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Introduction

One motivation for the study of non-Archimedean representations and actions of surface groups on non discrete Euclidean buildings (also called Rbuildings) is that, in the same way that degenerations of hyperbolic structures on surfaces give rise to actions of the surface group on real trees, degenerations of convex real projective structures, and more generally degenerations of higher rank representations, for instance representations in G = SL N (R), give rise to actions on non discrete Euclidean buildings , Paulin [START_REF] Paulin | Dégénérescence de sous-groupes discrets des groupes de Lie semisimples[END_REF]). More specifically, in [START_REF] Parreau | Dégénérescences de sous-groupes discrets de groupes de Lie semisimples et actions de groupes sur des immeubles affines[END_REF][START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF] we constructed a compactification for higher Teichmüller spaces associated to a surface Σ, whose boundary points are marked length spectra of actions of Γ = π 1 (Σ) on non discrete Euclidean buildings. These actions come from representations of Γ in G(K) for some ultrametric valued fields K.

Degenerations of convex projective structures, or more generally of Hitchin representations, and compactifications for higher Teichmuller spaces have since then been studied by numerous authors, including J. Loftin [START_REF] Loftin | Flat metrics, cubic differentials and limits of projective holonomies[END_REF], D. Cooper, K. Delp, D. Long and M. Thistlethwaite (unpublished), D. Alessandrini [START_REF] Alessandrini | Tropicalization of group representations[END_REF], V.V. Fock and A.B. Goncharov [START_REF] Fock | Cluster Poisson varieties at infinity Sel[END_REF], I. Le [START_REF] Le | Higher Laminations and Affine Buildings[END_REF], T. Zhang [START_REF] Zhang | The degeneration of convex RP 2 -structures on surfaces[END_REF][START_REF] Zhang | Degeneration of Hitchin representations along internal sequences[END_REF], B. Collier and Q. Li [START_REF] Collier | Li Asymptotics of certain families of Higgs bundles in the Hitchin component[END_REF], and X. Nie [START_REF] Nie | Entropy degeneration of convex projective surfaces[END_REF].

Another motivation is that the geometry of Euclidean buildings is very similar to that of nonpositively curved symmetric spaces, and is in fact in many aspects simpler, in a similar way that real trees may be considered as a degenerate (and simpler) model for hyperbolic spaces. So it may be a source of inspiration for understanding actions on symmetric spaces.

The first natural case to consider is the case of type A 2 , which correspond to representations in G = PGL 3 and holonomies of convex real projective structures on surfaces.

Given an action of a group Γ on a Euclidean building X, a natural question, in the spirit of convex cores for actions on negatively curved spaces, is whether it is possible to find a nice invariant convex subspace Y ⊂ X, for example cocompact. J.-F. Quint [START_REF] Quint | Groupes convexes cocompacts en rang supérieur[END_REF] and B. Kleiner and B. Leeb [START_REF] Kleiner | Leeb Rigidity of invariant convex sets in symmetric spaces[END_REF] have shown that convexity is a very rigid property in higher rank symmetric spaces, and that non-trivial convex cocompact subspaces do not exist in general (e.g. for Zariski-dense subgroups). Nevertheless, the notion of convex cocompact subgroups in rank 1 real Lie groups have been recently shown to have a good generalization in higher rank in all its other aspects, corresponding to the notion of Anosov representations, introduced by F. Labourie [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF], see recent work by Guéritaud, Guichard, Kassel, Wienhard, Kapovich, Leeb and Porti [GuWi12, KLP15, KLP14a, KLP14b, KaLe15, GGKW15, GKW15].

We introduce here a natural notion of weak convexity for subsets Y of Euclidean buildings X (or symmetric spaces), that we will also call the Cconvexity. In the case where Σ is a compact oriented surface with nonempty boundary, and K any ultrametric valuated field, for a large family of representations ρ : Γ → PGL 3 (K), we construct explicitly in the associated Euclidean building X, a simple, weakly convex, invariant 2-complex Y on which Γ acts freely properly cocompactly. The subcomplex Y is piecewise a flat surface or a tree. In particular (in an open subcase), we construct weakly geodesic cocompact surfaces equivariantly embedded in the building. We introduce also the notion of A 2 -surfaces, and more generally of (A, W )-complexes, that is surfaces or simplicial complexes modelled on a finite reflection group (A, W ) (endowed with charts in A with transition maps in W , up to translations). Natural examples are subcomplexes of Euclidean buildings with model flat (A, W ). The A 2 -surfaces are similar to flat translation and half-translation surfaces, and are closely related to cubic holomorphic differentials on the surface, for which we refer to Labourie [START_REF] Labourie | Flat projective structures on surfaces and cubic holomorphic differentials[END_REF], Loftin [START_REF] Loftin | Affine spheres and convex RP n -manifolds[END_REF], Benoist-Hulin [START_REF] Benoist | Cubic differentials and hyperbolic convex sets[END_REF], Dumas-Wolf [START_REF] Dumas | Polynomial cubic differentials and convex polygons in the projective plane[END_REF]. As a consequence of the previous result, we construct a family of explicit A 2 -surfaces K homeomorphic to Σ, (and a more general family of finite A 2 -complexes K, homotopy equivalent to Σ), parametrized by a 8 |χ(Σ)|-dimensional real parameter which encodes the absolute values of eigenvalues of the representations ρ above (as K is Y /ρ(Γ)). We then show that these A 2 -surfaces appear as boundary points of the space P(Σ) of convex real projective structures on Σ. The main tools are ideal triangulations and the Fock-Goncharov parametrization of representations ρ : Γ → PGL 3 (K) (generalized shear coordinates).

We now describe our results in more detail.

0.1. The model finite reflection group. The model flat (of type A 2 ) is the 2-dimensional Euclidean vector space

A = {α = (α 1 , α 2 , α 3 ) ∈ R 3 / i α i = 0}
endowed with the action of the Weyl group W = S 3 acting on A by permutation of coordinates (finite reflection group). The model Weyl chamber is the cone

C = {α ∈ A/ α 1 > α 2 > α 3 } in A.
Its closure C is a strict fundamental domain for the action of W on A.

A vector α ∈ A is singular if it belongs to one of the three singular lines α i = α j . The two distinct types of singular directions (rays) in A, corresponding to the orbits under W of two rays α 1 > α 2 = α 3 and α 1 = α 2 > α 3 bounding C, which will respectively be called type 1 and type 2. In the figures (Figure 1 and the sequel), the type of singular directions will be represented by an arrow indicating the induced orientation on singular lines (towards the type 1 extremity). We will use as canonical coordinates on A the simple roots, i.e. the linear forms ϕ 1 (α) = α 1 -α 2 and ϕ 2 (α) = α 2 -α 3 , hence we will identify α ∈ A with (ϕ 1 (α), ϕ 2 (α)) ∈ R × R (see Figure 1). The Winvariant Euclidean norm || || on A (unique up to rescaling) is normalized so that the simple roots ϕ i measure the distance to the corresponding singular line ϕ i = 0.

A C α 2 = α 3 α 1 = α 2 α ϕ 2 (α)
ϕ 1 (α) 0.2. Vector-valued distance, lengths and weak convexity in buildings and symmetric spaces. When X is a (real) Euclidean building or a symmetric space of type A 2 , i.e. with maximal flats isomorphic to (A, W ), the usual metric d : X × X → R ≥0 (induced by the Euclidean norm || || on A) has a natural vector-valued refinement,

α 3 = α 1
d C : X × X → C
that we will call the C-distance: it is the canonical projection induced by the natural markings f : A → X of flats, whose transition maps are in W up to translation. The corresponding refinement of the usual (translation) length (Euclidean length) euc (g) = {d(x, gx), x ∈ X} of an automorphism g of X is the C-length C (g) of g. It may be defined as the unique vector of minimal length in (the closure in C of) {d C (x, gx), x ∈ X}, and we have euc (g) = C (g) . For g in SL 3 (K) acting on its associated Euclidean building (for ultrametric K) or symmetric space (for K = R) it corresponds to C (g) = (log

|a i |) i
where the a i are the eigenvalues of g (in nonincreasing order). The C-length refines another notion of length of particular interest, the Hilbert length, which is the length of g for the Hilbert metric in the context of convex projective structures. It may be defined by

H (g) = N H ( C (g))
where N H is the hex-norm on A i.e. the W -invariant norm defined by N H (α) = α 1 -α 3 for α in C (whose unit ball is the singular regular hexagon).

We introduce the naturally associated notion of C-geodesics, which are paths on which the C-distance is additive. This is equivalent to being geodesic for the hex-distance d H on X, that is the Finsler metric associated with the W -invariant norm N H on A defined by N H (α) = α 1 -α 3 for α in C (whose unit ball is the singular regular hexagon), see [KaLe15, §3.1.2]. More generally the C-geodesics coincide with the Finsler geodesics considered in the work of Kapovich, Leeb and Porti, see [START_REF] Kapovich | Finsler bordifications of symmetric and certain locally symmetric spaces[END_REF]. Note that, unlike for the usual distance, C-geodesics between two given points are not unique, and that usual geodesics are C-geodesics, but the converse is not true.

The notion of weak convexity is now defined, by analogy with the usual setting, as follows: we say that a subset Y ⊂ X is C-convex if for any two points x, y in Y , there exists a C-geodesic from x to y that is contained in Y . This is equivalent to being weakly convex for the Finsler metric d H . See [START_REF] Parreau | La C-distance dans les espaces symétriques et les immeubles affines[END_REF] for further study. 0.3. Fock-Goncharov generalised shear parameters. We now turn to the Fock-Goncharov parametrization of representations in PGL 3 of the fundamental group Γ of a compact oriented surface Σ with nonempty boundary (generalized shear coordinates). More precisely, following [START_REF] Fock | Moduli spaces of convex projective structures on surfaces[END_REF], we now explain quickly how to associate, to an ideal triangulation T and 8χ(Σ) parameters in K (one per triangle and two per edge), a representation ρ : Γ → PGL 3 (K). This construction is uniquely based on projective geometry and is valid any field K. We fixe once for all an ideal triangulation T of Σ, and denote by T the set of triangles of T , by -→ E the set of oriented edges of T , which are finite sets of respective cardinality 2 |χ(S)| and 6 |χ(S)|. Denote by T the lift of T to the universal cover Σ of Σ. Shrinking boundary components of Σ to points, we may see T as a triangulation of Σ with vertex set the Farey set F ∞ (Σ) of the surface, which may be defined as the set of boundary components of the universal cover Σ of Σ (see section 2.1). Denote by b(a 1 , a 2 , a 3 , a 4 ) the cross ratio on P(K 2 ), with the convention b(∞, -1, 0, a) = a. Let Flags(P) be the space of flags (p, D), where p is a point on a line D in the projective plane

P = P(K 3 ), Fix a FG-parameter (Z, S) = ((Z τ ) τ , (S e ) e ) in (K =0,-1 ) T ×(K =0 ) -→ E .
There exists then a unique (up to PGL(K 3 ) action) associated flag map F Z,S : F ∞ (Σ) → Flags(P), i → (p i , D i ), equivariant with respect to a unique representation ρ Z,S : Γ → PGL(K 3 ), such that the flag map F Z,S sends each triangle τ = (i, j, k) of T to a generic triple of flags of triple ratio

b(D i , p i p j , p i (D j ∩ D k ), p i p k ) = Z τ
where τ is the triangle of T with lift τ , and for any two ajdacent triangles (i, j, k) and (k, , i) of T with common edge ẽ = (k, i) we have

b(D i , p i p j , p i p k , p i (D k ∩ D )) = S e
where e is the oriented edge of T with lift ẽ, and i, j, k, in F ∞ (Σ) are positively ordered. When K = R, the representations ρ Z,S with positive FG-parameters (Z τ , S e ∈ R >0 for all τ, e) correspond to the holonomies of convex projective structures on Σ.

Note that our edge parameters S e are in fact a slight modification of those in [START_REF] Fock | Moduli spaces of convex projective structures on surfaces[END_REF], more symmetric with respect to natural point-line duality (see §2.6 for the precise relationship). 0.4. Leftshift and the construction of the A 2 -complex K. We now define the A 2 -complex K associated with a left-shifting geometric FG-parameter

(z, s) in R T × R -→ E . Consider geometric FG-parameter (z, s) = ((z τ ) τ , (s e ) e ) in R T × R -→ E .
It may be seen as a tropicalized FG-parameter. We suppose that (z, s) is left-shifting i.e. satisfies the following condition:

(L) For each e ∈ -→ E , with left and right triangles τ and τ , we have s e > max{-z - τ , -z + τ } where t + = max(t, 0) and t -= max(-t, 0) for t ∈ R. For each triangle τ of the triangulation T , pick a singular equilateral triangle K τ in the model plane A, with vertices α 1 , α 2 , α 3 , and sides of C-length d C (α 1 , α 2 ) = (z + τ , z - τ ) in simple roots coordinates (well-defined up to translations and action of W ), see figure 2.

A A C Case z τ ≥ 0. Case z τ ≤ 0. C z τ z τ z τ z τ α 2 α 3 α 1 α 2 α 3 α 1 Figure 2. The singular triangle K τ in A.
When τ, τ are adjacent along an edge e (oriented according to τ ), we connect the end of the edge corresponding to e of the triangle K τ to the beginning of the edge corresponding to e of the triangle K τ , by gluing either a segment K e in A of C-length (s e , s e ), when s e , s e ≥ 0, or a flat strip K e ⊂ A such that K e = [0, s e ] × [0, s e ] (in simple roots coordinates), when s e < 0 or s e < 0, as in figure 3 (note that under hypothesis (L) the condition s e < 0 implies that s e > 0). The resulting finite 2-dimensional complex K (see figure 4) is a deformation retract of Σ, and its fundamental group has canonical identification with Γ = π 1 (Σ). The length metric on K induced by the Euclidean W -invariant metric on A will be denoted by d. Furthermore, the complex K is endowed with a A 2 -structure (charts in A with transition maps in W ). Hence we may define the C-length of piecewise affine paths in K. The C-length C (γ, K) of γ ∈ Γ is then defined as the C-length of one (any) closed geodesic representing γ. We define the C-distance d C on the universal cover K of K as the C-length of the unique geodesic between two points. Note that, unlike in Euclidean buildings, in A 2 -complexes the C-distance does not refine the usual metric d, in the sense that the inequality d C (x, y) ≤ d(x, y) may be strict.

s e , s e ≥ 0 z τ , -z τ < s e ≤ 0 -z τ , z τ < s e ≤ 0 K e K τ K τ K τ K τ C K τ K e K τ z τ z τ z τ z τ K e C C z τ z τ s e s e
There are several particular cases of special interest, providing a continuous transition from graphs to surfaces, see figure 4. The geometric FG-parameters (z, s) satisfying the condition (T ) z τ = 0 for all triangles τ of T s e > 0 for all oriented edges e of T (which implies (L)), correspond to the case where K is a graph (the 3-valent ribbon graph dual to the ideal triangulation), endowed with a C-metric.

Relaxing the hypotheses, the condition (TT) s e ≥ 0 for all oriented edge e of T means that all the K e are segments so K is obtained from the previous graph by replacing vertices by triangles (graph of triangles). At the opposite of the spectrum, when (Sf) s e < 0 or s e < 0 for all oriented edge e of T , then K is a A 2 -surface homeomorphic to Σ. 0.5. Main result. We now state the main result (see Theorem 4.2). We will need the following additional hypothesis: A geometric FG-parameter (z, s) will be called edge-separating if it satisfies the following condition .

(S) For each τ in T and every pair of edges e 1 , e 2 of τ , we have

-s e 1 -s e 2 < z - τ -s e 1 -s e 2 < z + τ . (T) (TT) (Sf)
Figure 4. Examples of A 2 -complex K on a pair of pants, corresponding to the conditions (T), (TT), and (Sf) on the parameter (z, s). 

Theorem 1. Let (Z, S) = ((Z τ ) τ , (S e ) e ) in (K =0,-1 ) T ×(K =0 ) -→ E ,
(L) (z, s) is left-shifting ; (S) (z, s) is edge-separating ; Let K be the A 2 -complex of geometric FG-parameter (z, s). Then there exists a ρ-equivariant map Ψ : K → X preserving the C-distance d C .
Corollary 2. Under the hypotheses of Theorem 1, the following assertions holds.

(i) The C-length spectra coincide, i.e. for all γ ∈ Γ

C (ρ(γ)) = C (γ, K) .
In particular, the usual Euclidean and Hilbert length are given by

euc (ρ(γ)) = C (γ, K) ,
and

H (ρ(γ)) = N H ( C (γ, K)) .
(ii) The map Ψ is bilipschitz. In particular the representation ρ is undistorted, i.e. the orbit maps are quasi-isometric embeddings. (iii) The representation ρ is faithfull and proper (hence discrete).

Remarks.

(i) The image Y of Ψ is a closed C-convex subset of X preserved by ρ, and Γ acts freely discontisnuously cocompactly on Y . (ii) The C-length spectrum of ρ Z,S depends only on z = log |Z|, s = log |S| (in particular it does not determine the representation up to conjugacy). (iii) (FT) stands for "Flat Triangles", and (FE) for "Flat Edges". Note that, for positive representations (that is, with positive FG-parameters Z τ , S e > 0) in ordered fields K, the hypothesis (FT) and (FE) are always satisfied. (iv) Note that (L) and (S) are finite systems of strict linear inequations in z - τ , z + τ . In particular the subset O LS of left-shifting and edgeseparating (z, s) is a finite union of open convex polyhedral cones in R T × R -→ E (one for each choice of prescribed signs for the triangle parameters z τ ). It contains the non empty cone {0} T × R -→ E >0 of (z, s) satisfying (T). Note that for arbitrary fixed triangle parameters z τ , conditions (L) and (S) are always satisfied for big enough edge parameters s e . In particular O LS is a nonempty open cone. (v) The result holds in fact in a more general setting including exotic buildings (i.e. not coming from PGL 3 ), see Theorem 4.1 and Theorem 4.2. See Remark 4.3 for further comments on hypotheses, in particular on the geometric meaning of left-shifting and edge-separating hypotheses.

A special case with much simpler hypotheses (and proof) is when (Z, S) satisfies simply

(T ) |Z τ | = |Z τ + 1| = 1 for all τ |S e | > 1
for all e . Then all hypotheses of Theorem 1 are satisfied, (z, s) satisfies (T) and K is a graph, and the image Y of Ψ is an invariant cocompact C-convex (in particular bilipschitz) tree in the building. The hypotheses of Theorem 1 are also satisfied in the other particular case corresponding to the following open simple condition

(T T ) |Z τ | = 1 for all τ |S e | > 1 for all e,
and (z, s) satisfies (TT), providing an invariant C-convex "tree of triangles" Y .

On the other end of the spectrum, Theorem 1 provides, for (z, s) additionnally satisfying the open condition (Sf), examples of representations whose image preserves a C-geodesic (in particular, bilipschitz) embedded surface Y in the building. 0.6. Application to degenerations of convex projective structures. In the last part of the paper, we use Theorem 1 to describe limit of length functions (in the associated symmetric space) for a large family of degenerations of representations Γ → PGL(R 3 ) corresponding to convex RP 2structures on Σ.

Theorem 3. Let ((z n , s n )) n∈N be a sequence in R T ×R -→ E . Let Z n τ = exp(z n τ ) and S n e = exp(s n e ). Let ρ n : Γ → PGL 3 (R) be the representation of FG- parameter (Z n , S n ) = ((Z n τ ) τ , (Z n e ) e )
. Let (λ n ) n be a sequence of real numbers going to +∞, such that the sequence

1 λn (z n , s n ) converges to a nonzero (z, s) in R T × R -→
E . Suppose that (z, s) is left-shifting and edge-separating ((L) and (S)). Let K be the A 2 -complex of FG-parameter (z, s). Then the renormalized C-length spectrum of ρ n converges to the C-length spectrum of K as n → ∞, that is: for all γ ∈ Γ we have

1 λ n C (ρ n (γ)) → C (γ, K) in C.
In particular for Euclidean and Hilbert lengths, we have then:

1 λ n euc (ρ n (γ)) → C (γ, K) 1 λ n H (ρ n (γ)) → N H ( C (γ, K))
for all γ ∈ Γ.

A similar result holds in more general valued field K, see Theorem 5.8. Note that, for a given sequence ((z n , s n )) n∈N going to infinity, there always exists a convenient sequence λ n , taking λ n = max τ,e |z n (τ )| , |s n (e)|. This describes a part (corresponding to the open cone O LS of FG-parameters) of the boundary (constructed in [START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF]) of the space P(Σ) of convex real projective structures on Σ (see Coro. 5.9). 0.7. Related works. D. Cooper, K. Delp, D. Long and M. Thistlethwaite announced results similar to Theorem 3 : interpretation of boundary points of P(Σ) as mixed structures laminations/hex-structures on the surface, but without using Fock-Goncharov parametrization.

L. Katzarkov, A. Noll, P. Pandit, and C. Simpson [KNPS15a, KNPS15b] study building-like spaces and harmonic maps from Riemann surfaces in R-buildings for SL 3 that seem closely related to our A 2 -complexes K and weakly geodesic embeddings Ψ : K → X. 0.8. On the proofs. Our proofs involve a geometric interpretation of FGparameters in Euclidean buildings of type A 2 , relying on results from [START_REF] Parreau | On triples of ideal chambers in A2-buildings[END_REF] describing the geometry of triples of ideal chambers in relation with their triple ratio as triples of flags. Under the hypothesis (FT), it allows to associate with each triangle τ of the triangulation T a singular flat triangle ∆ τ in the building in a canonical way. The map Ψ is then defined by sending K τ to ∆ τ . The main technical difficulty is to prove that the map Ψ is globally C-geodesic. Note that in the case (T') of trees the proofs are much simpler. Application to degenerations of representations uses asymptotic cones, and basically reduces to prove that the Fock-Goncharov parametrization behaves well under ultralimits (Proposition 5.5). 0.9. Layout. The structure of the paper is the following: in Section 1, we recall some basic facts about non discrete Euclidean buildings of type A 2 that will be used throughout the article, and we establish a criterion for a local C-geodesic to be a global C-geodesic (Proposition 1.7) that will be used to prove global C-geodesicity for Ψ. In Section 2, we explain Fock-Goncharov parametrization for representations in any field K. In Section 3, we introduce the notion of A 2 -complexes, and we construct the A 2 -complex K associated with a left-shifting geometric FG-parameter (z, s). In Section 4, we study actions on Euclidean buildings (possibly exotic), introducing a purely metric version of FG-invariants, and we prove the main result (Theorem 1) in this wider setting. Finally, in Section 5, we study degenerations of representations, introduce asymptotic cones of projective spaces and study the asymptotic behaviour of Fock-Goncharov parametrizations and flag maps, and prove Theorem 3.
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Geometric preliminaries

1.1. Projective geometry. We here collect notations for projective geometry which will be used throughout this article.

Nondegenerated quadruples on a projective line. Cross ratios on projective lines will be defined on quadruples (ξ 1 , ξ 2 , ξ 3 , ξ 4 ) of points satisfying the following nondegeneracy condition: (no triple point, i.e. any three of the points are not equal, or, equivalently, (1.1) (ξ 1 = ξ 4 and ξ 2 = ξ 3 ) or (ξ 1 = ξ 2 and ξ 3 = ξ 4 ) .

The quadruple (ξ 1 , ξ 2 , ξ 3 , ξ 4 ) is then called nondegenerated.

Projective planes. Let P be a projective plane. We denote by P * the dual projective plane, i.e. the set of lines in P. We will denote p ⊕ q or pq the line joining two distinct point p, q in P. We denote by Flags(P) the set of (complete) flags F = (p, D) ∈ P × P * , p ∈ D, in the projective plane P. Two flags are called opposite if they are in generic position.

Triples of flags. Let T = (F 1 , F 2 , F 3 ) be a triple of flags F i = (p i , D i ) in P. We will denote by p ij the point D i ∩ D j (resp. D ij the line p i p j ), when defined.

The natural nondegeneracy condition on the triple (F 1 , F 2 , F 3 ) for the triple ratios to be well defined is the following:

(ND) either for all i, p i / ∈ D i+1 or for all i, p i / ∈ D i-1 . This condition is clearly equivalent to: the points are pairwise distinct, the lines are pairwise distinct, none of the points is on the three lines (i.e. D i ∩ D j = p k for all {i, j, k} = {1, 2, 3}) and none of the lines contains the three points (i.e. p i p j = D k for all i, j, k). We will then say that the triple (F 1 , F 2 , F 3 ) is nondegenerated.

It is easy to check that the triple T defines then a nondegenerated quadruple of well-defined lines D i , p i p j , p i p jk , p i p k through each point p i , and a nondegenerated quadruple of well-defined points

p i , D i ∩ D j , D i ∩ D jk , D i ∩ D k on each line D i .
The triple of flags T = (F 1 , F 2 , F 3 ) is generic if the flags F i = (p i , D i ) are pairwise opposite, the points (p i ) i are not collinear and the lines (D i ) i are not concurrent. In particular, T is then nondegenerated, and the induced quadruples of points on each line (resp. of lines through each point) are generic (pairwise distinct).

1.2. The model finite reflection group (A, W ) of type A 2 . The model flat (of type A 2 ) is the vector space A = R 3 /R(1, 1, 1), endowed with the action of the Weyl group W = S 3 acting on A by permutation of coordinates, which is a finite reflection group. We denote by W af f the subgroup of affine isomorphisms of A with linear part in W . We denote by [α] the projection in A of a vector α in R 3 . The vector space A will be identified with the hyperplane {α

= (α 1 , α 2 , α 3 ) ∈ R 3 / i α i = 0} of R 3 .
Recall that a vector in A is called singular if it belongs to one the three lines α i = α j , and regular otherwise. A (open) (vectorial) Weyl chamber of A is a connected component of regular vectors. The model Weyl chamber is

C = {α ∈ A/ α 1 > α 2 > α 3 }.
Its closure C is a strict fundamental domain for the action of W on A, and we denote by p C : A → C the canonical projection, which maps a vector α ∈ A to its type in C. We denote by ∂A the subset of unitary vectors in A, identified with the set P + (A) = (A -{0})/R >0 of rays issued from 0, and ∂ : A → ∂A the corresponding projection. The type (of direction) of a nonzero vector α ∈ A is its canonical projection ∂(p C (α)) in ∂C.

The simple roots (associated with C) are the linear forms

ϕ 1 : α → α 1 -α 2 ϕ 2 : α → α 2 -α 3 and we denote by ϕ 3 : α → α 3 -α 1 the root satisfying ϕ 1 + ϕ 2 + ϕ 3 = 0.
A singular vector α is said to be of type 1 if its type in C satisfies α 1 > α 2 = α 3 , and of type 2 if its type satisfies α 1 = α 2 > α 3 .

Recall that two nonzero vectors α and α of A are called opposite if α = -α. Similarly, two Weyl chambers C and C of A are opposite if C = -C. We denote by w opp the unique element of W sending C to -C, and by α opp = w opp (-α) = (-α 3 , -α 2 , -α 1 ) the image of α by the opposition involution opp of A.

We will normalize the W -invariant Euclidean norm ||•|| on A by requiring that the simple roots have unit norm. The associated Euclidean metric on A is denoted by d.

The C-distance on A (or C-length of segments) is the canonical projection

d C : A × A → C which is defined by d C (α, β) = p C (β -α).
We will denote by N H the hex-norm, that is the W -invariant norm on A defined by N H (α) = α 1 -α 3 = -ϕ 3 (α) for α in C, whose unit ball is a regular hexagon with singular sides. 1.3. Euclidean buildings. The Euclidean buildings considered in this article are R-buildings, in particular they are not necessarily discrete (have no simplicial complex structure) nor locally compact. We refer to [START_REF] Parreau | Immeubles affines, construction par les normes et étude des isométries[END_REF] for their definition and basic properties (see also [START_REF] Tits | Immeubles de type affine, dans "Buildings and the geometry of diagrams[END_REF], [START_REF] Kleiner | Rigidity of quasi-isometries for symmetric spaces of higher rank[END_REF], [START_REF] Rousseau | Euclidean buildings, In: Géométries à courbure négative ou nulle, groupes discrets et rigidités[END_REF]). Let X be a Euclidean building of type A 2 . Recall that X is a CAT(0) metric space endowed with a (maximal) collection A of isometric embeddings f : A → X called marked apartments, or marked flats by analogy with Riemannian symmetric spaces, satisfying the following properties (A1) A is invariant by precomposition by W af f ; (A2) If f and f are two marked flats, then the transition map

f -1 • f is in W af f ; ( A3 
') Any two rays of X are initially contained in a common marked flat. The flats (resp. the Weyl chambers) of X are the images of A (resp. of C) by the marked flats.

We say that we are in the algebraic case when X is the Euclidean building X(V ) associated with some 3-dimensional vector space V on an ultrametric field K. We then denote by |•| the absolute value of K.

Recall that, in Euclidean buildings, two (unit speed) geodesic segments issued from a common point x have zero angle if and only if they have same germ at x (i.e. coincide in a neighborhood of x). A direction at x ∈ X is a germ of (unit speed) geodesic segment from x. A direction, geodesic segment, ray or line has a well-defined type (of direction) in ∂C, which is its canonical projection (through a marked flat) in ∂C. It is called singular or regular accordingly.

The space of directions (or unit tangent cone) at x is denoted by Σ x X. It is endowed with the angular metric. We denote by Σ x : X -{x} → Σ x X the associated projection.

The space of directions Σ x X is a spherical building of type A 2 , whose apartment are the germs Σ x A at x of the flats A of X passing through x, and whose chambers (i.e. 1-dimensional simplices) are the germs Σ x C at x of the Weyl chambers C of X with vertex x (see for example [START_REF] Parreau | Immeubles affines, construction par les normes et étude des isométries[END_REF]).

The local projective plane at x P x = P x (X) is the projective plane associated to the spherical A 2 -building Σ x X, i.e. the projective plane whose incidence graph is Σ x X: Its points are the singular directions of type 1 and its lines are the singular directions of type 2 at x.

Recall that, in a spherical building, any two points (resp. chambers) are contained in a common apartment, and that they are opposite if they are opposite in that apartment.

Two Weyl chambers C, C of X with common vertex x are opposite (at x) if their union contains a regular geodesic line passing by x, or, equivalently, if they define opposite chambers Σ x C, Σ x C in the spherical building Σ x X of directions at x. Then there exists a unique flat of X containing both C and C . 1.4. Boundary of a A 2 -building and its projective geometry.

1.4.1.

The projective plane at infinity. We denote by ∂ ∞ X the CAT(0) boundary of X. The type of an ideal point ξ ∈ ∂ ∞ X is the type in ∂C of any ray to ξ. The boundary ∂ ∞ X of X is the incidence graph of a projective plane P = P ∞ (X) whose points are the singular points of type 1 of ∂ ∞ X and lines are the singular points of type 2 of ∂ ∞ X. The set ∂ F X of chambers at infinity of X (Furstenberg boundary) identifies then with the set Flags(P) of (complete) flags F = (p, D) ∈ P×P * , p ∈ D, in the projective plane P.

In the algebraic case, the projective plane P at infinity of X = X(V ) is the classical projective plane P(V ).

For x ∈ X, we denote by Σ x : y → Σ x y the canonical projection from ∂ ∞ X to the unit tangent cone Σ x X at x. The canonical projection Σ x : ∂ ∞ X → Σ x X preserves the simplicial structure and the type (in ∂C) of points, and in particular it induces the canonical projection Σ x : P → P x , which is a surjective morphism of projective planes (i.e. if p ∈ P and D ∈ P * , then Σ x p ∈ P x and Σ x D ∈ P *

x , and p ∈ D implies Σ x p ∈ Σ x D). If c + and c -are opposite flags in P (i.e. chambers at infinity of X), then we denote by A(c -, c + ) the unique flat joining c -to c + in X. A basic fact is that given a generic (i.e. non collinear) triple of points p 1 , p 2 , p 3 in P there exists a unique flat A(p 1 , p 2 , p 3 ) of X containing them in its boundary (and the analog holds for lines).

Transverse trees at infinity. (See for example

[Tits86, §8], [Leeb00, 1.2.3], [MSVM14, §4].)
We denote by X ξ the transverse tree at a singular ideal point ξ in ∂ ∞ X which may be defined, from the metric viewpoint, as the space of classes of strongly asymptotic rays to ξ the quotient space of the space of all rays to ξ by the pseudodistance d ξ given by

d ξ (r 1 , r 2 ) = inf t 1 ,t 2 d(r 1 (t 1 ), r 2 (t 2 )) .
We denote by π ξ : X → X ξ the canonical projection. Recall that X ξ is a R-tree, and that its boundary ∂ ∞ X ξ identifies with the set of singular points of ∂ ∞ X adjacent to ξ. In particular, if p is a point in P, then the boundary of the associated tree X p is identified with the set p * of lines D through p in the projective plane P. Similarly, the boundary of the tree X D associated with a line D of P is identified with the set D * of points p of P that belong to D.

1.4.3.

The A-valued Busemann cocycle. We denote by B c : X × X → A the A-valued Busemann cocycle associated with an ideal chamber c of X, which is defined by

B c (f (α), f (α )) = α -α
for all marked flats f, f : A → X sending ∂C to c and very strongly asymptotic that is such that d(f (r(t)), f (r(t))) goes to zero when t → +∞ for one (all) regular ray r in C (which in Euclidean buildings is equivalent to: f = f on some subchamber α" + C). Note that in rank one (when dim A = 1) this is the usual Busemann cocycle, which is defined by

B ξ (x, y) = lim z→ξ d(x, z) -d(y, z)
We will use the following basic property, that describes the behaviour of Busemann cocycle associated with ideal chamber c = (p, D) upon projections to transverse trees at infinity X p and X D .

(1.2)

ϕ 1 (B (p,D) (x, y)) = B p (π D (x), π D (y)) ϕ 2 (B (p,D) (x, y)) = B D (π p (x), π p (y))
If c + and c -are opposite chambers at infinity, then

(1.3) B c + (x, y) = -(B c -(x, y)) opp for x, y in the flat A(c -, c + )
1.4.4. Cross ratio on the boundary of a tree. (See [Tits86, §7], and for a more general setting [START_REF] Otal | Sur la géometrie symplectique de l'espace des géodésiques d'une variété à courbure négative[END_REF], [START_REF] Bourdon | Sur le birapport au bord des CAT(-1)-espaces[END_REF]). In this section, we suppose that X is a R-tree, and we denote by ∂ ∞ X its boundary at infinity. Given three distinct ideal points ξ 1 , ξ 2 , ξ 3 in ∂ ∞ X, we denote by c(ξ 1 , ξ 2 , ξ 3 ) the center of the ideal triple ξ 1 , ξ 2 , ξ 3 , that is the unique intersection point of the three geodesics joining two of the three points.

The cross ratio of four pairwise distinct points ξ 1 , ξ 2 , ξ 3 , ξ 4 in ∂ ∞ X is defined as the oriented distance on the geodesic from ξ 3 to ξ 1 , from the center x of the ideal triple ξ 3 , ξ 1 , ξ 2 to the center y of the ideal triple ξ 3 , ξ 1 , ξ 4 (1.4)

β(ξ 1 , ξ 2 , ξ 3 , ξ 4 ) = -→ xy = B ξ 1 (x, y) . y x ξ 2 ξ 4 ξ 3 ξ 1
In the case where some of the points coincide, the cross ratio is still defined if the quadruple (ξ 1 , ξ 2 , ξ 3 , ξ 4 ) is nondegenerated (see section 1.1). It is then set to 0 when

ξ 1 = ξ 3 or ξ 2 = ξ 4 , -∞ when ξ 1 = ξ 2 or ξ 3 = ξ 4 , and +∞ when ξ 1 = ξ 4 or ξ 2 = ξ 3 .
We recall that the cross ratio is invariant under double transpositions and satisfies the following properties.

Proposition 1.1. We have

(i) β(ξ 3 , ξ 2 , ξ 1 , ξ 4 ) = β(ξ 1 , ξ 4 , ξ 3 , ξ 2 ) = -β(ξ 1 , ξ 2 , ξ 3 , ξ 4 ) ; (ii) β(ξ 1 , ξ 2 , ξ 3 , ξ 4 ) + β(ξ 1 , ξ 4 , ξ 2 , ξ 3 ) + β(ξ 1 , ξ 3 , ξ 4 , ξ 2 ) = 0 ; (iii) if β(ξ 1 , ξ 2 , ξ 3 , ξ 4 ) > 0, then β(ξ 1 , ξ 3 , ξ 4 , ξ 2 ) = 0 and β(ξ 1 , ξ 4 , ξ 2 , ξ 3 ) = -β(ξ 1 , ξ 2 , ξ 3 , ξ 4 ) ; (iv) β(ξ 1 , ξ 2 , ξ 3 , ξ 4 ) + β(ξ 1 , ξ 4 , ξ 3 , ξ 5 ) = β(ξ 1 , ξ 2 , ξ 3 , ξ 5 ) .

Cross ratio on the boundary of a

A 2 -Euclidean building. See [Tits86].
Let X be a Euclidean building of type A 2 and P the associated projective plane at infinity. We denote by β(p 1 , p 2 , p 3 , p 4 ) the (geometric) cross ratio (projective valuation in [START_REF] Tits | Immeubles de type affine, dans "Buildings and the geometry of diagrams[END_REF]) of a nondegenerated quadruple (p 1 , p 2 , p 3 , p 4 ) of points lying on a common line D of P. We recall that it is defined as their cross ratio as points in the boundary of the transverse tree X D at ideal point D of X. We similarly denote by β(D 1 , D 2 , D 3 , D 4 ) the geometric cross ratio of four lines D 1 , D 2 , D 3 , D 4 through a common point p of P, which is defined as their cross ratio as points in the boundary of the transverse tree X p at ideal point p of X. Recall that perspectivities preserve cross ratios, that is

β(p 1 , p 2 , p 3 , p 4 ) = β(qp 1 , qp 2 , qp 3 , qp 4 ) β(D 1 , D 2 , D 3 , D 4 ) = β(L ∩ D 1 , L ∩ D 2 , L ∩ D 3 , L ∩ D 4 )
(when defined). In the algebraic case, P = P(K 3 ) and the geometric cross ratio β is then obtained from the usual (algebraic) cross ratio b (see section 2.2 for the precise definition) by

(1.5) β(p 1 , p 2 , p 3 , p 4 ) = log |b(p 1 , p 2 , p 3 , p 4 )| β(D 1 , D 2 , D 3 , D 4 ) = log |b(D 1 , D 2 , D 3 , D 4 )| (see for example §1.10 in [Par15a]).
1.5. C-distance, translation lengths, and C-geodesics.

The C-distance. The C-distance on X is the map d C : X × X → C defined by d C (f (α), f (β)) = d C (α, β) for any marked flat f : A → X and α, β ∈ A.
Note that we have d C (y, x) = d C (x, y) opp . The C-distance may be seen as a refinement of the usual distance d, since

d(x, y) = d C (x, y) .
The C-length of an autorphism. Let g be an automorphism of X. The usual (translation) length of g is euc (g) = inf x∈X d(x, gx), and will be called the Euclidean (translation) length of g.

We will denote by C (g) the C-(translation) length of g (called vecteur de translation in [START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF]), which is the unique vector of minimal length in (the closure in C of) {d C (x, gx), x ∈ X}. We recall that in the algebraic case, for g ∈ PGL 3 (K), we have

C (g) = [(log |a i |) i ]
where the a i are the eigenvalues of g. The C-length refines the Euclidean length as euc (g) = C (g) . We will also consider the Hilbert length

H (g) = N H ( C (g)) of g (where we recall that N H is the hex-norm N H (α) = max i α i -min i α 3 i).
It corresponds to the translation length for the Hilbert metric in the case of holonomies of convex projective structures.

The C-geodesics. The C-length of a piecewise affine path σ with vertices x 0 , x 1 ,. . . , x N in X is the vector

C (σ) = n d C (x n , x n+1 )
in the closed Weyl chamber C. [START_REF] Kapovich | Finsler bordifications of symmetric and certain locally symmetric spaces[END_REF]. The following proposition collects some obvious properties of C-geodesics that are needed in this article (they actually satisfy stronger properties, see [START_REF] Parreau | La C-distance dans les espaces symétriques et les immeubles affines[END_REF]).

Proposition 1.3. Let σ : [0, s] → X be a C-geodesic from x to y in X. Then (i) the C-length C (σ) of σ is equal to the C-distance d C (x, y),
(ii) any flat containing x and y contains σ.

A local criterion. We say that two directions in Σ x X are C-opposite if they are contained in opposite closed chambers of Σ x X. For y = x in X, we denote by F ac x (y) the minimal closed simplex of Σ x X containing Σ x y.

Proposition 1.4. Let x, y, z ∈ X, with y = x, z. The following are equivalent:

(i) The path (x, y, z) is C-geodesic ;

(ii) The directions Σ y x and Σ y z are C-opposite in Σ y X. Then x = z and Σ x (y) belongs to F ac x (z).

Proof. This follows from the fact that two opposite Weyl chambers at y are contained in a flat.

Remark 1.5. A key difficulty is that, unlike in the usual cases, a path may be locally C-geodesic but not globally C-geodesic, even for arbitrary close deformations. Easy examples can be found in products of two trees, taking in any flat identified with R × R a "U "-path: for instance the piecewise affine path with successive vertices x 0 = (0, 1), x 1 = (0, 0), x 2 = (1, 0), x 3 = (1, 1). In Euclidean buildings of type A 2 , an example is the piecewise affine path σ in A with vertices

x 0 = [(-1, 2, -1)], x 1 = 0, x 2 = [(2, -1, -1)] and x 3 = [(3, 0, -3)],
which is a local C-geodesic but not globally C-geodesic (see Figure 5). This phenomenon makes it hard to prove global preservation

x 3 x 0 x 1 x 2 C Figure 5. A local, but not global, C-geodesic in A.
of the C-distance for maps between subset of Euclidean buildings, since it is not enough to check it locally.

A local to global criterion. For piecewise regular C-geodesic paths, we have the following fundamental local-to-global property: Corollary 1.6. Let (x n ) n be a (finite or not) sequence in X. Suppose that for all n the segment [x n , x n+1 ] is regular, and the path

(x n-1 , x n , x n+1 ) is C-geodesic. Then the whole path (x n ) n is C-geodesic.
We now state a criterion for a general locally C-geodesic piecewise affine path to be C-geodesic, which will be used in the proof of the main theorem (Section 4.4).

Proposition 1.7. Suppose that dim A = 2. Let (x n ) n be a (finite or not) sequence in X, such that for all n the point x n is not in the segment

[x n-1 , x n+1 ]. Suppose that: (i) (local C-geodesic) For all n the directions Σ xn x n-1 and Σ xn x n+1 are C-opposite in Σ xn X. (ii) For all n such that [x n-1 , x n ] is singular, Σ xn x n-2 and Σ xn x n+1 are C-opposite in Σ xn X. Then (x n ) n is C-geodesic.
Note that all involved directions are well defined, since we have x n = x n-1 , x n+1 for all n, and hypothesis (i) implies that x n-1 = x n+1 for all n.

Proof. Suppose that (x 0 , x 1 , . . . , x n ) is C-geodesic for some n ≥ 2. In the spherical building Σ xn X of directions at x n , Proposition 1.4 implies the following inclusions of simplices:

F ac xn (x n-1 ) ⊂ F ac xn (x n-2 ) ⊂ F ac xn (x 0 ). Note that, since x n-1 is not in [x n , x n-2 ], the segment [x n , x n-2 ] is necessar- ily regular, hence F ac xn (x n-2
) is a closed chamber (i.e. a maximal simplex), and then

F ac xn (x n-2 ) = F ac xn (x 0 ). If the segment [x n-1 , x n ] is regular, then F ac xn (x n-1 ) = F ac xn (x n-2 ) = F ac xn (x 0 ). By hypothesis Σ xn x n+1 is in a closed chamber opposite to the closed chamber F ac xn (x n-1 ) = F ac xn (x 0 ), hence Σ xn x 0 is C-opposite to Σ xn x n+1 . If the segment [x n-1 , x n ] is singular, then by hypothesis Σ xn x n+1 is in a closed chamber opposite to the closed chamber F ac xn (x n-2 ) = F ac xn (x 0 ), hence Σ xn x 0 is also C-opposite to Σ xn x n+1 .
Then in all cases x 0 , x n , x n+1 is C-geodesic (Proposition 1.4), and it follows that (x 0 , x 1 , . . . , x n+1 ) is C-geodesic.

Fock-Goncharov parameters for representations

In this section, following Fock and Goncharov [START_REF] Fock | Moduli spaces of convex projective structures on surfaces[END_REF], we explain in detail how to build representations of a punctured surface group in PGL 3 (K) for any field K using ideal triangulations and projective geometry. The goal is to define the representation ρ (Z,S) associated with a FG-parameter (Z, S) = ((Z τ ) τ , (S e ) e ). The relationship with the original parameters in [START_REF] Fock | Moduli spaces of convex projective structures on surfaces[END_REF] is precised in section §2.6 : indeed we make a different choice of edge parameters, better suited here.

In this section, K is any field and P = P(K 3 ).

2.1. Surfaces and ideal triangulations. Consider a compact oriented connected surface Σ with non empty boundary and negative Euler characteristic χ(Σ) < 0. Boundary components of Σ are oriented in such a way that the surface lies to their right. They will also be seen as punctures. Let Γ = π 1 (Σ) be the fundamental group of Σ. We denote by F ∞ (Σ) the Farey set of Σ, which may be defined as the set of boundary components of the universal cover Σ of Σ (see [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF]§1.3]). This set inherits a cyclic order from the orientation of the surface. For each i ∈ F ∞ (Σ), we denote by γ i the corresponding element of Γ, i.e the primitive element translating the boundary component i in the positive direction. Then for the induced order on F ∞ (Σ) -{i}, we have γ i (j) > j for all j = i. The fundamental group Γ = π 1 (Σ) acts on the Farey set F ∞ (Σ), and γ i fixes i for each i ∈ F ∞ (Σ).

Let T be an ideal triangulation of Σ, i.e a triangulation with vertices the boundary components, considered as punctures. We denote by T (T ) the set of triangles of T and by -→ E (T ) the set of oriented edges of T . Lift T to an ideal triangulation T of the universal cover Σ of Σ. The set of vertices of T then identifies with the Farey set F ∞ (Σ) of Σ. We will identify the oriented edges e of T with the corresponding pairs (i, j) of points in F ∞ (Σ) (vertices of e). A marked triangle of T is a triple (i, j, k) of points in F ∞ (Σ) that are the common vertices of a triangle of T .

Cross ratio.

We use the following convention for cross ratios (following Fock-Goncharov [START_REF] Fock | Moduli spaces of convex projective structures on surfaces[END_REF]). When V is a two dimensional vector space over a field K, the cross ratio of a four points a 1 , a 2 , a 3 , a 4 in the projective line P(V ) is defined by

(2.1) b(a 1 , a 2 , a 3 , a 4 ) = (a 1 -a 2 )(a 3 -a 4 ) (a 1 -a 4 )(a 2 -a 3 ) in any affine chart P(V ) ∼ → K∪{∞}, that is in order that b(∞, -1, 0, a) = a.
It is well-defined (in K ∪ {∞}) when the quadruple is nondegenerated, i.e. when either the numerator or the denominator is nonzero (see section 1.1).

We now recall the natural symmetries. For a permutation σ in S 4 , we denote

(σ • b)(a 1 , a 2 , a 3 , a 4 ) = b(a σ(1) , a σ(2) , a σ(3) , a σ(4) ) .
Recall that σ•b = b when σ is any the double transpositions, that σ•b = b -1 when σ is (13), ( 24), ( 1234) or (1432) ; and that (234

) • b = -(1 + b -1 ) and (243) • b = -(1 + b) -1 . The cocycle identity is (2.2) -b(a 1 , a 2 , a 3 , a 4 ) b(a 1 , a 4 , a 3 , a 5 ) = b(a 1 , a 2 , a 3 , a 5 ) 2.3.
Triple ratio of a triple of flags. We refer the reader to [FoGo06,

§9.4 p128]. Let F i = (p i , D i ), i = 1, 2, 3, be a triple of flags in P = P(K 3 ). The triple ratio of the triple (F 1 , F 2 , F 3 ) is defined by Tri(F 1 , F 2 , F 3 ) = D1 (p 2 ) D2 (p 3 ) D3 (p 1 ) D1 (p 3 ) D2 (p 1 ) D3 (p 2 )
where pi is any vector in K 3 representing p i and Di is any linear form in (K 3 ) * representing D i . It is well defined (in K∪{∞}) when the triple (F 1 , F 2 , F 3 ) is nondegenerated, i.e. when either the numerator or denominator are nonzero (see section 1.1). Note that Tri(F 1 , F 2 , F 3 ) = ∞ if and only if there exists i such that p i ∈ D i+1 and that Tri(F 1 , F 2 , F 3 ) = 0 if and only if there exists i such that p i ∈ D i-1 . In particular, the three flags are pairwise opposite if and only if their triple ratio is not 0 or ∞. The triple ratio is invariant under cyclic permutation of the flags: and reversing the order inverses the triple ratio:

Tri(F 2 , F 3 , F 1 ) = Tri(F 1 , F 2 , F 3 ) Tri(F 3 , F 2 , F 1 ) = Tri(F 1 , F 2 , F 3 ) -1 .
The triple ratio may be expressed as the following cross ratio on the naturally induced quadruples of lines at p 1 (which is nondegenerated, see section1.1)

(2.3) Tri(F 1 , F 2 , F 3 ) = b(D 1 , p 1 p 2 , p 1 p 23 , p 1 p 3 ) or on the line D 1 Tri(F 1 , F 2 , F 3 ) = b(D 1 ∩ D 2 , D 1 ∩ D 23 , D 1 ∩ D 3 , p 1 )
Generic triples may be characterized by triple ratio: (F 1 , F 2 , F 3 ) is generic if and only if Tri(F 1 , F 2 , F 3 ) = ∞, 0, -1. The triple ratio parametrize the generic triples of flags in the projective plane, more precisely for each a ∈ K =0,-1 there exists a generic triple of flags in P with triple ratio a, and

p 3 D 3 D 2 p 2 Z p 1 p 23 D 1 In P 2 K Figure 6
. The triple ratio Z = Tri(F 1 , F 2 , F 3 ) as a cross ratio.

PGL(K 3 ) acts 1-transitively on the set of generic triples of flags of given triple ratio (see also Lemma 2.2).

2.4. FG-invariants of a transverse flag map. Consider a flag map

F : F ∞ (Σ) → Flags(P) .
We denote by p i (resp. by D i ) the point (resp. the line) of the flag

F i = F (i), for i ∈ F ∞ (Σ).
Let T an ideal triangulation of Σ. We suppose that F and T are transverse that is that F sends each triangle in T to a generic triple of flags. We denote by p ij the point D i ∩ D j (resp. by D ij the line p i p j ) (when defined).

To each triangle τ of T with vertices (i, j, k) in F ∞ (Σ), we associate a triangle invariant: the triple ratio

Z τ = Tri(F i , F j , F k ) = b(D i , p i p j , p i p jk , p i p k )
of the triple of flags F (τ ) (where i, j, k are cyclically ordered accordingly to the orientation of the surface). It is well defined and in K =0,-1 as F (τ ) is a generic triple of flags.

To each an oriented edge e = (k, i) in T , we associate an edge invariant: the cross ratio

S e = b(D i , p i p j , p i p k , p i p k ) = b(p k , D k ∩ D , D k ∩ D i , D k ∩ D ij )
where i, j, k, in F ∞ (Σ) are the vertices of the two adjacent triangles τ = (i, j, k) and τ = (k, , i), cyclically ordered accordingly to the orientation of the surface (see figure 7). Since F (τ ) and F (τ ) are generic, this is well defined and in K =0 . Proposition 2.1. [START_REF] Fock | Moduli spaces of convex projective structures on surfaces[END_REF] Let (Z, S) = ((Z τ ) τ , (S e ) e ) be a FG-parameter, i.e. an element of (K =0,-1 )

T ( T ) × (K =0 ) -→ E ( T ) . Fix a generic triple f = (F 1 , F 2 , p 3 ),
where F 1 , F 2 are two flags in P 2 K and p 3 is a point in P 2 K. There exists a unique map F : F ∞ (Σ) → Flags(P), transverse to T , such that the FG-invariant of F relatively to T is (Z, S), and sending the points o 1 , o 2 to the flags F 1 , F 2 , and the point o 3 to some flag through point p 3 .

In order to normalize, we will denote by F Z,S the flag map F with FGinvariant (Z, S) such that the triple

F Z,S (τ 0 ) = (F 1 , F 2 , F 3 ) is in canonical form, that is p 1 = [1 : 0 : 0], p 2 = [0 : 1 : 0], D 1 ∩ D 2 = [0 : 0 : 1], p 3 = [1 : 1 : 1] is the canonical projective frame.
Proof. Since the dual graph of the triangulation T has no cycle (ie, is a tree), existence and unicity of F comes from the following basic facts, by induction on adjacent triangles. Lemma 2.2. Let F 1 = (p 1 , D 1 ), F 2 = (p 2 , D 2 ) be two flags in P and p 3 be a point in P. Suppose that F 1 , F 2 and p 3 are in generic position. Let a ∈ K =0,-1 . Then there exists a unique flag

F 3 = (p 3 , D 3 ) such that the triple of flags (F 1 , F 2 , F 3 ) is generic and Tri(F 1 , F 2 , F 3 ) = a. Lemma 2.3. Let (F 1 , F 2 , F 3 ) be a generic triple of flag. For all S, S in K =0 and Z in K =0,-1 , there exists a unique flag F 4 such that S = b(D 1 , p 1 p 2 , p 1 p 3 , p 1 (D 3 ∩ D 4 )) S = b(D 3 , p 3 p 4 , p 3 p 1 , p 3 (D 2 ∩ D 1 )
) and the triple of flags (F 1 , F 2 , F 3 ) is generic and has triple ratio Z .

Proof. Since F 1 ,F 2 , and F 3 are in generic position, they define three pairwise distinct points D 3 ∩ D 1 , D 3 ∩ (p 1 p 2 ), and p 3 on the line D 3 . So there exists a unique point

p on D 3 such that b(D 3 ∩ D 1 , D 3 ∩ (p 1 p 2 ), p 3 , p) = S.
Similarly, we have three pairwise distinct lines D 3 , p 3 (D 2 ∩ D 1 ), p 3 p 1 through point p 3 , hence there exists a unique line ∆ through p 3 such that b(D 3 , ∆, p 3 p 1 , p 3 (D 2 ∩ D 1 )) = S , and p 1 / ∈ ∆ as S = ∞. Since S = 0, ∞, we have p = p 3 and p / ∈ D 1 , hence we have three pairwise distinct lines D 1 , p 1 p 3 , p 1 p at p 1 , and there exists a unique line ∆ through p 1 satisfying b(D 1 , p 1 p 3 , p 1 p, ∆ ) = Z , and p 3 / ∈ ∆ as Z = -1. We have ∆ = ∆ (else p 1 ∈ ∆) so ∆ and ∆ intersects in a unique point p 4 with p 4 / ∈ D 1 , D 3 , and p 4 / ∈ p 1 p 3 . Then p = p 4 (else p ∈ ∆ and ∆ = p 1 p and Z = 0) so we may define D 4 = p 4 p, and then D 4 = D 1 , D 3 . We have

p 3 / ∈ D 4 as D 4 ∩ D 3 = p = p 3 . Since ∆ = p 1 p 4 is different from p 1 p (since Z = 0), we have that p 1 / ∈ D 4 . Since p = D 4 ∩ D 3 is different from D 1 ∩ D 3
, we have that D 1 ∩D 3 is not on D 4 . Therefore the triple (F 1 , F 3 , F 4 ) is generic and its triple ratio is b(D 1 , p 1 p 3 , p 1 p, p 1 p 4 ) = Z as p 1 p 4 = ∆ .

2.5.1. Equivariance and construction of representations. We now suppose that T is the lift of an ideal triangulation T of Σ and that ( Z, S) is a FGparameter on T invariant under Γ = π 1 (Σ), i.e. lifting a FG-parameter (Z, S) on T . We denote F Z,S = F Z, S . We now show that, since PGL(K 3 ) acts 1-transitively on generic triples of flags of given triple ratio, by rigidity of the construction, we have an associated holonomy representation.

Proposition 2.4. Let (Z, S) = ((Z τ ) τ , (S e ) e ) in (K =0,-1 ) T (T ) × (K =0 ) -→ E (T ) , and let F = F Z,S . There exists a unique representation ρ : Γ → PGL(K 3 ) such that F is ρ-equivariant, i.e. ρ(γ)F Z,S (i) = F (γi) for all γ ∈ Γ, i ∈ F ∞ (Σ).
We will denote ρ = ρ Z,S and call it the representation with FGparameter (Z, S).

In particular F Z,S (i) is a flag fixed by ρ Z,S (γ i ). Note that different choices of (Z, S) may lead to the same representation ρ Z,S .

Proof. Let γ ∈ Γ. The triples of flags F (γτ 0 ) and F (τ 0 ) have same triple ratio Zγτ 0 = Zτ 0 = -1, so there exists a unique g in PGL(K 3 ) such that gF (τ 0 ) = F (γτ 0 ). We set then ρ(γ) = g. The maps ρ(γ) • F and F • γ from F ∞ (Σ) to Flags(P) have same FG-invariant ( Z, S) = ( Z, S) • γ : T ( T ) ∪ -→ E ( T ) → K with respect to T , and send the base triangle τ 0 to the same generic triple of flags, hence they coincide by Proposition 2.1. The fact that ρ is a morphism follows then from 1-transitivity on generic triples of flags, since: [START_REF] Fock | Moduli spaces of convex projective structures on surfaces[END_REF]. Our edge invariants S e differ sligthly from those of [START_REF] Fock | Moduli spaces of convex projective structures on surfaces[END_REF]. Here we describe the relationship in detail. We use the setting of section 2.4.

ρ(γ 1 γ 2 )F (τ 0 ) = F (γ 1 γ 2 τ 0 ) = ρ(γ 1 )F (γ 2 τ 0 ) = ρ(γ 1 )ρ(γ 2 )F (τ 0 ) .

Other edge invariants and relation with

Let i, j, k, in F ∞ (Σ) be the vertices of two adjacent triangles τ = (i, j, k) and τ = (k, , i) with common edge e = (k, i). The associated invariants X, Y, Z, W of [START_REF] Fock | Moduli spaces of convex projective structures on surfaces[END_REF] are in our settings X = Z τ , Y = Z τ , Z = Z e , and W = Z e , where Z e denotes the following cross-ratio

Z e = b(D i , p i p j , p i p k , p i p ) .
The edge invariant Z e is not symmetric under duality, yet exchanging the roles of points and lines provide another natural invariant

Z * e = b(p i , D i ∩ D j , D i ∩ D k , D i ∩ D ) .
Our edge invariants S e are then easily related to the original Z e by (using the cocycle identity):

(2.4)

Z e = S e (1 + Z τ ) Z * e = S e (1 + Z -1 τ )
.

In particular, when K is an ordered field, then if the triangle invariants are positive, our edge invariants S e are positive if and only if the usual edge invariants Z e and are positive.

Note that the relation linking usual FG-invariants of two adjacent triangles

(2.5) Z * e = Z e 1 1 + Z τ (1 + Z -1 τ )
(compare [FoGo07, 2.5.3]) follows from (2.4) and from the autoduality of the S e , since reversing the edge e we get

S e = Z e (1 + Z τ ) -1 = Z * e (1 + Z -1 τ ) -1 S e = Z e (1 + Z τ ) -1 = Z * e (1 + Z -1 τ ) -1 .
3. The A 2 -complex K associated with a left-shifting (z, s)

3.1. (A, W )-complexes and A 2 -surfaces. In this section, we introduce the notion of W -translation surfaces, generalizing translation and half-translation surfaces, and the more general notion of (A, W )-complexes. Natural examples are subcomplexes of Euclidean buildings with model flat (A, W ). We show that, like Euclidean buildings, these spaces are naturally endowed with a C-valued metric and associated C-distance (where C is a standard fixed Weyl chamber in A).

W -surfaces.

Let A be a Euclidean vector plane and let W be a finite subgroup of isometries of A. A W -translation surface consists of a compact surface M possibly with boundary, a finite set of interior points M 0 ⊂ M (singularities) and a (W af f , A)-structure on M -M 0 i.e. an atlas of charts φ µ : U µ → A with transition maps in W af f = W A. This atlas induces in particular a flat metric on M -M 0 , and we require that each singular point x ∈ M 0 has a neighborhood U such that U -{x} is isometric to a punctured cone.

For W = {id} (resp. for W = {± id}) it corresponds to the classic notion of translation surface (resp. of half-translation surface) (see for example [START_REF] Masur | Ergodic theory of translation surfaces[END_REF], [START_REF] Yoccoz | Interval exchange maps and translation surfaces[END_REF]).

By analogy, we will call a 1 3 -translation surface a W -translation surface with W the subgroup of rotations of angle in 2π 3 Z, and a a A 2 -surface a W -translation surface with W the finite reflection group of type A 2 .

(A, W )-complexes. In this section, (A, W

) is a finite reflection group of dimension two. We recall that W af f is the subgroup of affine isomorphisms of A with linear part in W .

Intuitively speaking, a (A, W )-complex (or W -complex, or A 2 -complex when W is of type A 2 ) is a space K obtained by gluing polygons of A along boundary segments by elements of W af f . We now give a precise definition of (A, W )-simplicial complexes following the definition of Euclidean simplicial complexes in [BrHa99, I.7.2]. Definition 3.1. ((A, W )-simplicial complex) Let {P µ , µ ∈ M} be a family of affine simplices P µ ⊂ A. Let E = µ∈M P µ × {µ} denote their disjoint union. Let be an equivalence relation on E and let K = E/ denote the quotient space. Let φ : E → K denote the corresponding projection, define φ µ : P µ → K by φ µ (α) = φ(α, µ), and denote by K µ ⊂ K the image φ µ (P µ ).

The space K is called a (A, W )-simplicial complex if (i) for every µ ∈ M, the map φ µ is injective.

(ii) If K µ ∩ K µ = ∅, then there is an element w µ,µ of W af f such that for all α ∈ P µ and α ∈ P µ we have φ(α, µ) = φ(α , µ ) if and only if α = w µ,µ (α), and P µ,µ = P µ ∩ w -1 µ,µ (P µ ) is a face of P µ . In particular, K is a Euclidean simplicial complex of dimension 2. We will suppose from now on that K is connected and that the set of isometry classes of simplices of K is finite. We denote by d the associated metric, which is a complete geodesic length metric (see [BrHa99, I.7]). We denote by Σ x K the geometric link of K at a point x, which is a spherical 1-dimensional complex (hence a metric graph) endowed with the angular length metric (see [BrHa99, I.7.15]).

From now on, we will suppose that K has non positive curvature, that is for all points x ∈ K each injective loop in the link Σ x K has length at least 2π. If K is simply connected, (K, d) is then a CAT(0) metric space (see Theorem I.5.4 and Lemma I.5.6 of [START_REF] Bridson | Metric spaces with non-positive curvature[END_REF]).

3.1.3. The C-distance on K. Germs of non trivial segments at a point x ∈ K have a well-defined projection in ∂C (their (type (of direction)). In particular the notions of regular and singular directions still make sense in Σ x K. Note that a geodesic segment is not necessarily of constant type of direction, unlike in Euclidean buildings. The C-length C (I) of a segment I = [x, y] contained in a simplex K µ of K is defined as the C-length in A of the segment φ -1 µ (I) (note that it does not depend on the choice of µ, because the transition maps are in W af f ). The C-length of a piecewise affine path

σ : [0, s] → K in X is defined by C (σ) = n C ([x n , x n+1 ]) for one (any) subdivision t 0 = 0 < t 1 < • • • < t N = s of [0, s] such that the restriction of σ to [t n , t n+1 ] is an affine segment [x n , x n+1 ] conatined in some simplex of K.
It is a vector in the closed Weyl chamber C. It is invariant under subdivisions of the simplicial complex K. When K is simply connected (hence CAT(0)), we define the C-distance from x to y in K as the C-length d C (x, y) = C (σ) of the geodesic σ from x to y. We then have

d C (y, x) = d C (x, y) opp and d C (x, y) ≤ d(x, y)
Remark 3.2. Note that, unlike in Euclidean buildings, the inequality may well be strict. Thus the C-distance is no longer a refinement of the distance d. A basic example is given by non convex subsets K of A.

3.1.4. C-Length of automorphisms. An automorphism g of K is a bijection preserving d C . In particular it preserves the distance d. The C-length of g of K translating some geodesic σ is defined by

C (g) = d C (x, gx)
for one (any) x on σ (it does not depend on the choice of σ as two different translated geodesics bound a flat strip, and may be developped as parallel geodesics in A).

Note that, in contrast to the case of Euclidean buildings, the C-length do no longer refine the Euclidean length euc (g) = {d(x, gx), x ∈ X} . We have C (g) ≤ euc (g) but the inequality may be strict.

Abstract geometric FG-parameters and Left Shift.

Let T be an ideal triangulation of a punctured surface Σ, with set of triangles T and set of oriented edges -→ E . Consider an geometric FG-parameter on T , i.e. an element (z, s) = ((z τ ) τ , (s e ) e ) in R T × R -→ E . We now introduce the class of abstract geometric FG-parameters (z, s) to which we are going to associate an A 2 -complex K. Let e be an oriented edge in T , with left and right adjacent triangles τ and τ . Definition 3.3. We say that (z, s) is left-shifting on edge e if we have s e > -z - τ , -z + τ and s e > -z + τ , -z - τ . Remark 3.4. Note that (z, s) is left-shifting on edge e iff we are in one (and only one) of the three following cases: (i) s e > 0 and s e > 0 (ii) z τ < 0, z τ > 0, s e > 0 and z τ , -z τ < s e ≤ 0 ; (iii) z τ > 0, z τ < 0, s e > 0 and z τ , -z τ < s e ≤ 0 ;

We say that (z, s) is left-shifting if it is left-shifting on edge e for all e, and we denote this property by (L). Note that the subset

O L of left-shifting (z, s) in R T × R -→
E is an non empty open cone (in fact a finite union of open convex polyhedral cones).

Construction of the

A 2 -complex K associated with (z, s). Con- sider a left-shifting geometric FG-parameter (z, s) = ((z τ ) τ , (s e ) e ) in R T × R -→
E (see Definition 3.3). Lift (z, s) on the universal cover T in a Γ-invariant left-shifting geometric FG-parameter, again denoted by (z, s).

For each marked triangle τ = (i, j, k) of the triangulation T let P τ ⊂ A be the singular equilateral triangle with vertices α τ i = 0, α τ j = (-z - τ , -z + τ ) and α τ k = (-z + τ , -z - τ ) (in simple roots coordinates). Note that P τ lies in the chamber -C.

For each oriented edge e = (k, i) of T let P e ⊂ A be either, when s e , s e ≥ 0, the closed segment from 0 to the point (s e , s e ), or, when s e < 0 or s e < 0, the parallelogram given (in simple roots coordinates) by P e = [0, s e ] × [0, s e ] (intersection of two Weyl chambers of opposite direction).

z τ ≥ 0 z τ ≤ 0 C C α τ j α τ i α τ k α τ j α τ i α τ k Figure 8. Singular triangle P τ in A.
We now describe formally how K is constructed, gluing the polygons P m . We define K = m∈ -→ M P m × {m}/ ∼, where

-→ M = - → T ( T ) ∪ - → E ( T )
and ∼ is the equivalence relation generated by the following identifications: For every oriented edge e = (k, i) of T , with positively oriented adjacent triangle τ = (i, j, k), Remark 3.4 implies that the convex polygons P τ and P e intersects on the subsegment (maybe reduced to a point)

[β τ ki , α τ i ] of [α τ k , α τ i ],
with β τ ki = (min(0, s e ), min(0, s e )). We then glue P τ × {τ } along P e × {e} along this segment (i.e. by (α, τ ) ∼ (α, e) for α ∈ P τ ∩ P e ). If τ is a permutation of a marked triangle τ = (i, j, k) in T , we identify P τ × {τ } with P τ × {τ } by the unique affine isomorphism w τ,τ : P τ ∼ → P τ sending α τ s to α τ s for s = i, j, k, which is in W af f . If e = (i, k) is the opposite edge of e = (k, i), then we identify P e × {e} with P e × {e} by the unique affine isomorphism w e,e : P e ∼ → P e with linear part w opp ∈ W (which sends 0 to (s e , s e )).

We denote by φ : m P m → K the canonical projection. We denote by K m the image φ(P m ) in K. The canonical charts are the restrictions φ m : P m → K m of φ to P m .

We thus obtain a two dimensional (A, W )-complex K endowed with a free and cocompact action of Γ by automorphisms. We denote by d C the natural C-valued distance on K (see Section 3.1.3). The quotient K of K under Γ is the A 2 -complex associated with FG-parameter (z, s) on the triangulation T . It is a finite 2-dimensional complex homotopy equivalent to Σ. We denote by K m the image of K m in K.

We remember the special points in the above construction for later use: For each marked triangle τ = (i, j, k) of T we denote by a i (τ ) and b ki the points of K given by α τ i and β τ ki . If z τ = 0, then the corresponding singular triangle K τ is reduced to a point a τ , and K is locally the union of three non trivial edges at a τ .

Note that the A 2 -complex K is naturally oriented, in the sense that the space of directions at each point Σ x K and the boundary at infinity ∂ ∞ K inherit a natural cyclic order from the orientation of the surface Σ. 

Tree of triangles.

Another -more general -particular case of interest is when is when all the K e are segments. Then K is a "tree of triangles", obtained from the dual tree of the triangulation by replacing vertices by triangles. The corresponding condition on the left-shifting FG-parameter

(z, s) in R T × R -→
E is (TT) s e ≥ 0 for all oriented edge e Note that (L) is automatic if s e > 0 for all e, and that (TT) implies (S).

3.4.3. Surface. At the other end of the spectrum, another particular case of special interest is when (Sf) s e < 0 or s e < 0 for all oriented edge e Then K is a surface, homeomorphic to Σ (the thickening of the ribbon tree dual to the triangulation), hence K is a A 2 -surface homeomorphic to Σ (see §3.1.1), with piecewise singular geodesic boundary and no interior singularities.

Remark 3.5. The subset of left-shifting (z, s) in R T × R -→ E satisfying (Sf) is not empty if and only if the triangulation T is 2-colourable (since z τ and z τ have then opposite sign for adjacent triangles τ and τ ). It is a finite union of non empty open convex polyhedral cones, one for each 2-coloration of T (choice of prescribed signs for the triangle parameters).

Invariant subspaces for actions on buildings

4.1. Geometric FG-invariants for actions on buildings. In this section, we introduce an analog of FG-invariants for actions on Euclidean buildings X of type A 2 , endowed with equivariant boundary maps F : F ∞ (Σ) → ∂ F X. These invariants take values in R and are defined by geometric cross ratios in the projective plane at infinity of X. In the algebraic case (i.e. when X is the Euclidean building of PGL(K 3 ) for some ultrametric field K), these geometric FG-invariants are obtained from the K-valued usual FGinvariants (that we will call algebraic FG-invariants) by taking logarithms of absolute values, hence may be seen as the tropicalization of the algebraic FG-invariants. Note that the geometric invariants are substantially weaker than the algebraic invariants (since we take absolute values). The principal advantage is that geometric FG-invariants still make sense when the building X is exotic (non algebraic), whereas the usual FG-invariants are not defined anymore.

We recall that the set ∂ F X of chambers at infinity (Furstenberg boundary) of the Euclidean building X is identified with the set Flags(P) of flags in the projective plane P at infinity of X, and that β denotes the R-valued cross ratio on P induced by X (see Section 1.4.5).

Let F : F ∞ (Σ) → ∂ F X be a flag map. We denote by p i (resp. by D i ) the point (resp. the line) of the flag F i = F (i) for every i ∈ F ∞ (Σ). We suppose that the map F is equivariant under an action ρ of Γ = π 1 (Σ) on X. Let T be an ideal triangulation of Σ, and T be the lift of T to Σ.

We suppose that F is transverse to T , i.e. sends each triangle of T on a generic triple of ideal chambers. We recall that we denote by p ij the point D i ∩ D j (resp. by D ij the line p i p j ) (when defined).

Triangle invariants.

To each marked triangle τ = (i, j, k) of the triangulation T we associate the (geometric) triple ratio (see [START_REF] Parreau | On triples of ideal chambers in A2-buildings[END_REF]) of the generic triple of chambers F (τ ) = (F i , F j , F k ), which is the following triple of R-valued cross ratios obtained from permutations of the four lines D i , p i p j , p i p jk , p i p k in P (cyclically permuting the three last ones) (see [START_REF] Parreau | On triples of ideal chambers in A2-buildings[END_REF] for details)

   z τ = tri 1 (F i , F j , F k ) := β(D i , p i p j , p i p jk , p i p k ) z τ = tri 2 (F i , F j , F k ) := β(D i , p i p k , p i p j , p i p jk ) z τ = tri 3 (F i , F j , F k ) := β(D i , p i p jk , p i p k , p i p j ) .
We recall from [START_REF] Parreau | On triples of ideal chambers in A2-buildings[END_REF] the following basic properties. Each of z τ , z τ and z τ is invariant under cyclic permutation of τ , and reversing the order gives z τ = -z τ , z τ = -z τ (denoting τ = (k, j, i)). We have z τ + z τ + z τ = 0, and moreover the triple (z τ , z τ , z τ ) is of the form (0, z, -z), (-z, 0, z) or (z, -z, 0) with z ≥ 0. Note that, if z τ ≤ 0, then z τ = -z - τ and z τ = z + τ . (by the properties of the cross ratio β under 3-cyclic permutation, see Prop. 1.1).

In the algebraic case, in terms of the algebraic invariant (triple ratio) 

Z τ = Tri(F i , F j , F k ) in K =0,-1 ,
z τ = log |Z τ | z τ = log (1 + Z τ ) -1 z τ = log 1 + Z -1 τ .
4.1.2. Edge invariants. See Figure 10. To each oriented edge e = (k, i) between two adjacent triangles τ = (i, j, k) and τ = (k, , i), where i, j, k, are cyclically ordered accordingly to orientation of the surface, we associate the triple of cross ratios at the point p i in P associated with the four lines D i , p i p j , p i p k , p i p k by cyclic permutation of the three last ones:

   s e = β(D i , p i p j , p i p k , p i p k ) s e = β(D i , p i p k , p i p j , p i p k ) s e = β(D i , p i p k , p i p k , p i p j ) .
As for triangle invariants, we have s e +s e +s e = 0 and moreover the triple (s e , s e , s e ) is in R + (0, 1, -1), R + (-1, 0, 1) or R + (1, -1, 0).

In the algebraic case, the link with the algebraic edge invariants S e ∈ K =0 (defined in §2.4) is:

(4.2)

s e = log |S e | s e = log (1 + S e ) -1 s e = log 1 + S -1 e . i j k e τ τ in Σ p k p k D k p j D j s e p D i p i D D ij in P
Figure 10. The edge invariant s e associated with an edge e.

As F is ρ-equivariant, the triangle and edge invariants are invariant under the action of Γ on T , hence induce well-defined invariants associated to triangles and oriented edges of T , we will call the geometric FG-invariants of F relatively to T .

Note that the geometric FG-invariants do not determine the flag map F , in contrary to algebraic FG-invariants. 4.2. Main result. We refer the reader to Sections 3.2 and 3.3 for the notion of left-shifting (L) geometric FG-parameter (z, s), and the associated A 2complex K. Theorem 4.1. Let ρ be an action of Γ = π 1 (Σ) on X, and F : F ∞ (Σ) → ∂ F X be a ρ-equivariant map. Let T be an ideal triangulation of Σ. Suppose that F is transverse to T . Let z τ , z τ , z τ , with τ ∈ T , and s e , s e , s e , with e in -→ E , be the geometric FG-invariants of F relatively to T . Suppose that (FT) for each triangle τ in T , we have z τ ≤ 0, (L) (z, s) is left-shifting. Let K be the A 2 -complex of FG-parameter (z, s) = ((z τ ) τ , (s e ) e ). Then there exists a ρ-equivariant map Ψ : K → X, locally preserving the C-distance d C . Theorem 4.2. Under the hypotheses and notations of Theorem 4.1, suppose furthermore that (FE) for each oriented edge e in T , we have s e ≤ 0 ; (S) for each triangle τ in T and every pair of edges e 1 , e 2 of τ (oriented after τ ), we have -s e 1 -s e 2 < z - τ and -s e 1 -s e 2 < z + τ .

Then the map Ψ : K → X preserves globally the C-distance d C . In particular (i) for all γ ∈ Γ C (ρ(γ)) = C (γ, K)

and for usual lengths

euc (ρ(γ)) = ( C (γ, K) , H (ρ(γ)) = N H ( C (γ, K))
. in particular the length spectrum of ρ depends only on (z, s). (ii) The map Ψ is bilipschitz. The action ρ is undistorted (i.e. orbit maps are quasi-isometric embeddings), free and proper (hence discrete).

Note that in general we do not have euc (ρ(γ)) = euc (γ, K).

Remark 4.3. Let us give now some explanations on the meaning and the role of the different hypotheses in the theorems. (i) Hypothesis (FT) ensures that all flag triangles F (τ ) are of flat type, that is define a natural singular flat triangle ∆ τ in the building, see theorem 4.4 for details. The map Ψ will be then defined by sending the triangle K τ of the A 2 -complex K to the singular flat triangle ∆ τ of the building by a marked flat. (ii) The left-shifting hypothesis (L) means geometrically that, for all oriented edge e from k to i, the i-th vertice v i of the right singular flat triangle ∆ τ lies in the open Weyl chamber from the i-th vertice v i of ∆ τ to the ideal chamber F i , see Corollary 4.6. Note that, in the algebraic case, it has a very simple and natural expression in terms of the usual edge and dual edge invariants Z e and Z * e , for which we refer to see section 2.6. Indeed we have (z, s) is left-shifting on edge e ⇔ |Z e | > 1 and |Z * e | > 1, (iii) Recall that s e > 0 implies s e = -s e < 0 (see section 4.1.2). Hence hypothesis (FE) is only needed in the degenerated case where the edge parameter s e = 0. In that case (case (iv) in the proof of the theorem, section 4.4), the two singular triangles ∆ τ and ∆ τ are joined by a singular segment, and this hypothesis is necessary to avoid folding along this segment : it ensures that the ideal chambers F j and F are opposite at each point of the singular segment, see Lemma 4.10. (iv) Hypothesis (S) means geometrically that, in the A 2 -complex K, a singular segment entering a triangle K τ from one adjacent edge cell K e does not extend outside K τ (see left side of the figure 11). We then say that (z, s) is edge-separating.

4.3. Proof of Theorem 4.1. Let ρ : Γ → Aut(X) be an action, and F : F ∞ (Σ) → ∂ F X be a ρ-equivariant map. Suppose that F is transverse to the ideal triangulation T of Σ. For each pair (i, j) of distinct points in the Farey set F ∞ (Σ) of Σ, we denote by A ij the flat in X joining F i and F j . Suppose first that hypothesis (FT) holds, that is: z τ ≤ 0 for each triangle τ in T .

-s e2 Let τ = (i, j, k) be a triangle in T . Since z τ = tri 2 (F i , F j , F k ) ≤ 0, the triple is of flat type, meaning that we have the following properties for the triple (F i , F j , F k ) which are proved in [Par15a] (Theorem 2), and depicted in Figure 12.

Theorem 4.4. The intersection of the two flats

A(p i , p j , p k ) and A(D i , D j , D k ) is a singular flat triangle ∆ = ∆ τ with vertices v i = v i (τ ), v j = v j (τ ) and v k = v k (τ ) such that: (i) The Weyl chamber from v i to F i is A ij ∩ A ik ; (ii) In any marked flat f ij : A → A ij sending ∂C to F j , we have in simple roots coordinates --→ v i v j = (z + τ , z - τ ) ; ( 
iii) When ∆ is not reduced to a point (i.e. when z τ = 0), then ∆ and

F i define opposite chambers Σ v i ∆ and Σ v i F i at v i .
We now study the behaviour of two adjacent triangles ∆ τ , ∆ τ , in particular we show how edge invariants measure the shift between ∆ τ , ∆ τ along the common edge flat. Let τ = (i, j, k) and τ = (k, , i), be a pair of adjacent triangles in T (where (i, j, k, ) are positively ordered), and denote by e the common edge (k, i). Denote by

v i = v i (τ ), v k = v k (τ ), v i = v i (τ ) and v k = v k (τ ) the vertices in the flat A ki joining F k to F i of two adjacent triangles ∆ τ , ∆ τ .
Let f e : A → A ki be a marking of the flat A ki sending ∂C to F i . By Theorem 4.4 and the invariance by cyclic permutation, in the marked flat f e , we have in simple roots coordinates

--→ v k v i = (z + τ , z - τ ) and --→ v k v i = (z - τ , z + τ ) in particular --→ v k v i and --→ v k v i are singular segment in C.

Proposition 4.5 (Geometric interpretation of edge parameters). In any marked flat f

e : A → A ki sending ∂C to F i , we have --→ v i v k = (s e , s e )
in the basis of simple roots of A.

v k p i D i v i D k v j p k p j D j p i v j D j p j D i A jk A ki v i In A ij (for z τ ≥ 0). A ki p i p j D j v i v j D i A jk In A ij (for z τ ≤ 0). Figure 12. The singular flat triangle ∆ τ = (v i , v j , v k ) asso- ciated with τ .
Proof. We project in the transverse tree at infinity X p i in direction p i by π p i : X → X p i . We denote by o and o the respective projections of p i p j and p i p k (seen as points of ∂ ∞ X p i ) on the line from D i to p i p k in X p i . Then we have π p i (v i ) = o and π p i (v k ) = o by Lemma 17 of [START_REF] Parreau | On triples of ideal chambers in A2-buildings[END_REF]. Thus we have (by (1.2) and (1.4))

ϕ 2 ( --→ v i v k ) = B D i (π p i (v i ), π p i (v k )) = B D i (o, o ) = β(D i , p i p j , p i p k , p i p k ) = s e .
Similarly, projecting in the transverse tree X D i and denoting by o * , o * the respective projections of

D i ∩ D j and D i ∩ D k (seen as points of ∂ ∞ X D i ) on the line from p i to D i ∩ D k in the tree X D i , we have ϕ 1 ( --→ v i v k ) = B p i (π D i (v i ), π D i (v k )) = B p i (o * , o * ) = β(p i , D i ∩ D j , D i ∩ D k , D i ∩ D k ) = β(D k , p k p , p k p i , p k p ij ) = s e .
In particular, we have the following geometric interpretation in the building X of the hypothesis "left-shifting on edge e", see Figure 13.

Corollary 4.6. The three following assertions are equivalent (i) (z, s) is left-shifting on edge e ;

(ii) In any marked flat A → A ki sending ∂C to F i , the vectors

--→ v i v i and --→ v k v k are in C; (iii) v i is in the open Weyl chamber from v i to F i , and v k is in the open Weyl chamber from v k to F i . F j v i F i v k F k v i F ∆ τ v k ∆ τ A ki Figure 13
. LeftShift for adjacent triples of ideal chambers, in the building X.

The following lemma establishes that, if (z, s) is left-shifting on edge e then the associated adjacent singular triangles ∆ τ , ∆ τ lie in a common flat. Lemma 4.7. Let τ = (i, j, k) and τ = (k, , i) be a pair of adjacent triangles in T (where (i, j, k, ) are positively ordered), and denote by e the common edge (k, i). Suppose that (z, s) is left-shifting on edge e. Let C be any Weyl chamber with tip v i containing ∆ τ , and C be any Weyl chamber with tip v k containing ∆ τ . There exists a marked flat f :

A → X such that f (0) = v i , f (α) = v k with α = (s e , s e ) in simple roots coordinates, f (-C) = C and f (α + C) = C .
Proof. Let c, c be the boundaries at infinity of C and C . Let f e : A → A ki be the marked flat sending ∂C to F i and 0 to

v i . Let f -1 e (v k ) = α k , f -1 e (v i ) = α i and f -1 e (v k ) = α k . By Proposition 4.5 and Theorem 4.4, we have that α k ∈ -C, α i ∈ C, α k = (s e , s e ) is in α k +C, and [0, α k ] is contained in (α k + C) ∩ (α i -C).
Since F i and C are opposite at v i (Theorem 4.4), there exists a marked flat f 1 : A → A 1 sending -C to C and ∂C to F i . Since f 1 and f e both sends 0 to v i and ∂C to F i , we have

f 1 = f e on the convex subset f -1 e (f 1 (A)), which contains C. Since v k = f e (α k ) belongs to ∆ τ , hence to A 1 = f 1 (A), it implies that f 1 = f e on α k + C. Since α k ∈ α k + C, f 1 and f e coincide on a germ of the Weyl chamber α k -C at α k . Then the Weyl chambers C = f 1 (α k -C) and f e (α k -C) define the same chamber Σ v k c = Σ v k F k
in the space of directions at v k . Therefore C and C are opposite at v k by Theorem 4.4. Hence there exists a marked flat f : A → A sending α k + C to C and -∂C to c. Since v i = f e (α i ) = f 1 (α i ) belongs to A and f and f 1 are very strongly asymptotic on -C, we have

f = f 1 on α i -C. In particular, f (-C) = f 1 (-C) = C. Moreover f = f e on (α k + C) ∩ (α i -C), which contains [0, α k ].
From now on, we suppose that (z, s) is left-shifting (on all edges). The next lemma formalizes the construction of the map Ψ, and is a straigthforward consequence of Theorem 4.4 and Proposition 4.5. We refer to Section 3.3 for the definition of charts of K, and we recall that a i (τ ) is the i-vertex of the singular triangle associated with τ in the associated A 2 -complex K.

Lemma 4.8. There exists a unique ρ-equivariant map

Ψ : K → X such that • The map Ψ sends a i (τ ) to v i (τ ) for all marked triangle τ = (i, j, k) of T ; • For every chart φ m : P m → K m of K, the map Ψ • φ m : P m → X
is the restriction of a marked flat.

We now check that Ψ is a local C-isometry. Let x be a point in K. Then either there is a neighbourhood of x contained in some K τ ∪ K e with e adjacent to τ , on which Ψ is a C-isometry by Lemma 4.7, or x is the vertex a τ of a singular triangle K τ reduced to a point (i.e. with invariant z τ = 0).

In that case, denote by (i, j, k) the vertices of τ and by e s the oriented edge of τ with terminal vertex s, for s = i, j, k. A neighbourhood of x in K is then given by the union of the three segments K es , s = i, j, k. The image by Ψ of K es is then a non trivial segment [v τ , u s ], contained in the Weyl chamber C s with vertex v τ and boundary F s . The chambers C s are pairwise opposite at v τ by Theorem 4.4. Hence Ψ is a local C-isometry on the union of the three segments K es .

F k u k u j F j u i F i v τ
4.4. Proof of Theorem 4.2. Let x, x be two points of K. Let σ be the unique geodesic from x to x in K. We are going to prove that the image η = Ψ • σ of σ by Ψ is a C-geodesic path in X, using the criterion in Proposition 1.7. Then we will have d C (Ψ(x), Ψ(x )) = C (η), which is equal to C (σ) since Ψ preserves the C-length of paths, hence equal to d C (x, x ) by definition of the C-distance d C in K, which concludes.

Let t 0 = 0 < t 1 < • • • < t N = 1 be a minimal subdivision of [0, 1] such that σ |[tn,t n+1 ] has constant type of direction in ∂C, and let x n = σ(t n ) and y n = Ψ(x n ). For 0 < n < N , since xn (x n-1 , x n+1 ) > π, the point x n is a singularity of K, hence by construction of K it is a boundary point of the form x n = b e for some oriented edge e of T . Suppose that for some 0 < n < N the (constant) type of the segment [x n , x n+1 ] is singular. We have to prove that the directions Σ yn y n+2 and Σ yn y n-1 are C-opposite, i.e. contained in two opposite closed chambers at y n .

We are first going to show that the edge-separating hypothesis (S) allows us to reduce our study to the case of two adjacent triangles. Lemma 4.9. There exist two adjacent triangles τ = (i, j, k) and τ = (k, , i) in T such that the segment 

[x n , x n+1 ] is contained in K τ ∪ K ki ∪ K τ
a k a j a k x n+2 b ki = a i b ij x n-1 (i) a a k b ki a i a j a k b ik a i x n+2 b ij x n-1
(ii) Suppose now that Σ xn x n+1 = Σ b ij a i , where a i = a i (τ ), with τ = (j, i, h) the triangle adjacent to τ along edge (i, j).

a i = b ki x n-1 x n+2 a j a k a i a b ik = a k (iii)
If have x n+1 = a i = b ji , then x n = b ij = a j , and we are in case (iii), up to replacing the pair of adjacent triangles τ, τ by the pair τ , τ .

If x n+1 = a i , then x n+1 must be the next singular point on the same side of the adjacent triangle cell K τ (since the ray from a i = a i (τ ) to b ih to no extend outside K τ ). We are then reduced to the previous case x n = b ij , x n+1 = b ik by exchanging the roles of x n and x n+1 .

If Σ xn x n+1 is neither Σ b ij a i nor Σ b ij a i , then there is a third boundary direction in K at b ij , which means that b ij = a j and Σ xn x n+1 = Σ a j a k . Then as [a j , a k ] is not extendable, we must have x n+1 = b jk . We are then reduced to the previous case x n+1 = b ij , x n+1 = b ki by exchanging the roles of x n and x n+1 .

Since Ψ is a local C-isometry (Section 4.3), the path η is a local C-geodesic in X, and its restriction to [t n , t n+1 ] is is the affine segment [y n , y n+1 ] (since it is of constant type of direction in C).

Case (i):

x n = b ij and x n+1 = b ki . Then b ki = a i . We then have y n+1 = Ψ(a i ) = v i , and Σ y n+1 y n+2 is in Σ v ki Ψ( K ki ), hence in the closed chamber Σ v ki F i . Since v ki = v i is in the closed Weyl chamber from v ij to F i by Theorem 4.4, we have that Σ y n+1 y n+2 is in Σ v ij F i . Since v ij is in the flat A ij , it proves that Σ yn y n+2 is C-opposite to Σ yn y n-1 . Case (ii): x n = b ij and x n+1 = b ik . At x n+1 = b ik , the direction Σ x n+1 x n+2 is in the unique closed chamber of Σ b ik K containing Σ b ik a i , where τ = (k, , i) is the adjacent triangle in T . In the building X, we then have y n = v ij , y n+1 = v ik , We now prove that we then have Σ yn y n+2 ∈ Σ v ij F i . Let C be a closed Weyl chamber with tip y n = v ij containing a germ at y n+1 = v ik of the segment [y n+1 , y n+2 ]. Then C contains a germ at

v ik of the segment [v ik , v i ]. Let C i = C(v ij , F i ) be the closed Weyl chamber from v ij to F i . The closed Weyl chambers C(v ik , F i ), and C(v ik , F k ) are opposite at v ik (because v ik ∈ A ik ), and respectively contain v i and v ij , therefore C i contains the segment [v ik , v i ]. Since [v ij , v ik ] and [v ik , v i ] are singular segments of different type of direction in ∂C, we have then Σ v ij C = Σ v ij C i , hence Σ yn y n+2 ∈ Σ v ij F i . Since Σ v ij F j and Σ v ij F i are opposite closed chambers of Σ v ij X (because v ij ∈ A ij ), it proves that Σ yn y n+2 is C-opposite to Σ yn y n-1 . Case (iii): x n = b ki = a i and x n+1 = b ik = a k .
In the building X we have y n = v i , y n+1 = v k , Σ yn y n-1 ∈ ∆ τ , and Σ y n+1 y n+2 ∈ ∆ τ . Lemma 4.7 then implies that there then exists two opposite Weyl chamber with tip v i containing respectively ∆ τ and [v i , v k ] ∪ ∆ τ , so Σ yn y n+2 is C-opposite to Σ yn y n-1 at y n = v i . Case (iv): x n = b ij and x n+1 = b k . Then we have b ik = a k , i.e. s e = 0. In the building X, we then have y n = v ij , y n+1 = v k , and in the spherical building Σ v ij X of directions at y n = v ij , we have that Σ yn y n+1 belongs to the chamber Σ v ij F j , and Σ y n+1 y n+2 belongs to the chamber Σ v k F . Since s e ≤ 0 by hypothesis (FE), the following Lemma 4.10 implies that the ideal chambers F j and F are then opposite at v i , so, since v i is on the singular segment ]v ij , v k [, it implies that Σ yn y n+2 is C-opposite to Σ yn y n-1 as needed.

Lemma 4.10. Let τ = (i, j, k) and τ = (k, , i), be a pair of adjacent triangles in T (where (i, j, k, ) are positively ordered), and denote by e the common edge (k, i).

Denote v i = v i (τ ), v k = v k (τ ), v i = v i (τ ) and v k = v k (τ )
. Suppose that (z, s) is left-shifting on edge e and s e = 0. Then (i) There is a geodesic from D j to p through v j , v i , v k , and v ;

(ii) F j and F are opposite at v i if and only if Proof of Lemma 4.10. Since (z, s) is left-shifting on edge e and s e = 0, we must have z τ ≤ 0, and s e > 0 Lemma 4.7 then implies that the path (v j , v i , v k , v ) is a geodesic segment of singular type 1. It extends in a geodesic σ from D j to p , because ∆ τ is opposite to F j at v j and ∆ τ is opposite to F at v (Theorem 4.4), and (i) is proven.

s e = β(D i , p i p k , p i p j , p i p k ) ≤ 0 p v v i F i v i v j p j D j F k D v k v k
By point (i) and Proposition 4.5, the directions D j and p are opposite at x = v i , and we have Σ x p = Σ x v k = Σ x p i . Thus F j and F are opposite at x if and only if p j and D are opposite at x, i.e. Σ x p j / ∈ Σ x D . We now prove that Σ x p j ∈ Σ x D if and only if Σ x (p i p j ) = Σ x (p i p k ). First observe that Σ x p i is different from Σ x p j , as x is on the flat A(p i , p j , p k ). We also have Σ

x p i = Σ x p k , since Σ x p k ∈ Σ x D k and Σ x p i / ∈ Σ x D k since x is in the flat A(F k , F i ). Then Σ x p j ∈ Σ x D if and only if Σ x p j ⊕ Σ x p = Σ x D (since Σ x p j = Σ x p ). We have Σ x p j ⊕ Σ x p = Σ x p j ⊕ Σ x p i = Σ x (p i p j ) (since Σ x p j = Σ x p i ). On the other hand, since Σ x p i = Σ x p k , we have Σ x D = Σ x p i ⊕ Σ x p k = Σ x (p i p k
), and we are done.

Projecting in the transverse tree at infinity X p i we now show that Σ x (p i p j ) = Σ x (p i p k ) is equivalent to β(D i , p i p k , p i p j , p i p k ) = s e ≤ 0. Indeed, since the projection of x is the center o of the ideal tripod D i , p i p j , p i p k (by Lemma 17 of [START_REF] Parreau | On triples of ideal chambers in A2-buildings[END_REF]), the directions Σ x (p i p j ) and Σ x (p i p k ) are distinct if and only if the two geodesic rays in X p i from o to the ideal points p i p j and p i p k have

p i p k p i p j o D i p i p k Figure 16.
In the transverse tree at infinity X p i . distinct germs at o. This is indeed equivalent to β(D i , p i p k , p i p j , p i p k ) = s e ≤ 0.

We have proven that in all cases Σ yn y n+2 is C-opposite to Σ yn y n-1 . Therefore the piecewise affine path (y 0 , y 1 , . . . , y N ) is a global C-geodesic in X by Proposition 1.7, which concludes the proof of Theorem 4.2.

Degenerations of representations and convex

RP 2 -structures

In this section, we use Theorem 4.2 to describe a large family of degenerations of convex RP 2 -structures on Σ, corresponding to a part of the boundary of the moduli space of convex RP 2 -structures on Σ constructed in [START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF]. Let K be any valued field. Starting from §5.4, the field K will be supposed to be either equal to R or C or ultrametric.

5.1. Background on asymptotic cones. In this section, we gather definitions and tools about the various notions of ultralimits and asymptotic cones that will be used in what follows. We first fix notations about usual ultralimits of metric spaces (see for example [START_REF] Kleiner | Rigidity of quasi-isometries for symmetric spaces of higher rank[END_REF], or [Par11, §2.3] for more details). Then we briefly recall various notions of asymptotic cones of algebraic objects introduced in [Par11, §3]: asymptotic cones of valued fields, normed vector spaces, linear group, ultralimits of representations, and their links. Finally we introduce the notion of asymptotic cones of projective spaces and establish some basic properties of asymptotic cones in projective geometry.

Fix a (non principal) ultrafilter ω on N, and a scaling sequence (λ n ) n∈N , that is a sequence of real numbers such that λ n ≥ 1 and λ n → ∞.

A point x ω in a Hausdorff topological space E is the ω-limit of a sequence (x n ) n in E if it is its limit with respect to the filter ω. We will then denote lim ω x n = x ω . Note that lim ω x n is then a cluster value of the sequence (x n ) n . Recall that any sequence contained in a compact (Hausdorff) space has a (unique) ω-limit. The ω-limits of sequences of real numbers are taken in the compact space [-∞, +∞].

Given a sequence of pointed metric spaces (

X n , d n , o n ) n∈N , a sequence (x n ) n in n X n is called ω-bounded when lim ω d n (o n , x n ) < ∞.
The ultralimit of (X n , d n , o n ) n∈N is the quotient X ω of the subspace of ω-bounded sequences in n X n by the pseudo-distance d ω given by

d ω ((x n ), (y n )) = lim ω d n (x n , y n ) .
It is a complete metric space (X ω , d ω ). The class in X ω of a ω-bounded sequence (x n ) will be called its ultralimit and be denoted by ulim ω x n . Given for all ω-bounded sequence (v n ) in V . This endomorphism depends only on the ultralimit u ω in End(V ) ω of the sequence (u n ). The following results allows us to identify End(V ) ω with End(V ω ), and GL(V ) ω with GL(V ω ). Proposition 5.2. [Par11, Corollaire 3.18] The map

End(V ) ω → End(V ω ) u ω → u ω is an isomorphism of K ω -normed algebras identifying GL(V ) ω with GL(V ω ).
5.2. Ultralimits of projective spaces. One verifies easily that the ultralimit of any sequence of vector subspaces of V (of fixed dimension) is a vector subspace of V ω (of same dimension). Then any sequence of points in the projective space PV has a well defined ultralimit in the projective space PV ω . This induces a canonical identification of PV ω with the ultralimit of the metric spaces (PV, d 1/λn ), where d is the distance on PV induced by the norm η.

Let p i ∈ PV , i = 0, . . . , N be the canonical projective frame of PV , which is defined by p i = [e i ] for i = 1, . . . , N and p

0 = [e 1 + • • • + e N ]. Let p ω i be the ultralimit of the constant sequence (p i ) n∈N . Then (p ω i ) i=0,...,N is the canonical projective frame of PV ω . A sequence (g n ) n in PGL(V ) is ω-bounded if it has a ω-bounded lift (u n ) n in GL(V ). Then the ultralimit g ω ∈ PGL(V ω ) of (g n ) is well defined by g ω (ulim ω p n ) = ulim ω g n (p n )
and it coincides with the class in PGL(V ω ) of the ultralimit u ω ∈ GL(V ω ) of the sequence u n .

Here is a useful criterion to see if a sequence (g n ) n in PGL(V ) is ωbounded, in terms of the action on the projective space.

Proposition 5.3. Let (g n ) n∈N be a sequence in PGL(V ). let (q n i ) 0≤i≤N be the image by g n of the canonical projective frame (p i ) 0≤i≤N . Denote by q ω i the ultralimit of the sequence (q n i ) n∈N in PV ω . The following assertions are equivalent:

(i) The points q ω i form a projective frame of

PV ω ; (ii) The sequence (g n ) n is ω-bounded in PGL(V ), Then the ultralimit of (g n ) n∈N in PGL(V ω ) is the unique map g ω ∈ PGL(V ω ) sending (p ω i ) 0≤i≤N to (q ω i ) 0≤i≤N .
Proof. Suppose that the points q ω i form a projective frame of PV ω , and let g ω be the projective map in PGL(V ω ) sending the frame (p ω i ) to the frame (q ω i ) i . Let u ω be a lift of g ω in GL(V ω ). There exists a ω-bounded sequence (u n ) n∈N in GL(V ) with ultralimit u ω (Propositions 5.2 and 5.1).

For each fixed i, let v n i be the image of e i by u n . Then (v n i ) n is a ωbounded sequence in V and its ultralimit is v ω i = u ω (e i ), which is a non zero vector in V ω representing the point q ω i of PV ω . Let w n i be a vector in q n i (seen as a line of V ) at minimum distance from v n i . Then η(w n i -v n i ) 1/λn ≤ d(u n (p n i ), q n i ) 1/λn . Since the sequence (v n i ) n is ω-bounded, and we have lim ω d(u n (p n i ), q n i ) 1/λn = 0, it follows that the sequence (w n i ) n is ω-bounded with ultralimit w ω i = v ω i .

Asymptotic cones and Fock-Goncharov parameters.

In this section, we show that FG-parametrization of representations behaves well with respect to ultralimits, that is the two constructions commute. We use the hypotheses and notations of Section 2, from which we recall that, for (Z, S) = ((Z τ ) τ , (S e ) e ) in (K =0,-1 ) T × (K =0 )

-→ E the T -transverse map with FG-parameter (Z, S) is denoted by F Z,S : F ∞ (Σ) → Flags(P) and ρ Z,S denotes the associated representation from Γ to PGL(K 3 ). We use the notations and hypotheses of the previous sections for ultralimits and asymptotic cones.

Proposition 5.5. Let ((Z n , S n )) n be a sequence in (K =0,-1 ) T × (K =0 )

-→ E and let Z n = (Z n τ ) τ and S n = (S n e ) e . Denote by F ω : F ∞ (Σ) → Flags(K 3 ω ) the ultralimit of the sequence of maps F Z n ,S n : F ∞ (Σ) → Flags(P). For each triangle τ and oriented edge e of T , denote by Z ω τ = ulim ω Z n τ S ω e = ulim ω S n e the ultralimits in K ω ∪ {∞} of the sequence (Z n τ ) n and (S n e ) n . Suppose that Z ω τ / ∈ {∞, -1, 0} for all triangle τ of T , and S ω e / ∈ {∞, 0} for all oriented edge e of T . Then (i)

F ω = F Z ω ,S ω ; (ii) The ultralimit ρ ω : Γ → PGL 3 (K ω ) of the sequence of representa- tions ρ Z n ,S n is well defined and ρ ω = ρ Z ω ,S ω . Proof. Denote F n = F Z n ,S n . Note that, for each i ∈ F ∞ (Σ) the ultralimit of the sequence of flags F n (i) = F n i = (p n i , D n i ) is a well-defined flag F ω i = (p ω i , D ω i ) in Flags(K 3 ω ). The ultralimit F ω : F ∞ (Σ) → Flags(K 3 
ω ) of the maps F n is thus always well defined. We first prove that F ω = F Z ω ,S ω . Since the canonical basis of K 3 ω is the ultralimit of the canonical basis of K 3 , it is clear that the image (F ω 1 , F ω 2 , F ω 3 ) of the base triangle τ 0 by F ω remains in canonical form, i.e. p ω 1 = [1 : 0 We may now conclude the proof of Proposition 5.5. Let γ ∈ Γ. Then ρ n (γ) sends the canonical projective frame F 1 , F 2 , p 3 to the frame F n (γo 1 ), F n (γo 2 ), p n (γo 3 ) whose ultralimit is F ω (γo 1 ), F ω (γo 2 ), p ω (γo 3 ), which is generic hence a projective frame in P(K 3 ω ). Then by Proposition 5.3 ρ n (γ) is ω-bounded and its ultralimit ρ ω (γ) = ulim ω ρ n (γ) sends the canonical frame F ω 1 , F ω 2 , p ω 3 to F ω (γo 1 ), F ω (γo 2 ), p ω (γo 3 ) hence the flags F ω (τ 0 ) to F ω (γτ 0 ) (since they have the same triple ratio). So ρ ω (γ) = ρ Z ω ,S ω (γ) as wanted. 5.4. Main result. We suppose now that K is either equal to R or C or ultrametric. We are now able to describe a large family of degenerations of representations of Γ in PGL(K 3 ) as (length spectra of) A 2 -complexes of the form K (z,s) using degenerations of FG-parameters.

: 0], p ω 2 = [0 : 1 : 0], D ω 1 ∩ D ω 2 = [0 : 0 : 1], p ω 3 = [1 : 1 : 1]
We denote by X the CAT(0) metric space (symmetric space or Euclidean building) associated with PGL 3 (K). and the analogous claim holds for the Hilbert length:

lim n→∞ 1 λ n H (ρ n (γ)) = N H ( C (γ, K))
for all γ ∈ Γ.

Remark. The hypotheses (FT') and (FE') are automatic for K = R (and more generally for K ordered) and positive FG-parameters (since for positive a ∈ K we then have |a + 1| ≥ |1| = 1).

Proof of Theorem 5.8. The idea of the proof is first to pass to the ultralimit in an appropriate asymptotic cone associated with the scaling sequence (λ n ) n , and then to apply Theorem 4.2 to show that the ultralimit representation preserves a C-geodesic copy of the A 2 -complex K in the associated Euclidean building, hence has same marked C-length spectrum, and to use the continuity properties of C-length spectrum with respect to asymptotic cones of [START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF] to conclude.

Let (K ω , | | ω ) be the asymptotic cone of the valued field K with respect to the scaling sequence (λ n ) n (see Section 5.1). We first check that the ultralimits behave well. For all τ ∈ T , by hypothesis lim ω 1 λn log |Z n τ | = z τ < +∞, hence the ultralimit Z ω τ of the sequence Z n τ in K ω is well defined, and lim ω 1 λn log |Z n τ | = z τ > -∞ hence Z ω τ = 0. Similarly, the ultralimit S ω e of the sequence S n e in K ω is well defined and non zero as |S ω e | ω = exp s e . For all triangle τ , we also have |Z ω τ + 1| ω = lim ω |Z n τ + 1| 1/λn ≥ 1, in particular Z ω τ = -1. Then by Proposition 5.5 the ultralimit ρ ω : Γ → PGL(K 3 ω ) of the sequence of representations ρ n is well defined and is the representation ρ Z ω ,S ω associated with the FG-parameter (Z ω , S ω ) = ((Z ω τ ) τ , (S ω e ) e ). The FG-parameter (Z ω , S ω ) clearly satisfies the hypotheses of Theorem 4.2. Hence Theorem 4.2 applies, and ρ ω , acting on the Euclidean building X ω associated with PGL 3 (K ω ), preserves an equivariant C-geodesically embedded copy of the A 2 -complex K, hence the length spectra coincide:

C (ρ ω (γ)) = C (γ, K) for all γ in Γ . Now fix γ in Γ. Since X ω is the asymptotic cone of the metric space X for the rescaling sequence We now suppose that K = R and we apply this result to describe a part of the compactification of the moduli space of representations constructed in [START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF]. We first recall briefly the compactification. Denote G = PGL 3 (R). Let X (Γ, G) = Hom(Γ, G)//G be the biggest Hausdorff quotient of Hom(Γ, G) under G, which identifies with the locally compact subspace of Hom(Γ, G)/G consisting of completely reducible (i.e. semisimple) representations (see Section 5.1 of [START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF] for more details). The space C Γ of functions from Γ to C is endowed with the product topology, and let (see Section 5.3 of [START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF] for more details).

Let M = T ∪ -→ E and denote by P + R M the space of rays in R M , that is the quotient of R M -{0} by R >0 , which is the standard sphere of dimension 8 |χ(Σ)| -1, and let P + : R M -{0} → P + R M be the corresponding projection. The FG-parameters space R M is endowed with the standard compactification as a closed ball R M with boundary ∂ ∞ R M = P + R M .
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 1 Figure 1. Simple roots coordinates in the model flat A.

Figure 3 .

 3 Figure 3. Gluings (local development in A).

Figure 7 .

 7 Figure 7. The invariant S e associated with an oriented edge e. Note that the edge parameters are symmetric with respect to natural duality, as reversing the orientation of e (i.e. applying the half-turn (ik)(j )) we get S e = b(D k , p k p , p k p i , p k p ij )

  Figure 9. Gluings.

3. 4 .

 4 Particular cases: from trees to surfaces. 3.4.1. Tree. A case of special interest is when all singular flat triangles K τ are reduced to a point. The corresponding condition on (z, s) in R T × R -→ E is (T ) z τ = 0 for all triangles τ of T s e > 0 for all oriented edges e of T Then K is a 3-valent ribbon tree isomorphic to the dual tree of the triangulation T , and K is a graph isomorphic to the dual graph of the triangulation T . Both are endowed with a A 2 -structure or C-metric, i.e. a C-valued function e → C (e) on oriented edges satisfying C (e) = C (e) opp .

  we have, as b = log |β| and by the symmetries of the usual (K-valued) algebraic cross ratio b under 3-cyclic permutations, (4.1)

Figure 11 .

 11 Figure 11. Edge-separating (on the left) vs Non edgeseparating (on the right) triangle K τ (in the case where z τ > 0)

  , and, up to exchanging x n and x n+1 , denoting a s = a s (τ ) and a s = a s (τ ), we are in one of the following cases (i) b ki = a i , and x n = b ij and x n+1 = b ki ; (ii) x n = b ij and x n+1 = b ik ; (iii) b ki = a i and b ik = a i , and x n = b ki and x n+1 = b ik ; (iv) b ki = a i and b ik = a i , and x n = b ij and x n+1 = b k .

Figure 14 .

 14 Figure 14. Singular segment in a geodesic in K: the four cases.

Figure 15 .

 15 Figure 15. Adjacent triples with s e = 0, s e > 0, s e < 0.

k

  and p ω are in generic position. Since p ω , p ω ∈ D ω and p ω = p ω , we have D ω = p ω p ω . Since Z ω τ = 0, we have p ω i p ω = p ω i p ω , so the line D ω = p ω p ω do not contain p ω i . We also havep ω k / ∈ D ω (since p ω = p ω k ) and D ω do not pass through D ω i ∩ D ω k (since p ω = D ω i ∩ D ω k ). The triple of flags (F ω k , F ω , F ω i ) is then generic and of triple ratio b(D ω i , p ω i p ω k , p ω i (D ω k ∩ D ω ), p ω i p ω ) = Z ω τ as p ω = D ω ∩ D ω k .

  Theorem 5.8. Let (Z n , S n ) n∈N be a sequence inK T =0,-1 ×K -→ E =0 . Let ρ n : Γ → PGL 3 (K) be the representation of FG-parameter (Z n , S n ) = ((Z n τ ) τ , (S n e ) e ). Let z n τ = log |Z n τ |, s n e = log |S n e | and z n = (z n τ ) τ , s n = (s n e ) e .Consider a sequence of real numbers λ n ≥ 1 going to +∞, such that the sequence1 λn (z n , s n ) converges to a nonzero (z, s) in R T × R -→ E . Suppose that: (FT') For each triangle τ of T , lim inf 1 λn log |Z n τ + 1| ≥ 0 ; (FE') For each oriented edge e in T , lim inf 1 λn log |S n e + 1| ≥ 0 ; (L) (z, s) is left-shifting, (S) (z, s) is edge-separating.Let K be the A 2 -complex of FG-parameter (z, s). Then the renormalized C-length spectrum of ρ n converges to the C-length spectrum of K: for all γ ∈ Γ we have1 λ n C (ρ n (γ)) → C (γ, K) in C.In particular, the usual Euclidean length spectrum of ρ n converges to the Euclidean norm of the C-length spectrum of K:lim n→∞ 1 λ n euc (ρ n (γ)) = C (γ, K)

  λ n (see Theorem 3.21 of[START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF]) and by continuity properties of the C-length with respect to asymptotic cones (by Theorem 3.21 and Proposition 4.4 of[START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF]), the sequence1 λn C (ρ n (γ)) has ultralimit C (ρ ω (γ)) in C.This proves that the sequence 1 λn C (ρ n (γ)) converges (in the usual sense)to C (γ, K) in C, since every subsequence of the sequence 1 λn C (ρ n (γ)) has C (γ, K) as cluster value in C.

PC Γ denote the

  quotient space of C Γ -{0} by R >0 . In[START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF] we constructed a metrizable compactification X (Γ, G) of X (Γ, G), with boundary contained in PCΓ and endowed with a natural action of the modular group Out(Γ), with following sequential characterization: a sequence[ρ n ] n in X (Γ, G) converges in X (Γ, G) to a boundary point [w] in PC Γ ifand only if the two following conditions are satisfied (i) [ρ n ] n eventually gets out of any compact subset of X (Γ, G) ; (ii) [ C • ρ n ] converges to [w] in PC Γ .

  and denote by ρ the representation ρ Z,S : Γ → PGL 3 (K) of FG-parameter (Z, S). Let z τ = log |Z τ |, s e = log |S e | and z = (z τ ) τ , s = (s e )

e . Suppose that (FT) For each triangle τ in T , we have |Z τ + 1| ≥ 1 ; (FE) For each oriented edge e in T , we have |S e + 1| ≥ 1 ;

  is a geodesic for the hex-metric (that is the metric induced by the hex-norm N H ), see [KaLe15, §3.1.2]. More generally the C-geodesics coincide with the Finsler geodesics considered in the work of Kapovich, Leeb and Porti, see [?,

Definition 1.2. A piecewise affine path σ : [0, s] → X will be called a Cgeodesic if there is a marked flat f : A → X such that σ is the image by f of a (piecewise affine) path η : [0, s] → A such that η(t) ∈ C for almost all t ∈ [0, s].

Note that a piecewise affine path in X is a C-geodesic if and only if it

  is the canonical projective frame. So it is enough to prove the two next lemmas, ensuring that F ω is T -transverse and of FG-invariant Z ω by induction on adjacent triangles, following the construction of the map F Z ω ,S ω in Section 2.5. = ulim ω Z n τ is distinct from ∞, 0, -1. Hence by Proposition 5.4 taking ultralimits, the line D ω k is distinct from the three lines D ω ki , D ω kj and p ω k p ω ij , so the triple of flags (F ω

	Lemma 5.6. Let τ be a marked triangle in T with ordered vertices (i, j, k)
	in F ∞ (Σ). Suppose that F ω i , F ω j and p ω k are in generic position. Then the triple of flags (F ω i , F ω j , F ω k ) is generic and its triple ratio is Z ω τ .
	Proof. Denote by p n ij the point D n i ∩D n j and by p ω ij = ulim ω p n ij its ultralimit. Denote by D n ki the line p n k p n i , by D n ki the line p n k p n i , and by D ω ki , D ω kj their ultralimits. Since F ω i , F ω j and p ω k are in generic position, the points p ω i , p ω j , p ω k and p ω ij = D ω i ∩ D ω j are pairwise distinct and p ω k p ω i = D ω ki , p ω k p ω i = D ω kj and p ω k p ω ij = ulim ω p n k p n ij are three distinct lines. We have
	Tri(F n i , F n j , F n k ) = b(D n kj , p n k p n ij , D n ki , D n k ) = Z n τ
	and by hypothesis Z ω τ i , F ω j , F ω k ) is generic, and Tri(F ω i , F ω j , F ω k ) = b(D ω kj , p ω k p ω ij , D ω ki , D ω
	b(D ω i , p ω i p ω j , p ω i p ω k , p ω i (D ω k ∩ D ω )) = S ω e
	b(D ω k , p ω k p ω , p ω k p ω i , p ω k (D ω i ∩ D ω j )) = S ω e .
	F ω k , F ω i and F ω j are in generic position, we have D ω k ∩ D ω i = ulim(D n k ∩ D n i ), D ω k ∩ (p ω i ⊕ p ω j ) = ulim(D n k ∩ (p n i ⊕ p n j )) and these two points are distinct and distinct from p ω k . It follows then from Proposition 5.4 that the cross ratio b(D ω k ∩ D ω i , D ω k ∩ (p ω i ⊕ p ω j ), p ω k , p ω ) is the ultralimit of b(D n k ∩ D n i , D n k ∩ (p n i ⊕ p n j ), p n k , p n k ) = S n e , which is S ω e . Since S ω e = 0, ∞, it follows that the point p ω (which is on the line D ω k ) is distinct from the two points p ω k , D ω i ∩ D ω k . Similarly the three lines p ω k p ω i , p ω k p ω j and D ω k are paiwise distinct, hence the ultralimit ∆ ω of the line p n k p n satisfies b(p ω k p ω i , p ω k p ω j , D ω k , ∆ ω ) = S ω e . The line ∆ ω passes through p ω k and is distinct from the lines D ω k and p ω k p ω i , since S ω e = 0, ∞. In particular p ω i / ∈ ∆ ω , so p ω = p ω i . We have three pairwise distinct lines D ω i ,p ω i p ω k and p ω i p ω , hence the cross ratio b(D ω i , p ω i p ω k , p ω i p ω , p ω i p ω ) is the ultralimit of b(D n i , p n i p n k , p n i p n k , p n i p n ) = Z n τ , which is Z ω τ . Since Z ω τ = ∞, we have p ω / ∈ D ω i . Since Z ω τ = -1, we have p ω i p ω = p ω i p ω k , so p ω / ∈ D ω k , in particular p ω = p ω , and p ω / ∈ p ω i p ω k . So F ω i ,F ω

k ) = Z ω .

Lemma 5.7. Let τ be a marked triangle in T with ordered vertices (i, j, k), and τ = (k, , j) be the adjacent triangle. Suppose that the triple of flags

F ω (τ ) is generic. Then F ω (τ )

is generic and Proof. Denote p ω = ulim(D n k ∩ D n ). Then p ω ∈ D ω k and p ω ∈ D ω . Since

a sequence Y n ⊂ X n , we denote by ulim ω Y n the subset of X ω consisting of ultralimits of ω-bounded sequences (x n ) n such that x n ∈ Y n for all n, and call it the ultralimit of the sequence (Y n ) n .

Let (K ω , | | ω ) be the asymptotic cone of the valued field K with respect to the scaling sequence (λ n ), that is the ultralimit of the sequence of valued fields (K, | | 1/λn ) (base points are at 0, see [START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF]§3.3]). It is an ultrametric field. Note that its absolute value | | ω takes all values in R ≥0 . Given a sequence (a n ) in K, we denote ulim ω a n = ∞ when lim ω |a n | 1/λn = ∞, so that every sequence in K has a well defined ultralimit in K ω ∪ {∞}.

Denote by η the canonical norm on V = K N . Let (V ω , η ω ) be the asymptotic cone of the normed vector space (V, η) with respect to the scaling sequence (λ n ), i.e. the ultralimit of the sequence of normed vector spaces (V, η 1/λn ) (see [START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF]§3.4]). It is a normed vector space over the valued field K ω , canonically isomorphic to K N ω , with canonical basis the ultralimit e ω = (e ω i ) of the canonical basis e = (e i ) of K N . Denote by N the norm on End(V ) associated with η. The ultralimit (End(V ) ω , N ω ) of the sequence of normed algebra (End(V ), N 1/λn ) is a normed algebra over the valued field K ω , (see [Par11, §3.5]).

We now describe the asymptotic cone of the linear group GL(V ). Let GL(V ) ω be the subgroup of invertible elements of End(V ) ω . Note that the ultralimit of a sequence [START_REF] Parreau | Compactification d'espaces de représentations de groupes de type fini[END_REF] is incorrect (definition 3.16) (with no incidence on the remaining of the paper). The following proposition describes the invertible elements in End(V ) ω .

Proposition 5.1. Let u ω = ulim ω u n be an element of End(V ) ω . Then

Let h n ∈ GL(V ) be the linear map sending the canonical basis (e i ) i=1...N to the basis (w n i ) i=1...N , which is a lift in GL(V ) of g n . The sequence (h n ) n is ω-bounded in End(V ), and its ultralimit in End(V ω ) is u ω (since it sends e ω i to v ω i ). Since u ω = ulim ω h n is invertible in End(V ω ), the sequence (h n ) -1 is ω-bounded, as wanted.

We recall that the ultralimit ρ ω : Γ → PGL(V ω ) of a sequence of representations ρ n : Γ → PGL(V ) is well defined when ρ n is ω-bounded, that is when for all γ ∈ Γ (or just for a generating set), the sequence (

The cross ratio is easily seen to behave well under ultralimit. Since, for all left-shifting (z, s), the C-length spectrum C K : γ → C (γ, K) of the A 2 -complex K is not identically zero (that is differs from 0 ∈ C Γ ), Theorem 5.8 above implies the following result. 

. Note that the image by ϕ of the open cone O LS is contained in the space P(Σ) of convex projective structures on Σ with principal geodesic boundary (see [START_REF] Goldman | Convex real projective structures on compact surfaces[END_REF][START_REF] Fock | Moduli spaces of convex projective structures on surfaces[END_REF]).