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Abstract— This paper investigates the design of decentralized 
output-feedback controllers for a class of a large scale switched 
nonlinear systems under arbitrary switching laws. A global large 
scale switched system can be split into a set of smaller 
interconnected switched Takagi Sugeno fuzzy subsystems. Then, 
in order to stabilize the overall closed-loop system, a set of 
switched non-PDC static output controllers is employed. The 
latter is designed based on Linear Matrix Inequality (LMI) 
conditions obtained from a multiple switched non quadratic-like 
Lyapunov candidate function. The controllers proposed herein 
are synthesized to satisfy H

 performance for disturbance 
attenuation. Finally, a numerical example is proposed to 
illustrate the effectiveness of the suggested decentralized switched 
controller design approach. 

Keywords- Switched fuzzy system, Decentralized control, Static 
output feedback non-PDC control law, Arbitrary switching laws, 
Multiple switched non quadratic-like Lyapunov function. 

I.  INTRODUCTION 
During the latter decades, several complex systems are 

appeared to meet the specific needs of the world population. In 
this context, we can quote as examples networked power 
systems, water transportation networks, traffic systems, as 
well as other systems in various fields. Generally speaking, 
establishing mathematical models for these systems is a 
complex task, especially when the system is considered as a 
whole. Hence, to overcome such difficulties, an alternative to 
global modelling approach can be considered. It consists in 
splitting the overall large-scale system in a finite set of 
interconnected low-order subsystems [1].  

Among these complex systems, switched interconnected 
large-scale system have attracted considerable attention since 
they provide a convenient modelling approach for many 
physical systems that can exhibit both continuous and discrete 
dynamic behaviour. In this context, several studies dealing 
with the stability analysis and stabilization issues for both 
linear and nonlinear switched interconnected large-scale 
systems have been explored [1]-[7]. Hence, the main challenge 
to deal with such problems consists in determining the 
conditions ensuring the stability of the whole system with 
consideration to the interconnections effects between its 
subsystems. Nevertheless, few works based on the 
approximation property of Takagi-Sugeno (TS) fuzzy models 

for nonlinear problems, have been achieved to deal with the 
stabilization of continuous-time large-scale switched nonlinear 
systems [3], [7], [8].  

Hence, this paper presents the design of decentralized 
static output feedback controllers for a class of switched 
Takagi-Sugeno interconnected large-scale system with 
external bounded disturbances. More specifically, the primary 
contribution of this paper consists in proposing a LMI-based 
methodology, in the non quadratic framework, for the design 
of robust decentralized switched non-PDC controllers for a 
class of large scale switched nonlinear systems under arbitrary 
switching laws.  

The remainder of the paper is organized as follows. 
Section 2 presents the considered class of switched Takagi-
Sugeno interconnected large-scale system, followed by the 
problem statement. The design of the considered decentralized 
and switched static output feedback non-PDC controllers is 
presented in section 3. A numerical example is proposed to 
illustrate the efficiency of the proposed approach in section 4. 
The paper ends with conclusions and references. 

II. PROBLEM STATEMENT AND PRELIMINARIES 
Let us consider the class of nonlinear hybrid systems S  

composed of n  continuous time switched nonlinear 
subsystems iS  represented by switched TS models. The n  
state equations of the whole interconnected switched fuzzy 
system S  are given as follows; for 1,...,i n : 
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where   i
ix t  ,   i

iy t  ,   i
iu t   represent 

respectively the state, the measurement (output) and the input 
vectors associated to the thi  subsystem.   i

iw t  is an 

2L -norm-bounded external disturbance associated to the i th 
subsystem. im  is the number of switching modes of the thi  



                                                                                       
 

subsystem. 
ij

r  is the number of fuzzy rules associated to the 
thi  subsystem in the th

ij  mode; for 1,...,i n , 1,...,i ij m  and 
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express the interconnections between 

subsystems.  
ij

z t  are the premises variables and   j iis jh z t  
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Notations: In order to lighten the mathematical expression, 

one assumes the scalar 1
1

N
n




, the index ij  denote the 

switched modes associated to the thi  subsystem. The premises 
entries 

ij
z  will be omitted when there is no ambiguities and 

the following notations will be employed in the sequel: 
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 . As usual, a star (*) indicates a transpose 

quantity in a symmetric matrix. The time t  will be omitted 
when there is no ambiguity. However, one denotes 

j j
t +®

 the 

switching instants of the thi  subsystem between the current 
mode j  (at time t ) and the upcoming mode j  (at time t ), 
therefore: 
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In the sequel, we will deal with the design of static output-
feedback controllers with disturbance attenuation for the 
considered class of large-scale system S . For that purpose, a 
set of decentralized static output feedback switched non-PDC 
control laws is proposed as; for 1,...,i n : 
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where 
jikK  and  9 9 0

j ji i

T

s sX X   are the non-PDC gain 

matrices to be synthesized.  
Hence, substituting (5) into (1), one expresses the overall 

closed-loop dynamics clS  described by; for 1,...,i n : 

   

  

19

1
, ,

1,

jii

ji

w
i s ihj hj hj hj hjm

ni j wj
i hj s

i

x B w tA B K X C
x

F x B w t
  

 







 

        
  
  




  (6) 

Thus, the problem considered in this study can be resumed as 
follows: 
Problem 1: The objective is to design the static output 
feedback controllers (5) such that the switched TS 
interconnected large-scale system (1)-(2) rises a closed-loop 
robust H

 output-feedback stabilization performance. 
Definition 1: The switched interconnected large-scale system 
(1)-(2) is said to have a robust H  output-feedback 
performance if the following conditions are satisfied:  
 Condition 1 (Stability condition): With zero disturbances 
input condition, i.e. 0iw   for 1, ,i n  , the closed-loop 
dynamics (6) is stable. 
 Condition 2 (Robustness condition): For all non-zero 

 2 0iw L  , under zero initial condition  0 0ix t   , the 

following H
 criterion holds for 1, ,i n  , 

0 0
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where 2
i  is positive scalars which represents the disturbance 

attenuation level associated to the thi  subsystem. 

From the closed-loop dynamics (6), it can be seen that several 
crossing terms among the gain controllers hjK  and the 

system's matrices   19
hj hj hj hjB K X C



 
are present. Hence, in 

view of the wealth of interconnections characterizing our 
system, these crossing terms lead surely to very conservative 
conditions for the design of the proposed controller. In order 

to decouple the crossing terms   19
hj hj hj hjB K X C

  appearing 

in the equation (6) and to provide LMI-based design 
conditions, an interesting property called ‘descriptor 
redundancy’ can be considered [10]. Thus, the closed-loop 
dynamics (6) can be alternatively expressed as follows. First, 
from (2), we introduce null terms and it yields, for 

1, ,i N  : 
0 i i hj iy y C x   ,  (8) 

  190 i hj hj iu K X y


   (9) 



                                                                                       
 

Then, by considering the following augmented variables T T T T
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large-scale system (1)-(9) and the TS controllers (5) can be 
combined as follows to express the closed-loop dynamics.  
For 1, ,i N  : 

 , , , ,
1,

n
w

i hj hj i i hj hj i
i

x x xE A F B w
  

  

         (10) 

with 
0 0

0 0 0
0 0 0

I
E

 
   
  

,   19
,

0

0

0

hj hj

hj hj hj hj

hj

A B

A I K X

C I



 
 

  
 

  

  

, ,

, ,

0 0

0 0 0

0 0 0

i hj

i hj

F
F



 
 
 
 
  

  and 
0

0

0 0

w
hj

w w
hj hj

NB

B B 

 
 
 
  

 .  

Note that the system (10) is a large scale switched descriptor. 
Hence, it is worth pointing out that the output-feedback 
stabilization problem of the system (1)-(2) can be converted 
into the stabilization problem of the augmented system (10).  
 
Remark: If it may be difficult to work on the first formulation 
of the closed-loop dynamics (6) due to the large number of 
crossing terms, the goal of our study can now be achieved by 
considering the augmented closed-loop dynamics (10) 
expressed in the descriptor form. In this context, the second 
condition of the definition 1, given by equation (7), can be 
reformulated as follows: 
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To conclude this preliminary section, let us introduce the 
following lemma which will be useful in the main result 
demonstration. 

Lemma [9]: Let us consider two matrices A  and B  with 
appropriate dimensions and a positive scalar   , the following 
inequality is always satisfied:  

1T T T TA B B A A A B B      (12) 

III. LMI BASED DECENTRALIZED CONTROLLER 
DESIGN  

In this section, our results on the design of static output 
feedback H

decentralized switched non-PDC controllers (5), 
which ensures the closed-loop stability of (6) and the H   
disturbance attenuation performance (11) are presented. The 
main result is summarized in the following theorem.  

Theorem : Assume that for each subsystem i  of (1), the 
active mode is denoted by ij  and, for 1,...,i ij m  and 

1,...,
i ij js r ,   

j ji is sh z t  . The overall interconnected 
switched Takagi-Sugeno system (1)-(2) is stabilized by a set 
of n  decentralized static output feedback switched non-PDC 
control laws (5) according to the definition 1, if there exists, 
for all combinations of 1,...,i n , 1,...,i ij m  1,...,i ij m  , 
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i ij jk r , 1 1,...,
i ij jk r and 1,...,

i ij jl r , the 

matrices  1 1 0
j ji i

T

k kX X  ,  5 5 0
j ji i

T

k kX X  ; 

 9 9 0
j ji i

T

k kX X   1
j j ji i is s kW , 

jikK  and the scalars, 1,i , 

… 1,i i  , 1,i i  ,…, ,n i  (excepted ,i i  which don’t exist since 
there is no interaction between a subsystem and himself), such 
that the LMIs described by (11), (13) and (14) are satisfied. 
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Proof: Indeed, the present proof is divided in two parts 
corresponding to the condition 1 and 2 given in the 
definition1. 

Condition 1 (Stability condition): With zero disturbances input 
condition , 0iw   , for 1, ,i N  . Let us define the 
following multiple switched non-quadratic Lyapunov 
candidate function: 
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The augmented system (10), and implicitly the closed-loop 
interconnected switched system (6), is asymptotically stable if: 
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Let us focus on the inequalities (19). Their aim is to ensure the 
global behavior of the like-Lyapunov function (17) at the 
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1 1

1 1 0
hj hjj j

hj hj

X X

X X

m +

+

®
é ù-ê ú £ê ú-ê úë û

 (22) 

Now, let us deal with (18), with the above defined notations, it 
can be rewritten as, 

j j
t t 

  : 

      11 1

1
0

n
T T T
i hj i i hj i i hj i

i
x E X x x X Ex x E X x

 



              (23) 

Substituting  (10) into (23), one can write, 
j j

t t 
  : 

     

   

11 1
, ,

1 11
, , , ,

1,

0

T T
i hj hj hj hj hj hj hj in

n
T T Ti

i hj hj i i hj i hj
i

x x

x x

A X X A E X

F X x x X F   
 

 

 

 

      
  
  
  




 

 

  

 
 (24) 

From (12), the inequality (24) can be bounded by, 
j j

t t 
  : 

     

   

11 1
, ,

1
,1 1

1 1,, , , , ,
1,

0

T
hj hj hj hj hj hj hjn n

T T
ni i iTi ii hj i hj i hj hj

i

x x x x

A X X A E X

X F F X
  

   
 




 


 

  

 

     
   

  
   

 


   

  

 
(25) 

Since 1 1
, ,

1 1, 1 1,

n n n n
T T

i i i i
i i i i

x x x x   
   

  

     

    , ix , (25) is 

satisfied if, for 1,...,i n  and 
j j

t t 
  : 

     

   

11 1
, ,

1 1 1
, , , , , ,

1,
0

T
hj hj hj hj hj hj hj

n
T

i hj i hj i hj hj i
i

A X X A E X

X F F X I   
 

 

 

  

 

 

    

  

 
 (26) 

Such that 0hj hjEX X E  ; left and right multiplying the 
inequalities (26) respectively by hjX , the equation (26) can be 
written as:  

  1 1
, , , , , , , ,

1,
0

n
T T

hj hj hj hj hj hj hj hj hj i i hj i hj i hj hj
i

X A A X EX X X F F X X   
 

 
 

 

          

 (27) 

Now, the aim is to obtain the inequality (15) from (27). This 
can be achieved with the following usual mathematical 
developments. First, note that      1 1 1

hj hj hj hjE X E X X X
  

  
 

. This term is majored by 'j j j ji i i is l k k  [10]. Then to deals with 

the term hj hjX X , one apply the Schur complement. 

Condition 2 (Robustness condition): For all non-zero 
 2, 0iw L   , under zero initial condition  0 0ix t   , 

it holds that: for 1, ,i N  , 

2
, ,

1 1,
0

n N
T T T

i i i i i i
i i

v x Qx w w 
 


  


    
 

       (28) 

      11 1

21 , ,
1;

0

T T T
i hj i i hj i i hj in

N
T Ti i i i i i

i

x E X x x X Ex x E X x

x Qx w w 
 



 



 



  
 

 
  
 




       

   
 (29) 



                                                                                       
 

Substituting (10) into (29), one can write, 
j j

t t 
  : 

     
   

     

11 1
, ,

1 1 2
, , , , , ,

1
1 1

1,
, ,

0

T T
i hj hj hj hj hj hj hj i

n
T T T T

n i hj hj i i hj i hj i i i
i

TT w T wi
i hj hj i i hj hj i

x x

x x

A X X A Q E X

F X x x X F w w

w B X x x X B w

     

  
 



 

 


 

 



       
 

   
  
     




 

 

  

   

    

 (30) 

From (12), the inequality (24) can be bounded by, 
j j

t t 
  : 

     

   

      
 

11 1
,

1 1
, , , , ,

1,

1 1
, ,

1,

1 2
, , ,

1

T
hj hj hj hj hjhj hj

T
ni iT

i hj i hj i hj hj
i

n TT w T w
i hj hj i i hj hj i

i

n
T T

i i i i

i

x x

x x

A X X A Q E X

X F F X

w B X x x X B w

w w

  
 

 
 

 

    









 

 

 

 

 






      
  

  
  

 


  
 







 

 

  

 

    

 

1

0
n

i




 






  (31): 

Since 1 1
, ,

1 1, 1 1,

n n n n
T T

i i i i
i i i i

x x x x   
   

  

     

    , ix  and 
j j

t t 
  , 

(25) is satisfied if: 

      
   

   

11 1

1 1 1
, , , , , ,

1 1
, , , , , ,

1 1,
2

, ,

0

j j j ji i i i

j j j ji i i i

T
hjhj hj hj hjhj hjT

i i
T

i h i h i h h i

n n
T T T
i w h h i i h w h i

i i
T

i i i

x x
N A X X A Q E X

X F F X I

w B X x x X B w

w w

   

   
 

 

 

 

  

 

  

      
  

     
   
 
   

 

 
  

 

    

 
 (32) 

The previous equation can be written as follow: 

   
, ,

1 2
, ,

*
0

T
hj hj hji i
Tw

i ihj hj i

x x

w wB X
 



    
     

      

 

 
 (33) 

with 
      

   

11 1
, , , ,

1 1 1
, , , , , ,

T
hj hj hj hj hj hj hj hj hj hj

T
i hj i hj i hj hj i

N A X X A Q E X

X F F X I    

 

  

    

 

  

 
 

Left and right multiplying the inequalities (26) respectively by 
0

0
hjX

I
 
 
 

, it yields for 1,...,i n  and 1,...,n   with i  : 

 
 

, , , , ,
1 1

,

2

*
0

ji

T T
hj hjhj hjhj hj hj hj i i hj i hj

i hj hjhj hj hj

Tw
h hj i

X A A X X QX F F
N

X XEX X X

X B

  



 



 

     
    

        
 

   

   





 (34) 

To obtain the LMI condition (16), similarily to the previous 
part of this demonstration, from the property 

     1 1 1

hj hj hj hjE X E X X X
  

  
 
, we can major the derivative 

hjEX   by 'j j j ji i i is l k k  [10] and then apply the Schur 
complement. ■ 

IV. NUMERICAL EXAMPLE 
Let us consider the following system composed of two 

interconnected switched Takagi-sugeno subsystems given by: 

Subsystem 1:  

   2

1 1 11 1 1 1
1 1

1 1 1
1 1

2 2

1 1 1 1 1,2, 2 2
1 1

2 2

1 1
1 1

j j j j j
j

j j
j

ww
j s s s sj s s

j s

j s s
j s

x h A x B u B w t F x B w t

y h C x





 

 

      








 (35) 

with 11
1

12

x
x

x
 

  
 

 
1

-2

0.1
j

sj
sj Aa

Ab
A

 
  
 

 
 

1 0 1
sj j

sj

B Bab
B       

 
1

0.1

1 1
sj

sj

Ca
C


   
  1 .01 .01

sjw
sj

jwb
B

wa 
     

2

1

.01
.01j

jw

j
s

s

b
B

a
 

  
   

 
1

.01 .01
.01 .1

sj
sj

jFb
Fa

F
 

  
   

In the mode 1, the variables values are given by 1 1Ab  , 

11 2.1Aa   , 21 1.1Aa   , 1 1.2Bb   , 11 0Ba  , 21 1.2Ba  , 

11 .1Ca   , 12 1Ca  , 1 0.01Fb  , 11 .01Fa  , 21 .1Fa  , 

1 0.01wb  , 11 .01wa   , 21 .02wa   , 1 0.01b  , 

11 .02a  , 12 .01a  . In the mode 2, the variables values are 
given by: 2 0.2Ab  , 12 2Aa   , 22 3Aa   , 2 1.5Bb   , 

12 1Ba  , 22 3Ba  , 21 1Ca  , 22 .1Ca  , 2 0.01Fb   , 

21 .2Fa  , 22 .02Fa  , 2 0.05wb   , 12 .05wa   , 

22 .01wa  , 2 0.05b   , 21 .04a  , 22 .03a  . The 

membership functions are      
11

2
1 1 11sinh x t x t , 

     
11

2
2 1 12sinh x t x t ,      

2 11 11 1 1 11h x t h x t  , and 

     
2 11 12 1 2 11h x t h x t  . 

 

Subsystem2:

   1

2 2 22 2 2 2
2 2

2 2 2
2 2

2 2

2 2 2 2 2,1, 1 1
1 1

2 2

2 2
1 1

j j j j j j
j

j j
j

ww
j s s s s s s

j s

j s s
j s

x h A x B u B w t F x B w t

y h C x





 

 

      








(36) 

with
21

2 22

23

x
x x

x

 
   
  

 
2

-2 0
0 0
0 .1 -1.1

j

sjsj A
Ab

A a
 
   
    

2

-.1 .5 .1
-.01 .5 .01
-.01 .1

sj

sjBa
B

 
   
    

 

2

.01 .1
-1 .1 1
.1 .1 .1

j

sj

sCa
C

 
   
    

2

.01 .001

.01 .01
sj

j
j

s Fb
Fa

F
 

  
   



                                                                                       
 

 
 

2

.05
.001 .001 .001
.001 .001 .001

j

s
w

j

s

j ab
B

  
   
  

1

2

.05
.001 .001 .001
.001 .001 .001

j

w
sjj

s

wb w
B

a 
   
  

 

In the mode 1, the variables values are given by 
1 2Ab  , 11 1Aa   , 21 1.1Aa   , 11 .01Ba  , 21 .02Ba  , 

11 .1Ca   , 12 .2Ca   , 1 0.1Fb  , 11 .2Fa  , 21 .02Fa  , 

1 0.01wb   , 11 .01wa  , 21 .001wa  , 1 .01b   , 

11 .01a  , 12 .001a  . In the mode 2, the variables values 
are given by: 2 1Ab  , 12 2Aa   , 22 3Aa   , 12 0.03Ba  , 

22 0.04Ba  , 21 .4Ca   , 22 .3Ca   , 2 0.2Fb  , 

21 22 .4Fa Fa  , , 2 0.01wb  , 12 .02wa  , 22 .05wa  , 

2 .01b  , 21 .02a  , 22 .05a  and the membership 
functions are    

12

2
1 2 21sinh x x ,    

2 12 21 2 1 21h x h x   

   
12

2
2 2 22sinh x x , and    

2 12 22 2 2 21h x h x  . 
Let us assume that each subsystem switches within the frontier 
defined by: 11 11 120.9x x   , 12 11 12-0.2 9x x   , 

21 21 22-x x   and 22 21 22- 2x x  . The external disturbances 

1w  and 2w  are considered as white noise sequences. 

A set of decentralized switched controllers (5) is 
synthesized based on theorem 1 via the Matlab LMI toolbox. 
To do so, the lower bounds of membership functions are 
chosen as 

1 2 1 21 1 2 21 1 1 1 6         and the disturbance 

attenuation levels are prefixed by 2
1 1.7  and 2

2 1.5  . 

The close-loop subsystem dynamics are shown in Figure 1 
for the initial states    1 0 2 2 Tx   and  2 0 -1 1.5 -1 Tx    .  
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Figure 1.   States dynamics of the overall closed-loop interconnected 

switched Takagi-Sugeno system. 

Figure 2 shows the control signals as well as the switching 
modes’ evolution. As expected, the synthesized decentralized 
switched controller stabilizes the overall large scale switched 
system composed of (1) and (2).  

V. CONCLUSION 
This study has focused on large scale switched nonlinear 

systems where each nonlinear mode is represented by Takagi-
Sugeno systems with external disturbances. To ensure the 
stability of the whole closed-loop system, a set of 

decentralized static output feedback switched non-PDC 
controllers has been considered. Therefore, LMI-based 
conditions for the design of the decentralized controller have 
been proposed through the consideration of a multiple 
switched non quadratic Lyapunov function and by using a 
descriptor redundancy formulation. Finally, a numerical 
example has been proposed to show the effectiveness of the 
proposed approach. An extension of the proposed approach to 
general switched systems under asynchronous switching will 
be the focus of our future work. 
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Figure 2.  Control signals and switched laws’ evolutions.  
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