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1Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, Marseille, France
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We investigated experimentally the deformation of soft microcapsules and the dynamics
of their membrane in simple shear flows. Firstly, the tank-treading motion, i.e. the rota-
tion of the membrane, was visualized and quantified by tracking particles included in the
membrane by a new protocol. The period of membrane rotation increased quadratically
with the extension of the large axis. The tracking of the distance between two close micro-
particles showed membrane contraction at the tips and stretching on the sides, a specific
property of soft particles such as capsules. Present experimental results are discussed in
regard to previous numerical simulations. This analysis showed that the variation of the
tank-treading period with the Taylor parameter (deformation) cannot be explained by
purely elastic membrane models. It suggests a strong effect of membrane viscosity whose
order of magnitude is determined. Secondly, two distinct shapes of sheared microcapsules
were observed. For moderate deformations, the shape was a steady ellipsoid in the shear
plane. For larger deformations, the capsule became asymmetric and presented a S-like
shape. When the viscous shear stress increased by three orders of magnitude, the small
axis decreased by 70 % whereas the large axis increased by 100% before any break-up.
The inclination angle decreased from 40◦ to 8◦, almost aligned with the flow direction
as expected by theory/numerics on capsules and experiments/theory/numerics on drops
and vesicles. Whatever the microcapsule size and the concentration of proteins, the char-
acteristic lengths of the shape, the Taylor parameter and the inclination angle satisfy
master curves versus the longest axis or the normalized shear stress or the capillary
number in agreement with theory for non negligible membrane viscosity in the regime of
moderate deformations. Finally, we observed that very small deviation from sphericity
gave rise to swinging motion, i.e. shape oscillations, in the small deformation regime. In
conclusion, this study of tank-treading motion supports the role of membrane viscosity
on the dynamics of microcapsules in shear flow by both independent methods which
compare experimental data with numerical results in the regime of large deformations
and with the theory in the regime of moderate deformations.

1. Introduction

Knowledge of microcapsule dynamics is important in order to design the encapsula-
tion of drugs and control their delivery in numerous applications. These objects, liquid
drops bounded by a membrane, have specific properties used to control the delivery of
drugs in medicine and biology (Hejazi & Amiji (2003)) or specific molecules dedicated
to cosmetics or nutrition (Shewan & Stokes (2013)). This control can be achieved by
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passive diffusion through the membrane or by external active stimuli (pH, temperature,
ultrasounds) which lead to burst or mechanical stresses inducing cyclic deformations
(Long et al. (2015)). There is also a growing interest to study capsules and vesicles un-
der flow to have a deeper understanding of the dynamics of red blood cells (RBCs) in
vessels and microfluidic biochips. Indeed, each of these soft particles share with RBCs
specific mechanical properties that can be tuned independently (Vlahovska et al. (2009),
Barthès-Biesel (2011), Li et al. (2013), Freund (2014)).

According to the constitutive material of the membrane different mechanical properties
and dynamics in flow are obtained. The membrane of a vesicle is a two-dimensional fluid
incompressible lipid bilayer with a resistance to bending, no membrane shear elasticity
and a negligible membrane viscosity (Abreu et al. (2014)). The membrane of a capsule
is a thin elastic solid made of a complex network of cross-linked polymers. The thickness
and the degree of cross-linking can be tuned by the process parameters (Andry et al.
(1996), Gunes et al. (2011)) to control the shear elasticity and the area dilation resis-
tance. For example, capsules made of an artificial polymer such as polysiloxane or nylon
present permanent deformations and break for small or moderate deformations (up to
50% of stretching, Chang & Olbricht (1993a), Koleva & Rehage (2012)). On the contrary,
membranes made of cross-linked proteins such as human serum albumin (HSA) can sus-
tain up to 180% of stretching without plastic deformations and break-up (de Loubens
et al. (2015)).

In flow, capsules and vesicles present a diversity of shapes and dynamics, revealed by
experiments, numerical simulations and theoretical investigations. The configurations of
flow are often similar but the salient ingredients to understand deeply the dynamics are
different: on one hand, the bending modulus and the vesicle deflation and on the other
hand, the shear and dilation elastic moduli and the reference state (in the resting state)
which is like a memory shape (Kessler et al. (2008)). In fact, beyond these basic elements,
the mechanical characteristics of capsule membranes can be more complex with contri-
butions of bending resistance to stabilize localized shape modulations, namely wrinkles
(Walter et al. (2001), Koleva & Rehage (2012)) and membrane viscous dissipation (Yaz-
dani & Bagchi (2013), Barthes-Biesel & Sgaier (1985)) which is particularly relevant in
RBCs for example (Nash & Meiselman (1983), Hochmuth et al. (1979)). This wealth
of membrane properties makes the study of capsules very attractive to determine accu-
rately the role of the different physical parameters in the global dynamics. Indeed, the
shapes and dynamics of capsules in flow have been extensively studied numerically and
theoretically in several configurations: simple shear flow (Lac et al. (2004), Walter et al.
(2010), Omori et al. (2012), Sui et al. (2008), Bagchi & Kalluri (2009)), elongation flow
(Dodson & Dimitrakopoulos (2009)), in capillaries (Lefebvre et al. (2008)) or in a corner
(Zhu & Brandt (2015)). This knowledge allows to develop new methods to measure the
elastic parameters using either the results of the linear theory of deformations as in the
seminal work of Chang & Olbricht (1993b) or numerical simulations to develop inverse
methods (Lefebvre et al. (2008), de Loubens et al. (2015)).

Compared to the numerous numerical studies, the experimental investigations of cap-
sule shapes and dynamics in flow are scarce and often limited to the regime of moder-
ate deformations due to the capsule breakup: capsules in shear flow (Chang & Olbricht
(1993a), Walter et al. (2001)), in elongation flow (Chang & Olbricht (1993b)) and in cap-
illaries (Risso et al. (2006)). Considering the tank-treading motion, probably the main
dynamics of soft particles in shear flow, the rotation of the membrane has only been
visualized and quantified by tracking fluorescent beads or particles attached to the mem-
brane of vesicles (Kantsler & Steinberg (2005)) and RBCs (Fisher et al. (1978), Abkarian
et al. (2007)).
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Figure 1: Shear elastic modulus Gs as a function of the capsule radius R. Values were
determined in elongation flow experiments (see de Loubens et al. (2014) for details). Data
are fitted with exponential laws for each HSA concentration.

In this paper, we investigate experimentally the deformation, the orientation and the
motion of the membrane of microcapsules in shear flow up to large deformations (vari-
ation of the longest axis up to 100 %). In section 2, the techniques used to decorate
the membrane of HSA microcapsules with particles and the design of the shear flow
chamber are presented. In section 3, the motion of capsules in shear flow is fully charac-
terized: rotation of the membrane, period measurement, evolution of the shapes on three
decades of shear stress. To highlight the role of membrane viscosity and determine its
value, two complementary approaches are used: comparisons between experimental data
with numerical simulations of Yazdani & Bagchi (2013) in the regime of large deforma-
tion and with the theory of Barthes-Biesel & Sgaier (1985) in the regime of moderate
deformations.

2. Methods

2.1. Microcapsules preparation

Human serum albumin (HSA) was provided by LFB Biomedicaments. The organic sol-
vents were from SDF, terephthaloyl chloride from Acros Organics, and surfactants (sor-
bitan trioleate, polysorbate) from Sigma. The yellow iron oxide powder was a gift from
BASF. Batches of cross-linked HSA microcapsules were prepared using the interfacial
cross-linking method (Andry et al. (1996), de Loubens et al. (2014)), using terephthaloyl
chloride as cross-linker. Briefly, a 20 or 25g/100mL HSA solution was prepared in a
pH8 phosphate buffer. This aqueous solution was emulsified in cyclohexane containing
2g/100mL sorbitan trioleate at a stirring speed of 1700 rpm. A 2.5g/100mL solution of
terephthaloyl chloride in chloroform:cyclohexane (1:4 volume / volume) was then added
to the emulsion and the cross-linking reaction was allowed to develop for 30 min. The re-
action was stopped by dilution of the reaction medium. The microcapsules were separated
from the organic phase by centrifugation, and washed successively with cyclohexane, with
water containing 2g/100mL polysorbate and finally thrice with pure water.

In order to include visible granulations on the membrane to characterize its tank-
treading motion, the same procedure was performed with an additional step, consisting
in dispersing 1g/100mL iron oxide powder of typical size 1-2 µm in the HSA buffered
solution prior to the emulsification step. The resulting particles looked ochre yellow to
the naked eye, whereas their granulations made them appear opaque black using optical
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microscopy. We had initially checked mixing a little droplet of capsules in water with a
larger one with glycerol that capsules flattened up to a pancake shape due to the exit of
water and after inflated with glycerol entry. Note that this also highlighted the difference
of permeabilities of the membrane to water and glycerol. Finally, the capsules were stirred
in a large volume of 98 % glycerol (VWR) during one night, in order to allow the internal
medium of each capsule to equilibrate with the external one by diffusion through the pores
of their membrane. Thus, the fluid was then the same inside and outside of the capsule.

2.2. Elastic properties of microcapsules

The emulsification step in the preparation procedure generates capsules with some size
dispersion. The size distribution of the resulting capsules was measured by laser diffrac-
tion (Malvern Mastersizer 2000). The median radius was 39 µm. Ninety and ten percent
of the distribution lied below 54 and 28 µm, respectively.

These microcapsules have already been mechanically characterised in elongation flows
(see de Loubens et al. (2014, 2015) for details). We summarize in this section the main
conclusions useful for the present paper. Firstly, we have shown that the elastic shear
modulus Gs of the resulting capsules increases of several orders of magnitude when the
HSA concentration and the capsule size increase. A simple material balance applied
between membrane HSA and volumic available HSA before cross-linking explains the
qualitative variation with the size and HSA concentration (de Loubens et al. (2014)).
Secondly, the study of these capsules in large deformations (i.e. up to 180% of stretching
of the largest axis) allowed us to determine the bidimensional constitutive law of their
membrane. We concluded that the membrane of HSA capsules obeys to the generalized
Hooke law with a surface Poisson ratio νs of 0.4. Thus, the area dilation modulus K =
Gs (1+νs)/(1−νs) ≈ 2.3Gs varying on several orders of magnitude with the microcapsule
size and the initial concentration of HSA. The constitutive law provides a relationship
between the tension tensor and the stretch ratio or principal stretches in the direction j,
λj calculated versus the reference state. The principal tension T1 is given in the following,
T2 is obtained by switching the indices 1 and 2:

T1 =
Gs

1− νs
[
λ21 − 1 + νs(λ

2
2 − 1)

]
(2.1)

The evolution of the elastic shear modulus Gs with the radius R was determined in
de Loubens et al. (2015) (figure 1). With the exponential fits of these data, we can deter-
mine a value of Gs for each capsule studied in the present paper. Finally, a total of twenty
capsules were studied with a radius ranging from 20 to 68 µm. The polydispersity of the
microcapsules which is a consequence of the classic protocol of interfacial polymerization
of an emulsion is in fact a chance allowing to vary on several orders of magnitude the
normalized shear stress and the capillary number as shown later.

2.3. Shear flow

Capsules were studied in a 1 mm x 100 mm rectangular channel of 5 mm depth (figure 2).
The channel was made of opaque PVC to minimise light reflection near the boundaries.
Capsules were visualized from the side of the channel in the z direction. The fluid was
injected by a glass syringe pushed by a PI actuator M235-52S. The outlet was at ambient
pressure. The channel was mounted on a microscope Olympus IX-71 with magnification
x10 or x20 (1.701 or 0.851 µm/pix). A high speed camera Photron Fastcam SA3 recorded
up to 4000 frames per second.

We defined a region of interest (ROI: 200 µm x 1 mm x 1 mm) in the channel located
at the middle of its two largest lengths (in x, z directions) and at the wall of its smallest
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Figure 2: Experimental set-up. A spherical capsule of radius R is deformed by shear flow
in a region of interest (ROI) where the shear rate γ̇(y) is homogeneous at the scale of
the capsule and constant in the z direction. Capsules were visualized from the side of
the channel in the z direction. The steady-state shape of the capsule in the plane (x, y)
is characterized by its semi axis length (L, S) and its inclination angle α with respect
to the flow direction. Thin arrows show the motion of rotation of the membrane during
shear, the so-called tank-treading motion.

length (in y direction) (figure 2) where the shear rate γ̇ was maximal and the flow profile
almost linear. Particle-tracking velocimetry in the ROI showed that the flow was planar,
i.e. independent of the z direction. As expected, the flow profile was parabolic in y and
constant in x and z whatever the flow rate of the pump. The y position of the capsule
was measured to determine accurately the local shear rate γ̇(y). For distance at the
wall below 200 µm, the maximal variation of γ̇ at the tips of the deformed capsule was
less than ± 7.5%. Thus the capsules are assumed to move in a constant shear rate flow
in this region. γ̇ ranged from 10 to 2000 s−1. Experiments were carried out at a room
temperature of 22±0.5◦C controlled locally. The viscosity of the glycerol ηf was measured
with a rheometer ThermoScientifc Mars III and ranged from 0.99 to 1.18 Pa.s.

To obtain high steady deformations, the capsule was initially put far from the ROI.
The flow was then applied and the capsule crossed the area separating it from the ROI.
The steady-state of the deformation was thus already reached, when the capsule arrived
in the ROI. The capsule was observed during 5 to 100 ms according to the shear rate.
The maximal velocity of the capsule was about 180 mm/s. The flow was stopped when
the capsule was out of the ROI. The two axes of the ellipsoid (L, S) and the angle of
inclination α were measured (figure 2). We checked that these parameters of shape were
steady and that the capsules returned to their initial spherical shapes at rest. The velocity
of the capsule was also measured and compared with preliminaries PTV measurements
to check that the presence of the walls had no effects: no difference is measured between
a capsule velocity and its corresponding streamline without capsule measured by PTV.
The direction of the capsule being parallel to the wall in the ROI, it means that the
gradient of shear did not generate significant lateral migration on this short distance.
Each of the twenty capsules was studied for approximately seven different shear rates.
The inner and outer viscosities were equal. All the capsules which were not spherical
(difference of two pixels between the large and small axis) were excluded.
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Figure 3: Tank-treading motion of the membrane of microcapsules. (a) iron oxide particles
rotate with the membrane during shear flow. Different particles located at the periphery
of a capsule (black and white arrows) were followed during a sequence to reconstruct
the evolution of the angle φ with time t. (b) Angle of rotation φ as a function of the
dimensionless time γ̇t for different stretching of the large axis L/R. (c) Half dimensionless
time period of rotation γ̇T/2. γ̇T/2 = 2π corresponds to the half period of rotation of a
rigid sphere in shear flow. Dashed line: parabolic fit.
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Figure 4: Local evolution of the deformation of the membrane: the relative distance d/d0
between two closed iron oxide particles (at rest d0=14.8 µm) is plotted as a function of
the dimensionless time γ̇t for L/R=1.21. Particles are located on the tips of the capsule
for γ̇t=0 and 7.5 and on its side for γ̇t=4.
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Figure 5: Tank-treading period as a function of the Taylor parameter D. The period
increases with the membrane viscosity ηm. For ηm = 0, the period is independent of the
constitutive law: numerical results from Lac et al. (2004), Yazdani & Bagchi (2013) and
Sui et al. (2007). Conversely, the period decreases when the bending energy Eb increases.

3. Results and discussion

3.1. Tank-treading motion of the membrane

In a simple shear flow, an initially spherical capsule becomes a steady ellipsoid with a
constant angle of inclination α (figure 2) whatever the shear rate is. The instantaneous
motion of the membrane, namely a rotation (see Videos in Supplementary Materials), was
visualized by individual micro-particles embedded in the membrane (figure 3). Except
at very low shear rate, the length of the ROI was too small to observe a full half-period
of tank-treading. This last was reconstructed by tracking several particles. We checked
that the shear elastic moduli of eight capsules were not changed by these micro-particles
using de Loubens et al. (2014). The movement of rotation of the membrane during shear
flow, referred as tank-treading, is dependent on the time t and on capsule stretching
L/R. For stretching lower than 20%, the evolution of the angle of rotation φ with time is
linear. When the stretching (or the shear rate) increases, this evolution deviates more and
more from linearity. Whereas the velocity of rotation (dφ/dt) at 90◦ of the tips is almost
constant when L/R increases, this velocity decreases strongly at the tips (figure 3-b).
For small deformations (L/R ≤1.1), the period of rotation γ̇T corresponds to the case of
a rigid sphere in shear flow. γ̇T versus L/R is well fitted by a parabola. Quantitatively,
the period triples when L/R increases of 80%.

The local deformations of the membrane could be derived from the evolution of the
angle φ with time t. However the derivation is not robust due to the level of noise of these
data. Measuring the time-evolution of the distance d separating two particles is a better
method (figure 4). We observe that the membrane deformation is inhomogeneous. The
membrane is tensed at the tips and stretched on the sides. For an extension of L/R=1.21,
the distance separating the particles increases of ±20% between the side and the tips
of the capsule. The difficulty of the experiment did not allow to repeat it on the same
capsule for different shear rates with a sufficient accuracy to separate clearly the results
but the trends are similar.
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3.2. Evaluation of membrane viscosity from the tank-treading period

The tank-treading motion is the basic dynamics of numerous soft particles. It involves
a membrane shear flow contributing to a two-dimensional dissipation. Contrary to the
steady state of a capsule in an elongation flow, its tank-treading motion in shear flow is
a good candidate to reveal quite easily any membrane viscosity ηm. Indeed, numerical
simulations (Lac et al. (2004)) show that the period is independent of the constitutive
law which governs the elastic response of the membrane (figure 5). Our experimental
results are determined in the regime of large deformations. They are also reported on the
same figure highlighting a notable increasing of the tank-treading period. Any deviation
from the numerical master curve should be explained by contributions to the interfacial
mechanics which were neglected previously as the bending resistance or the membrane
dissipation due to membrane viscosity.

Sui et al. (2007) have analyzed the effects of bending rigidity on the deformation D and
the tank-treading period: see figures 5 and 7a of their paper. Their simulations reported
on figure 5 showed that the bending modulus decreases slightly the tank-treading period
γ̇T , the opposite of what is observed experimentally.

Yazdani & Bagchi (2013) have studied numerically the contribution of the shear mem-
brane viscosity on tank-treading motion introducing the Boussinesq number Bq:

Bq =
ηm
ηf R

(3.1)

which measures the surface shear viscous stress compared to bulk one, ηm and ηf being
the membrane and fluid viscosities respectively. They showed that the period increases
with the Boussinesq number. Combining figures 11 and 13 of Yazdani & Bagchi (2013)
allows to report in figure 5 their results for Bq = 0 and Bq = 10, the smaller values of
Boussinesq numbers which have been considered. The period increases with Bq keeping
the same parabolic curve with the Taylor parameter. Our experimental data are included
between the case Bq = 0 and Bq = 10 and have the same parabolic variation. In absence
of more precise numerical simulations and to obtain an order of magnitude of Bq that fits
our data, we assumed a linear relationship of the tank-treading period γ̇T/2 withBq. On a
theoretical point of view, considering a constant ellipsoidal shape, Keller & Skalak (1982)
have shown that the period of tank-treading varies linearly with the membrane viscosity,
validating our assumption to consider a linear fit. In this way, the best fit corresponds
to Bq ≈ 4: ηm ≈ 2.10−4 N.s/m for R = 43 µm for example. This value of Bq obtained
in the regime of large deformations will be confirmed by a second independent method
in the regime of moderate deformations (see section 3.5).

To show that our approach is self consistent, the membrane deformation and the
viscoelastic time scales are compared. The first time scale is measured experimentally
with the evolution of the local deformation of the membrane with the dimensionless time
(figure 4) independently of any assumptions concerning the membrane properties. The
dimensionless characteristic time of the local rate of membrane deformation is about
γ̇t=2 for medium deformation of the capsule (L/R=1.21). In physical units, this time
scale is about 50 ms. It can be compared to the time scale for the viscoelastic membrane
that is defined by ηm/Gs and equal to 40 ms of the same order than previously.

3.3. Shapes of microcapsules in shear flow

In shear flow, HSA microcapsules sustain up to 115% of stretching of their large axis L
without burst. For stretching of L higher than 5 %, two regimes of steady deformations
are observed according to the magnitude of L/R. In the range 1.05 < L/R < 1.7, the
shape of the capsule is ellipsoidal (figure 6). Qualitatively, its length L increases with the
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Figure 6: Typical evolution of the steady-state shape of a microcapsule (R=28 µm) for
increasing shear rates: the dimensionless capsule length L/R varies up to 114 %. For
moderate deformations (L/R ≤1.7), the capsule is ellipsoidal and symmetrical to the
large and small axis. For larger deformations, the shape exhibits a S-like shape with the
tips of the capsule oriented in the flow direction.
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Figure 7: Experimental variation of the small length S/R and the inclination angle α as a
function of L/R in shear flow for two different batches of microcapsules: ◦: 20% HSA, �:
25% HSA. The radii of capsules vary from 25 to 60 µm in each batch. Errors correspond
approximately to ±5 % on L/R and S/R and ±1.5◦ on α.

shear rate while its width S decreases. For L/R higher than 1.7, the shape looks like an
’S’ whose the extremities are aligned with the flow direction (see video in supplementary
materials). These S-like shapes are reminiscent of the transient ones obtained by Chang
& Olbricht (1993a) and Koleva & Rehage (2012) for artificial capsules that bursted for
minute deformations. However, it is notable that these shapes are steady for the HSA
capsule of the present study, whereas it was unsteady during tips break-up of polysiloxane
(Koleva & Rehage (2012)) and nylon (Chang & Olbricht (1993a)) capsules. These steady
shapes have been also observed numerically by Walter et al. (2010) for deformations
((L− S)/(L+ S) ≈0.55) equivalent to those we report.

According to the simulations of these authors, compressive tensions appear at weak
stretching in the center part of the capsule membrane and at large stretching near the
tips. In each case, wrinkles are expected (Finken & Seifert (2006)). Here and contrary
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to well-known experiments with polysiloxane capsules (Walter et al. (2001), Koleva &
Rehage (2012)), no wrinkles are observed meaning that either the threshold for buckling
is not reached due to a too large bending resistance or the time to develop such shape
modulations is out of range with our set-up. A third possibility could be a weak optical
contrast due to fast imaging. However, firstly, even at small shear rates, there are no
visible wrinkles. Secondly, the same report of no wrinkling was done with the same
capsules in an elongational flow (de Loubens et al. (2015)). This supports that bending
resistance inhibited the localized shape modulations at short wavelength, i.e wrinkles.

Capsules with two HSA concentrations and with radii in the range 20 to 68 µm were
studied. It is noteworthy that the variations of the width S/R and the inclination angle
α with the longest axis L/R are independent of the kind of capsules with all the ex-
perimental points on two master curves: figure 7. The inclination angle α of the capsule
decreases with the flow from 40◦ to 8◦ for L/R ranging from 1.05 to 2. The capsule
tends to be aligned with the flow as expected (Lac et al. (2004)). This has already been
observed experimentally for vesicles (Kantsler & Steinberg (2005)) and for drops (Guido
& Villone (1998), Kennedy et al. (1994)). The inclination angle of 45◦ corresponds to the
elongation part of the simple shear flow, a result predicted for drops a long time ago in
the seminal article of Taylor (1934).

3.4. Deformations with the viscous shear stress and the Capillary number

The previous analysis was purely geometrical. In this section, we introduce firstly the
effects of the viscous shear stress ηγ̇. We normalized the shear stress ηγ̇ by a value of
reference at L/R=1.3 for each capsule in the regime of moderate deformations: figure8.
The conclusions are independent of this choice. All the parameters of shape (L/R, S/R
and α) follow the same master curves on three orders of magnitude of variation of ηγ̇
whatever the size and the degree of cross-linking of the capsules are. The inclination
angle α decreases exponentially with ηγ̇ (plot in semi-log) in qualitative agreement with
numerical simulations (Lac et al. (2004)). The increase (decrease) of L/R (S/R) is more
and more moderate when the shear stress increases. The shear stress has to increase by an
order of magnitude to stretch the capsule from 50 to 100 %. The capsule being more and
more aligned with the flow direction when ηγ̇ increases, the elongation component of the
simple shear flow (maximal at 45◦) has less and less effects on the capsule deformation.
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The Taylor parameter D = (L − S)/(L + S) of all the studied capsules follows also a
master curve which has the characteristic to not saturate at high normalized shear stress
(figure 9) in qualitative agreement with numerical simulations (Lac et al. (2004)).

After showing that the data can be scaled by an arbitrary shear stress of reference, we
scale them also with the surface shear elastic modulus Gs (in N/m) calculated from the
fits shown in figures 1. The capillary number Ca is defined as the ratio of the hydrody-
namic viscous shear stress ηγ̇ by the elastic response Gs/R of the membrane:

Ca =
ηγ̇R

Gs
(3.2)

Note that we use the shear elastic modulus and not the surface Young modulus as
Barthes-Biesel & Sgaier (1985): see the next section. The evolutions of each parameter
of shape L/R, S/R, α and D follow four master curves on more than three orders of
magnitude of variation of Ca whatever the size and the degree of cross-linking of the
capsules: figures 10 and 11. The uncertainties on the regressions Gs = f(R) (errors on
Ca are ±20%) provide a larger dispersion of the experimental data as a function of Ca
compared to the normalized shear stress ηγ̇ (figure 8). These evolutions can be compared
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with previous numerical simulations. Dupont et al. (2015) simulated the evolution of D
with Ca (see figure 6b of their paper) for the constitutive law corresponding to HSA
capsules, i.e. the generalised Hooke law (de Loubens et al. (2015)). Numerical and ex-
perimental curves are qualitatively correct, but there are large quantitative differences.
For a value of Ca of 2, a Taylor parameter D of 0.55 is numerically calculated, whereas
we obtained experimentally 0.3. These differences could be attributed to the absence of
membrane viscosity in the simulations of Dupont et al. (2015): see the next section.

3.5. Evaluation of membrane viscosity from small deformation theory

Barthes-Biesel & Sgaier (1985) have determined the theoretical variation of the Taylor
parameter D = (L − B)/(L + B) as a function of the capillary number Ca and the
Boussinesq number Bq. Their main assumptions were to consider an incompressible 3D
material of membrane leading to νs = 1/2, deformations such as D << 1 to expand
the physical quantities and equal dilational and shear membrane viscosities. Note that
this last assumption is different from the work of Yazdani & Bagchi (2013) who have
neglected the effect of dilational viscosity. This will be discussed in the conclusion. For
small capillary number and without membrane viscosity, the relation is:

D =
25

12
Ca (3.3)

Note that there is a coefficient 1/3 with the expression of Barthes-Biesel & Sgaier (1985).
This comes from a different definition of the capillary number. Indeed, Barthes-Biesel &
Sgaier (1985) used the surface Young modulus Es while we use the shear elastic modulus
which satisfies: Gs = (1/3)Es. Currently, it is more usual to consider the shear elastic
modulus at least in the field of capsules. The ratio of characteristic elastic ηR/Gs and
surface viscous ηsγ̇/ηR times introduces a new dimensionless number β which is analog
to the Weissenberg number in viscoelastic fluids:

β =
ηsγ̇

Gs
= Bq Ca (3.4)

Here also, the quantity β is three times larger than the definition of Barthes-Biesel &
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Figure 12: Left - Comparison between theoretical prediction (Barthes-Biesel & Sgaier
1985) and our experimental results of the Taylor parameter in the limit of capillary
number Ca < 1. The dashed lines are theoretical curves for several Boussinesq numbers
Bq = ηm/Rηf equal to 3, 4, 5 and 10 (equation 3.5) and 0 (equation 3.3).

Sgaier (1985) for the same reason than previously. Thus, in the limit of small capillary
number and moderate value of Weissenberg number (β = O(1)), the relation becomes:

D =
25

12
Ca

(
1 + ( 2β

5 )2

(1 + β2) (1 + (β3 )2)

)1/2

(3.5)

Note that the equation 3.3 is the limit of equation 3.5 when β tends to zero. The ex-
perimental points for which the shape is stationary are compared to the two previous
equations in figure 12. For very small capillary number Ca < 0.15 (or D < 0.1), the
dynamics of capsules depends crucially on the initial asphericity even if very small (see
the next section). The experimental data with D < 0.1 in figure 12 correspond to steady
state shapes but are obtained only for the largest capsules (R ≈ 55µm). If we consider
larger capillary numbers, the deformations are restricted to D < 0.32 providing a range
of moderate deformations from Ca = 0.15 to Ca = 1 with steady state shapes. The theo-
retical curves D = f(Ca) provided by equations 3.3 and 3.5 have been drawn for several
Boussinesq numbers Bq equal to 0, 3, 4, 5 and 10. For Ca > 0.15, the experimental
points are scattered between Bq = 3 and Bq = 5 with a best fit Bq ≈ 4 on all the
range of capillary number in figure 12. It is noteworthy that it corresponds to the same
value determined by the analysis of the period of capsules using the numerical results
of Yazdani & Bagchi (2013) in section 3.2. These two independent methods support the
fact that HSA membranes of microcapsules have a shear membrane viscosity.

Moreover, as the Boussinesq number depends on the size capsule, it means that the
shear membrane viscosity increases approximately linearly with the radius of the capsule
at least in the range 30-60 µm considered in this paper: ηm = 1.3 N.s/m for R = 32.5µm
and ηm = 2.5 N.s/m for R = 60µm. The explanation is the same than for the shear
elastic modulus (de Loubens et al. (2014, 2015)). This is due to the process of fabrication
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(interfacial polymerization in batch) and the fact that approximately all HSA proteins
inside the initial droplet polymerize at the interface. The error on the shear membrane
viscosity is approximately 20-25 % due to the error on the determination of the capillary
number. This poor accuracy does not allow to conclude clearly on the effect of initial
HSA concentration on the membrane viscosity. We expected to a rising of ηm with HSA
rate.

3.6. Swinging in small deformations

In the regime of small deformations (i.e. D smaller than 0.1), we observed shape os-
cillation phenomena whereas the deviation from the sphericity of the capsule at rest
was barely optically resolved. Note that among the largest microcapsules, some of them
didn’t exhibit oscillations for 0.04 < D < 0.1. An example for a capsule of mean radius
of 44±1 µm with an initial shape asymmetry which can be characterized by an initial
Taylor parameter D0 equal to 0.012 is shown in figure 13. The effects of this small devia-
tion from the sphericity has notably dramatic effects on the amplitude of the orientation
angle at small shear rate. The amplitude is of about ±20◦ for shear rate of 0.53 s−1 and
decreases when the shear rate increases. The frequencies of oscillation for α and D are
equal with a phase shift of π/2. The mean amplitude of D is constant. The frequency
and the amplitude of oscillations of D increase with the shear flow, a result reminiscent
of recent theoretical results (Kessler et al. (2009), Vlahovska et al. (2011)). The oscil-
lation period is about 2π/γ̇. This known motion of soft particles was called swinging
(Vlahovska et al. (2009), Abreu et al. (2014)). Swinging has been reported for polyamide
microcapsules by Walter et al. (2001) with qualitative features similar to those described
for HSA microcapsules. We confirmed then their conclusion that the slightest deviation
from sphericity is sufficient to induce swinging motion. Small-deformation theory has
addressed only the spherical shape, but swinging was predicted by numerical simulations
of Ramanujan & Pozrikidis (1998) for nearly spherical shapes (L/S at rest of 0.9). Again,
our observations are consistent with these numerical simulations. However the transitions
between swinging, tank-treading and even tumbling (Kessler et al. (2008)) would benefit
from deeper and systematic analysis if we were able to produce microcapsules with a
controlled asphericity and constant membrane thickness. Note that swinging is also an
easy mean to select spherical capsules. Readers should note that swinging motion was
negligible for all the data reported in this paper (i.e. amplitude of oscillation inferior to
1% of the mean signal), expected in this section.

4. Conclusion

The behavior of microcapsules in weak to strong shear flow has been experimentally
investigated with a large range of deformations and variation of the inclination angle
over three decades of shear stress. Different phenomena were observed: tank-treading
motion with the visualisation of membrane rotation, S-shapes for large deformations and
swinging due to small deviation from the sphericity. No wrinkles were observed con-
trary to experiments with polysiloxane capsules (Walter et al. (2001), Koleva & Rehage
(2012)) meaning that bending resistance inhibited the localized shape modulations at
short wavelength. According to the magnitude of the bending resistance, wrinkles forma-
tion can be prevented, but without significant effects on the shape and the inclination
angle of the capsule (Yazdani & Bagchi (2013), Dupont et al. (2015)). At this stage, we
cannot conclude that bending resistance has a significant impact on shape and dynamics
of HSA microcapsules. This conclusion is also supported by two other observations. In
elongation flow de Loubens et al. (2015), situation for which a role of viscous dissipation
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in the membrane is precluded for the stationary shape, the results of 2D elastic models
of membrane and the experimental data were in very good agreement without the need
to introduce bending effects. Also, numerical simulations of Pozrikidis (2001) show that
the tips are more and more rounded when the bending stiffness increases. ’S-like’ shapes
with pointed tips can then be considered as a signature of absence of sufficient bending
effects to affect the global shape of the capsule.

Moreover, our study supports a contribution of membrane viscous dissipation to ex-
plain the characteristics of the tank-treading motion of HSA microcapsules. Firstly, the
variation of the dimensionless period of tank-treading γ̇T with the Taylor parameter
D was compared to numerical results of literature in the regime of large deformations:
figure 5. This framework presents a crucial interest for the analysis because the results
are independent of the choice of the 2D elastic constitutive law of the membrane. As
bending resistance and membrane dissipation have opposite effects, the result can only
been explained by a shear membrane viscosity. Secondly and probably the more convinc-
ing argument, in the regime of small capillary number Ca and moderate deformations
(only swinging in the limit of very small deformations), the experimental variation of
the Taylor parameter with Ca was compared to the analytical result of Barthes-Biesel
& Sgaier (1985) which takes into account dilational and shear membrane viscosities with
equal weights. Experimental results deviate clearly from the case with no membrane dis-
sipation. It is noteworthy that the same Boussinesq number was determined by these
two independent methods in large and moderate regimes of deformations: Bq ≈ 4 which
leads to ηm ≈ 1-2 10−4 N.s/m for capsule radius in the range 30-60 µm. The membrane
viscosity varies approximately linearly with the radius of microcapsules in this range due
to the process of fabrication. However, further studies with a large range of radius up to
several tenths of micrometers will be necessary to investigate fully how the membrane
viscosity varies with the radius of capsules and also with the initial HSA concentration.

Finally, the result of the Boussinesq number which is the same with the two methods
questions also the relative contributions of dilational and shear membrane viscosities. A
first response could be that in shear flow, the shape is dominated by contribution of the
shear membrane viscosity due to the rotation of the surface, a result recently observed
numerically in the case of droplets with both surface viscosities in shear flow (Gounley
et al. (2015)). Thus, to be optimal, the numerical simulations and models should consider
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various constitutive laws and notably the generalized Hooke model for HSA microcapsules
(de Loubens et al. (2015)), the bending resistance and the dilational and shear membrane
viscosities which is not the case currently.
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Leonetti, M. 2014 Mechanical characterization of cross-linked serum albumin microcap-
sules. Soft matter 10, 4561–4568.

Nash, G. B. & Meiselman, H. J. 1983 Red cell and ghost viscoelasticity. Biophysical journal
43, 63–73.

Omori, T., Imai, Y., Yamaguchi, T. & Ishikiwa, T. 2012 Reorientation of a nonspherical
capsule in creeping shear flow. Phys. Rev. Lett. 108, 138102.

Pozrikidis, C. 2001 Effect of membrane bending stiffness on the deformation of capsules in
simple shear flow. Journal of Fluid Mechanics 440, 269–291.

Ramanujan, S & Pozrikidis, C 1998 Deformation of liquid capsules enclosed by elastic mem-
branes in simple shear flow: large deformations and the effect of fluid viscosities. Journal
of Fluid Mechanics 361, 117–143.

Risso, F., Colle-Paillot, F. & Zagzoule, M. 2006 Experimental investigation of a bioarti-
ficial capsule flowing in a narrow tube. J. Fluid Mech. 547, 149–173.

Shewan, Heather M & Stokes, Jason R 2013 Review of techniques to manufacture micro-
hydrogel particles for the food industry and their applications. Journal of Food Engineering
119 (4), 781–792.

Sui, Y, Chew, YT, Roy, P, Chen, XB & Low, HT 2007 Transient deformation of elastic
capsules in shear flow: effect of membrane bending stiffness. Physical Review E 75 (6),
066301.

Sui, Y., Low, H. T., Chew, Y. T. & Roy, P. 2008 Tank-treading, swinging and tumbling of
liquid-filled elastic capsules in shear flow. Physical Review E 77, 016310.

Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond.
A 146, 501–523.

Vlahovska, P., Podgorski, T. & Misbah, C. 2009 Vesicles and red blood cells in flow: From
individual dynamics to rheology. C. R. Physique 10, 775–789.

Vlahovska, P. M., Young, Y.-N., Danker, G. & Misbah, C. 2011 Dynamics of a non-
spherical microcapsule with incompressible interface in shear flow. J. Fluid Mech. 678,
221–247.

Walter, A., Rehage, H. & Leonhard, H. 2001 Shear induced deformation of microcapsules:
shape oscillations and membrane folding. Colloid Suf. A 123, 183–185.

Walter, J., Salsac, A-V, Barthès-Biesel, D. & Le Tallec, P. 2010 Coupling of finite
element and boundary integral methods for a capsule in a stokes flow. Int. J. Numer.
Meth. Engng. 83, 829–850.



18 C. de Loubens, J. Deschamps, F. Edwards-Levy and M. Leonetti

Yazdani, A. & Bagchi, P. 2013 Influence of membrane viscosity on capsule dynamics in shear
flow. Journal of Flluid Mechanics 718, 569–595.

Zhu, L. & Brandt, L. 2015 The motion of a deforming capsule through a corner. Journal of
Fluid Mechanics 770, 374–397.


