are used to augment pilot’s situational

awareness for obstacle clearance during taxiing. For example, A380 has fin-tip and belly cameras[4]. However, their

usage is still very limited to cockpit display for pilot aide. The feasibility of using onboard vision as a new navigation

sensor for making an autonomous airport approach has been studied in some past projects. In the EU-funded PEGASE

project (2006-2009) coordinated by Dassault Aviation, the position- and image-based visual servoing algorithms for

final approach guidance were proposed[5][6]. The French government-funded Visioland project (2013-2017) proposed

an observer to estimate the aircraft position relative to the runway from image features[7]. The both projects benefitted

from the participation of the aircraft manufacturers to evaluate the proposed algorithms in high-fidelity flight simulation

framework with synthetic images. But no flight validation has been performed on a real aircraft. There are also many

related work on vision-based autonomous landing of a fixed-wing UAVs by runway detection[8][9]. Most of them

show validation results in simulation environment (often using FlightGear for image generation), and only few actually

flight tested the navigation and guidance approaches in a closed-loop manner[10][11].

Many of the above listed work addresse monocular vision-only navigaiton approaches, and do not cope with the

integration with other navigation sensors (INS, GPS or ILS). The onboard vision-aided inertial navigation has been one

of the most intensively studied research topics in the UAV and robotics research community for decades. One can find

in literature a wide variety of vision-based localization techniques by geo-referenced landmark detection[12], visual

odometry and visual SLAM (Simultaneous Localization and Mapping) algorithms[13][14] applied to UAV navigation

in GPS-denied urban or indoor environment. Unlike these UAV or robotics applications, the civil aviation application

requires for the navigation system to provide an integrity monitoring function for possible sensor failure detection and

exclusion. Our ultimate goal for this work of the VISION project is to provide a flight-validated vision-integration

navigation system for the aircraft 6D pose estimation by multi-sensor fusion, augmented with an Aircraft Autonomous

Integrity Monitoring (AAIM) function based on Multiple Solution Separation (MSS) method[15].

As the preliminary outcomes from this work, this paper proposes the state estimator design by establishiing an

Error-State Kalman Filter (ESKF) framework[17][18] incorporating time-delayed measurements so that it can handle

an inevitable non-negligible time-delay of the vision-based measurements due to the image processing time. The

conventional way of handling the time-delayed measurements is to stock all the histories of the sensor measurements

(including IMU) and the estimator outputs for a certain time horizon and re-runs the KF process from the time of

the measurement to the current time as if the measurements arrived without delay. The proposed framework in this

paper uses a fact that acquisitions of the camera images are triggered and notified to the navigation system without

delay, and performs the back-propagation of the estimation state forward in time. In order to do so, we can avoid the

redundant KF correction process with already arrived measurements and the stoackage of all the data histories needed

in the conventional approach. The proposed approach has been implemented and its functionality was validated in

simulations. But the work towards its flight validation with two different vision systems onboard, a stereo-vision system

and a pair of monocular cameras with complementary specifications, is on its way. This paper gives a brief description

of the vision systems and the experimental UAV platform to bse used for future flight validation. Flight test results

of open-loop state estimation performance of the proposed vision-integrated navigation system applied for the aircraft

final approach will be expected in the final paper.

II. Sensor failure scenarios on final approach
This paper focuses on the final approach segment, from the Final Approach Fix (FAF) until reaching at a decision

altitude/height (DA/H), in an instrument approach procedure of a civil airplane illustrated in Figure 1. The classical

instrument approach procedure uses ILS (Instrument Landing System) which provides both lateral and vertical guidance

on a stabilized continuous descent path (usually at a 3-degree glide slope). Recently, RNAV (aRea Navigation) approach

procedure, described by a series of waypoints, has become widely available by the use of GNSS (Global Navigation

Satellite System)[16]. In particular, high performance approach guidance can be provided thanks to GNSS augmentation

system such as SBAS (Satellite Based Augmentation System) which uses a differential GNSS technology and provides

the integrity and correction information. The interest of using onboard vision in the both ILS and GNSS/SBAS

aporoach procedures is to allow a pilot to continue the approach until DA instead of triggering a go-around or missed

approach procedure in case of possible degradation or failure of the navigation sensors. In this work, the following

sensor failures are considered to happen during the final approach phase, supposing that the accurate aircraft position
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Fig. 1 Instrument Approach Procedure[16]

relative to runway is availabe on the initial approach segment for initializing the visual tracker.

• In the GNSS/SBAS approach procedure:

– Lack of SBAS signals with GPS signals fully available

– Lack of SBAS and GNSS signals due to jamming

– Degradation of GNSS signals due to a reduced number of tracked satellites with SBAS augmentation

– Degradation of GNSS signals due to ionosphere itnerference with SBAS augmentation

• In the classical ILS approach procedure:

– Lack of ILS signals

– Misleading of ILS signals due to secondary lob

These failures are emulated by using GNSS or ILS sensor error models developped in the project.

III. Vision-integrated navigation system design
The idea of this work is to design the vision-integrated navigaiton system which uses information extracted from

onboard camera images in order to maintain the SBAS-augmented GNSS localization or ILS precision in case of

their possible degradation or failure so that the aircraft can still continue the precision approach procedure. Figure 2

overviews the onboard system architecture with the vision-integrated navigation system. It fuses the navigation sensor

measurements (GNSS or ILS and vision) with IMU acceleration and rate gyro inputs and other sensor measurements

(barometers, inclinometers etc.) to estimate the aircraft 6D pose relative to a runway to land.

The estimator design proposed in this paper is based on the Error-State Kalman Filter (ESKF)[17][18]. In the ESKF

framework, an estimation state vector is decomposed into a nominal state and an error state. The nominal state system

does not include any uncertainty (model error nor noise) and hence the state is propagated deterministically. All the

system uncertainties are included in the error state system, and a linear Kalman Filter (KF) is applied to estimate the

error state. After each KF correction, the measurement-corrected estimated error state is injected to the nominal state

and the estimated error state is reset to zero. This injection and reset operation makes the error state always small and

operating close to the origin, and so the linearization validity of the error state system holds. It is claimed in [18] that

the ESKF performance is more robust than Extended KF to different aircraft maneuvers (i.e. system nonlinearities).

Figure 3 illustrates the ESKF process.

A. Aircraft kinematics model

We base on the formulation presented in [19] for the 6D pose estimation by fusion of IMU and other sensor

measurements (such as GPS). See [19] for definition of the quaternion operators. Let xt be a true state to be estimated.

xt =
[
XT

t VT
t bTat

P0t qTt bTωt

]
(1)

where X t and V t are position and velocity vectors in a locally-fixed runway frame, qt is a quaternion vector from the

vehicle body frame to the runway frame, P0t be a pressure adjusted to a standard atomosphere at the sea level, bat
and

bωt
are acceleration and angular rate measurement bias in the vehicle body frame respectively. The runway frame is
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Fig. 2 Vision-integrated Navigation System Fig. 3 Error State Kalman Filter Process

defined as a frame fixed to the runway with its origin at the threshold point, its X-axis aligns with the runway landing

direction and Z-axis vertically downwards. Then its dynamics can be written by

Ûxt =



ÛX t

ÛV t

Ûbat

ÛP0t

Ûqt
Ûbωt



=



V t

at

νba

νP0

1
2
qt ⊗ ωt

νbω



=



V t

R(qt )(aIMU − bat
− νa) + g

νba

νbb

1
2
qt ⊗ (ωIMU − bωt

− νω)

νbω



(2)

where at and ωt are the true acceleration and angular rate, aIMU and ωIMU are the IMU measurements, g =[
0 0 g

]T
is a gravity vector in the runway frame, and ν∗ represents a zero-mean Gaussian noise.

Let x be a nominal state vector which is defined as follows.

x =
[
XT VT bTa P0 qT bTω

]
(3)

It evolves with the following deterministic dynamics.

Ûx =



ÛX

ÛV

Ûba
ÛP0

Ûq

Ûbω



=



V

R(q)(aIMU − ba) + g

0

0
1
2
q ⊗ (ωIMU − bω)

0



=



V

R(q)a + g

0

0
1
2
q ⊗ ω

0



(4)

where defined a = aIMU − ba and ω = ωIMU − bω . The true state xt can be decomposed by the nominal state x and

the error state δx.

xt =



X t

V t

bat

P0t

qt

bωt



=



X + R(q)δX

V + R(q)δV

ba + δba

P0 + δP0

q ⊗ q(δθ)

bω + δbω



= x ⊕ δx, δx =



δX

δV

δba

δP0

δθ

δbω



(5)

where δθ is an error angle vector and q(δθ) =
[
cos

‖δθ ‖
2

sin
‖δθ ‖

2
δθ

T

‖δθ ‖

]T
. Then the error state kinematics becomes
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linear as below.

δ Ûx =



−Ω I O 0 O O

O −Ω −I 0 −A O

O O O 0 O O

O O O 0 O O

O O O 0 −Ω −I

O O O 0 O O



δx +



0

−νa

νba

νP0

−νω

νbω



= F(x, aIMU,ωIMU )δx + ν (6)

where A = [a×] and Ω = [ω×] are the cross-product skew-symmetric matrices.

The nominal state and error state kinematics (4) and (6) are discretized as

x j =



X j

V j

ba j

P0 j

q j

bω j



=



X j−1 + V j−1∆tj +
1
2
(R(q j−1)a j + g)∆t2

j

V j−1 + (R(q j−1)a j + g)∆tj

ba j−1

P0 j−1

q j−1 ⊗ q(ω j∆tj)

bω j−1



(7)

δx j = e
F(x j ,aIMUj

,ω IMUj
)∆tj δx j−1 + ν j = eFj∆tj δx j−1 + ν j = Φjδx j−1 + ν j (8)

where ν j ∼ N(0, Q j ≃ Qν∆tj ) is a discretized Gaussian noise.

B. Sensor measurement models

The main sensors used for the aircraft relative state estimation are GNSS or ILS, barometer and vision sensors

(but we can add other sensors such as magnetometer or GNSS-headings, inclinometers, radio-altimeter, etc.). Their

measurements can be modeled as a function of the true state xt .

1. ILS (Instrument Landing System)

ILS is composed of the lateral localizer (LOC) and the vertical glide slope (GS), which provides final approach

guidance information, that is, the deviations of the aircraft flight path from the desired glide course (normally γGS = 3◦

glide path). The deviations from the desired glide path can be measured by taking a difference in amplitude of the two

lobes of signals modulated at 90 Hz and 150 Hz, called DDM (Difference in depth of modulation).

z ILS =

[
DDMLOC

DDMGS

]

=

[
KLOC∆θLOC

KGS∆θGS

]

+ ξ ILS =



KLOC arctan
Yt

TCH
tanγGS

−Xt

KGS

(
arctan

−Zt
TCH

tanγGS
−Xt

− γGS

)


+ ξ ILS

= h̃ILS(X t ) + ξ ILS

where TCH is a height at the threshold point. KLOC and KGS are known angular displacement sensitivity.

2. GNSS (Gloabl Navigation Satellite System)

Let ∆XGNSS denote a known GNSS receiver position in the vehicle body frame. Then, the true GNSS receiver

position and velocity are

[
XGNSSt

VGNSSt

]

=

[
X t + R(qt )∆XGNSS

V t + R(qt ) [ωt×]∆XGNSS

]

= h̃GNSS(xt,ωt )

For the GNSS loose-coupling, the position and velocity measurements are used and hence

zGNSSk
= h̃GNSS(xtk ,ωtk ) + ξGNSSk
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For the GNSS tight-coupling, a set of pseudo-ranges to visible satelittes is used as a measurement. The pseudo-range

to the i-th satellite is modeled as

ρi = ‖XECEF
GNSSt

− XECEF
SATi

‖ + c(τt − τi) + ξρi = dti (xt ) + c(τt − τ̂i) + ξρi

XECEF
SATi

is a known position of the i-th satellite in the ECEF (Earth-Centered Earth-Fixed) frame, c is a light speed, τt

and τi are the clock bias of the receiver and the i-th satellite respectively. ξρi ∼ N(0,σ2
UERE

) is a zero-mean Gaussian

noise which includes errors from different sources such as the satellite clock and ephemeris errors, compensation errors

in ionosphereic and tropospheric signal delays, multi-path effects, etc.]. σUERE (UERE stands for User Equivalent

Range Error) is calculated and provided by the receiver. The receiver clock-bias τt can be modeled as a 2nd order

random process such as

Ûxτt =

[
Ûτt

Ûvτt

]

=

[
vτt

0

]

+

[
ντ

νvτ

]

=

[
0 1

0 0

]

xτt + ντ = Fτ xτt + ντ

This state can be decomposed of the nominal and error states, xτt = xτ + δxτ , and has the following kinematics. The

estimation state should be augmented with these for the tight-coupling case.

Ûxτ = Fτ xτ, δ Ûxτ = Fτδxτ + ντ (9)

Then the measurement model becomes

zρ =



ρi
...


=



‖XECEF
GNSSt

− XECEF
SATi

‖ + c(τt − τi)

...


+



ξρi
...


= h̃ρ(xtk ) + ξρk

3. Barometer

A barometer gives an atomospheric pressure measurement which is a function of the sensor altitude.

zBARO = P0t exp

(
gM

R0T0

(Zt − ZTHD)

)
+ ξBARO = h̃BARO(xt ) + ξBARO

where ZTHD is the runway threshold elevation. M , R0 and T0 are the known constants of the standard atomosphere.

4. Vision sensor

The vision measurement can be 2D such as pixel-coordinates of a point-of-interest or 3D such as relative position

with respect to a point-of-interest in the camera frame. Let ∆XC and ∆qC be a known camera position and orientation

in the vehicle body frame. Then the true camera pose in the runway frame is given by

[
XCt

qCt

]

=

[
X t + R(qt )∆XC

qt ⊗ ∆qC

]

= h̃VISION (xt )

A point at Xp in the runway frame has a position expressed in the camera frame at XC
pt
= R(q∗

Ct
)(Xp − XCt

). Then

the pixel coordinates p of this point is defined by

[
p

1

]

=



fx 0 cx

0 fy cy

0 0 1



XC
pt

ZC
pt

= C
XC

pt

ZC
pt

(10)

where C is a known camera matrix with focal length f(x,y) and image center pixels c(x,y). ZC
pt

is an image depth, a

distance to the point-of-interest along the camera optical axis. A camera disparity for a stereo vision system with

baseline B is measured as dpt = B fx/ZC
pt

.

In this work, the image processor is developped to detect the runway features shown in Figure 4 to calculate the

6D pose of the camera in the runway frame(see Section IV.B). pTHD , pL/R and pV are the pixel-coordinates of the
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Fig. 4 Runway feature points to be detected on an image

threshold point, the runway left/right corners and the vanishing point of the two parallel sidelines respectively. The

monocular vision system could use an apriori knowledge on the runway width to resolve the scale ambiguity. For the

vision loose-coupling, we use directly the image-based 6D pose estimation result as a measurement.

zVISION = h̃VISION (xt ) + ξVISION

For the tight-coupling, the image processor raw outputs such as the feature point pixel-coordinates and the disparity

measurement are used instead. Their measurement model h̃ in function of the true state can be derived by the pin-hole

camera model (10).

C. Error-State Kalman Filter process

As stated earlier, a linear Kalman filter is applied to the error state estimation from the available sensor measurements.

Let δ x̂−j and P−
j

be the predicted estimate and its error covariance. (8) gives a process model, and so the prediction

step in Figure 3 is performed at each IMU measurements update as follows.

δ x̂−j = Φjδ x̂ j−1 (11)

P−
j = E

[
δ x̃−j δ x̃

−T
j

]
= ΦjPj−1Φ

T
j +Q j (12)

It should be noted that, in the ESKF framework, δ x̂−j is always zero as δ x̂ j−1 is reset to zero after each correction step.

Hence, only (12) needs to be implemented.

Suppose that a sensor measurement zk is available at t = tk without any delay.

zk = h̃(xt (tk), at (tk),ωt (tk)) + ξk (13)

where ξk ∼ N(0, Rk) is the zero-mean Gaussian measurement noise. Then (13) can be expanded as follows.

zk ≃ h(xk, aIMUk
,ωIMUk

) + H(xk, aIMUk
,ωIMUk

)δxk + ξk + D(xk, aIMUk
,ωIMUk

)ν(tk)

where

D(xt, aIMU,ωIMU ) =
[
∂

˜h(x t ,at ,ωt )
∂at

R(qt ) O 0
∂

˜h(x t ,at ,ωt )
∂ωt

O

] ���{at = R(qt )(a IMU − bat ) + g

ωt = ω IMU − bωt

H(xk, aIMUk
,ωIMUk

) =
∂h(xt, aIMUk

,ωIMUk
)

∂xt

���
x t=xk

∂(xk ⊕ δx)

∂δx

=

∂h(xt, aIMUk
,ωIMUk

)

∂xt

���
x t=xk



R(qk) O O 0 O O

O R(qk) O 0 O O

O O I 0 O O

O O O 1 O O

O O O 0
1
2

[
−qTvk

qwk
I +

[
qvk×

]

]

O

O O O 0 O I
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with qk =
[
qwk

qTvk

]T
. Then, the measurement zk can be transformed to a linear measurement to the error state.

z̄k = zk − h(xk, aIMUk
,ωIMUk

) = Hkδxk + ξk + Dkν(tk) = Hkδxk + ξ̄k (14)

where Hk = H(xk, aIMUk
,ωIMUk

) and Dk = D(xk, aIMUk
,ωIMUk

). The augmented measurement error follows

ξ̄k ∼ N(0, R̄k = Rk + DkQνDT
k
). Now a standard linear Kalman filter is applied to update the predicted error state

δ x̂−
k

and its error covariance P−
k

using this measurement z̄k . Since δ x̂−
k
= 0,

δ x̂k = δ x̂−k + Kk( z̄k − Hkδ x̂
−
k ) = Kk(zk − h(xk, aIMUk

,ωIMUk
)) (15)

Pk = (I − KkHk)P
−
k , Kk = P−

k HT
k (HkP−

k HT
k + R̄k)

−1 (16)

In the ESKF process, after this KF measurement correction step, the error state injection and reset process is

performed. The corrected non-null error state δ x̂k is injected to the nominal state by (5) and the error state is reset to

zero, i.e., x⊕
k
= xk ⊕ δ x̂k and δ x̂⊕

k
= 0. As the true state does not change by the injection, the true error state will also

change and hence

xtk = xk ⊕ δxk = xk ⊕ (δ x̂k + δ x̃k)

= x⊕
k
⊕ δx⊕

k
= (xk ⊕ δ x̂k) ⊕ δ x̃⊕

k

From the definition (5),

δ x̃⊕
k
=



I −
[
δθ̂k×

]
O O 0 O O

O I −
[
δθ̂k×

]
O 0 O O

O O I 0 O O

O O O 1 O O

O O O 0 I − 1
2

[
δθ̂k×

]
O

O O O 0 O I



δ x̃k = G⊕(δ x̂k)δ x̃k (17)

Therefore, the error covariance Pk should be also reset to

P⊕
k
= E

[
δ x̃⊕

k
δ x̃⊕T

k

]
= E

[
δx⊕

k
δx⊕T

k

]
= G⊕(δ x̂k)PkG⊕T (δ x̂k) (18)

The ESKF procedure is reset with x⊕
k

, δ x̂⊕
k
= 0 and P⊕

k
at tk and start the new propagation-correction-reset cycle until

the next measurement will be obtained.

D. Error-State Kalman Filter process with time-delayed measurements

The vision-based measurement normally arrives with a non-negligible time delay due to the image processing time,

and this time-delay should be taken into account in the estimator design. In general, acquisition of an image (or a pair

of images for stereo vision) is triggered by a system and hence the time of the image capture is known and can be

notified before the measurement arrives. By using this fact, this paper establishes a framework of the ESKF filter with

time-delayed measurements.

Figure 5 shows the ESKF process timeline with time-delayed measurement. In more general way, let tki be the

time when the i-th measurement zki becomes available. The time interval ki−1 < j ≤ ki between the two successive

measurements corresponds to the (i−1)-th cycle of ESKF propagation-correction-reset. During this cycle, the nominal

state propagation (7) and the error state prediction step (11, 12) are repeated by using the IMU measurements. Then,

the estimated error state will be corrected at tki by using the i-th measurement, and it will be injected to the nominal

state. Then the ESKF is reset for the next cycle. Let us denote the nominal state and error state of the (i − 1)-th cycle at

the time tj by xi−1
j

and δxi−1
j

respectively. The state injection and ESKF reset process gives following relation between

the (i − 1)-th and i-th states, where δ x̂i−1
ki

is the (i − 1)-th error state updated at tki with the i-th measurement.

xiki = x⊕
ki
= xi−1

ki
⊕ δ x̂i−1

ki

δ x̂iki = δ x̂⊕
ki
= 0

δxiki = δ x̃iki = δ x̃⊕
ki
= G⊕(δ x̂i−1

ki
)δ x̃i−1

ki
= G⊕

ki
δ x̃i−1

ki

Pi
ki
= P⊕

ki
= G⊕

ki
Pi−1
ki

G⊕T
ki
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1. Nominal state propagation and Error state prediction

Starting from xi−1
ki−1

, the (i − 1)-th nominal state xi−1
j

is propagated at each time step tj up to tki by using (7). Note

that ai−1
j
= aIMUj

− bi−1
aki−1

and ωi−1
j
= ωIMUj

− bi−1
ωki−1

. Likewise, the estimated error state will be propagated up to

tki .

δ x̂i−1−
ki

=



ki∏

j=ki−1+1

Φ
i−1
j


δ x̂i−1

ki−1
= Φ

i−1
kiki−1

δ x̂i−1
ki−1
= 0 (19)

δxi−1
ki

= δ x̃i−1−
ki
= Φ

i−1
kiki−1

δxi−1
ki−1
+

ki∑

j=ki−1+1

Φ
i−1
ki j

ν j = Φ
i−1
kiki−1

δxi−1
ki−1
+ ν̄ki−1

(20)

Pi−1−
ki

= Φ
i−1
kiki−1

Pi−1
ki−1
Φ

i−1T

kiki−1
+

ki∑

j=ki−1+1

Φ
i−1
ki j

Q jΦ
i−1T

ki j
= Φ

i−1
kiki−1

Pi−1
ki−1
Φ

i−1T

kiki−1
+ Q̄ki−1

(21)

2. Error state correction with delayed measurement

At time tki , the i-th measurement zki becomes available. It may have a measurement delay and includes an

information on the true state at tmi
≤ tki (See Figure 5). Suppose that the time tmi

is in the li-th cycle of the ESKF

estimator, i.e., kli ≤ mi < kli+1. Similarly to (14), the i-th measurement is given by

zki = hi(xt (tmi
), aIMUmi

,ωIMUmi
) + ξ̄ki

≃ hi(x
li
mi
, aIMUmi

,ωIMUmi
) + Hi(x

li
mi
, aIMUmi

,ωIMUmi
)δxlimi

+ ξ̄ki

where x
li
mi

and δx
li
mi

are the li-th nominal and error states at time tmi
. Then, the measurement residual to be used in

the ESKF becomes

∆zki = zki − hi(x
li
mi
, aIMUmi

,ωIMUmi
) − Hi(x

li
mi
, aIMUmi

,ωIMUmi
)δ x̂li

+

mi

= Hiδ x̃
li
+

mi
+ ξ̄ki = Hiδ x̃

li
+

mi
+ ξki + Diνmi

(22)

where δ x̂
li
+

mi
is the back-propagated li-th error state at time tmi

, calculated from the latest estimate δ x̂i−1−

ki
(= 0). δ x̃

li
+

mi
is

its error. The Kalman filter correction is applied with (22) in order to update the current (i − 1)-th error state estimate.

δ x̂i−1
ki

= δ x̂i−1−

ki
+ Ki∆zki = δ x̂i−1−

ki
+ Ki(Hiδ x̃

li
+

mi
+ ξ̄ki ) (23)

δ x̃i−1
ki

= δ x̃i−1−

ki
− Ki(Hiδ x̃

li+
mi
+ ξ̄ki ) (24)

The error covariance can be obtained as follows.

Pi−1
ki

= E

[
δ x̃i−1

ki
δ x̃i−1T

ki

]
= Pi−1−

ki
− KiHiP

+T
kimi

− P+kimi
HT
i KT

i + Ki(HiP
li+
mi

HT
i + R̄ki )K

T
i

Fig. 5 ESKF process timeline with delayed measurements
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where P+
kimi
= E

[
δ x̃i−1−

ki
x̃
li
+T

mi

]
and P

li+
mi
= E

[
δ x̃

li+
mi

δ x̃
l+T
i
mi

]
. As done in [20], the Kalman gain Ki is chosen so that the

trace of Pi−1
ki

is minimized.

Ki = P+kimi
HT
i (HiP

li+
mi

HT
i + R̄ki )

−1 (25)

Then the error covariance Pk becomes

Pi−1
ki
= Pi−1−

ki
− KiHiP

+T
kimi
= Pi−1−

ki
− P+kimi

HT
i (HiP

li+
mi

HT
i + R̄ki )

−1HiP
+T
kimi

(26)

So what we need to derive is the covariance and correlation matrices P+
kimi

and P
li+
mi

.

3. Back-propagation

Now we derive δ x̂
li+
mi

by back-propagation of the current estimated error state δ x̂i−1−

ki
. Figure 6 illustrates this

process. The back-propagation and back-injection operations are continued from the current time tki back to the time

of the measurement tmi
. Define the following transition matrix which includes both the propagation and the injection.

Γknkl =




n−1∏
j=l

Φ
j

k j+1k j
G⊕

k j
= Φ

n−1
knkn−1

G⊕
kn−1

· · ·Φl
kl+1kl

G⊕
kl
, n>l

I , n=l

Γ
−1
klkn

, n<l

(27)

Then, the back-propagated error state estimate becomes

δ x̂li+mi
= Φ

l−1
i

kli+1mi
δ x̂

l+
i

kli+1
= Φ

l−1
i

kli+1mi

i−1∑

n=li+1

Γ
−1
knkli+1

δ x̂n−1
kn

(28)

where δ x̂n−1
kn

is the estimated error state updated at tkn , given by

δ x̂n−1
kn
= δ x̂n−1−

kn
+ Kn(Hnδ x̃

ln
+

mn
+ ξ̄kn ) = Kn(Hnδ x̃

ln
+

mn
+ ξ̄kn ) (29)

The back-propagated estimation error can be derived as

δ x̃li+mi
= Φ

l−1
i

kli+1mi
Γ
−1
kikli+1

(
δ x̃i−1−

ki
− ∆νiki

)
(30)

where

∆νikn =




Γknkli+1

kli+1∑
j=mi+1

Φ
li
kli+1 j

ν j , n=li + 1

n∑
p=li+2

Γknkp ν̄kp−1
+ Γknkli+1

kli+1∑
j=mi+1

Φ
li
kli+1 j

ν j = Γknkn−1
∆νi

kn−1
+ ν̄kn−1

, n≥ li + 2

Now the covariance matrices P+
kimi

and P
li+
mi

will be derived. From (30), we obtain the following expressions.

Pli+
mi

= Φ
l−1
i

kli+1mi
Γ
−1
kikli+1

(
Pi−1−

ki
− ∆Qi

ki
+ δQi

ki
+ δQiT

ki

)
Γ
−T
kikli+1

Φ
l−T
i

kli+1mi
(31)

P+kimi
=

(
Pi−1−

ki
− ∆Qi

ki
+ δQi

ki

)
Γ
−T
kikli+1

Φ
l−T
i

kli+1mi
(32)

where Pi−1−

ki
is the current predicted error covariance, and ∆Qi

kn
and δQi

kn
are defined as follows.

∆Qi
kn
= E

[
∆νikn∆ν

iT
kn

]

δQi
kn
= −E

[
(δ x̃n−1−

kn
− ∆νikn )∆ν

iT
kn

]
= −E

[
δ x̃n−1−

kn
∆νiTkn

]
+ ∆Qi

kn
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Fig. 6 Back-propagation process timeline with delayed measurements

Starting from ∆Qi
kli+1
=

kli+1∑
j=mi+1

Φ
li
kli+1 j

Q jΦ
liT

kli+1 j
and δQi

kli+1
= O, ∆Qi

kn
and δQi

kn
can be iterativelly calculated up to

n = i by

∆Qi
kn
= Γknkn−1

∆Qi
kn−1
Γ
T
knkn−1

+ Q̄kn−1
(33)

δQi
kn
= Γknkn−1

(
δQi

kn−1
+ Fi

kn−1

)
Γ
T
knkn−1

(34)

where Fi
kn−1
= E

[
δ x̂n−2

kn−1
∆νiT

kn−1

]
. Define Cn = KnHnΦ

l−1
n

kln+1mn
= KnH̄n. Then Fi

kn−1
can be obtained as follows.

Fi
kn−1

= Cn−1Γ
−1
kn−1kln−1+1

(E i
kn−1

− δQi
kn−1

) + Kn−1Dn−1E

[
νmn−1

∆νiTkn−1

]

where

E i
kn−1

= E

[
(∆νikn−1

− ∆νn−1
kn−1

)∆νiTkn−1

]
=

{
0 ,mi ≥ mn−1

∆Qi
kn−1

− ∆Qn−1
kn−1

,mi < mn−1

E

[
νmn−1

∆νiTkn−1

]
=

{
0 ,mi ≥ mn−1

Qmn−1
Φ
ln−1T

kln−1+1mn−1
Γ
T
kn−1kln−1+1

,mi < mn−1

Therefore, for each measurement, we keep updating the matrices ∆Qi
kn

, δQi
kn

and Γknkli+1
until n = i when the

measurement becomes available. Then the covariance matrices (31, 32) can be calculated, and used in the Kalman

filter update process (25, 26).

When the time of the measurement tmi
is known (by an image trigger, for example), we can process this back-

propagation forward in time. Figure 7 summarizes this ESKF and "‘forward"’ back-propagation process for the i-th

measurement. At t = tmi
, hi , Hi and Di can be calculated by using the nominal state x

li
mi

. At tli+1, we save

H̄i = HiΦ
l−1
i

kli+1mi
. After each EKF update at tkn , we track

δ x̂
ln+
i

kli+1
=

n∑

p=li+1

Γ
−1
kpkli+1

δ x̂
p−1

kp
= δ x̂

l
(n−1)+
i

kli+1
+ Γ

−1
knkli+1

δ x̂n−1
kn
, n ≥ li + 1

where δ x̂
l
li+

i

kli+1
= 0. Then δ x̂

l+
i

kli+1
= δ x̂

l
(i−1)+
i

kli+1
is already available at tki when the measurement arrives. From (31,32)

and (25,26), the Kalman filter update process can be re-written as follows.

Ki =

(
Pi−1−

ki
− ∆Qi

ki
+ δQi

ki

)
H̃T
i (H̃i

(
Pi−1−

ki
− ∆Qi

ki
+ δQi

ki
+ δQiT

ki

)
H̃T
i + R̄ki )

−1 (35)

Pi−1
ki

= Pi−1−

ki
− KiH̃i

(
Pi−1−

ki
− ∆Qi

ki
+ δQiT

ki

)
(36)

where H̃i = H̄iΓ
−1
kikli+1

and recall R̄ki = Rki + DiQνDT
i

.
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Fig. 7 ESKF and Back-propagation process

4. Another method to handle the delayed measurement in ESKF

A conventioal way to handle the delayed measurement in the ESKF is to save all the history of the sensor

measurements (including IMU) from tmi
and tki , and re-runs the KF process from tmi

to the current time as if the

measurements arrived without delay. This method is often adopted in the robotics applications, and is applicable even

when the time of measurement is not known until the measurement actually arrives. The drawbacks of this approach are

the use of memory for recording all the estimation state and measurement data history, and the redundant computations

corresponding to the KF correction steps with already arrived measurements between tmi
and tki . The proposed

delayed-measurement ESKF framework has an advantage of eliminating the redundant computation, distributing the

additional computation load at each time step but not at once only when the measurement arrives, and reducing the

need of memory capacity.

5. Functionality validation in simulations

The proposed delayed-measurement ESKF framework is applied to design the vision/GNSS navigation system for

final approach of an aircraft. For the functionality validation purpose, it has been implmented in the 6DoF aircraft

simulator (of the K50 experimental platform, described later in Section IV.A) with basic flight controller, an approach

guidance law and the navigation sensor models. It includes a GPS/SBAS simulation model† of standard 24 satellite

constellation with different failure modes defind in Section II. It simulates pseudo-distance measurements to each

visible satellite by adding errors in function of selected failure (or nominal) mode, and solves for the position in the

geodetic coordinates out of them. For example, Figure 8 compares errors in the simulated GNSS localization solutions

with and without SBAS augmentation. A stereo-vision sensor is also simulated by adding theoretical errors on the

image-detection position of the runway feature points. The camera frequency is set at 10 Hz, and the time delay of 80

msec due to the image processing time is simulated.

The vision-integrated navigation filters with different configurations (loose/tight couplings of GNSSS and vision,

6D pose estimation and 3D position estimation) were implemented in the simulation to fuse all the available sensor

data with simulated GNSS localization degradation. Figure 9 shows an example of the open-loop simulation test

and compares the relative position and velocity estimation performances with and without using the vision-based

†provided by a VISION project partner, Electoronic Navigation Reserach Institute, Tokyo, Japan.
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Fig. 8 GNSS localization error models with (right) and without (left) SBAS augmentation
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Fig. 9 Example of open-loop simulation test results: (left) position and (right) velocity estimation performances

with (in green) and without (in red) using the vision information. Loss of SBAS correction signal is simulated at

t = 10 (sec)
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Fig. 10 Example of closed-loop simulation test results: (left) with and (right) without using the vision informa-

tion. Loss of SBAS correction signal is simulated at t = 10 (sec)

measurement. In this simulation, a failure of loss of SBAS correction signals which degrades the GNSS localization

precision is simulated to happen at t = 10 (sec). This uses the GNSS-tight coupled navigation filter which uses the

GNSS pseudo-range measurements. The estimation performance difference can be seen in the lateral deviation of Y

position. Without the additional vision information, a jump in the position estimation occurs at t = 10 (sec) when the

failure occurred and the estimation bias remains. This jump in the GNSS position measurement will induce also the

jumps in the velocity and acceleration bias estimates and they take time to be re-converged. The performance in the

altitude estimation are nearly the same thanks to the barometer measurements. Figure 10 shows the same example but
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when closing the approach guidance and flight control loop with the resulting navigation solution with and without

vision. When not using vision (the right figure of Figure 10), the approach guidance law will make the aircraft lateral

maneuver for aligning the deviated Y position estimation at the runway centerline (Y = 0). It results in the centerline

alignment error of the closed-loop trajectory. This miss-alignement can be avoided when using the vision information

in the case of the SBAS loss failure (the left figure). These are the results of the GNSS-tight coupling navigation filter,

but the similar performances were obtained with the loose-coupled filter.

A problem observed in this simulation tests with the vision-based navigation is that the navigaiton solution is

rapidly attracted to the degraded GNSS measurements once the runway goes beyond the camera fielf of view (FoV).

This is seen in the Y position estimate at around t = 12 (sec) on the left figure of Figure 10. This simulation uses

the narrow FoV stereo-vision sensor model from Section IV.B.1, and hence sometimes it looses the runway from the

images. This problem can be solved by augmenting the navigation system with the integrity monitoring function which

detects and excludes the erroneous measurements. It is planned to apply the Aircraft Autonomous Integrity Monitoring

(AAIM)-lile algorithm based on Multiple Solution Separation (MSS) method[15]. A possible way to estimate and

compensate this kind of sudden jumps in the measurement will be also explored in future.

IV. Towards flight validation
As stated in the Introduction, the final goal of this work in the VISION project is to evaluate the proposed vision-

integrated navigation system onboard a real aircraft with real vision sensors and image processors. The two vision

systems have been integrated on the experimental UAV platform and we have started the first flight test campaigns for

the image data recording. The open-loop flight test results of the proposed vision-integrated navigation system will be

expected in the final paper.

A. K50 fixed-wing UAV platform

An experimental platform used for the flight validation of the proposed vision-integrated navigation system is a

fixed-wing UAV called K50-Advanced (Figure11). It has a fuselage length of 3 m, wingspan of 4 m and maximum

take-off weight of 60 kg. This platform is manufactured within the VISION project by a Spanish company USOL,

and is featured with its high payload capacity of 100 L and 20 kg that is suitable for flight experiments with different

onbaord systems (avionics, payload computers, cameras, etc.). The K50-Advanced is equipped with the ONERA

in-house flight avioncis with the basic navigation sensors (including GPS/RTK for the reference), and with a payload

computer which serves for the interface between the avionics and other external payload systems and sensors as well as

for hosting the experimental program codes. The two onboard vision systems send the image processor outputs to this

payload computer in which the visio-based navigation system algorithm will be implemented for its flight validation.

Fig. 11 K50 experimental UAV platform

Fig. 12 RICOH stereo-vision system

on the K50 platform
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B. Vision systems

Runways have specific feature points (as already shown in Figure 4) possibly with known world coordinates, which

can be utilized for the navigation prupose during final approach. The main challenges of the image-based runway

feature detection are visibility, calibration, accuracy and the refresh rate which is bounded by the speed of on-board

image processing. The two different vision systems are integrated onbord the K50 aircraft in this work.

1. Stereo vision system

The first vision system is a stereo-vision system, developped by RICOH Co. Ltd., hanged under a belly of the aircraft.

Stereo-based methods have the advantage of eliminating the scale ambiguities that are inherent in monocular systems.

The first prototype of the stereo-vision system (Figure 12) uses a pair of Blackfly 1920x1200 GigE colored cameras

with a narrow field of view of 18x11 degrees for the detection precision. The estimation of relative position to the

runway uses the image position and the disparity information of the center line and the threshold of the runway. The

algorithm applies edge filters by each pixel for extracting the region which includes the center line (a vertical line on

an image) and the threshold line (horizontal line on an image). Then the model fitting method like RANSAC (Random

sample consensus) is applied on the extracted feature pixels in order to detect the lines robustly to the noises. Once

the image position and disparity of both detected lines are validated to be consistent with the predicted relative pose

estimation from the navigaiton filter, then it proceeds to calculate the navigation data.

Two manual flights of K50 have been made so far with this stereo-vision system onbaord and the image and flight

test data were collected. Figure 13 shows examples of the depth map calculated from the real stereo-images of the

runway. For the preliminary validation, the 6D camera pose was estimated from the stereo-calculated disparity on the

recorded image sequence (with manually detected feature points due to a lack of the centerline marking on the tested

site), and compared to the GPS-position and INS-attitude data. The comparison results shown in Figure 14 give an

idea on the image-based 6D pose estimation accuracy (when the runway features are well detected).

Fig. 13 Examples of depth images on final approach calculated by the stereo-vision systems

Fig. 14 6D camera pose estimation on the stereo-image data recorded on th K50: (left) position estimation vs.

GPS data, (right) attitude estimation vs. INS data
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2. Monocular vision system

The second vision system is a pair of monocular cameras with complementary specifications proposed by Hungarian

Academy of Sciences. Two Basler GigE 2048x1536 colored cameras are integrated on the K50 UAV (Figure 15); one

with wide 33.5 deg filed of view (FOV) and one with narrow 15 deg FOV. It is beneficial, because narrow view angle

with similar camera resolution yields higher accuracy, however, it is possible that the narrow angle camera temporarily

does not see the runway. Each camera has a dedicated Nvidia Tegra X1 module which consists an NVIDIA Maxwell

GPU with 256 NVIDIA CUDA Cores, Quad-core ARM Cortex-A57 MPCore Processor and 4 GB LPDDR4 Memory.

We applied a Crucial 250 GB mSATA SSD for video data recording.

The on-board processing of images consists the image acquisition and storage, feature detection and tracking,

and navigation data extraction from features. In [21] the authors introduced a simple image processing approach for

FlightGear simulator imagery. The algorithm segments the areas covered by concrete, and performs a masked adaptive

threshold to get the markings on the concrete. The pair of sidelines are detected in the Hough space of the markings

binary map, and than the threshold line is detected. All the three lines are fine-tuned by an oriented-mean method. The

main detected features are the corner points and the vanishing point of the side lines.

Based on the visual features of the runway detected on the image and the known width of the runway (and assuming

parallel sides), the 6D pose can be determined. In our research we examine three possible methods. The 3-point

method [22] utilizes the corner points of the runway threshold and the vanishing point of the two side lines. A general

iterative method for n ≥ 3 points with known world coordinates [23], and a line-based method [24] where the authors

assume that the detection of lines is more robust than that of points. Instead of the 6D pose the visual features can be

also used directly in the navigation (tight-coupling). We investigate both possibilities.

Fig. 15 Payload computers and the monocular cameras (under wings) on the K50 UAV.

V. Conclusion
This paper presented the vision-integrated navigation system for the aircraft final approach based on the ESKF

framework which incooporates the time delay of the vision-based measurements. It benefits from the image trigger

notice from the vision system to make the forward back-propagation to handle the time-delay directly in the KF process.

The proposed system has been implemented in the simulation with the sensor models (including GNSS/SBAS failure

models), and its functionality to maintain the localization precision in case of sensor degradation so that the aircraft

can continue the approach procedure was validated.

This is the work performed as a part of the H2020 VISION project, and the final goal of the project is to provide the

flight-validated vision-based navigation solution augmented with an integrity monitoring function. Towards the flight

validation, the two different vision systems, stereo- and a pair of monocular- vision systems, have been developped and

integrated on the K50 UAV experiment platform. First flight test campaign with these vision systems have started for

image data recording, and the development and evaluation of the image processing algorithms for runway detection is

ongoing. The proposed navigation system will be implemented onboard the K50 shortly. We plan to include in the
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final paper some open-loop flight test results of the vision-based aircraft pose estimation relative to the runway during

the final approach phase.

In parallel, even in the first simulation validation, we see a strong need of the fault detection and exclusion function

to provide the non-deviated navigation solution in case of possible sensor failures. Future perspectives include the

development of an AAIM function integrated in the navigation system.
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