Kinetics of Oxidation of Commercial and Surrogate Diesel Fuels in a Jet-Stirred Reactor: Experimental and Modeling Studies
Résumé
The oxidation of a commercial diesel fuel and a diesel surrogate fuel (70% n-decane/30% 1-methylnaphthalene in moles) was performed using a fused-silica jet-stirred reactor under the same initial experimental conditions (560−1030 K, 6 and 10 atm, equivalence ratios of 0.25−1.5, and 10 300 ppm of carbon). The results of this series of experiments consisting of concentration profiles of reactants, stable intermediates, and products as a function of the temperature were compared to each other, confirming that the 70/30% mixture n-decane/1-methylnaphthalene in moles is an excellent simple diesel fuel surrogate. A chemical kinetic model consisting of 4762 reactions involving 1124 species was proposed on the basis of previous chemical mechanisms for the oxidation of n-decane and 1-methylnaphthalene in similar conditions. The kinetic modeling showed reasonable agreement between the present data and computations over the entire range of conditions considered in this study.