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Second-order analysis for the time crisis problem∗

Terence Bayen†, Laurent Pfeiffer‡

February 14, 2019

Abstract

In this article, we prove second-order necessary optimality conditions for the so-called time crisis prob-
lem that comes up within the context of viability theory. It consists in minimizing the time spent by
solutions of a controlled dynamics outside a given subset K of the state space. One essential feature is
the discontinuity of the characteristic function involved in the cost functional. Thanks to a change of time
and an augmentation of the dynamics, we relate the time crisis problem to an auxiliary Mayer control
problem. This allows us to use the classical tools of optimal control for obtaining optimality conditions.
Going back to the original problem, we deduce that way second order optimality conditions for the time
crisis problem.

Keywords. Optimal control, Pontryagin maximum principle, Second order optimality conditions.

1 Introduction

Given a controlled dynamics f : Rn × Rm → Rn with associated system

ẋ = f(x, u), (1.1)

and given a non-empty closed subset K ⊂ Rn, the time crisis problem amounts to minimize the time spent by
solutions of (1.1) outside the set K w.r.t. admissible controls u:

inf
u(·)

∫ T

0

1Kc(xu(t, x0)) dt. (TC)

Here T ∈ R∗+ ∪ {+∞} and 1Kc denotes the characteristic function of the complementary of K in Rn:

1Kc(x) :=

{
0 if x ∈ K,
1 if x /∈ K.

In addition, xu(·, x0) denotes a solution of (1.1) such that xu(0, x0) = x0 with x0 ∈ Rn. Originally, the
time crisis problem was introduced in [16] in the context of viability theory [1, 2] with T = +∞. The value
of the infimum in (TC) (possibly equal to +∞) is the so-called minimal time crisis function and it can be
written θ(x0) as an explicit function of the initial condition x0. When x0 belongs to the domain of θ, this
function measures the minimal time spent by solutions of the system outside the set K, which models state
constraints. Finding an optimal control in (TC) allows to obtain significant informations on the system (in
terms of violation of state constraints) in several application models (see, e.g., [4]).

With regard to the properties satisfied by the minimal time crisis function, there are two essential features:
first, the integrand is discontinuous at every time t at which xu(·, x0) crosses the boundary of K. Second,
the functional may involve an infinite horizon, which also requires a careful attention. So, one cannot directly
apply the classical necessary optimality conditions [20, 21] to find optimal controls. In [16], sufficient optimality
conditions have been derived based on the characterization of the value function as a generalized solution of an
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Hamilton-Jacobi equation. In [5, 6], first-order optimality conditions were given thanks to the hybrid maximum
principle that is an extension of Pontryagin’s Principle [12] (see also [18, 19]). Note that the obtention of such
conditions relies on a transversality assumption on optimal trajectories in order to properly define extremals
of the problem (see also [19]). This assumption means that at each crossing time of the set K, a trajectory
does not hit the boundary tangentially.

Our aim in this paper is to go one one step further and to provide second-order optimality conditions for
the time crisis problem when T < +∞ and with an additional terminal-payoff (see Problem (2.4) hereafter).
Doing so, we introduce a time re-parametrization and an augmented controlled system (based on an explicit
description of K and of the admissible control set) that allow us to transform (2.4) into a classical Mayer
control problem (P) with mixed initial-terminal constraints, for which we apply the usual tools of optimal
control (first- and second-order optimality conditions). The above transformation is in the spirit of [13, 14, 15]
(it is used in [13] to relate hybrid control problems to classical control problems for which one can apply
first-order optimality conditions). It is made possible assuming that a nominal optimal trajectory possesses a
finite number of transverse crossing times. This assumption implies that small perturbations of the nominal
trajectory necessarily have the same number of crossing times (as the nominal one), which is a key property
for the transformation of the problem. We also impose an inward pointing condition on the control constraint.

The paper is organized as follows: Section 2 introduces the main assumptions and Section 3 the transforma-
tion of the time crisis problem into a Mayer control problem (P). In Section 4, we prove first- and second-order
necessary optimality conditions for the transformed (P), which are then translated into optimality conditions
for the time crisis problem. In a first step, these results are formulated with generalized Lagrange multipliers.
In a second step, we show that they are still valid when restricted to Pontryagin multipliers. We also prove
that Pontryagin multipliers are non-singular and unique, up to a multiplicative constant. The results obtained
in Section 3 and Section 4 are given for the situation of a single crossing time. They can be naturally extended
to the situation with several crossing times, as explained then in Section 5.

2 Formulation of the problem and assumptions

Throughout the rest of the paper T > 0 is fixed, n, m, and l are positive integers and | · | stands for the
euclidean norm in Rs associated with the standard inner product written a · b for a, b ∈ Rs (s being a
positive integer). Given a non-empty closed subset K of Rn, we denote by Int(K), ∂K, and Kc the interior,
the boundary, and the complementary of the set K. In the sequel, we consider an autonomous controlled
dynamics f : Rn × Rm → Rn whose associated system is

ẋ = f(x, u), (2.1)

where x is the state and u is a measurable control with values in a non-empty closed subset U of Rm. We
suppose that the dynamics fulfills the following (standard) assumptions:

• The mapping f is of class C2 w.r.t. (x, u), and satisfies the linear growth condition: there exist c1 > 0
and c2 > 0 such that for all x ∈ Rn and all u ∈ U , one has:

|f(x, u)| ≤ c1|x|+ c2. (2.2)

• For any x ∈ Rn, the velocity set F (x) := {f(x, u) ; u ∈ U} is a non-empty compact convex subset of
Rn.

Under these assumptions, for any x0 ∈ Rn, there is a unique solution xu(·) of the Cauchy problem{
ẋ = f(x, u),
x(0) = x0,

(2.3)

defined over [0, T ]. Let now K be a closed subset of Rn with non-empty interior, and let φ : Rn → R be a
terminal pay-off (of class C2). Our aim in this paper is to investigate necessary optimality conditions for the
optimal control problem:

inf
u∈U

JT (u) := φ(xu(T )) +

∫ T

0

1Kc(xu(t)) dt, (2.4)
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where the set of admissible controls U is given by

U := {u : [0, T ]→ U ; u meas.}.

By an optimal solution of (2.4), we mean a (global) optimal control u ∈ U of (2.4). Existence of an optimal
solution for (2.4) is standard (we refer to [6, 16]). Note that when φ ≡ 0, we retrieve the so-called time crisis
problem over [0, T ] as in [6].

To express optimality conditions, it is convenient to write U and K as sub-level sets of given functions
satisfying qualification conditions. We therefore need to introduce additional assumptions. We fix for the rest
of the article a solution ū ∈ U to (2.4), with associated trajectory x̄ := xū, satisfying Assumption (H1).

(H1) There is a function c : Rm → Rl of class C2 such that

U = {u ∈ Rm ; ci(u) ≤ 0, 1 ≤ i ≤ l}. (2.5)

For δ > 0 and i ∈ {1, ..., l}, we define ∆δ
c,i := {t ∈ (0, T ) ; ci(ū(t)) ≤ −δ} and for δ > 0 and t ∈ (0, T ),

we define
Iδc (t) := {i ∈ {1, ..., l} ; t ∈ ∆δ

c,i}.

Given a subset J = {i1, ..., i|J|} ⊆ {1, ..., l} of cardinality |J |, we set cJ(u) := (ci1(u), ..., ci|J|(u)) ∈ R|J|.
We assume that there exist ε > 0 and δ > 0 such that

ε|ξ| ≤ ∇cIδc (t)(ū(t))ξ, ∀ξ ∈ R|I
δ
c (t)|, for a.e. t ∈ (0, T ). (2.6)

Throughout the article, we also assume that K satisfies the following hypothesis.

(H2) There is a function g : Rn → R of class C1 such that

K = {x ∈ Rn ; g(x) ≤ 0}. (2.7)

Remark 2.1. Inequality (2.6), referred to as linear independence of gradients of active constraints condition
is classical. The reader can easily check that it implies the following properties (see, e.g., [9]):

• Inward pointing condition: there exist ε > 0 and v ∈ L∞(0, T ;Rm) such that

c(ū(t)) +Dc(ū(t))v(t) ≤ −ε for a.e. t ∈ (0, T ). (2.8)

• There exists δ > 0 such that the following mapping is onto:

v ∈ L2(0, T ;Rm) 7→
(

(Dci(ū(·))v(·))|∆δ
c,i

)
i=1,...,l

∈
l∏
i=1

L2(∆δ
c,i). (2.9)

Note that the inward pointing condition ensures the existence of a Lagrange multiplier in L∞(0, T ;Rl)
for (2.4) under the control constraint c(u) ≤ 0 (see also [7, 9, 10]).

Remark 2.2. For the results dealing with first-order optimality conditions in Subsection 4.1, it is enough to
assume that f , φ, c, and g are of class C1, and the condition (2.6) can be replaced by the inward pointing
condition, which is weaker.

The analysis of optimal controls of (2.4) and associated trajectories relies on the notion of crossing time
that we now recall.

Definition 2.1. (i) A crossing time from K to Kc is a time tc ∈ (0, T ) for which there is ε > 0 such that for
any time t ∈ (tc − ε, tc] (resp. t ∈ (tc, tc + ε)) one has x̄(t) ∈ K (resp. x̄(t) ∈ Kc).
(ii) A crossing time tc from K to Kc is transverse if the control ū is right- and left- continuous at time tc,
and if

˙̄x(t±c ) · ∇g(x̄(tc)) 6= 0. (2.10)
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When (2.10) is fulfilled, the trajectory x̄ does not hit the boundary of K tangentially at time tc. Note
that there are similar definitions for crossing times from Kc to K and transverse crossing times from Kc to
K. The analysis that we carry out in this paper relies on the following assumption on x̄:

(H3) The optimal trajectory x̄ possesses exactly r ∈ N∗ transverse crossing times τ̄1 < · · · < τ̄r in (0, T ) such
that τ̄2i+1 (resp. τ̄2i) is a crossing time from K to Kc (resp. from Kc to K). For all t ∈ [0, T ]\{τ̄1, · · · , τ̄r},
g(x̄(t)) 6= 0.

Assumption (H3) implicitly supposes that the initial condition satisfies x0 ∈ Int(K), but we could consider as
well x0 in Kc with slight modifications. It also excludes the chattering phenomenon (see [22]) at the boundary
of the set K, that is, we do not consider in this study optimal trajectories that could eventually switch an
infinite number of times at the boundary of K over a finite horizon (see also [3]).

3 Reformulation of the time crisis problem

We recall that ū is a fixed solution to Problem (2.4) with associated trajectory x̄ = xū, satisfying Assumption
(H1). We moreover assume that (H3) is satisfied with r = 1; the unique crossing time is denoted by τ̄ . The
goal of this section is to provide a formulation of (2.4) as a classical optimal control problem. This will go
in two steps: first, a change of time in (2.1) is introduced (Section 3.1). Second, we consider an augmented
system associated with the dynamics obtained after the first transformation (Section 3.2).

3.1 Time transformation

We start by introducing a time transformation as follows. For τ ∈ (0, T ), let πτ : [0, 2]→ [0, T ], s 7→ t := πτ (s)
be the piecewise-affine function defined as

πτ (s) :=

{
τs, if s ∈ [0, 1],
(T − τ)s+ 2τ − T, if s ∈ [1, 2].

(3.1)

It is easily seen that the change of variable πτ is one-to-one if and only if τ ∈ (0, T ). Now, given u ∈ U , we
set for s ∈ [0, 2] ∣∣∣∣ ũ(s) := u(πτ (s)),

x̃(s) := x(πτ (s)),
(3.2)

where x denotes the unique solution of (2.3) associated with u. The trajectory x̃ is then the unique solution
to the differential equation 

dx̃

ds
(s) =

dπτ
ds

(s)f(x̃(s), ũ(s)) for a.e. s ∈ [0, 2],

x̃(0) = x0.
(3.3)

We can consider now the following set of admissible controls

Ũ := {ũ : [0, 2]→ U ; ũ meas.},

and the following optimal control problem:

inf
ũ∈Ũ, τ∈(0,T )

φ(x̃ũ,τ (2)) + T − τ s.t. g(x̃ũ,τ (1)) = 0, (3.4)

where x̃ũ,τ is the unique solution of (3.3). Let us emphasize the fact that τ is an optimization variable of the
problem, involved in the dynamics of the system. The crossing time of the trajectory is fixed to 1. We adopt
the following definition of minimum.

Definition 3.1. A pair (ũ, τ) ∈ Ũ × (0, T ) is a weak minimum of (3.4) if there exists ε > 0 such that for all
control ũ′ ∈ Ũ and all τ ′ ∈ (0, T ) one has:

‖ũ′ − ũ‖L∞(0,2;Rm) ≤ ε and |τ − τ ′| ≤ ε ⇒ φ(x̃ũ,τ (2)) + T − τ ≤ φ(x̃ũ′,τ ′(2)) + T − τ ′, (3.5)

where x̃ũ′,τ ′ is the unique solution of (3.3) associated with ũ′ and τ ′.
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The next proposition is a key result to reformulate (2.4) as a classical optimal control problem.

Proposition 3.1. Let ũ := ū ◦ πτ̄ . Then, (ũ, τ̄) is a weak minimum of (3.4).

Proof. Let us set x̃ := x̃ũ,τ̄ = x̄ ◦ πτ̄ . First, we show that there is ε1 > 0 such that for all (ũ′, τ ′) ∈
L∞(0, 2;Rm)× (0, T ) one has ‖ũ− ũ

′‖L∞(0,2;Rm) ≤ ε1,
|τ̄ − τ ′| ≤ ε1,
g(x̃′(1)) = 0,

⇒ ∀s ∈ [0, 1), g(x̃′(s)) < 0, (3.6)

with x̃′ := x̃ũ′,τ ′ . Since (H3) is satisfied, we have ζ := τ∇g(x̃(1)) · f(x̃(1), ũ(1−)) > 0 where ũ(1−) :=
limt↑τ̄ ū(t). By continuity of f and g there is η1 > 0 such that for any (x, u, τ) ∈ Rn × U × (0, T ) one has: |x− x̃(1)| ≤ η1,

|u− ũ(1−)| ≤ η1,
|τ − τ̄ | ≤ η1,

⇒ τ∇g(x) · f(x, u) ≥ ζ

2
> 0. (3.7)

Now, by continuity of the trajectory and the control at the crossing time, there exists η2 > 0 such that

|x̃(s)− x̃(1)| ≤ η1

2
and |ũ(s)− ũ(1−)| ≤ η1

2
, for a.e. s ∈ (1− η2, 1). (3.8)

Since x̃(·) is with values in the interior of K over [0, 1− η2], there is η3 > 0 such that

∀s ∈ [0, 1− η2], g(x̃(s)) ≤ −η3 < 0.

Recall now that the mapping

(ũ′, τ ′) ∈ Ũ × (0, T ) 7→ x̃ũ′,τ ′ ∈ L∞(0, 2;Rm) (3.9)

is continuous, when Ũ is equipped with the L∞-norm. Hence, there exists η4 > 0 such that{
‖ũ− ũ′‖L∞(0,2;Rm) ≤ η4,
|τ̄ − τ ′| ≤ η4,

⇒ ∀s ∈ [0, 1− η2], |g(x̃′(s))− g(x̃(s))| < η3,
∀s ∈ [1− η2, 1], |x̃(s)− x̃′(s)| ≤ η1

2 ,
(3.10)

implying in particular that s 7→ g(x̃′(s)) is negative for s ∈ [0, 1−η2]. It remains now to prove that s 7→ g(x̃′(s))
is also negative for s ∈ [1− η2, 1). Reducing η4 if necessary, we may assume that η4 ≤ η1

2 . We now have

|x̃′(s)− x̃(1)| ≤ |x̃′(s)− x̃(s)|+ |x̃(s)− x̃(1)| ≤ η1

2
+
η1

2
= η1,

for all s ∈ [1− η2, 1]. Since η4 ≤ η1/2, we also have

|ũ′(s)− ũ(1−)| ≤ η1, for a.e. s ∈ (1− η2, 1).

Combining the two previous inequalities and (3.7), we obtain that for a.e. s ∈ (1− η2, 1)

d

ds
g(x̃′(s)) = τ ′∇g(x̃′(s)) · f(x̃′(s), ũ′(s)) ≥ ζ

2
.

Because g(x̃′(1)) = 0, we can conclude that g(x̃′(s)) < 0 for all s ∈ [1 − η2, 1). At this step, we have thus
proved (3.6) with ε1 := η4.

By similar arguments as above, there is ε2 > 0 such that for any (ũ′, τ ′) ∈ L∞(0, 2;Rm)× (0, T ) one has ‖ũ− ũ
′‖L∞(0,2;Rm) ≤ ε2,

|τ̄ − τ ′| ≤ ε2,
g(x̃′(1)) = 0,

⇒ ∀s ∈ (1, 2], g(x̃′(s)) > 0. (3.11)

To conclude the proof, set ε := min(ε1, ε2) and take a pair (ũ′, τ ′) ∈ L∞(0, 2;Rm) × (0, T ) satisfying the
inequalities ‖ũ− ũ′‖L∞(0,2;Rm) ≤ ε and |τ̄ − τ ′| ≤ ε. It follows that x′ (the unique solution of (2.3) associated

with the control ũ′ ◦π−1
τ ′ ) has exactly one crossing time over [0, T ] at t = τ ′. Because ū is an optimal solution,

we have JT (ū) ≤ JT (u′), which can then be written (using the changes of variable πτ and πτ ′) as

φ(x̃(2)) + T − τ̄ = JT (ū) ≤ JT (u′) = φ(x̃′(2)) + T − τ ′,

using that x̃(2) = x̄(T ), x̃′(2) = x′(T ). This proves that (ũ, τ̄) is a weak minimum of (3.4).

Note that an intermediate constraint is involved in problem (3.4) and that the data functions of (3.4) are
all smooth. At this stage, it is possible to derive optimality conditions for (3.4) (see, e.g., [14]).
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3.2 Augmentation of the dynamics

The goal now is to formulate (3.4) over the fixed interval [0, 1] to avoid the use of the intermediate condition
g(x̃ũ,τ (1)) = 0 (which will be replaced by an initial-final time condition), and so that we can use classical
results of optimal control theory. Hereafter, we use the notation

y :=

 y(1)

y(2)

ξ

 , v :=

[
v(1)

v(2)

]
.

for vectors in R2n+1 and in R2m respectively. Consider the mappings F : R2n+1 × R2m → R2n+1 (standing
for an augmented dynamics) and G : R2n+1 × R2n+1 → R2n+2 (standing for a mixed initial-final constraint)
defined respectively as

F (y, v) :=

 ξf(y(1), v(1))
(T − ξ)f(y(2), v(2))

0

 and G(y0, y1) :=


y

(1)
0

ξ0

y
(2)
0 − y(1)

1

g(y
(1)
1 )

 ,
where y0 := (y

(1)
0 , y

(2)
0 , ξ0) and y1 := (y

(1)
1 , y

(2)
1 , ξ1). In this setting, the set of admissible controls is

V :=
{
v := (v(1), v(2)) : [0, 1]→ U × U ; v meas.

}
,

and we also define the set C := {x0} × (0, T )× {0Rn} × {0} ⊂ R2n+2.

Remark 3.1. The set C comprises the initial condition at time 0, the fact that τ ∈ (0, T ) is free, the continuity
of the trajectory at time τ , and finally, the fact that the trajectory lies on the boundary of K at time τ

The controlled dynamics then becomes

dy

ds
(s) = F (y(s), v(s)), (3.12)

with v ∈ V and s ∈ [0, 1]. We denote by T the set of pairs (y, v) satisfying (3.12), with v ∈ V. Finally, we
define a terminal pay-off ψ : R2n+1 → R of class C2 as

ψ(y) = φ(y(2)) + T − ξ.

The new optimal control problem reads as follows:

inf
(y,v)∈T

ψ(y(1)) s.t. G(y(0), y(1)) ∈ C. (P)

Note that we keep the variable y as an optimization variable, since its initial condition is not prescribed
anymore and thus y cannot be expressed as a function of the control v. Let us now recall the definition of a
weak minimum and a Pontryagin minimum for (P).

Definition 3.2. A pair (ȳ, v̄) ∈ T is a weak minimum (resp. a Pontryagin minimum) of (P) if G(ȳ(0), ȳ(1)) ∈
C and if there exists ε > 0 such that for all (y, v) ∈ T satisfying G(y(0), y(1)) ∈ C, one has:

|y(0)− ȳ(0)| ≤ ε and ‖v − v̄‖Lr(0,1;R2m) ≤ ε ⇒ ψ(ȳ(1)) ≤ ψ(y(1)), (3.13)

for r =∞ (resp. r = 1).

Problem (P) is a problem with a classical structure. The last step of the “transformation” of the time
crisis problem is done in the following proposition, where we construct a local solution to (P).

Proposition 3.2. The pair (ȳ, v̄) ∈ V, defined as follows, is a weak minimum of (P):

ȳ(s) =

∣∣∣∣∣∣
ȳ(1)(s) := x̃(s),
ȳ(2)(s) := x̃(s+ 1),
ξ̄(s) := τ̄ ,

v̄(s) =

∣∣∣∣ v̄(1)(s) := ũ(s),
v̄(2)(s) := ũ(s+ 1),

s ∈ [0, 1], (3.14)

where τ̄ is the unique crossing time of x̄ and where ũ = ū ◦ πτ̄ and x̃ = x̄ ◦ πτ̄ .

6



Proof. The pair (ũ, τ̄) is a weak minimum of (3.4). Let then ε > 0 be as in Definition 3.1. Since dπτ̄
ds = τ̄

(resp. dπτ̄
ds = T − τ̄) over [0, 1] (resp. over [1, 2]), the pair (ȳ, v̄) satisfies (3.12). In addition, it is easily seen

that ȳ satisfies G(ȳ(0), ȳ(1)) ∈ C since x̃(0) = x0, τ̄ ∈ (0, T ), ȳ(1)(1) = ȳ(2)(0) = x̃(1), and g(x̃(1)) = 0. Let
us now check that (ȳ, v̄) is is a weak minimum of (P) in the sense of Definition 3.2. Doing so, take a pair
(y, v) ∈ T satisfying

‖v − v̄‖L∞(0,1;R2m) ≤ ε, |y(0)− ȳ(0)| ≤ ε,

and such that y(·) := (y(1)(·), y(2)(·), ξ(·)) satisfies G(y(0), y(1)) ∈ C. Note that ξ(·) is constant over [0, 1] with
ξ(0) ∈ (0, T ) as G(y(0), y(1)) ∈ C. Consider the inverse transformation to the one used in (3.14) and define a
pair (x̃′(·), ũ′(·)) over [0, 2] with ũ′ ∈ Ũ , as well as a real number τ ′ ∈ (0, T ) by∣∣∣∣∣∣

x̃′(s) := y(1)(s),
x̃′(s+ 1) := y(2)(s),
τ ′ := ξ(0),

and

∣∣∣∣ ũ′(s) := v(1)(s),
ũ′(s+ 1) := v(2)(s),

for a.e. s ∈ [0, 1]. Using that G(y(0), y(1)) ∈ C, we can check that x̃′ is continuous at s = 1, that it is a
solution of (3.3) associated with the control ũ′ and τ ′, that x̃′(0) = x0, and that g(x̃′(1)) = 0. It follows
that ũ′ is an admissible control for (3.4). In view of the relations between the controls in V and in Ũ , it is
straightforward to check that the above transformation satisfies:

‖ũ− ũ′‖L∞(0,2;Rm) ≤ ‖v − v̄‖L∞(0,1;R2m) ≤ ε and |τ − τ ′| = |ξ(0)− ξ̄(0)| ≤ |y(0)− ȳ(0)| ≤ ε.

To conclude, since ũ is a weak minimum of (3.4), we deduce that

φ(x̃(2)) + T − τ ≤ φ(x̃′(2)) + T − τ ′,

which is exactly saying that ψ(ȳ(1)) ≤ ψ(y(1)), and that (ȳ, v̄) is a weak minimum of (P) as was to be
proved.

Remark 3.2. The reformulation that we have performed remains valid for variants of the time crisis problem
(in the sense that it would still yield an optimal control problem with a classical structure and smooth data
functions). For example, we could consider the case where admissible controls are with values in a subset U1

when the state is in K, and in another subset U2 when the state belongs to Kc. From a practical point of
view, this situation typically happens if one is unable to use the same controls in both sets K and Kc (similar
situations occur in sampled-data control, see, e.g., [11]). It would also be possible to consider the situation
with two different dynamics and two different integral costs on K and Kc.

4 Necessary optimality conditions: case of a single crossing point

We derive in this section first- and second-order optimality conditions for the pair (ȳ, v̄), defined by (3.14) and
weak solution to (P). The obtained optimality conditions are then transformed into optimality conditions for
the solution ū to Problem (2.4), with the help of the transformation that has been analyzed in Proposition
3.2.

As in the previous section, we work under Assumption (H3) with r = 1. Since the third component of ȳ is
constant, we always denote it by ξ̄ (instead of ξ̄(s)).

4.1 First-order optimality conditions

For the derivation of first-order optimality conditions for (P), we introduce the following variables

q :=

 p(1)

p(2)

λ

 ∈ Rn+n+1, β :=


β1

β2

β3

β4

 ∈ Rn+1+n+1, µ :=

[
µ(1)

µ(2)

]
∈ Rl+l.

The variable q denotes the co-state associated with y, the variable β the Lagrange multiplier associated with
G, and the variable µ denotes the Lagrange multiplier associated with the control constraints

c(v(1)(s)) ≤ 0, c(v(2)(s)) ≤ 0, for a.e. s ∈ [0, 1].
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The Hamiltonian associated with (P) is the function

Ĥ : R2n+1 × R2n+1 × R2m → R
(y, q, v) 7→ q · F (y, v).

(4.1)

We also define the augmented Hamiltonian Ĥa

Ĥa : R2n+1 × R2n+1 × R2m × R2l → R
(y, q, v, µ) 7→ Ĥ(y, q, v) + µ(1) · c(v(1)) + µ(2) · c(v(2)).

(4.2)

In the following definition, R+ denotes the set of nonnegative real numbers.

Definition 4.1. A triplet (α, β, µ) ∈ R+ × R2n+2 × L∞(0, 1;R2l) is called Lagrange multiplier (associated
with (ȳ, v̄) and problem (P)) if the following conditions are satisfied:

• The triplet (α, β, µ) is non-null, i.e., α+ |β|+ ‖µ‖L∞(0,1;R2l) > 0 and is such that

β2 = 0, µ(s) ≥ 0, µ(1)(s) · c(v̄(1)(s)) + µ(2)(s) · c(v̄(2)(s)) = 0 for a.e. s ∈ [0, 1]. (4.3)

• There exists an absolutely continuous function q : [0, 1]→ R2n+1 satisfying the following adjoint equation:

dq

ds
(s) = −∇yĤ(ȳ(s), q(s), v̄(s)) for a.e. s ∈ [0, 1], (4.4)

and the following transversality conditions at s = 0 and s = 1:

−q(0) = ∇y0
G(ȳ(0), ȳ(1))β,

q(1) = ∇y1
G(ȳ(0), ȳ(1))β + α∇ψ(ȳ(1)).

(4.5)

• The augmented Hamiltonian is stationary with respect to v:

∇vĤa(ȳ(s), q(s), v̄(s), µ(s)) = 0, for a.e. s ∈ [0, 1]. (4.6)

We denote by Λ̂L(ȳ, v̄) the set of Lagrange multipliers. Note that this set possibly contains singular
Lagrange multipliers (i.e., multipliers for which α = 0). Let us mention that β2 = 0, since the constraint G2 is
inactive at (ȳ(0), ȳ(1)). We also note that for all (α, β, µ) ∈ Λ̂L(ȳ, v̄) and for all θ > 0, the triplet (θα, θβ, θµ)
also lies in Λ̂L(ȳ, v̄). This will enable us later to normalize Lagrange multipliers.

Lemma 4.1. The set of Lagrange multipliers Λ̂L(ȳ, v̄) is non-empty.

Proof. Our proof is based on results of [7]. In that reference, two kinds of multipliers are considered (see
[7, Definition 2.7]): Lagrange multipliers, corresponding to Definition 4.1 above, and Pontryagin multipliers,
which are the Lagrange multipliers satisfying Pontryagin’s Principle.

It is shown (see [7, Theorem 3.1]) that for a Pontryagin minimum, the set of Pontryagin multipliers is non-
empty and thus the set of Lagrange multipliers is also non-empty. The pair (ȳ, v̄) is a Pontryagin minimum
to the following optimal control problem, obtained by adding to problem (P) a localizing constraint:

inf
(y,v)∈T

ψ(y(1)) s.t.

{
G(y(0), y(1)) ∈ C,
‖v − v̄‖L∞(0,1;R2l) ≤ ε,

(4.7)

where ε > 0 is such that (3.13) holds true (with r =∞). Since the localizing constraint is not active at (ȳ, v̄),
the set Λ̂L(ȳ, v̄) is equal to the set of Lagrange multipliers associated with (4.7), which is non-empty by [7,
Theorem 3.1].

The application of [7, Theorem 3.1] requires some regularity assumptions on the data, which are satisfied
here by f , g, c, ψ, and the localizing constraint, and requires the inward pointing condition, which here directly
follows from (2.8). This concludes the proof.
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Next we rearrange the obtained optimality conditions, so that they can be easily translated into optimality
conditions for the time crisis problem. Note that the Hamiltonian can be expressed as follows:

Ĥ(y, q, v) = ξH(y(1), p(1), v(1)) + (T − ξ)H(y(2), p(2), v(2)) + λ · ξ,

where the Hamiltonian H (associated with (2.4)) is defined as

H : Rn × Rn × Rm → R
(x, p, u) 7→ H(x, p, u) := p · f(x, u).

(4.8)

Note that this definition of the Hamiltonian does not take into account the indicator function. Similarly, we
can express the augmented Hamiltonian as follows:

Ĥa(y, q, v, µ) = ξHa
(
y(1), p(1), v(1), 1

ξµ
(1)
)

+ (T − ξ)Ha
(
y(2), p(1), v(2), 1

T−ξµ
(2)
)

+ λ · ξ,

where the augmented Hamiltonian Ha (associated with (2.4)) is defined as

Ha : Rn × Rn × Rm × Rl → R
(x, p, u, ν) 7→ Ha(x, p, u, ν) := p · f(x, u) + ν · c(u).

(4.9)

Hence, conditions (4.4)-(4.5)-(4.6) can be re-written as follows:

• The adjoint vector satisfies the following equations almost everywhere over [0, 1]:

dp(1)

ds
= −ξ∇xH(ȳ(1)(s), p(1)(s), v̄(1)(s)),

dp(2)

ds
= −(T − ξ)∇xH(ȳ(2), p(2)(s), v̄(2)(s)),

dλ

ds
= −H(ȳ(1)(s), p(1)(s), v̄(1)(s)) +H(ȳ(2)(s), p(2)(s), v̄(2)(s)).

The Jacobian matrix of G at (ȳ(0), ȳ(1)) is the following block matrix (the numbers indicated at the
braces indicate the dimension of the row or the column):

DG(ȳ(0), ȳ(1)) =

(n,n,1,n,n,1)︷ ︸︸ ︷
In 0 0 0 0 0
0 0 1 0 0 0
0 In 0 −In 0 0

0 0 0 Dg(ȳ(1)(1)) 0 0




n
1
n
1

thus, the transversality conditions read

−p(1)(0) = β1,
−p(2)(0) = β3,
−λ(0) = β2 = 0,

and
p(1)(1) = −β3 + β4∇g(ȳ(1)(1)),
p(2)(1) = α∇φ(ȳ(2)(1)),
λ(1) = −α.

• The stationarity condition (4.6) is equivalent to

∇uHa(ȳ(1)(s), p(1)(s), v̄(1)(s), 1
ξµ

(1)(s)) = 0, a.e. s ∈ [0, 1],

∇uHa(ȳ(2)(s), p(2)(s), v̄(2)(s), 1
T−ξµ

(2)(s)) = 0, a.e. s ∈ [0, 1].

Note that for a given (α, β, µ) ∈ Λ̂L(ȳ, v̄), there exists a unique costate q satisfying the adjoint equation and
the transversality conditions, since the latter defines in a unique way the terminal value (p(1)(1), p(2)(1), λ(1)).
We also deduce from the conditions λ(0) = 0, λ(1) = −α, and from the state equation that

−
∫ 1

0

H(ȳ(1)(s), p(1)(s), v̄(1)(s)) ds+

∫ 1

0

H(ȳ(2)(s), p(2)(s), v̄(2)(s)) ds = −α. (4.10)

We are now ready to convert the obtained optimality conditions for the time crisis problem. In the definition
below and in the second-order analysis, we make use of the following function:

ρτ (t) =
1

τ
if t ∈ (0, τ), ρτ (t) =

−1

T − τ
if t ∈ (τ, T ). (4.11)
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Definition 4.2. A triplet (α, γ, ν) ∈ R+ × R× L∞(0, T ;Rl) is called Lagrange multiplier (associated with ū
and problem (2.4)) if the following conditions are satisfied:

• The triplet (α, γ, ν) is non-zero and the Lagrange multiplier ν satisfies the following sign and comple-
mentarity conditions:

ν(t) ≥ 0, ν(t) · c(ū(t)) = 0, for a.e. t ∈ [0, T ]. (4.12)

• There exists a function p : [0, T ]→ Rn, whose restrictions to [0, τ̄) and (τ̄ , T ] are absolutely continuous,
which satisfies the following adjoint equation

ṗ(t) = −∇xH(x̄(t), p(t), ū(t)) for a.e. t ∈ [0, T ],
p(T ) = α∇φ(x̄(T )),

(4.13)

and the following jump condition at the crossing time τ̄ :

p(τ̄+)− p(τ̄−) = γ∇g(x̄(τ̄)). (4.14)

• The augmented Hamiltonian is stationary with respect to v:

∇uHa(x̄(t), p(t), ū(t), ν(t)) = 0 for a.e. t ∈ [0, T ]. (4.15)

• The following relation holds true ∫ T

0

ρτ̄ (t)H(x̄(t), p(t), ū(t)) dt = α. (4.16)

We denote by ΛL(ū, τ̄) the set of Lagrange multipliers associated with ū and problem (2.4).

Lemma 4.2. The set of Lagrange multipliers ΛL(ū, τ̄) is non-empty.

Proof. These conditions follow from those obtained in Lemma 4.1. Let us recall that the pair (ū, x̄) is related
to (v, y) by:∣∣∣∣ x̄(t) = ȳ(1)(π−1

τ̄ (t)) if t ∈ [0, τ̄ ],
x̄(t) = ȳ(2)(π−1

τ̄ (t)) if t ∈ [τ̄ , T ],
and

∣∣∣∣ ū(t) = v̄(1)(π−1
τ̄ (t)) if t ∈ (0, τ̄),

ū(t) = v̄(2)(π−1
τ̄ (t)) if t ∈ (τ̄ , T ).

The variable ξ̄ is by construction constant, equal to τ̄ . We also recall that the optimality conditions obtained
in Lemma 4.1 involve multipliers (α, β, µ). For the announced result, we keep the same value of α, take γ = β4

and define p and ν as follows:∣∣∣∣ p(t) := p(1)(π−1
τ̄ (t)) if t ∈ (0, τ̄),

p(t) := p(2)(π−1
τ̄ (t)) if t ∈ (τ̄ , T ),

∣∣∣∣ ν(t) := 1
τ̄ µ

(1)(π−1
τ̄ (t)) if t ∈ [0, τ̄),

ν(t) := 1
T−τ̄ µ

(2)(π−1
τ̄ (t)) if t ∈ (τ̄ , T ],

We note first that

dp(t)

dt
=

1

τ̄

dp(1)

ds

∣∣∣
s=π−1

τ̄ (t)
if t ∈ (0, τ̄),

dp(t)

dt
=

1

T − τ̄
dp(2)

ds

∣∣∣
s=π−1

τ̄ (t)
if t ∈ (τ̄ , T ).

The costate equation (4.13) follows then from (4.4). Moreover, we have p(τ̄−) = −β3 + β4∇g(x̄(τ̄)) and
p(τ̄+) = −β3, thus the jump condition at τ̄ holds true. The terminal condition at time T follows directly from
the transversality condition p(2)(1) = α∇φ(ȳ(2)(1)). Relations (4.12), (4.15), and (4.16) directly follow from
(4.3), (4.6), and (4.10). It remains to check that (α, γ, ν) is non-zero. If that was the case, then we would
have µ = 0 and p = 0, implying then that p(1) and p(2) are null and finally that β1 and β3 are also null, which
is not possible since (α, β, µ) is itself non-zero.

Let us mention that for a given (α, γ, ν), the associated costate p is unique, as can be easily verified. We
also mention that the construction detailed in the proof of Lemma 4.2 defines a bijection between Λ̂L(ȳ, v̄)
and ΛL(ū, τ̄).
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4.2 Second-order optimality conditions

We first introduce the critical cone Ĉ(ȳ, v̄) and a quadratic form Ω̂ that will be used to formulate the second-
order necessary optimality conditions associated with (ȳ, v̄). We will make use of the following notation:

δy =

 δy(1)

δy(2)

δξ

 , δv =

[
δv(1)

δv(2)

]
.

Consider first the following differential system, obtained by linearizing the state equation (3.12):

d

ds
δy(s) = DF [s](δy(s), δv(s)), for a.e. s ∈ (0, 1), (4.17)

where [s] is used as a shortening of (ȳ(s), v̄(s)). The critical cone Ĉ(ȳ, v̄) is now defined as follows:

Ĉ(ȳ, v̄) :=



(δy, δv) ∈ H1(0, 1;R2n+1)× L2(0, 1;R2l),
∣∣ (4.17) is satisfied,

Dψ(ȳ(1))δy(1) ≤ 0,

DGi(ȳ(0), ȳ(1))(δy(0), δy(1)) = 0, for i = 1, 3, 4,

ci(v̄
(1)(s)) = 0 =⇒ Dci(v̄

(1)(s))δv(1)(s) = 0, ∀i = 1, ..., l, for a.e. s ∈ (0, 1) ,

ci(v̄
(2)(s)) = 0 =⇒ Dci(v̄

(2)(s))δv(2)(s) = 0, ∀i = 1, ..., l, for a.e. s ∈ (0, 1)


.

In the above definition, the space H1(0, 1;R2n+1) is the Sobolev space of time functions with a weak derivative
in L2(0, 1;R2n+1). The constraint G2 being inactive at (ȳ(0), ȳ(1)), it is not taken into account in the definition
of the critical cone.

Remark 4.1. The set Ĉ(ȳ, v̄) is in general referred to as strict critical cone and the critical cone is actually
a larger set than Ĉ(ȳ, v̄). Still we use the terminology critical cone for Ĉ(ȳ, v̄), for simplicity, and we note
that the two cones are equal under a strict complementarity condition, see [7, Remark 4.8].

We also consider a quadratic form Ω̂, defined for [α, β, µ] ∈ Λ̂L(ȳ, v̄) and for (δy, δv) ∈ H1(0, 1;R2n+1) ×
L2(0, 1;R2l) by

Ω̂[α, β, µ](δy, δv) := αD2ψ(ȳ(1))(δy(1))2 + β ·D2G(ȳ(0), ȳ(1))(δy(0), δy(1))2

+

∫ 1

0

D2Ĥa[s](δy(s), δv(s))2 ds, (4.18)

where q is the unique costate associated with [α, β, µ]. In the above expression, the notation [s] is a shortening
of (ȳ(s), q(s), v̄(s), µ(s)). The Hessian of Ĥa is only considered with respect to the variables y and v. We have
the following result.

Lemma 4.3. For all (δy, δv) ∈ Ĉ(ȳ, v̄), there exists (α, β, µ) ∈ Λ̂L(ȳ, v̄) such that

Ω̂[α, β, µ](δy, δv) ≥ 0. (4.19)

Proof. The result is a consequence of [7, Theorem 4.9]. This result is originally stated for Pontryagin minima,
but can be adapted to weak minima with the localization technique that was already invoked in the proof
of Lemma 4.1. Regarding the required assumptions for the application of [7, Theorem 4.9], we have that
Assumption 2 of [7] follows directly from the inward pointing condition (2.8), Assumption 3 of [7] follows from
the regularity assumptions on f , g, φ, g, and c, Assumption 4 of [7] is irrelevant since we do not have pure
state constraints, and Assumption 5 of [7] follows from (2.9).

We perform now some calculations in order to transform the obtained optimality conditions into optimality
conditions for the time crisis problem. We first note that a pair (δy, δv) satisfies the linearized dynamics (4.17)
if and only if

d
dsδy

(1)(s) = ξDf [s](δy(1)(s), δv(1)(s)) + δξf [s]

d
dsδy

(2)(s) = (T − ξ)Df [s](δy(2)(s), δv(2)(s))− δξf [s]

d
dsξ(s) = 0.

(4.20)
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In the above relations, the notation [s] is used as a shortening for (ȳ(1)(s), v̄(1)(s)) and (ȳ(2)(s), v̄(2)(s)),
respectively. For (δy, δv) satisfying (4.17), the third component of δy is constant and we therefore denote it
by δξ. Regarding the conditions involved in the definition of the critical cone, we note that

Dψ(ȳ(1))δy(1) = Dφ(ȳ(2)(1))δy(2)(1)− δξ, (4.21)

and that

DGi(ȳ(0), ȳ(1))(δy(0), δy(1)) = 0, for i = 1, 3, 4 ⇐⇒


δy(1)(0) = 0,

δy(2)(0)− δy(1)(1) = 0,

Dg(ȳ(1)(1))δy(1)(1) = 0.

(4.22)

The first two terms involved in the definition of Ω̂ are given by

D2ψ(ȳ(1))(δy(1))2 = D2φ(ȳ(2)(1))(δy(2)(1))2 (4.23)

and
β ·D2G(ȳ(0), ȳ(1))(δy(0), δy(1)) = β4D

2g(ȳ(1)(1))(δy(1))2. (4.24)

We finally have the following expression for the Hessian of the augmented Hamiltonian:

D2Ĥa[s](δy(s), δv(s))2 = ξD2Ha(ȳ(1)(s), p(1)(s), v̄(1)(s), 1
ξµ

(1)(s))(δy(1)(s), δv(1)(s))

+ (T − ξ)D2Ha(ȳ(2)(s), p(2)(s), v̄(2)(s), 1
T−ξµ

(2)(s))(δy(2)(s), δv(2)(s))

+ 2δξDH(ȳ(1)(s), p(1)(s), v̄(1)(s))(δy(1)(s), δv(1)(s))

− 2δξDH(ȳ(2)(s), p(2)(s), v̄(2)(s))(δy(2)(s), δv(2)(s)). (4.25)

We are prepared for defining, in an appropriate way, the linearized dynamics, the critical cone C(ū, τ̄),
and the quadratic form Ω(ū, τ̄) associated with the time crisis problem. Given (δu, δτ) ∈ L2(0, T ;Rm) × R,
we consider the following linearized system:

d

dt
δx(t) = Df [t](δx(t), δu(t)) + ρτ̄ (t)δτf [t], for a.e. t ∈ (0, T ), δx(0) = 0. (4.26)

We use the notation [t] as a shortening of (x̄(t), ū(t)). We recall that ρτ̄ was defined in (4.11). The critical
cone C(ū, τ̄) is defined as follows:

C(ū, τ̄) :=


(δu, δτ) ∈ L2(0, 2;R2l)× R

∣∣ for the solution δx to (4.26),

Dφ(x̄(T ))δx(T )− δτ ≤ 0,

Dg(x̄(τ))δx(τ̄) = 0,

ci(ū(t)) = 0 =⇒ Dci(ū(t))δu(t) = 0, ∀i = 1, ..., l, for a.e. t ∈ (0, T )

 . (4.27)

Given (α, γ, ν) ∈ ΛL(ū, τ̄) and (δu, δτ) ∈ L2(0, T ;Rm)× R, we define the quadratic form Ω[α, γ, ν](δu, δτ) as
follows:

Ω[α, γ, ν](δu, δτ) = αD2φ(x̄(T ))(δx(T ))2 + γD2g(x̄(τ̄))(δx(τ̄))2

+

∫ T

0

D2Ha[t](δx(t), δu(t))2 dt+ 2δτ

∫ T

0

ρτ̄ (t)DH[t](δx(t), δu(t)) dt, (4.28)

where δx denotes the solution to (4.26) and where [t] is a shortening of (x̄(t), p(t), ū(t), ν(t)). Like before, the
first- and second-order derivatives of the Hamiltonians must be considered with respect to (x, u) only.

Lemma 4.4. For all (δu, δτ) ∈ C(u, τ), there exists (α, γ, ν) ∈ ΛL(ū, τ̄) such that

Ω[α, γ, ν](δu, δτ) ≥ 0. (4.29)

Proof. The lemma is a consequence of Lemma 4.3 and of the calculations performed above. A bijection
between Ĉ(ȳ, v̄) and C(ū, τ̄) can be established with the same transformation as the one used in the proof
of Proposition 3.2. We recall that there is a bijection between Λ̂L(ȳ, v̄) and ΛL(ū, τ̄). Finally, if (δu, δτ) and
(α, γ, ν) are the images of (δy, δv) and (α, β, µ) via the two mentioned bijections, we have

Ω[α, γ, ν](δu, δτ) = Ω̂[α, β, µ](δy, δv).

which proves the lemma.

12



4.3 Optimality conditions in Pontryagin form

The goal of this subsection is to improve the obtained optimality conditions by restricting the set of involved
Lagrange multipliers in Lemma 4.2 and Lemma 4.4.

Definition 4.3. We call Pontryagin multiplier a triplet (α, γ, ν) ∈ ΛL(u, τ) which is such that Pontryagin’s
Principle holds, that is, for the associated costate p,

H(x̄(t), p(t), ū(t)) ≤ H(x̄(t), p(t), u), ∀u ∈ U, for a.e. t ∈ (0, T ). (4.30)

We denote by ΛP (ū, τ̄) the set of Pontryagin multipliers. We have now the following first- and second-order
necessary optimality conditions in Pontryagin form.

Theorem 4.1. The set ΛP (ū, τ̄) is non-empty. Moreover, for all (δu, δτ) ∈ C(ū, τ̄), there exists (α, γ, ν) ∈
ΛP (ū, τ̄) such that

Ω[α, γ, ν](δu, δτ) ≥ 0.

The proof of the result is postponed to the end of the subsection and relies on three technical results. In
the following lemma, we prove that (ũ, τ̄) is a local minimizer for (3.4) in a stronger way than what has been
stated in Proposition 3.1.

Lemma 4.5. For all ω ∈ (0, 1), there exists ε > 0 such that for all (ũ′, τ ′) ∈ Ũ × (0, T ), the following
implication holds true:

‖ũ− ũ′‖L∞(1−ω,1+ω;Rm) ≤ ε
‖ũ− ũ′‖L1(0,1−ω;Rm) ≤ ε
‖ũ− ũ′‖L1(1+ω,2;Rm) ≤ ε
|τ̄ − τ ′| ≤ ε

=⇒ φ(x̃(2)) + T − τ ≤ φ(x̃′(2)) + T − τ ′, (4.31)

where x̃′ = x̃ũ′,τ ′ .

In words, we allow now perturbations of ũ in the L1-norm, except on the small interval (1−ω, 1+ω), where
only a perturbation in L∞-norm is allowed. Let us mention that it is not possible to prove the result with
ω = 0, since around s = 1, it is essential to perform a small perturbation in L∞-norm in order to preserve the
structure of the trajectory (that is, the uniqueness of the crossing point). If the result was true with ω = 0,
then we could prove that (ȳ, v̄) is a Pontryagin minimum for problem (P) and Theorem 4.1 would follow by
direction application of [7, Theorem 4.9].

Proof of Lemma 4.5. The proof is essentially the same as the one of Proposition 3.1. We only indicate the
modifications that have to be done. First, one has to observe that the mapping defined in (3.9) is still
continuous when Ũ is equipped with the L1-norm (as can be easily verified with Gronwall’s Lemma). Then,
one can modify the left-hand side in the implication (3.10) used for the construction of η4 as follows: ‖ũ− ũ

′‖L1(0,1−ω;Rm) ≤ η4

‖ũ− ũ′‖L∞(1−ω,1;Rm) ≤ η4

|τ̄ − τ ′| ≤ η4

⇒ ∀s ∈ [0, 1− η2], |g(x̃′(s))− g(x̃(s))| < η3,
∀s ∈ [1− η2, 1], |x̃(s)− x̃′(s)| ≤ η1

2 ,

The rest of the proof is identical.

Given ω > 0, we define the following set of multipliers:

ΛP,ω(ū, τ̄) =
{

(α, γ, ν) ∈ ΛL(ū, τ̄) ;H(x̄(t), p(t), ū(t)) ≤ H(x̄(t), p(t), u), for all u ∈ U,
for a.e. t ∈ (0, τ̄(1− ω)) ∪ (τ̄ + ω(T − τ̄), T )

}
. (4.32)

In words, ΛP,ω(ū, τ̄) is the set of Lagrange multipliers satisfying Pontryagin’s Principle on the whole time
interval (0, T ), except on (τ̄(1−ω), τ̄ +ω(T − τ̄)). The approach that we propose now is the following. Lemma
4.5 will enable us to restrict the set of Lagrange multipliers involved in Lemma 4.2 and Lemma 4.4 to the set
ΛP,ω(ū, τ̄), for a given value of ω > 0. Theorem 4.1 will be obtained by “passing to the limit” when ω → 0.
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Lemma 4.6. For all ω > 0, the set ΛP,ω(ū, τ̄) is non-empty.

Proof. Let ω > 0. Let ε > 0 be such that (4.31) holds true. Then, the pair (ȳ, v̄) is a Pontryagin minimum of
the following localized problem:

inf
(y,v)∈T

ψ(y(1)) s.t.


G(y(0), y(1)) ∈ C,
‖v(1) − v̄(1)‖L∞(1−ω,1;Rl) ≤ ε,
‖v(2) − v̄(2)‖L∞(0,ω;Rl) ≤ ε.

(4.33)

Applying [7, Theorem 3.1], we obtain the existence of (α, β, µ) ∈ ΛL(ȳ, v̄) such that

H(ȳ(1)(s), p(1)(s), v̄(1)(s)) ≤ H(ȳ(1)(s), p(1)(s), v), ∀v ∈ U, for a.e. s ∈ (0, 1− ω),

H(ȳ(2)(s), p(2)(s), ū(2)(s)) ≤ H(ȳ(2)(s), p(2)(s), v), ∀v ∈ U, for a.e. s ∈ (ω, 1).

The non-emptiness of ΛP,ω(ū, τ̄) follows then with the usual transformation.

Let us equip ΛL(ū, τ̄) with the following norm:

‖(α, γ, ν)‖ := α+ |β4|+ ‖ν‖L1(0,T ;Rl).

The following lemma is a technical lemma which will be useful for the announced passage to the limit.

Lemma 4.7. Let (ωk)k∈N be a sequence of positive numbers converging to 0. Let (αk, γk, νk)k∈N be a sequence
in ΛL(ū, τ̄) such that

‖(αk, γk, νk)‖ = 1 and (αk, γk, νk) ∈ ΛP,ωk(ū, τ̄), ∀k ∈ N.

Then, there exists at least one non-zero weak-∗ limit point that belongs to ΛP (ū, τ̄).

Proof. The proof is in line with [7, Lemma 3.5]. As a consequence of the inward pointing condition, we have
that the sequence νk is also bounded for the L∞ norm (see [10, Theorem 3.1]). The existence of a weak-∗
limit point (α, γ, ν) follows. Without loss of generality, we now assume that the whole sequence converges to
(α, γ, ν) for the weak-∗ topology. Let us first check that (α, γ, ν) is non-zero. We denote by 1 the vector of

dimension l with coordinates equal to 1. Since νk ≥ 0, we have ‖νk‖L1(0,T ;Rl) =
∫ T

0
1 · νk(t) dt. Thus we can

pass to the limit in the L1-norm, which guarantees that

‖(α, γ, ν)‖ = lim
k→∞

‖(αk, γk, νk)‖ = 1.

Let us prove now that (α, γ, ν) ∈ ΛL(ū, τ̄). The reader can easily verify that α ≥ 0 and that (4.12)
holds true. We denote by pk the unique costate associated with (αk, γk, νk), for all k ∈ N. We de-
note by p the unique costate associated with (α, γ, ν). Let us prove that (pk)k∈N converges uniformly to
p. The costates pk are all solutions to the same differential equation on (τ̄ , T ], with terminal condition
αk∇φ(x̄(T )). Since αk∇φ(x̄(T ))→ α∇φ(x̄(T )), we deduce that (pk|(τ̄ ,T ]) converges uniformly to p|(τ̄ ,T ]. Then,

since γk → γ, we obtain that pk(τ̄−) → p(τ̄−) and with the same argument as before, we obtain that (pk)
converges uniformly to p on [0, τ̄). Now, we observe that the sequence ∇Ha(x̄(·), pk(·), ū(·), νk(·)) converges
to ∇Ha(x̄(·), p(·), ū(·), ν(·)) for the weak-∗ star convergence, since Ha is linear in ν and since c(ū(·)) lies in
L∞(0, T ;Rl). Thus ∇Ha(x̄(·), p(·), ū(·), ν(·)) is null. With the uniform convergence of (pk)k∈N, we directly
obtain that (4.16) holds true. It follows that (α, γ, ν) ∈ ΛL(ū, τ̄).

To conclude the proof, it remains to prove that Pontryagin’s Principle is satisfied. Let τ1 ∈ (0, τ̄) and
τ2 ∈ (τ̄ , T ) be arbitrary. It suffices to show that

H(x̄(t), p(t), u(t)) ≤ H(x̄(t), p(t), u), ∀u ∈ U, for a.e. t ∈ (0, τ1),
H(x̄(t), p(t), u(t)) ≤ H(x̄(t), p(t), u), ∀u ∈ U, for a.e. t ∈ (τ2, T ).

(4.34)

Let k̄ be sufficiently large, so that (0, τ1) ⊆ (0, τ̄(1−ωk)), for all k ≥ k̄. For all k ≥ k̄, we denote by Ik the set
of times t ∈ (0, τ1) such that

H(x̄(t), pk(t), u(t)) ≤ H(x̄(t), pk(t), u), ∀u ∈ U. (4.35)
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Since (αk, γk, νk) ∈ ΛP,ωk(ū, τ̄), we have that (0, τ1)\Ik is of zero measure. Let I =
⋂
k≥k̄ Ik. We have

(0, τ1)\I =
⋃
k≥k̄

(
(0, τ1)\Ik

)
, thus (0, τ1)\I is a set of zero measure. Passing to the limit w.r.t. k in inequality

(4.35), for all t ∈ I, we obtain the first inequality in (4.34). The second inequality is proved similarly. This
concludes the proof.

Proof of Theorem 4.1. Let ω > 0. Considering the localized problem introduced in (4.33) in the proof of
Lemma 4.6, we obtain that the second-order optimality conditions derived in Lemma 4.4 are still valid if
ΛL(ū, τ̄) is replaced by ΛP,ω(ū, τ̄) in inequality (4.29). Now, let (δu, δτ) ∈ C(ū, τ̄) and let (ωk)k∈N be a
sequence of positive numbers converging to 0. As we have just proved, for all k ∈ N, there exists a multi-
plier (αk, γk, νk) ∈ ΛP,ωk(ū, τ̄) such that Ω[αk, γk, νk](δu, δτ) ≥ 0. Re-normalizing if necessary the sequence
(αk, γk, νk)k∈N, we can assume that ‖αk, γk, νk‖ = 1. Applying then Lemma 4.7, we obtain the existence of a
weak-∗ limit point (α, γ, ν) ∈ ΛP (ū, τ̄). Finally, the quadratic form Ω is weakly-∗ continuous with respect to
(α, γ, ν) because Ha is linear w.r.t. the multiplier ν and the costates pk associated with (αk, γk, νk) uniformly
converge to the costate p associated with (α, γ, ν). Thus we have

Ω[α, γ, ν](δu, δτ) = lim
k→∞

Ω[αk, γk, νk](δu, δτ) ≥ 0,

which concludes the proof of the theorem.

Remark 4.2. It is possible to provide second-order sufficient optimality conditions for problem (P) (see [8]).
These conditions would consist in a natural strengthening of the necessary optimality conditions and would
ensure that (ȳ, v̄) is a Pontryagin minimum. However, they would not guarantee the local optimality of ū (for
problem (2.4)) for any standard topology.

4.4 Non-singularity of the Pontryagin multipliers

Lemma 4.8. Let (α, γ, ν) ∈ ΛP (ū, τ̄). Let p be the associated costate. Then, there exist H1 and H2 ∈ R such
that

H(x̄(t), p(t), ū(t)) = H1, for a.e. t ∈ (0, τ̄), H(x̄(t), p(t), ū(t)) = H2, for a.e. t ∈ (τ̄ , T ). (4.36)

Moreover,
H2 −H1 = −α. (4.37)

Proof. The proof of (4.36) follows from the classical proof of the constancy of the Hamiltonian along extremal
trajectories (solutions of a Hamiltonian system issued from Pontryagin’s Principle) for autonomous problems,
see, e.g., [17]. Equality (4.37) follows directly from (4.16).

We are now able to prove that Pontryagin multipliers are not singular and unique, up to a multiplicative
constant.

Proposition 4.1. For all (α, γ, ν) ∈ ΛP (ū, τ̄), we have α > 0. Moreover, there exists a unique Pontryagin
multiplier such that α = 1.

Proof. Let (α, γ, ν) ∈ ΛP (ū, τ̄) be such that α = 0. Let p be the associated costate. Then, p(T ) = 0 and thus
p(t) = 0 for all t ∈ (τ̄ , T ]. It follows from Lemma 4.8 that H2 = 0 and thus H1 = H2 + α = 0. We deduce
then from the jump condition that

γ∇g(x̄(τ̄)) · f(x̄(τ̄), ū(τ̄−)) = (p(τ̄+)︸ ︷︷ ︸
=0

−p(τ̄−)) · f(x̄(τ̄), ū(τ̄−)) = −H1 = 0.

Since τ̄ is transverse, the scalar product ∇g(x̄(τ̄)) · f(x̄(τ̄), ū(τ̄−)) is non-zero and therefore γ = 0. Using
again the jump condition, we deduce then that p(τ̄−) = p(τ̄+) = 0 and thus that p = 0 on [0, τ̄). It further
follows from the stationarity of the augmented Hamiltonian that

∇c(ū(t))ν(t) = 0.

Let us set ∆c,i := {t ∈ (0, T ) | ci(ū(t)) = 0}. By the complementarity condition, we have that

νi(t) = 0, ∀i = 1, ..., `, for a.e. t ∈ (0, T )\∆c,i.
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By the surjectivity condition (2.9) (deduced from Assumption (H1)), we have that there exists v ∈ L2(0, T ;Rm)
such that

Dci(ū(t))v(t) = νi(t), ∀i = 1, ..., l, for a.e. t ∈ ∆c,i.

Therefore,

0 =

l∑
i=1

∫
∆c,i

∇ci(ū(t))νi(t) · v(t) dt =

l∑
i=1

∫
∆c,i

νi(t)Dci(ū(t))v(t) dt =

l∑
i=1

∫
∆c,i

|νi(t)|2 dt. (4.38)

We conclude that νi(t) = 0 for all i = 1, ..., l and for a.e. t ∈ ∆c,i and thus that ν = 0. We obtain a
contradiction with the non-nullity of (α, γ, ν). We can conclude that α > 0.

The existence of a Pontryagin multiplier with α = 1 follows. Consider now two Pontryagin multipliers
(α, γ, ν) and (α′, γ′, ν′) with α = α′ = 1. Denote by p and p′ the associated costates. Denote by H1, H2, H ′1
and H ′2 the constant values of the corresponding Hamiltonians on (0, τ̄) and (τ̄ , T ). We first observe that p
and p′ are equal on (τ̄ , T ]. Thus H2 = H ′2 and since α = α′, we also have that H1 = H ′1. Then, using the
jump condition at τ̄ and the equality p(τ̄+) = p′(τ̄+), we obtain that

γ∇g(x̄(τ̄)) · f(x̄(τ̄), ū(τ̄−)) = (p(τ̄+)− p(τ̄−)) · f(x̄(τ̄), ū(τ̄−))

= p′(τ̄+) · f(x̄(τ̄), ū(τ̄−))−H1

= p′(τ̄+) · f(x̄(τ̄), ū(τ̄−))−H ′1
= (p′(τ̄+)− p′(τ̄−)) · f(x̄(τ̄), ū(τ̄−))

= γ′∇g(x̄(τ̄)) · f(x̄(τ̄), ū(τ̄−)).

We conclude that γ = γ′, by the transversality of τ̄ . It follows that p = p′ on [0, τ̄−) and thus,

∇c(ū(t))ν(t) = ∇c(ū(t))ν′(t), for a.e. t ∈ (0, T ).

Using that the mapping (2.9) is surjective and proceeding as in (4.38), we obtain that ν = ν′, which concludes
the proof of uniqueness.

Remark 4.3. The Hamiltonian H does not contain the indicator function of the set Kc. Let us define
H0(x, p, u) = H(x, p, u) + 1Kc(x). The mapping H0 can be seen as the “true” Hamiltonian associated with
the time crisis problem. We deduce from Lemma 4.8 that for the unique Pontryagin multiplier with α = 1, we
have that t 7→ H0(x̄(t), p(t), ū(t)) is constant almost everywhere over the whole interval (0, T ).

Remark 4.4. The proof of Proposition 4.1 uses in an essential manner the property of constancy of the
Hamiltonian obtained in Lemma 4.8. Therefore, Proposition 4.1 cannot be extended in a direct way to Lagrange
multipliers.

5 Necessary optimality conditions: case of several crossing points

We extend in this section the obtained results to the situation with several crossing points, without detailing
proofs. We therefore assume that (H3) is satisfied with crossing points τ̄1 < ... < τ̄r. We denote by τ̄ ∈ (0, T )r

the vector (τ̄1, ..., τ̄r) and make use of the conventions τ̄0 = 0 and τ̄r+1 = T .
We first need to define a new change of variables. Given τ ∈ (0, T )r, we define the mapping πτ : s ∈

[0, r + 1]→ [0, T ] as follows:

πτ (s) := τj + (s− j)(τj+1 − τj), ∀j = 0, ..., r, ∀s ∈ [j, j + 1]. (5.1)

Given a control ũ ∈ L∞(0, r + 1;U) and τ ∈ (0, T )r, there is a unique solution x̃ũ,τ of the Cauchy problem
dx̃

ds
(s) =

dπτ
ds

(s)f(x̃(s), ũ(s)) for a.e. s ∈ [0, r + 1],

x̃(0) = x0.
(5.2)
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The optimal control problem to be considered, after change of variable is now

inf
ũ∈Ũ, τ∈(0,T )r

φ(x̃ũ,τ (r + 1)) +

r∑
j=1

(−1)jτj s.t. g(x̃ũ,τ (j)) = 0, ∀j = 1, ..., r. (5.3)

For the generalization of the first- and second-order optimality conditions, we re-define the mapping ρτ as a
mapping in L∞(0, T ;Rr) as follows:

(ρτ (t))j =
1

τj − τj−1
if t ∈ (j − 1, j), (ρτ (t))j =

−1

τj+1 − τj
if t ∈ (j, j + 1), (ρτ (t))j = 0 otherwise.

The following result extends the results obtained in Section 4.

Theorem 5.1. There exists a unique pair (γ, ν) ∈ Rr × L∞(0, T ;Rl) satisfying the following properties.

• The Lagrange multiplier ν satisfies (4.12).

• There exists a function p : [0, T ] → Rn, whose restrictions to [0, τ̄1), (τ̄1, τ̄2),...,(τ̄r, T ] are absolutely
continuous, which satisfies the following adjoint equation

ṗ(t) = −∇xH(x̄(t), p(t), ū(t)) a.e. t ∈ [0, T ],
p(T ) = ∇φ(x̄(T )),

(5.4)

and the following jump conditions at the crossing times τ̄j, 1 ≤ j ≤ r:

p(τ̄+
j )− p(τ̄−j ) = γj∇g(x̄(τ̄j)). (5.5)

• The augmented Hamiltonian is stationary with respect to v, i.e., it satisfies (4.15).

• The following relation holds true∫ T

0

(ρτ̄ (t))jH(x̄(t), p(t), ū(t)) dt+ (−1)j = 0, ∀j = 1, ..., r. (5.6)

Moreover, the mapping t ∈ (0, T ) 7→ H0(x̄(t), p(t), ū(t)) is constant (with H0 defined as in Remark 4.3).

The extension of the second order optimality conditions follows the same lines. The linearized dynamics,
for δu ∈ L∞(0, T ;Rm) and δτ ∈ Rr reads:

d

dt
δx(t) = Df [t](δx(t), δu(t)) + (ρτ̄ (t) · δτ)f [t], for a.e. t ∈ (0, T ), δx(0) = 0. (5.7)

The critical cone C(ū, τ̄) is defined as follows:

C(ū, τ̄) :=


(δu, δτ) ∈ L2(0, 2;R2l)× Rr

∣∣ for the solution δx to (4.26),

Dφ(x̄(T ))δx(T ) +
∑r
j=1(−1)jδτj ≤ 0,

Dg(x̄(τ̄j))δx(τ̄j) = 0, j = 1, ..., r,

ci(ū(t)) = 0 =⇒ Dci(ū(t))δu(t) = 0, ∀i = 1, ..., l, for a.e. t ∈ (0, T )

 . (5.8)

The quadratic form Ω[1, γ, ν](δu, δτ) is defined as

Ω[1, γ, ν](δu, δτ) = D2φ(x̄(T ))(δx(T ))2 +

r∑
j=1

γjD
2g(x̄(τj))(δx(τ̄j))

2

+

∫ T

0

D2Ha[t](δx(t), δu(t))2 dt+ 2

∫ T

0

(ρτ̄ (t) · δτ)DH[t](δx(t), δu(t)) dt. (5.9)

We finally have the following result.

Theorem 5.2. For all (δu, δτ) ∈ C(ū, τ̄), Ω[1, γ, ν](δu, δτ) ≥ 0.
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6 Conclusion

The various transformations that we introduced in this paper enable us to obtain first- and second-order
optimality conditions for the time crisis problem over a finite horizon, which presents the particularity to
have a discontinuous cost function w.r.t. the state. Since our approach relies in particular on a transverse
hypothesis on optimal trajectories, further studies could investigate the case when optimal trajectories are
no longer transverse. As well, we are interested in finding necessary optimality conditions in the case where
T = +∞ and θ(x0) < +∞ (see a first attempt to tackle this case in [4]). Finally, the methodology developed
in this paper could be used for numerical simulations of the time crisis problem.
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