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Abstract: The present work provides an original framework for random
matrix analysis based on revisiting the concentration of measure theory for
random vectors. By providing various notions of vector concentration (q-
exponential, linear, Lipschitz, convex), a set of elementary tools is laid out
that allows for the immediate extension of classical results from random
matrix theory involving random concentrated vectors in place of vectors
with independent entries. These findings are exemplified here in the context
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Nomenclature

iif “if and only if”
R Set of real numbers ; R+ = {x ∈ R | x ≥ 0} ; R− = −R+. If x ∈ Rp, one

notes [x]i, or more simply xi, 1 ≤ i ≤ p, the ith entry of the vector x
(a, b] Considering an interval I ⊂ R, we employ the sign “(” if left border of I

is open and “[” if it is closed ; the same rule works for the right border.
To give an example, given a, b ∈ R : (a, b] = {x | a < x ≤ b}

bxc Integer part of x ∈ R, bxc ∈ N and verifies bxc ≤ x ≤ bxc+ 1 = dxe.
E Typical normed vector space over R, endowed with the norm ‖ · ‖.
C Set of complex numbers.
E∗ Dual space of E (the set of linear maps from E to R).
A Typical non commutative algebra endowed with the algebra norm ‖ ·

‖, the possibly non commutative product is written without operation
character, we have ∀x, y ∈ A, ‖xy‖ ≤ ‖x‖‖y‖.

∂A Boundary of A ⊂ E, if Ā is the closure of A and Å, the interior of A,
∂A = Ā \ Å.

Conv(A) Convex hull of A ⊂ E (i.e., Conv(A) = ∩{C ⊂ E, C convex, C ⊃ A}).
A∗ A \ {0}
1A Indicator function of A ⊂ E, 1A : E → {0, 1} and 1A(x) = 1⇔ x ∈ A.

If A is not a set but an assertion (like A = A(t) = (t ≥ 1)), 1A = 1 if A
is true and 1A = 0 if A is false. If 1 presents no index, it designates a
vector full of one with a convenient size for the context.
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Sp Set of permutations of {1, . . . , p} ; Sp,n = Sp ×Sn.
x↓ Decreasing version of x ∈ Rp, ∃σ ∈ Sp such that ∀i ∈ {1, . . . , p}, [x↓]i =

xσ(i) and [x↓]i ≤ [x↓]i−1 for i ≥ 2.
≺ Majorization relation, see Definition 15
Mp,n Set of real matrices of size p×n. If M ∈Mp,n, one notes [M ]i,i or more

simply Mi,j the entry at the line i and column j. If n = p, we simply
noteMp =Mp,n.

Tr Trace operator onMp, ∀M ∈Mp,TrM =
∑p
i=1Mi,i.

·T Transpose operator on Mp, ∀M ∈ Mp,n, [MT ]i,j = Mj,i, 1 ≤ i ≤ p,
1 ≤ j ≤ n.

Ip Identity matrix ofMp, ([Ip]i, j = 0 if i 6= j and [Ip]i,i = 1, 1 ≤ i, j ≤ j).
Sp(M) Spectrum of the matrix M .
QC Resolvent of the matrix C ∈ Mp. For z ∈ C \ Sp(C), QC(z) = (C +

zIp)
−1.

Diag Diagonal operator. If M ∈ Mp,n, Diag(M) = (Mi,i)1≤i≤min(p,n) ; if
x ∈ Rp, Diagq,n(x) ∈ Mp,n, [Diagp,n(x)]i,i = xi if 1 ≤ i ≤ min(p, q, n)
and [Diagp,n(x)]i,j = 0 if i 6= j, for 1 ≤ i ≤ p, 1 ≤ j ≤ n.

Op Set of orthogonal matrices of Mp : P ∈ Dp,n ⇔ P−1 = PT ; Op,n =
Op ×On.

Dp,n Set of diagonal matrices ofMp,n : D ∈ Dp,n ⇔ D = Diagp,n(Diag(D))
; D ∈ D+

p,n ⇔ Di,i ≥ 0, 1 ≤ i ≤ min(p, n) ; D ∈ D−p,n ⇔ −D ∈ D+
p,n.

When n = p, we simply note Dp = Dp,n.
Sp Set of symmetric matrices of Mp : S ∈ Sn ⇔ Si,j = Si,j , 1 ≤ i ≤ p ;

S ∈ S+
p ⇔ ∀u ∈ Rp, uTSu ≥ 0 ; S ∈ S−p ⇔ −S ∈ S+

p . Given S1, S2 ∈ Sp,
we say that S1 is greater than S2 and we note S1 ≥ S2 if S1 − S2 ∈ S+

p .
S1/2 Square root of the nonnegative symmetric matrix S ∈ S+

p (with the di-
agonalization S = PTΛP , P ∈ Op, Λ ∈ Dp, we define S1/2 = PTΛ1/2P

where [Λ1/2]i,i = Λ
1/2
i,i ).

Pp Set of permutation matrices of Mp : P ∈ Pp ⇔ P ∈ On and (∃σ ∈
Sp, Pi,j = 1 ⇔ σ(i) = j) ; we also define Pp,n = {(U, V ) ∈ Pp ×
Pn | UIp,nV T = Ip,n} where Ip,n = Diagp,n(1).

‖ · ‖q `q-norm on Rp for two integers p, q ∈ N∗ ; ‖x‖q = (
∑p
i=1 x

q
i )

1/q.
‖ · ‖ Classical norm of the vector space E one is working on : if E = Rp, the

euclidean norm ‖ · ‖2 ; if E = Mp,n, the spectral norm (∀M ∈ Mp,n :
sup‖u‖=1 ‖Mu‖).

‖ · ‖1 on Rp, the `1 ; on Mp,n, the nuclear norm (∀M ∈ Mp,n, ‖M‖1 =
Tr((MMT )1/2)).

‖ · ‖F Frobenius norm, ∀M ∈Mp,n : ‖M‖F =
√

TrMMT =
√∑p

i=1

∑n
j=1M

2
i,j .

‖ · ‖∗ Dual norm on E∗. If f ∈ E∗, ‖f‖∗ = sup‖x‖≤1 f(x).
d‖·‖ Distance associated to the norm ‖·‖. Given two vectors x, y ∈ E and two

sets A,B ⊂ E, d‖·‖(x, y) = ‖x − y‖, d‖·‖(x,A) = inf{d‖·‖(x, y), y ∈ A}
and d‖·‖(A,B) = inf{d‖·‖(x,B), x ∈ A}.

Bt Closed ball of E of size t > 0, Bt = {0}t = {x ∈ E | ‖x‖ ≤ 1}, when
t = 1, we note B = B1. We also use the notation B‖·‖(x, t) = {x}t =
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{y ∈ E ‖ ‖x− y‖ ≤ t}, the index ‖ · ‖ could be of course a distance d or
simply unspecified when we implicitly consider the classical norm of E.

At If A ⊂ E, At is the closed set {x ∈ E | d(x,A) ≤ t} ⊃ A.
Stf Level set of f : E → R. For t ∈ R, Stf = {x ∈ E | f(x) ≤ t}.
Sp Sphere of Rp+1 (Sp = {x ∈ Rp+1 | ‖x‖ ≤ 1}).
η(E,‖·‖) Norm degree, see Definition 9.
P We implicitly suppose all over the paper that there exists a probabil-

ity space (Ω,F ,P) where F is a sigma-algebra of the set Ω and P, a
probability measure defined on the elements of F . The random vectors
we consider are then P-measurable applications defined on Ω and tak-
ing value in normed vector spaces endowed with the Borel σ-algebra.
In that setting, given a random vector X ∈ E (i.e. X : Ω → E), for
any Borel set A ⊂ E, we note P(X ∈ A) = P({ω ∈ Ω, X(w) ∈ A})
and for any measurable function f : E 7→ R and t ∈ R, we note
P(f(X) ≥ t) = P({ω ∈ Ω, f(X(ω)) ≥ t})...

E The expectation operator. For any random vector X ∈ E and any mea-
surable function f : E → R, we define E[f(X)] =

∫
Ω
f ◦XdP. When E

has finite dimension, it is possible to define EX by integrating all the
coordinates of X.

σ(X) If X ∈ Mp,n, σ(X) ∈ Rmin(p,n)
+ is the vector constituted of the singular

values of X in increasing order (i.e. the eigenvalues of (XXT )1/2). If
X ∈ E is a random vector, σ(X) is the σ-algebra generated by X (i.e.,
the σ-algebra of sets of Ω containing all the sets X−1(B) when B is a
Borel set of E).

a.s. Almost surely, an event (i.e., an element of F) A is true almost surely
iff P(A) = 1. We will often abusively mix up random vectors and classes
of almost surely equal random vectors.

i.i.d. “independent and identically distributed”.
E[·|·] Conditional expectation. Given a random variable X ∈ R and G, a sub

σ-algebra of F , E[X|G] is the unique random variable that
P(·|·) Conditional probability. Given a Borel set A ⊂ R and a random variable

X ∈ R, P(A|X) = E[1A|X].
∈,± Concentration around a pivot or around a deterministic equivalent, see

Definitions 3 and 8.
∝ Lipschitz concentration, see Definitions 2 and 10.
∝c Convex concentration, see Definition 12.
RX Observable diameter, see Remark 1.2.28
∝T· Transversal concentration, see Definition 14.
dµ If µ is a probability law defined on E, for any function f : E → R, such

that µ(f) =
∫
fdµ = 1, we note fdµ the measure verifying for all Borel

set B : fdµ(B) =
∫
1Bfdµ.

λp Lebesgue measure on Rp.
βpq Uniform measure on the ball B‖·‖q of Rp.
σp Uniform measure on Sp.
p Exponential measure. If p = 1 ν1 = e|·|

2 dλ1, for p ≥ 1, νp = ν1 ⊗ . . . ν1
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(ptimes).
N (0, Ip) Distribution of Gaussian vectors of Rp with zero mean and covariance

Ip.
mµ Stieltjes transform of the probability law µ on R. Let D ⊂ R be the

maximal Borel set such that µ(R\D) = 0, then ∀z ∈ C\D, the Stieltjes
transform is defined with the formula mµ(z) =

∫
D
dµ(w)
z−w .

Introduction

Sample covariance matrices are key quantities in applied statistics in that they
allow for the estimation of structural information in the second order statistics
of the sampled vectors, and find a wide range of applications in fields as di-
verse as applied statistics (e.g., financial statistics, biostatistics), signal or data
processing, wireless communications, etc. Precisely, for a set of n independent
random vectors x1, . . . xn ∈ Rp stacked in a matrix X = [x1, · · ·xn] ∈ Mp,n,
the sample covariance matrix S = 1

n

∑n
i=1 xix

T
i = 1

nXX
T ∈ Mp provides an

estimator for Σ = 1
nE[XXT ].

If the number of independently sampled vectors n is large compared to the
dimension p of the vectors, then under usually mild assumptions S converges
to Σ. When p and n have the same order of magnitude though, again under
classical assumptions, the operator norm difference ‖S − Σ‖ usually does not
vanish and S is thus not a consistent estimator for Σ. In their now famous article
[MP67], Marc̆enko and Pastur proved that, if the vectors xi, in addition to being
independent, have independent entries of zero mean and unit variance, then, as
n, p → ∞ with p/n → c ∈ (0,∞), the normalized counting measure of the
eigenvalues of S converges a.s. to a limiting distribution having a continuous
density, and now referred to as the Marc̆enko–Pastur distribution. From this
article on, many works have provided generalizations of [MP67]. This is the case
for instance of [SB95], where the authors assume that the xi can be written
under the form xi = Σ

1
2 zi for zi a vector with independent zero mean and

unit variance entries. It is to be noted that the independence [MP67], linear
dependence [SB95], or vanishing dependence [Ada11] between the entries of
X is key in the approach pursued in these articles as it provides a necessary
additional degree of freedom in the derivation of the proofs.

These earlier results thus found many practical applications in scientific fields
involving large dimensional matrix models with mostly linearly dependent en-
tries, most notably in applied statistics, electrical engineering and computer sci-
ence. But the renewed interest for machine learning applications, spurred by the
big data era, has recently brought forward the need to understand and improve
algorithms and methods relying on random matrix models involving non-linear
relations between their entries. In some scenarios, as with kernel matrices (that
is, matrices K ∈ Rn×n with entries of the type Kij = f(xTi xj) for some non-
linear function f), an asymptotic equivalence between these matrices and classi-
cal matrices with linearly dependent entries can be proved [El 10, CB16, KC17],
thereby transferring the asymptotic analysis of the former to that of the latter. In
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other scenarios though, such asymptotic equivalences are not available. This is in
particular the case of so-called random feature maps and neural networks. In ran-
dom feature maps, the vectors xi can be expressed under the form xi = σ(Wzi)
for some non-linear (referred to as the activation) function σ : R → R, here
applied entry-wise, W a given matrix, and zi yet another random vector. The
randomness in random feature maps arises from the fact that W is usually cho-
sen at random, often with independent and identically distributed entries (this
way allowing to produce p independent non-linear “features” of the vector zi).
Prior to training, neural networks (in particular feedforward neural nets) may
usually be seen as a cascade of such random feature maps. In evaluating the
performance of algorithms and methods based on random feature maps and
neural networks, it is often of importance to understand the statistical behavior
of S.

Still in the scope of the statistical analysis of data processing algorithms,
where sample covariance matrices built upon real data vectors xi are considered,
it is also quite restrictive, if not disputable, to assume that xi can be written
as xi = µ + Σ

1
2wi for some deterministic µ and with wi having independent

entries.

As we shall see in the course of the article, a very convenient assumption
to be made on xi in order (i) to answer the aforementioned controversial real
dataset modeling, (ii) to properly model random feature map and neural net-
work and (iii) to largely generalize the Marc̆enko–Pastur and related results,
is to propose that xi satisfies a vector-concentration inequality. In a nutshell,
concentration inequalities being stable under (bounded) linear operations and
non-linear Lipschitz operations, the framework proposed in this study allows for
a natural study of models of S with independent xi of the form σ(Wzi) with zi
itself a concentrated random vector (so for instance itself of the type σ2(W2yi)
with yi concentrated, and so on).

The objective of the article is precisely to provide a consistent method for
the analysis of S with xi independent concentrated random vectors based on
elementary concentration inequality principles, particularly suited to practical
applications in large dimensional machine learning. The article notably extends
the results of El-Karoui in [El 09], who first exploited concentration of mea-
sure arguments in place of independence in the classical proof approaches of
[MP67, SB95]. The technical arguments and findings of [El 09] are nonetheless
quite specific and treated lemma after lemma, some of the main results being
valid only for a restricted class of concentrated random vectors (such as ellipti-
cally distributed random vectors). We rather aim here at a self-contained generic
framework for the manipulation of a large class of random matrix models using
quite generic concentration identities. For instance, in the present article, we
provide a very simple expression of the concentration of quantities of the type
xTAx when x is normally concentrated and A a deterministic matrix, with a
very synthetic proof (see Lemma 1.1.9 and Theorem 1.2.52). The present work
also follows after a previous article by the same authors [LC17], in which a par-
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ticular model of concentrated random vectors xi = σ(Wzi) was studied in the
aim of analysing the performances of a one hidden-layered non-linear random
neural network, commonly referred to as an extreme learning machine [HZS06].
Concentration was there induced by the randomness of W and the Lipschitz
character of σ. Yet, not imposing that the input data zi are themselves con-
centrated random vectors led to restrictions in the results of [LC17], to which
the present article easily circumvents. In a subsequent companion article, ap-
plications of the present results to the asymptotic classification and regression
performance of extreme learning machines will be devised.

The present article is also quite general in that it allows to handle sample
covariance matrices for data xi arising from either of the two standard classes of
concentrated random vectors, that is (i) uniformly continuous (so in particular
Lipschitz) transformations of standard Gaussian random vectors, and (ii) affine
transformations of random vectors with independent and bounded entries; the
latter setting follows from the works of Talagrand [Tal95] and requires a more
subtle approach since vector concentration of this kind is only stable through
Lipschitz and convex functionals.

The remainder of the article is structured as follows. We introduce in the
first section a somewhat original (but convenient to our analysis) approach to
the notion of concentration of measure, probabilistically oriented and based on
a collection of efficient lemmas concerning random variables and subsequently
exported to the case of random vectors and matrices (one original specificity of
our approach is to study the stability of the concentration through basic oper-
ations like sums and products in algebras). The aim of this section is not only
to prepare the ground for the study of the sample covariance but also to offer a
generic toolbox beyond our present scope; for this reason we maintain as general
hypotheses as possible in this section. In the second section we then devise so-
called deterministic equivalents for the sample covariance matrix model under
study and we eventually illustrate the robustness of our results to both artificial
and real datasets.

Preamble

Remark 0.0.1 (Definition of S). As a first remark, note that we abusively
define the sample covariance matrix S as S = 1

nXX
T rather than the conven-

tional 1
nXX

T − 1
nEXEXT . This choice is not completely marginal in that not

subtracting the matrix EXEXT from S in general brings additional complica-
tions (because this matrix will in general have unbounded norm as p, n → ∞);
our concentration of measure approach however efficiently deals with this term.
From a practical standpoint, the removal of EXEXT means that this matrix can
be computed, which is in general not the case. Alternatively, centering S by the
empirical average 1

nX1n1TnX
T presumes that the xi are identically distributed

which, as is common in classification applications in machine learning, is also
not a desirable assumption.

imsart-generic ver. 2014/10/16 file: output.tex date: February 14, 2019



Louart & Couillet/Concentration of Measure and Large Random Matrices 8

In the course of the article, we will be particularly interested in the eigenvalues
l1, . . . , lp of S. More precisely, we will consider the spectral distribution F of S
defined as the following normalized counting measure of the eigenvalues of S (a
random probability measure):

F =
1

p

p∑
i=1

δli ,

where δx is the Dirac measure centered at x. As is conventional in large di-
mensional random matrix theory, we shall retrieve information of F through an
approximation of its Stieltjes transform mF , defined as:

mF (z) =

∫
w

1

w − z
dF (w) =

1

p
Tr
(

(S − zIp)−1
)

where z ∈ C belongs to the complementary of the support of F . Since the matrix
S is nonnegative definite, it suffices to study mF (z) for z ∈ R− to recover mF

by analytic extension. For convenience, rather than working on R− we shall
consider mF (−z) for z in R+.

The random matrix QS(z) = (S + zIp)
−1, referred to as the resolvent of S,

will thus be an object of fundamental importance in the remainder. It shall
be denoted Q when non-ambiguous. The convenience of the resolvent Q as
a cornerstone of random matrix theory analysis is due in part to its simple
boundedness properties:

Lemma 0.0.2. Given a matrix R ∈ Mp,n, a nonnegative definite symmetric
matrix C ∈Mp and z ∈ R+, we have the following bounds:

‖QC(z)‖ ≤ 1

z
‖QC(z)C‖ ≤ 1

∥∥∥Q 1
nRR

T (z)R
∥∥∥ ≤ √n√

z
.

Proof. The upper bound for ‖QC(z)‖ follows from the smallest eigenvalue of
C + zIp being larger than z. The second result is a consequence of the simple
identity QC(z)C + zQC(z) = Ip and the fact that QC(z) is symmetric positive
definite. Combining the first two results, we have the bound∥∥∥∥Q 1

nRR
T (z)

1

n
RRTQ 1

nRR
T (z)

∥∥∥∥ ≤ 1

z
,

providing the last result.

Beyond the eigenvalues of S, our interest (also driven by numerous applica-
tions in electrical engineering and data processing) will also be on the eigenvec-
tors of S. For U = [u1, . . . , ul] an eigen-basis for the eigenspace associated to
the multiplicity-l eigenvalue λ of S, remark that UUT = 1

2πı

∮
Γλ
Q(−z)dz for
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Louart & Couillet/Concentration of Measure and Large Random Matrices 9

Γλ a negatively oriented complex contour surrounding λ only. As such, beyond
studying the trace of Q (and thus the Stieltjes transform of S), our interest is
also on characterizing Q itself.

Precisely, we shall study so-called deterministic equivalents for Q, the pre-
cise definition of which is given in Definition 8 and that can be described as
deterministic matrices Q̃ verifying TrA(Q − Q̃) → 0 when A has unit norm
(depending on the tightness of the concentration around Q̃, the norm of A con-
sidered will either be the Frobenius norm ‖A‖F =

√
TrAAT , either the nuclear

norm ‖A‖1 = Tr(AAT )
1
2 ). Note that if we control TrA(Q− Q̃), we also control

uT (Q− Q̃)v = Tr vuT (Q− Q̃) for two deterministic vectors u, v ∈ Rp with unit
norm (in that case

∥∥vuT∥∥
F

=
∥∥vuT∥∥

1
= ‖u‖ ‖v‖). In the following lines, we pro-

vide an outline for our subsequent development. First, let us note that a naive
approach would be to think that (Σ + zIp)

−1 might be a deterministic equiva-
lent for Q. This turns out to be incorrect under general assumptions. Instead,
letting Q̃ = (Σ′ + zIp)

−1 where Σ′ is some deterministic matrix to determine,
we may first compute the difference:

Q̃− EQ = E
[
Q

(
1

n
XXT − Σ′

)
Q̃

]
=

n∑
i=1

1

n
E
[
Q(xix

T
i − Σ′)Q̃

]
.

Here, to go further, we need to make explicit the dependence between xi and
the matrix Q in order to evaluate the expectation of the product Qxi. Let us
denote X−i ∈Mp,n−1 the matrix X deprived of its i-th column, which leads us
to defining the matrices S−i = 1

nX−iX
T
−i and Q−i = (SX−i + zIp)

−1 (which is
not QSX−i as n is not turned in n − 1). To handle the dependence between xi
and Q, we will massively exploit in the paper the classical Schur identities:

Q = Q−i −
1

n

Q−ixix
T
i Q−i

1 + 1
nx

T
i Q−ixi

and Qxi =
Q−ixi

1 + 1
nx

T
i Q−ixi

. (1)

The second inequality allows us to disentangle the relation between Q and xi in
the product Qxi with a similar but easier to apprehend product Q−ixi and a fac-
tor 1/

(
1 + 1

nx
T
i Q−ixi

)
easily controllable thanks to a first call to concentration

inequalities (see subsequently Property 1.2.52). This leads us to:

Q̃− EQ =

n∑
i=1

1

n
E
[
Q−i

(
xix

T
i

1 + 1
nx

T
i Q−ixi

− Σ′
)
Q̃

]
− 1

n2

n∑
i=1

E
[
Q−ixix

T
i QΣ′Q̃

]
.

We will see that, due to the supplementary factor 1/n, the norm of the rightmost
random matrix will be negligible compared to that of the other right-hand side
matrix. Thus, if one assumes, say, that the random vectors (xi)1≤i≤n follow the
same law (not our general assumption in the article), one would choose naturally
Σ′ = E[xix

T
i ]/(1 + δ) where δ = 1

nE[xTi Q−ixi] = 1
n TrE[Q−i]E[xix

T
i ]. Then,

having established that 1
nETrAQ (and thus 1

nETrAQ−i) is close to 1
n TrAQ̃,

in particular here for A = E[xix
T
i ], one may establish an implicit equation for

δ not involving expectations over Q (or Q−i). The remaining issue, at the core
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of our present analysis, is now to find a convenient setting in the modeling of
the xi for which such a choice of Σ′ would guarantee that 1

p Tr(EQ− Q̃) indeed
vanishes. That will be related to the concentration of “chaos-like” quantities (see
[Ver17, Section 6.1]) such as xTi Q−ixi but also of quantities such as TrAQ or
uTQv as we shall see.

In the first part of the article, we will show that a comfortable approach
is to structure our results as an outgrowth of the concentration of measure
phenomenon. To give a brief insight into our approach, let us give the original
theorem of the theory that we owe to Paul Pierre Levy in the beginning of the
twentieth century and concerns the concentration of the uniform distribution
σp on the sphere Sp. To demystify the result we mention that it is closely linked
to the isoperimetrical inequality.

Theorem 0.0.3 (Normal concentration of σp, [Led01, Theorem 2.3]). Given
a degree p ∈ N and a random vector Z ∼ σp, for any 1-Lipschitz function
f : Rp+1 → R, we have the inequality :

P (|f(Z)−mf | ≥ t) ≤ 2e−(p−1)t2/2 (2)

where mf is a median of f(Z) verifying by definition P(f(Z) ≥ mf ),P(f(Z) ≤
mf ) ≥ 1

2 .

There exist plenty of other distributions that verify this inequality like the
uniform distribution on the ball, on [0, 1]n, or the Gaussian distribution N (0, Ip)
that are presented in [Led01] ; more generally, for Riemannian manifolds, the
concentration can be interpreted as a positive lower bound on the Ricci curvature
(see Gromov appendix in [MS86] or [Led01, Theorem 2.4]). Our study will not
evoke the design of such distributions and the validity of their concentration
since this work has already been treated in the past; we will rather directly
assume a similar concentration inequality to (2) for the data matrix X and
then, with the tools developed in Section 1, we will infer the concentration of
the Stieltjes transform mF (z) for any z > 0 and devise a good estimator of it.
To prepare the applications to come, the dimension p must be thought to be
quasi-asymptotic. In that sense the tightening of the concentration when the
metric diameter of the distribution stays constant is a remarkable specificity
of the concentration phenomenon ; this is furthermore a necessary condition,
required for our study in Section 2. The concentration inequality verified on the
sphere will structure our paper in a way that we will try to express our result
with that form as often as possible to pursue Levy’s idea; we will thus choose
the short notation f(Z) ∈ mf ± 2e−(p−1) · 2/2 to express it in a simple way.

1. The Concentration of Measure Framework

As Milman has advocated from the beginning of the seventies ([MS86]), the
concentration of a random object appears to be an essential feature leading im-
mediately to a lot of implications and controls on the object. We do not present
here the historical introduction of concentration of the measure. Rather than
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the geometric, distribution-oriented approach, we directly adopt a probabilistic
point of view on the notion. That does not mean that the presentation of the
theory will be incomplete. On the contrary, we display here, almost always with
their proofs, all the important theorems and propositions necessary to appre-
hend the theory and set rigorously the study of Section 2 about the sample
covariance. The usual approach to the concentration of measure is to start with
geometric inequalities ruling high dimensional Banach spaces and then track
from these powerful results some probabilistic properties on the real function-
als, the “observable world”. We propose here a reversed approach where we start
from the probabilistic results on R which offer us some interesting reasoning
schemes all the same. Then, once the reader convinced by the direct compu-
tation improvements offered by the theory, we perform the fundamental step
consisting in considering high dimensional concentration properties. Many of
the results are derived from the complete presentation of the theory made by
Ledoux in [Led01].

1.1. Concentration of a random variable

1.1.1. Definition and first Properties

Definition 1 (Concentration function). Any non-increasing and left continuous
function α : R+ → [0, 1], is called a concentration function.

Given a random variable Z and a concentration function α, we choose first
to express the α-concentration of Z through the introduction of an independent
copy Z ′.

Definition 2 (Concentration of a random variable). The random variable Z is
said to be α-concentrated, and we write Z ∝ α, iff for any independent copy
Z ′ :

∀t > 0 : P (|Z − Z ′| ≥ t) ≤ α(t). (3)

In Definition 1, the different properties required for the concentration func-
tion (α ∈ [0, 1], non-increasing, left-continuous) are important features of any
function t 7→ P (|X| ≥ t) when X is a random variable. In particular, if we often
deal with concentration functions α that take values outside of (−∞, 1], it is
implicitly understood that we consider in the calculus t 7→ min{α(t), 1} instead
of α.

In Definition 2, we see that α basically limits the variations of the random
variable Z. The faster α decreases, the lower the variations of Z. Instinctively
one might hope that this limitation of the variation would be equivalent to a
concentration around some central quantity that will be called a pivot of the
concentration in the following sense :

Definition 3 (Concentration around a pivot). Given a ∈ R, the random vari-
able Z is said to be α-concentrated around the pivot a, and we write Z ∈ a±α,

imsart-generic ver. 2014/10/16 file: output.tex date: February 14, 2019



Louart & Couillet/Concentration of Measure and Large Random Matrices 12

iff :

∀t > 0 : P (|Z − a| ≥ t) ≤ α(t).

We call the parameter a a pivot because the concentration around a provides
similar concentration around other values close to a. Given θ > 0, let us denote
τθ the operator defined on the set of concentration functions that verifies for
any concentration function α :

τθ · α(t) =

{
1 if t ≤ θ
α(t− θ) if t > θ.

Then we have the simple Lemma :

Lemma 1.1.1. Given a random variable Z ∈ R, a concentration function α,
two real numbers a, b ∈ R and θ > 0, we have the implication :{

Z ∈ a± α
‖a− b‖ ≤ θ

=⇒ Z ∈ b± τθ · α.

At first sight, there exists no pivot a ∈ R such that Definition 2 and Def-
inition 3 are equivalent. We can however find an interesting relation consid-
ering the case a = mZ where mZ is a median of Z, verifying by definition
P(Z ≥ mZ) ≥ 1/2 and P(Z ≤ mZ) ≥ 1/2.

Proposition 1.1.2 (Concentration around the median, from [Led01, Corol-
lary 1.5]). Given a random variable Z, a median mZ of Z and a concentration
function α, we have the implications :

Z ∝ α =⇒ Z ∈ mZ ± 2α =⇒ Z ∝ 4α( · /2)

where α( · /2) is defined as being the function t 7→ α(t/2).

We see here that if Z is α-concentrated, the tail of Z, i.e., the behavior of Z
far from the median, is closely linked to the decreasing speed of α.

Proof. We need to consider the fact that P (Z = mZ) = ε may be non zero.
Therefore there exist ε1, ε2 such that ε = ε1 + ε2 and :

P (Z < mZ) =
1

2
− ε1 P (Z > mZ) =

1

2
− ε2.
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Let us take t > 0. The first result follows from the inequalities :

P (|Z − Z ′| ≥ t) = P (|Z − Z ′| ≥ t, Z ′ < mZ) + P (|Z − Z ′| ≥ t, Z ′ > mZ)

+ P (|Z −mZ | ≥ t, Z ′ = mZ)

≥ (1/2− ε1)P (Z ≥ t+ Z ′ | Z ′ < mZ)

+ (1/2− ε2)P (Z ′ ≥ t+ Z | Z ′ > mZ)

+ ε P (|Z −mZ | ≥ t)
≥ (1/2− ε) (P (Z ≥ t+mZ) + P (mZ ≥ t+ Z))

+ ε P (|Z −mZ | ≥ t)

=
1

2
P (|Z −mZ | ≥ t) .

The second result is true for any real a ∈ R replacing mZ :

P (|Z − Z ′| ≥ t) ≤ P (|Z −mZ +mZ − Z ′| ≥ t)
≤ 2P (|Z −mZ | ≥ t/2) .

The reason why Definition 2 was presented firstly and thus given the im-
portance of the naturally underlying definition, even though Definition 3 might
seem more intuitive, lies in its immediate compatibility to the composition with
any Lipschitz function and more generally with any uniformly continuous func-
tion. The uniform continuity of a function is sized by its modulus of continuity.
Although we presently work on R, we give a general definition of the continuity
modulus between two normed vector spaces because it will be useful in the next
sections.

Definition 4 (Uniform continuity). Any non decreasing function ω : R+ → R+

continuous and null in 0 is called a modulus of continuity. Given two normed
vector space (E, ‖·‖E) and (F, ‖·‖F ), a function f : E → F is said to be contin-
uous under the modulus of continuity ω if :

∀x, y ∈ E : ‖f(x)− f(y)‖F ≤ ω(‖x− y‖E).

When ∀t > 0, ω(t) = λtν for λ > 0 and ν ∈ (0, 1], we say that f is (λ, ν)-
Hölder continuous, ν is called the Hölder exponent and λ is called the Lipschitz
coefficient ; indeed, if ν = 1, f is said to be λ-Lipschitz. Of course a function
admits a modulus of continuity iff it is uniformly continuous.

Lemma 1.1.3. Let us consider a random variable Z, a concentration function
α, and a function f : R → R continuous under a modulus of continuity ω.We
allow ourselves to write ω−1 the pseudo inverse of ω defined (for ω bijective or
not) as : ω−1(w) = inf{t, ω(t) ≥ w}. We have the implication :

Z ∝ α =⇒ f(Z) ∝ α
(
ω−1 ( · )

)
.
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Proof. It is straightforward to write :

P (|f(Z)− f(Z ′)| ≥ t) ≤ P (ω(|Z − Z ′|) ≥ t)
≤ P

(
|Z − Z ′| ≥ ω−1(t)

)
≤ α

(
ω−1 (t)

)
since for any w, t > 0, ω(t) ≥ w =⇒ t ≥ ω−1(w) by definition of the pseudo
inverse.

Remark 1.1.4. Definition 3 is not so compatible with the ω-continuous trans-
formations. Indeed, the simple developments that one finds in the proof above
cannot be performed when strictly assuming that Z ∈ mZ ± α. In this case, one
would rather combine Lemma 1.1.3 with Proposition 1.1.2 to find :

Z ∈ mZ ± α =⇒ f(Z) ∈ mfZ ± 2α

(
1

2
ω−1 ( · /2)

)
.

The stability with respect to ω-continuous functions reflects the fact that
a ω-continuous function contains the spreading of the distribution up to the
modulus of continuity.

One property that we could expect from α-concentration is a stability towards
the sum. Up to a multiplying factor of 2, this is the case :

Lemma 1.1.5. Given two random variable Z1 and Z2 and two concentration
functions α, β, we have the implication :

Z1 ∝ α and Z2 ∝ β =⇒ Z1 + Z2 ∝ α( · /2) + β( · /2).

Proof. Recall that Z ′1 and Z ′2 are two independent copies respectively of Z1 and
Z2. There is no reasons for Z ′1 to be independent of Z2 (resp., Z ′2 of Z1). The
idea is to decompose the threshold t > 0 in t

2 + t
2 :

P (|Z1 + Z2 − Z ′1 − Z ′2| ≥ t)

≤ P
(
|Z1 − Z ′1| ≥

t

2

)
+ P

(
|Z2 − Z ′2| ≥

t

2

)
≤ α

(
t

2

)
+ β

(
t

2

)
.

Remark 1.1.6. This time the idea of the demonstration works the same with
the setting of Definition 3, and we have :

Z1 ∈ a± α and Z2 ∈ b± β =⇒ Z1 + Z2 ∈ a+ b± α( · /2) + β( · /2).

In a first approach, α-concentration performs badly with the product, as it
requires a bound on both random variables involved which greatly reduces the
number of possible applications.

Lemma 1.1.7. Given two bounded random variable Z1 and Z2 such that |Z1| ≤
K1 and |Z2| ≤ K2 and two concentration functions α, β :

Z1 ∝ α and Z2 ∝ β =⇒ Z1Z2 ∝ α
(
·

2K2

)
+ β

(
·

2K1

)
.
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Proof. Given t > 0 :

P (|Z1Z2 − Z ′1Z ′2| ≥ t) ≤ P
(
|Z1(Z2 − Z ′2)| ≥ t

2

)
+ P

(
|(Z1 − Z ′1)Z ′2| ≥

t

2

)
≤ P

(
|Z2 − Z ′2| ≥

t

2K1

)
+ P

(
|Z1 − Z ′1| ≥

t

2K2

)
.

Actually, the setting of Definition 3 is more convenient here than the setting
of Definition 2 because it allows us to only require one random variable to be
bounded :

Lemma 1.1.8. Given two random variables Z1 and Z2 such that |Z1| ≤ K1,
two pivot a, b ∈ R and two concentration functions α, β, if b 6= 0 one has the
implication :

Z1 ∈ a± α and Z2 ∈ b± β =⇒ Z1Z2 ∈ ab± α
(
·

2 |b|

)
+ β

(
·

2K1

)
,

if b = 0, then the concentration of Z1 and Z2 implies that Z1Z2 ∈ 0± β( ·K1
).

We may even go further and dispense with the bounding hypothesis to get
in this case a slightly more complicated concentration form :

Proposition 1.1.9. Given two random variable Z1 and Z2, two pivot a, b ∈ R
and two concentration functions α, β such that Z1 ∈ a ± α and Z2 ∈ b ± β, if
a 6= 0 and b 6= 0, then Z1Z2 is concentrated around ab with :

Z1Z2 ∈ ab± α
(√

·
3

)
+ α

(
·

3 |b|

)
+ β

(√
·
3

)
+ β

(
·

3 |a|

)
.

If a = 0 and b 6= 0, we get Z1Z2 ∈ 0 ± α
(√ ·

2

)
+ α

(
·

2|b|

)
+ β

(√ ·
2

)
and if

a = b = 0, Z1Z2 ∈ 0± α
(√
·
)

+ β
(√
·
)
.

Proof. We just prove the result for a, b 6= 0 since the other cases are simpler. The
idea is to use the algebraic identity : xy−ab = (x−a)(y−b)+a(y−b)+b(x−a)
and the implication xy ≥ t⇒ x ≥

√
t or y ≥

√
t (for x, y, t ≥ 0):

P (|Z1Z2 − ab| ≥ t) ≤ P

(
|Z1 − a| ≥

√
t

3

)
+ P

(
|Z2 − b| ≥

√
t

3

)

+ P
(
|Z1 − a| |b| ≥

t

3

)
+ P

(
|Z2 − b| |a| ≥

t

3

)
.

In the case of the square of a random variable or even an integer power of
any size, the concentration given by Proposition 1.1.9 can simplify.
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Proposition 1.1.10. Given m ∈ N and a random variable Z ∈ a ± α with
a ∈ R and α, one has the concentration :

Zm ∈ am ± α

(
·

2m |a|m−1

)
+ α

(( ·
2

) 1
m

)
Proof. Let us employ the algebraic identity :

Zm = (Z − a+ a)
m

=

m∑
i=0

(
m

i

)
am−i(Z − a)i = am + am

m∑
i=1

(
m

i

)(
Z − a
a

)i
.

If
∣∣Z−a

a

∣∣ ≤ 1, for any i ∈ {1, . . .m},
∣∣Z−a

a

∣∣i ≤ ∣∣Z−aa ∣∣ and conversely, if
∣∣Z−a

a

∣∣ ≥ 1,
then

∣∣Z−a
a

∣∣i ≤ ∣∣Z−aa ∣∣m. This entails :

|Zm − am| ≤ (2 |a|)m
(∣∣∣∣Z − aa

∣∣∣∣+

∣∣∣∣Z − aa

∣∣∣∣m)
and therefore :

P (|Zm − am| ≥ t) ≤ P

(
|Z − a| ≥ t

2m |a|m−1

)
+ P

(
|Z − a| ≥

(
t

2

) 1
m

)
.

In the same vein, we can give the concentration of the product of m random
variables, we will though obtain better concentration constants in the case of
q-exponential concentration that will be studied in the next subsection. For that
reason we left the formulation and the proof of this result in Appendix A. In
the same appendix, one can find the expression of the concentration of Zr when
r ∈ R+

∗ (and Z is concentrated).
We conclude this section by setting the continuity of the concentration prop-

erty. We adopt the classical formalism for the convergence of a random variable
(or vector).

Definition 5. We say that a sequence of random variables (or random vectors)
Zn converges in law (or “in distribution” or “weakly”) to Z if for any real valued
continuous function f with compact support :

lim
n→∞

E[f(Zn)] = E[f(Z)].

Although we rather find in the literature the definition mentioning contin-
uous and bounded functions, this equivalent definition relying on the class of
continuous functions with compact support is more adapted to our needs (see
Proposition 1.2.59). We start with the preliminary lemma :

Lemma 1.1.11 ([Ouv09], Proposition 14.17). Let us consider a sequence of ran-
dom variable Zn, n ∈ N, and a random variable Z with cumulative distribution
functions respectively noted FZn , n ∈ N, and FZ . The sequence (Zn)n≥0 con-
verges in law to Z iff for any t ∈ R such that FZ is continuous on t, (FZn(t))n≥0

converges to FZ(t).
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Proposition 1.1.12. Consider a sequence of random variables (Zn)n≥0 that
converges in law to a random variable Z, a sequence of pivot (an)n≥0 converging
to a pivot a ∈ R and a sequence of concentration functions (αn)n≥0 that point-
wise converges to a continuous concentration function α. If we suppose that, for
any n ∈ N, Zn ∈ an ± αn then Z ∈ a± α.

Proof. For any n ∈ N, let us note Yn = |Zn − an| and Y = |Z − a|. We wish to
show first that (Yn)n≥0 converges in law to Y . Let us consider for that purpose
a continuous function f : R→ R with compact support S and ε > 0. We know
from the Heine-Cantor theorem that f is uniformly continuous, therefore there
exists η > 0 such that :

|x− y| ≤ η =⇒ |f(x)− f(y)| ≤ ε

2
.

Moreover, since limn→∞ an = a, there exists n0 > 0 such that for any n ≥ n0,
|an − a| ≤ η. Eventually, if we introduce the function g : x → |x− a|, we know
that f ◦ g has a compact support S′ = a + S ∪ a − S, and thus there exists
n1 ∈ N such that if n ≥ n1 :

|E[f(|Zn − a|)]− E[f(|Z − a|)]| = |E[f ◦ g(Zn)]− E[f ◦ g(Z)]| ≤ ε

2
.

Therefore if we consider n ≥ max(n0, n1) :

|E[f(Yn)]− E[f(Y )]| ≤ |E[f(|Zn − an|)− f(|Zn − a|)]|
+ |E[f(|Zn − a|)− f(|Z − a|)]| ≤ ε.

Then we know from Lemma 1.1.11 that for any t such that the cumulative
distribution function FY = P (|Z − a| ≤ · ) is continuous around t :

P (|Z − a| ≥ t) = lim
n→∞

P (|Zn − an| ≥ t) ≤ lim
n→∞

αn(t) = α(t).

Since α is continuous and t → P (|Z − a| ≥ t) is decreasing, we recover the
preceding inequality for any t > 0, and Z ∈ a± α.

In the setting of Definition 2, we can show the continuity of the concentration
the same way introducing this time the random variables Yn = |Zn − Z ′n| (Z ′n
being a sequence of independent copies of Zn). We present the next proposition
without proof.

Proposition 1.1.13. In the setting of Proposition 1.1.12, if for any n ∈ N
Zn ∝ αn, then Z ∝ α.

1.1.2. Exponential concentration

In [Led01], Ledoux defines a random variable as normally concentrated when the
concentration function is of the form Z ∝ Ce−( · /σ)2

for two given constants C ≥
1 and σ > 0. The form of the concentration function has no real importance on
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small dimensions since the result ensues from a mere bound on the Gaussian Q-
function; it is however surprising that this form naturally appears for the uniform
distribution on the sphere (see Theorem 0.0.3) and others in high dimensions.

In order to present a general picture that will be helpful later (when deal-
ing with products of random variables), let us include the general case of q-
exponential concentrations that we present with the formalism of Definition 3.

Definition 6. Given q > 0, a random variable Z is said to be q-exponentially
concentrated with head parameter C ≥ 1 and tail parameter σ > 0 iff there
exists a pivot a ∈ R such that Z ∈ a± Ce−(·/σ)q .

Example 1.1.14. A random variable Z following a Gaussian distribution with
zero mean (i.e. zero median) and unit variance is 2-exponentially concentrated
with a tail parameter equal to

√
2 : Z ∈ 0± 2e−(·)2/2.

In practice, the random variables will depend on a random vector whose
dimension, say p, tends to infinity, the tail parameter is then a function of p
that represents the asymptotic speed of concentration since it has the same order
as the standard deviation of Z. If the q-exponential concentration functions are
employed reasonably, the asymptotic information can be transmitted from the
head parameter to the tail parameter so that the head parameter would stay
mainly uninformative and close to 1. For that purpose, the following lemma
gives us an easy way to bound a given concentration to a close one with a head
parameter equal to e.

Lemma 1.1.15. Given x, q > 0 and C ≥ e, we have the inequality :

min(1, Ce−x) ≤ ee−x/2 log(C)

Proof. If x ≤ 2 log(C) the inequality is clear, and if x ≥ 2 log(C) ≥ 2, we deduce
the result of the lemma from the equivalence

log(C)− x ≤ − x

2 log(C)
⇐⇒ x ≥ 2 log(C)2

2 log(C)− 1
,

since 2 log(C)2

2 log(C)−1 ≤
2 log(C)2

log(C) ≤ x.

To place ourselves under the hypotheses of Lemma 1.1.15 and as it appears
rather convenient in several propositions below we will suppose from now on
that the tail parameter C is greater than e.

Exponential concentrations offer simple expressions of the concentration through
shifting the pivot thanks to the following lemma.

Lemma 1.1.16. Given the parameters C ≥ e and q, σ, θ > 0 :

∀t > 0 : τθ · Ce−(·/σ)q ≤ max
(
e(θ/σ)q , C

)
e−(·/2σ)q

Proof. The increasing behavior of t 7→ tq ensures that (t− θ)q ≥ (t/2)q when
t ≥ 2θ, therefore :

∀t ≥ 2θ : P (|Z − b| ≥ t) ≤ Ce−(t/2σ)q
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The result is also true when 0 ≤ t ≤ 2θ since :

P (|Z − b| ≥ t) ≤ 1 ≤ e(θ/σ)qe−(2θ/2σ)q .

This lemma, combined with lemma 1.1.1, clarifies the notion of tail parame-
ters. The next corollary shows that it can be seen as the diameter of a “black
hole” centered around any pivot of the concentration, in a sense that each value
inside this “black hole” can be considered as a satisfactory pivot for the concen-
tration ; this will be called later, in the case of random vectors, the observable
diameter of the distribution, following Gromov terminology [Gro79].

Corollary 1.1.17. Given C ≥ e and three positive parameters σ, λ, q > 0,
two real a and b such that |a− b| ≤ λσ and a random variable Z, one has the
implication :

Z ∈ a± Ce−(·/σ)q =⇒ Z ∈ b± C ′ exp
(
−
( ·

2σ

)q)
where C ′ = max(C, eλ

q

).

Note that the interesting aspect of the result is the independence of the
head parameter C ′ = max(C, eλ

q

) to the tail parameter σ. Moreover the tail
parameter stays unmodified when q < 1.

We now have all the elements to show that, due to the high concentration of
exponentially concentrated random vectors, every median plays a pivotal role
among the different constants that can localize the concentration.

Proposition 1.1.18 ([Led01, Proposition 1.8]). Given a random variable Z,
and a median mZ of Z, if we suppose that Z ∈ a±Ce−( · /σ)q for a pivot a ∈ R,
then :

Z ∈ mZ ± 2C exp
(
−
( ·

2σ

)q)
.

Proof. For some ε > 0, we choose t0 > σ (log(2C) + ε)
1/q. We know that

P (|Z − a| ≥ t0) < 1
2 and consequently |a−mZ | ≤ t0. Indeed if we suppose

that mZ ≥ a+ t0, then :

1/2 ≤ P (Z ≥ mZ) ≤ P (Z − a ≥ t0) ≤ P (|Z − a| ≥ t0) ,

and we get the same absurd result if we suppose that a ≥ mZ + t0. We can
thus conclude thanks to Corollary 1.1.17 (with C ′ = max(C, exp(

tq0
σq )) = 2Ceε),

letting ε tend to zero.

The tails of q-exponentially concentrated random variables can be controlled
rather easily and roughly thanks to the next lemma that is based on the same
simple mathematical inequalities that lead to Corollary 1.1.17.
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Lemma 1.1.19. Given a random variable Z, two parameters C ≥ e and σ > 0
an exponent q > 0 and a pivot a ∈ R, if Z ∈ a± Ce−( · /σ)q then ∀t ≥ 2 |a| :

P (|Z| ≥ t) ≤ Ce−(t/2σ)q .

Very interestingly, exponential concentration is of great computation conve-
nience to manage Hölder’s inequality. For instance a general issue is to bound :

E [(Z1 − a1)r1 · · · (Zm − am)rm ] .

For any θ1, · · · , θm ∈ (0, 1) such that θ1 + · · ·+θm = 1, Hölder’s inequality gives
us directly :

E [(Z1 − a1)r1 · · · (Zm − am)rm ] ≤
m∏
i=1

(
E |Zi − ai|

ri
θi

)θi
. (4)

As we will see in the next proposition, the quantities E |Zi−ai|r can be bounded
easily when Zi = ai±Ce−( · /σ)qi , and we will even show in the next proposition
that the bounds on E |Zi − ai|r for r > 0 can become a characterization (it is
actually a pseudo-characterization since there is no equivalence) of q-exponential
concentrations.

Proposition 1.1.20 (Moment characterization of concentration, [Led01, Propo-
sition 1.10]). Given a random variable Z, a pivot a ∈ R, two exponents r, q > 0,
and two parameters C ≥ e and σ > 0, we have the implications :

Z ∝ Ce−(·/σ)q ⇒ ∀r ≥ q : E
[
|Z − Z ′|r

]
≤ CΓ

(
r

q
+ 1

)
σr ⇒ Z ∝ Ce−

(·/σ)q

e

and

Z ∈ a± Ce−(·/σ)q ⇒ ∀r ≥ q : E [|Z − a|r] ≤ CΓ

(
r

q
+ 1

)
σr ⇒ Z ∈ a± Ce−

(·/σ)q

e ,

where Γ : r 7→
∫∞

0
tr−1e−tdt, (if n ∈ N, Γ(n+ 1) = n!).

In both results, the first implication consists in bounding an expectation with
a probability; it will involve the Fubini relation, giving for any positive random
variable Z :

EZ =

∫
Z

(∫ ∞
0

1t≤Zdt

)
dZ =

∫ ∞
0

P (Z ≥ t) dt,

where 1t≤Z is equal to 1 if t ≤ Z and to 0 otherwise.
The second implication consists in bounding a probability with an expecta-

tion; it is a consequence of Markov’s inequality, for any non decreasing function
f : R→ R :

P (Z ≥ t) ≤ Ef(Z)

f(t)
.

These two key indications given we can start the proof.
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Proof. We just prove the first implication, as it will be clear that both can be
proved the same way. Let us first suppose that r ≥ q. Knowing that Z ∝ e−(ct)q ,
we consider Z ′, an independent copy of Z, and we can bound :

E [|Z − Z ′|r] =

∫ ∞
0

P (|Z − Z ′|r ≥ t) dt =

∫ ∞
0

rtr−1P (|Z − Z ′| ≥ t) dt

≤ Cr
∫ ∞

0

tr−1e−(t/σ)qdt = Cσrr

∫ ∞
0

tr−1e−t
q

dt

and, since r ≥ q :

r

∫ ∞
0

tr−1e−t
q

dt =
r

q

∫ ∞
0

t
r
q−1e−tdt = Γ

(
r

q
+ 1

)
Now, assuming the second term of the implication chain, we know from

Markov’s inequality that ∀r ≥ q :

P (|Z − Z ′| ≥ t) ≤
E
[
|Z − Z ′|r

]
tr

≤ CΓ

(
r

q
+ 1

)(σ
t

)r
≤ C

(
r

q(t/σ)q

)r/q
.

If t ≥ e
1
q σ, we can then set r = qtq

eσq ≥ q, and we get :

P (|Z − Z ′| ≥ t) ≤ Ce−(t/σ)q/e.

If t ≤ e
1
q σ, we still know that P (|Z − Z ′| ≥ t) ≤ 1, and we conclude that :

∀t > 0 : P (|Z − Z ′| ≥ t) ≤ max(C, e)e−(t/σ)q/e.

Remark 1.1.21. In the last proposition, we did not provide a bound on E
[
|Z − Z ′|r

]
and E [|Z − a|r] for 0 ≤ r < q since it is irrelevant to the characterization of
q-exponential concentration. We may nonetheless easily bound these quantities
with Cσr. Getting inspiration from our previous derivations, we can indeed ob-
tain when 1 ≤ r ≤ q :

E [|Z − Z ′|r] ≤ Cσr
∫ ∞

0

rtr−1e−t
q

dt ≤ Cσr
∫ ∞

0

trqtq−1e−t
q

dt

≤ Cσr
∫ 1

0

qtq−1e−t
q

dt+ Cσr
∫ ∞

1

tqqtq−1e−t
q

dt

= Cσr
∫ ∞

0

qtq−1e−t
q

dt = Cσr

and when r ≤ 1 ≤ q, we conclude with Jensen’s inequality :

E [|Z − Z ′|r] ≤ E [|Z − Z ′|]r ≤ Crσr ≤ Cσr.

The following Lemma gives an alternative result to the aforementioned suffi-
ciency of bounds on E [|Z − a|r] (or on E [|Z − Z ′|r]) for r ∈ N.
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Lemma 1.1.22. Given a random variable Z ∈ R+ and three parameters C > e,
q, σ > 0 one has the implication :

∀m ∈ N, E[Zm] ≤ C
(
m

q

)m
q

σm =⇒ ∀r ≥ 0, E[Zr] ≤ Ce 1
e

(
r

q

) r
q

(
σ

q̄
1
q

)r
where q̄ = min(q, 1).

Proof. When r ≤ 1, we already know thanks to Jensen’s inequality, by concavity
of t 7→ tr, that :

E[Zr] ≤ (E[Z])r ≤ C
(

1

q

) r
q

σr ≤ Ce 1
e

(
r

q

) r
q

(
σ

q
1
q

)r
,

since ∀t > 0, tt ≥ 1

e
1
e
.

When r ≥ 1, one can invoke the well known result concerning `r norms, where
in our case, ‖Z‖`r = E [|Z|r]1/r. Let us consider the general case where we are
given p1, p2 > 0 such that p1 ≤ r ≤ p2 and we consider θ ∈ (0, 1) satisfying
1/r = θ/p1 + (1− θ)/p2. We then have the inequality :

‖Z‖`r ≤ ‖Z‖
θ
`p1 ‖Z‖

1−θ
`p2 .

This implies :

E [Zr]
1
r ≤

(
C

1
p1 σ

(
p1

q

) 1
q

)θ (
C

1
p2 σ

(
p2

q

) 1
q

)1−θ

≤ C
1
r σ

q
1
q

p
θ
q

1 p
1−θ
q

2 .

We would like to bound p
θ
q

1 p
1−θ
q

2 with r
1
q . Unfortunately, for θ ∈ ]0, 1[, pθ1p

1−θ
2 >

1/(θ/p1+(1−θ)/p2) = r (this is due to the inequality of arithmetic and geometric
means, itself a consequence of the concavity of the log function). However, for
the particular setting under study :(

θ

p1
+

1− θ
p2

)
pθ1p

1−θ
2 ≤

(
1

p2
+

(p2 − p1)θ

p1p2

)
p2 ≤ 1 +

p2 − p1

p1
.

As a consequence, taking p1 = brc and p2 = dre, one obtains :

E [|Z|r] ≤ Cσr
(

2r

q

) r
q

.

Remark 1.1.23. In Proposition 1.1.20, we saw that if Z ∈ a ± Ce−( · /σ)q

then |EZ − a| ≤ E |Z − a| ≤ C
(

1
q

)1/q

σ < ∞. Therefore any q-exponentially
concentrated random variable admits a finite expectation.

imsart-generic ver. 2014/10/16 file: output.tex date: February 14, 2019



Louart & Couillet/Concentration of Measure and Large Random Matrices 23

Now that we know it exists, we are going to show that the expectation EZ
plays the same pivotal role as any median.

Corollary 1.1.24 ([Led01, Proposition 1.9]). With the notations of the previous
proposition, one has :

Z ∈ a± Ce−( · /σ)q =⇒ Z ∈ EZ ± e
Cq

q e−( · /2σ)q .

Proof. We suppose that Z ∈ Ce−( · /σ)q for a pivot a ∈ R. Proposition 1.1.20
applied in the case r = 1 gives us |a− EZ| ≤ C( 1

q )
1
q σ. One can then invoke

Corollary 1.1.17, to get the concentration :

Z ∈ EZ ± C ′e−( · /2σ)q ,

with C ′ = max(C, e
Cq

q ). It is then interesting to note that the function q 7→ Cq

q

has a minimum in 1
log(C) where it takes the value e logC. Then we see that

C = elogC ≤ ee logC ≤ e
Cq

q ,

and we can simplify the head parameter to obtain the result of the corollary.

If Z ∈ a±Ce−( · /σ)p , we can then employ EZ as a pivot of Z to get a bound
on the centered moments :

Corollary 1.1.25. With the notations of Corollary 1.1.24, if we suppose that
Z ∈ a± Ce−( · /σ)q , then we have :

E |Z − EZ|r ≤ e
Cq

q (2σ)
r

(
r

q

) r
q

.

Provided two identically distributed random variables Z1, Z2 ∈ R, even if
Z1 and Z2 are not independent, one still intuitively expects that Z1 + Z2 and
Z1Z2 vary at most like 2Z1 and Z2

1 , respectively. This simple intuition can
be easily proved valid in the case of q-exponential concentrations thanks to
the characterization given by Proposition 1.1.20. But before getting into this
aspect, let us introduce the notion of controlling random variables that allows
us to handle the case of non identically distributed Z1 and Z2.

Definition 7. Given two random variables Z ∈ R and Y ∈ R+, one says that
Y controls Z iif ∀t ≥ 0 :

P (|Z| ≥ t) ≤ P (Y ≥ t) .

Given a set of random variables Z1, . . . , Zp ∈ R+, any random variable Y
admitting the cumulative distribution function :

FY (t) = P (Y ≤ t) = 1− sup
1≤i≤p

P (|Zi| > t)
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clearly controls Z1, . . . , Zp. If we consider a random variable Z depending on
Z1, . . . , Zp and want to express the concentration of Z thanks to Proposi-
tion 1.1.20, we are led to bound the quantities E[|Z − Z ′|r] or E[|Z − a|r].
The next lemma gives the central idea allowing to control those quantities with
expectations taken on Y only, when r ∈ N and Z = P (Z1, . . . , Zp) is a polyno-
mial functional with positive coefficients. It simply relies on Hölder’s inequality
and the fact that E[Zmi ] ≤ E[Y m] for all m ∈ N, 1 ≤ i ≤ p.

Lemma 1.1.26. Given two integers d, p ∈ N, a polynomial

P (X1, . . . , Xp) =
∑

b1+···+bp≤d

cbX
b1
1 · · ·Xbp

p

with positive coefficients cb = cb1,...,bp ≥ 0, b1 + · · · + bp ≤ d and p positive
random variables Z1, . . . , Zp ∈ R+ (possibly dependent), for any nonnegative
random variable Y ≥ 0 controlling Z1, . . . , Zp, we have the inequality :

E [P (Z1, . . . , Zp)] ≤ E [P (Y, . . . , Y )] .

Proof. It is a simple application of Hölder’s inequality :

E [P (Z1, . . . , Zp)] =
∑

b1+···+bp≤d

cbE
[
Zb11 . . . Zbpp

]

≤
∑

b1+···+bp≤d

cbE
[
Z
|b|
1

] b1
|b|
. . .E

[
Z |b|p

] bp
|a|

=
∑

b1+···+bp≤d

cbE
[
Y |b|

]
= E [P (Y, . . . , Y )]

where |b| =
∑p
i=1 bi ≤ p.

Lemma 1.1.22 combined with Lemma 1.1.26 provides us with the concentra-
tion of the sum of p random variables with a better tail parameter than the one
that would be obtained if we would employ Proposition 1.1.5 p times.

Proposition 1.1.27. Given the parameters C > e, q, σ > 0, p ∈ N, p random
variables Z1, . . . , Zp ∈ R satisfying, for any i ∈ {1, . . . ,m}, Zi ∈ ai±Ce−(·/σi)q

where ai ∈ R and σi > 0, we have the concentration :

Z1 + · · ·+ Zp ∈ a1 + · · ·+ ap ± e1/eC exp
(
− q

2e

( ·
σp

)q)
where σ =

∑p
i=1 σi

We will not prove here this proposition since it is a particular case of Propo-
sition 1.2.6 concerning the linear concentration of random vectors. In the same
setting, it is also possible to control the concentration of the product Z1 · · ·Zp.

imsart-generic ver. 2014/10/16 file: output.tex date: February 14, 2019



Louart & Couillet/Concentration of Measure and Large Random Matrices 25

Proposition 1.1.28. Let us consider three parameters C > e, q, σ > 0, an
integer p ∈ N, and p random variables Z1, . . . , Zp ∈ R satisfying, for any i ∈
{1, . . . ,m}, Zi ∈ a± Ce−(·/σ)q . Then, if a ≥ σ :

∀m ∈ N : E [|Z1 · · ·Zp − ap|m] ≤ C(2σap−1)m
(
m

q

)m
q

+ (2σ)pm
(
pm

q

) pm
q

while, if a ≤ σ :

∀m ∈ N : E [|Z1 · · ·Zp − ap|m] ≤ 3C(2σ)pm
(
pm

q

) pm
q

.

Remark 1.1.29. We did not express as in Proposition 1.1.27 the concentration
of Z1 · · ·Zp around ap since the bounds on E [|Z1 · · ·Zp − ap|m] are too complex
to allow for simple optimizations of the Chernoff inequalities as in the proof
of Proposition 1.1.20. Still, for a ≤ σ, we can infer from Lemma 1.1.22 (and
Proposition 1.1.20) :

Z1 · · ·Zp ∈ ap ± 3e1/eC exp

(
− q

2e

( ·
2pσp

) q
p

)
.

Remark 1.1.30. We will prove below a stronger result than Proposition 1.1.28
when in presence of multiple tail parameters and pivots. In the setting of Propo-
sition 1.1.27, we will show that for any λ > 0 :

E [|Z1 · · ·Zp − a1 · · · ap|m] ≤

(
p∏
i=1

(
|ai|+

σi
λ

))m(
λm
(
m

q

)m
q

+ λmp
(
mp

q

)mp
q

)
.

(5)

Then when the pivots a1, . . . , ap are equal to a and the tail parameters σ1, . . . , σp
are equal to σ, one can retrieve the result of Proposition 1.1.28 choosing λ = 1
when a ≤ σ and λ = σ

a when a ≥ σ.

Proof. Placing ourselves in the general setting of Proposition 1.1.27, we consider
a parameter λ > 0 and aim at proving (5). To employ Lemma 1.1.26, let us
introduce the polynomial

P (X1, . . . , Xp) = (σ1X1 + |a1|) · · · (σpXp + |ap|)− |a1 · · · ap|

= |a1 · · · ap|
p∑
l=1

∑
I⊂{1,...,p}

#I=l

∏
i∈I

σiXi

|ai|

that has positive coefficients and verifies :

|Z1 · · ·Zp − a1 · · · ap| ≤ P
(
|Z1 − a1|

σ1
, . . . ,

|Zp − ap|
σp

)
.
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Given a random vector Y ∈ R+ with the cumulative distribution function 1 −
Ce− ·

q

, one knows from Lemma 1.1.26 that for any m ∈ N :

E [|Z1 · · ·Zp − a1 · · · ap|m] ≤ E [P (Y, . . . , Y )
m

]

≤ |a1 · · · ap|mE


 p∑
l=1

∑
I⊂{1,...,p}

#I=l

∏
i∈I

σi
|ai|

Y l


m

since Pm has positive coefficients (since P does). Let us introduce for all l ∈
{1, . . . , p} the coefficient cl that depends on λ and verifies :

cl =
∑

I⊂{1,...,p}
#I=l

∏
i∈I

σi
λ|ai|

.

Decomposing the computation of the expectation between the expectation on
the set of drawings where λY ≤ 1 and λY ≥ 1, one obtains :

E [|Z1 · · ·Zp − a1 · · · ap|m] ≤

(
|a1 · · · ap|

p∑
l=1

cl

)m
(E [(λY )m] + E [(λY )pm]) .

We then easily retrieve (5) thanks to Proposition 1.1.20 since :

|a1 · · · ap|
p∑
l=1

cl = P

(
1

λ
, . . . ,

1

λ

)
=
(σ1

λ
+ |a1|

)
· · ·
(σp
λ

+ |ap|
)
− |a1 · · · ap|.

The previous development of q-exponential concentration primarily aims at
providing a versatile and convenient “toolbox” (note that most introduced in-
equalities could have been enhanced, however to the expense of clarity) for the
subsequent treatment of large dimensional random vectors, rather than random
variables. This analysis will be performed through resorting to concentrated
functionals of the random vectors, i.e., real images of through a mapping with
different levels of regularity (linear, Lipschitz, convex..). For large dimensional
vectors, one is mostly interested in the order of the concentration, thus the var-
ious constants appearing in most of the previous propositions and lemmas do
not have any particular interest; of major interest instead is the independence
of the concentration with respect to the random vector dimension, as observed
for instance in Theorem 0.0.3 and that we will extend to other type of random
vectors in what follows.

1.2. Concentration of a random vector of a normed vector space

In Section 2, the random vectors under study are either in E = Rp endowed
with the Euclidean norm ‖z‖ =

√∑p
i=1 z

2
i or the `1-norm ‖z‖1 =

∑p
i=1 |zi|, or

in E =Mpn, p, n ∈ N, endowed with two possible norms :
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• the spectral norm defined as ‖M‖ = sup‖z‖≤1 ‖Mz‖,
• the Frobenius norm ‖M‖F =

√∑
1≤k≤p
1≤i≤n

M2
k,i

(where M ∈ Mp,n). Note that the Frobenius norm can be seen as a Euclidean
norm on Rpn with the bijection that concatenates the column of a matrix.

To generalize the notion of concentration to the case of a random vector
of a normed vector space (E, ‖·‖), one might be tempted to follow the idea of
Definition 3 and say that a vector Z ∈ E is α-concentrated if one has for instance
P
(∥∥∥Z − Z̃∥∥∥ ≥ t) ≤ α(t) for a deterministic vector Z̃, well chosen. This would

describe a notion of a concentration around a vector.
However, this basic notion would not be compatible with the fundamental

example of the uniform distribution on the sphere of radius√p presented in The-
orem 0.0.3 or the Gaussian vectors of identity population covariance matrices.
When the dimension grows, those random vectors concentrate around a grow-
ing sphere which is the exact opposite behavior of being concentrated around
a point. Yet, they present strong dimension free concentration properties that
we will progressively identify through the presentation of three fundamental
notions :

1. The linear concentration which is the concentration of u(Z − Z̃) for some
deterministic vector Z̃ ∈ E (the so-called deterministic equivalent) and
for any bounded linear form u : E 7→ R. For instance, we know from
Theorem 0.0.3 that any random vector Z uniformly distributed on the
sphere admits Z̃ = EZ = 0 as a deterministic equivalent. This means that
most drawings of Z are close to the equator when the dimension grows.

2. The Lipschitz concentration which is the concentration of f(Z) − f(Z ′)
for any i.i.d. copy Z ′ of Z and any Lipschitz map f : E 7→ R.

3. The convex concentration which is the concentration of f(Z) − f(Z ′) for
any Lipschitz and weakly convex map f : E 7→ R. This notion is of course
weaker than the Lipschitz concentration, its presentation here is only jus-
tified by the fundamental Theorem 1.2.47 owed to Talagrand that pro-
vides concentration properties on random vectors with independent and
bounded entries. It is less “stable” than the Lipschitz concentration, mean-
ing there exist very few transformations that preserve convex concentra-
tion. As a consequence one usually naturally returns to linear concen-
tration after some refinement. For instance, supposing that X is convexly
concentrated, only a linear concentration can be obtained for the resolvent
Q = (XXT /n+ zIp)

−1.

Although a seemingly basic notion, linear concentration still has quite interesting
features that justify an independent treatment at the beginning of this section.

1.2.1. Linear Concentration

Considering the linear functionals of random vectors allows us, in particular,
to introduce the notion of deterministic equivalents, which play the role of the
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pivots we presented in the concentration of random variables.

Definition 8. Given a random vector Z ∈ E, a deterministic vector Z̃ ∈ E and
a concentration function α, we say that Z is linearly α-concentrated around the
deterministic equivalent Z̃ if for any bounded linear form u : E → R with a unit
operator norm (i.e., ∀z ∈ E, |u(z)| ≤ ‖z‖) :

u(Z) ∈ u(Z̃)± α.

We note in that case : Z ∈ Z̃ ± α in (E, ‖·‖).

Remark 1.2.1. Definition 8 is clearly compatible with Definition 3 for the case
where E = R. Indeed, in R the linear forms are the scalar functions and for any
coefficient λ ∈ R∗ and any random variable Z ∈ R we have the equivalence :

Z ∈ a± α ⇐⇒ λZ ∈ λa± α( · /λ).

Remark 1.2.2. The advantage of linear functionals is that they preserve the
expectation which gives us the simplest deterministic equivalent. For instance if
Z is linearly q-exponentially concentrated, then we know from Corollary 1.1.24
that EZ is a deterministic equivalent for Z since for any continuous linear form
u, E[u(Z)] = u(E[Z]). For instance, thanks to Theorem 0.0.3, one knows that
for any p ∈ N∗, if Z ∼ σp then Z ∈ 0± 2e− ·

2/2 since E[Z] = 0.

Since the Frobenius norm is larger than the spectral norm, for any random
matrix M ∈Mp,n, we have the implication :

M ∈ M̃ ± α in (Mp,n, ‖·‖F ) =⇒ M ∈ M̃ ± α in (Mp,n, ‖·‖)

for some deterministic matrix M̃ and some concentration function α. When the
choice of the norm is not ambiguous (when E = Rp in particular), we will allow
ourselves not to specify the norm.

Remark 1.2.3. The same way that linear forms in Rp are fully described with
the scalar product, in Mp,n the linear forms are fully defined by the functions
fA : M 7→ TrAM for A ∈ Mp,n where fA is said to have a unit norm if
‖fA‖∗ = 1, i.e.,

• in (Mp,n, ‖ · ‖F ) : ‖A‖F =
√

Tr(AAT ) = 1,
• in (Mp,n, ‖ · ‖) : ‖A‖1 = Tr(AAT )

1
2 = 1.

Linear concentration is provided by classical concentration inequalities like
Bernstein’s or Hoeffding’s inequalities.

Example 1.2.4. [Bernstein’s inequality, [Ver17, Theorem 2.8.2]] Given p in-
dependent random variables (Zi)1≤i≤p ∈ Rp, and three parameters C ≥ e and
c, q > 0, we have the implication :

∀i ∈ {1, . . . , p}, Zi ∈ E[Zi]± Ce− · /σ ⇒ Z ∈ E[Z]± 2e−c( · /σ)2

+ 2Ce−c ·/σ,

where c is a numerical constant depending only on C.
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Example 1.2.5. [Hoeffding’s inequality, [Ver17, Theorem 2.2.6]] Given p inde-
pendent random variables Z1, . . . , Zp ∈ [0, 1], the random vector Z = (Z1, . . . , Zp) ∈
Rp is linearly concentrated and verifies Z ∈ E[Z]± 2e−2 · 2 in (Rp, ‖·‖).

We will see in Subsection 1.2.3 about convex concentration a generalization
of Hoeffding’s theorem with the theorem of Talagrand.

Even if one does not suppose the independence between the random variables
Z1, . . . , Zp, one can still get a concentration result on the random vector Z =
(Z1, . . . , Zp) in the case of q-exponential concentrations. The basic idea is that
if Z1, . . . , Zp are identically distributed then Z is at least as concentrated as the
random vector (Z1, . . . , Z1).

Proposition 1.2.6. Given the parameters C > e, q, σ > 0, p ∈ N, p vec-
tor spaces (Ei, Ni)1≤i≤p, p deterministic vectors Z̃1 ∈ E1, . . . , Z̃p ∈ Ep and p
random vectors Z1 ∈ E1, . . . , Zp ∈ Ep (possibly dependent) satisfying, for any
i ∈ {1, . . . ,m}, Zi ∈ Z̃i ± Ce−(·/σ)q , we have the concentration :

(Z1, . . . , Zp) ∈ (Z̃1, . . . , Z̃p)± e
1
eC exp

(
− q̄

2e

( ·
σ

)q)
, in (E, ‖ · ‖∞),

where we introduced on E ≡ E1× · · ·×Ep the norm ‖ · ‖∞ verifying for any for
(z1, . . . , zp) ∈ E :

‖(z1, . . . , zp)‖∞ = sup
1≤i≤p

Ni(zi),

and we recall that q̄ = min(q, 1).

Proof. Let us consider a linear function u : E → R, such that

‖u‖∞ ≡ sup
‖z‖∞≤1

|u(z)| ≤ 1.

Given i ∈ {1, . . . , p}, let us note ui : Ei → R the function defined as ui(z) =
u((0, . . . , 0, z, 0, . . . , 0)) (where z is in the ith entry). For any z ∈ E, one can
write :

u(z) =

p∑
i=1

Ni(ui)u
′
i(z),

where Ni(ui) = supNi(z)≤1 ui(z) and u′i = ui/Ni(ui) (Ni(u′) = 1). With the
convenient notation ni ≡ Ni(ui), we have the inequality :

p∑
i=1

ni =

p∑
i=1

ni sup
Ni(zi)≤1

u′i(zi) = sup
‖z‖∞≤1

u(z) ≤ 1.

With this bound at hand, we plan to employ the characterization with the cen-
tered moments. Consideringm ∈ N∗, we introduce the polynomial P (X1, . . . , Xp) =
(n1X1 + · · · + npXp)

m: it has positive coefficients which allows us to employ
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Lemma 1.1.26 in order to bound :

E
[∣∣∣u(Z)− u(Z̃)

∣∣∣m] ≤ E

[(
p∑
i=0

ni

∣∣∣u′i (Zi)− u′i
(
Z̃i

)∣∣∣)m]
= E

[
P
(∣∣∣u′1 (Z1)− u′1

(
Z̃1

)∣∣∣ , . . . , ∣∣∣u′p (Zp)− u′p
(
Z̃p

)∣∣∣)]
≤ E [P (Y, . . . , Y )] = E

[(
p∑
i=1

niY

)m]

≤ E [Y m] ≤ C

(
m

q

)m
q

σm,

where Y ≥ 0 is a nonnegative random variable having a cumulative distribution
function equal to 1−min(1, Ce−(·/σ)q ) (such a variable controls Z1, . . . , Zp). We
can then conclude thanks to Lemma 1.1.22 (and Proposition 1.1.20).

Given p random variables verifying Zi ∈ ai ± Ce−(·/σi)q , ai ∈ R and σi > 0,
we can apply Proposition 1.2.6 to the functional u : z 7→

∑p
i=1 σizi taken on the

p random variables Z ′i = Zi
σi
∈ ai

σi
± Ce−·q :

p∑
i=1

Zi = u(Z ′1, . . . , Z
′
p) ∈

p∑
i=1

uiai ± e
1
eC exp

(
− q̄

2e

(
·

σ1 + · · ·+ σp

)q)
,

since ‖u‖∞ =
∑p
i=1 σi. One can recognize here the concentration given by

Proposition 1.1.27. The following corollary generalizes this result.

Corollary 1.2.7. Given p ∈ N, two parameters q > 0 and C ≥ e, and p ran-
dom vectors Z1, . . . Zp ∈ E, respectively concentrated around the deterministic
equivalents Z̃1, . . . , Z̃p ∈ Rp such that ∀i ∈ {1, . . . , p}, Zi ∈ Z̃i ± Ce−(·/σi)q for
some parameters σ1, . . . , σp > 0 :

Z1 + · · ·+ Zp ∈ Z̃1 + · · ·+ Z̃p ± e
1
eC exp

(
− q̄

2e

( ·
σ

)q)
,

where σ = σ1 + · · ·+ σp.

Dealing with q-exponential concentrations, we can get an analogous result
to Corollary 1.1.17 that allowed us to interchange the pivot a with any other
real in a ball around a with a diameter of the same order as the tail parameter.
The tail parameter will be called in the case of a random vector an observable
diameter. Given a random vector Z ∈ E, we will say that Z is q-exponentially
concentrated around Z̃ with a head parameter C and an observable diameter σ if
Z ∈ Z̃±Ce−( · /σ)q . The observable diameter is the diameter of the “observations”
of the distribution that could be seen as linear projections (for other types of
concentrations to be introduced subsequently, they will alternatively be related
to 1-Lipschitz or quasi-convex maps) on R. Intuitively, it is the diameter of the
observation in the “real world” ; refer to [Gro99] for a both more precise and
more general definition.
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Lemma 1.2.8. Let us consider a random vector Z ∈ E, two deterministic
vectors Z̃, Z̃ ′ ∈ E and three parameters C ≥ e, λ, σ > 0. If ‖Z̃ − Z̃ ′‖ ≤ λσ then
we have the implication :

Z ∈ Z̃ ± Ce−( · /σ)q =⇒ Z ∈ Z̃ ′ ±max(C, eλ
q

)e−( · /σ)q .

One might expect for concentrated random vectors a similar proposition to
Proposition 1.1.9 giving the concentration of a product of random variables. In
the case of vectorial objects, we are looking for the concentration of a scalar
product of two random vectors X,Y ∈ E or, closer to our present interest as
announced in the preamble, for the concentration of uTQx where u is determin-
istic, Q is a concentrated random matrix and x a concentrated random vector.
If one looks closely at the proof of Proposition 1.1.9, it becomes obvious that
although some steps can be fully adapted, the method gets stuck when trying
to bound :

P (|u ((X − EX)(Y − EY ))| ≥ t) .

It is tempting here to invoke the Cauchy-Schwartz inequality :

u ((X − EX)(Y − EY )) ≤ ‖u‖ ‖X − EX‖ ‖Y − EY ‖ ,

where ‖u‖ is the operator norm of u. However, as we explained it with the
example of spherical and Gaussian vectors in the introduction of this subsection,
unlike u(X − EX) and u(Y − EY ) the quantities ‖X − EX‖ and ‖Y − EY ‖
are far from being concentrated for concentrated random vectors X and Y of
practical use. We will see in Proposition 1.2.10 that it is still possible to express
the concentration of the norms and obtain consequently loose bounds for the
concentration of (X−EX)(Y −EY ) as presented in Examples 1.2.16 and 1.2.17.

Before that, to present a setting where the concentration is satisfactory, we
suppose in addition to the concentration that the two vectors are independent
and one is bounded.

Proposition 1.2.9. Let us consider two normed vector spaces (E1, ‖·‖1) and
(E2, ‖·‖2), two independent random vectors Z1 ∈ E1 and Z2 ∈ E2 and a bilinear
form f : E1 × E2 → R such that for any (z1, z2) ∈ E1 × E2 :

|f(z1, z2)| ≤ ‖z1‖1 ‖z2‖2 .

If there exist two concentration functions α, β : R+ → R+ and two deterministic
vectors (Z̃1, Z̃2) ∈ E1 × E2 such that :

Z1 ∈ Z̃1 ± α in (E1, ‖·‖1) and Z2 ∈ Z̃2 ± β in (E2, ‖·‖2),

and if ‖Z2‖2 is bounded by a real K2 > 0, then :

f(Z1, Z2) ∈ f
(
Z̃1, Z̃2

)
± α

(
·

2K2

)
+ β

(
·

2‖Z̃1‖1

)
.
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Proof. Given t > 0, we just compute :

P
(∣∣∣f(Z1, Z2)− f(Z̃1, Z̃2)

∣∣∣ ≥ t)
≤ E

[
P
(∣∣∣f(Z1 − Z̃1, Z2)

∣∣∣ ≥ t

2
| Z2

)]
+ P

(∣∣∣f(Z̃1, Z2 − Z̃2)
∣∣∣ ≥ t

2

)
≤ α

(
t

2K2

)
+ β

(
t

2Z̃1‖1

)
since x 7→ f(x, Z2) and y 7→ f(Z̃1, y) are both linear and respectively K2-
Lipschitz and ‖Z̃1‖-Lipschitz.

If a random vector Z is linearly concentrated around a deterministic equiva-
lent Z̃, it is possible to control the norm ‖Z− Z̃‖ if the norm ‖ · ‖ can be defined
as the supremum on a set of linear forms. For instance, in Rp endowed with the
sup norm ‖·‖∞ (‖x‖∞ = sup{|xi|, 1 ≤ i ≤ p}), if Z ∈ Z̃ ± α :

P
(
‖Z − Z̃‖∞ ≥ t

)
= P

(
sup

1≤i≤p
eTi (Z − Z̃) ≥ t

)
(6)

≤ p sup
1≤i≤p

P
(
eTi (Z − Z̃) ≥ t

)
≤ pα(t), (7)

where (e1, . . . , ep) is the canonical basis of Rp (ei is a vector full of 0 with 1 on
the ith coordinate). To manage the infinity norm, the supremum is taken on a
finite set {e1, . . . ep}; things are more complex if we look at the Euclidean norm
because this time one comes to use the identity ‖x‖ = sup{uTx, ‖u‖ ≤ 1} where
the supremum is taken on the unit ball. To tackle this loss of cardinality, it is
convenient here to introduce the so-called ε-nets to discretize the ball in order
to approach sufficiently the norm and at the same time find a good bound for
the probability (see [Tao11]). We leave the proof in the appendix.

Proposition 1.2.10. Let us consider a normed vector space (E, ‖ · ‖) of finite
dimension such that there exists a subspace H of the dual space (E∗, ‖ · ‖∗), and
a ball BH = {f ∈ H, ‖f‖∗ ≤ 1} ⊂ H verifying for any z ∈ E :

‖z‖ = sup
f∈BH

f(z). (8)

Given a random vector Z ∈ E, a deterministic equivalent Z̃ and a concentration
function α, if we suppose that Z ∈ Z̃ ± α then we have the concentration :∥∥∥Z − Z̃∥∥∥ ∈ 0± 8dim(H)α

( ·
2

)
(9)

where dim(H) is the dimension of H.

Remark 1.2.11. One always has ‖z‖ = sup‖f‖∗≤1 f(z), so one might be tempted
to systematically consider H = E∗. For instance in (Rp, ‖ · ‖), H is taken
to be equal to Rp and dim(H) = p. The same way, in the Euclidean space
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(Mp,n, ‖ · ‖F ), we take H = Mp,n (and dim(H) = pn). However, we can re-
duce greatly the dimension dim(H) in the case of (Mp,n, ‖ · ‖) since for any
M ∈Mp,n :

‖M‖ = sup
‖u‖,‖v‖≤1

∣∣uTMv
∣∣ .

Thus it is wise to consider H = {fvuT , u, v ∈ Rp × Rn} (see Remark 1.2.3 for
a definition of fA ; here, ‖fvuT ‖∗ =

∥∥vuT∥∥
1

= ‖u‖ ‖v‖) and the dimension is
then only dim(H) = p+ n.

Taking into account the two results (6) and (9), we are led to introduce an
indicator characteristic to the norm that gives the speed of the concentration.

Definition 9 (Norm degree). Given a normed vector space (E, ‖ · ‖), and a
subset H ⊂ E∗, let us define the degree ηH of H as :

• ηH = log(#H) if H is finite
• ηH = dim(VectH) if H is infinite

where #H is the number of elements in H and VectH is the subspace of E
generated by E. We note then η(E, ‖ · ‖) or more simply η‖·‖ the degree of ‖ · ‖
that is defined as :

η‖·‖ = η(E, ‖ · ‖) = inf

{
ηH , H ⊂ E∗ | ∀x ∈ E, ‖x‖ = sup

f∈H
f(x)

}

In the setting of the last proposition :∥∥∥Z − Z̃∥∥∥ ∈ 0± ecη(E,‖·‖)α
( ·

2

)
, (10)

where c is a numerical constant. In the case of the q-exponential concentration, it
is possible to rearrange the concentration of ‖Z−Z̃‖ to obtain a head parameter
of order 1.

Proposition 1.2.12. Given a random vector Z ∈ E, a deterministic vector
Z̃ ∈ Rp and three parameters C ≥ e, c, σ > 0, we have the implication :

Z ∈ Z̃ ± Ce−( · /σ)q =⇒ ‖Z − Z̃‖ ∈ 0± Ce−( · /2σ)q/2cη‖·‖ ,

where c is the same numerical constant as in (10).
Reciprocally :

‖Z − Z̃‖ ∈ 0± Ce−( · /σ)q =⇒ Z ∈ Z̃ ± Ce−( · /σ)q .

The second result of the proposition is trivial (and quite useless) and the first
result is just a simple consequence of (10) combined with Lemma 1.1.15.

Example 1.2.13. We can give some examples of norm degrees :

• η (Rp, ‖ · ‖∞) = log(p)
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• η (Rp, ‖ · ‖r) = p for r ≥ 1
• η (Mp,n, ‖ · ‖) = n+ p
• η (Mp,n, ‖ · ‖F ) = np.

In the particular case of q-exponential concentrations, the norm degree allows
us to bound the expectation of the norm of Z− Z̃ thanks to Proposition 1.2.12.

Corollary 1.2.14. Given a random vector Z ∈ E, if we suppose that Z ∈
Z̃ ± Ce−( · /σ)q and q ≥ 1, we can bound :

E
∥∥∥Z − Z̃∥∥∥ ≤ C ′ση1/q

‖·‖

where C ′ is a constant depending on C.

Example 1.2.15. Let Z ∈ Rp and M ∈Mp,n be two random vectors. Then,

• if Z ∈ Z̃ ± 2e−t
2/2 in (Rp, ‖·‖) : E ‖Z‖ ≤ ‖Z̃‖+ C

√
p

• if M ∈ M̃ ± 2e−t
2/2 in (Mp,n, ‖ · ‖) : E ‖M‖ ≤ ‖M̃‖+ C

√
p+ n,

• if M ∈ M̃ ± 2e−t
2/2 in (Mp,n, ‖ · ‖F ) : E ‖M‖ ≤ ‖M̃‖+ C

√
pn.

Now that we can control the quantities ‖Z − Z̃‖ when Z̃ is a deterministic
equivalent of Z, it is tempting to extend Lemma 1.1.8 to the concentration of the
product of any linearly concentrated random vectors. The examples presented
below are just here to give an idea of what could be obtained, they are not rel-
evant in practice since the bounds are too loose. Unlike Lipschitz concentration
as it will be presented in next subsection, linear concentration is not suited to
study the concentration of the product of random vectors.

Example 1.2.16. Let us note � the product in Rp verifying for any x =
(x1, . . . , xp) and y = (y1, . . . , yp), x � y = (x1y1, . . . , xpyp). It gives an alge-
bra structure to Rp where ‖ · ‖∞ and ‖ · ‖2 are both algebra norms (‖x� y‖2 ≤
‖x � y‖1 =

∑p
i=1 |xiyi| ≤ ‖x‖2‖y‖2 thanks to the Cauchy Schwarz inequality).

Therefore we have for any vector Z ∈ Z̃ ± 2e− ·
2/2 in (Rp, ‖ · ‖2) :

• Z�2

p = Z�Z
p ∈ Z̃�

2

p ± Ce
−c· + Ce−c(

√
p · /‖Z̃‖)2

in (Rp, ‖ · ‖2)

• Z�2

log p ∈
Z̃�

2

log p ± Ce
−c· + Ce−c(

√
log p · /‖Z̃‖∞)2

in (Rp, ‖ · ‖∞),

where C ≥ e and c > 0 are two numerical constants.

Example 1.2.17 (Concentration of the sample covariance). Given a matrix
X ∈ Mp,n, and three parameters C, q ≥ 1 and c > 0, if we suppose that X ∈
X̃ ± 2e− ·

2/2 in (Mp,n, ‖·‖F ), then :

• XXT

n2 ∝ Ce−c · /γ + Ce−c(n · /‖X̃‖F )2

in (Mp,n, ‖·‖F )

• XXT

n ∝ Ce−c · /γ̄ + Ce−c(n · /‖X̃‖)
2

in (Mp,n, ‖·‖)

• XXT

logn ∝ C exp

(
− c ·

1+ log p
logn

)
+ Ce−c(

√
logn · /‖X̃‖∞)2

in (Mp,n, ‖·‖∞),

where γ = p
n , γ̄ = γ + 1 ≥ max(γ, 1) and C ≥ e, c > 0 are two numerical

constants.
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As rich it could be the notion of linear concentration is insufficient when
dealing with the resolvent of random matrices, starting with the resolvent of the
sample covariance Q = (XXT /n+Ip)

−1. It is possible to infer the concentration
of the sample covariance in (Mp, ‖·‖) from the concentration of X as we saw in
Example 1.2.40, we can even track the concentration of the resolvent since the
inverse of a matrix ofMp can be written as a polynomial of degree p, but the
observable diameter will then be of diverging order. To solve these issues, one
needs a stronger notion of concentration to be introduced next : the Lipschitz
concentration.

1.2.2. Lipschitz Concentration

Theorem 0.0.3 given in the preamble provides us with the concentration of the
Lipschitz and even uniformly continuous functionals of random vectors uni-
formly distributed on the sphere, that is to say, cases that go far beyond the
linear case and that let us hope for interesting inference on the resolvent of
random matrices

As firstly evoked in Lemma 1.1.3, the concentration of a random vector Z can
be expressed through the concentration of any random variable f(Z) ∈ R when f
is Lipschitz. As before, this approach of concentration has the asset of bringing
back the concentration on any normed vector space to a mere concentration
on R, that we deeply studied at the beginning of the section. The following
definition allows us to generalize the notion of concentration to any metric space
as presented in [Led01].

Definition 10 (Lipschitz Concentration of a random vector). Given a concen-
tration function α, a random vector Z is said to be Lipschitz α-concentrated
iff one of the following three assertions is verified for any 1-Lipschitz function
f : E → R :

• f(Z) ∝ α, and we will note in that case Z ∝ α

• f(Z) ∈ mf ± α, and we will note in that case Z
m∝ α

• f(Z) ∈ E[f(Z)]± α, and we will note in that case Z
E∝ α,

where mf is a median of f(X).

The Lipschitz concentration is the strongest notion of concentration we will
present and it is the one that received most of the interest from the scientific
community; therefore, we allow ourselves to omit the term “Lipschitz” when men-
tioning this kind of concentration. In our paper, such Lipschitz concentration of
random vectors can only be obtained through Theorem 0.0.3 or Theorem 1.2.20
below, and they are both set on the normed vector space (Rp, ‖·‖) (or the analo-
gous one (Mp,n, ‖·‖F ). We will thus allow ourselves to omit the precision about
the normed vector space on which is made the concentration when we are on
(Rp, ‖·‖), on (Mp,n, ‖·‖F ) or when we are on the formal normed vector space
(E, ‖·‖).
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Remark 1.2.18. We know from Lemma 1.1.3 that Definition 10 is compatible
with Definition 2 when E = R, so there are no conflicts between the different
uses of the notation ∝ for random vectors and random variables.

Remark 1.2.19. Given a random vector Z ∈ E and a concentration function
α, we know thanks to Lemma 1.1.2 :

Z ∝ α =⇒ Z
m∝ 2α =⇒ Z ∝ 4α(·/2).

Also, by definition of the linear concentration :

Z
E∝ α =⇒ Z ∈ EZ ± α,

and we can link this concentration to the other two thanks to Proposition 1.1.18
and Corollary 1.1.24 in the case of a q-exponential concentration :

Z
m∝ Ce(·/σ)q =⇒ Z

E∝ eC
q/qe(·/2σ)q =⇒ Z

m∝ 2eC
q/qe(·/4σ)q ,

for any q, σ > 0 and C ≥ e.

We thought useful to present the theorem of concentration of Gaussian vec-
tors in our new formalism, to add this setting to the historical example of the
concentration on the sphere.

Theorem 1.2.20. A canonical Gaussian vector Z is normally concentrated
independently of its dimension. For any p ∈ N :

Z ∼ N (0, Ip) =⇒ Z
m∝ 2e−( · /2)2

and Z
E∝ 2e−( · /2)2

where N (0, Ip) is the distribution of the canonical Gaussian vectors of dimension
p that have independent zero mean and unit variance Gaussian entries.

A structural proof with a geometrical approach from the Poincaré lemma
tracks the concentration of Gaussian vectors from the concentration of the uni-
form distribution on the sphere. A more functional approach based on the log-
Sobolev inequalities can be found in [Led01]. An alternative proof is found in
[Tao11], originally proposed by Maurey and Pisier, which does not provide the
optimal constants but is more efficient and simple.

Theorem 1.2.20 can be generalized to any random vectorX ∈ Rp with density
dPX(x) = e−U(x)dλp(x) where U : Rp → R is a positive functional with the
hessian bounded inferiorly by, say cIp, c > 0. In that case, X ∝ 2e−c·

2/2, (see
[Led01, Theorem 2.7])

Let us add for the general picture a result from Talagrand [Tal94, Theorem
2.4] (or [Led01, Proposition 4.18]) concerning the concentration of the exponen-
tial distribution, that we shall denote νp, which is the distribution of random
vectors of Rp with independent entries having density 1

2e
−|·|dλ1.

Theorem 1.2.21. [Led01, Proposition 4.18] There exist two numerical con-
stants C ≥ 1 and c > 0, such that for any p ∈ N :

Z ∼ νp =⇒ Z ∝ Ce−c ·
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As an example of q-exponential concentrations when q ∈ [1, 2], one may
consider vectors uniformly distributed on the balls of Rp, that is B‖·‖q = {x ∈
Rp | ‖x‖q = (

∑
xqi )

1/q ≤ 1}; let us note βpq this distribution.

Theorem 1.2.22. [Led01, Proposition 4.21] Given q ∈ [1, 2], there exist two
numerical constants C ≥ 1 and c > 0, such that for any p ∈ N :

Z ∼ βpq =⇒ Z ∝ Ce−c ·
q

Remark 1.2.23. The independence of the concentration of a random vector to
its dimension can be interpreted as a conservation of its observable diameter
through dimensionality when the actual diameter increases. This second diam-
eter, that can be referred to as the metric diameter, can be naturally defined as
the expectation of the distance between two independent random vectors drawn
from the same distribution. Theorem 1.2.20 states that the observable diameter
of a Gaussian distribution in Rp is of order 1, that is to say 1√

p times less than
the diameter (that is of order √p). The same result holds for the uniform dis-
tribution on the sphere of Rp and for any distribution that would be called for
that reason concentrated.

Definition 10 only presents the concentration of Lipschitz functionals of Z (if
f is λ-Lipschitz then f/λ is 1-Lipschitz and the product with a constant is easy
to manage, we find f(Z) ∝ α( · /λ)), but it is possible to show the concentration
of any uniformly continuous functional of Z :

Proposition 1.2.24 (Concentration of the uniformly continuous transforma-
tions). Given two normed vector spaces E and G, a random vector Z ∈ E, a
concentration function α, a modulus of continuity ω, a function φ : E → G,
ω-continuous, we have the implication :

Z
m∝ α =⇒ φ(Z)

m∝ α(ω−1( · )).

Proof. Let us introduce a 1-Lipschitz function g : G → R, we note f = g ◦ φ.
We introduce mf , a median of f(Z) and the sets A− = {z, f(z) ≤ mf} and
A+ = {z, f(z) ≥ mf} (they verify by definition P(Z ∈ A+),P(Z ∈ A−) ≥ 1

2 ).
The image through f of the boundary ∂A+ = ∂A− = A+∩A− is equal to {mf}.
Since the boundary is closed, for any z ∈ A+, there exists a sequence zn ∈
∂A− such that ‖z − zn‖ −→

n→∞
d(z, ∂A−) = d(z,A−), then since f is uniformly

continuous like φ, we can bound :

|f(z)−mf | = lim
n→∞

|f(z)− f(zn)| ≤ lim
n→∞

ω(‖z − zn‖)

≤ ω(d(z,A−)) = ω(|d(z,A−)− d(z,A+)|),

and the same inequality is also verified for any z ∈ A−. This entails :

P (|f(Z)−mf | ≥ t) ≤ P
(
|d(Z,A−)− d(Z,A+)| ≥ ω−1 (t)

)
,

and we can then conclude since f̃ : z 7→ d(z,A−) − d(z,A+) is 1-Lipschitz and
f̃(Z) admits 0 as a median.

imsart-generic ver. 2014/10/16 file: output.tex date: February 14, 2019



Louart & Couillet/Concentration of Measure and Large Random Matrices 38

Remark 1.2.25. Theorems 0.0.3 and 1.2.20 combined with Proposition 1.2.24
give us immediately a q-exponential concentration of all the random vectors
F (Z) where F : Rp → Rd is uniformly continuous and Z ∼ σp or Z ∼ N (0, Ip).
This describes a wide range of random vectors that remarkably do not need to
present independent entries.

As for Corollary 1.2.7, in order to show the concentration of the sum X + Y
of two random vectors X,Y ∈ E, we first need to prove the concentration
of the concatenation (X,Y ) ∈ E2. In Proposition 1.2.6, we saw how to show
this result when one supposes that X and Y have q-exponential concentration.
Interestingly enough, an assumption of independence was not necessary (we saw
that if X and Y are identically distributed then (X,Y ) is at least concentrated
as (X,X) up to a small change of the tail parameter). In the case of the Lipschitz
concentration, the independence between X and Y plays an important role but
still not essential as we will see in Theorem 1.2.35. We first present a way to
infer the concentration of (X,Y ) when X and Y are independent and we don’t
make further assumptions on their concentration (the particular case of the
q-exponential concentration is studied in Appendix B.4).

To get interesting inferences from the concentration of the measure theory,
one has to base its initial inequalities on a theorem of the kind of Theorem 0.0.3,
1.2.20 or 1.2.21 providing distributions with an observable diameter far smaller
than the metric parameter (see Remark 1.2.23 for precisions). The following
proposition is just a tool that can be some help when one wants to study a
limited (with regard to the dimension) concatenation of concentrated vectors.
In what follows E and F are two normed vector spaces respectively equipped
with the norms ‖·‖E and ‖·‖F . We again note ‖·‖`1 the norm of E × F defined
as ‖(x, y)‖`1 = ‖x‖E + ‖y‖F .

Proposition 1.2.26. Given two independent random vectors X ∈ E and Y ∈
F , if we suppose that X and Y are concentrated then (X,Y ) is also concentrated.
Given two concentration functions α, β : R+ 7→ R+, and any λ ∈ (0, 1) :{

X ∝ α
Y ∝ β

=⇒ (X,Y ) ∝ α (λ · ) + β ((1− λ) · ) ,

If we suppose that α is invertible and piecewise differentiable, we also have the
implication :{

X ∝ α
Y ∝ β

=⇒ (X,Y ) ∝ α+ β − α′ ∗ β,

where ∗ is the convolution operator (f ∗ g(t) =
∫
R f(u)g(t− u)du). Since α and

β are only defined on R+, we implicitly compute the convolution with a null
continuation of α and β on R−. The implications are also true if we work with
concentrations around the medians (X

m∝ α) or around the means (X
E∝ α).

In the second result, be careful that, since the concentration functions are
decreasing, α′ is a negative function.
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Proof. For the proof of the first implication, refer to [Led01, Proposition 1.11].
Let us consider a 1-Lipschitz function f : E × F → R. We will work with the
concentration around the means since it is easier and we will note for simplicity
Ef = E [f(X,Y )] and E [f |Y ] = E [f(X,Y ) | Y ] ; we can bound :

P (|f(X,Y )− Ef | ≥ t) ≤ E [P (|f(X,Y )− E [f |Y ]| ≥ t− |Ef − E [f |Y ]| | Y )]

≤ E [α (t− |Ef − E [f |Y ]|)] + P (|Ef − E [f |Y ]| ≥ t)

≤
∫ 1

0

P (α (t− |Ef − E [f |Y ]|) ≥ u) du + β(t)

≤
∫ 1

0

P
(
t− |Ef − E [f |Y ]| ≤ α−1(u)

)
du + β(t)

≤
∫ 1

α(t)

β
(
t− α−1(u)

)
du + α(t) + β(t)

=

∫ 0

t

α′(u)β (t− u) du + α(t) + β(t).

In the first result of Proposition 1.2.26, λ is often chosen to be equal to 1
2 as in

Lemma 1.1.5 for instance. However, we allow ourselves to choose small values of
λ when we want to maintain almost untouched a concentration as will be done
in the following useful example that allows to transmit the absolute continuity
of the Gaussian distribution to any random vector, while, at the same time,
preserving the concentration (see Theorem 1.2.35 for an effective use).

Example 1.2.27. Given an integer p > 0, a concentration function α, an α-
concentrated random vector X ∈ Rp, and an independent random vector U ∈ Rp
verifying 1√

p−2
U ∼ σp−1 or U ∼ N (0, Ip), we have the concentration :

X +
1

n
U ∝ α

((
1 +

1√
n

)
·
)

+ 2e−n ·
2/2.

Remark 1.2.28. The two results of Proposition 1.2.26 can be compared if we
consider a generalization of the notion of observable diameters, as defined for
the exponential concentration before Lemma 1.2.8, and that is slightly different
from the observable diameter introduced by Gromov in [Gro99, Chapter 3.1/2].
Still, it is of the same order when the dimension is large. Given a concentration
function α, we note Rα =

∫∞
0
α, and for any random vector X the observable

diameter RX is defined as RX = inf{Rα | X ∝ α}. Our definition comes
from the fact that if, say, X ∝ α, then for any 1-Lipschitz function f and any
independent copy X ′ :

E [|f(X)− f(X ′)|] =

∫ ∞
0

P (|f(X)− f(X ′)| ≥ t) dt ≤
∫ ∞

0

α = Rα.
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With the first result given by Proposition 1.2.26, we find :

R(X,Y ) ≤
RX

1− λ
+
RY
λ
,

and with the second result :

R(X,Y ) ≤ RX + 2RY ,

since for any differentiable concentration functions α, β :∫ ∞
0

α′ ∗ β =

∫ +∞

−∞
α′ ∗ β =

∫ +∞

−∞
α′
∫ +∞

−∞
β = −α(0)Rβ .

The second inequality is clearly better than the first one, however we are far
from the stability of the observable diameter that we find in Theorems 0.0.3
and 1.2.20.

One can assert easily that the concentration could be generalized to non-
independent random vectors since we know for instance that (X, f(X)) is con-
centrated as a 2-Lipschitz transformation of X when f : E → E is 1-Lipschitz.
However, there exists a lot of examples where (X,Y ) is far from being concen-
trated despite X and Y being concentrated.

√
n

X

+ =

Y
2
√
n

P(X + Y = 0) = 1
2

Fig 1. The sum of two concentrated random vectors can be non concentrated

Example 1.2.29. Given p ≥ 0, let us consider a random vector Y ∼ σp. We
define the random vector X as being equal to Y on √p Sp+ =

√
pSp ∩ (R+ ×Rp)

and equal to −Y on √p Sp− =
√
p Sp∩(R−×Rp). Note that X ∼ σp ∼ 21√pSp+σp

and Y are both 2e− ·
2/2-concentrated (see Theorem 0.0.3) and therefore RX ≤

RY ≤ RY ≤
∫∞

0
2e−t

2/2dt =
√

2π. As we see on the schematic Figure 1, the
distribution of X + Y is completely different from the distribution of X and Y
since it is discontinuous. If one looks at the variations of the random variable
‖X + Y ‖ that is a 1-Lipschitz functional of (X,Y ), one notes that 0 is a median
of ‖X + Y ‖ and we have :

P (‖X + Y ‖ ≥ t) =


1 if t = 0

1

2
if t ∈

(
0,
√

2p
]

0 if t >
√

2p.
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Therefore, with the notation of the observable diameter we introduced in Re-
mark 1.2.28, we see that :

R(X,Y ) ≥ R‖(X+Y ‖ =

∫ ∞
0

P (‖X + Y ‖ ≥ t) dt =

√
p

2
> 4
√

2π ≥ 2(RX +RY )

For p sufficiently large, it contradicts the inequalities given in Remark 1.2.28 and
we see in particular that the random vector (X,Y ) has an observable diameter of
the same order as the metric diameter which is of order √p. The vector (X,Y )
is not concentrated in the sense given by Remark 1.2.23.

In this example, X was chosen in a way that its relationship with Y changes
dramatically through the plane {0}×Rp : there is what we shall call an unlimited
defiance of X towards Y . To be able to infer concentration properties on (X,Y )
from the concentration of X and Y one needs to limit this defiance under a
modulus of continuity in a way defined below.

Definition 11. [Defiance between random vectors] Given two random variables
X ∈ E and Y ∈ F , and a continuity modulus ω : R+ → R+, one says that X
defies Y under w iff for any 1-Lipschitz function f : E → R, any t ∈ R and any
y1, y2 ∈ F :

P (f(X) ≥ t | Y = y1) ≤ P (f(X) ≥ t− ω(‖y1 − y2‖) | Y = y2)

If there exist two parameters λ > 0 and ν ∈ (0, 1] such that ∀t > 0, ω(t) = λtν ,
one says that X (λ, ν)-Hölder defies Y and if ν = 1, one says that X λ-Lipschitz
defies Y .

We give some basic examples of the notion of defiance in the next lemma.

Lemma 1.2.30. Let us consider four normed vector spaces E,F,G,H, three
random vectors X ∈ E, Y ∈ F , Z ∈ G, two continuity modulus ω, ε : R+ → R+;
a ω-continuous transformation φ : F → E, a transformation ψ : E×G→ H that
we suppose to be ω-continuous on the first variable (i.e. ∀z ∈ G : x 7→ ψ(x, z) is
ω-continuous) :

• if Z and Y are independent then Z defies Y under 0
• φ(Y ) defies Y under ω
• if X defies Y under ε then ψ(X,Z) defies Y under ω ◦ ε.

Example 1.2.31. For ω 6= 0, the defiance under ω (and in particular the 1-
Lipschitz defiance) is a non symmetric relation. For instance if we consider a
random variable X ∈ [−1, 1], say, uniformly distributed, we know that Y =
max(X, 0) 1-defies X but it is not possible to find a modulus of continuity ω
such that X would defy Y under ω. Indeed, if we suppose that such a modulus
of continuity exists, we would have for any t > 0 :

1 ≤ P (X ≥ t | Y = t) ≤ P (X ≥ t− ω(t) | Y = 0) ,

imsart-generic ver. 2014/10/16 file: output.tex date: February 14, 2019



Louart & Couillet/Concentration of Measure and Large Random Matrices 42

and since P (X ≥ t− ω(t) | Y = 0) is null if ω(t) ≤ t and equal to ω(t) − t
otherwise, it is necessary that :

∀t > 0 : ω(t) ≥ t+ 1,

therefore, ω is clearly not continuous at 0.

However, the defiance under 0 is a symmetric relation equivalent to the rela-
tion of independence.

Proposition 1.2.32. Given two random vectors X and Y :

X defies Y under 0 ⇔ Y defies X under 0 ⇔ X and Y are independent.

In Definition 11, it is possible to integrate the inequality on y2 to get a
necessary condition for defiance that might help the understanding of the notion.

Lemma 1.2.33. Given two random vectors X ∈ E and Y ∈ F , and a modulus
of continuity ω, if we suppose that X defies Y under ω, then for any y ∈ F and
ε > 0 :

P (f(X) ≥ t | Y = y) ≤ P (f(X) ≥ t+ ω(s) | Y ∈ Bs)

The last point of Lemma 1.2.30 gave us an easy way to build couples (X,Y ) of
defiant random vectors from two independent random vectors (X,Z). However,
recalling that our goal is to show the concentration of (X,Y ), the example
X = φ(Y,Z) with φ ω-continuous is easy to treat since (φ(Y,Z), Y ) is a 2ω-
continuous transformation of the vector (Y, Z) that is concentrated when Y and
Z are concentrated thanks to Proposition 1.2.26. To let the reader imagine other
kinds of defiant vectors, we present an example of simple uniform distribution in
R2 that could possibly be expressed as the ω-continuous transformation φ(U, V )
of two independent random variables U, V but whose defiance can be shown
straightforwardly, without Lemma 1.2.30.

Example 1.2.34. Let us consider the random vector (X,Y ) ∈ R2 following the
uniform distribution on the set {(x, y) ∈ R2

+ | x2 + y2 ≤ 1}. We are going to
show that X (

√
2, 1

2 )-Hölder defies Y and for the same reason, since X and Y
play symmetric roles, Y (

√
2, 1

2 )-Hölder defies X. Let us consider y1, y2 > 0,
a 1-Lipschitz function f : R → R and a threshold t > 0; we want to bound
P (f(X) ≥ t | Y = y2) with P

(
f(X) ≥ t−

√
2 |y1 − y2|

1
2 | Y = y1

)
and we note

for simplicity w =
√

2 |y1 − y2|
1
2 and for any y ∈ [0, 1], ry =

√
1− y2.

If y1 ≥ y2, it is easy to see that :

P (f(X) ≥ t | Y = y2) ≤ P (f(X) ≥ t | Y = y1) ≤ P (f(X) ≥ t− w | Y = y1)

If y1 ≤ y2, if P (f(X) ≥ t− w | Y = y1) is equal to 1, there is nothing to
show, we can thus suppose that it is strictly lower than 1. For any x ∈ [0, ry1

]
verifying f(x) < t− w, ∀u ∈ [−w,w] :

f(x+ u) ≤ f(x+ u)− f(x) + f(x) < u+ t− w < t,
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X

f(X) Y10 y

ry

t

Fig 2. An example of (
√

2, 1
2

)-Hölder defiance. In shaded grey on the right, the uniform
distribution on the disk quarter ; on the left of the figure, the graph of a given 1-Lipschitz
function f . The red vertical lines on the right of the figure represent the set {f(X) ≥ t, Y = y}.
Keep in mind that due to the Lipschitz character of f , when t is shifted by w > 0, the red
horizontal dotted boundaries are shifted at least by w. For any y1, y2, t ∈ R, P(f(X) ≥ t | Y =
y1) ≤ P(f(X) ≥ t−

√
2|y1 − y2|1/2 | Y = y2), the inequality is the tightest when 1 > y2 ≥ y1

and when y1 is close to 1.

since f is 1-Lipschitz. Therefore {f < t−w}w ⊂ {f < t} (where Aw = {y | ∃x ∈
A, ‖x− y‖ ≤ w} is the closed neighborhood of order w of A) and we have the
inequality : ∫ ry1

0

1f(x)≥tdx+ w ≤
∫ ry1

0

1f(x)≥t−wdx < 1.

With our hypothesis, ry2 ≤ ry1 , we can then bound :

P (f(X) ≥ t− w | Y = y1)

=
1

ry1

∫ ry1

0

1f(x)≥t−wdx ≥
1

ry1

∫ ry2

0

1f(x)≥tdx+
w

ry1

≥ P (f(X) ≥ t | Y = y2)− ry1
− ry2

ry1

∫ ry2
0

1f(x)≥tdx

ry2

+
w

ry1

≥ P (f(X) ≥ t | Y = y2) +
w − (ry1

− ry2
)

ry1

.

Eventually, with the basic inequalities :

ry1 − ry2 =
√

1− y2
1 −

√
1− y2

2 ≤
√
y2

1 − y2
2 ≤

√
2(y1 − y2) = w,

we can conclude that X (
√

2, 1
2 )-Hölder defies Y .

Now that we gave some insights into the notion of defiance, we can enunciate
our theorem.
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Theorem 1.2.35. Given two integers p, q ∈ N and two random vectors (X,Y ) ∈
Rp × Rq , if we suppose that they are both concentrated, and that X defies Y
under a modulus of continuity ω, then the concatenation (X,Y ) is also concen-
trated in (Rp+q, ‖·‖`1), where ‖(x, y)‖`1 = ‖x‖2 + ‖y‖2. More precisely, given
two concentration functions α, β, we suppose that X ∝ α and Y ∝ β and we
note t0 > 0 verifying α(t0), β(t0) < 1− 1√

2
. Then, with the shifting operator τt0

introduced in the context of Lemma 1.1.1, we have the implication :{
X ∝ α
Y ∝ β

=⇒ (X,Y ) ∝ τ2t0 · 2
(
α ◦ (1 + ω)−1(·/2) + β(·/2)

)
,

where (1 + ω)−1 is the pseudo inverse of 1 + w.

Since for any (x, y) ∈ Rp × Rq, ‖(x, y)‖`1 ≤
√

2 ‖(x, y)‖2, we can adapt the
result of Theorem 1.2.35 to a mere concentration in Rp+q endowed with the
Euclidean norm just with a slight modification of the concentration function.

The translation coefficient t0 appearing in the result arises from the expres-
sion of the concentrations around quantiles on which the proof of Theorem 1.2.35
relies. Given a random variable Z, and a parameter θ > 0, we use the notation qZθ
to designate a θ-quantile of Z that verifies by definition P

(
Z ≥ qZθ

)
≥ 1− θ and

P
(
Z ≤ qZθ

)
≥ θ. Of course there can be several quantiles; we then suppose that

the assertions that contains the notation qZθ are true for all the θ-quantiles of
Z. Assuming that a random variable Z is concentrated, it is possible to express
the behavior around a quantile.

Lemma 1.2.36 ([Led01, Lemma 1.1]). Given a random variable Z, a median
mZ of Z, a concentration function α : R+ → R+ and a threshold θ ∈ (0, 1), we
have the implication :

Z ∈ mZ ± α =⇒ Z ∈ qZθ ± τtθ · α,

where tθ verifies α(tθ) < min(θ, 1−θ) and τtθ is the translation operator defined
before Lemma 1.1.1.

Proof. By definition of the quantile qZθ , we know that |mZ − qZθ | ≤ tθ , since the
concentration of Z implies when t = tθ :{

P (Z ≤ mZ − tθ) ≤ α(tθ) < θ

P (Z ≥ mZ + tθ) ≤ α(tθ) < 1− θ
=⇒

{
mZ − tθ ≤ qZθ
mZ + tθ ≥ qZθ .

We can then conclude thanks to Lemma 1.1.1.

Note that if we only suppose α(tθ) ≤ θ, then we cannot infer any behav-
ior around a quantile because there can be plenty of them and the inequality
P (Z ≤ mZ − tθ) ≤ θ does not entail anything remarkable.

Proof of Theorem 1.2.35. In the proof we need the uniqueness of the quantiles
and of the median; we will thus first suppose that the Lebesgue measure λRp+q is
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absolutely continuous with respect to µ(X,Y ), the distribution of (X,Y ), which
is classically written as λRp+q � µ(X,Y ) and means that for any Borel set A ⊂
Rp+q:

P ((X,Y ) ∈ A) = 0 =⇒ λRp+q (A) = 0.

That allows us to say that any 1-Lipschitz function f : E × F → R and any
a, b ∈ R such that a < b :{

P (f(X,Y ) ≤ a) > 0

P (f(X,Y ) ≥ b) > 0
=⇒ P (a ≤ f(X,Y ) ≤ b) > 0.

Indeed, if we suppose that the left assertions are true, then taking (xa, ya) ∈
{f ≤ a} and (xb, yb) ∈ {f ≥ b}, the intermediate value theorem states that there
exists a point (x0, y0) ∈ [(xa, ya), (xb, yb)] belonging to the open set {a < f < b}.
The set {a ≤ f ≤ b} has then a positive Lebesgue measure as it contains a non
empty open subset and P (a ≤ f(X,Y ) ≤ b) > 0 by hypothesis made on (X,Y ).
We then see that if θ ∈ (0, 1), the θ quantile qf(X,Y )

θ is unique, in particular we
note mf the median of f(X,Y ).

Let us introduce a parameter θt ∈ (0, 1) that we will precise later and shall
be considered as increasing with t. We start with the decomposition :

P (f(X,Y ) ≥ mf + t) =

∫
P (f(x, Y ) ≥ mf + t | X = x) dP(X = x). (11)

It is then tempting to employ Markov-like inequality distinguishing the draw-
ings x of X where P (f(x, Y ) ≥ mf + t | X = x) > 1− θt from the others. It is
possible to simplify the expression of the two cases noting that for any x ∈ Rp :

P (f(x, Y ) ≥ mf + t | X = x) > 1− θt =⇒ qxθt > mf + t,

where qxθt = q
f(x,Y ) |X=x
θt

is the θt-quantile of the random variable f(x, Y ) | X =
x. We get the inequality :

P (f(X,Y ) ≥ mf + t) < P
(
qXθt > mf + t

)
+
(
1− P

(
qXθt > mf + t

))
(1− θt)

= P
(
qXθt > mf + t

)
θt + (1− θt).

Now, to find a lower bound of P
(
qXθt > mf + t

)
, let us first consider the case

t = 0 and for that purpose we employ again the decomposition (11) :

1

2
= P (f(X,Y ) > mf ) > P

(
qXθ0 > mf

)
(1− θ0) .

That leads to the inequality :

P
(
qXθ0 > mf

)
<

1

2(1− θ0)
.
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As suggested in the hypothesis of the proposition, it appears natural to introduce
θ0 = 1 − 1/

√
2 because in that case 1 − θ0 = 1/2(1 − θ0) and by definition of

the quantile, we directly see that mf > q
qXθ0
θ0

. We could have chosen for θ0 any
value in ( 1

2 , 1), but the present choice symmetries and somehow optimizes the
concentration – if α = β. Here be careful that due to our choice of notation, qXθ0
is a random variable depending on X and q

qXθ0
θ0

is a constant.

When t > 0, the inequality mf > q
qXθ0
θ0

directly implies :

P
(
qXθt > mf + t

)
≤ P

(
qXθt > q

qXθ0
θ0

+ t

)
.

It is interesting to bound the random variable qXθt with qXθ0 to let appear a

concentration inequality involving a random variable qXθ0 with its quantile q
qXθ0
θ0

as in Lemma 1.2.36. For that purpose, considering the parameter t0 introduced
in the proposition, we set θt+2t0 = 1 − β( t2 ). With that choice of θt, thanks to
Lemma 1.2.36, we know that for any t > 0 and x ∈ R :

P
(
f(x, Y ) ≥ qxθ0 + t0 + t

)
≤ β (t) = 1− θ2(t+t0),

thus ∀t > 0, qxθ0 + t+ t0 ≥ qxθ2(t+t0)
. That entails :

P
(
qXθt+2t0

> mf + t+ 2t0

)
≤ P

(
qXθ0 > q

qXθ0
θ0

+
t

2
+ t0

)
≤ α ◦ (1 + ω)−1

(
t

2

)
.

The last inequality was obtained with Lemma 1.2.36. Indeed, the function x 7→
qxθ0 is (1 + ω)-continuous, given x1, x2 ∈ E :

θ0 ≤ P
(
f(x1, Y ) ≤ qx1

θ0
| X = x1

)
≤ P

(
f(x2, Y ) ≤ f(x1, Y )− f(x2, Y ) + qx1

θ0
| X = x1

)
≤ P

(
f(x2, Y ) ≤ ‖x2 − x1‖E + qx1

θ0
| X = x1

)
≤ P

(
f(x2, Y ) ≤ (1 + ω) (‖x2 − x1‖E) + qx1

θ0
| X = x2

)
,

thus (1 + ω) (‖x2 − x1‖E) + qx1

θ0
≥ qx2

θ0
and we get the same way the inequality

qx1

θ0
− qx2

θ0
≤ (1 + ω) (‖x2 − x1‖E).

Combining our results all together, we can bound :

P (f(X,Y ) ≥ mf + t+ 2t0) ≤
(

1− β
(
t

2

))
α ◦ (1 + ω)−1

(
t

2

)
+ β

(
t

2

)
,

and we get the same bound for the probability P (f(X,Y ) ≤ mf − t− 2t0) that
eventually gives us the result of the proposition in the case where the distribution
of (X,Y ) controls the Lebesgue measure.

In the general case we can approximate (X,Y ) with a sequence of random
vectors (Xn, Yn) verifying λRp+q � µ(Xn,Yn) ∀n ∈ N. For that purpose, let
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us introduce U, V two independent Gaussian random vectors verifying U ∼
N (0, Ip)) and V ∼ N (0, Iq) and respectively independent to X and Y . We
know from Example 1.2.27 that

Xn = X +
1

n
U

m∝ αn where αn(t) = α

((
1 +

1√
n

)
t

)
+ 2e−nt

2/2,

Yn = Y +
1

n
V

m∝ βn where βn(t) = β

((
1 +

1√
n

)
t

)
+ 2e−nt

2/2,

and we know that λRp+q is absolutely continuous under µ(Xn,Yn). Let us consider
a 1-Lipschitz function g : Rp+q → R. We note mn the median of g(Xn, Yn),
m+ = sup{m,P (g(X,Y ) ≥ m) ≥ 1

2} and m− = inf{m,P (g(X,Y ) ≤ m) ≥ 1
2}.

For any ε > 0, there exists δ > 0, such that we can bound :

1

2
+ δ ≤ P (g(X,Y ) ≤ m+ + ε) ≤ P

(
g(Xn, Yn)− 1

n
‖(U, V )‖ ≥ m+ + ε

)
≤ P (g(Xn, Yn) ≥ m+ + 2ε) + P

(
1

n
‖(U, V )‖ ≥ ε

)
.

and if n is large enough, we know from Proposition 1.2.10 (and Proposition 1.2.26 :
(U, V ) is concentrated since U and V are independent and concentrated) that
P
(

1
n ‖(U, V )‖ ≥ ε

)
tends to 0 when n tends to infinity. Therefore we obtain

for n large enough the inequality 1
2 ≤ P (g(Xn, Yn) ≥ m−) that directly entails

m++2ε ≤ mn. With similar considerations, we show that the sequence (mn)n∈N
belongs to [m− − 2ε,m+ + 2ε] for all n large; then, replacing ε by the elements
of a sequence εn tending to zero, we can extract a subsequence of (mn)n∈N
that we will still abusively note (mn)n∈N and that converges to a real value
mg ∈ [m−,m+]. The limit mg we obtain is then clearly a median of g(X,Y ).
The hypothesis of Proposition 1.1.12 :

• mn tends to mg

• g(Xn, Yn) tends in law to g(X,Y )
• τ2t0 · 2

(
αn ◦ (1 + ω)−1(·/2) + βn(·/2)

)
point-wise converges to

γ = τ2t0 · 2
(
α ◦ (1 + ω)−1(·/2) + β(·/2)

)
are verified, we can thus conclude that (X,Y )

m∝ γ.

In the case of exponential concentration, we can employ Lemma 1.1.16 to get
the simple corollary :

Corollary 1.2.37. Given two random vectors X,Y ∈ E and three parameters
C ≥ e, σ, q > 0, we have the implication :

X,Y
m∝ Ce−(·/σ)q =⇒ (X,Y )

m∝ 4Ce−(·/4σ)q .

We can then express the concentration of a sum of two exponentially concen-
trated random vectors :
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Corollary 1.2.38. In the setting of Corollary 1.2.37 :

X,Y
m∝ Ce−(·/σ)q =⇒ X + Y

m∝ 4Ce−(·/4σ)q .

If we now consider that X and Y are two vectors of an algebra A endowed
with an algebra norm ‖·‖ (verifying ‖XY ‖ ≤ ‖X‖ ‖Y ‖), we can express the
concentration of the product XY thanks to Lemma 1.1.8. We present the result
in the case of exponential concentration for which the expression is simple, but
the proof could be adapted to any other type of concentration function.

Proposition 1.2.39 (Concentration of the vector product). Given two inde-
pendent random vectors X,Y ∈ A, and three parameters, q ≥ 1, C ≥ e and
σ > 0, if X,Y

m∝ Ce−(·/σ)q , then noting X̃, Ỹ , some deterministic equivalents
of respectively X and Y , we have :

(X − X̃)(Y − Ỹ ) ∝ C1e
−(·/c1σ2η

1/q

‖·‖ )q
+ C2e

−(·/c2σ2)q/2 ,

where C1, c1, C2, c2 ≥ 1 are four numerical constants depending only on C and
η‖·‖ is the degree of the norm ‖ · ‖, presented in Definition 9.

Of course if one (or both) of the random vectors X and Y has a bounded
norm, then the concentration is tighter.

Proof. Let us suppose for simplicity that X̃ = Ỹ = 0. Noting m‖X‖ and m‖Y ‖,
the median of respectively ‖X‖ and ‖Y ‖, we know from Corollary 1.2.14 that

m‖X‖,m‖Y ‖ ≤ C ′ση
1/q
‖·‖ ,

for some numerical constant C ′ ≥ e proportional to C. We note η = C ′ση
1/q
‖·‖ > 0.

Considering a 1-Lipschitz function f : A → R, we are going to show that
f(XY ) is concentrated as the product of two concentrated random variables
Z1 = ‖X‖+‖Y ‖+η and Z2 = f(XY )

‖X‖+‖Y ‖+η . First, we know from Proposition 1.1.5
that Z1 ∝ η +m‖X‖ +m‖Y ‖ ± 2Ce−(·/2σ)q . Second, Proposition B.4.1 gives us
the concentration (X,Y )

m∝ 4Ce−(·/4σ)q , and we want thus to show that the map
g : (x, y) 7→ f(x,y)

‖x‖+‖y‖+η is Lipschitz. Given (h, k) ∈ A2 such that ‖h‖ , ‖k‖ ≤ η
2 ,

let us bound :

|g(x+ h, y + k)− g(x, y)| ≤
∣∣∣∣ ‖x‖ − ‖x+ h‖+ ‖y‖ − ‖y + k‖
(‖x+ h‖+ ‖y + k‖+ η)(‖x‖+ ‖y‖+ η)

∣∣∣∣ |f(xy)|

+
|f((x+ h)(y + k))− f(xy)|

‖x‖+ ‖y‖+ η

≤ (‖h‖+ ‖k‖) |f(xy)|
‖x‖ ‖y‖

+ 2(‖h‖+ ‖k‖).

Let us suppose without loss of generality that f(0) = 0; the Lipschitz char-
acter of f gives us the inequality :

f(xy) ≤ ‖xy‖ ≤ ‖x‖ ‖y‖ .
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Therefore g is 2-Lipschitz and we know from Proposition 1.1.9 that there exist
two medians mZ1

and mZ2
of respectively Z1 and Z2 such that :

f(XY ) = Z1Z2 ∈ mZ1
mZ2

± Ce−(·/4σ|mZ2
|)q + 4Ce−(·/16σmZ1

)q + Ce−(·/2σ2)q/2 .

That allows us to conclude sincemZ1
≤ 2η and besides, f(xy)

‖x‖+‖y‖+η ≤
max(‖x‖+‖y‖)

2 ,
and thus mZ2 ≤ η.

Example 1.2.40. We give as in Examples 1.2.16 and 1.2.17 some results for
the product � in Rp and the matricial product in Mpn. Therefore we consider
a random vector Z ∈ Rp and a random matrix X ∈ Mpn verifying Z,X ∝
2e−(·/2)2

for the Euclidean norm (the Frobenius norm in Mpn) and such that
E[Z] = 0 and E[X] = 0 :

• Z�2
√
p = Z�Z√

p ∝ Ce
−c·2 + Ce−cp

1/4· in (Rp, ‖ · ‖2)

• Z�2
√

log p
∝ Ce−c·2 + Ce−c(log p)1/4· in (Rp, ‖ · ‖∞)

• XXT

n ∝ Ce−c( ·/
√
γ)2

+ Ce−cn·/σ
2

in (Mp,n, ‖·‖F )

• XXT√
n
∝ Ce−c( ·/

√
γ̄)2

+ Ce−c
√
n·/σ2

in (Mp,n, ‖·‖)

• XXT√
logn

∝ C exp

(
− c ·2

1+ log p
logn

)
+ Ce−c

√
logn· in (Mp,n, ‖·‖∞),

where γ = p
n , γ̄ = γ + 1 ≥ max(γ, 1) and C ≥ 1 and c > 0 are two numerical

constants. One can note in these examples that the Lipschitz concentration pre-
serves the concentration rates better than the linear concentration through the
product of random vectors.

Let us pursue our study of the concentration in algebras with the concentra-
tion of the power of a random vector as in Proposition B.3.1.

Proposition 1.2.41. Given an integer m ≥ 2, a random vector Z ∈ A and
two parameters C ≥ e and σ > 0, if Z ∝ Ce−(·/σ)q , there exist two numerical
constants C ′ ≥ e and c > 0 depending on C, q and m such that :

Zm ∝ C ′ exp

(
−c
(

·
σE[‖Z‖]m−1

)q)
+ C ′e−c(·/σ

m)
q
m + C ′e−c(·/σ)q .

Remark 1.2.42. If one compares Proposition 1.2.41 with Proposition B.3.1
that gives the linear concentration of Zm when Z is linearly concentrated, one
sees that the Lipschitz concentration is more respectful to the power of random
vectors since the observable diameter of Zm is η1/q

‖·‖ smaller (for any m ≥ 2)
in the case of Lipschitz concentration. To be more precise, with the notations
of the propositions and in the case where ‖EZ‖ ∼ ση

1/q
‖·‖ , the leading tail pa-

rameter in the combination of exponential concentrations is σmηm/q‖·‖ for linear

concentration and σmη(m−1)/q
‖·‖ for Lipschitz concentrations.

Proof. Given a 1-Lipschitz function f : A → A, we decompose as in Propo-
sition 1.2.39 the functional f(Zm) into the product of two random variables,
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Z1 = (η + ‖Z‖)m where η = E[‖Z‖] plays the same role as before and Z2 =
f(Zm)/Z1 = g(Z). We know from Proposition 1.1.10 that :

Z1 ∈ (2E[‖Z‖])m ± C exp

(
−
(

·
22m−1σE[‖Z‖]m−1

)q)
+ Ce−(·/2σm)q/m ,

We are just left to show that g is Lipschitz. Let us consider a parameter ε > 0
that will tend to zero and two vectors x, h ∈ A∗ such that ‖h‖ ≤ ((1 + ε)1/m −
1) ‖x‖), we know that ∀l ≤ m, ‖x+ h‖l ≤ (1 + ε) ‖x‖l and we have :

|g(x+ h)− g(x)|

≤
∣∣∣∣ ‖x+ h‖m − ‖x‖m

(‖x+ h‖+ η)m(‖x‖+ η)m

∣∣∣∣ |f((x+ h)m)|+ |f(xm)− f((x+ h)m)|
(‖x‖+ η)m

≤ ‖h‖ (‖x‖m + ‖x‖m−2 ‖x+ h‖+ . . .+ ‖x+ h‖m)

(‖x‖+ η)m
|f((x+ h)m)|

(‖x+ h‖+ η)m

+

∣∣∣∣‖x+ h‖m − ‖x‖m

(‖x‖+ η)m

∣∣∣∣ ≤ (1 + ε)
2m

η
‖h‖ .

As before we suppose, without loss of generality, that f(0) = 0 and therefore that
∀x ∈ A, f(x) ≤ ‖x‖. Of course, the same inequality holds if x = 0 and h ∈ A is
chosen arbitrarily. Therefore, letting ε tend to 0, one sees that g is 2m

η -Lipschitz

and Z2 = g(Z) ∈ E[Z2]±Ce−(η·/2mσ)1/q

. Besides, knowing that Z2 ≤ 1, we can
deduce the concentration of f(Zm) = Z1Z2 thanks to Lemma 1.1.8 :

f(Zm) ∈ EZ1EZ2 ± 2C exp

(
−
(

·/22m

σE[‖Z‖]m−1

)q)
+ Ce−(·/4σm)

q
m + Ce−(·/8mσ)q .

In the preamble, we presented the resolvent as the convenient object that one
wants to study to get some insight into the spectrum of the sample covariance
of a concentrated random vector. Given a matrix X ∈Mp,n and a positive real
number z > 0, recall that the resolvent QS of the sample covariance matrix
S = 1

nXX
T is defined as :

QS(z) =
(
XXT /n+ zIp

)−1
.

We will simply note it Q to lighten the notations. Following Example 1.2.40, it
is possible to show that the resolvent is concentrated with the same observable
diameter as S (and X). However, it is possible to get a better concentration
rate if we take advantage of the fact that Q is a 2√

z3n
-Lipschitz transformation

of X; we gain this way a factor of order
√
n in the concentration that will be

vital in Section 2. This suggests why the resolvent is so efficient for the study
of the spectral distribution of S.
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Proposition 1.2.43. Given z > 0, a random matrix X ∈Mp,n and a concen-
tration function α, we have the implication :

X ∝ α =⇒ Q =

(
1

n
XXT + zIp

)−1

∝ α

(√
nz3

2
·

)
.

In particular :

X
E∝ α =⇒ Q ∈ E[Q]± α

(√
nz3

2
·

)
.

We need a preliminary lemma before giving the proof to control the Frobenius
norm of a product :

Lemma 1.2.44. Given A ∈Mpn and B ∈Mnp, one has the bound :

‖AB‖F ≤ ‖A‖ ‖B‖F and ‖AB‖F ≤ ‖A‖F ‖B‖ .

One must be careful that in most cases ‖AB‖F 6= ‖BA‖F , which is why we
need to display both inequalities. Recall in passing that the Cauchy-Schwarz
inequality gives us directly ‖AB‖F ≤ ‖A‖F ‖B‖F .

Proof. Lemma 1.2.44 is just a consequence of the computations :

‖AB‖2F ≤
p∑
j=1

‖AB·,j‖22 ≤ ‖A‖
2

p∑
j=1

‖B·,j‖22 ≤ ‖A‖
2 ‖B‖2F .

The role of A and B could be inverted in the calculus without any problem.

Proof of Proposition 1.2.43. The function φ : Mp,n → Mp defined as φ(R) =(
RRT + zIp

)−1 is 2/z3/2-Lipschitz. Indeed, given R,H ∈M2
p,n :

φ(R+H)− φ(R) =
(
(R+H)(R+H)T + zIp

)−1 −
(
RRT + zIp

)−1

= φ(R+H)
(
(R+H)H +HRT

)
φ(R).

Thus ‖φ(R+H)− φ(R)‖ ≤ 2 ‖H‖F /z3/2 because the Frobenius norm controls
the spectral one and because of the basic result ‖φ(R)R‖ ≤ 1/

√
z and ‖φ(R)‖ ≤

1
z enunciated in Lemma 0.0.2 in the preamble. Now, since Q(z) = φ(X/

√
n),

we recover directly the result of the proposition thanks to the hypothesis on X.
The second implication is just a consequence of Remark 1.2.19.

If we try to characterize geometrically, and roughly speaking, the range of
random vectors concerned by Theorem 0.0.3, we would describe the set of re-
spectful modifications of the sphere where bounded dilatations or the removals
of some parts are tolerated but any cut is forbidden (we have about the same
statement considering Theorem 1.2.20). This represents already a good range
of distributions but one might be interested in representing discrete or at least
“discontinuous” distributions.
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1.2.3. Convex Concentration

With a combinatorial approach, Talagrand showed in the nineties that it is pos-
sible to find a weaker notion of concentration to apprehend the concentration
of partly discrete distributions. In these cases, to be concentrated the “observa-
tion” not only needs to be Lipschitz but also to be quasiconvex, in the sense of
the following definition.

Definition 12 (Quasiconvexity). A function f : E → R is said to be quasicon-
vex if for any real t ∈ R, the set {z ∈ E : f(z) ≤ t} = {f ≤ t} is convex.

Remark 1.2.45. Quasiconvexity concerns of course convex functions, but also
any monotonous function supported on R. More generally, given a convex func-
tion f and a non decreasing function g, the composition g ◦ f is quasiconvex.

The class of quasiconvex functions is rather interesting in the sense that it is
wider than the class of merely convex functions but still verifies the property of
the uniqueness of the minimum.

Definition 13 (Convex concentration). Given a random vector Z ∈ (E, ‖·‖)
and a concentration function α, we say that Z is convexly α-concentrated if one
of the three assertions is verified for any 1-Lipschitz and quasiconvex function
f : E → R :

• f(Z) ∝ α, and we will note in that case Z ∝c α

• f(Z) ∈ mf ± α, and we will note in that case Z
m∝c α

• f(Z) ∈ E[f(Z)]± α, and we will note in that case Z
E∝c α,

where mf is a median of f(X).

Remark 1.2.46. It is clear that the concentration of Definition 10 implies the
convex concentration of Definition 13. Those two notions are equivalent when
E = R since they are then both equivalent to Definition 2.

Once again, when non ambiguous, we will omit the precision “in (E, ‖·‖)”. We
clearly have the implication :

Z ∝ α =⇒ Z ∝c α.

In the case of a q-exponential concentration, we have the implication chain :

Z
E∝ Ce−( · /σ)q =⇒ Z

E∝c Ce−( · /σ)q =⇒ Z ∈ EZ ± e−( · /σ)q .

The fundamental example that alone justifies the interest in convex concen-
tration is owed to Talagrand and provides to our study a supplementary setting
to the “smooth” scenarios given by Theorems 0.0.3 and 1.2.20.
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Theorem 1.2.47 (Convex concentration of the product of bounded distribu-
tions, [Tal95, Theorem 4.1.1]). Given a random vector Z ∈ [0, 1]m, m ∈ N, with
independent entries :

Z
m∝c 4e− ·

2/4.

Considering the example of the preamble, we are tempted to look for a similar
theorem where the sets [0, 1] are compact sets of Rp bounded by K and m is
taken to be equal to n. It is not so interesting however, the issue being that
the factor K that would appear in the tail parameter would jeopardize most of
the applications since it should be of order 1 while ‖Zi‖ is often of order √p
when Zi ∈ Rp. This can however find some use when considering sparse random
vectors.

The interesting setting is the case where E = R, and m = pn. Then we
do not exactly consider the concentration on Rnp but the concentration on
Mp,n (endowed with the Frobenius norm). Theorem 1.2.47 gives us in that
case a convenient tool to build convexly q-exponentially concentrated random
matrices. In that case, the bound |Zi| ≤ K on the entries of a random vector Z
is no more an unreachable hypothesis for applications; however we will need in
that case an independence between the entries.

Theorems 0.0.3 and 1.2.20 allow us to track easily concentration properties
from a vector Z ∈ Rp verifying Z ∼ σp−1 or Z ∼ N (0, Ip) to any Lipschitz
transformation and even to any uniformly continuous transformation f(Z) ∈
Rq. Theorem 1.2.47 is not so easy to generalize because the convexity (or the
quasiconvexity) of a function is only defined for real-valued functions; indeed,
most of the transformations between two vector spaces ruin the subtle structure
of convexity. We can still slightly relax the hypothesis of independence in the
theorem of Talagrand thanks to affine transformations :

Lemma 1.2.48. Given two vector spaces E,F and a quasiconvex (resp., convex)
function f : E → R, for any affine function g : F → E, the composition f ◦ g
is also quasiconvex (resp., convex).

Remark 1.2.49. Given two convexly concentrated random vectors X,Y ∈ E,
it is not possible to adapt the proof of Proposition 1.2.35 to the convex case to
show the concentration of (X,Y ). For convex concentration, the independence
between X and Y appears as a crucial element to deduce from a concentration
on X and Y a concentration on (X,Y ). We advice again the reader to take
a look at Proposition B.4.1 in Appendix B.4 to see how to express the convex
concentration of (Z1, . . . , Zp) when Z1, . . . , Zp are all q-exponentially convexly
concentrated. This result is the same for Lipschitz and convex concentration.

We can give a supplementary useful proposition that will allow us to keep
the properties of convex concentration when thresholding a random vector. But
before let us give an immediate preliminary lemma. We present it without proof
since it is a direct consequence of Lemma 1.1.19.
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Lemma 1.2.50. Given a random vector Z, an exponent q > 0 and two positive
constants C ≥ e and σ > 0, if we note m‖Z‖ a median of ‖Z‖, we have the
implication :

Z
m∝c Ce−( · /σ)q =⇒ ∀t ≥ 2m‖Z‖ P (‖Z‖ ≥ t) ≤ Ce−(t/2σ)q .

The lemma displays a slight modification of the concentration constants, with
here the behavior of the tail only beyond 2E ‖Z‖. The next proposition allows us
to say that the concentration of a q-exponentially convexly concentrated random
vector occurs under a threshold of order 2m‖Z‖.

Proposition 1.2.51. Given a random vector Z ∈ E a constant K ≥ 2m‖Z‖,
we introduce the vector Z̄ = min(1, K

‖Z‖ )Z. If there exist an exponent q > 0 and

two parameters C ≥ e and σ > 0 such that Z
m∝c Ce−( · /σ)q then

Z̄ ∝c 4Ce−( · /4σ)q .

If Z ∝ Ce−( · /σ)q , it is possible to see Z̄ as a 1-Lipschitz transformation of
Z that would be naturally concentrated. However the hypothesis of quasicon-
vexity of the functionals f(Z̄) required by the convex concentration cannot be
extrapolated so simply.

Proof. Let us consider a function f : E → R quasiconvex and 1-Lipschitz. We
know from Proposition 1.1.2 that Z ∝c 2Ce−( · /2σ)q , thus introducing Z ′, an
independent copy of Z, we can bound :

P
(∣∣f(Z̄)− f(Z̄ ′)

∣∣ ≥ t) ≤ P
(∣∣f(Z̄)− f(Z̄ ′)

∣∣ ≥ t, ‖Z‖ ≤ K and ‖Z ′‖ ≤ K
)

+ P
(∣∣f(Z̄)− f(Z̄ ′)

∣∣ ≥ t, ‖Z‖ > K or ‖Z ′‖ > K
)

≤ P (|f(Z)− f(Z ′)| ≥ t) + P (‖Z‖ > K or ‖Z ′‖ > K)

≤ 2Ce−(t/2σ)q + 2Ce−(K/2σ)q .

The last inequality results from the hypothesis on Z and f and Lemma 1.2.50.
By construction

∥∥Z̄∥∥ ,∥∥Z̄ ′∥∥ ≤ K, thus
∥∥Z̄ − Z̄ ′∥∥ ≤ 2K and f being 1-Lipschitz :

if t > 2K, P
(∣∣f(Z̄)− f(Z̄ ′)

∣∣ ≥ t) ≤ P
(∥∥Z̄ − Z̄ ′∥∥ ≥ 2K

)
= 0.

Now, for any t ≤ 2K :

exp

(
−
(
K

2σ

)q)
≤ exp

(
−
(
t

4σ

)q)
,

therefore, if we rejoin the different regimes, we obtain :

∀t > 0 : P
(∣∣f(Z̄)− f(Z̄ ′)

∣∣ ≥ t) ≤ 4C exp

(
−
(
t

4σ

)q)
,

and we can show exactly in the same manner that :

∀t > 0 : P
(∣∣f(Z̄)− E

[
f(Z̄)

]∣∣ ≥ t) ≤ 4C exp

(
−
(
t

4σ

)q)
.
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Contrarily to the linear and Lipschitz concentrations, convex concentration
does not seem to be preserved through the product. To derive any results on the
product from a convex concentration, we will thus develop the habit of returning
on the linear concentration configuration which is weaker but in a sense “stable”
on algebra, like the Lipschitz concentration.

If we fail to maintain the concentration of the vectorial product, as implicitly
evoked Lemma 1.2.50, we still have the concentration of the norm as it is a
Lipschitz and convex map. That makes a fundamental difference with the linear
concentration which entices an important result on quadratic forms quite similar
to the Hanson-Wright inequality as found in [Ver17, Theorem 6.2.1] for instance.
It is also a good improvement to [El 09, Lemma 8] :

Theorem 1.2.52. Let us consider two integers q,m ∈ N and a random vector
Z ∈ Rp, two positive constants C ≥ e and σ > 0 and a matrix A ∈ Mp. If we

suppose that Z
E∝c Ce−( · /σ)q then we have :

ZTAZ ∈ Tr(AE[ZZT ])± 2Ce−( · /4σ‖A‖E‖Z‖)q + 2Ce−( · /2‖A‖σ2)
q
2 ,

It is possible to replace the mean with the median if needed.

Proof. Let us first consider the case where A is symmetric nonnegative definite;
in this case, ZTAZ = ‖A 1

2Z‖2. Theorem 1.2.52 is a particular case of Propo-
sition 1.1.10 that gives the concentration of the r-power of a random variable
‖u(Z)‖ when u is quasiconvex and 1-Lipschitz and r ≥ 1 :

‖u(Z)‖r ∈ E[‖u(Z)‖]r ± Ce−( · /2rσ‖u‖E[‖u(Z)‖]r−1)
q

+ Ce−( ·
2‖u‖rσr )

q
r

. (12)

The function z 7→ ‖A 1
2 z‖ is ‖A‖ 1

2 -Lipschitz and convex. Therefore :

‖A 1
2Z‖ ∈ E[‖A1/2Z‖]± Ce−( · /σ‖A‖

1
2 E‖A1/2Z‖)q .

Since ‖A 1
2Z‖ ≤ ‖A 1

2 ‖‖Z‖, E[‖A1/2Z‖] ≤ ‖A 1
2 ‖E[‖Z‖] and we can then conclude

thanks to (12).
Now if we consider a general matrix A ∈ Mp, let us decompose A = A+ −

A−+A0 where A+ is nonnegative symmetric, A− is non positive symmetric and
A0 is antisymmetric. We have clearly ZTAZ = ZTA+Z − ZTA−Z and we can
conclude thanks to Lemma 1.1.5.

Remark 1.2.53. The original Hanson-Wright inequality does not take as hy-
pothesis the concentration (or the convex concentration) of the whole vector
Z = (z1, . . . , zp) but just the concentration of each one of its coordinates zi.
However, it assumes that the different coordinates of Z are independent which
is quite a strong hypothesis and also that their means are equal to zero. The
concentration result obtained under these hypotheses is not exactly the same,
and relies on a quantity K that could be seen as the maximum tail parameter
of the {zi}1≤i≤p (K = σ in our case). The Hanson-Wright concentration can
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indeed be written :

P
(∣∣ZTAZ − EZTAZ

∣∣ ≥ t) ≤ 2 exp

(
−cmin

(
t2

K4 ‖A‖2F
,

t

K2 ‖A‖

))
,

where K = max{‖zi‖ψ2
}1≤i≤p is the maximum of the Orlicz norms defined as :

‖z‖ψ2
= inf{t > 0 : Eψ2(|z| /t) ≤ 1} with ψ2(x) = ex

2

− 1.

The tail parameters of the 1-exponential component is the same as the one of
Theorem 1.2.52. The tail parameter of the 2-exponential component is propor-
tional to K ‖A‖F while in our result, it is proportional to ‖A‖E[‖Z‖] ∼ √p ‖A‖.
Therefore, considering that in most cases, i.e., when A has a high rank and
eigenvalues mainly of the same order, ‖A‖F ∼

√
p ‖A‖, we see that the result

of Theorem 1.2.52 is quite similar to the Hanson-Wright inequality if we do not
take into account the hypotheses which are quite different (on the one hand they
are stronger because they only require the whole vector Z to be concentrated,
on the other hand they are weaker since they do not exploit the independence
between the entries).

Although Definition 10 is perfectly adapted to the study of the resolvent Q
(= QS), the problem is far less immediate in the setting of Definition 13, i.e.,
when X ∝c α. Indeed in the setting of convex concentration, there does not
exist any analogue to Proposition 1.2.43 since it does not seem clear whether
a functional of Q, f(Q), with f 1-Lipschitz and quasiconvex can be written
g(X/

√
n) with g verifying the same properties. In this case, the function φ cannot

transfer the quasiconvexity and the study must then be conducted downstream
directly with the random variables such as TrQ.

It is interesting to note that TrQ = Tr(XXT /n + zIp)
−1 stays unmodified

if we multiply X on the left or on the right by any orthogonal matrix. More
formally, let us introduce the group Op,n = Op ×On where Om, m ∈ N, is the
orthogonal group of matrices ofMm ; it acts onMp,n following the formula :

for (U, V ) ∈ Op,n, M ∈Mp,n : (U, V ) ·M = UMV T .

The function f : R ∈ Mp,n 7→ Trφ(R) is Op,n-invariant, in the sense that
∀(U, V ) ∈ Op,n, ∀R ∈ Mp,n, f((U, V ) · R) = f(R). A result originally owed to
Chandler Davis in [Dav57], and that can be found in a more general setting in
[GH05], gives us the hint that such an invariance can help us showing that f is
quasiconvex.

To present this theorem, we note D+
p,n the set of nonnegative diagonal ma-

trices ofMp,n :

D+
p,n =

{
(Mi,j) 1≤i≤p

1≤j≤n
∈Mp,n | i 6= j ⇔Mi,j = 0 and ∀i ∈ {1, . . . , d} : Mi,i ≥ 0

}
,

where d = min(p, n).
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Theorem 1.2.54. If a Op,n-invariant function f : Mp,n → R is quasiconvex
on D+

p,n, then it is quasiconvex on the whole setMp,n.

The original Davis’ theorem is only concerned with symmetric matrices and
we could not find any proof of this theorem for the case of rectangle matrices
although it is not so different (it was also aiming at proving the convexity of f
and not its quasiconvexity – but it is actually simpler to treat). We provide in
Appendix C a rigorous proof of Theorem 1.2.54 with the help of some results
borrowed from [Bha97].

Let us define the subgroup of row permutations Pp = {U ∈ Op | Ui,j ∈
{0, 1}, 1 ≤ i, j ≤ p} and the subgroup of full permutations :

Pp,n = {(U, V ) ∈ Pp × Pn |UIp,nV T = Ip,n} ⊂ Op,n,

where Ip,n ∈ Dp,n is a matrix full of ones on the diagonal. Given a matrix
A ∈ Mp,n, we note Diag(A) = (A1,1, . . . , Aq,q), the vector composed of its
diagonal terms. It is tempting to identify the set D+

p,n with Rd+, and the actions
of Pp,n on a diagonal matrix A to the actions of the group of permutation Sd

on the vector Diag(A), where we define the action of Sd on Rd as :

∀τ ∈ Sd,∀x ∈ Rd : τ · x =
(
xτ(1), · · ·xτ(d)

)
.

With these considerations in mind, we see that a direct interesting consequence
of Theorem 1.2.54 is that there exists a link between the convex concentration
of a matrix X and the convex concentration of the vector of its singular values.
Recall that the sequence of singular values verifies σ1(A) ≥ · · ·σd(A) ≥ 0 and
for 1 ≤ i ≤ d, the ith singular value of M can be defined as :

σi(A) = max
F⊂Rn

dimF≥i

min
x∈F
‖x‖=1

‖Mx‖ = min
F⊂Rn

dimF≥n−i+1

max
x∈F
‖x‖=1

‖Mx‖ (13)

where the subsets F of Rd on which is computed the optimization are subspaces
of Rn. We introduce the convenient function σ mapping a matrix to the ordered
sequence of its singular values :

σ : Mp,n → Rd+
M 7→ (σ1(M), . . . , σd(M)).

To formalize this transfer of concentration between a matrix X and σ(X)
let us introduce a new notion of concentration in a vector space E : the convex
concentration transversally to the action of a group G acting on E.

Definition 14. Given a normal vector space E, a group G acting on E, a
concentration function α and a random vector Z ∈ E, we say that Z is convexly
α-concentrated transversally to the action of G and we note Z ∝TG α iff for
any 1-Lipschitz, quasiconvex and G-invariant function f : E → R, f(Z) is α
concentrated.

Remark 1.2.55. In the setting of Definition 14, we have the induction chain :

Z ∝ α =⇒ Z ∝c α =⇒ Z ∝TG α.
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Definition 14 is perfectly adapted to the next theorem whose proof can also
be found in Appendix C (it is a similar result to in [Led01, Corollary 8.21] that
concerns the eigenvalues of a random symmetric matrix).

Theorem 1.2.56. Given a normal vector space E, a concentration function α
and a random matrix X ∈Mp,n, we have the equivalence :

X ∝TOp,n α ⇐⇒ σ(X) ∝TSd α.

Theorem 1.2.56 can be rather powerful to set the concentration of symmetric
functionals of random singular values. For our present interest, we will prove the
concentration of the Stieltjes transform mF = 1

p TrQ of the covariance matrix
S = XXT /n when X ∈ Mp,n is convexly concentrated (recall that F stands
for the normalized counting measure of the eigenvalues of S).

Proposition 1.2.57. Given a random matrix X ∈Mp,n, a concentration func-
tion α and z > 0 :

X ∝c α =⇒ TrQ ∝ 2α

(√
nz3

8d
·

)
with d = min(p, n).

Let us introduce a simple preliminary lemma without proof :

Lemma 1.2.58. Given an integer d ∈ N, if a function f : R → R is convex,
then the function F : Rd → R defined as F (x1, . . . , xd) =

∑d
i=1 f(xi) is also

convex.

Proof of Proposition 1.2.57. Assuming X ∝c α, we know from Remark 1.2.55
and Theorem 1.2.56 that σ(X) ∝TSd α, where d = min(p, n). Let us introduce
the function :

f : s 7−→ 1

s2 + z
.

This function verifies σi(Q) = f(σi(X)/
√
n) and TrQ =

∑d
i=1 f(σi(X)/

√
n). It

is also 2
z3/2 -Lipschitz, for s > 0 :

|f ′(s)| = 2s

(s2 + z)2
, thus f ′(s) ≤ 2

z3/2
.

Therefore, the random variable TrQ is a Lipschitz and Sd-invariant transfor-
mation of σ(X). However, it is not quasiconvex. The result of convexity can be
obtained decomposing f = g − h with g and h both convex, then we will be
able to conclude thanks to Lemma 1.1.5 giving the concentration of a sum of
random variables. Let us set h(s) = ( sz −

1√
z
)2 if s ∈ [0,

√
z] and h(s) = 0 if

s ≥
√
z, and g = f + h. We have :

if s ∈ [0,
√
z] : g′′(s) =

6s2 − 2z

(s2 + z)3
+

2

z2
≥ 0 and h′′(s) =

2

z2
≥ 0

if s ≥
√
z : g′′(s) =

6s2 − 2z

(s2 + z)3
≥ 0 and h′′(s) = 0.

imsart-generic ver. 2014/10/16 file: output.tex date: February 14, 2019



Louart & Couillet/Concentration of Measure and Large Random Matrices 59

Besides, h is 2
z3/2 -Lipschitz, therefore g is 4

z3/2 -Lipschitz. We next introduce as
in Lemma 1.2.58 the functions G,H : Rd → R defined as :

G(s1, · · · sq) =

d∑
i=1

g(si) H(s1, · · · sq) =

d∑
i=1

h(si).

The functions G and H are both Sd-invariant and convex from Lemma 1.2.58.
Besides, G is 4d

z3/2 -Lipschitz and H is 2d
z3/2 -Lipschitz. Therefore, we know from

Lemma 1.1.5 that

TrQ = G(σ(X)/
√
n)−H(σ(X)/

√
n) ∝ 2α

(
z

3
2
√
n ·

8d

)
.

In the case of a convex concentration of X, an analogous to Proposition 1.2.43
setting the convex concentration of Q does not seem obvious, even with the help
of Theorem 1.2.54.

It actually seems impossible to construct a quasiconvex and Lipschitz shift of
TrAφ supported on the whole vector spaceMp,n as we did in Proposition 1.2.57.
On a bounded subset ofMp,n, it is always possible to shift a Lipschitz function
with a convex one so that the sum verifies quasiconvex and Lipschitz properties.
If we place ourselves in a convex q-exponential concentration setting, Proposi-
tion 1.2.51 helps us treat first the concentration of TrAQ for a bounded version
of a random vector X and then we can take advantage of the contracting be-
havior of the resolvent (see Lemma 0.0.2) to generalize our first result to any
unbounded concentrated vector X.

Proposition 1.2.59. Given a random matrix X ∈ Mp,n, z > 0, an exponent
q > 0 and two parameters C ≥ e and σ > 0 :

X ∝c E± Ce−( · /σ)q =⇒ Q ∈ EQ± 2Ce
−
(√

z3n ·
4σ

)q
in (Mp,n, ‖·‖F ).

Before proving the result we formulate a preliminary lemma :

Lemma 1.2.60. Given a symmetric nonnegative definite matrix A ∈ Mp and
a matrix B ∈Mp, one has the bound :

|TrAB| ≤ ‖B‖TrA.

Proof. There exits a diagonal matrix Λ = Diag(λi)1≤i≤p and an orthogonal
matrix U ∈ Op such that UTAU = Λ. If we note ui the ith column of U , we can
write A =

∑p
i=1 λiuiu

T
i , and for any i ∈ {1, . . . p}, ‖ui‖ = 1, so that :

TrAB =

p∑
i=1

λi Tr(Buiu
T
i ) =

p∑
i=1

λiu
T
i Bui ≤

p∑
i=1

λi ‖B‖ ≤ ‖B‖TrA.

We show the other bound the same way (‖u‖ ≤ 1⇒ uTBu ≥ −‖B‖‖u‖).
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Proof of Proposition 1.2.59. With the function φ introduced in Proposition 1.2.43
and given A ∈Mp verifying ‖A‖F ≤ 1, let us note :

f : R 7−→ TrAφ(R).

Given R,H ∈Mp,n, let us differentiate :

∇f R = −φ(R)Aφ(R)R−RTφ(R)Aφ(R)

∇2f R(H,H) = 2 Tr (Aφ(R)Lφ(R)Lφ(R))− 2 Tr(Aφ(R)HHTφ(R)),

with the notation L = RHT +HRT . Let us suppose first that A is nonnegative
symmetric. In that case, we know from Lemma 1.2.60 (‖A‖ ≤ ‖A‖F ≤ 1) that :

Tr(Aφ(R)HHTφ(R)) ≤ 2

z2
TrHHT ,

and we recognize here the Hessian of the function g : R 7→ 1
z2 TrRRT taken in

(H,H). If we note h = f + g we know that

∇2h R(H,H) ≥ 2 Tr (Aφ(R)Lφ(R)Lφ(R)) ≥ 0.

Besides, on the set {R ∈ Mp,n, ‖R‖ ≤
√
z}, the function g is 2

z3/2 -Lipschitz
and convex. If we suppose first that ‖X‖ ≤

√
n, we know from Lemma 1.1.5

that the sum f(X/
√
n) = (h− g)(X/

√
n) is concentrated :

TrAQ ∈ TrAE[Q]± 2Ce−
z3/2√n

4σ · . (14)

Now, if we suppose that there exists a constant K ≥ 1 such that ‖X‖ ≤
z

3
2

√
Kn, then we have thanks to (14)) and Lemma 1.1.3 :

TrAQ =
1

K
TrA

(
XXT

Kn
+

z

K
Ip

)−1

.

And since X/
√
Kn

E∝ α(
√
Kn · ) the concentration (14)) and Lemma 1.1.3 en-

tail :

TrAQ ∈ TrAE[Q]± 2Ce−
√
nz3

4σ · .

In the general case, we consider the sequences of random matrices X(m) whose
entries X(m)

i,j , 1 ≤ i ≤ p, 1 ≤ j ≤ n, are defined as :

X
(m)
i,j = min

(
1,

√
nz3m

‖X‖F

)
Xi,j .

By construction,
∥∥X(m)

∥∥
F
≤
√
nz3m. Besides we know from Remark 1.1.23

that E ‖X‖F < ∞ and for m sufficiently large such that 2E ‖X‖F ≤
√
nz3m,

we know from Proposition 1.2.51 that X(m) E∝c α. Thus, as above :

TrAQ(m) ∈ TrAE[Q(m)]± 2Ce−
√
nz3

4σ · , with : Q(m) = φ

(
X(m)

√
n

)
.
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If we let m tend to ∞, X(m) tends in law to X and thus TrAQ(m) tends
also in law to TrAQ and we recover the result of the proposition thanks to
Proposition 1.1.12 and Corollary 1.1.24.

We set in Subsections 1.2 the comfortable environment where our subsequent
results will easily unfold. We notably introduced most of the expressions of con-
centrated random variables needed in the subsequent section. We are thus now
in position to provide results on the spectral distribution of sample covariance
matrices of concentrated random vectors.

2. Spectral distribution of the sample covariance

2.1. Setup and notations

We consider here a general case of the example presented in the preamble where
the n independent random vectors x1, . . . , xn are distributed in k classes repre-
sented by k distributions µl, 1 ≤ l ≤ k, supposedly different from one another.

All results presented below (with the exception of Propositions 2.2.8, Theo-
rem 2.2.9 and Corollary 2.2.10) are valid for any choice of p and n, but they will
of course gain more value when p and n are sufficiently large for the convergence
to arise. This is the reason why we will call this study quasi-asymptotic. What
we call a constant is supposed to be independent of the two quasi asymptotic
quantities p and n and a bounded quantity is simply a quantity lower than a
constant.

We place ourselves under an hypothesis of convex q-exponential concentra-
tion :

Assumption 1 (Concentration of X). There exist three constants C ≥ e, c >
0 and q > 0 such that for any m ∈ N, any l ∈ {1, . . . , k}, and any family
of independent vectors y1, . . . , ym, each one following the law µl, we have the
concentration :

(y1, . . . , ym) ∝c Ce− ·
q/c

where the concentration occurs in the normed vector spaceMp,m endowed with
the Frobenius norm.

The parameters of the concentration C and c cannot be preserved throughout
the different concentrations of the quantities that will be mentioned in this
paper. However to lighten the expression of the result we will abusively keep
the notations C and c to designate slight modifications of the original C and c
by numerical constants.

Remark 2.1.1. Assumption 1 is in particular verified for the distributions con-
cerned by Theorems 0.0.3, 1.2.20 and 1.2.47. For l ∈ {1, . . . , k}, the law µl can
respect one of the two settings :

• Setting 1 : µl is a pushforward of the canonical normal distribution on
Rd, or of the sphere Sd+1 through the mapping of a uniformly continuous
function (see Proposition 1.2.24).
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• Setting 2 : µl is an affine pushforward of a product of distributions on R
with support belonging to [−1, 1] (see Lemma 1.2.48).

Note that µl can also be the sum of two independent distributions, each one
coming from a different setting. In the literature, it is possible to find plenty of
other cases of q-exponential concentration with q 6= 2 (and still with Euclidean
norm!); their presentation goes far beyond the objectives of our paper and we
invite the reader to refer to [Led01] for more information. We will see at the
end of this paper that our results are still valid on different types of practical
data. Thus we come to think that convex q-exponential concentration is a general
hypothesis that can be adopted in a large range of applications where the data
have a satisfactory entropy compared to the diameter of their distribution (the
link with entropy is explored once again in [Led01]).

The behavior of the sample covariance matrix S = 1
n

∑n
i=1 xix

T
i = XXT /n

clearly depends on the frequency each distribution µl is drawn to form the
different columns of the matrix X. To take into account this important feature,
for l ∈ {1, . . . , k}, we introduce the set Il ⊂ {1, . . . , k} to index the random
vectors xi following a distribution µl ; the cardinality of the set Il is denoted
nl. We further denote XIl ∈ Mp,nl the matrix composed of the columns of
X indexed by Il. Assumption 1 gives us directly the concentrations XIl ∝c
Ce− ·

q/c, that directly entail the concentration of the whole matrix X.

Assumption 2. The number of classes k is bounded.

With this last assumption, and Proposition B.4.1, we can state that the
observable diameter of the random matrix X = [x1, . . . , xn] is bounded.

Proposition 2.1.2. There exist two constants C ≥ e and c > 0 such that :

X ∝c Ce− ·
q/c.

With this proposition, we have access to the results of the propositions and
remarks of Subsection 1.2 concerning the matrixX but also those concerning the
random vectors xi and the resolvent Q. To begin with, we can rewrite the first
result of Proposition 1.2.59 to get the concentration of the Stieltjes transform
of F , the spectral distribution of S :

mF (z) =
1

p
TrQ(−z) where Q = Q(z) =

(
XXT /n+ zIp

)−1
.

We saw in Proposition 1.2.59 that Q ∈ EQ±Ce−(
√
zn · )q/c in (Mp,n, ‖·‖F ), for

some constants C ≥ e, c > 0. Since the linear formM ∈ (Mp,n, ‖·‖F ) 7→ 1
p TrM

has an operator norm equal to 1
p ‖Ip‖F = 1/

√
p, the linear concentration of Q

implies directly the concentration of the Stieltjes transform with a tail parameter
of order

√
z3np.

Proposition 2.1.3. There exist two numerical constants C ≥ e and c > 0 such
that for every z > 0, mF (−z) ∈ 1

p TrEQ± Ce−(
√
z3pn · )q/c.
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Now that we know that the Stieltjes transform is concentrated in R, we
expect to find a deterministic quantity localizing this concentration. The deter-
ministic equivalent we presented in the preamble can inspire us for a choice of
a deterministic equivalent in this more general setting. We need for that some
notations.

Given a class l, 1 ≤ l ≤ k, we introduce a generic random vector equal to
one of the xi following the law µl that will be noted yl. All the yl are supposed
to be independent and we write by ȳl the mean of the distribution µl. When
computing an expectation involving the matrix X, this notation allows us to
group the different terms depending only on their class l ∈ {1, . . . , k} and not
on their index in the matrix i ∈ {1, . . . , n}. We note C−yl or even abusively C−l
when l ∈ {1, . . . , k} the sample covariance S deprived of the contribution of one
vector of the lth class (nl is supposed in that case to be greater than 1). That
leads to the notations Q−l = Q−yl = QC−yl .

Finally, given l ∈ {1, . . . , k}, we note Σl the population covariance matrix of
µl and :

Σ =

k∑
l=1

nl
n

Σl.

To complete the lacuna of the concentration notion that does not give any
information on the order of a random vector X, as concentrated it could be,
one needs to give restrictions to the size of the quantities ‖ȳl‖, 1 ≤ l ≤ k. The
practical assumption that we need for our result is :

Assumption 3. ∀l ∈ {1, . . . , k} : 1√
pE ‖yl‖ is bounded.

However, thanks to Corollary 1.2.14, it is possible to make a simpler hypoth-
esis concerning directly the mean ȳl if we suppose that q ≥ 2 (then p1/q ≤ √p).

Assumption 3 bis. q ≥ 2 and ∀l ∈ {1, . . . , k} : 1√
p ‖ȳl‖ is bounded.

Assumption 3 (or 3 bis) allows us to control Tr Σl.

Proposition 2.1.4. For any l ∈ {1, . . . , k}, 1
p Tr Σl is bounded.

Proof. Since ‖yl‖ ∈ Ce− ·
q/c, we know from Proposition 1.1.28 that :

Tr Σl = E
[
‖yl‖2

]
= (E ‖yl‖)2

+ E (‖yl‖ − E ‖yl‖)2 ≤ Cp,

for some constant C > 0.

2.2. Estimation of the spectral distribution of the sample covariance

With the general setting presented above and assuming Assumptions 1, 2 and 3
(or 3 bis) we will show that the deterministic matrix :

Q̃δ = QΣδ = (Σδ + zIp)
−1 with Σδ =

k∑
l=1

nl
n

Σl
1 + δl

and z > 0

imsart-generic ver. 2014/10/16 file: output.tex date: February 14, 2019



Louart & Couillet/Concentration of Measure and Large Random Matrices 64

is a deterministic equivalent for the resolvent Q(z) if δ = (δ1, . . . , δk) ∈ Rk is
chosen correctly. One must be careful that the notation Σx does not have the
same meaning whether x is an integer of the set {1, . . . , k} or a vector of Rk+.

Following the calculus of the preamble in this more general case, one gets :

Q̃δ − EQ =

k∑
l=1

nl
n
E [∆l + εl]

with :


∆l =

(
1

1 + yTl Q−lyl/n
− 1

1 + δl

)
Q−ylyly

T
l Q̃δ

εl = − 1

n

E
[
Q−ylyly

T
l QΣlQ̃δ

]
1 + δl

where we took advantage of the independence between Q−l and yl to say that
E[Q−ylΣlQ̃δ/(1+δl)] = E[Q−ylyly

T
l Q̃δ/(1+δl)]. The two matrices ∆l and εl will

be used several times in our proof arguments; we thus invite the reader to remem-
ber their definition. The form of ∆l entices us to set δ = ( 1

n Tr(ΣlEQ−yl))1≤l≤k

to show that Q̃δ is a deterministic equivalent for Q. We will show afterwards
that the same result holds for Q̃δ′ with δ′ ∈ R+ chosen as a solution of the
system (see Proposition 2.2.7 for the validity of this definition) :

δ′l =
1

n
Tr

Σl

(
k∑
h=1

nh
n

Σh
1 + δ′h

+ zIp

)−1
 1 ≤ l ≤ k.

The first choice δ can seem unsatisfactory because it relies on the computation
of EQ−i which is uneasy to treat. On the contrary, the second option δ′ is
much more interesting as it can be approximated by iteration of the fixed point
equation as we will see in Proposition 2.2.7. In particular, this second choice
reveals that the deterministic equivalent can be chosen in a way that it only
depends on z and on the covariances and the means of the laws µl, 1 ≤ l ≤ k,
as will be fully explained in Remark 2.2.11.

2.2.1. Design of a first deterministic equivalent

Let us first show the concentration of the random variable yTl Q−ylyl/n around
its mean δl. To simplify the concentration bounds, we introduce the real 1 >
z0 > 0, and from now on, z is supposed to be greater than z0.

Proposition 2.2.1. Given z > z0, there exists two numerical constants C, c > 0
such that :

yTl Q−ylyl/n ∈ δl ± Ce−(z0n · )
q
2 /c + Ce−(

√
z3
0n · /γ̄)q/c

where γ = p
n , and γ̄ = γ + 1 ≥ max(γ, 1).
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Proof. This proposition looks like Theorem 1.2.52 and Proposition 1.2.59 ap-
plied with independent random objects, respectively yl and Q−yl that we know
to be concentrated thanks to the initial concentration on X given by Proposi-
tion 2.1.2. The independence allows us to consider Q−yl as deterministic when
we bound a probability involving yl and conversely.

P
(∣∣∣∣ 1nyTl Q−ylyl − 1

n
Tr(ΣlEQ−yl)

∣∣∣∣ ≥ t)
≤ E

[
P
(∣∣yTl Q−ylyl − Tr ΣlQ−yl

∣∣ ≥ nt

2
| X−yl

)]
+ P

(∣∣∣∣ 1n Tr Σl(Q−yl − EQ−yl)
∣∣∣∣ ≥ t

2

)
≤ Ce−(znt)

q
2 /c + Ce−(zn

3
2 t/p)q/c + Ce−((zn)

3
2 t/p)q/c,

for some C, c > 0. We employed Theorem 1.2.52 together with Lemma 0.0.2
to control the variation of yTl Q−ylyl | X−yl ; and to control the variation of
1
n Tr ΣlQ−yl , we employed Proposition 1.2.59 thanks to the fact that ‖Σl‖F ≤
Tr Σl = E ‖yl‖2 ≤ p.

We are interested in bounding the first centered moments of 1
ny

T
l Q−ylyl, thus

the exponent m is considered to be a constant of the problem and that simplifies
the expression of the bound. Assumption 3 allows us to simplify the bound :

Proposition 2.2.2. Given l ∈ {1, . . . , k} and r > 0, there exists a constant
C ≥ e such that :

E
[∣∣∣∣yTl Q−ylyln

− δl
∣∣∣∣r] ≤ C ( γ̄2

z3
0n

)r/2
.

Proof. It is a simple consequence of Proposition 1.1.28 applied to the concen-
tration of 1

ny
T
l Q−ylyl given by Proposition 2.2.1 :

E
[∣∣∣∣yTl Q−ylyln

− 1

n
Tr(ΣlQ−yl)

∣∣∣∣r] ≤ (Cγ̄2

z3
0n

)r/2
+

C

(z0n)r
,

and we recover the bound of the proposition thanks to :(
Cγ̄2

z3
0n

)r/2
≥ C

(z0n)r
(recall that z0 ≤ 1).

To show the concentration of the Stieltjes transform around 1
p Tr Q̃δ (we

already know from Proposition 2.1.3 that it concentrates around 1
p TrEQ) but

also to bound ‖δ − δ′‖, it is important to control ‖EQ − Q̃δ‖. This quantity
being defined as the maximum of uT (EQ − Q̃δ)u for u on the unit sphere, we
will see in Proposition 2.2.5 that we naturally need to consider the concentration
of objects like uT Q̃δyl and uTQ−ylyl.
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Proposition 2.2.3. Given z ≥ z0, there exist two numerical constants C ≥ e
and c > 0 such that for any l ∈ {1, . . . , k} and for any u ∈ Rp of unit norm, we
have the concentrations :

uT Q̃δyl ∝ Ce−(z0 · )q/c and uTQ−ylyl ∝ Ce
−(

z30 ·
γ̄ )q ,

where as above, γ = p
n and γ̄ = 1 + γ. Moreover, there exists a numerical

constant C such that for any r ≥ 1 :

E
[∣∣∣uT Q̃δyl∣∣∣r] ≤ C ( nγ̄

nlz2
0

) r
2

and E
[∣∣uTQ−ylyl∣∣r] ≤ C ( nγ̄

nlz3
0

) r
2

.

The relation between yl and Q−yl is characterized by the multiple appearance
of vectors xi following the law µl in the matrix X−yl . Similarly, Q̃δ lets appear
in its definition the matrix Σl characteristic of the distribution of yl. These
relations allow us to bound the moments E[|uT Q̃δyl|r] and E[|uTQ−ylyl|r], and
explains the appearance of the coefficient nl

n . Without these structural relations
we could consider instead of yl any random vector y with an expected norm of
order √p. In that case EuTQy and EuTQ−yly would be rather of order √p like
the norm of y. The next preliminary lemma explains how this control can be
realized when we deal with the deterministic equivalent Q̃δ.

Lemma 2.2.4. Given l ∈ {1, . . . , k},
∥∥∥Q̃ 1

2

δ ΣlQ̃
1
2

δ

∥∥∥ ≤ n
nl

γ̄
z0
.

Proof. The result is similar to the result of Lemma 0.0.2. Recall the nota-
tion Σδ =

∑k
h=1

nh
n

Σh
1+δh

and the definition Q̃δ = (Σδ + zIp)
−1. With the or-

der relation on the set of symmetric matrices, we deduce from the inequality
nh
n

Σl
1+δl

≤ Σδ + zIp that Q̃
1
2

δ
nl
n

Σl
1+δl

Q̃
1
2

δ ≤ Ip (see [Bha97, Lemma V.1.5]). We
know from Lemma 1.2.60 and Assumption 3 that :

|δl| =
1

n
|TrEQ−ylΣl| ≤

1

n
E ‖Q−yl‖Tr Σl ≤

γ

z0
. (15)

We can then conclude thanks to the bound (1+δl) ≤ γ̄
z0

(recall that z0 ≤ 1).

Proof of Proposition 2.2.3. Let us introduce the bilinear form :

f :Mp × Rp −→ R
(M,y) 7−→ uTMy.

We know that f(Q̃δ, yl) = uT Q̃yl is a 1√
z3
0n

-Lipschitz linear form on yl, it thus

concentrated as yl. Since Q−yl ∈ EQ−yl + e−(
√
z0 n· )q/c and yl ∈ Ce− ·

q/c are
independent, and ‖Q−yl‖ ≤ 1/z0, we know from Proposition 1.2.9 that :

uTQ−ylyl ∈ uTE [Q−ylyl]± Ce−(z3
0 ·)

q/c + Ce−(
z30 ·
γ̄ )q/c

⊂ uTE [Q−yl ] ȳl ± Ce
−(

z30 ·
γ̄ )q/c
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for some constant parameters C ≥ e and c > 0 since E ‖yl‖ ≤
√
p (the inclu-

sion between combination of q-exponential concentration functions is defined in
Subsection 1.1.2).

Now that we set the concentrations, we know from Corollary 1.1.25 that for
any r > 0 there exists a constant C such that :

E
[∣∣∣uT Q̃(yl − ȳl)

∣∣∣r] ≤ C

zr0

E
[∣∣uT (Q−ylyl − EQ−yl ȳl)

∣∣r] ≤ Cγ̄r/2

z
3r/2
0

.

Therefore, we know from the convexity of t 7→ tr (because r ≥ 1) that :

E
[∣∣∣uT Q̃yl∣∣∣r] ≤ 2r−1

(
C

zr0
+
∣∣∣uT Q̃ȳl∣∣∣r)

∣∣uTQ−yl ȳl∣∣r ≤ 2r−1

(
Cγ̄r/2

z2r
0

+
∣∣uTEQ−yl ȳl∣∣r) .

We thus conclude that all the centered moments are bounded as soon as we
find a real s ≥ 1 such that E[|uT Q̃yl|s] is bounded since we know from Jensen’s
inequality that |uT Q̃ȳl|r ≤ E[|uT Q̃yl|s]

r
s . This is the case of EuT Q̃ylyTl Q̃u =

uT Q̃ΣlQ̃u ≤ nγ̄
nlz2

0
(see Lemma 2.2.4). The case of uTQ−ylyl is harder to control

and we need to employ the Schur formula (1) :

E
[∣∣uTQ−ylyl∣∣] = E

[∣∣uTQyl∣∣ (1 + ylQ−ylyl/n)
]

≤
√
E
[
uTQylyTl Qu

]
E [(1 + ylQ−ylyl/n)2]

≤ γ̄

z0

n

nl
E
[

1

n
uTQXIlX

T
Il
Qu

]
≤ n

nl

γ̄

z2
0

,

where we recall that XIl ∈ Mp,nl is the matrix composed of the columns of X
indexed by Il (of cardinality nl). The inequalities are consequences of Proposi-
tion 2.2.1 and Lemma 0.0.2.

Proposition 2.2.5. There exist a constant C > 0 such that :∥∥∥EQ− Q̃δ∥∥∥ ≤ C γ̄2

z4
0

√
n
.

Proof. As already mentioned, it is sufficient to bound for any vector u ∈ Rp of
unit norm the quantities |uT (EQ− Q̃δ)u| since EQ and Q̃δ are both symmetric
matrices. Recall from the heuristic approach displayed at the beginning of this
subsection the set matrices ∆l and εl verifying :

uT (EQ− Q̃δ)u =

k∑
l=1

nl
n

(∣∣uT∆lu
∣∣+
∣∣uT εlu∣∣) .
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Thanks to Hölder’s inequality and Properties 2.2.2, 2.2.5, we can bound :

∣∣uT∆lu
∣∣ =

∣∣∣∣∣E
[
uTQ−yly

T
l ylQ̃δu

δl − yTl Q−ylyl/n
(1 + δl)

(
1 + yTl Q−ylyl/n

)]∣∣∣∣∣
= E

[∣∣uTQ−ylyTl ∣∣ ∣∣∣ylQ̃δu∣∣∣ ∣∣δl − yTl Q−ylyl/n∣∣] ≤ nl
n

Cγ̄2

z4
0

√
n
.

For the same reasons :∣∣uT εlu∣∣ ≤ 1

n
E
[∣∣uTQ−ylyTl ∣∣ ∣∣∣ylQ−ylΣlQ̃δu∣∣∣] ≤ nl

n

Cγ̄

nz3
0

.

Therefore if we sum on l ∈ {1, . . . , k}, we see that there exists a constant C ≥ e
such that :

∀u ∈ Rp : uT
(
EQ− Q̃δ

)
u ≤ Ckγ̄2

z4
0

√
n
,

and that gives us directly the bound on ‖EQ− Q̃δ‖ thanks to Assumption 2 (k
is bounded).

This last proposition together with Proposition 1.2.59 and Lemma 1.2.8 im-
plies that Q̃δ is a deterministic equivalent for Q.

Proposition 2.2.6. Q ∈ Q̃δ ± Ce−(z4
0

√
n · /γ̄2)q/c in (Mp,n, ‖·‖).

Proof. We know from Proposition 1.2.59 thatQ ∈ EQ±Ce−(
√
zn · )q/c in (Mp,n, ‖·‖F )

so in particular :

Q ∈ EQ± Ce−(z4
0

√
n · /γ̄2)q/c in (Mp,n, ‖·‖).

But since ‖EQ− Q̃δ‖ ≤ C γ̄2

z4
0

√
n
, Lemma 1.2.8 entails the result of the proposition.

2.2.2. A second deterministic equivalent

Let us introduce a substitute for δ that we note δ′ and that will only depend on
the means and covariances of the laws µl and on the cardinality coefficients nl

n
of the different classes.

Proposition 2.2.7 (Definition of δ′). The system of equations :

∀l ∈ {1, . . . , k} : δ′l =
1

n
Tr

Σl

(
k∑
h=1

nh
n

Σh
1 + δ′h

+ zIp

)−1


admits a unique solution in Rk+ that we note δ′.
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Proof. The scheme of the proof follows the formalism of standard interference
functions as presented in [Yat95]. Following the ideas of Yates, we introduce the
function :

I : Rk+ −→ Rk+

(δ′l)1≤l≤k 7−→ 1

n
Tr
(

ΣlQ̃δ′
)
,

where Q̃x = (Σx + zIp)
−1, and Σx =

∑k
l=1

nl
n

Σl
1+xl

for x = (x1, . . . , xk) ∈ Rk.
Given x, y ∈ Rk, we note x ≤ y iff ∀l ∈ {1, . . . , k}, xl ≤ yl. The function I is
increasing in the sense that :

x ≤ y =⇒ I(x) ≤ I(y).

This is simply due to the fact that for any l ∈ {1, . . . , k}, Σl is symmetric
nonnegative definite and x 7→ Q̃x is increasing (with the classical order relation
defined on the set of symmetric matrices see [Bha97, Section V] for more details).
Besides, we know from Lemmas 0.0.2 and 1.2.60 that for any x ∈ Rk, I(x) ≤
Tr Σl
nz . Therefore the vector

x0 =

(
Tr Σ1

nz
, · · · , Tr Σk

nz

)
verifies I(x0) ≤ x0. Then the monotonicity of I implies that the sequence
(In(x0))n≥0 is decreasing and since I takes its values in R+, it converges to
a fixed point δ′ ≥ 0.

Let us now show the uniqueness of this fixed point. Let us suppose that there
exists ν 6= δ′ such that I(ν) = ν. Given l ∈ {1, · · · , k}, we have the identity :

νl − δ′l =
1

n
Tr

(
k∑
h=1

nh
n

γh − δ′h
(1 + δ′h)(1 + γh)

ΣlQ̃δ′ΣhQ̃ν

)
,

and if we introduce the vector ε = (εl)1≤l≤k defined as εl =
|νl−δ′l|√

(1+νl)(1+δ′l)
:

|εl| =
1

n
Tr

(
k∑
h=1

nh
n

Σ
1
2

l Q̃δ′Σ
1
2

h√
(1 + δ′h)(1 + δ′l)

Σ
1
2

h Q̃νΣ
1
2

l√
(1 + γh)(1 + νl)

|εh|

)

≤

√√√√ 1

n

Tr
(

ΣlQ̃δ′Σδ′Q̃δ′
)

1 + δ′l

√√√√ 1

n

Tr
(

ΣlQ̃νΣνQ̃ν

)
1 + νl

‖ε‖∞ (16)

where for any x ∈ Rk+, we recall that Σx =
∑k
h=1

nh
n

Σh
1+xh

. Recall that by
definition of the resolvent Q̃x = QΣx , we have the identity

Q̃xΣx + zQ̃x = Ip.
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This allows us to write for any x ∈ R+ such that I(x) = ( 1
n Tr(ΣlQ̃x))1≤l≤k = x :

1

n
Tr
(

ΣlQ̃xΣxQ̃x

)
= xl −

z

n
Tr
(

ΣlQ̃
2
x

)
< 1 + xl.

Therefore, we know from the inequality (16), true for every l ∈ {1, . . . , k}, that
‖ε‖∞ = 0, in other words δ′ = ν, the fixed point is unique.

Proposition 2.2.8. If γ̄ and 1
z0

are bounded and n is large enough, there exists
a constant C > 0 such that :

‖δ − δ′‖∞ ≤
C√
n

and
∥∥∥Q̃δ − Q̃δ′∥∥∥ ≤ C√

n
.

Proof. Let us employ as in the proof of Proposition 2.2.7 a vector ε = δ − δ′.
Given l ∈ {1, . . . , k}, we compute :

|εl| =
1

n

∣∣∣Tr Σl(EQ− Q̃δ′)
∣∣∣

≤ γ
∥∥∥EQ− Q̃δ∥∥∥+

1

n

∣∣∣Tr Σl(Q̃δ − Q̃δ′)
∣∣∣

≤ C γ̄3

z4
0

√
n

+

√√√√ 1

n

Tr
(

ΣlQ̃δ′Σδ′Q̃δ′
)

1 + δ′l

√√√√ 1

n

Tr
(

ΣlQ̃δΣδQ̃δ

)
1 + δl

‖ε‖∞ ,

where we employed for the first inequality the result of Lemma 1.2.60 and in the
second inequality the intermediate result (16)) of the proof of Proposition 2.2.7.
We already know that :

1

n

Tr
(

ΣlQ̃δ′Σδ′Q̃δ′
)

1 + δ′l
< 1 and

1

n

Tr
(

ΣlQ̃δΣδQ̃δ

)
1 + δl

≤ δl
1 + δl

+
C γ̄3

z4
0

√
n
,

and we know from (15) that δl
1+δl

≤ 1− z0
γ̄ . Therefore since z0

γ̄ is bounded from

below and Cγ̄3

z4
0

is bounded from above, if n is large enough :

1

n

Tr
(

ΣlQ̃δΣδQ̃δ

)
1 + δl

< 1 and thus ‖ε‖∞ ≤
C γ̄3

z4
0

√
n
.

Now, let us bound the spectral norm of the difference Q̃δ − Q̃δ′ :∥∥∥Q̃δ − Q̃δ′∥∥∥ ≤ k∑
l=1

nl
n

|δl − δ′l|
(1 + δl)(1 + δ′l)

∥∥∥Q̃δ′ΣlQ̃δ∥∥∥ ≤ ‖δ − δ′‖∞
z0

≤ C γ̄3

z5
0

√
n
,

for some C ≥ e.

We now have all the elements to set the linear concentration of Q around the
second deterministic equivalent Q̃δ′ with the same arguments as those given to
justify Proposition 2.2.6.
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Theorem 2.2.9. If γ̄ and 1
z0

are bounded and n is large enough, there exist two
numerical constants C ≥ e and c > 0 such that :

Q ∈ Q̃δ′ ± Ce−(
√
n · )q/c in (Mp,n, ‖·‖) .

As for Proposition 2.1.3, we can directly deduce that 1
p Tr Q̃δ is a pivot of

the Stieltjes transform. This time the linear form M 7→ 1
p TrM is seen as a

1-Lipschitz transformation from (Mp,n, ‖·‖) to R (see Lemma 1.2.60).

Corollary 2.2.10 (Estimation of the Stieltjes transform). In the setting of
Theorem 2.2.9, for z > 0 :

mF (−z) ∈ 1

p
Tr Q̃δ′(z)± Ce−(

√
n · )q/c.

Remark 2.2.11 (Central limit theorem for covariance matrices). Let us define :

XN = (Σk(1)x
N
1 + ȳk(1), · · · ,Σk(n)x

N
n + ȳk(n))

where xN1 , · · ·xNn are independent Gaussian vectors with zero mean and unit
variance entries and for a given i ∈ {1, . . . , n}, k(i) ∈ {1, . . . , k} designates the
class of xi.

From the definition of δ′ and Q̃δ′ we can remark that the deterministic equiv-
alent Q̃δ′ is the same for a resolvent Q constructed with the sample covariance
of X or of the matrix XN . This implies that the asymptotic spectral distribution
of the sample covariance matrix of X strictly depends on the means and the co-
variances of the laws µl, 1 ≤ l ≤ k, but not at all on the intrinsic distribution of
those laws. In that sense, the Gaussian case describes all the possible asymptotic
spectral distributions of sample covariances of any concentrated data respecting
our two assumptions.

In a future paper this remark will be the key idea to show a theorem of central
limit for some quantities depending on the resolvent (with applications to random
neural networks, such as extreme learning machines [HZS06]).

2.3. Illustration of the results

In this section, we are interested in the asymptotic spectral distribution of S, in
the sense that if we index with n all the quantities characteristic to the matrix
X (that we write for instance Xn), we wish here to express the limit of the
spectral distributions Fn when the number of data n tends to ∞. The size p of
the data can then be seen as a function pn of n that cannot grow too fast to
maintain the validity and the strength of our results. Corollary 2.2.10 requires in
particular γ = pn

n to be bounded, and this will be from now on a supplementary
assumption. Regarding the convergence, it appears convenient to work with the
notion of the weak convergence of distributions that was essentially presented
in Definition 5 through the convergence in law of random variables. We shall
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say indeed that a sequence of measures (Hn)n∈N tends weakly to a measure H
if for any function f : R 7→ R with compact support :

lim
n→∞

∫
R
f(t)dHn(t) =

∫
R
f(t)dH(t),

and we write Hn
w−→ H.

Now, it is important to keep in mind that the distributions Fn are random
objects and, therefore, we will be looking for a weak convergence almost surely.
Let us note X the sequence of random matrices (Xn)n∈N that we suppose to
be independent. If we note σ(X ) = σ(X1)× · · ·σ(Xn)× · · · , the sigma-algebra
generated by X , we look for an event (i.e., an element of σ(X )) of probability 1
on which happens the weak convergence. As we could expect from the different
results of the last sections, the convergence of the spectral distribution is a con-
sequence of the convergence of the Stieltjes transforms. This is a classical results
of the field of random matrices, we provide in Appendix D a proof inspired from
the paper [CDS11].

Theorem 2.3.1. With the above notations and hypotheses, if we suppose that
there exists a complex function m : C 7→ C such that :

∀z > 0 :
1

pn
Tr Q̃n(z) −→ m(z),

then there exists a measure H in R such that :

∀z ∈ D, m(z) =

∫
R

dH(t)

t− z
and a.s. : Fn

w−→ H.

(Recall that Q̃n is the matrix Q̃δ′ indexed with the number of data n)

If we go back to the original task we presented in the preamble, we need to
evaluate the limit distribution H appearing in the result of Theorem 2.3.1. We
can be helped by a basic proposition of the theory of large random matrices :

Proposition 2.3.2. Given a probability distribution H in R, we note mH : z 7→∫
R
dH(t)
t−z , the Stieltjes transform of H. Given t, s ∈ R, we have the identities :

• H({t}) = limy→0+ yIm[mH(x+ iy)]
• H([t, s]) = 1

π limy→0+

∫ s
t

Im[mH(x+ iy)]dx.

In Figure 3, we compare the spectral distribution of different sample co-
variance matrices with their asymptotic profile as described by Theorem 2.3.1.
Inspired by Proposition 2.3.2, we basically computed 1

p Tr Q̃δ′(x+ iy) for small
values of y to obtain the density of F . We see that the prediction is valid for dif-
ferent values of γ = p

n and for data constructed as a mixture between Gaussian
and Bernoulli random vectors.

The range of validity of our results seems to be rather wide since one can see
on Figure 4 that our predictions are rather good for “raw” data as the one of the
MNIST data base (left graph) or even more refined data as some feature vectors
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Fig 3. Spectral distribution of the empirical covariance matrix of a sum of Gaussian and
Bernoulli data. On the left, n = 2000, p = 500 and Σ has two eigenvalues : 1 and 12 with the
repartition ( 1

4
, 3
4

). On the right, p = 2000, n = 1000 and Σ is a symmetric Toeplitz matrix
whose first line is (0.4, 0.42 . . . 0.4p) ; since p > n, we removed the p− n zero eigenvalues of
S to simplify the graphs.

of traffic sign images (right graph). Be careful that we drew the distribution of
a push-forward of the spectral distribution dilated around zero, otherwise the
distribution would be huddled against 0 and at the same time sparsely spread up
to high values. The refined feature dataset satisfies our prediction better that the
MNIST dataset. This statement allows us to think that in the concentration of
the measure framework, the treatment of the signal though the diverse neurons
tends to “normalize” the data.
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Fig 4. Distribution of the push forward of the spectral distribution of the covariance matrix
of real datasets through the map λ 7→ λ0.1 ; the population covariance and the mean are
empirically computed from a larger and independent dataset. On the left, images the digit 0
of the MNIST data set ([LCB98]); p = n = 784. On the right, “HOG” features (Histograms
of Oriented Gradients) of a class of traffic sign images presented in the paper [SSSI11] ;
p = n = 700 (just the first p features are considered)

Appendices
Appendix A: Concentration of the product and powers of random

variables

Proposition A.0.1. Let us consider a pivot a ∈ R, a concentration function α
and p random variables Z1, . . . , Zp, such that for any i ∈ {1, . . . , p}, Zi ∈ a±α.
Then the product Z1 · · ·Zp is concentrated in the sense of Definition 3, and we
have :

Z1 · · ·Zp ∈ ap ± pα

(
·

2p |a|p−1

)
+ pα

(( ·
2

) 1
p

)
Note that in the case of q-exponential concentration, if, say, α = Ce−(·/σ)q ,

C ≥ e, σ, q > 0, we can employ Proposition 1.1.20 and obtain ∀r ≥ q the bound :

E [|Z1 · · ·Zp − ap|r] ≤ Cp(2|a|p−1σ)r
(
r

q

) r
q

+ Cp(2σp)r
(
rp

q

) rp
q

which is looser than the one obtained in Proposition 1.1.28 (when r ∈ N).

Proof. Let us bound :

Z1 · · ·Zp − ap = ap
p∑
l=1

∑
I⊂{1,...,p}

#I=l

∏
i∈I

(
Zi − a
a

)
≤ ap

p∑
l=1

(
p

l

) ∣∣∣∣Zs − aa

∣∣∣∣l ,
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where Zs is the random variable verifying
∣∣Zs−a

a

∣∣ = sup1≤i≤p
∣∣Zi−a

a

∣∣. As in the
proof of Proposition 1.1.10 distinguishing the cases

∣∣Zs−a
a

∣∣ ≥ 1 and
∣∣Zs−a

a

∣∣ ≤ 1,
we obtain the bound :

|Z1 · · ·Zp − ap| ≤ (2 |a|)p
(∣∣∣∣Zs − aa

∣∣∣∣+

∣∣∣∣Zs − aa

∣∣∣∣p) ,
and we are left to express the concentration around 0 of the random variable
|Zs − a| :

P (|Zs − a| ≥ t) ≤
p∑
i=1

P (|Zi − a| ≥ t) ≤ pα (t)

and we recover the result.

One can be interested in the concentration of Zr when r is not an integer. If
we write r = r

dre dre where dre is the integer part of r plus 1, we see that thanks
to Proposition 1.1.10 our problem can be reduced to the concentration of Zr
when 0 < r ≤ 1. That can be managed easily thanks to the following lemma :

Lemma A.0.2. Given a, b ∈ R and r ∈ [0, 1], |a|r − |b|r ≤ |a− b|r.

Proof. When a, b > 0, it is just a consequence of the triangular inequality verified
by the `

1
r -norm on R. If a or b are negative, it is just a consequence again of

the triangular inequality of the absolute value : ||a| − |b|| ≤ |a− b|.

Interestingly, when r ≤ 1, the concentration of Zr is easier to show in the
formalism of Definition 2. Indeed we can employ Lemma 1.1.3 since we know
from Lemma A.0.2 that t→ tr is (1, r)-Hölder continuous.

Proposition A.0.3. Given an exponent r ∈ (0, 1] and a concentration function
α, if a non-negative random variable Z ≥ 0 is α-concentrated in the sense of
Definition 2 then Zr ∝ α(· 1

r ).

Remark A.0.4. Thanks to Proposition 1.1.2, we can adapt the result of Propo-
sition A.0.3 to the formalism of Definition 3. This gives us when r ∈ (0, 1], with
the upper notations :

Z ∈ mZ ± α =⇒ Zr ∈ mr
Z ± 4α

(
· 1
r

2

)
,

where mZ is a median of Z (note that implicitly mentioned in the upper impli-
cation, mr

Z is a median of Zr since the function t 7→ tr is monotonous).
One can then look at the concentration of any power Zr where r ∈ R∗+ :

Z ∈ mZ ± α ⇒ Zr ∈ mr
Z ± 4α

 1

2dre+1

(
·

|mZ |dre−1

) r
dre
+ 4α

(
1

2

( ·
2

) 1
r

)
,

where dre designates the integer part of r plus 1.
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Appendix B: Results of linear concentration

B.1. Proof of Proposition 1.2.10

Given ε ∈ (0, 1), a set A ⊂ BH is said to be an ε-net of BH if x, y ∈ A ⇒
‖x− y‖ ≥ ε. We consider here N1/2, a maximal 1

2 -net of BH with respect to
inclusion. We know that the balls of radius 1

4 centered on the points of N1/2 are
all disjoint by hypothesis, and their volume is equal to VBH/4p (where VBH is
the volume of BH). Since they all belong to the ball of radius 2 and centered at
the origin, we know that their number cannot exceed 8dim(H).

Besides, given a drawing of Z, there exists f0 ∈ BH such that Z − Z̃ =
f0(Z− Z̃) (since BH is compact). Then there exists f ∈ BH such that ‖f − f0‖∗
is bounded by 1

2 (otherwise f0 could be added to N1/2). Furthermore :∥∥∥Z − Z̃∥∥∥− f (Z − Z̃) ≤ ∣∣∣f (Z − Z̃)− f0

(
Z − Z̃

)∣∣∣
≤ ‖f − f0‖∗

∥∥∥Z − Z̃∥∥∥ ≤ 1

2

∥∥∥Z − Z̃∥∥∥ .
Therefore : ∥∥∥Z − Z̃∥∥∥ ≤ 2 sup

{
f ∈ N1/2 : uT

(
Z − Z̃

)
u
}

and this inequality being true for any drawing of Z, we have then by hypothesis :

∀t > 0 : P
(∥∥∥Z − Z̃∥∥∥ ≥ t) ≤∑

N1/2

α

(
t

2

)
≤ 8dim(H)α

(
t

2

)
.

B.2. Linear concentration of the product

We place ourselves in an algebra A endowed with an algebra norm ‖·‖ (verifying
‖xy‖ ≤ ‖x‖ ‖y‖). To simplify the result we place ourselves in the exponential
concentration setting, the reader is required to adapt the proof for generalization
if needed.

Proposition B.2.1. Given two random vectors X,Y ∈ A and three parameters
C ≥ e and σ, q > 0, if X and Y follow the same concentration X ∈ X̃ ±
Ce−( · /σ)q and Y ∈ Ỹ ± Ce−( · /σ)q , then XY is also concentrated :

XY ∈ X̃Ỹ ± C exp

−
 c ·

σ2η
2
q

‖·‖


q
2

+ C exp

(
−
(

c ·
σ(‖X̃‖+ ‖Ỹ ‖)

)q)
,

where c is a numerical constant independent of C and σ.

Proof. As for Lemma 1.1.8, we employ the identity :

XY − X̃Ỹ = (X − X̃)(Y − Ỹ ) + Ỹ (X − X̃) + Ỹ (Y − Ỹ )
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For any linear function u with an operator norm bounded by 1, we have :

u(XY − X̃Ỹ ) ≤ ‖X − X̃‖‖Y − Ỹ ‖+ uỸ (X − X̃) + uỸ (Y − Ỹ )

where for any z ∈ A we defined uz : x 7→ u(zx). To conclude, we just have to
note that uz is a linear function the operator norm of which is bounded by ‖z‖
(since ‖u(zx)‖ ≤ ‖u‖ ‖z‖ ‖x‖).

B.3. Linear concentration of the power

Let us adapt Proposition 1.1.10 to get the linear concentration of a power of a
random vector, we leave to the reader the expression of the concentration of the
product of m linearly concentrated random vectors.

Proposition B.3.1. Given m ∈ N∗, a random vector Z ∈ A, a deterministic
vector Z̃ ∈ A∗ and three parameters C ≥ e, σ, q > 0, if we suppose that Z ∈
Z̃ ± Ce−( · /σ)q , then :

Zm ∈ Z̃m ± C exp

−
 c ·

2mση
1
q

‖·‖‖Z̃‖m−1

q+ exp

−c
 ·

2σmη
m
q

‖·‖


q
m

 ,

where c is a numerical constant depending only on q and m.

Proof. As in the proof of Proposition 1.1.10, we bound :

∥∥∥Zm − Z̃m∥∥∥ =

∥∥∥∥∥∥
m∑
k=1

∑
i1+...+ik≤m−k

(Z − Z̃)i1Z̃ . . . (Z − Z̃)ik Z̃(Z − Z̃)m−ik−...−i1

∥∥∥∥∥∥
≤ ‖Z̃‖m

m∑
k=1

(
m

k

)(
‖Z − Z̃‖
‖Z̃‖

)k

≤ (2‖Z̃‖)m
(
‖Z − Z̃‖
‖Z̃‖

+
‖Z − Z̃‖m

‖Z̃‖m

)
.

Since we know from Proposition 1.2.12 that ‖Z − Z̃‖ ∈ 0 ± Ce−(c · /σ)q/η‖·‖ for
some numerical constant c > 0, we get the concentration :

∥∥∥Zm − Z̃m∥∥∥ ∈ 0± C exp

−
 c/2m ·

ση
1
q

‖·‖‖Z̃‖m−1

q+ C exp

−
 cm ·

2σmη
m
q

‖·‖


q
m


and we get the same concentration for Z thanks to the second result of Propo-
sition 1.2.12.
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B.4. Concatenation of convexly concentrated random vectors

Through the characterization with the centered moments given by Proposi-
tion 1.1.20, the q-exponential concentration allows to explore the concentration
of a random vector constructed as a concatenation of p independent random
vectors (Z1, . . . , Zp). This approach is indifferently adapted to the Lipschitz or
convex concentration. We use the index (c) under the sign ∝ to specify that
the proposition is valid in both settings (for Lipschitz or convexly concentrated
random vectors).

Proposition B.4.1. Given p normed vector spaces (E1, N1), . . . , (Ep, Np), con-
sider p independent random vectors (Z1, . . . , Zp) ∈ E = E1 × · · · ×Ep verifying
for any i ∈ {1, . . . , p} that Zi ∝(c) Ce

−( · /σ)q , for two given parameters C ≥ e,
σ > 0. The space E can then be seen as a normed vector space endowed with
the norm ‖·‖`1 defined as :

∀z = (z1, . . . , zp) ∈ E1 × · · · × Ep : ‖z‖`1 = N1(z1) + . . .+Np(zp).

Then the concatenation Z = (Z1, . . . , Zp) is q-exponentially concentrated in
(E, ‖·‖`1) with an observable diameter lower than pσe

1
q :

Z ∝(c) Ce
−( · /pσ)q/e.

Proof. Let us consider a function f : E → R, 1-Lipschitz (resp. 1-Lipschitz
and quasiconvex), and Z ′ an independent copy of Z. We plan to employ the
characterization with the centered moments given by Proposition 1.1.20. Given
i ∈ {0, . . . , p}, we note Z(i) = (Z1, . . . Zi, Z

′
i+1, . . . , Z

′
p) (with this notation :

Z(0) = Z and Z(p) = Z ′). For any r ≥ max(q, 1), let us exploit the convexity of
t 7→ tr to bound :

E
[
|f(Z)− f(Z ′)|r

]
≤ pr−1

p∑
i=1

E
[ ∣∣∣f (Z(i−1)

)
− f

(
Z(i)

)∣∣∣r] .
Therefore, since for any (z1, . . . , zp) ∈ Rp and for any i ∈ {1, . . . , p}, z 7→
f(z1, . . . , zi−1, z, zi+1, . . . zp) is Lipschitz (resp. Lipschitz and quasiconvex), we
can employ Proposition 1.1.20 to bound :

E
[
|f(Z)− f(Z ′)|r

]
≤ Cpr

(
r

q

) r
q

σr.

If q ≤ r ≤ 1, the concavity of t 7→ tr allows us to write thanks to Jensen’s
inequality :

E
[
|f(Z)− f(Z ′)|r

]
≤ (E [|f(Z)− f(Z ′)|])r ≤ Crpr

(
1

q

) r
q

σr ≤ pr
(
r

q

) r
q

σr

since r ≤ 1 ≤ Cq. The last implication of Proposition 1.1.20 then gives us the
desired result: f(Z) ∝ Ce−( · /pσ)q/e.
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Appendix C: Davis theorem for rectangle matrices

C.1. Proof of Theorem 1.2.54

Let us first present basic notions to set the theorem. Given a vectorial space E
and a group G acting on E, for any subset A ⊂ E, we note G · A = {g · a, g ∈
G, a ∈ A}. We say that a set T is transversal if G · T = E and we say that a
function f is G-invariant if ∀x ∈ E,∀g ∈ G, f(g ·x) = f(x). In the same vein, we
say that a set A ⊂ E is G-invariant if G ·A = A and that it is G-invariant in T
if A ⊂ T and G ·A ∩ T = A. Given U ⊂ T , we note LGT (U) the smallest convex
subset of T containing U and G-invariant in T . We give here an adaptation of
one of the result of Grabovsky and Hijab to the case of quasiconvex functions.

Theorem C.1.1 (cf. [GH05], Theorem 4). Let us consider a vector space E,
a group G acting on E, and a convex and transversal subset T ⊂ E. We sup-
pose that for any U ⊂ T , the set G · LGT (U) is convex ; we call this property
the convexity conservation of G from T. Then any G-invariant function f is
quasiconvex iff its restriction to T is quasiconvex.

Intuitively, this theorem states that the quasiconvexity (or the mere convexity
as in [GH05]) of any function G-invariant is “transversal” to the action of G
when G preserves the convexity from T . A curious reader might be interested
in simplifying the convexity conservation property as we presented it from a
transversal subset T ⊂ E to a mere conservation of the convexity of any convex
subset U ⊂ E (i.e., for any convex set U ⊂ E, f(U) is convex). This would be
indeed an hypothesis more than sufficient for the result of the theorem. However,
in practice, and in particular for the applications we want to consider, it cannot
be verified.

Proof. Let us note note f T the restriction of f on T . Given any t ∈ R, we
know that the set {f T ≤ t} = {x ∈ T, f(x) ≤ t} is convex. Then the set
{f ≤ t} = G · {f T ≤ t} = G · LGT ({f T ≤ t}) is also convex thanks to the
convexity conservation of G from T.

To simplify the application of Theorem C.1.1, Grabowsky and Hijab provide
us with a useful property :

Proposition C.1.2 (Convexity conservation, [GH05], Theorem 3). With the
notations of Theorem C.1.1, if for any x, y ∈ T , the set G ·LGT ({x, y}) is convex,
then G conserves the convexity from T .

Proof. Let us consider U ⊂ T , and two points x, y ∈ G · LGT (U). There exists
x∗, y∗ ∈ T such that x, y ∈ G · {x∗, y∗}. We know by hypothesis that the set
G · LGT ({x∗, y∗}) is convex, and moreover, it contains x and y. Therefore, any
element of the segment [x, y] is also in LGT ({x∗, y∗}) ⊂ LGT (U).

In the case of a matrix concentration, Theorem C.1.1 can be applied to the
transversal set of nonnegative diagonal matrices D+

p,n for the action of the group
Op,n. The transversal character of D+

p,n is a consequence of the singular value
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decomposition. Indeed, for any matrix M ∈ Mp,n, there exists (U, V ) ∈ Op,n
such that

M = UΣV T with Σ = Diagp,n(σi(M))1≤i≤d,

where d = min(p, n), σi(M) is the ith singular value of M and the notation
Diagp,n(ai) represents an element of D+

p,n having the values ai on the diagonal.
To prove Theorem 1.2.54, let us characterize the sets L(X) = L

On,p
D+
p,n

({X})
whenX ∈ D+

p,n. We know that D+
p,n is invariant under the action of the subgroup

of permutations Pp,n. Given a subset U of a vector space, we note Conv(U) the
convex hull of U .

Proposition C.1.3. Given X ∈ Dp,n, L(X) = Conv(Pp,n · {X}).

Proof. We know from the uniqueness of the singular value decomposition that
for any U ⊂ D+

p,n, (Op,n ·U)∩D+
p,n = Pp,n ·U . Consequently, since the convexity

is stable under the action of Pp,n (they are linear transformations), L(X) =
Conv(Pp,n · {X}).

Here the tools of majorization as presented for instance in [Bha97] are per-
fectly adapted to the description of Conv(Sp,n · {x}) that we identify with
Conv(Pp,n · {X}) = L(X). Given a vector x = (x1, . . . xd) ∈ Rd, let us note
x↓ = (x↓1, · · ·x

↓
d), a decreasing ordered version of x (x↓1 ≥ · · ·x

↓
d and ∃σ ∈

Sd | x↓ = σ · x).

Definition 15. Given two vectors x, y ∈ Rd, d ∈ N, we say that y is majorized
by x and we note y ≺ x iff :

∀k ∈ {1, . . . d} :

k∑
i=1

y↓i ≤
k∑
i=1

x↓i and
d∑
i=1

xi =

d∑
i=1

yi.

Majorization offers a complete characterization of Conv(Sd · {x}), x ∈ Rd :

Theorem C.1.4 ([Bha97], Theorem II.1.10). Given a vectors x ∈ Rd :{
y ∈ Rd, y ≺ x

}
= Conv (Sd · {x}) .

Majorization appears to be the pertect tool to control the singular decom-
position of a sum of matrices as we will see in Theorem C.1.6. This is the core
argument to justify the convexity consevation of Op,n from D+

p,n that we need to
prove Theorem 1.2.54. Let us first give an intermediate result that we originally
owe to Schur and whose proof can be found in [MOA11] or [Bha97].

Proposition C.1.5 (Schur’s Theorem, B.1. in [MOA11]). Given a symmetric
matrix S ∈Mp, we have the majorization Diag(S) ≺ σ(S).

This proposition entails a kind of triangular inequality for the set of singular
values.

Theorem C.1.6 ([Bha97], Exercise II.1.15). Given two matrices A,B ∈Mp,n,
σ(A+B) ≺ σ(A) + σ(B).
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Of course, it is important that the vectors σ(A) and σ(B) are both ordered
when we sum them.

Proof. Given a symmetric matrix S ∈ Mq, there exists (US , VS) ∈ Op,n such
that UAAV TA = Diagp,n σ(S), thus :

k∑
Diag(USSV

T
S ) =

k∑
σ(S)

where given x ∈ Rd and k ∈ {1, . . . d},
∑k

x =
∑k
i=1 x

↓
i . Besides, since σ(USV T ) =

σ(S), we know from Proposition C.1.5 that :

k∑
σ(S) = sup

(U,V )∈Op,n

k∑
Diag(USV T ). (17)

Now, if we suppose that we are given a general matrix AMp,n and (UA, VA) ∈
Op,n such that UAAV TA = Diagp,n σ(A). If we introduce the matrices :

Ã =

(
(0) A
AT (0)

)
∈Mp+n, and P =

(
U (0)
(0) V

)
∈Mp+n

we have the identity :

PÃPT =

(
(0) D
D (0)

)
∈Mp+n, with D = Diagp,n(σ(A)).

Depending on the relation between p and n, we introduce the invertible matri-
ces :

if d = n : Q =

 Id (0) Id
(0) Id (0)
−Id (0) Id

 and if d = p : Q =

 Id Id (0)
−Id Id (0)
(0) (0) Id

 ,

then if d = n,QPÃ(PQ)T = Diag(σ(A), 0 · · · 0,−σ(A)) and if d = p,QPÃ(PQ)T =
Diag(σ(A),−σ(A), 0 · · · 0). Thus in both cases, we obtain a diagonalisation of Ã
that allows us to generalize the identity (17)) for any matrix A ∈Mp,n and with
0 ≤ k ≤ d. The supremum of a sum being lower than the sum of a supremum,
for any pair of matrices A,B ∈Mp,n :

σ(A+B) ≺ σ(A) + σ(B).

Now that the picture is clearer, we can prove Theorem 1.2.54 :

Proof of Theorem 1.2.54. To employ Theorem C.1.1, let us show the convex-
ity conservation property of Op,n from D+

p,n. Inspired by Proposition C.1.2,
we consider two non-negative diagonal matrices X,Y ∈ D+

p,n, and we note

L(X,Y ) = L
D+
p,n

Op,n({X,Y }). We want to show that Op,n · L(X,Y ) is convex.
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Noting x = DiagX and y = Diag Y , let us first show that L(X,Y ) = K(x, y),
with :

K(x, y) = {Z ∈ D+
p,n,DiagZ ≺ λx+ (1− λ)y, 1 ≤ λ ≤ 1}.

We know from Theorem C.1.4 that for any U ∈ D+
p,n, L(U) = {DiagZ ≺

DiagU} and therefore, since for any t ∈ [0, 1], tX + (1 − t)Y ∈ L(X,Y ), we
obtain the first inclusion K(x, y) ⊂ L(X,Y ).

To prove the converse inclusion, let us show thatK(x, y) is convex (we already
know that Op,n ·K(x, y) ∩ D+

p,n = Pp,n ·K(x, y) = K(x, y) by definition of the
relation ≺).

We consider A,B ∈ K(x, y), t ∈ [0, 1] and we set C = tA+(1−t)B. Therefore,
We know that there exists tz, tw ∈ [0, 1] such that DiagA ≺ λx+ (1− λ)y and
DiagB ≺ µx+ (1− µ)y, therefore :

DiagC ≺ (tλ+ (1− t)µ) x + (t(1− λ) + (1− t)(1− µ)) y ∈ [x, y].

In conclusion, since X,Y ∈ K(x, y) and K(x, y) is Pp,n-invariant and convex
we recover the second inclusion K(x, y) ⊂ L(X,Y ).

Thus we are left to show that Op,n ·K(x, y) is convex. We consider this time
A,B ∈ Op,n ·K(x, y), t ∈ [0, 1], and we introduce C = tA+ (1− t)B. We know
from Theorem C.1.6 that :

σ(C) ≺ tσ(A) + (1− t)σ(B),

and as we saw before, that implies that Diag σ(C) ∈ K(x, y). We can then
conclude with the relations

C ∈ Op,n · {Diag σ(C)} ⊂ Op,n ·K(x, y) = Op,n · L(X,Y ).

We can apply Proposition C.1.2 to get the hypothesis of Theorem C.1.1 that
entails Theorem 1.2.54 in our setting.

C.2. Proof of Theorem 1.2.56

Let us first show the Lipschitz character of σ, it is a well known result that can
be found for instance in [GL96] :

Lemma C.2.1 (Theorem 8.1.15 in [GL96]). The function σ is 1-Lipschitz.

Proof. Given M,H ∈ Mp,n, and i ∈ {1, . . . d} (where as before, d = min(p, n),
we know from formula (13)) that :

λi(A+H) = min
F⊂Rn

dimF≥n−i+1

max
x∈F
‖x‖=1

‖(A+H)x‖

≤ min
F⊂Rn

dimF≥n−i+1

(
max
x∈F
‖x‖=1

‖Ax‖+ max
x∈F
‖x‖=1

‖Hx‖

)
≤ min

F⊂Rn
dimF≥n−i+1

max
x∈F
‖x‖=1

‖Ax‖+ max
x∈Rn
‖x‖=1

‖Hx‖ ≤ λi(A) + λ1(H),
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and the same way, we can show that λi(A + H) ≥ λi(A) − λn(H). Therefore,
we get :

|λi(A+H)− λi(A)| ≤ max(λ1(H), λn(H)) ≤ ‖H‖ .

Proof of Theorem 1.2.56. It is a simple corollary of Theorem 1.2.54. If X ∝TOp,n
α, and given a 1-Lipschitz, convex and Sn-invariant function f : Rd → R, one
can introduce the function F̃ defined as :

F̃ :Mp,n −→ R
M 7−→ f(σ(M)).

The function F is 1-Lipschitz thanks to Lemma C.2.1 andOp,n-invariant because
of the uniqueness of the singular decomposition. Besides we can identify the set
D+
p,n with Rd and introduce a function f̃ : D+

p,n → R verifying f̃(diagp,n(x)) =

f(x) for x ∈ Rd. In that case, since f is Sd-invariant and convex, f̃ is also
convex and since f̃ = F D+

p,n
, Theorem 1.2.54 allows us to set that F is also

convex. Therefore, the random variable f(σ(X)) = F (X) is α-concentrated by
hypothesis on X.

Reciprocally, let us suppose that we are given a random matrix X ∈ Mp,n

such that σ(X) ∝TSd α, and let us consider a 1-Lipschitz, convex and Op,n-
invariant function F : Mp,n → R. The restriction F D+

p,n
is also 1 Lipschitz,

convex and Pp,n-invariant. Thus, with the same identification as before between
D+
p,n and Rd, we can assert by hypothesis that F (X) = F̃ D+

p,n
(σ(X)) is α-

concentrated (we defined F̃ D+
p,n

(x) = F D+
p,n

(diagp,n(x)), it is a Sd-invariant
function).

Appendix D: Proof of Theorem 2.3.1 : convergence of the spectral
distribution of the sample covariance

Corollary 2.2.10 states that for any z > z0 :

P
(∣∣∣∣mFn(−z)− 1

p
Tr Q̃δ′(z)

∣∣∣∣ ≥ t) ≤ Ce−(
√
n · )q/c.

Then if we introduce the events of σ(X ) :

An =

{∣∣∣∣mFn(−z)− 1

p
Tr Q̃δ′(z)

∣∣∣∣ ≥ 1

n1/4

}
,

we know that
∞∑
n=1

P(An) =

∞∑
n=1

Ce−n
q/4/c <∞.
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Thus the Borel-Cantelli lemma ensures that

P (∩n∈N ∪k≥n An) = 0.

Therefore, a.s., for any ε > 0, there exists an integer n0 ≥ 1 such that for any
n ≥ n0 : ∣∣∣∣mFn(−z)− 1

p
Tr Q̃δ′(z)

∣∣∣∣ ≤ ε.
In other words, a.s., the Stieltjes transform of Fn taken in z converges to
1
p Tr Q̃δ′(z), and the next theorem justifies how this convergence can be ex-
ported to the sequence of spectral distributions Fn.

Theorem D.0.1 ([BCL09], Theorem B.9). Let Hn be a sequence of probability
distribution on R and m : C 7→ C, a complex function. If there exists a set
D ⊂ R with an accumulation point such that :

∀z ∈ D : mHn(z) −→ m(z),

then there exists a measure H in R such that :

∀z ∈ D, m(z) =

∫
R

dH(t)

t− z
and Hn

w−→ H.

For any k ∈ N∗, let us note zk = z0 + 1
k , and Ak the event of probability one

“mFn(zk)− 1
p Tr Q̃δ′(zk)→ 0”. We know that the event A = ∩k≥1Ak has prob-

ability one as a countable intersection of events of probability one. Therefore,
if we consider the set D = {z0 + 1

k , k ∈ N}, we know that a.s., for all z ∈ D,
mFn(zk)− 1

p Tr Q̃δ′ → 0. To be able to exploit Theorem D.0.1, and prove The-
orem 2.3.1 one ultimately needs to show that 1

p Tr Q̃δ′ is a Stieltjes transform.
This is given by the next proposition.

Proposition D.0.2. 1
p Tr Q̃δ and 1

p Tr Q̃δ′ are two Stieltjes transforms.

The proof exploits an argument already exposed in [CDS11].

Proof. Given θ ∈ Rk, we introduce for any m ∈ N, Q̃(m)
θ =

(
Σ

(m)
θ + zIp

)−1

,
where we set the block matrix :

Σ
(m)
θ =

 Σθ (0)
. . .

(0) Σθ

 ∈Mpm.

We clearly have Tr Q̃θ = 1
m Tr Q̃

(m)
θ , the idea of the proof is to show that if

θ = δ or theta = δ′, 1
mp Tr Q̃

(m)
θ converges to a Stieltjes transform and so does

1
p Tr Q̃θ.
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Let us expand our notations to our random objects, we noteQ(m) = QS(m)(z),
where :

S(m) =
X(m)X

T
(m)

n
and X(m) =

 X(1) (0)
. . .

(0) X(m)

 ∈Mpm,nm,

where X(1), . . . , X(m) are m independent copies of X. We know that X(m) and
all its intrinsic parameters verify the different hypothesis of Proposition 2.2.6
and we have :

Q(m) ∈ Q̃(m)
δ ± Ce−(z4

0

√
nm · /γ̄2)q/c in (Mpm,nm, ‖·‖) ,

note that we implicitly used the identity

δ
(m)
l =

1

mn
Tr
(

Σ
(m)
l EQ(m)

−l

)
=

1

n
Tr (ΣlEQ−l) = δl. (18)

As in Corollary 2.2.10, it can be shown that :

mF (m)(−z) ∈
1

p
Tr Q̃δ ± Ce−(z4

0

√
nm · /γ̄2)q/c,

where F (m) is the spectral distribution of S(m). Therefore, if we let m tend to
infinity, for reasons that we exposed above this Proposition, we know thanks
to the first result of Theorem D.0.1, that 1

p Tr Q̃δ is a Stieltjes transform as a
limit of Stieltjes transforms on a set with an accumulative point (e.g. [z0,∞)).
To treat the case of 1

p Tr Q̃δ′ , one needs a similar result to (18) – it is immediate
considering the definition of δ′.
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