
HAL Id: hal-02020180
https://hal.science/hal-02020180v1

Preprint submitted on 15 Feb 2019 (v1), last revised 7 Mar 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Descriptive complexity for minimal time of cellular
automata

Etienne Grandjean, Théo Grente

To cite this version:
Etienne Grandjean, Théo Grente. Descriptive complexity for minimal time of cellular automata. 2019.
�hal-02020180v1�

https://hal.science/hal-02020180v1
https://hal.archives-ouvertes.fr

Descriptive complexity for minimal time of cellular automata

Étienne Grandjean
Normandie Univ, UNICAEN, ENSICAEN, CNRS,

GREYC, 14000 CAEN, France
Email: etienne.grandjean@unicaen.fr

Théo Grente
Normandie Univ, UNICAEN, ENSICAEN, CNRS,

GREYC, 14000 CAEN, France
Email: theo.grente@unicaen.fr

Abstract—Descriptive complexity may be useful to design pro-
grams in a natural declarative way. This is important for
parallel computation models such as cellular automata, be-
cause designing parallel programs is considered difficult. Our
paper establishes logical characterizations of the three classical
complexity classes that model minimal time, called real-time, of
one-dimensional cellular automata according to their canonical
variants. Our logics are natural restrictions of the existential
second-order Horn logic. They correspond to the three ways of
deciding a language on a square grid circuit of side n according
to the three canonical placements of an input word of length
n on the grid. Our key tool is a normalization method that
transforms a formula into an equivalent formula that literally
mimics a grid circuit.

1. Introduction

1.1. Descriptive complexity and programming

There are two criteria of interest of a complexity class: it
contains a number of “natural” problems that are complete in
the class; it has machine-independent “natural” characteriza-
tions, usually in logic, i.e., in so-called descriptive complex-
ity. The most famous example is Fagin’s Theorem [?], [?],
which characterizes NP as the class of problems definable in
existential second-order logic (ESO). Similarly, Immerman-
Vardi’s Theorem [?], [?] and Grädel’s Theorem [?], [?]
characterize the class P by first-order logic plus least fixed-
point, and second-order logic restricted to Horn formulas,
respectively.

Another interest of descriptive complexity is that it al-
lows to automatically derive from a logical description of
a problem a program that solves it. This is particularly
interesting for the design of parallel programs that is con-
sidered a difficult task. Typically, a number of algorithmic
problems (product of integers, product of matrices, sorting,
etc.) are computable in linear time on cellular automata
(CA), a local and massively parallel model. For each such
problem, the literature presents an “ad hoc” parallel and
local algorithmic strategy and gives the program of the final
CA in an informal way [?], [?]. However, the problems in
concern can be defined inductively in a natural way. For
instance, the product of two integers in binary notation is
simply defined by the classical Horner’s method and one
may hope to directly derive a parallel program from such
an inductive process.

1.2. Descriptive complexity and linear time on cel-
lular automata

The present paper is in some sense the sequel of a recent
paper [?] (see also [?]). First, [?] observes that the induc-
tive processes defining the problems in concern (product

of integers, product of matrices, sorting, etc.) are “local”
and are naturally formalized by Horn formulas, that is
by conjunctions of first-order Horn clauses. Therefore, the
computation is nothing else than the classical resolution
method on Horn clauses, as in Prolog and Datalog [?],
[?], [?]. Moreover, on every concrete problem defined by a
Horn formula with d+ 1 first-order variables, this inductive
computation by Horn rules can be geometrically modeled as
the displacement of a d-dimensional hyperplan along some
fixed line in a space of dimension d + 1. To capture these
inductive behaviors, [?] defines a logic denoted monot-ESO-
HORNd(∀d+1, arityd+1) obtained from the logic ESO-HORN
tailored by Grädel [?] to characterize P, by restricting both
the number of first-order variables and the arity of second-
order predicate symbols. Besides, it includes an additional
restriction – the “monotonicity condition” – that reflects
the geometrical consideration above-mentioned. [?] proves
that this logic exactly characterizes the linear time com-
plexity class of cellular automata: more precisely, for each
integer d ≥ 1, a set L of d-dimensional pictures can be
decided in linear time on a d-dimensional CA – written
L ∈ DLINdCA – if and only if it can be expressed in monot-
ESO-HORNd(∀d+1, arityd+1). For short:

DLINdCA = monot-ESO-HORNd(∀d+1, arityd+1).

To summarize, expressing a concrete problem in this logic –
which seems an easy task in practice and also is a necessary
and sufficient condition according to the above equality –
guarantees that this problem can be solved in linear time on
a CA; moreover, the Horn formula that defines the problem
can be automatically translated into a program of CA that
computes it in linear time.

1.3. Logics for minimal time of cellular automata?

At this point, two natural questions arise:

1) Besides linear time, a robust and very expressive
complexity class, what are the other significant and
robust complexity classes of CA?

2) Can we exhibit characterizations of those complex-
ity classes in some naturally (syntactically) defined
logics so that any definition of a problem in such a
logic can be automatically translated into a program
of the complexity in concern?

Besides linear time, the main complexity notion well-
studied for a long time in the literature of CA is real-time,
i.e., minimal time [?], [?], [?]. A cellular automaton is said to
run in real-time if it stops, i.e., gives the answer yes or no, at
the minimal instant when the elapsed time is sufficient for the
output cell (the cell that gives the answer) to have received
each letter of the input. Real-time complexity appears as

a sensitive/fragile notion and one generally thinks it is so
for CA of dimension 2 or more [?], [?]. However, maybe
surprisingly, one knows that real-time complexity is a robust
notion for one-dimensional CA in the following sense: ac-
cording to the many natural variants of the definition of a
one-dimensional CA, which essentially rest on the choice of
the neighborhood of the CA and the parallel or sequential
presentation of its input word, exactly three real-time classes
of one-dimensional CA1 have been proved to be distinct [?],
[?], [?], [?]:

1) RealTimeCA = RealTimeOIA;
2) Trellis = RealTimeOCA;
3) RealTimeIA.

The final and decisive step to establish this classification is a
nice dichotomy of [?] on admissible neighborhoods2 of CA,
which can be rephrased as follows: for each neighborhood
N admissible with respect to the first cell as output cell,
the real-time complexity class of one-dimensional CA with
parallel input mode and neighborhood N ,

• either is equal to the real-time class for the neighbor-
hood {−1, 0, 1}, i.e., RealTimeCA (class 1 above),

• or is equal to the real-time class for the neighborhood
{−1, 0}, i.e., Trellis (class 2 above).

Further, it is surprising to notice that

• the mutual relations between those three real-time
classes are wholly elucidated: classes Trellis and
RealTimeIA are mutually incomparable for inclusion
whereas we have the strict inclusion Trellis ∪
RealTimeIA $ RealTimeCA [?], [?], [?],

• while it is unknown whether the trivial inclusion
RealTimeCA ⊆ DLIN1

CA is strict; worse, even whether
the inclusion RealTimeCA ⊆ LinSpace is strict is
an open problem!

1.4. Logics and grid circuits for real-time classes

Each of the three real-time classes 1-3 is robust, i.e, is not
modified for many variants of CA (change of neighbor-
hoods, etc.) and has two or three quite different equivalent
definitions. For example, RealTimeCA is equal to the linear
time class of one-way CA with parallel input mode. Simi-
larly, [?] has proved the surprising result that Trellis is the
class of languages generated by linear conjunctive grammars
(see also [?]) and [?] has established that a language L is
in RealTimeIA if and only if its reverse language LR is
recognized in real time by an alternating automaton with
one counter.

Logics have two nice and complementary properties:
they are flexible, hence expressive; they have normal forms,
hence can be tailored for efficient programming. The main
idea that led us to conceive the different logics for real-
time classes can be summarized by the following simple
question: what are the different ways to decide a language
on a square grid circuit? For any integer n ≥ 1, let Cn be
the grid circuit n×n where the state q ∈ Q (for finite Q) of
any site (i, j), 1 ≤ i, j ≤ n, is determined by the states of its

1. By default, a CA has a two-way communication and a parallel input
mode. Any CA (resp. one-way CA or OCA) with sequential input mode is
also called an iterative array or IA (resp. OIA).

2. The neighborhood of a CA is the finite set of integers N such that the
state of any cell x at any non-initial instant t is determined by the states of
the cells x+ d, for d ∈ N , at instant t− 1. A neighborhood is admissible
with respect to a fixed output cell (in general the first or the last cell) if it
allows to communicate each bit of the input to the output cell.

w1w1

w2

w2

w3

w3

w4

w4

w5

w5

GRID1

w1

w2

w3

w4

w5

GRID2

w1

w2

w3

w4

w5

GRID3

Figure 1. The three ways to arrange the input on the grid

“predecessors” (i−1, j), if it exists (i > 1), and (i, j−1), if
it exists (j > 1), so that the output cell is the site (n, n). Up
to symmetries, there are three canonical ways3 to arrange an
input word w = w1 . . . wn of length n on the grid Cn, see
Figure 1:

1) GRID1: place the input on any side (or, equivalently,
on both sides) that does (do) not contain the output
cell;

2) GRID2: place the input on the diagonal opposite to
the output cell;

3) GRID3: place the input on the diagonal that contains
the output cell.

A simple (reversible) deformation transforms a grid cir-
cuit of GRIDi, i = 1, 2, 3, into a time-space diagram of a CA
of the real-time class i in concern (recall: 1: RealTimeCA;
2: Trellis; 3: RealTimeIA), and conversely. More pre-
cisely, to characterize the three real-time classes, we de-
fine three sub-logics of the Horn logic that characterizes
linear time of one-dimensional CA (DLIN1

CA = monot-ESO-
HORN1(∀2, arity2)), called respectively pred-ESO-HORN,
incl-ESO-HORN and pred-dio-ESO-HORN (defined in the
next section), and we prove the following equalities:

1) pred-ESO-HORN = GRID1 = RealTimeCA
2) incl-ESO-HORN = GRID2 = Trellis
3) pred-dio-ESO-HORN = GRID3 = RealTimeIA

To establish the double nature of our three logics and
deduce the previous equalities 1-3, we present each logic in
two forms:
• we define it the largest possible, showing the extent

of its expressiveness;
• we prove for it the most restricted normal form.

In each case, a formula in normal form can be translated
literally into a grid program, which is essentially a CA of
the real-time complexity class in concern.

Structure of the paper: In preliminaries, we recall the
classical definitions of one-dimensional cellular automata
and of their real-time classes and define our three logics
with an example of a problem naturally expressed in such a
logic. Section 3 establishes how each of our logics can be
normalized. Using these normal forms we show in Section 4
that our three logics exactly characterize the three real-time
complexity classes and also – for inclusive logic – the class
of linear conjunctive languages of Okhotin [?]. Section 5
gives conclusive remarks.

2. Preliminaries

2.1. Cellular automata and real-time complexity

A cellular automaton in one dimension is a tape of cells
(each cell is a finite automaton) indexed by Z. Each cell

3. To be complete, one should say that there is a fourth arrangement:
place the input word on a side containing the output cell. In this case, the
grid circuit behaves like a finite automaton (CA of dimension zero)...

takes a value from a finite set of states and the cells evolve
synchronously along a discrete time scale. The evolution of
the cell c is done according to a transition function which
takes as input the state of the cell itself and the states of its
neighbors at the previous time step and outputs a new state
for the cell.

Definition 1 (cellular automaton). A cellular automaton is
defined by a 5-tuple (Q,Σ, Qaccept,N , δ) where Q is a finite
set of states, Σ ⊂ Q is the input alphabet, Qaccept ⊂ Q is
the set of accepting states, the neighborhood N is a finite
ordered subset of Z and δ is the transition function from
Q|N | to Q. The state of the cell c at time t is denoted by
〈c, t〉. The state of the cell c at time t > 1 is defined by the
transition function: 〈c, t〉 = δ(〈c+ v, t− 1〉 : v ∈ N).

Definition 2 (real time language acceptance). Cellular au-
tomata can act as language acceptors. In this case cellular
automata work on a finite set of cells indexed by [1, n]
where n is the size of the input word w = w1 . . . wn, one
of this cells is also chosen as the output cell (usually one
of the border cells). A word w is said to be accepted by an
automaton in real-time if its output cell enters an accepting
state immediately after getting all the information from w.
The language accepted by a cellular automaton A in real-
time (denoted by L(A)) is the set of all its accepted words
in real-time.

Convention (permanent state, quiescent state).
All the cells of index outside [1, n] are in the permanent
state]. Without information from the input a cell of index
[1, n] is in the quiescent state λ.

The real-time computation power of a CA only depends
on its communication scheme. That is fully determined by
the following three specifications: the way the input is fed to
the automaton, the way the cells communicate (depending on
the neighborhood) and the output cell. The input is usually
fed to the automaton in a parallel way: the ith bit of the
input is given to the ith cell at the start of the computation.
The input can also be fed in a sequential way: the ith bit
of the input is given to the first cell at time i for which we
add a specific transition function δinput. Usually the output
cell is the first cell for two-way communications and the last
one for one-way communication.

CA have their input fed in a parallel way and the cells
communicate in two-way mode (N = {−1, 0, 1}). One-way
cellular automata (OCA) and iterative arrays (IA) are two
natural variants of CA. OCA are narrowed on the way the
cells communicate: the information is only transmitted from
left to right (N = {−1, 0}). The input mode of IA is no
more parallel but sequential.

Definition 3 (RealTimeCA). The class RealTimeCA is the
set of languages accepted by real-time CA with a parallel
input, the neighborhood N = {−1, 0, 1} and the first cell
as the output cell.

The class RealTimeCA is equivalent to RealTimeOIA, the
set of languages accepted by one-way IA with sequential
input running in real-time with neighborhood N = {−1, 0}
and the last cell as the output cell.

Definition 4 (Trellis). The class Trellis is the set of
languages accepted by trellis automata or equivalently by
OCA running in real-time with a parallel input, the neigh-
borhood N = {−1, 0} and the last cell as the output cell.

w1 w2 w3 w4 w5

RealTimeCA

w1

w2

w3

w4

w5

RealTimeOIA

w1 w2 w3 w4 w5

RealTimeOCA

w1 w2 w3 w4 w5

Trellis

w1

w2

w3

w4

w5

RealTimeIA

Figure 2. The space-time diagram of the three natural real-time classes

Definition 5 (RealTimeIA). The class RealTimeIA is the
set of languages accepted by IA running in real-time with a
sequential input, the neighborhood N = {−1, 0, 1} and the
first cell as the output cell.

The space-time diagrams of these real-time classes are
depicted in Figure 2.

2.2. Our logics

The “local” nature of our logics requires that the underlying
structure encoding an input word w = w1 . . . wn on its index
interval [1, n] = {1, . . . , n} only uses the successor and
predecessor functions and the monadic predicates min and
max as its only arithmetic functions/predicates:

Definition 6 (structure encoding a word). Each nonempty
word w = w1 . . . wn ∈ Σn on a fixed finite alphabet Σ is
represented by the first-order structure

〈w〉 := ([1, n]; (Qs)s∈Σ, min, max, suc, pred)

of domain [1, n], monadic predicates Qs, s ∈ Σ, min and
max such that Qs(i) ⇐⇒ wi = s, min(i) ⇐⇒ i = 1,
and max(i) ⇐⇒ i = n, and unary functions suc and
pred such that suc(i) = i + 1 for i < n and suc(n) = n,
pred(i) = i− 1 for i > 1 and pred(1) = 1. Let SΣ denote
the signature {(Qs)s∈Σ, min, max, suc, pred} of structure
〈w〉. The monadic predicates Qs, s ∈ Σ, min, and max of
SΣ are called input predicates.

Let x + k and x − k abbreviate the terms suck(x) and
predk(x), for a fixed integer k ≥ 0.

Let us now define two of our logics:

Definition 7 (predecessor logics). A predecessor Horn for-
mula (resp. predecessor Horn formula with diagonal input-
output) is a formula of the form Φ = ∃R∀x∀yψ(x, y) where
ψ is a conjunction of Horn clauses on the variables x, y,
– of signature SΣ ∪R (resp. SΣ ∪R ∪ {=}) where R is a
set of binary predicates called computation predicates,
– of the form δ1 ∧ . . .∧ δr → δ0 where the conclusion δ0 is
either a computation atom R(x, y) with R ∈ R, or ⊥ (False)
and each hypothesis δi is either an input literal/conjunction
of one of the forms:

• Qs(x−a), Qs(y−a) (resp. Qs(x−a)∧x = y), for
s ∈ Σ and an integer a ≥ 0,

• U(x− a), ¬U(x− a), U(y − a) or ¬U(y − a), for
U ∈ {min, max} and an integer a ≥ 0,

or a computation atom of the form S(x − a, y − b) or
S(y − b, x− a), for S ∈ R and some integers a, b ≥ 0.

Let pred-ESO-HORN (resp. pred-dio-ESO-HORN) denote
the class of predecessor Horn formulas (resp. predecessor
Horn formulas with diagonal input-output) and, by abuse of
notation, the class of languages they define.

The formulas of the “predecessor” logics defined above
use the predecessor function but not the successor function:
both logics inductively define problems in increasing both
coordinates x and y. The inductive principle of our last logic
is seemingly different: it lies on inclusions of intervals [x, y].

Definition 8 (inclusion logic). An inclusion Horn formula
is a formula of the form Φ = ∃R∀x∀yψ(x, y) where ψ is a
conjunction of Horn clauses of signature SΣ∪R∪{=,≤, <}
where R is a set of binary predicates called computation
predicates, of the form x ≤ y ∧ δ1 ∧ . . . ∧ δr → δ0 where
the conclusion δ0 is either a computation atom R(x, y) with
R ∈ R, or the atom ⊥ (False), and each hypothesis δi is

1) either an input literal of the form 4 U(x + a),
¬U(x + a), U(y + a) or ¬U(y + a), for U ∈
{(Qs)s∈Σ, min, max} and an integer a ∈ Z,

2) or the (in)equality x = y or x < y 5,
3) or a conjunction of the form

S(x+ a, y − b) ∧ x+ a ≤ y − b
for a computation atom S(x+a, y−b), with S ∈ R
and some integers a, b ≥ 0.

Let incl-ESO-HORN denote the class of inclusion Horn
formulas and, also, the class of languages they define.

Note that the “inclusion” meaning of logic incl-ESO-
HORN is given by hypotheses x ≤ y and x + a ≤ y − b. It
means that the inductive computation of each value R(x, y),
for x ≤ y and R ∈ R, only use values of the form
S(x + a, y − b), for S ∈ R and an included interval
[x+ a, y − b] ⊆ [x, y].
Notation: We will freely use the intuitive abbreviations
x > a, x = a, for a constant integer a ≥ 1, and x ≤ n−a,
x < n − a, x = n − a, for a constant integer a ≥ 0, and
similarly for y. For example, x > 3 is written in place of
¬min(x−2) and y ≤ n−2 is written in place of ¬max(y+1).
Technical remarks about our logics: Without loss of gener-
ality, we can suppose that each clause having a hypothesis
atom of the form S(x − a, y − b) or S(y − b, x − a), for
a, b ≥ 0, has also the hypotheses x > a (if a > 0) and
y > b (if b > 0). The same for each hypothesis atom of
the form Qs(x − a) or Qs(y − b), for a, b > 0. Similarly,
we assume that each clause with a hypothesis of the form
Qs(x+ a) (resp. Qs(y + a)), with a > 0, also contains the
hypothesis x ≤ n− a (resp. y ≤ n− a). Similarly, for each
atom S(x+ a, y − b), for a, b ≥ 0.
Comparing the input presentation in our logics: The pre-
sentation of the input is more restrictive in Definition 7 of
predecessor logics than in that of inclusion logic (Defini-
tion 8) because we have forbidden the use of the successor
function for uniformity/aesthetics. However, allowing the
same largest set of input literals (¬)U(x+a), (¬)U(y+a),

4. Without loss of generality, assume that there is no negation over a
predicate Qs.

5. Then, the hypothesis x ≤ y is redundant.

for U ∈ {(Qs)s∈Σ, min, max} and a ∈ Z, does not modify
the expressive power of predecessor logics: steps 5 and 6
of the normalization of inclusive logic in Section 3 can be
easily adapted to predecessor logics.

Using our logics for programming: an example

We now give an example of a natural problem expressed in
one of our logics. The language notBordered is the set of
all words w ∈ Σ+ with no proper prefix equal to a proper
suffix:
notBordered = {w | ∀w′ such that w = w′u = vw′,
w′ = ε or w′ = w}.
This language can be defined by ΦnotBordered :=
∃Border∀x∀yψ of pred-ESO-HORN where ψ is the conjunc-
tion of the following clauses where Border(x, y) means
w1 . . . wx = wy−x+1 . . . wy (see Figure 3):

1) min(x)∧¬min(y)∧Qs(x)∧Qs(y)→ Border(x, y)
2) ¬min(x)∧¬min(y)∧Border(x−1, y−1)∧Qs(x)∧

Qs(y)→ Border(x, y), for all s ∈ Σ;
3) max(y) ∧ Border(x, y)→ ⊥.

If Border(x, y) is true when y is maximal, then w1 . . . wx =
wn−x+1 . . . wn and therefore w /∈ notBordered.

a

b

b

a

a

b

b

a b b a a b b

⊥

Qs(x) ∧Qs(y)

Border(x, y)

⊥
the “false”

Figure 3. Computation of ΦnotBordered on the word abbaabb

So, as a consequence of this paper, notBordered be-
longs to RealTimeCA. In fact, more is known [?]:

notBordered ∈ RealTimeCA \ (TREILLIS ∪ RealTimeIA).

3. Normalizing our logics

The most difficult and main parts of the proofs of our
descriptive complexity results, i.e., equalities 1-3 of Sub-
section 1.4, are the following normalization lemmas. They
are key ingredients because our normalized formulas can
be literally simulated by grids and finally by CA of the
corresponding real-time classes.

Lemma 1 (normalization of predecessor logics). Each for-
mula Φ ∈ pred-ESO-HORN (resp. Φ ∈ pred-dio-ESO-HORN)
is equivalent to a formula Φ′ ∈ pred-ESO-HORN (resp.
Φ′ ∈ pred-dio-ESO-HORN) normalized as follows: each
clause of Φ′ is of one of the following forms:

• input clause of the form, for s ∈ Σ and R ∈ R:
min(x) ∧ min(y) ∧Qs(y)→ R(x, y), or
min(x) ∧ ¬min(y) ∧Qs(y)→ R(x, y)
(resp. x = y ∧ min(x) ∧Qs(x)→ R(x, y), or
x = y ∧ ¬min(x) ∧Qs(x)→ R(x, y)).

• the contradiction clause, for a fixed R⊥ ∈ R:
max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥;

• computation clause of the form δ1 ∧ . . . ∧ δr →
R(x, y), for R ∈ R, where each hypothesis δi is

a conjunction of the form S(x− 1, y)∧¬min(x) or
S(x, y − 1) ∧ ¬min(y), for S ∈ R.

Let normal-pred-ESO-HORN (resp. normal-pred-dio-
ESO-HORN) denote the class of formulas (languages) so de-
fined.

Lemma 2 (normalization of inclusion logic). Each formula
Φ ∈ incl-ESO-HORN is equivalent to a formula Φ′ ∈ incl-
ESO-HORN normalized as follows: each clause of Φ′ is of one
of the following forms:

• input clause of the form x = y ∧Qs(x)→ R(x, y),
for s ∈ Σ and R ∈ R;

• the contradiction clause, for a fixed R⊥ ∈ R,
min(x) ∧ max(y) ∧R⊥(x, y)→ ⊥;

• computation clause of the form6 x < y ∧ δ1 ∧ . . . ∧
δr → R(x, y), where R ∈ R and where each
hypothesis δi is a computation atom of either form
S(x+ 1, y) or S(x, y − 1), for S ∈ R.

Let normal-incl-ESO-HORN denote the class of formulas
(resp. languages) so defined.

Proof of the normalization lemmas 1 and 2

The normalization processes of our three logics are quite
similar each other; further, some steps are exactly the same.
Therefore, we choose to present here below the successive
normalization steps for one logic: pred-ESO-HORN. After-
wards, we will succinctly describe how those steps should
be adapted for the two other logics.

Proof of Lemma 1: Normalization of predecessor Horn
formulas. Let a formula Φ ∈ pred-ESO-HORN. For simplicity
of notation, we first assume that the only computation atoms
of Φ are of the form R(x−a, y−b), a, b ≥ 0 (no atom of the
form R(y− b, x−a)). We will show at the end of the proof
how to manage the general case. Φ will be transformed into
an equivalent normalized form Φ′ by a sequence of 10 steps:

1) Processing the contradiction clauses;
2) Processing the input;
3) Restriction of computation atoms to R(x − 1, y),

R(x, y − 1), and R(x, y);
4) Elimination of atoms x > a, x = a, y > a, y = a;
5) Processing of min and max;
6) Defining equality and inequalities;
7) Folding of the domain;
8) Deleting max in the initialization clauses;
9) From initialization clauses to input clauses;

10) Elimination of atoms R(x, y) as hypotheses.

In each of these 10 steps, we will introduce new (binary)
computation predicates, to be added to the set R of existen-
tially quantified predicates, and new clauses to define them.

1) Processing the contradiction clauses: Without loss of
generality, one can assume there is the only contradiction
clause max(x) ∧ max(y) ∧ R⊥(x, y) → ⊥. Indeed, each
contradiction clause `1 ∧ . . . ∧ `k → ⊥ can be equiva-
lently replaced by the conjunction of computation clauses
`1 ∧ . . . ∧ `k → R⊥(x, y) with the clause R⊥(x, y) → ⊥
where R⊥ is a new computation predicate (intuitively, al-
ways false). However, in place of the previous clause,
we “delay” the contradiction, by propagating predicate R⊥

6. Note that the hypothesis x < y is equivalent to the expected inequality
x + 1 ≤ y or x ≤ y − 1.

till point (n, n), thanks to the conjunction of the “trans-
port” clauses R⊥(x − 1, y) ∧ ¬min(x) → R⊥(x, y) and
R⊥(x, y − 1) ∧ ¬min(y) → R⊥(x, y) and of the unique
contradiction clause max(x) ∧ max(y) ∧ R⊥(x, y) → ⊥
required by the normal form.

2) Processing the input: The idea is to make available the
letters of the input word only on the sides x = 1 and y = 1
of the square {(x, y) ∈ [1, n]2}, this by carrying out their
transport thanks to new “transport” predicates W x

s and W y
s ,

for s ∈ Σ, inductively defined by the following clauses:
• initialization clauses Qs(x) ∧ min(y) → W x

s (x, y) and
Qs(y) ∧ min(x)→W y

s (x, y);
• transport clauses W x

s (x, y − 1) ∧ ¬min(y) → W x
s (x, y)

and W y
s (x− 1, y) ∧ ¬min(x)→W y

s (x, y).
By transitivity, these clauses imply clauses
Qs(x) → W x

s (x, y) and Qs(y) → W y
s (x, y).

In other words, the minimal model of the conjunction
of those clauses that expands structure 〈w〉 satisfies
equivalences ∀x∀y (W x

s (x, y) ⇐⇒ Qs(x)) and
∀x∀y (W y

s (x, y) ⇐⇒ Qs(y)). This justifies the
replacement of the input atoms of form Qs(x − a) and
Qs(y − b) by the respective atoms W x

s (x − a, y) and
W y
s (x, y − b) in all the clauses, except in the initialization

clauses.

3) Restriction of computation atoms to R(x − 1, y),
R(x, y − 1), R(x, y): The idea is to introduce new “shift”
predicates Rx−a, Ry−b and Rx−a,y−b, for fixed integers
a, b > 0 and R ∈ R: typically, we define the pred-
icate Rx−a,y−b that intuitively satisfies the equivalence
Rx−a,y−b(x, y) ⇐⇒ R(x − a, y − b). Let us suggest the
method by an example. Assume we have initially the Horn
clause

x > 3∧y > 2∧R(x−2, y−1)∧S(x−3, y−2)→ T (x, y).

This clause is replaced by the clause

x > 3 ∧ y > 2 ∧Rx−2(x, y − 1) ∧ Sx−2,y−2(x− 1, y))→
T (x, y),

for which the predicates Rx−1 and Rx−2 are defined
by the clauses x > 1 ∧ R(x − 1, y) → Rx−1(x, y) and
x > 2 ∧ Rx−1(x − 1, y) → Rx−2(x, y) which imply
x > 2 ∧R(x− 2, y)→ Rx−2(x, y) and then x > 2 ∧ y > 1
∧ R(x − 2, y − 1) → Rx−2(x, y − 1), and the predicates
Sx−1, Sx−2, Sx−2,y−1 and Sx−2,y−2 defined by the
respective clauses: x > 1 ∧ S(x − 1, y) → Sx−1(x, y),
x > 2 ∧ Sx−1(x − 1, y) → Sx−2(x, y),
x > 2 ∧ y > 1 ∧ Sx−2(x, y − 1) → Sx−2,y−1(x, y),
and x > 2∧ y > 2∧ Sx−2,y−1(x, y− 1)→ Sx−2,y−2(x, y),
which imply together the clause
x > 2∧ y > 2∧S(x− 2, y− 2)→ Sx−2,y−2(x, y) and then
also x > 3∧ y > 2∧S(x− 3, y− 2)→ Sx−2,y−2(x− 1, y).

Remark 1. Atoms on min and x are of the forms min(x−a)
or ¬min(x − a) for a ≥ 0, or, equivalently, x = a + 1
or x > a + 1. Besides, for each integer a ≥ 1, the atom
max(x − a) is false. Therefore, one may consider that the
only literals on x involving min or max are of the form
min(x), ¬min(x), max(x), ¬max(x), x = a, x > a, for an
integer a > 1, and similarly, for y.

4) Elimination of atoms x > a, x = a, y > a, y = a: By re-
currence on integer a ≥ 1, let us define the binary predicates
Rx>a (and, similarly, Rx=a, Ry>a, Ry=a) whose intuitive
meaning is x > a (resp. x = a, y > a, y = a). The predicate
Rx>1 is defined by the clause ¬min(x)→ Rx>1(x, y). For

a > 1, let us define Rx>a from Rx>a−1 by the clause
Rx>a−1(x− 1, y)∧¬min(x)→ Rx>a(x, y). By recurrence
on integer a ≥ 1, these clauses imply x > a→ Rx>a(x, y).
This justifies the replacement of the atoms x > a and
x = a, for a > 1, by Rx>a(x, y) and Rx=a(x, y), respec-
tively, and similarly for y in place of x.

After step 4, the only literals involving min or max are
(¬)min(x), (¬)max(x), (¬)min(y), (¬)max(y).

5) Processing of min and max: To each literal η(x) of the
form min(x), ¬min(x), max(x) or ¬max(x), associate the
new binary predicate Rη(x) defined by the conjunction of the
initialization clause η(x)∧min(y)→ Rη(x)(x, y) and of the
transport clause Rη(x)(x, y − 1) ∧ ¬min(y)→ Rη(x)(x, y).
Do similarly for the literals η(y) ∈ {(¬)min(y), (¬)max(y)}.
This justifies we replace each such literal η(x) (resp. η(y))
by the “equivalent” atom Rη(x)(x, y) (resp. Rη(y)(x, y)) in
all the clauses, except in the above initialization clauses and
in the contradiction clause or in case η(x) (resp. η(y)) is
¬min(x) (resp. ¬min(y)) and is joined to a hypothesis of
the form R(x− 1, y) (resp. R(x, y − 1)).

Recapitulation: After step 5 each clause is of one of the
following forms:

1) an initialization clause of one of the two forms:
• initialization for x = 1: min(x)∧η(y)→ R(x, y)
with η(y) ∈ {(Qs(y))s∈Σ, (¬)min(y), (¬)max(y)};
• initialization for y = 1: min(y)∧η(x)→ R(x, y)
with η(x) ∈ {(Qs(x))s∈Σ, (¬)min(x), (¬)max(x)};

2) “the” contradiction clause max(x) ∧ max(y) ∧
R⊥(x, y)→ ⊥;

3) a computation clause of the form
δ1(x, y) ∧ . . . ∧ δr(x, y) → R(x, y), where each
hypothesis δi is of one of the three forms R(x, y),
R(x− 1, y) ∧ ¬min(x), R(x, y − 1) ∧ ¬min(y).
In fact, without loss of generality, we can assume
that each computation clause is of one of the fol-
lowing forms:

a) S(x− 1, y) ∧ ¬min(x)→ R(x, y);
b) S(x, y − 1) ∧ ¬min(y)→ R(x, y);
c) S(x, y) ∧ T (x, y)→ R(x, y).

Justification of the assumption: “Decompose” each compu-
tation clause into clauses of forms (a,b,c) by introducing
new intermediate predicates. For example, the computation
clause R1(x− 1, y) ∧ ¬min(x) ∧R2(x, y − 1) ∧ ¬min(y) ∧
R3(x, y) → R4(x, y) is “equivalent” to the conjunction
of the following clauses using new predicates R5, R6, R7:
R1(x − 1, y) ∧ ¬min(x) → R5(x, y); R2(x, y − 1) ∧
¬min(y) → R6(x, y); R5(x, y) ∧ R6(x, y) → R7(x, y);
R7(x, y) ∧R3(x, y)→ R4(x, y).

We now plan to fold the square domain {(x, y) ∈ [1, n]2}
along the diagonal x = y on the over-diagonal triangle
Tn = {(x, y) ∈ [1, n]2| x ≤ y}. This requires to first define
equality and inequalities.

6) Defining equality and inequalities: Let us jointly de-
fine the predicates R= and Rpred of intuitive meaning
R=(x, y) ⇐⇒ x = y and Rpred(x, y) ⇐⇒ x − 1 = y
by the following clauses: min(x) ∧ min(y) → R=(x, y);
¬min(x) ∧ R=(x − 1, y) → Rpred(x, y); ¬min(y) ∧
Rpred(x, y − 1)→ R=(x, y).

Then define the predicate R< such that R<(x, y) ⇐⇒
x < y with the two clauses ¬min(y) ∧ R=(x, y − 1) →
R<(x, y) and ¬min(y)∧R<(x, y − 1)→ R<(x, y). Define

similarly the predicate R≤ such that R≤(x, y) ⇐⇒ x ≤ y
with the two clauses min(x) ∧ min(y) → R≤(x, y) and
¬min(x) ∧R<(x− 1, y)→ R≤(x, y).

For easy reading, we will freely write x = y, x < y
and x ≤ y in place of the atoms R=(x, y), R<(x, y) and
R≤(x, y), respectively.

7) Folding of the domain: Let us fold the square domain
{(x, y) ∈ [1, n]2} along the diagonal x = y on the over-
diagonal triangle Tn = {(x, y) ∈ [1, n]2| x ≤ y} so that
each point (y, x) such that x ≤ y is sent to its symmetrical
point (x, y) ∈ Tn. For that purpose, let us associate to each
predicate R ∈ R a new (inverse) predicate Rinv whose
intuitive meaning is the following: for each x ≤ y, we
have Rinv(x, y) ⇐⇒ R(y, x). So, each clause C will be
replaced by two clauses: the first one is the restriction of
C to the triangle Tn; the second one is the folding on Tn
of the restriction of C to the under-diagonal triangle using
predicates Rinv. Finally, we will express that each R ∈ R
coincides with its inverse Rinv on the fold x = y.

Folding the initialization clauses: Each initialization
clause of the form min(x) ∧ η(y) → R(x, y) (with
η(y) ∈ {Qs(y)|s ∈ Σ} ∪ {(¬)min(y), (¬)max(y)}) ap-
plies to the line x = 1 which is included in the trian-
gle Tn and consequently it should be unchanged in the
folding; in contrast, each initialization clause of the form
min(y) ∧ η(x)→ R(x, y) (with η(x) ∈ {Qs(x)|s ∈ Σ} ∪
{(¬)min(x), (¬)max(x)}) is replaced by its folded version
min(x) ∧ η(y)→ Rinv(x, y).

Folding the computation clauses: Let us describe how to
fold the clauses (a) or (b) (folding clauses (c) is easy):
• Folding of clauses (a): A clause of the form S(x− 1, y)∧
¬min(x) → R(x, y) is equivalent to the conjunction of
clauses i) x ≤ y ∧ S(x− 1, y) ∧ ¬min(x)→ R(x, y) and
ii) x > y ∧ S(x − 1, y) ∧ ¬min(x) → R(x, y). Notice that
clause (i) applies to the triangle Tn since x ≤ y implies
x − 1 < y: therefore, clause (i) should be left unchanged.
Clause (ii) is equivalent (by exchanging variables x and y) to
the clause y > x∧S(y− 1, x)∧¬min(y)→ R(y, x) whose
folded (equivalent) form on Tn is x < y ∧ Sinv(x, y − 1) ∧
¬min(y)→ Rinv(x, y) since x < y implies x ≤ y − 1.
• Folding of clauses (b): Similarly, a clause of the form
S(x, y − 1) ∧ ¬min(y)→ R(x, y) is equivalent to the con-
junction of clauses x < y∧S(x, y−1)∧¬min(y)→ R(x, y)
and x ≤ y ∧ Sinv(x− 1, y) ∧ ¬min(x)→ Rinv(x, y).

Folding the contradiction clause: Clearly, it is harm-
less to confuse the (contradiction) predicate R⊥ and its
inverse (R⊥)inv; consequently, the contradiction clause itself
max(x)∧max(y)∧R⊥(x, y)→ ⊥ is its own folded version.

The diagonal fold: Finally, for each R ∈ R, the fol-
lowing two clauses mean that R coincides with its inverse
Rinv on the diagonal: x = y ∧ R(x, y) → Rinv(x, y);
x = y ∧Rinv(x, y)→ R(x, y).

Recapitulation: By a careful examination of the set of
clauses obtained after steps 1-7, we can check that each
of them is of one of the following forms:

1) an initialization clause of the form: min(x) ∧
η(y) → R(x, y) with η(y) ∈ {Qs(y)|s ∈ Σ} ∪
{(¬)min(y), (¬)max(y)};

2) “the” contradiction clause max(x) ∧ max(y) ∧
R⊥(x, y)→ ⊥;

3) a computation clause of one of the following forms:
(a) x ≤ y ∧ S(x− 1, y) ∧ ¬min(x)→ R(x, y);
(b) x < y ∧ S(x, y − 1) ∧ ¬min(y)→ R(x, y);

(c) x ≤ y ∧ S(x, y) ∧ T (x, y)→ R(x, y);
(d) x = y ∧ S(x, y)→ R(x, y).

8) Deleting max in the initialization clauses: The idea is
to consider in parallel for each point (x, y) the case where
the hypothesis max(y) holds and the contrary case where
the negation ¬max(y) holds. For that purpose, we duplicate
each computation predicate R in two new predicates denoted
Ry←max and Ry←¬max. Intuitively, the atom Ry←max(x, y) (resp.
Ry←¬max(x, y)) expresses the implication max(y)→ R(x, y)
(resp. ¬max(y)→ R(x, y)).

Transforming the initialization clauses: According to
the desired semantics of Ry←max and Ry←¬max, each initial-
ization clause of the form min(x) ∧ max(y) → R(x, y)
(resp. min(x) ∧ ¬max(y) → R(x, y)) should be rewritten
as min(x) → Ry←max(x, y) (resp. min(x) → Ry←¬max(x, y)).
Similarly, each initialization clause of the form min(x) ∧
η(y) → R(x, y), for η(y) ∈ {Qs(y)|s ∈ Σ} ∪ {(¬)min(y)}
should be replaced by the conjunction of the following two
clauses: min(x)∧η(y)→ Ry←max(x, y) and min(x)∧η(y)→
Ry←¬max(x, y).

Transforming the computation clauses: We describe it
for each above form (a-d).
• Each clause (a) x ≤ y∧S(x−1, y)∧¬min(x)→ R(x, y)
is replaced by the “equivalent” conjunction of the follow-
ing two clauses x ≤ y ∧ Sy←max(x − 1, y) ∧ ¬min(x) →
Ry←max(x, y) and x ≤ y ∧ Sy←¬max(x − 1, y) ∧ ¬min(x) →
Ry←¬max(x, y).
• Each clause (b) x < y∧S(x, y−1)∧¬min(y)→ R(x, y)
is “equivalent” to x < y ∧ Sy←¬max(x, y − 1) ∧ ¬min(y) →
R(x, y) since the hypothesis ¬max(y−1) always holds. Con-
sequently, clause (b) should be replaced by the “equivalent”
conjunction of the following two clauses:
x < y ∧ Sy←¬max(x, y − 1) ∧ ¬min(y)→ Ry←max(x, y) and
x < y ∧ Sy←¬max(x, y − 1) ∧ ¬min(y)→ Ry←¬max(x, y).
• Each clause (c) x ≤ y∧S(x, y)∧T (x, y)→ R(x, y) is re-
placed by the “equivalent” conjunction of the following two
clauses: x ≤ y ∧ Sy←max(x, y) ∧ T y←max(x, y)→ Ry←max(x, y)
and x ≤ y ∧Sy←¬max(x, y)∧ T y←¬max(x, y)→ Ry←¬max(x, y).
• Make a similar substitution for each above clause (d).

Processing the contradiction clause: Obviously, the con-
tradiction clause max(x) ∧ max(y) ∧ R⊥(x, y) → ⊥ is
equivalent to the formula max(x) ∧ max(y) ∧ (max(y) →
R⊥(x, y)) → ⊥ and should be rewritten as max(x) ∧
max(y) ∧ (R⊥)y←max(x, y) → ⊥, which is of the required
form if the predicate (R⊥)y←max is renamed R⊥.

9) From initialization clauses to input clauses: The ini-
tialization clauses are now of the form min(x) → R(x, y)
or min(x) ∧ η(y) → R(x, y), for η(y) ∈ {Qs(y)|s ∈ Σ}
∪ {(¬)min(y)}. By a separation in cases, it is easy to
transform each of these clauses into an equivalent conjunc-
tion of input clauses of the required (normalized) forms:
min(x) ∧ min(y) ∧ Qs(y) → R(x, y); min(x) ∧ ¬min(y) ∧
Qs(y)→ R(x, y).

After step 9, the formula obtained is of the claimed nor-
mal form, except that some computation clauses may have
atoms R(x, y) as hypotheses. Our last step is to eliminate
such hypotheses.

10) Elimination of atoms R(x, y) as hypotheses: The first
idea is to group together in each computation clause the hy-
pothesis atoms of the form R(x, y) and the conclusion of the
clause. Accordingly, the formula can be rewritten in the form
Φ := ∃R∀x∀y[

∧
i Ci(x, y) ∧

∧
i∈[1,k](αi(x, y) → θi(x, y))]

where the Ci’s are the input clauses and the contradic-
tion clause, and each computation clause is written in the

form αi(x, y) → θi(x, y) where αi(x, y) is a conjunction
of formulas of the only forms R(x − 1, y) ∧ ¬min(x),
R(x, y−1)∧¬min(y), but not R(x, y), and θi(x, y) is a Horn
clause whose all the atoms are of the form R(x, y). The sec-
ond idea is to “solve” the Horn clauses θi (containing only
atoms of the form R(x, y)) according to the input clauses
and all the possible conjunctions of hypotheses αi that may
be true. Notice the two following facts: the hypotheses of
the input clauses are input literals and the conjuncts of
the αi’s are of the only forms R(x − 1, y) ∧ ¬min(x),
R(x, y − 1) ∧ ¬min(y). So, we can prove by induction
on the sum x + y that the obtained formula Φ′ which is
a conjunction of clauses (whose hypotheses do include no
atom of the form R(x, y) anymore) is equivalent to the above
formula Φ. For a detailed proof, see the appendix.

General case: Steps 1-7 are easy to adapt in the general
case where the initial formula may contain hypotheses of
the form R(y− b, x− a). The new points are the following:
step 3 restricts the computation atoms to four forms: R(x, y),
R(y, x), R(x − 1, y) and R(x, y − 1); step 7 (folding the
domain) is adapted so that it eliminates the atoms of the
form R(y, x) by using the following equivalence for x ≤ y,
R(y, x) ⇐⇒ Rinv(x, y). See the details in the appendix.

This achieves the proof of the normalization result pred-
ESO-HORN = normal-pred-ESO-HORN.

Adaptation of steps 1-10 for normalization of predecessor
Horn formulas with diagonal input-output: Step 1 is
not modified. In step 2, the initialization clauses are now
x = y∧Qs(x)→W x

s (x, y) and x = y∧Qs(y)→W y
s (x, y)

whereas the transport clauses are not modified. Steps 3 to 5
and the recapitulation after step 5 are not modified either, ex-
cept that now each initialization clause is of one of the three
forms: 1) x = y ∧ Qs(x) → R(x, y); 2) min(x) ∧ η(y) →
R(x, y), with η(y) ∈ {(¬)min(y), (¬)max(y)}; 3) min(y) ∧
η(x) → R(x, y), with η(x) ∈ {(¬)min(x), (¬)max(x)}.
Steps 6 and 7 (folding of the domain) and the recapitulation
after step 7 are not modified either, except that now each
initialization clause has one of the only forms 1 and 2 above.

Step 8 (deleting max in the initialization clauses)
can be easily adapted according to those initialization
clauses whose forms after step 8 are now restricted to
1) x = y∧Qs(x)→ R(x, y); 2) min(x)∧min(y)→ R(x, y);
3) min(x) ∧ ¬min(y)→ R(x, y). Clause 2 can be replaced
by the equivalent clause 2’) x = y ∧ min(x)→ R(x, y).

Step 9 (from initialization clauses to input clauses)
is modified as follows. Define the predicates Rmin(x),
Rmin(y) and R¬min(y) by the initialization clauses
4) x = y ∧ min(x) → Rmin(x)(x, y) and
5) x = y ∧ min(x) → Rmin(y)(x, y), and the computation
clauses ¬min(y) ∧ Rmin(x)(x, y − 1) → Rmin(x)(x, y),
¬min(y) ∧ Rmin(y)(x, y − 1) → R¬min(y)(x, y), and
¬min(y)∧R¬min(y)(x, y−1)→ R¬min(y)(x, y). This allows
to replace the initialization clause 3 by the computation
clause Rmin(x)(x, y) ∧ R¬min(y)(x, y) → R(x, y). After
those transformations all the initialization clauses are
of the form x = y ∧ Qs(x) → R(x, y) (clause 1
above) or x = y ∧ min(x) → R(x, y) (clauses 2’,
4 and 5 above). By a separation in cases, it is easy
to transform each of these clauses into an equivalent
conjunction of input clauses of the required (normalized)
forms: x = y ∧ min(x) ∧ Qs(x) → R(x, y), or
x = y ∧ ¬min(x) ∧Qs(x)→ R(x, y).

Step 10 (Elimination of atoms R(x, y) as hypotheses)
and the end of the proof are the same as those for pred-

ESO-HORN. This achieves the proof of the equality pred-
dio-ESO-HORN = normal-pred-dio-ESO-HORN. Lemma 1 is
proved. �

Proof of Lemma 2: Normalization of inclusion Horn
formulas. It divides into seven steps.

1) Processing the contradiction clauses: Here again, we
delay the contradiction and propagate the predicate R⊥
till the point (1, n) by the conjunction of the computa-
tion clauses x < y ∧ R⊥(x + 1, y) → R⊥(x, y) and
x < y ∧ R⊥(x, y − 1) → R⊥(x, y) and of the unique
contradiction clause min(x) ∧ max(y) ∧R⊥(x, y)→ ⊥.

2) Processing the input: We make available the letters of
the input word on the only diagonal x = y by introducing
new predicates W x+a

s and W y+a
s , for a ∈ Z, whose intuitive

meaning is: W x+a
s (x, y) ⇐⇒ Qs(x+ a) ∧ 1 ≤ x+ a ≤ n

(resp. W y+a
s (x, y) ⇐⇒ Qs(y+ a)∧ 1 ≤ y+ a ≤ n). They

are inductively defined by the following clauses:
• Initialization clauses (on the diagonal):
x = y∧Qs(x)→W x

s (x, y); (x = y)∧Qs(x)→W y
s (x, y);

x = y ∧Qs(x− a) ∧ x > a→W x−a
s (x, y), and

x = y ∧Qs(x− a) ∧ x > a→W y−a
s (x, y), for a > 0;

x = y ∧Qs(y + a) ∧ y ≤ n− a→W x+a
s (x, y), and

x = y ∧Qs(y + a) ∧ y ≤ n− a→W y+a
s (x, y), for a > 0.

• Transport clauses, for a ∈ Z:
x < y ∧W x+a

s (x, y − 1)→W x+a
s (x, y), and

x < y ∧W y+a
s (x+ 1, y)→W y+a

s (x, y).
This allows to replace each input atom Qs(x+ a) (resp.

Qs(y + a)), a ∈ Z, by the computation atom W x+a
s (x, y)

(resp. W y+a
s (x, y)), in all the clauses, except in the initial-

ization clauses.

Note that after step 2 the atoms on input predicates Qs
occur (see the initialization clauses above) always jointly
with x = y and in the only three forms Qs(x), Qs(x − a)
(jointly with x > a), or Q(y + a) (jointly with y ≤ n− a),
for a > 0.

3) Processing the min/max literals: One may consider that
the only literals on x involving min or max are of the forms
x = a, x > a, for an integer a ≥ 1, or x = n−a, x < n−a,
for a ≥ 0, and similarly for y.

As we have done for the Qs, we want to make available
the information about min and max, i.e., about extrema,
on the only diagonal x = y. We introduce for that new
computation predicates defined inductively: Rx=a, Rx>a,
for a ≥ 1, and Rx=n−a, Rx<n−a, for a ≥ 0, and sim-
ilarly for y, with obvious intuitive meaning: for instance,
Ry>a(x, y) ⇐⇒ y > a. For example, define the predicate
Rx=a (resp. Ry=a) by the two clauses x = y ∧ x = a →
Rx=a(x, y) and x < y∧Rx=a(x, y−1)→ Rx=a(x, y) (resp.
x = y ∧ x = a→ Ry=a(x, y) and x < y ∧Ry=a(x+ 1, y)
→ Ry=a(x, y)). As another example, define Rx<n−a by
the clauses x = y ∧ y < n − a → Rx<n−a(x, y) and
x < y ∧Rx<n−a(x, y − 1)→ Rx<n−a(x, y).

This allows to replace the “extremum” atoms x = a,
x > a, x = n− a, x < n− a by the respective computation
atoms Rx=a(x, y), Rx>a(x, y), Rx=n−a(x, y),
Rx<n−a(x, y), in all the clauses, except in the initialization
clauses and in the contradiction clause. And similarly for y.

The important fact is that after step 3, the predicate min
(resp. max) only occurs in the form x = a or x > a (resp.
in the form y = n − a or y < n − a) and always occurs
jointly with x = y, i.e., is only used on the diagonal.

4) Restriction of computation atoms to R(x + 1, y),
R(x, y − 1), and R(x, y): This is a variant of the
similar step in the normalization of predecessor logics
(step 3). We introduce now new “shift” predicates Rx+a,
Ry−b and Rx+a,y−b, for fixed integers a, b > 0 and
R ∈ R, with easy interpretation and definitions. In particu-
lar, the intuitive interpretation of the predicate Rx+a,y−b is:
Rx+a,y−b(x, y) ⇐⇒ x + a ≤ y − b ∧ R(x + a, y − b).
As an example, the “normalized” clause x < y ∧
Sx+2,y−2(x+ 1, y)→ Sx+3,y−2(x, y) defines the predicate
Sx+3,y−2 from the predicate Sx+2,y−2.

Recapitulation: After step 4, one may consider that each
clause is of one of the following forms (1-3):

1) an initialization clause x = y ∧ δ → R(x, y),
where δ is

• either an input atom Qs(x),
• or an equality x = a, for a fixed a ≥ 1, or

y = n− b, for a fixed b ≥ 0,
• or a conjunction Qs(x− a) ∧ x > a, or

Qs(y + b) ∧ y ≤ n− b, for a, b ≥ 1;

2) a computation clause of one of the forms (a,b,c):

a) x < y ∧ S(x+ 1, y)→ R(x, y);
b) x < y ∧ S(x, y − 1)→ R(x, y);
c) x � y ∧ S(x, y) ∧ T (x, y) → R(x, y),

where � ∈ {<,=};

3) “the” contradiction clause
min(x) ∧ max(y) ∧ R⊥(x, y) → ⊥, which can be
rephrased x = 1 ∧ y = n ∧R⊥(x, y)→ ⊥.

Justification for initialization clauses: By separation in
cases, one easily obtains the above three forms of initial-
ization clauses.
Justification for computation clauses: Here again, “decom-
pose” each computation clause in clauses of above forms
(a,b,c) by introducing new intermediate predicates. For ex-
ample, the computation clause x < y ∧ R1(x + 1, y) ∧
R2(x, y − 1) → R3(x, y) is “equivalent” to the conjunc-
tion of the following clauses using new predicates R4, R5:
x < y ∧R1(x+ 1, y)→ R4(x, y); x < y ∧R2(x, y− 1)→
R5(x, y); x < y ∧R4(x, y) ∧R5(x, y)→ R3(x, y).

Steps 5 and 6 that follow lie on a generalization of the
method used in step 8 of the normalization of predecessor
logics above (eliminating max in the initialization clauses).
Roughly expressed, for any computation predicate R ∈ R
and a hypothesis η, we introduce a new predicate Rη← whose
intuitive meaning is: Rη←(x, y) ⇐⇒ (η → R(x, y)).

5) Elimination of equalities x = a (a ≥ 1) and
y = n − b (b ≥ 0), except in the contradiction clause:
Let A (resp. B) be the maximum of the integers a (resp. b)
that occur in the equalities x = a (resp. y = n − b) of the
clauses. For each R ∈ R, we introduce the new predicates
Rx=a
← , Ry=n−b

← and Rx=a,y=n−b
← , for all a ∈ [1, A] and

b ∈ [0, B], whose intuitive meaning has been announced.
For example, we should have Rx=a,y=n−b

← (x, y) ⇐⇒
(x = a ∧ y = n− b→ R(x, y)).

Transforming the initialization clauses: Each initial-
ization clause x = y ∧ x = a → R(x, y) (resp.
x = y ∧ y = n − b → R(x, y)) is transformed into the
clause x = y → Rx=a

← (x, y) (resp. x = y → Ry=n−b
← (x, y)).

Transforming the computation clauses: To each clause
(a) x < y ∧ S(x + 1, y) → R(x, y) add the clauses

x < y ∧ Sx=a,y=n−b
← (x + 1, y) → Rx=a−1,y=n−b

← (x, y), for
all a ∈ [2, A] and b ∈ [0, B] (justification: the hypothesis
x + 1 = a is equivalent to x = a − 1). Similarly, for each
clause (b) x < y ∧ S(x, y − 1) → R(x, y) add the clauses
x < y∧Sx=a,y=n−b

← (x, y−1)→ Rx=a,y=n−(b−1)
← (x, y), for

all a ∈ [1, A] and b ∈ [1, B]. Also add for clauses (a,b) the
similar (simplified) clauses with only one (instead of two)
equality hypothesis. For example, for clause (a) we add the
clauses x < y ∧ Sx=a

← (x + 1, y) → Rx=a−1
← (x, y), for all

a ∈ [2, A], and x < y ∧ Sy=n−b
← (x+ 1, y)→ Ry=n−b

← (x, y),
for all b ∈ [0, B].

For each clause (c) x � y ∧ S(x, y) ∧ T (x, y) →
R(x, y), where � ∈ {<,=}, add clauses that cumulate
the hypotheses provided they are compatible. More pre-
cisely, for all a ∈ [1, A] and b ∈ [0, B] and any two
compatible (possibly empty) subsets η, θ of the set of two
hypotheses {x = a, y = n − b}, we have the clause
x � y ∧ Sη←(x, y) ∧ T θ←(x, y)→ Rη∪θ← (x, y). For example,
x � y ∧ Sx=a

← (x, y) ∧ T y=n−b
← (x, y) → Rx=a,y=n−b

← (x, y)
and x � y ∧ Sy=n−b

← (x, y) ∧ T x=a,y=n−b
← (x, y) →

Rx=a,y=n−b
← (x, y).

Processing the contradiction clause: The contradiction
clause is equivalent to x = 1∧ y = n∧ (x = 1∧ y = n→
R⊥(x, y))→ ⊥. Consequently, it should be replaced by the
clause x = 1∧y = n∧(R⊥)x=1,y=n

← (x, y)→ ⊥, which is the
contradiction clause required if the predicate (R⊥)x=1,y=n

←
is renamed R⊥.

6) Elimination of atoms Qs(x− a), Qs(y + b) (a, b > 0):
This step is quite similar to previous step 5: it is described
in the appendix.

Recapitulation: After step 6, all the initialization clauses
are of the form x = y ∧Qs(x)→ R(x, y) as required7.

7) Elimination of atoms R(x, y) as hypotheses: This step is
exactly similar to the corresponding step 10 of normalizing
predecessor logics.

This completes the proof of the equality incl-ESO-
HORN = normal-incl-ESO-HORN, i.e., Lemma 2. �

4. Equivalence between our logics and CA
complexity classes

The communication scheme of real-time classes finds
a natural expression in our normalized logics. The input
clauses, the only clauses using unary predicates Qs, express
the way the input is fed to the automaton. The computation
clauses with a computation atom R(x, y), R ∈ R, as their
conclusion simulate the computation of the CA. Deducing
or not deducing the “false” by contradiction clauses means
rejection or acceptance. Each of our normalized logics can
be described graphically on a grid, indexed by [1, n]2 (see
Figure 1).

Encoding automata states by predicates

The set R of predicates that will be used in formulas
expressing the computation of an automaton A, with Q the
set of its states, is R = {Rq | q ∈ Q}. The intuitive meaning
of this predicates is the following: Rq(c, t) is true ⇐⇒ the
cell c is in the state q at time t.

7. Note that an initialization clause of the form x = y → R(x, y) can
be rewritten

∧
s∈Σ(x = y ∧Qs(x)→ R(x, y)) (separation in cases).

Encoding predicates by automata states

Let Φ be a formula defining a language L, in one of
our logics, of the form Φ = ∃R∀x∀yψ(x, y) with R =
(R1, . . . , Rm) and R1 = R⊥. The set of states that will be
used by an automaton A accepting L is Q = {], λ}∪{0, 1}m
with] the permanent state and λ the quiescent state. We
denote by (q)i (i ∈ [1,m]), the ith bit of a state q ∈ {0, 1}m.
Intuitively, (q)i refers to the predicate Ri. Since the predicate
R1 = R⊥ represents the “false”, the set of accepting states
is the set of states q ∈ {0, 1}m with the first bit (q)1 equal
to 0, that is Qaccept = {0} × {0, 1}m−1.

4.1. Logical characterization of RealTimeCA

In this section, we will show that the languages accepted
in real-time by two-way CA with input fed in a parallel way
and output read on the first cell are exactly the languages
defined by a formula of pred-ESO-HORN.

Theorem 1. RealTimeCA = pred-ESO-HORN

The proof will use the following inclusion scheme:

pred-ESO-HORN = normal-pred-ESO-HORN ⊆ RealTimeOIA
= RealTimeCA ⊆ pred-ESO-HORN

The equality pred-ESO-HORN = normal-pred-ESO-HORN
has already been proved in Section 3 and the other equality
RealTimeOIA = RealTimeCA is folklore in automata theory.
Two inclusions are left to be proved.

Lemma 3. RealTimeCA ⊆ pred-ESO-HORN

Proof. We will show that for each automaton A ∈
RealTimeCA we can build a formula Φ ∈ pred-ESO-HORN
such that: w ∈ L(A) ⇐⇒ 〈w〉 satisfies the formula Φ.

First of all, one can be easily convinced that the compu-
tation power of a CA A ∈ RealTimeCA with neighborhood
NA = {−1, 0, 1} is equal to the computation power of a
OCA A′ with neighborhood NA′ = {−2,−1, 0} running
within the same computation time n where n is the size
of the input (see Figure 4). This transformation can be
seen on the space-time diagram of A with the variable
change: c 7→ c + t − 1, where c is the index of the cell
and t the time step of the computation. This geometrical
transformation does not change the computation power so
that: L(A) = L(A′).

w1 w2 w3 w4 w5

A

w1 w2 w3 w4 w5

A′

Figure 4. Neighborhood’s change: from {−1, 0, 1} to {−2,−1, 0}

Input: The parallel input of A′ is expressed by the
conjunction ψinput =

∧
s∈Σ(min(t) ∧ Qs(c) → Rs(c, t))

for Σ the input alphabet: each cell c is in the state wc ∈ Σ
at the start of the computation.
Computation: The state evolution of a cell of A′ is given by
the transition function:
〈c, t〉 = δA′(〈c− 2, t− 1〉, 〈c− 1, t− 1〉, 〈c, t− 1〉).
A transition rule δA′(q2, q1, q0) = q for q2 6=] is expressed
by the computation clause:
c > t ∧ ¬min(t) ∧ Rq2(c − 2, t − 1) ∧ Rq1(c − 1, t − 1)

∧Rq0(c, t− 1)→ Rq(c, t).
The specific case where q2 is the permanent state]
(δA′(], q1, q0) = q) is handled by the clause:
c = t∧¬min(t)∧Rq1(c−1, t−1)∧Rq0(c, t−1)→ Rq(c, t).
We denote ψcompute the conjunction of the above two sets
of clauses.
Remark: By construction of ψinput and ψcompute, we have
the following equivalence for ψ′ := ψinput ∧ ψcompute. The
computation atom Rq(c, t) is true in the minimal model
(〈w〉,R) of ∀c∀tψ′(c, t) ⇐⇒ the cell c is in the state
q at time t.
Output: The contradiction clauses express the output on the
last cell:
ψoutput :=

∧
q∈Q\Qaccept

(max(c) ∧ max(t) ∧Rq(c, t)→ ⊥)

The formula ψ expressing the computation of A′ is the
conjunction ψ := ψ′ ∧ ψoutput.

For each word w = w1 . . . wn ∈ Σ+ we have the
following equivalences:

The cell 1 of A is in an accepting state q at time n
⇐⇒

The cell n of A′ is in an accepting state q at time n
⇐⇒

The conjunction
∧
q∈Q\Qaccept

Rq(n, n) is false in
the minimal model (〈w〉,R) of ∀c∀tψ′(c, t)

⇐⇒
〈w〉 satisfies the formula ∃R∀c∀tψ(c, t).

This proves L(A) ∈ pred-ESO-HORN.

Lemma 4. normal-pred-ESO-HORN ⊆ RealTimeOIA

Proof. We will show that for every language L ⊆ Σ+

defined by a formula Φ ∈ normal-pred-ESO-HORN, a one-
way iterative array A ∈ RealTimeOIA can be constructed
such that L = L(A).

Let Φ ∈ normal-pred-ESO-HORN be a formula of the
form Φ = ∃R∀x∀yψ(x, y) where R = (R1, . . . , Rm) with
R1 = R⊥ and ψ is a conjunction of Horn clauses of the
three following forms:

• input clause of either form:

min(x) ∧ min(y) ∧Qs(y)→ R(x, y) or
min(x) ∧ ¬min(y) ∧Qs(y)→ R(x, y),

• the contradiction clause max(x) ∧ max(y) ∧
R⊥(x, y)→ ⊥;

• computation clause of one of the following forms
for some sets H,H ′ ⊆ [1,m] and i ∈ [1,m]:

– ¬min(x) ∧
∧
h∈H Rh(x − 1, y) ∧ ¬min(y) ∧∧

h∈H′ Rh(x, y − 1)→ Ri(x, y);
– ¬min(x) ∧

∧
h∈H Rh(x− 1, y)→ Ri(x, y);

– ¬min(y) ∧
∧
h∈H Rh(x, y − 1)→ Ri(x, y).

We will denote ψ′ the formula ψ without the contradic-
tion clause.

We first translate the formula Φ into a dependency
graph of type GRID1 (see Figure 1, with input exclusively
on the left side). It will then be turned into a real-time
OIA A. The transition function is composed by an input
transition function δinput only applied on the first cell and
the general transition function δ applied on the other cells
c.

w1

w2

w3

w4

w5

(x, y)

w1

w2

w3

w4

w5

7→ (c = x, t = x+ y − 1)

GRID1 RealTimeOIA

Figure 5. Variable change

For all i ∈ [1,m] ; s ∈ Σ ; q, l, r ∈ Q \ {], λ}:

Input transition function: δinput : Σ × Q → Q. The bit
(δinput(s,]))i is 1 if and only if there is an input clause
min(x) ∧ min(y) ∧ Qs(y) → Ri(x, y) in ψ. (δinput(s, q))i

is 1 if and only if there exists in ψ an input clause
min(x) ∧ ¬min(y) ∧ Qs(y) → Ri(x, y) or a computation
clause ¬min(y) ∧

∧
h∈H Rh(x, y − 1) → Ri(x, y) with

(q)h = 1, for all h ∈ H .
Transition function: δ : Q × Q → Q applied on all

cells c ∈ [2, n]. The bit (δ(l, r))i is 1 if and only if there
exists in ψ a computation clause

∧
h∈H Rh(x − 1, y) ∧

¬min(x)∧
∧
h∈H′ Rh(x, y− 1)∧¬min(y)→ Ri(x, y) such

that (l)h = 1 for all h ∈ H and (r)h = 1 for all h ∈ H ′.
The bit (δ(l, λ))i is 1 if and only if there is in ψ a com-
putation clause ¬min(x) ∧

∧
h∈H Rh(x − 1, y) → Ri(x, y)

such that (l)h = 1, for all h ∈ H .
Let A = (Q,Σ, Qaccept,N , δinput, δ) be the OIA defined

above after making the change of variables of Figure 5:
c = x; t = x + y − 1. By construction of A, we have
the following equivalences concluding the proof.
∀w ∈ Σn:

1) ∀(a, b) ∈ [1, n]2,∀i ∈ [1,m], the atom Ri(a, b)
is true in the minimal model (〈w〉,R) of
∀x∀y ψ′(x, y) ⇐⇒ The cell c = a is at time
t = a+ b− 1 in a state q with (q)i = 1.

2) A accepts w in real-time ⇐⇒ 〈w〉 satisfies Φ.

4.2. Logical characterization of RealTimeIA

In this section, we will show that the languages accepted
in real-time by IA are exactly the languages defined by
formulas of pred-dio-ESO-HORN.

Theorem 2. RealTimeIA = pred-dio-ESO-HORN.

The proof of Theorem 2 is close to the one of Theorem 1
and is obtained by the following inclusion scheme:
pred-dio-ESO-HORN = normal-pred-dio-ESO-HORN
⊆ RealTimeIA ⊆ pred-dio-ESO-HORN.

The equality pred-dio-ESO-HORN = normal-pred-dio-
ESO-HORN has been already proved in Section 3. We will
now prove the two remaining inclusions.

Lemma 5. RealTimeIA ⊆ pred-dio-ESO-HORN.

Proof. Let A be an automaton in RealTimeIA, we apply
the transformation c 7→ c+ t− 1 on its time-space diagram.

This transformation gives us a new automaton A′ with the
neighborhood N ′ = {−2,−1, 0} and the input still fed
sequentially but in the following way: the ith bit of the input
is given to the cell i at time i. Since the input presentation is
the only change between the computation of an automaton
in RealTimeIA and an automaton in RealTimeCA, the com-
putation clauses and the contradiction clauses will stay the
same.
Input: The diagonal input of A′ is expressed by the con-
junction of the input clauses:
ψinput :=

∧
s∈Σ(t = c ∧Qs(c)→ Rs(c, t)) for Σ ⊂ Q.

Computation: The conjunction ψcompute is defined from the
transition rules of A′ as in the previous section.
Let ψ′ be the conjunction ψinput ∧ ψcompute.
Output: The output reading is done on the same cell as in
the previous section.
ψoutput :=

∧
q∈Q\Qaccept

(max(c) ∧ max(t) ∧Rq(c, t)→ ⊥)

The formula ψ of pred-dio-ESO-HORN expressing the
computation of A′ is: ψ := ψ′ ∧ ψoutput.

For each word w = w1 . . . wn ∈ Σ+ we have the
following equivalences:

The cell 1 of A is in an accepting state q at time n
⇐⇒

The cell n of A′ is in an accepting state q at time n
⇐⇒

The conjunction
∧
q∈Q\Qaccept

Rq(n, n) is false in
the minimal model (〈w〉,R) of ∀c∀tψ′(c, t)

⇐⇒
〈w〉 satisfies the formula ∃R∀c∀tψ(c, t).

This proves L(A) ∈ pred-dio-ESO-HORN.

Lemma 6. normal-pred-dio-ESO-HORN ⊆ RealTimeIA

Proof sketch. Since the proof is similar to that of Lemma 4,
we will here just give an hint on how to associate to each
site (x, y) ∈ [1, n]2 such that x ≤ y a site (c, t) of the
space-time diagram of an iterative array A running in
real-time (see Figure 6). The sites (x, y) ∈ [1, n]2 such that
x ≥ y are similarly handled.
First, we apply to the set of sites (x, y) of the dependency
graph of Φ the variable change c′ = y−x+1; t′ = x+y−1.
This variable change turns respectively the dependencies
(x − 1, y) → (x, y) and (x, y − 1) → (x, y) into
(c′ + 1, t′ − 1) → (c′, t′) and (c′ − 1, t′ − 1) → (c′, t′)
expressing the two-way communication of an iterative array
A′. The sites (c′, t′) of the space-time diagram of A′ takes
their values in [1, n] × [1, 2n − 1] and the ith bit of the
input is fed on the site (1, 2i− 1) (see Figure 6).
In order to obtain the space-time diagram of an IA A
running in real time, each site (c, t) = (dc′/2e , dt′/2e)
of this diagram will record the set of sites
{(c′ − 1, t′ − 1), (c′, t′), (c′ + 1, t′ − 1)} of the space-
time diagram of A′, with c′ and t′ odd and greater than 1
(see Figure 6).

4.3. Logical characterization of Trellis and linear
conjunctive grammars

Conjunctive grammars, introduced by Okhotin [?], are
an extension of context-free grammars. This class of formal

w1

w2

w3

w4

w5

(x, y)

GRID3

w1

w2

w3

w4

w5

7→ (c′ = y − x+ 1, t′ = x+ y − 1)

A′

w1

w2

w3

w4

w5

(c, t) = (
⌈
c′

2

⌉
,
⌈
t′

2

⌉
)

A

Figure 6. Variable change and grouping

grammars is obtained by allowing the use of a conjunction
operator (denoted &) in the right side of the context-free
rules, meaning an intersection between derived languages. It
has been shown in [?] that languages obtained by the linear
restriction of conjunctive grammars are the same as the ones
recognized by trellis automata. The class of languages gen-
erated by linear conjunctive grammars is denoted LinConj.
Each rule of a linear conjunctive grammar G = (Σ, N, P, S)
in normal form is a rule of the form:
A→ sB1& . . .&sB`&C1t& . . .&Cpt or A→ s

with `+ p ≥ 1, A,Bi, Cj ∈ N and s, t ∈ Σ;
As a context-free language, a conjunctive language

has an algebraic representation by least solution of a
system of language equations with concatenation, union
and intersection. For example, the rule
A→ sB1& . . .&sB`&C1t& . . .&Cpt

gives us the language equation:
L(A) = sL(B1) ∩ · · · ∩ sL(B`) ∩ L(C1)t ∩ · · · ∩ L(Cp)t

where L(A) is the set of all words having the syntactic
property A.

Our inclusive logic characterizes the class of (comple-
ments of) linear conjunctive languages:

Theorem 3. For any L ∈ Σ+ we have:
L ∈ incl-ESO-HORN ⇐⇒ (Σ+ \ L) ∈ LinConj .

The theorem is proved in two steps.

Lemma 7. L ∈ incl-ESO-HORN⇒ (Σ+ \ L) ∈ LinConj
Proof. Let us show that for each language L ∈ incl-
ESO-HORN defined by a formula Φ ∈ normal-incl-ESO-
HORN, Φ = ∃R∀x∀yψ(x, y), we can build a grammar
GΦ = (Σ, N, P, S) such that: w ∈ L ⇐⇒ w /∈ L(GΦ)
The grammar GΦ is defined as follows.
The set of non-terminal symbols of GΦ is N = R and S =

R⊥ is the start symbol. The rules of GΦ are the following:
To each input clause x = y ∧ Qs(x) → R(x, y) of Φ we
associate the rule R→ s.
To each computation clause of Φ

x < y ∧ S1(x + 1, y) ∧ . . . ∧ S`(x + 1, y) ∧ T1(x, y − 1) ∧
. . . ∧ Tp(x, y − 1)→ R(x, y) we associate the rules
R→ sS1& . . .&sS`&T1t& . . .&Tpt, for all s, t ∈ Σ.

Let ψ′ be the conjunction ψ without the contradiction
clause. By an easy induction, the following equivalence can
be proved, for all R ∈ R, all words w = w1 . . . wn ∈ Σ+,
and all intervals [a, b] ⊆ [1, n]:
wa . . . wb ∈ L(R) ⇐⇒(
∀x∀yψ′ ∧

∧
i∈[a,b]Qwi

(i)
)
→ R(a, b) is a tautology.

Taking R = R⊥ and [a, b] = [1, n] we obtain:
w ∈ L(GΦ) ⇐⇒ 〈w〉 2 Φ as claimed.

Lemma 8. (Σ+ \ L) ∈ LinConj ⇒ L ∈ incl-ESO-HORN

Proof. Let L be a language, subset of Σ+, such that
(Σ+ \ L) ∈ LinConj. We associate to the linear grammar
G = (Σ, N, P, S) defining (Σ+\L) with N = {A1, . . . , Ak}
in normal form, as presented above, the formula
ΦG := ∃R∀x∀yψ(x, y) with R = {A1, . . . , Ak} and ψ the
conjunction of the following Horn clauses:
the computation clause x < y∧Qs(x)∧

∧`
i=1Bi(x+1, y)∧∧p

i=1 Ci(x, y − 1) ∧ Qt(y) → A(x, y) for each rule
A→ sB1& . . .&sB`&C1t& . . .&Cpt;
the clause x = y ∧Qs(x)→ A(x, y) for each rule A→ s ;
and the contradiction clause min(x)∧max(y)∧S(x, y)→ ⊥.

The proof of the equivalence w ∈ L(G) ⇐⇒ 〈w〉 |= ΦG
is the same as for the previous Lemma 7.

Logical characterization of Trellis

Clearly, the final state (result) q of a trellis automaton
A = (Q,Σ, Qaccept, δ) acting on a word wx . . . wy of length
greater than 1 (x < y) is completely determined by the final
state ql of A acting on the prefix wx . . . wy−1 and the final
state qr of A acting on the suffix wx+1 . . . wy: q = δ(ql, qr).
This functional dependence ((x, y − 1), (x+ 1, y))→ (x, y)
is exactly expressed by the computation clauses of the nor-
malized inclusive logic. This suggests the following equality.

Theorem 4. incl-ESO-HORN = Trellis

The theorem is proved in two steps.

Lemma 9. Trellis ⊆ incl-ESO-HORN

Proof. Let A be a trellis automaton that accepts a language
L ⊆ Σ+ and let be a word w = w1 . . . wn ∈ Σ+. Let us
introduce the set of binary predicates R = {Rq | q ∈ Q}
with intuitive meaning: Rq(x, y) is true ⇐⇒ the final state
of A acting on the subword wx . . . wy is q. The following
clauses describe the computation of A.
Input clauses:
ψinput :=

∧
s∈Σ(x = y ∧Qs(x)→ Rs(x, y)), for s ∈ Σ.

Computation clauses:
ψcompute :=

∧
(ql,qr)∈Q2 (x < y ∧Rql(x, y − 1)∧

Rqr (x+ 1, y)→ Rq(x, y)) where q = δ(ql, qr).
Contradiction clauses:
ψoutput :=

∧
q∈Q\Qaccept

(min(x)∧max(y)∧Rq(x, y)→ ⊥)

Let ψ′ := ψinput ∧ ψcompute and ψ := ψ′ ∧ ψoutput.
For each word w = w1 . . . wn ∈ Σ+ we have the
following equivalences:

A accepts w in time n
⇐⇒

The conjunction
∧
q∈Q\Qaccept

Rq(1, n) is false in
the minimal model (〈w〉,R) of ∀x∀yψ′(x, y)

⇐⇒
〈w〉 satisfies the formula ∃R∀x∀yψ(x, y).

This proves L(A) ∈ incl-ESO-HORN.

Lemma 10. incl-ESO-HORN ⊆ Trellis

Proof sketch. Let Φ be a formula of normal-incl-ESO-
HORN, we establish a natural bijection between the sites
(x, y) of the domain of the formula and the sites (c, t) of
the space-time diagram of a OCA running in real-time (see
Figure 7). The transition function of this automaton is then
deduced from the computation clauses of Φ as in sections 4.1
and 4.2.

w1

w2

w3

w4

w5

incl-ESO-HORN

w1 w2 w3 w4 w5

RealTimeOCA

w1 w2 w3 w4 w5

Trellis

Figure 7. The bijection between incl-ESO-HORN and Trellis

5. Concluding remarks

It was known that the three complexity classes studied in this
paper are the only distinct and natural complexity classes for
minimal time, so-called real-time, of one-dimensional cellu-
lar automata. In various articles from the 1960s to 2000s, it
has been established that each of those classes is robust, in
particular with respect to the chosen neighborhood [?], and
has several equivalent characterizations in other frameworks:
e.g, Trellis is the class of linear conjunctive languages [?].

In this paper, we have presented a unified view of these
three real-time classes as part of descriptive complexity. We
hope to have convinced the reader that the logics we have
defined are useful tools to express problems in a natural
way and to deduce automatically from any formula in such
a logic an equivalent cellular automaton running in real-
time. This is exemplified by languages notBordered and
Palindrome, which can be succinctly defined in pred-ESO-
HORN and incl-ESO-HORN, respectively, and hence, belong
to RealTimeCA and Trellis, respectively. Conversely, the
problem Prime := {w ∈ Σ∗ | |w| is a prime integer}
belongs to RealTimeCA (and to RealTimeIA) by Fischer’s
algorithm [?], [?]; therefore, it belongs to pred-ESO-HORN.

Further, we believe that the normalized versions of our
three logics, identified to square grid circuits – a natural
concept – offer a fresh view of the real-time complexity
classes and an additional argument for their robustness. In
addition, we are thinking about broadening our logics by
allowing a limited use of negation on computation atoms
like in Stratified Datalog [?], for easier programming inside
these logics and without changing their real-time complexity.

Acknowledgments: This paper would not exist without the
inspiration and guidance of Véronique Terrier. Her teaching,
her deep insights into cellular automata, the references and
advice she generously gave us, as well as her careful reading,
were essential in designing and finalizing our concepts and
results.

APPENDICES

Appendix A: Expressing natural problems in our
logics

Expressing problems Palindrome and notPalindrome
in inclusion logic. The problem Palindrome is expressed
by the conjunction of the following clauses:

x < y∧Qs(x)∧Qt(y)→ notPal(x, y), for all s, t ∈ Σ
with s 6= t;

x < y ∧ notPal(x+ 1, y − 1)→ notPal(x, y);
x ≤ y ∧ min(x) ∧ max(y) ∧ notPal(x, y)→ ⊥.

The problem notPalindrome is expressed by the conjunc-
tion of the following clauses: x = y → Pal(x, y),
x ≤ y ∧ Successor(x, y) ∧Qs(x) ∧Qs(y)→ Pal(x, y),
x < y ∧ Pal(x + 1, y − 1) ∧ Qs(x) ∧ Qs(y) → Pal(x, y),
for all s ∈ Σ, and x ≤ y ∧ Pal(x, y)→ ⊥.

Here, Successor(x, y) intuitively means x + 1 = y and is
defined by the following clauses: x = y → Equal(x, y) and
x < y ∧ Equal(x+ 1, y)→ Successor(x, y).

Appendix B: Complements of the proofs of Lem-
mas 1 and 2

Step 10 of Lemma 1: Elimination of atoms R(x, y) as
hypotheses: The first idea is to group together in each
computation clause the hypothesis atoms of the form R(x, y)
and the conclusion of the clause. Accordingly, the formula
obtained Φ can be rewritten in the form
Φ := ∃R∀x∀y[

∧
i Ci(x, y)∧

∧
i∈[1,k](αi(x, y)→ θi(x, y))],

where the Ci’s are the input clauses and the contradic-
tion clause and each computation clause is written in the
form αi(x, y) → θi(x, y) where αi(x, y) is a conjunction
of formulas of the only forms R(x − 1, y) ∧ ¬min(x),
R(x, y − 1) ∧ ¬min(y), but not R(x, y), and θi(x, y) is a
Horn clause all the atoms of which are of the form R(x, y).

We number R1, . . . , Rm the computation predicates of
R. To each subset J ⊆ [1, k] of the family of implications
(αi(x, y)→ θi(x, y))i∈[1,k] let us associate the set

KJ := {h ∈ [1,m] |
∧
i∈J θi(x, y)→ Rh(x, y) is a

tautology}.
Note that the notion of tautology used in the definition of KJ

is purely “propositional” because all the atoms involved are
of the form Ri(x, y), i.e., refer to the same pair of variables
(x, y). Also, note that the function J 7→ KJ is monotonous:
for J ′ ⊆ J , we have KJ′ ⊆ KJ because

∧
i∈J′ θi(x, y) →

Rh(x, y) implies
∧
i∈J θi(x, y)→ Rh(x, y).

Clearly, it is enough to prove the following claim:

Claim 1. The formula Φ is equivalent to the normalized
formula

Φ′ := ∃R∀x∀y [
∧
i

Ci(x, y)

∧
∧

J⊆[1,k]

∧
h∈KJ

(
∧
i∈J

αi(x, y)→ Rh(x, y))].

Proof of the implication Φ⇒ Φ′: It is enough to prove the
implication

[
∧

i∈[1,k]

(αi(x, y)→ θi(x, y))]→ [
∧
i∈J

αi(x, y)→
∧
h∈KJ

Rh(x, y)]

for all set J ⊆ [1, k]. The implication to be proved can be
equivalently written:

[
∧
i∈J

αi(x, y)∧
∧

i∈[1,k]

(αi(x, y)→ θi(x, y))]→
∧
h∈KJ

Rh(x, y).

This implication is a straightforward consequence of the two
following facts: The sub-formula between brackets above

implies the conjunction
∧
i∈J θi(x, y). As the implication∧

i∈J θi(x, y) →
∧
h∈KJ

Rh(x, y) is a tautology (by defi-
nition of KJ), the implication to be proved is a tautology
too.

The converse implication Φ′ ⇒ Φ is more difficult to
prove. It uses a folklore property of propositional Horn
formulas easy to be proved:

Lemma 11 (Horn property: folklore). Let F be a strict Horn
formula of propositional calculus, that is a conjunction of
clauses of the form p1 ∧ . . .∧ pk → p0 where k ≥ 0 and the
pi’s are propositional variables. Let F ′ be the conjunction
of propositional variables q such that the implication F → q
is a tautology. F has the same minimal model8 as F ′.

Proof of the implication Φ′ ⇒ Φ: Let 〈w〉 be a model of Φ′

and let (〈w〉,R) be the minimal model of the Horn formula

ϕ′ := ∀x∀y [
∧
i

Ci(x, y)

∧
∧

J⊆[1,k]

∧
h∈KJ

(
∧
i∈J

αi(x, y)→ Rh(x, y))].

It is enough to show that (〈w〉,R) also satisfies the formula

ϕ := ∀x∀y [
∧
i

Ci(x, y)

∧
∧

i∈[1,k]

(αi(x, y)→ θi(x, y))].

As each αi is a conjunction of formulas of the form
R(x− 1, y)∧¬min(x), or R(x, y− 1)∧¬min(y), we make
an induction on the domain {(a, b) ∈ [1, n]2 | a + b ≤ t},
for t ∈ [1, 2n]. More precisely, we are going to prove, by
recurrence on the integer t ∈ [1, 2n], that the minimal model
(〈w〉,R) of ϕ′ satisfies the “relativized” formula ϕt of the
formula ϕ defined by

ϕt := ∀x∀y [x+ y ≤ t→
[
∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y)→ θi(x, y))]]

As the hypothesis x+y ≤ 2n holds for all x, y in the domain
[1, n], ϕ2n is equivalent to ϕ on the structure (〈w〉,R).

Basis case: For t = 1 the set {(a, b) ∈ [1, n]2 | a+b ≤ t}
is empty so that the “relativized” formula ϕ1 is trivially true
in the minimal model (〈w〉,R) of ϕ′.

Recurrence step: Suppose (〈w〉,R) |= ϕt−1, for an
integer t ∈ [2, 2n]. It is enough to show that, for each
couple (a, b) ∈ [1, n]2 such that a + b = t, we have
(〈w〉,R) |=

∧
i∈[1,k](αi(a, b)→ θi(a, b)). Let Ja,b be the set

of indices i ∈ [1, k] such that the couple (a, b) satisfies αi:

Ja,b := {i ∈ [1, k] | (〈w〉,R) |= αi(a, b)}.

Recall that each αi(a, b) is a (possibly empty) conjunction
of atoms R(a′, b′) with (a′, b′) = (a − 1, b) or (a′, b′) =
(a, b − 1), therefore such that a′ + b′ = t − 1. Let any set
J ⊆ [1, k]. Let us examine the two possible cases:

1) J ⊆ Ja,b: then the conjunction
∧
i∈J αi(a, b)

holds in (〈w〉,R); hence, in (〈w〉,R), the conjunc-
tion

∧
h∈KJ

(
∧
i∈J αi(a, b) → Rh(a, b)) is equivalent to∧

h∈KJ
Rh(a, b);

8. For example, for F := p1 ∧ p3 ∧ (p1 ∧ p3 → p5)∧ (p1 ∧ p2 → p4),
we have F ′ := p1∧p3∧p5 which has the same minimal model I as F ; this
model is given by I(p1) = I(p3) = I(p5) = 1 and I(p2) = I(p4) = 0.

2) J \ Ja,b 6= ∅: then the conjunction
∧
i∈J αi(a, b)

is false in (〈w〉,R); hence, the conjunction∧
h∈KJ

(
∧
i∈J αi(a, b)→ Rh(a, b)) holds in (〈w〉,R).

From (1) and (2), we deduce that in (〈w〉,R) the conjunction∧
J⊆[1,k]

∧
h∈KJ

(
∧
i∈J αi(a, b) → Rh(a, b)) is equivalent

to the conjunction
∧
J⊆Ja,b

∧
h∈KJ

Rh(a, b), which can be
simplified as

∧
h∈KJa,b

Rh(a, b) because J ⊆ Ja,b implies
KJ ⊆ KJa,b

. Consequently, for all h ∈ [1,m], the minimal
model (〈w〉,R) of the Horn formula ϕ′ satisfies the atom
Rh(a, b) iff h belongs to KJa,b

. By definition,

KJa,b
:= {h ∈ [1,m] |

∧
i∈Ja,b

θi(x, y)→ Rh(x, y) is a
tautology}

or, equivalently,

KJa,b
:= {h ∈ [1,m] |

∧
i∈Ja,b

θi(a, b)→ Rh(a, b) is a
tautology}.

As a consequence of Lemma 11, the two conjunctions∧
i∈Ja,b

θi(a, b) and
∧
h∈KJa,b

Rh(a, b) have the same min-
imal model, which is also the restriction of the minimal
model (〈w〉,R) of ϕ′ to the set of atoms Rh(a, b), for
h ∈ [1,m]. Therefore, if i ∈ Ja,b, then (〈w〉,R) |= θi(a, b).
If i ∈ [1, k] \ Ja,b, then we have (〈w〉,R) |= ¬αi(a, b),
by definition of Ja,b. Therefore, for all i ∈ [1, k], we get
(〈w〉,R) |= ¬αi(a, b)∨θi(a, b). In other words, for all (a, b)
such that a+ b = t:

(〈w〉,R) |=
∧

i∈[1,k]

(αi(a, b)→ θi(a, b))

and then (〈w〉,R) |= ϕt.
This concludes the inductive proof that (〈w〉,R) |= ϕt,

for all t ∈ [1, 2n], and then 〈w〉 |= Φ. This proves the
converse implication Φ′ ⇒ Φ. Claim 1 is demonstrated. �

General case of Lemma 1: Steps 1-6 are easy to adapt
in the general case where the initial formula may contain
hypotheses of the form R(y− b, x− a). The new points are
the following: Step 3 restricts the computation atoms to four
forms: R(x, y), R(y, x), R(x − 1, y) and R(x, y − 1); the
key point is the adaptation of step 7 (folding the domain)
so that it eliminates the atoms of the form R(y, x). Without
loss of generality, assume that each computation clause is
of one of the following forms:

(a) S(x− 1, y) ∧ ¬min(x)→ R(x, y);
(b) S(x, y − 1) ∧ ¬min(y)→ R(x, y);
(c) S(x, y)∧T (x, y)→ R(x, y); (d) S(y, x)→ R(x, y).

Here again, this is obtained by “decomposing” each com-
putation clause into an “equivalent” conjunction of clauses
using new intermediate predicates. For instance, the com-
putation clause R1(x − 1, y) ∧ ¬min(x) ∧ R2(x, y − 1)
∧ ¬min(y) ∧ R3(y, x) → R4(x, y) is “equivalent” to the
conjunction of the following clauses using the new predi-
cates R5, R6, R7, R8: R1(x− 1, y) ∧ ¬min(x)→ R5(x, y);
R2(x, y−1)∧¬min(y)→ R6(x, y); R5(x, y)∧R6(x, y)→
R7(x, y); R3(y, x) → R8(x, y); R7(x, y) ∧ R8(x, y) →
R4(x, y).

The folding of clauses (a-c) is not modified. Let us de-
scribe how to fold the (new) clauses (d): S(y, x)→ R(x, y).
Obviously, such a clause is equivalent to the conjunction
of the two clauses (i) x ≤ y ∧ S(y, x) → R(x, y) and
(ii) y ≤ x∧S(y, x)→ R(x, y). The equivalent “folded” form
of clause (i) is x ≤ y ∧ Sinv(x, y) → R(x, y). The clause
(ii) is equivalent to the clause x ≤ y ∧ S(x, y) → R(y, x)
the equivalent “folded” form of which is x ≤ y∧S(x, y)→
Rinv(x, y). Finally, steps 8-10 are not modified.

Step 6 of Lemma 2: Elimination of atoms Qs(x − a),
Qs(y+ b), for a, b > 0: This step is quite similar to step 5.
For each R ∈ R, we introduce new predicates:
Rx−a1,...,x−al,y+b1,...,y+bm
←s1,...,sl,t1,...,tm with l,m ≥ 0, the si, tj ∈ Σ,

0 ≤ a1 < a2 . . . < al ≤ A and 0 ≤ b1 < b2 . . . < bm ≤ B,
where A (resp. B) is the maximal a in atoms Qs(x−a) (resp.
maximal b in atoms Qs(y + b)). Their intuitive meaning is
as follows:
Rx−a1,...,x−al,y+b1,...,y+bm
←s1,...,sl,t1,...,tm (x, y) ⇐⇒

[[
∧
i=1,...,l(Qsi(x− ai) ∧ x > ai)

∧
∧
j=1,...,m(Qtj (y + bj) ∧ y ≤ n− bj)]→ R(x, y)].

Transforming the initialization clauses: Each initializa-
tion clause x = y ∧ Qs(x − a) ∧ x > a → R(x, y), a ≥ 1,
(resp. x = y ∧Qs(y + b) ∧ y ≤ n− b→ R(x, y), b ≥ 1) is
transformed into the clause x = y ∧Rx−a←,s → R(x, y) (resp.
x = y ∧Ry+b

←,s → R(x, y)).
Transforming the computation clauses: To each clause

(a) x < y∧S(x+1, y)→ R(x, y) add the following clauses
justified by the identity x+ 1− ai = x− (ai − 1):
x < y ∧ Sx−a1,...,x−al,y+b1,...,y+bm

←s1,...,sl,t1,...,tm (x+ 1, y)

→ R
x−(a1−1),...,x−(al−1),y+b1,...,y+bm
←s1,...,sl,t1,...,tm (x, y).

Similarly, to each clause (b) x < y ∧S(x, y− 1)→ R(x, y)
add the clauses
x < y ∧ Sx−a1,...,x−al,y+b1,...,y+bm

←s1,...,sl,t1,...,tm (x, y − 1)

→ R
x−a1,...,x−al,y+(b1−1),...,y+(bm−1)
←s1,...,sl,t1,...,tm (x, y).

Moreover, add for a1 = 0 and each s1 ∈ Σ, the following
“verification” clauses, which intuitively delete the hypothesis
Qs1(x) after verifying that it is satisfied because of the
equivalence W x

s1(x, y) ⇐⇒ Qs1(x):

x < y ∧ Sx,x−a2,...,x−al,y+b1,...,y+bm
←s1,s2,...,sl,t1,...,tm (x, y) ∧W x

s1(x, y)

→ Rx−a2,...,x−al,y+b1,...,y+bm
←s2,...,sl,t1,...,tm (x, y).

Similarly, add for b1 = 0 and each t1 ∈ Σ, the “verification”
clauses (justified by W y

t1(x, y) ⇐⇒ Qt1(y)) :

x < y ∧ Sx−a1,...,x−al,y,y+b2,...,y+bm
←s1,...,sl,t1,t2,...,tm (x, y) ∧W y

t1(x, y)

→ Rx−a1,...,x−al,y+b2,...,y+bm
←s1,...,sl,t2...,tm (x, y).

For each clause (c) x � y ∧ S(x, y) ∧ T (x, y) → R(x, y),
where � ∈ {<,=}, add similar clauses that cumulate the
hypotheses provided they are compatible: for example, the
clause
x � y ∧ Sx−1,x−3,y+2

s1,s2,t1 (x, y) ∧ T x−1,y+2,y+4
s1,t1,t2 (x, y)

→ Rx−1,x−3,y+2,y+4
s1,s2,t1,t2 (x, y).

Appendix C: Exemple of normalization on
ΦnotBordered

0) Clauses of ΦnotBordered before normalization:

1) min(x)∧¬min(y)∧Qs(x)∧Qs(y)→ Border(x, y)
2) ¬min(x)∧¬min(y)∧Border(x−1, y−1)∧Qs(x)∧

Qs(y)→ Border(x, y), for all s ∈ Σ;
3) max(y) ∧ Border(x, y)→ ⊥.

1) Processing the contradiction clauses:

1) min(x)∧¬min(y)∧Qs(x)∧Qs(y)→ Border(x, y)
2) ¬min(x)∧¬min(y)∧Border(x−1, y−1)∧Qs(x)∧

Qs(y)→ Border(x, y), for all s ∈ Σ;
3) max(y) ∧ Border(x, y)→ R⊥(x, y);
4) R⊥(x− 1, y) ∧ ¬min(x)→ R⊥(x, y);
5) R⊥(x, y − 1) ∧ ¬min(y)→ R⊥(x, y);

6) max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥.

Remark: Note that since R⊥(x, y) only appears when y
is maximal, the transport clause R⊥(x, y− 1)∧¬min(y)→
R⊥(x, y) is never used and therefore can be withdraw for
more clarity.

2) Processing the input:

1) Qs(x) ∧ min(y)→W x
s (x, y);

2) Qs(y) ∧ min(x)→W y
s (x, y);

3) ¬min(y) ∧W x
s (x, y − 1)→W x

s (x, y);
4) ¬min(x) ∧W y

s (x− 1, y)→W y
s (x, y);

5) min(x) ∧ ¬min(y) ∧ W x
s (x, y) ∧ W y

s (x, y) →
Border(x, y);

6) ¬min(x) ∧ ¬min(y) ∧ Border(x − 1, y − 1) ∧
W x
s (x, y) ∧W y

s (x, y)→ Border(x, y);
7) max(y) ∧ Border(x, y)→ R⊥(x, y);
8) R⊥(x− 1, y) ∧ ¬min(x)→ R⊥(x, y);
9) max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥.

3) Restriction of computation atoms to R(x − 1, y),
R(x, y − 1), R(x, y):

1) Qs(x) ∧ min(y)→W x
s (x, y);

2) Qs(y) ∧ min(x)→W y
s (x, y);

3) ¬min(y) ∧W x
s (x, y − 1)→W x

s (x, y);
4) ¬min(x) ∧W y

s (x− 1, y)→W y
s (x, y);

5) ¬min(y) ∧ Border(x, y − 1)→ Bordery−1(x, y)
6) min(x) ∧ ¬min(y) ∧ W x

s (x, y) ∧ W y
s (x, y) →

Border(x, y);
7) ¬min(x) ∧ Bordery−1(x − 1, y) ∧ W x

s (x, y) ∧
W y
s (x, y)→ Border(x, y);

8) max(y) ∧ Border(x, y)→ R⊥(x, y);
9) R⊥(x− 1, y) ∧ ¬min(x)→ R⊥(x, y);

10) max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥.

4) Elimination of atoms x > a, x = a, y > a, y = a:
Since the clauses don’t contain any of the atoms x > a,

x = a, y > a, y = a, no changes are made.
5) Processing of min and max:

1) Qs(x) ∧ min(y)→W x
s (x, y);

2) Qs(y) ∧ min(x)→W y
s (x, y);

3) max(y) ∧ min(x)→ Rmax(y)(x, y);
4) min(x) ∧ min(y)→ Rmin(x)(x, y);
5) ¬min(y) ∧W x

s (x, y − 1)→W x
s (x, y);

6) ¬min(x) ∧W y
s (x− 1, y)→W y

s (x, y);
7) ¬min(y) ∧Rmin(x)(x, y − 1)→ Rmin(x)(x, y);
8) ¬min(x) ∧Rmax(y)(x− 1, y)→ Rmax(y)(x, y);
9) ¬min(y) ∧ Border(x, y − 1)→ Bordery−1(x, y)

10) Rmin(x)(x, y)∧¬min(y)∧W x
s (x, y)∧W y

s (x, y)→
Border(x, y);

11) ¬min(x) ∧ ¬min(y) ∧ Bordery−1(x − 1, y) ∧
W x
s (x, y) ∧W y

s (x, y)→ Border(x, y);
12) Rmax(y)(x, y) ∧ Border(x, y)→ R⊥(x, y);
13) R⊥(x− 1, y) ∧ ¬min(x)→ R⊥(x, y);
14) max(x) ∧ max(y) ∧R⊥(x, y)→ ⊥.

