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Abstract: The Hilbert-Schmidt Independence Criterion (HSIC) is a dependence measure based on
reproducing kernel Hilbert spaces that is widely used to test independence between two random vectors.
Remains the delicate choice of the kernel. In this work, we develop a new HSIC-based aggregated procedure
which avoids such a kernel choice, and provide theoretical guarantees for this procedure. To achieve this, on
the one hand, we introduce non-asymptotic single tests based on Gaussian kernels with a given bandwidth,
which are of prescribed level. Then, we aggregate several single tests with different bandwidths, and prove
sharp upper bounds for the uniform separation rate of the aggregated procedure over Sobolev balls. On the
other hand, we provide a lower bound for the non-asymptotic minimax separation rate of testing over Sobolev
balls, and deduce that the aggregated procedure is adaptive in the minimax sense over such regularity spaces.
Finally, from a practical point of view, we perform numerical studies in order to assess the efficiency of our
aggregated procedure and compare it to existing tests in the literature.
Mathematics Subject Classification: Primary: 62G10; secondary: 62G09
Keywords: nonparametric test of independence, Hilbert-Schmidt Independence Criterion, permutation
methods, uniform separation rates, aggregated tests, non-asymptotic minimax and adaptive tests

1 Introduction to independence testing
Many nonparametric approaches to test independence between two continuous random vectors
have been explored in the last few decades. Among them, [Hoeffding, 1948] introduces a test
based on the difference between the joint distribution function and the product of the marginal
distribution functions. This test has good properties in the asymptotic framework since it is con-
sistent. Yet, it only applies to univariate random variables. Lately, [Weihs et al., 2018] extend
Hoeffding’s test to the case of multivariate random variables, but still in an asymptotic frame-
work. Another classical method for testing independence is based on comparing the joint density
and the product of the marginal densities [Rosenblatt, 1975, Ahmad and Li, 1997]. For this, an
intermediate step is to estimate these densities using, e.g., the kernel-based method of Parzen-
Rosenblatt [Parzen, 1962]. More recently, many approaches based on reproducing kernel Hilbert
spaces (RKHS) have been developed (see [Aronszajn, 1950] for more details). One of the first
RKHS measures is the kernel canonical correlation (KCC) [Bach and Jordan, 2002]. Yet, the es-
timation of the KCC is not practical since it requires an extra regularization which has to be
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adjusted. Other dependence measures, easier to estimate have been studied later. For instance,
the kernel mutual information (KMI) [Gretton et al., 2003, Gretton et al., 2005b] and the con-
strained covariance (COCO) [Gretton et al., 2005c, Gretton et al., 2005b] are widely used, since
they are relatively easy to interpret and to implement. Finally, one of the most interesting kernel
dependence measure is the Hilbert-Schmidt independence criterion (HSIC) [Gretton et al., 2005a].
The HSIC has a very low computational cost and seems to numerically outperform all previous
RKHS measures [Gretton et al., 2005a]. A first independence test based on the HSIC is devel-
oped using large deviation inequalities [Gretton et al., 2005a]. Then, other tests are constructed
in [Gretton et al., 2008, Li and Yuan, 2019] using an approximation of the null distribution of the
HSIC estimator either by an asymptotic Gamma distribution or by a permutation approach. A
generalization to joint and mutual independence testing is presented in [Pfister et al., 2018]. We
also mention the RKHS-based test [Póczos et al., 2012], using the copula-based kernel dependency
measure. Yet, this test is more conservative than the test of [Gretton et al., 2008], since it is based
on large deviation inequalities. Lately, based on characteristic functions, [Székely et al., 2007] in-
troduce the distance covariance which has good properties and can be used in high dimensional
frameworks [Székely and Rizzo, 2013, Yao et al., 2018]. Furthermore, it has been shown that the
distance covariance coincides with the HSIC for a specific choice of kernels. Other tests have
emerged based for instance on a sample space partitioning [Heller et al., 2016] or based on binary
expansion [Zhang, 2019] and very recently extended to any arbitrary dimension [Lee et al., 2019].
Finally, the authors of [Berrett and Samworth, 2019] introduce a new test based on nearest neigh-
bour methods and kernel mutual information which seems to achieve comparable results with the
classical tests based on HSIC. In this paper, we focus on HSIC measures to test independence.

1.1 Adaptive independence tests

To study the non-asymptotic performances of testing, we consider the uniform separation rate as
defined in [Baraud, 2002]. For any α-level test ∆α with values in {0, 1}, which rejects independence
when ∆α = 1, the uniform separation rate ρ (∆α, Cδ, β) of ∆α, over a class Cδ of regular alternatives
f (such that the difference between the density f and the product of its marginals f1 ⊗ f2 satisfies
smoothness assumptions), with respect to (w.r.t.) the L2-norm, is defined for all β in (0, 1) by

ρ (∆α, Cδ, β) = inf
®
ρ > 0; sup

f∈Fρ(Cδ)
Pf (∆α = 0) ≤ β

´
, (1.1)

where Fρ(Cδ) = {f ; f − f1 ⊗ f2 ∈ Cδ, ‖f − f1 ⊗ f2‖2 > ρ} and ‖·‖2 designates the usual L2-norm.
The uniform separation rate is then the smallest value in the sense of the L2-norm of f − f1 ⊗ f2
allowing to control the second kind error of the test by β. A test of level α having the optimal
performances, should then have a uniform separation rate as small as possible over Cδ. To quantify
this, let us define, as in [Baraud, 2002], the non-asymptotic minimax rate of testing by

ρ (Cδ, α, β) = inf
∆α

ρ (∆α, Cδ, β) , (1.2)

where the infimum is taken over all α-level tests. If the uniform separation rate of a test
is upper bounded up to a constant by the non-asymptotic minimax rate of testing, then
this test is said to be optimal in the minimax sense. The problem of non-asymptotic min-
imax rate of testing was raised in many papers over the past years. Among them, we
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mention for example [Ingster and Suslina, 1998, Laurent et al., 2012] for minimax signal detec-
tion testing. Concerning independence testing, optimality in the minimax sense defined as
above is closely related to the asymptotic minimax rate as introduced in the notable works
of Ingster [Ingster, 1989, Ingster, 1993b], of Yodé [Yodé, 2004, Yodé, 2011] or very recently of
[Li and Yuan, 2019]. Lately, [Berrett and Samworth, 2019] study upper bounds w.r.t. mutual in-
formation, and [Ramdas et al., 2016] obtain minimax lower bounds for linear independence testing.
In the non-asymptotic framework considered in this paper, [Albert, 2015] obtains upper bounds
w.r.t. the L2 distance over weak Besov spaces. Concurrent with our work, and independently,
[Berrett et al., 2020] and [Kim et al., 2020] also obtain minimax separation rates for independence
tests based on permuted U -statistics.

Furthermore, beyond the problem of minimax optimality, the straightforward practical con-
struction of a minimax test usually depends on the unknown smoothness parameter δ of the
regularity space Cδ. The objective is then to construct a minimax test which does not need
any smoothness assumption to be implemented. These tests are called minimax adaptive. The
problem of adaptivity has received a great attention in the literature. We mention for instance
the works of [Baraud et al., 2003] for linear regression model testing with Gaussian noise and of
[Ingster, 2000, Fromont et al., 2006, Balakrishnan et al., 2019] for goodness-of-fit testing. The au-
thors of [Fromont et al., 2013] consider an interesting approach for testing the equality of two
Poisson processes intensities, which consists in aggregating several single kernel-based tests, and
prove that it is adaptive over several regularity spaces. This paper lies in the lineage of these works.

1.2 Mathematical framework and notation

In this work, we study the problem of testing the independence between two continuous real random
vectors X = (X(1), . . . , X(p)) and Y = (Y (1), . . . , Y (q)). The couple (X,Y ) is assumed to have a
joint density f w.r.t. Lebesgue measure on Rp×Rq, with marginal density functions f1 and f2. To
avoid any misunderstanding, let us highlight that f1 and f2 are assumed to be unknown and are
not fixed a priori. We denote by f1⊗f2 : (x, y) ∈ Rp×Rq 7→ f1(x)f2(y) the product of the marginal
densities. We also assume that we observe a n-sample (X1, Y1), . . . , (Xn, Yn) of independent and
identically distributed (i.i.d.) random variables with common density f . The probability measure
associated to this n-sample is denoted Pf . By analogy, Pf1⊗f2 designates the probability measure
associated to a n-sample with common density f1 ⊗ f2.

We address here the question of testing the null hypothesis (H0): “X and Y are independent”
against the alternative (H1): “X and Y are dependent”. That is equivalent to test

(H0): “f = f1 ⊗ f2” against (H1): “f 6= f1 ⊗ f2”.

Throughout this document, we consider the following assumption:

A1 : the density f , and its marginal densities f1 and f2 are bounded,
and denote Mf = max {‖f‖∞ , ‖f1‖∞ , ‖f2‖∞} .

Moreover, the generic notation C(a, b, . . .) denotes a positive constant depending only on its
arguments (a, b, . . .) and that may vary from line to line. Finally, the dimensions p and q are
assumed to be fixed, and do not depend on the sample size.
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1.3 Review on HSIC measures

The definition of the HSIC is derived from the notion of cross-covariance operator [Baker, 1973,
Fukumizu et al., 2004], which can be seen as a generalization of the classical covariance, measuring
many forms of dependence betweenX and Y (not only linear ones). For this, [Gretton et al., 2005a]
associate to X an RKHS F composed of functions mapping from Rp to R (F is a set of transforma-
tions for X), and characterized by a scalar product 〈·, ·〉F . The same operation is carried out for Y ,
considering an RKHS denoted G and a scalar product 〈·, ·〉G . The cross-covariance operator CX,Y
associated to F and G is the operator mapping from G to F and verifying for all (F,G) ∈ F × G,

〈F,CX,Y (G)〉F = Cov (F (X), G(Y )) .

Designating by (ui)i and (vj)j respectively orthonormal bases of F and G, the HSIC between X and
Y is the square Hilbert-Schmidt norm of the operator CX,Y defined as in [Gretton et al., 2005a] by

HSIC(X,Y ) = ‖CX,Y ‖2HS =
∑
i,j

〈ui, CX,Y (vj)〉2F =
∑
i,j

Cov (ui(X), vj(Y ))2 .

The fundamental idea behind this definition is that HSIC(X,Y ) equals zero if and only if
Cov (F (X), G(Y )) = 0 for all (F,G) in F × G. Furthermore, X and Y are independent
if and only if Cov (F (X), G(Y )) = 0 for all bounded and continuous functions F and G
(see e.g. [Jacod and Protter, 2012]). It follows that, for well chosen RKHS, the nullity of
the HSIC characterizes independence. Authors of [Gretton et al., 2005c] show that a sufficient
condition so that the nullity of the associated HSIC characterizes independence is that the
RKHS F (resp. G) induced by a kernel k (resp. l) is dense in the space of bounded and
continuous functions mapping from Rp (resp. Rq) to R. Such kernels are called universal
[Micchelli et al., 2006]. However, the universality is a very limiting condition and only adapted
to compact domains. Recently, a wider class of kernels called characteristic kernels has been
introduced in [Fukumizu et al., 2008, Sriperumbudur et al., 2010]. These kernels characterize in-
dependence on compact as well as non-compact sets. Among them, one of the most commonly used
is the Gaussian kernel [Steinwart, 2001], which we consider in this paper. It is defined as follows.
Let gd be the density of the standard Gaussian distribution on Rd defined for all x = (x(1), . . . , x(d))
in Rd by

gd(x) = 1
(2π)d/2

exp
(
−1

2

d∑
i=1

î
x(i)
ó2)

. (1.3)

For any bandwidths λ = (λ1, . . . , λp) in (0,+∞)p and µ = (µ1, . . . , µq) in (0,+∞)q, we denote for
any x in Rp and y in Rq,

ϕλ(x) = 1
λ1 . . . λp

gp

Ç
x(1)

λ1
, . . . ,

x(p)

λp

å
, φµ(y) = 1

µ1 . . . µq
gq

Ç
y(1)

µ1
, . . . ,

y(q)

µq

å
. (1.4)

Finally, the Gaussian kernels are defined for x, x′ in Rp and y, y′ in Rq by

kλ(x, x′) = ϕλ(x− x′), and lµ(y, y′) = φµ(y − y′).

A very convenient form of HSIC(X,Y ) is expressed in [Gretton et al., 2005a] using kernels k
and l respectively associated to F and G,

HSIC(X,Y ) = E
[
k(X,X ′)l(Y, Y ′)

]
+ E

[
k
(
X,X ′

)]
E
[
l
(
Y, Y ′

)]
− 2E

[
E
[
k
(
X,X ′

)
| X
]
E
[
l
(
Y, Y ′

)
| Y
] ]
, (1.5)
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where (X ′, Y ′) is an i.i.d. copy of (X,Y ). Note that HSIC(X,Y ) only depends on the density f
of (X,Y ). Hence, in the following, we denote by HSICλ,µ(f) the HSIC measure defined in (1.5),
where the kernels k and l are respectively the Gaussian kernels kλ and lµ.

Given an i.i.d. n-sample (Xi, Yi)1≤i≤n with common density f , an estimator of HSICλ,µ(f) can
be obtained by estimating each expectation of Equation (1.5). For this, we introduce the following
U -statistics, respectively of order 2, 3 and 4,’HSIC

(2)
λ,µ = 1

n(n− 1)
∑

(i,j)∈in2

kλ (Xi, Xj) lµ (Yi, Yj) ,’HSIC
(3)
λ,µ = 1

n(n− 1)(n− 2)
∑

(i,j,r)∈in3

kλ (Xi, Xj) lµ (Yj , Yr) ,’HSIC
(4)
λ,µ = 1

n(n− 1)(n− 2)(n− 3)
∑

(i,j,r,s)∈in4

kλ (Xi, Xj) lµ (Yr, Ys) ,

where inr is the set of all r-tuples drawn without replacement from {1, . . . , n}. We estimate
HSICλ,µ(f) by the U -statistic’HSICλ,µ = ’HSIC

(2)
λ,µ + ’HSIC

(4)
λ,µ − 2’HSIC

(3)
λ,µ. (1.6)

Similar estimators have been used to construct independence tests (see e.g.
[Gretton et al., 2008]). Yet, only a heuristic choice of the bandwidths λ and µ is considered
with no theoretical guarantees. To avoid this choice, following the work of [Fromont et al., 2013],
we introduce in this paper an aggregated procedure based on Gaussian kernel HSIC measures
and prove that it is minimax adaptive over Sobolev balls. Note that in the continuity of our
work, [Kim et al., 2020] obtain minimax adaptive results over Hölder spaces for two-sample and
independence tests based on permutations.

The structure of this paper is as follows. In Section 2, we first present a theoretical non-
asymptotic HSIC-based test of prescribed level α as well as a permutation-based HSIC-test that is
implemented in practice. We then provide theoretical conditions based on concentration inequalities
for U -statistics, allowing to control the second kind error of the theoretical test by a given β.
This last step leads us to sharp upper bounds of the uniform separation rate over Sobolev balls,
and an optimal bandwidth choice (depending on the regularity parameter) in order to obtain a
minimax optimal test. In Section 3, we introduce an aggregated procedure avoiding the bandwidth
choice. We prove both an oracle-type inequality and sharp upper bounds for the uniform separation
rate over Sobolev balls. Lower bounds over Sobolev spaces are obtained in Section 4. Finally, a
comparison of the permutation-based test with the theoretical test first, and then with other existing
tests, is presented in a simulation study in Section 5.

2 Single HSIC-based tests of independence
The aim of this section is to sharply upper bound the (non-asymptotic) uniform separation rate
of HSIC-based tests over Sobolev balls which are well adapted to kernel-based tests. For this,
theoretical conditions allowing to control the second kind error are first given in terms of HSICλ,µ(f)
and then in terms of the L2-norm of f−f1⊗f2. In this section, we consider fixed bandwidths (λ, µ).
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2.1 The testing procedures

Consider the notations introduced in Sections 1.2 and 1.3.

A theoretical test of independence Since Gaussian kernels are characteristic, testing the
independence between X and Y is equivalent to testing

(H0) : HSICλ,µ(f) = 0 against (H1) : HSICλ,µ(f) > 0.

The statistic ’HSICλ,µ defined in Equation (1.6) is then a natural test statistic since it is an unbiased
estimator of HSICλ,µ(f). For a prescribed level α in (0, 1), we consider the theoretical statistical
test ∆λ,µ

α defined by
∆λ,µ
α = 1’HSICλ,µ > qλ,µ1−α

, (2.1)

where qλ,µ1−α denotes the (1− α)-quantile of ’HSICλ,µ under Pf1⊗f2 . We reject (H0) if ∆λ,µ
α = 1. By

definition of the quantile, this theoretical test is of non-asymptotic level α, that is for all densities
f1 and f2, Pf1⊗f2(∆λ,µ

α = 1) ≤ α. Note that the analytical computation of the quantile qλ,µ1−α is
not possible since its value depends on the unknown marginal densities f1 and f2. In practice,
this quantile is approached by permutation with a Monte Carlo approximation as described in the
following paragraph.

A permutation-based test of independence Let Zn = (Xi, Yi)1≤i≤n denote the original
sample and compute the test statistic ’HSICλ,µ (Zn) defined by Equation (1.6). Then, let τ1, . . . , τB
be B i.i.d. random permutations of {1, . . . , n}, independent of Zn. We define for each permutation
τb the corresponding permuted sample Zτbn = (Xi, Yτb(i))1≤i≤n and compute the permuted test
statistic on this new sample “H?b

λ,µ = ’HSICλ,µ (Zτbn ) .
Under Pf1⊗f2 , each permuted sample Zτbn has the same distribution as the original sample Zn.

Hence, the random variables {“H?b
λ,µ}1≤b≤B, have the same distribution as ’HSICλ,µ. We apply a

trick, based on [Romano and Wolf, 2005, Lemma 1], which consists in adding the original sample
to the Monte Carlo sample in order to obtain a test of non-asymptotic level α. To do so, denote“H?B+1

λ,µ = ’HSICλ,µ and “H?(1)
λ,µ ≤ “H?(2)

λ,µ ≤ . . . ≤ “H?(B+1)
λ,µ

the order statistic. Then, the permuted quantile with Monte Carlo approximation q̂λ,µ1−α is thus
defined as

q̂λ,µ1−α = “H?(d(B+1)(1−α)e)
λ,µ . (2.2)

where d·e denotes the ceiling function. The permuted test with Monte Carlo approximation “∆λ,µ
α

performed in practice is then defined as“∆λ,µ
α = 1’HSICλ,µ> q̂λ,µ1−α

. (2.3)

Proposition 1. Let α in (0, 1) and consider the permuted test with Monte Carlo approximation“∆λ,µ
α defined by Equation (2.3). Then, for all B, Pf1⊗f2

Ä“∆λ,µ
α = 1

ä
≤ α.

Hence, both the theoretical test ∆λ,µ
α and the permuted test “∆λ,µ

α are of prescribed non-
asymptotic level α. A comparison in terms of power is done on simulated data in Section B.1
justifying the restriction of the following theoretical study to the theoretical test.
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2.2 Control of the second kind error in terms of HSIC

For an arbitrarily small β given in (0, 1), Lemma 1 provides a first non-asymptotic condition on
the alternative f ensuring that the probability under Pf of second kind error of the theoretical
test ∆λ,µ

α defined in Equation (2.1) is at most equal to β. This condition is given for the value of
HSICλ,µ(f). It involves the variance of the estimator ’HSICλ,µ which is finite since this estimator
is bounded.
Lemma 1. Let α, β in (0, 1) and (Xi, Yi)1≤i≤n be an i.i.d. sample with distribution Pf . Consider
the test statistic ’HSICλ,µ defined by (1.6) and denote qλ,µ1−α its (1−α)-quantile under Pf1⊗f2. Then
Pf (’HSICλ,µ ≤ qλ,µ1−α) ≤ β as soon as

HSICλ,µ(f) ≥

√
Varf (’HSICλ,µ)

β
+ qλ,µ1−α.

Lemma 1 gives a threshold for HSICλ,µ(f) from which the dependence between X and Y is
detectable with probability greater than 1− β. In order to express the order of magnitude of this
threshold w.r.t. n, λ and µ, we establish sharp upper bounds for both the variance Varf (’HSICλ,µ)
and the quantile qλ,µ1−α. Proposition 2 gives an upper bound for the variance.
Proposition 2. Let f be a density satisfying Assumption A1, and (Xi, Yi)1≤i≤n be an i.i.d. sample
with distribution Pf . Consider the test statistic ’HSICλ,µ defined by (1.6). Then,

Varf (’HSICλ,µ) ≤ C (Mf , p, q)
ß 1
n

+ 1
λ1 . . . λpµ1 . . . µqn2

™
.

Propostion 3 provides an upper bound for the quantiles. It requires the following assumptions
on the bandwidths (λ, µ):

A2(α) : max
{

p∏
i=1

λi,
q∏
j=1

µj

}
< 1 and n

√
λ1 . . . λpµ1 . . . µq > log

Å 1
α

ã
> 1.

Note that larger sample sizes allow for smaller bandwidths.
Proposition 3. Let α in (0, 1). Let f be a density satisfying A1 and (Xi, Yi)1≤i≤n be an i.i.d.
sample with distribution Pf . Consider bandwidths (λ, µ) satisfy Assumptions A2(α). Denote’HSICλ,µ the test statistic defined by (1.6) and qλ,µ1−α its (1− α)-quantile under Pf1⊗f2. Then,

qλ,µ1−α ≤
C (Mf , p, q)

n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
.

Combining Lemma 1 with Propositions 2 and 3, Corollary 1 provides a sufficient condition on
HSICλ,µ(f) depending on the bandwidths λ, µ and the sample size n in order to control the second
kind error rate by β.
Corollary 1. Under the assumptions of Lemma 1, Propositions 2 and 3, one has Pf (∆λ,µ

α = 0) ≤ β
as soon as

HSICλ,µ(f) > C (Mf , p, q, β)
®

1√
n

+ 1
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã´
.

Note that the right-hand side term given in Corollary 1 depends on the unknown density f .
However, this dependence is weak since it only involves the infinite norm of f and its marginals.
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2.3 Control of the second kind error in terms of L2-norm

For the sake of interpretation, and in order to upper bound the non-asymptotic uniform separation
rates w.r.t. the L2-norm, we now want to express the condition on HSICλ,µ(f) obtained in Corollary
1 in terms of the L2 norm of the difference f − f1 ⊗ f2. To do so, we first give in Lemma 2 a link
between HSICλ,µ(f) and ‖f − f1 ⊗ f2‖22.

Lemma 2. Let ψ = f − f1 ⊗ f2. The HSIC measure of f associated to kernels kλ and lµ and
defined in Equation (1.5) can be written as

HSICλ,µ(f) = 〈ψ,ψ ∗ (ϕλ ⊗ φµ)〉2,

where ϕλ and φµ are the functions defined in Equation (1.4), and 〈·, ·〉2 denotes the usual scalar
product in the L2 space. One can easily deduce that

HSICλ,µ(f) = 1
2

Å
‖ψ‖22 + ‖ψ ∗ (ϕλ ⊗ φµ)‖22 − ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22

ã
. (2.4)

Theorem 1 gives a sufficient condition on ‖f − f1 ⊗ f2‖22, for the second kind error of the test
∆λ,µ
α to be upper bounded by β.

Theorem 1. Let α, β in (0, 1) and consider the test ∆λ,µ
α defined by (2.1). Assume that the density

f satisfies A1 and that the bandwidths (λ, µ) satisfy A2(α). Then, Pf (∆λ,µ
α = 0) ≤ β as soon as

‖ψ‖22 > ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22 + C (Mf , p, q, β)
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
. (2.5)

where ψ = f − f1 ⊗ f2, and C(·) denotes a positive constant depending only on its arguments.

In Condition (2.5) appears a compromise between a bias term, namely ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22,
and a term induced by the square root of the variance of the estimator ’HSICλ,µ. Note that, due to
Proposition 3, this variance term also controls the quantile term. Comparing the conditions on the
HSIC given in Corollary 1 and on the L2-norm ‖f − f1 ⊗ f2‖22 given in Theorem 1, the meticulous
reader may notice that the term in 1/

√
n has been removed. This suppression seems to be necessary

to obtain optimal separation rates according to the literature in other testing frameworks. This
derives from quite tricky computations that we point out here and that directly prove Theorem 1.
By combining Lemmas 1 and 2, direct computations lead to the condition

‖ψ‖22 > ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22 − ‖ψ ∗ (ϕλ ⊗ φµ)‖22 + 2

√
Varf (’HSICλ,µ)

β
+ 2qλ,µ1−α. (2.6)

If one directly considers the upper bound of the variance Varf (’HSICλ,µ) given in Proposition
2, one would get the unwanted 1/

√
n term. The idea is to take advantage of the negative term

−‖ψ ∗ (ϕλ ⊗ φµ)‖22 to compensate such term. To do so, we need a more refined control of the
variance given in the technical Proposition 4.

Proposition 4. Let f be a density satisfying Assumption A1, and (Xi, Yi)1≤i≤n be an i.i.d. sample
with distribution Pf . Consider the test statistic ’HSICλ,µ defined by (1.6). Then,

Varf (’HSICλ,µ) ≤ C(Mf )
‖ψ ∗ (ϕλ ⊗ φµ)‖22

n
+ C (Mf , p, q)
n2λ1 . . . λpµ1 . . . µq

.
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Finally, using standard inequalities such as
√
a+ b ≤

√
a+
√
b or such as 2

√
ab ≤ ca+ b/c for

all positive a, b and c, one can prove that

2

√
Varf (’HSICλ,µ)

β
≤ ‖ψ ∗ (ϕλ ⊗ φµ)‖22 + C (Mf , β)

n
+ C (Mf , p, q, β)
n
√
λ1 . . . λpµ1 . . . µq

,

which leads to Theorem 1 when combined with Equation (2.6) and Proposition 3. Notice that such
trick is already present in [Fromont et al., 2013].

2.4 Uniform separation rate over Sobolev balls

The bias term in Theorem 1 comes from the fact that we do not estimate ‖f − f1 ⊗ f2‖22 but
HSICλ,µ(f). In order to have a control of the bias term w.r.t λ and µ, we assume that f − f1 ⊗ f2
belongs to some class of regular functions.

The Sobolev ball Sδd(R) in dimension d in N∗, with regularity parameter δ > 0 and radius R > 0,
is defined by

Sδd(R) =
ß
s : Rd → R ; s ∈ L1(Rd) ∩ L2(Rd),

∫
Rd
‖u‖2δ |ŝ(u)|2 du ≤ (2π)dR2

™
, (2.7)

where ‖·‖ denotes the Euclidean norm associated to the usual scalar product 〈·, ·〉 in Rd, and ŝ
denotes the Fourier transform of s, defined on Rd by ŝ(u) =

∫
Rd s(x)ei〈x,u〉 dx. Lemma 3 gives an

upper bound for the bias term in the case where f − f1 ⊗ f2 belongs to particular Sobolev balls.
Lemma 3. Assume that ψ = f−f1⊗f2 belongs to the Sobolev ball Sδp+q(R) with positive parameters
δ and R, defined in (2.7). Let ϕλ and φµ be the functions defined in (1.4). Then, there exists Tδ
in [0, 1] such that

‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22 ≤
Ä
1− e−T 2

δ /2
ä
‖ψ‖22 + C(p, q, δ, R)

[
p∑
i=1

λ2δ
i +

q∑
j=1

µ2δ
j

]
.

Moreover, if δ belongs to (0, 2], then Tδ = 0 and the term with ‖ψ‖2 vanishes.
In the following, we study optimality over Sδp+q(R,R′) defined by

Sδp+q(R,R′) = Sδp+q(R) ∩
{
f ; max {‖f‖∞ , ‖f1‖∞ , ‖f2‖∞} ≤ R

′} . (2.8)

One can deduce from Theorem 1 upper bounds for the uniform separation rates, defined in (1.1),
of the test ∆λ,µ

α over Sobolev balls.
Theorem 2. Let α, β in (0, 1), and positive parameters δ, R and R′. Consider bandwidths (λ, µ)
satisfying Assumptions A2(α) and denote ∆λ,µ

α the test defined by (2.1). Then, the uniform sep-
aration rate defined in (1.1) of the test ∆λ,µ

α over the Sobolev ball Sδp+q(R,R′) defined in Equation
(2.8) can be upper bounded as followsî

ρ
Ä
∆λ,µ
α ,Sδp+q(R,R′), β

äó2
≤ C(p, q, δ, R)

[
p∑
i=1

λ2δ
i +

q∑
j=1

µ2δ
j

]

+ C (R′, p, q, β)
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
, (2.9)

where C(·) denote positive constants depending only on their arguments.
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One can now determine optimal bandwidths (λ∗, µ∗) which minimize the right-hand side of
Equation (2.9). To do so, the idea is to find for which (λ, µ) both terms in the right-hand side of
(2.9) are of the same order w.r.t. n. We also provide an upper bound for the uniform separation
rate of the optimized test ∆λ∗,µ∗

α over Sobolev balls.

Corollary 2. Let α in (0, 1/e), β in (0, 1), and δ,R,R′ > 0. Define for all i in {1, . . . , p} and for
all j in {1, . . . , q},

λ∗i = µ∗j = n−2/(4δ+p+q).

If n > (log(1/α))1+(p+q)/(4δ), then, (λ∗, µ∗) satisfy A2(α) and the uniform separation rate of the
optimized test ∆λ∗,µ∗

α over the Sobolev ball Sδp+q(R,R′) is controlled as follows

ρ
Ä
∆λ∗,µ∗
α ,Sδp+q(R,R′), β

ä
≤ C

(
p, q, α, β, δ, R,R′

)
n−2δ/(4δ+p+q).

Note that, in the definition of the Sobolev ball Sδp+q(R,R′), we have the same regularity param-
eter δ > 0 for all directions in Rp+q. This corresponds to an isotropic regularity condition. Similar
results over anisotropic Nikol’skii regularities are obtained in Appendix A in the supplementary
material.

Moreover, the test ∆λ∗,µ∗
α with the optimized bandwidths depends on the regularity parameter

δ and cannot be computed in practice. In the next section, for the purpose of adaptivity, we build
an aggregated testing procedure taking into account a collection of bandwidths. In particular, this
avoids the delicate choice of arbitrary bandwidths. We then prove an oracle-type inequality and
show that the uniform separation rate of this aggregated procedure is of the same order as the
smallest uniform separation rate of the tests in the chosen collection, up to a logarithmic term.

Finally, note that subsequently, [Kim et al., 2020] generalize Theorem 2 to the permuted tests.
However, they obtain a polynomial dependence in α, that is 1/

√
α instead of log(1/α), which leads

to minimax optimal tests for an optimized bandwidth choice, as in Corollary 2. Yet, the dependence
in α is not sharp enough to provide adaptive tests by aggregating.

3 Aggregated HSIC-based test of independence
In Section 2, we consider single tests based on Gaussian kernels associated to given bandwidths
(λ, µ). However, there is as yet no justified method to choose λ and µ with theoretical guaran-
tees. In many cases, authors choose these parameters w.r.t the available data (Xi, Yi)1≤i≤n by
taking for example λ (resp. µ) as the empirical median (see [Zhang et al., 2011]) or the empiri-
cal mean (see, e.g., [De Lozzo and Marrel, 2017, Marrel et al., 2020]) of (‖Xi −Xj‖)1≤i<j≤n (resp.
(‖Yi − Yj‖)1≤i<j≤n). To avoid this arbitrary choice, we consider in this section an aggregated
testing procedure combining a collection of single tests based on different bandwithds.

3.1 The aggregated testing procedure

Consider now a finite or countable collection W ⊂ (0,+∞)p × (0,+∞)q of bandwidths (λ, µ) and
a collection of positive weights {ωλ,µ}(λ,µ)∈W such that

∑
(λ,µ)∈W e−ωλ,µ ≤ 1.

For a given α in (0, 1), the aggregated test rejects (H0) if there is at least one (λ, µ) in W such
that the corresponding single test with corrected level uα exp(−ωλ,µ) rejects (H0), that is

∃(λ, µ) ∈ W ; ’HSICλ,µ > qλ,µ
1−uαe−ωλ,µ

,
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where uα is the less conservative value such that the aggregated test is of level α. More precisely,
this level correction is defined by

uα = sup
®
u > 0 ; Pf1⊗f2

Ç
sup

(λ,µ)∈W

{’HSICλ,µ − qλ,µ1−ue−ωλ,µ

}
> 0
å
≤ α

´
. (3.1)

We should mention here that the supremum in Equation (3.1) exists since the function

u 7→ Pf1⊗f2( sup
(λ,µ)∈W

{’HSICλ,µ − qλ,µ1−ue−ωλ,µ
} > 0)

is well defined for u in the interval (0, inf(λ,µ)∈W {exp(ωλ,µ)}), non-decreasing, and converges to 0
and 1 respectively at the boundaries of this interval. Moreover, we can choose weights such that∑

(λ,µ)∈W e−ωλ,µ = 1. Yet, in practice, it just changes the value of uα and leads to the same test.
The (theoretical) aggregated test ∆α is then defined by

∆α = 1
sup

(λ,µ)∈W

ß’HSICλ,µ−qλ,µ
1−uαe

−ωλ,µ

™
>0
, (3.2)

and rejects (H0) if ∆α = 1. By definition of uα, the test ∆α is of level α.

For computational limitations, the collection W is finite in practice. Moreover, as for the
quantile, the correction uα of the level is not analytically computable since it depends on the
unknown marginal densities f1 and f2. In practice, it can also be approached by a permutation
method with Monte Carlo approximation, as done in [Albert, 2015]. More precisely, consider
the notations of Section 2.1. First, generate B1 independent and uniformly distributed random
permutations of {1, . . . , n}, denoted τ1, . . . , τB1 , independent of Zn and compute for each (λ, µ) in
W and each u > 0 the permuted quantile with Monte Carlo approximation q̂λ,µ

1−ue−ωλ,µ
as defined in

(2.2). Second, in order to estimate the probabilities under Pf1⊗f2 in (3.1), generate B2 independent
and uniformly distributed random permutations of {1, . . . , n}, denoted κ1, . . . , κB2 , independent of
Zn and of τ1, . . . , τB1 . Denote for all permutation κb, the corresponding permuted statistic“Hκb

λ,µ = ’HSICλ,µ (Zκbn )

Then, the correction uα is approached by Monte Carlo as follows:

ûα = sup

u > 0 ; 1
B2

B2∑
b=1

1
max

(λ,µ)∈W

ß“Hκb
λ,µ
−q̂λ,µ

1−ue−ωλ,µ

™
>0
≤ α

 . (3.3)

In the end, the permuted aggregated test ∆̂α with Monte Carlo approximation is defined by

∆̂α = 1
max

(λ,µ)∈W

ß’HSICλ,µ−q̂λ,µ
1−ûαe

−ωλ,µ

™
>0
. (3.4)

As for the single tests, a comparison in terms of power is done on simulated data in Section 5.1
justifying the restriction of the following theoretical study to the theoretical aggregated test.
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3.2 Oracle-type conditions for the uniform separation rate over Sobolev balls

As a reminder, our goal is to construct a testing procedure with a uniform separation rate as small
as possible and whose implementation does not require any information about the regularity of the
difference f − f1 ⊗ f2.

The main advantage of the aggregated procedure is that its second kind error is upper bounded
by the smallest error of the single tests (with corrected levels) in the collection. The main argument
is highlighted in Lemma 4.

Lemma 4. Let α, β in (0, 1), and consider the aggregated test ∆α defined in Equation (3.2). Then,
uα ≥ α and

Pf (∆α = 0) ≤ inf
(λ,µ)∈W

¶
Pf
Ä
∆λ,µ

αe
−ωλ,µ = 0

ä©
.

According to Lemma 4, if there exists at least one single test ∆λ,µ

αe
−ωλ,µ with a probability of

second kind error at most equal to β, then the same control holds for the aggregated test ∆α.
Theorem 3 gives an oracle-type inequality for the uniform separation rate of the aggregated testing
procedure ∆α, showing the interest of this procedure.

Theorem 3. Let α, β in (0, 1). Consider a finite or countable collection W ⊂ (0,+∞)p× (0,+∞)q
of bandwidths (λ, µ) and a collection of positive weights {ωλ,µ}(λ,µ)∈W such that

∑
(λ,µ)∈W e−ωλ,µ ≤ 1

and such that all (λ, µ) in W verifies Assumption A2(αe−ωλ,µ). Then, the uniform separation rate
over Sobolev balls Sδp+q(R,R′) with positive parameters δ, R and R′ of the aggregated test ∆α defined
in Equation (3.2) can be upper bounded as followsî

ρ
Ä
∆α,Sδp+q(R,R′), β

äó2
≤ C

(
p, q, β, δ, R,R′

)
×

inf
(λ,µ)∈W

{[
p∑
i=1

λ2δ
i +

q∑
j=1

µ2δ
j

]
+ 1
n
√
λ1 . . . λpµ1 . . . µq

Å
log
Å 1
α

ã
+ ωλ,µ

ã}
,

where C(·) is a positive constant depending only on its arguments.

Theorem 3 can be interpreted as an oracle-type condition for the uniform separation rate of
the test ∆α. Indeed, without knowing the regularity of f − f1 ⊗ f2, we prove that the uniform
separation rate of ∆α is of the same order as the smallest uniform separation rate of the single tests
corresponding to bandwidths (λ, µ) in W, up to an additional term ωλ,µ due to the correction of
the individual levels.

3.3 Uniform separation rate over Sobolev balls

In this section, we consider the aggregated test for a particular choice of bandwidths collection W
defined by

W =
ß

(2−m1p+q,m ∈ {1, . . . ,Mp,q
n }

™
, (3.5)

where 1p+q = (1, 1, . . . , 1) ∈ Rp+q and, denoting b·c the floor function,

Mp,q
n =

⌊
log2

(ï
n

log(n)

ò 2
p+q
)⌋

.
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In addition, we associate to every (λ, µ) = 2−m1p+q in W the positive weight

ωλ,µ = 2 log
Å
m× π√

6

ã
, (3.6)

so that
∑

(λ,µ)∈W e−ωλ,µ ≤ 1. Corollary 3 justifies that this particular choice of bandwidths collection
and associated weights is well adapted to Sobolev regularities.

Corollary 3. Let α, β in (0, 1). Consider the aggregated test ∆α defined in (3.2), with the particular
choice of the collection W and the weights (ωλ,µ)(λ,µ)∈W defined in (3.5) and (3.6). Assume that
log log(n) > 1. Under the assumptions of Theorem 3, for any δ,R,R′ > 0, there exists a positive
constant C(p, q, α, δ) such that for all n ≥ C(p, q, α, δ), the uniform separation rate over the Sobolev
ball Sδp+q(R,R′) of ∆α can be upper bounded as follows:

ρ
Ä
∆α,Sδp+q(R,R′), β

ä
≤ C

(
p, q, α, β, δ, R,R′

)Å log log(n)
n

ã2δ/(4δ+p+q)
. (3.7)

According to Corollary 3, the uniform separation rate of the aggregated procedure over Sobolev
balls is of the same order as the one of the optimized test ∆λ∗,µ∗

α (given in Corollary 2), up to a
log log(n) factor. Note that this logarithmic loss is usually the price to pay for aggregated tests (see,
e.g., [Spokoiny, 1996, Ingster, 2000]). Similar results over Nikol’skii-Besov spaces are also obtained
in the supplementary material.

4 Lower bound for the non-asymptotic minimax rate over Sobolev
balls

In this section, we present a general method based on a Bayesian approach to lower bound the
non-asymptotic minimax rate of testing as defined in (1.2). The general idea of this method is due
to [Ingster, 1993a] and relies on Lemma 5.

Lemma 5. Let α, β, η in (0, 1) such that α+ β + η < 1. Let Cδ denote some regularity space, and
recall that for all positive ρ, the set Fρ(Cδ) is defined by

Fρ(Cδ) = {f ; f − f1 ⊗ f2 ∈ Cδ, ‖f − f1 ⊗ f2‖2 ≥ ρ}.

Let us denote
β
[
Fρ(Cδ)

]
= inf

∆α

sup
f∈Fρ(Cδ)

Pf (∆α = 0) ,

where the infimum is taken over all α-level tests of (H0) against (H1).

Let ρ∗ > 0 and consider a probability measure νρ∗ defined on the set of densities in L2(Rp×Rq)
such that νρ∗(Fρ∗(Cδ)) ≥ 1 − η. Define the associated probability measure Pνρ∗ for all measurable
set A in Rn(p+q) by

Pνρ∗ (A) =
∫
L2(Rp×Rq)

Pf (A) dνρ∗(f).

Assume there exists a density f0 that satisfies (H0) such that the probability measure Pνρ∗ is
absolutely continuous w.r.t. Pf0 and verifies

EPf0

î
L2
νρ∗

(Zn)
ó
< 1 + 4(1− α− β − η)2, (4.1)
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where the likelihood ratio Lνρ∗ is defined by Lνρ∗ = dPνρ∗/dPf0 . Then, for all ρ ≤ ρ∗ we have that
β
[
Fρ(Cδ)

]
> β. It follows that

ρ (Cδ, α, β) = inf
∆α

ρ (∆α, Cδ, β) ≥ ρ∗.

We aim at proving that
ρ∗n = Cn−2δ/(4δ+p+q)

is a lower bound for the non-asymptotic minimax rate of testing, defined in (1.2), over Sobolev balls
Sδp+q(R,R′), for some positive constant C, that is, ρ

(
Sδp+q(R,R′), α, β

)
≥ ρ∗n. According to Lemma

5, it is sufficient to find a probability distribution νρ∗n such that νρ∗n(Fρ∗n(Sδp+q(R,R′))) ≥ 1− η and
such that Condition (4.1) holds.

To do so, we generalize the construction of [Butucea, 2007] to our multidimensional framework.
The idea is to construct a finite set of alternatives (fθ)θ by perturbing the uniform density on
[0, 1]p × [0, 1]q, and define νρ∗n as a uniform mixture of these alternatives. For this, consider the
function G defined for all t in R by

G(t) = e−1/[1−(4t+3)2]1(−1,−1/2)(t)− e−1/[1−(4t+1)2]1(−1/2,0)(t). (4.2)

One may notice that G is continuous, with support in [−1, 0] and that
∫
RG(t)dt = 0. The function

G together with its Fourier transform has valuable properties for our study.
Let hn be in (0, 1] to be specified later such that Mn := 1/hn in an integer. Denote In,p,q =

{1, . . . ,Mn}p × {1, . . . ,Mn}q. For all θ = (θ(j,l))(j,l)∈In,p,q in {−1, 1}M
p+q
n , define for all (x, y) in

Rp × Rq,

fθ(x, y) = 1[0,1]p+q(x, y)

+ C0h
δ+(p+q)
n

∑
(j,l)∈In,p,q

θ(j,l)

p∏
r=1

Ghn(xr − jrhn)
q∏
s=1

Ghn(ys − lshn), (4.3)

where for all h > 0, Gh(·) = (1/h)G(·/h) and C0 is a constant depending on (p, q, δ, R,R′, η) that
will be specified later. One may notice that for all θ, the alternative fθ is supported in [0, 1]p+q.
Moreover, since the integral of G over R equals 0, the marginals fθ,1 and fθ,2 of fθ are respectively
the uniform densities on [0, 1]p and [0, 1]q. Lemmas 6 and 7 justify the choice of these alternatives.

Lemma 6. Let δ > 0, R > 0 and R′ ≥ 1. Consider hn in (0, 1] such that Mn := 1/hn is an integer.
Then, for all θ = (θ(j,l))(j,l)∈In,p,q in {−1, 1}M

p+q
n , the function fθ defined in Equation (4.3) satisfies

the following properties.

1. If C0 ≤ min{1, R′ − 1}ep+q, then the function fθ is a density function and

max{‖fθ‖∞ , ‖fθ,1‖∞ , ‖fθ,2‖∞} ≤ R
′.

2. The function fθ is such that ‖fθ − fθ,1 ⊗ fθ,2‖2 = C0 ‖G‖p+q2 hδn.

Let us now consider a uniform mixture νρ∗n of the alternatives (fθ), for θ in {−1, 1}M
p+q
n . Note

that this is equivalent to considering a random alternative fΘ where Θ = (Θ(j,l))(j,l)∈In,p,q with i.i.d.
Rademacher components Θ(j,l). The aim of Lemma 7 is to prove that, for a well chosen constant C0,
the random function fΘ−fΘ,1⊗fΘ,2 belongs to the Sobolev ball Sδp+q(R,R′) with high probability.
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Lemma 7. Let δ > 0, R > 0 and R′ ≥ 1. Let Θ be the random vector Θ = (Θ(j,l))(j,l)∈In,p,q
with i.i.d. Rademacher components Θ(j,l). Consider fΘ defined by (4.3), where the vector θ is
replaced by the random vector Θ. Then, there exists a positive constant C(p, q, δ, η) such that, if
C2

0 ≤ (2π)p+qR2/[2C(p, q, δ, η)], we have that

P
Ä
fΘ − fΘ,1 ⊗ fΘ,2 ∈ Sδp+q(R)

ä
≥ 1− η.

Following Lemma 5, let Pνρ∗n be the probability measure defined for all measurable set A in
Rn(p+q) by

Pνρ∗n
(A) =

∫
{−1,1}M

p+q
n

Pfθ(A)π(dθ) = 1
2Mp+q

n

∑
θ∈{−1,1}M

p+q
n

Pfθ(A), (4.4)

where π is the distribution of a (Mp+q
n )-sample of i.i.d. Rademacher random variables. Proposition

5 justifies the use of these alternatives and this probability measure to prove the lower bound.

Proposition 5. Let α, β, η in (0, 1) such that α+ β + η < 1, and let δ,R > 0 and R′ ≥ 1. Denote
f0 the uniform density on [0, 1]p+q. Assume that C0 = C0(p, q, δ, R,R′, η) satisfies the assumptions
of Lemmas 6 and 7. There exists some positive constant C(p, q, α, β, δ, R,R′, η) such that, if we set

Mn =
° 1
C(p, q, α, β, δ, R,R′, η)n−2/(4δ+p+q)

§
and hn = 1

Mn
, (4.5)

we have νρ∗n(Fρ∗n(Sδp+q(R,R′))) ≥ 1 − η. Furthermore, if we define Pνρ∗n by Equations (4.3) and
(4.4), then we have, for n large enough,

EPf0

[ÇdPνρ∗n
dPf0

(Zn)
å2]

< 1 + 4(1− α− η − β)2.

Finally, combining Lemmas 5, 6 and 7 with Proposition 5 leads to a lower bound for the non-
asymptotic minimax rate of testing in Theorem 4.

Theorem 4. Consider α, β, η in (0, 1) such that α + β + η < 1. Let δ > 0, R > 0 and R′ ≥ 1.
Then, there exists a positive constant C(p, q, α, β, δ, R,R′, η) such that, for n large enough,

ρ
Ä
Sδp+q(R,R′), α, β

ä
≥ C(p, q, α, β, δ, R,R′, η) n−2δ/(4δ+p+q).

Theorem 4 proves that the optimized test ∆λ∗,µ∗
α introduced in Corollary 2 is optimal in the

minimax sense over Sobolev balls since the upper and lower bounds coincide up to constants.
Moreover, the aggregated testing procedure defined in Corollary 3 is optimal up to a log log(n)
term over Sobolev balls. Note that this logarithmic term obtained in the upper bound (3.7) is
sometimes unavoidable for adaptivity (c.f. [Ingster, 2000] for the test of uniformity on [0, 1]). It
seems reasonable to conjecture that it is also the case for independence testing. Hence, since the
aggregated testing procedure does not depend on the prior knowledge of the regularity parameter
δ, we may conclude that it is adaptive.
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5 Numerical simulations
In this section, numerical simulations are performed in order to study the practical validity of our
testing procedures. More precisely, we first compare the theoretical aggregated test ∆α defined in
(3.2) (studied in theory) and the permuted aggregated test ∆̂α defined in (3.4) (applied in practice)
in terms of power. A similar verification for the single tests, together with a comparison of the
power for different bandwidth collections and weights choices, are also carried out in Appendix
B.1 in the supplementary material. Then, we compare the permuted aggregated test with existing
nonparametric independence tests on simulated data.

5.1 Comparison between the theoretical and the permuted aggregated tests

In this section, we numerically illustrate that the power of the permuted aggregated HSIC test ap-
proximates very well the power of the theoretical aggregated test, as soon as enough permutations
are used to estimate the quantile under the null hypothesis.

All along this section, we rely on the following data generating mechanism inspired from the
Ishigami function [Ishigami and Homma, 1990]. Let

X = U1 and Y = sin(U1) + 4 sin2(U2) + 0.5 U4
3 sin(U1). (5.1)

where U1, U2 and U3 are independent uniform random variables on [0, 1].

The practical implementation of the theoretical and permuted aggregated testing procedures
are described in Algorithms 1 and 2. They both require the estimation of the value of uα defined
in Equation (3.1). A very straightforward approach to do so is to proceed by dichotomy on the
interval [α,M ], whereM = inf(λ,µ)∈W {eωλ,µ} (uα belonging to this interval as mentioned in Section
3.1). More precisely, we need to estimate for different values of u, the probability

P (u) = Pf1⊗f2

Ç
sup

(λ,µ)∈W

{’HSICλ,µ − qλ,µ1−ue−ωλ,µ

}
> 0
å
. (5.2)

In the theoretical case, this probability is approached by Monte Carlo independently on the obser-
vation (provided that we can simulate under the null hypothesis) whereas in the permuted case, it is
based on samples obtained by permuting the observation. The algorithmic complexity of Algorithm
2 is O

(
(B1 +B2) |W|n2), corresponding to the estimation of the HSIC for all the permutations in

Step 1, and all the windows in the collection W.

Theoretical power For a given sample size n and a given collection of bandwidths W with
associated weights, we estimate the power of the theoretical aggregated test as follows. Since the
approximation of the value of uα and of the quantiles can be done independently of the observation,
we run Steps 1 to 4 of Algorithm 1 only once. Then, we generate 1000 i.i.d. samples (observations)
and for each one, we apply Step 5 of Algorithm 1. Finally, we estimate the theoretical power by
π̂th(n, α) which is the proportion of times the aggregated procedure rejects the null hypothesis.
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Algorithm 1 Theoretical aggregated procedure
Input: The observed n-sample, a prescribed level α, a collection of bandwidths W and a family
of weights (ωλ,µ)(λ,µ)∈W .

1. Simulate a first set, denoted set (A), of 500.000 n-samples under the null hypothesis (to
estimate the quantiles) and a second set, denoted (B) of 1000 n-samples also under the null
hypothesis (to estimate the probabilities P (u) defined in Equation (5.2) for different values
of u).

2. Set umin = α and umax = M , where M = inf(λ,µ)∈W {eωλ,µ}.

3. While (umax − umin) > 10−3umin, repeat the following steps.

(a) Set u = (umin + umax)/2.
(b) For all (λ, µ) in W, compute the Monte Carlo estimator q̃λ,µ

1−ue−ωλ,µ
of the quantile

qλ,µ
1−ue−ωλ,µ

using the 500.000 samples of set (A).

(c) Estimate the probabilityP (u) by Monte Carlo using the 1000 samples of set (B). More
precisely, consider P̂u as the ratio of times at least one ’HSICλ,µ is greater than
q̃λ,µ

1−ue−ωλ,µ
.

(d) If P̂u ≤ α, then set umin = u. Else set umax = u and repeat Step 3.

4. Set ũα = u and the quantiles with corrected levels
(
q̃λ,µ

1−ũαe−ωλ,µ

)
(λ,µ)∈W

.

5. Finally, compute the observed statistics (’HSICλ,µ)(λ,µ)∈W (on the given observation) and
reject the null hypothesis if there is at least one (λ, µ) such that’HSICλ,µ > q̃λ,µ

1−ũαe−ωλ,µ
.

Permuted power Unlike the theoretical case, we do not assume we are able to simulate under
the null hypothesis to estimate the quantiles and to compute the correction uα. Note that for the
permuted test, Step 3 of Algorithm 2 depends on the observation and needs to be done for each new
observation. Hence, for a given sample size n, a given collection of bandwidths W and associated
weights, we generate 1000 i.i.d. samples and for each one, we apply Steps 1 to 5 of Algorithm 2.
Finally, we estimate the power of the permuted aggregated test by π̂(n, α,B1, B2) which is the ratio
of times the null hypothesis is rejected.

Numerical results In all the following, the prescribed level of the tests is set to α = 0.05 and
we consider sample sizes n in {50, 100, 200}. We consider six different collections of bandwidths
(Wr)2≤r≤7, defined for all r by

Wr =
{

1, 1/2, . . . , 1/2r−1}2
. (5.3)
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Algorithm 2 Permuted aggregated procedure
Input: The observed n-sample Zn, a prescribed level α, a collection of bandwidths W and a
family of weights (ωλ,µ)(λ,µ)∈W .

1. Generate a first set, say (A’), of B1 i.i.d. random permutations of {1, . . . , n} (to estimate
the quantiles), and independently generate a second set, denoted (B’), of B2 i.i.d. random
permutations of {1, . . . , n} (to estimate the probabilities P (u) defined in Equation (5.2)), all
independent of Zn.

2. Set umin = α and umax = M , where M = inf(λ,µ)∈W {eωλ,µ}.

3. While (umax − umin) > 10−3umin, repeat the following steps.

(a) Set u = (umin + umax)/2.
(b) For all (λ, µ) in W, compute the permuted quantile with Monte Carlo approximation

q̂λ,µ
1−ue−ωλ,µ

as defined in (2.2) using the set (A’).

(c) Estimate P (u) by permutation with Monte Carlo approximation using the set (B’).
More precisely, consider

P̂ ?u (Zn) = 1
B2

B2∑
b=1

1
max(λ,µ)∈W

ß“Hκb
λ,µ
−q̂λ,µ

1−ue−ωλ,µ

™
>0
,

where (κb)1≤b≤B2 denote the permutations of set (B’) and “Hκb
λ,µ is the statistic

computed on the bth permuted sample Zκbn , namely ’HSICλ,µ (Zκbn ) .
(d) If P̂ ?u (Zn) ≤ α, then set umin = u. Else set umax = u and repeat Step 3.

4. Set ûα = u and the quantiles with corrected levels
(
q̂λ,µ

1−ûαe−ωλ,µ

)
(λ,µ)∈W

.

5. Finally, compute the observed statistics (’HSICλ,µ)(λ,µ)∈W (on the given observation) and
reject the null hypothesis if there is at least one (λ, µ) such that’HSICλ,µ > q̂λ,µ

1−ûαe−ωλ,µ
.

Note that, the case r = 1 would correspond to the single test with λ = µ = 1. Moreover, for each
r, we consider uniform weights defined for all (λ, µ) in the collection Wr by

ωλ,µ = log(r2). (5.4)

For the permuted aggregated procedure, the number B1 of permutations used to estimate the
quantiles varies in {100, 200, 500, 1000, . . . , 5000} and the number of permutations used to estimate
the probabilities P (u) is set to B2 = 500.

For each triplet (r, n,B1), the empirical power of both the theoretical and the permuted ag-
gregated testing procedures, respectively denoted π̂th(n, α) and π̂(n, α,B1, B2), are obtained from
1000 different samples as described above. To compare them, we consider the relative absolute
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Figure 1: Absolute relative error between the empirical power of the theoretical and the permuted
aggregated HSIC procedures w.r.t. the number B1 of permutations, estimated from 1000 samples
of sizes n = 50, 100 and 200, with B2 = 500, the bandwidth collections Wr and associated weights
resp. defined in (5.3) and (5.4) and prescribed level α = 0.05.

error defined by
Err(n, α,B1, B2) = |π̂(n, α,B1, B2)− π̂th(n, α)|

π̂th(n, α) .

Results are given in Figure 1. Notice that, regardless of the sample size n, the required number B1
of permutations to well approximate the theoretical power increases with r. In fact, the supremum
in Equation (3.3) becomes more difficult to estimate as the number r2 of aggregated tests increases.
Unsurprisingly, for a given B1, the accuracy of the power estimation increases with n as in the case
of single tests. In particular, we observe that for n = 50, the largest error becomes less than 10%
from B1 = 3500, while this threshold seems to be achieved from B1 = 3000 for r = 4, 5, 6 and
from B1 = 500 for r = 2, 3. For larger sample sizes n = 100 and 200, a good approximation of the
theoretical test seems to be achieved from small values of B1, even for a relatively large number
of aggregated tests. In particular, for n = 200, an error smaller than 10% is reached for all values
of B1.

All these results show that both theoretical and permuted tests have comparable powers provided
that the sample size and the number of permutations are large enough. In the following, we
numerically study the power of the permuted tests, which are used in practice.

5.2 Comparison with existing tests

To complete this simulation study, we compare our aggregated procedure with some existing refer-
ence tests of independence. For this, we simulate accordingly to the data generating mechanisms
of [Berrett and Samworth, 2019], and a basic Gaussian model.
(i) For l in {1, . . . , 10}, define the joint density f[l] of (X,Y ) for all (x, y) in [−π, π] by

f[l](x, y) = [1 + sin(lx) sin(ly)] /(4π2).
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(ii) For l in {1, . . . , 10}, let X = L cos Θ + ε1/4 and Y = L sin Θ + ε2/4, where L, Θ, ε1 and ε2
are independent, with L is uniformly distributed on {1, . . . , l}, Θ is uniformly distributed on
[0, 2π] and ε1, ε2 are standard normal random variables.

(iii) For ρ in {0.1, 0.2, . . . , 1}, let X be a uniform random variable on [−1, 1] and define Y = |X|ρ ε,
where ε is a standard normal random variable independent with X.

(iv) For ρ in {0, 0.1, . . . , 0.9}, let (X,Y ) be a centered Gaussian vector such that Var(X) =
Var(Y ) = 1 and Cov(X,Y ) = ρ.

We also consider the bivariate case X = (X(1), X(2)) and Y = (Y (1), Y (2)) where (X(1), Y (1)) is
generated according to mechanisms (i), (ii) or (iii), while X(2), Y (2) are independent uniform ran-
dom variables on [0, 1] and independent from (X(1), Y (1)).

The numerical study of the impact of the bandwidth collection and the associated weights
on the power of the aggregated procedure done in Appendix B.2 of the supplementary material
suggests the following methodological choices. Inspired by usual heuristic bandwidths (see, e.g.,
[De Lozzo and Marrel, 2017]), define

λ̃2 = 1
2n(n− 1)

∑
1≤i 6=j≤n

‖Xi −Xj‖2 and µ̃2 = 1
2n(n− 1)

∑
1≤i 6=j≤n

‖Yi − Yj‖2 , (5.5)

where ‖·‖ denotes the Euclidean norm. Note that, in the univariate case (p = q = 1), λ̃ and µ̃ are
the empirical standard deviation of X and Y respectively. In the univariate case, we consider the
collections defined by

W̃ =
¶

2−m
Ä
λ̃, µ̃

ä
; 0 ≤ m ≤ 6

©
. (5.6)

Similarly, in the bivariate case, the bandwidth collections are defined by

W̃ =
¶

2−m
Ä
λ̃, λ̃, µ̃, µ̃

ä
; 0 ≤ m ≤ 6

©
. (5.7)

We also consider exponential weights, that are defined, by analogy with Equation (3.6), for all
bandwidths 2−m(λ̃, µ̃) or 2−m(λ̃, λ̃, µ̃, µ̃) as

ω[m] = 2 log (m+ 1) + log
Ç 6∑
m′=0

1
(m′ + 1)2

å
. (5.8)

Note that the last term in (5.8) ensures that
∑

(λ,µ)∈W̃ e−ωλ,µ = 1.

In Figure 2, we compare our permution-based aggregated HSIC test with the mu-
tual information test (MINT) of [Berrett and Samworth, 2019] implemented in the R package
IndepTest, the permutation-based HSIC single test (HSIC) implemented in the R package dHSIC
[Pfister et al., 2018] with B = 1000 permutations, the distance covariance of [Székely et al., 2007]
implemented in the R package energy, the test of [Heller et al., 2016] (HHG), the D-test of
[Hoeffding, 1948] implemented in the R package Hmisc and the binary expansion test (BET) of
[Zhang, 2019].

For each example, we simulate samples with size n = 200. In line with the results obtained in
Section 5.1, Algorithm 2 is applied with B1 = 3000 and B2 = 500. The power of the different tests
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Figure 2: Power curves of the permuted aggregated HSIC test with B1 = 3000 and B2 = 500,
bandwidth collection W̃ defined in (5.6) or (5.7) and exponential weights (5.8). It is compared to
the MINT, the single HSIC test, the distance covariance, Heller, Heller and Gorfine’s test (HHG),
Hoeffding’s D-test and the BET. The empirical power is estimated from 1000 samples of size
n = 200. The prescribed level is α = 0.05.
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is estimated using 1000 different samples of (X,Y ) and is represented w.r.t l for simulated data
from (i) and (ii) and w.r.t ρ for (iii) and (iv).

As expected, no procedure of testing constantly yields the best performances in all cases. Indeed,
it is well known that no uniformly most powerful test exists. However, as for the MINT procedure,
the HSIC aggregated procedure seems to yield competitive results on all examples, contrarily to
other procedures such as the distance covariance or Hoeffding’s D-test which perform very well in
the Gaussian case, but are not very powerfull in the other cases. Moreover, in most cases, the HSIC
aggregated procedure performs better than the single HISC test, which illustrates the benefits of
aggregation.

Supplementary material
Supplement to “Adaptive test of independence based on HSIC measures”
This Supplement contains sharp upper bounds for the uniform separation rates over Nikol’skii-Besov
balls, a further numerical study and all the proofs.

References
[Ahmad and Li, 1997] Ahmad, I. A. and Li, Q. (1997). Testing independence by nonparametric

kernel method. Statistics & probability letters, 34(2):201–210.

[Albert, 2015] Albert, M. (2015). Tests of independence by bootstrap and permutation: an asymp-
totic and non-asymptotic study. Application to neurosciences. PhD thesis, Université Nice
Sophia Antipolis.

[Aronszajn, 1950] Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the Amer-
ican Mathematical Society, 68(3):337–404.

[Bach and Jordan, 2002] Bach, F. R. and Jordan, M. I. (2002). Kernel independent component
analysis. Journal of Machine Learning Research, 3(Jul):1–48.

[Baker, 1973] Baker, C. R. (1973). Joint measures and cross-covariance operators. Transactions of
the American Mathematical Society, 186:273–289.

[Balakrishnan et al., 2019] Balakrishnan, S., Wasserman, L., et al. (2019). Hypothesis testing for
densities and high-dimensional multinomials: Sharp local minimax rates. The Annals of Statis-
tics, 47(4):1893–1927.

[Baraud, 2002] Baraud, Y. (2002). Non-asymptotic minimax rates of testing in signal detection.
Bernoulli, 8(5):577–606.

[Baraud et al., 2003] Baraud, Y., Huet, S., and Laurent, B. (2003). Adaptive tests of linear hy-
potheses by model selection. The Annals of Statistics, 31(1):225–251.

[Berrett et al., 2020] Berrett, T. B., Kontoyiannis, I., and Samworth, R. J. (2020). Optimal rates
for independence testing via U -statistic permutation tests. arXiv preprint arXiv:2001.05513.

[Berrett and Samworth, 2019] Berrett, T. B. and Samworth, R. J. (2019). Nonparametric indepen-
dence testing via mutual information. Biometrika, 106(3):547–566.

22



[Butucea, 2007] Butucea, C. (2007). Goodness-of-fit testing and quadratic functional estimation
from indirect observations. The Annals of Statistics, 35(5):1907–1930.

[De Lozzo and Marrel, 2017] De Lozzo, M. and Marrel, A. (2017). Sensitivity analysis with de-
pendence and variance-based measures for spatio-temporal numerical simulators. Stochastic
environmental research and risk assessment, 31(6):1437–1453.

[Fromont et al., 2006] Fromont, M., Laurent, B., et al. (2006). Adaptive goodness-of-fit tests in a
density model. The Annals of Statistics, 34(2):680–720.

[Fromont et al., 2013] Fromont, M., Laurent, B., and Reynaud-Bouret, P. (2013). The two-sample
problem for Poisson processes: Adaptive tests with a nonasymptotic wild bootstrap approach.
The Annals of Statistics, 41(3):1431–1461.

[Fukumizu et al., 2004] Fukumizu, K., Bach, F. R., and Jordan, M. I. (2004). Dimensionality
reduction for supervised learning with reproducing kernel Hilbert spaces. Journal of Machine
Learning Research, 5(Jan):73–99.

[Fukumizu et al., 2008] Fukumizu, K., Gretton, A., Sun, X., and Schölkopf, B. (2008). Kernel
measures of conditional dependence. In Advances in Neural Information Processing Systems,
pages 489–496.

[Gretton et al., 2005a] Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005a). Measuring
statistical dependence with Hilbert-Schmidt norms. In International conference on algorithmic
learning theory, pages 63–77. Springer.

[Gretton et al., 2008] Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., and Smola,
A. J. (2008). A kernel statistical test of independence. In Advances in Neural Information
Processing Systems, pages 585–592.

[Gretton et al., 2005b] Gretton, A., Herbrich, R., Smola, A., Bousquet, O., and Schölkopf, B.
(2005b). Kernel methods for measuring independence. Journal of Machine Learning Research,
6(Dec):2075–2129.

[Gretton et al., 2003] Gretton, A., Herbrich, R., and Smola, A. J. (2003). The kernel mutual
information. In Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03).
2003 IEEE International Conference on, volume 4, pages IV–880. IEEE.

[Gretton et al., 2005c] Gretton, A., Smola, A. J., Bousquet, O., Herbrich, R., Belitski, A., Augath,
M., Murayama, Y., Pauls, J., Schölkopf, B., and Logothetis, N. K. (2005c). Kernel constrained
covariance for dependence measurement. In AISTATS, volume 10, pages 112–119.

[Heller et al., 2016] Heller, R., Heller, Y., Kaufman, S., Brill, B., and Gorfine, M. (2016). Consis-
tent distribution-free K-sample and independence tests for univariate random variables. The
Journal of Machine Learning Research, 17(1):978–1031.

[Hoeffding, 1948] Hoeffding, W. (1948). A non-parametric test of independence. The Annals of
Mathematical Statistics, pages 546–557.

[Ingster, 1989] Ingster, Y. I. (1989). An asymptotically minimax test of the hypothesis of indepen-
dence. J. Soviet Math, 44:466–476.

23



[Ingster, 1993a] Ingster, Y. I. (1993a). Asymptotically minimax hypothesis testing for nonpara-
metric alternatives. i, ii, iii. Math. Methods Statist, 2(2):85–114.

[Ingster, 1993b] Ingster, Y. I. (1993b). Minimax testing of the hypothesis of independence for
ellipsoids in lp. Zapiski Nauchnykh Seminarov POMI, 207:77–97.

[Ingster, 2000] Ingster, Y. I. (2000). Adaptive chi-square tests. Journal of Mathematical Sciences,
99(2):1110–1119.

[Ingster and Suslina, 1998] Ingster, Y. I. and Suslina, I. A. (1998). Minimax detection of a signal
for Besov bodies and balls. Problemy Peredachi Informatsii, 34(1):56–68.

[Ishigami and Homma, 1990] Ishigami, T. and Homma, T. (1990). An importance quantification
technique in uncertainty analysis for computer models. In [1990] Proceedings. First Interna-
tional Symposium on Uncertainty Modeling and Analysis, pages 398–403. IEEE.

[Jacod and Protter, 2012] Jacod, J. and Protter, P. (2012). Probability essentials. Springer Science
& Business Media.

[Kim et al., 2020] Kim, I., Balakrishnan, S., and Wasserman, L. (2020). Minimax optimality of
permutation tests. arXiv preprint arXiv:2003.13208.

[Laurent et al., 2012] Laurent, B., Loubes, J.-M., and Marteau, C. (2012). Non asymptotic min-
imax rates of testing in signal detection with heterogeneous variances. Electronic Journal of
Statistics, 6:91–122.

[Lee et al., 2019] Lee, D., Zhang, K., and Kosorok, M. R. (2019). Testing independence with the
binary expansion randomized ensemble test. arXiv preprint arXiv:1912.03662.

[Li and Yuan, 2019] Li, T. and Yuan, M. (2019). On the optimality of gaussian kernel based
nonparametric tests against smooth alternatives. arXiv preprint arXiv:1909.03302.

[Marrel et al., 2020] Marrel, A., Raguet, H., and Chabridon, V. (2020). Statistical developments
for target and conditional sensitivity analysis: application on safety studies for nuclear reactor.
HAL preprint hal-02541142v2.

[Micchelli et al., 2006] Micchelli, C. A., Xu, Y., and Zhang, H. (2006). Universal kernels. Journal
of Machine Learning Research, 7(Dec):2651–2667.

[Parzen, 1962] Parzen, E. (1962). On estimation of a probability density function and mode. The
Annals of Mathematical Statistics, 33(3):1065–1076.

[Pfister et al., 2018] Pfister, N., Bühlmann, P., Schölkopf, B., and Peters, J. (2018). Kernel-based
tests for joint independence. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 80(1):5–31.

[Póczos et al., 2012] Póczos, B., Ghahramani, Z., and Schneider, J. (2012). Copula-based kernel
dependency measures. arXiv preprint arXiv:1206.4682.

[Ramdas et al., 2016] Ramdas, A., Isenberg, D., Singh, A., and Wasserman, L. (2016). Minimax
lower bounds for linear independence testing. In 2016 IEEE International Symposium on
Information Theory (ISIT), pages 965–969. IEEE.

24



[Romano and Wolf, 2005] Romano, J. P. and Wolf, M. (2005). Exact and approximate stepdown
methods for multiple hypothesis testing. Journal of the American Statistical Association,
100(469):94–108.

[Rosenblatt, 1975] Rosenblatt, M. (1975). A quadratic measure of deviation of two-dimensional
density estimates and a test of independence. The Annals of Statistics, pages 1–14.

[Spokoiny, 1996] Spokoiny, V. G. (1996). Adaptive hypothesis testing using wavelets. The Annals
of Statistics, 24(6):2477–2498.

[Sriperumbudur et al., 2010] Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Schölkopf, B.,
and Lanckriet, G. R. (2010). Hilbert space embeddings and metrics on probability measures.
Journal of Machine Learning Research, 11(Apr):1517–1561.

[Steinwart, 2001] Steinwart, I. (2001). On the influence of the kernel on the consistency of support
vector machines. Journal of Machine Learning Research, 2(Nov):67–93.

[Székely and Rizzo, 2013] Székely, G. J. and Rizzo, M. L. (2013). The distance correlation t-test
of independence in high dimension. Journal of Multivariate Analysis, 117:193–213.

[Székely et al., 2007] Székely, G. J., Rizzo, M. L., and Bakirov, N. K. (2007). Measuring and testing
dependence by correlation of distances. The Annals of Statistics, 35(6):2769–2794.

[Weihs et al., 2018] Weihs, L., Drton, M., and Meinshausen, N. (2018). Symmetric rank covari-
ances: a generalized framework for nonparametric measures of dependence. Biometrika,
105(3):547–562.

[Yao et al., 2018] Yao, S., Zhang, X., and Shao, X. (2018). Testing mutual independence in high
dimension via distance covariance. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 80(3):455–480.

[Yodé, 2004] Yodé, A. (2004). Asymptotically minimax test of independence. Mathematical Meth-
ods of Statistics, 13(2):201–234.

[Yodé, 2011] Yodé, A. (2011). Adaptive minimax test of independence. Mathematical Methods of
Statistics, 20(3):246.

[Zhang, 2019] Zhang, K. (2019). Bet on independence. Journal of the American Statistical Asso-
ciation, 114(528):1620–1637.

[Zhang et al., 2011] Zhang, K., Peters, J., Janzing, D., and Schölkopf, B. (2011). Kernel-based
conditional independence test and application in causal discovery. In Proceedings of the 27th
Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 804–813. AUAI Press.

25



Supplement to
“Adaptive test of independence based on HSIC measures”

Appendix A contains sharp upper bounds for the uniform separation rates over anisotropic
Nikol’skii-Besov balls of the single and the aggregated HSIC tests developed in the main article. In
Appendix B, further simulations illustrate a comparison in terms of power between the theoretical
and permuted single tests on the one hand, and the impact of the bandwidth collection and the
weights choices on the power on the other hand. Finally, Appendix C is devoted to all the proofs.

The references of Equations, Theorems, Propositions, etc, that use only numbers such as (3.1)
for instance, refer to the main article Adaptive test of independence based on HSIC measures.

A Control of the uniform separation rate over anisotropic Nikol’skii-
Besov balls

In this section, we consider anisotropic Nikol’skii-Besov balls which allow to take into account
different regularity parameters in each direction in Rp+q. The anisotropic Nikol’skii-Besov ball
N δ

2,d(R) in dimension d in N∗, with regularity parameter δ = (δ1, . . . , δd) in (0,+∞)d and positive
radius R, is defined by

N δ
2,d(R) =

ß
s : Rd → R ; for all 1 ≤ i ≤ d and all u1, . . . , ud, v ∈ R,

s has continuous partial derivatives Dbδici of order bδic w.r.t ui, and∥∥∥Dbδici s(u1, . . . , ui + v, . . . , ud)−D
bδic
i s(u1, . . . , ud)

∥∥∥
2
≤ R |v|δi−bδic

™
,

where bδic denotes the floor function of δi if δi is not integer and bδic = δi − 1 if δi is an integer.

As in the Sobolev case, we study optimality over N δ
2,d(R,R′) defined by

N δ
2,d(R,R′) = N δ

2,d(R) ∩
{
f ; max {‖f‖∞ , ‖f1‖∞ , ‖f2‖∞} ≤ R

′} . (A.1)

As in the Sobolev case, we prove upper bounds for the uniform separation rate of the tests
defined in the main article over these new regularity spaces. Section A.1 is devoted to the single
test ∆λ,µ

α with fixed bandwidths defined in Equation (2.1), and the study of the aggregated test
∆α defined in Equation (3.2) in done in Sections A.2 and A.3.

A.1 Uniform separation rate of the single tests over Nikol’skii-Besov balls

In this section, we consider a fixed bandwidth (λ, µ). Lemma 8 provides an upper bound of the
bias term, similar to that of Lemma 3, in the case when f − f1 ⊗ f2 belongs to an anisotropic
Nikol’skii-Besov ball.
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Lemma 8. Let ψ = f − f1 ⊗ f2 and assume that ψ belongs to N δ
2,p+q(R), where the regularity

parameter δ = (ν1, . . . , νp, γ1, . . . , γq) belongs to (0, 2]p+q. Let ϕλ and φµ be the functions defined
in (1.4). Then, the bias term can be controlled as follows

‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22 ≤ C(δ,R)
[

p∑
i=1

λ2νi
i +

q∑
j=1

µ
2γj
j

]
.

In the Nikol’skii-Besov case, the control of the bias term requires a restriction on the regularity
parameter to (0, 2]p+q, which comes from the fact that the Gaussian kernel is of order 2. In
order to extend the range of the upper bound, kernels of higher order should be considered. This
generalization lies beyond the scope of this article and requires further developments. As in Section
2.4, one can deduce from Theorem 1 upper bounds for the uniform separation rates of the single
test ∆λ,µ

α over Nikol’skii-Besov balls.

Theorem 5. Let α, β in (0, 1), δ = (ν1, . . . , νp, γ1, . . . , γq) in (0, 2]p+q and R,R′ > 0. Con-
sider bandwidths (λ, µ) satisfying Assumptions A2(α) and denote ∆λ,µ

α the test defined by (2.1).
Then, the uniform separation rate defined in (1.1) of the test ∆λ,µ

α over the Nikol’skii-Besov ball
N δ

2,p+q(R,R′) defined in Equation (A.1) can be upper bounded as followsî
ρ
Ä
∆λ,µ
α ,N δ

2,p+q(R,R′), β
äó2
≤ C(δ,R)

[
p∑
i=1

λ2νi
i +

q∑
j=1

µ
2γj
j

]

+ C (R′, p, q, β)
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
. (A.2)

where C(·) are positive constants depending only on their arguments.

As in Section 2.4, we can deduce optimal bandwidths (λ∗, µ∗) which minimize the right-hand
side of Equation (A.2) and compute an upper bound for the uniform separation rate of the optimized
test ∆λ∗,µ∗

α over Nikol’skii-Besov balls.

Corollary 4. Let α in (0, 1/e), β in (0, 1), δ = (ν1, . . . , νp, γ1, . . . , γq) in (0, 2]p+q and R,R′ > 0.
Define for all i in {1, . . . , p} and for all j in {1, . . . , q},

λ∗i = n−2η/[νi(1+4η)] and µ∗j = n−2η/[γj(1+4η)] where 1
η

=
p∑
i=1

1
νi

+
q∑
j=1

1
γj
.

If n ≥ (log(1/α))1+1/(4η), then, (λ∗, µ∗) satisfy A2(α) and the uniform separation rate of the
optimized test ∆λ∗,µ∗

α over the Nikol’skii-Besov ball N δ
2,p+q(R,R′) is controlled as follows

ρ
Ä
∆λ∗,µ∗
α ,N δ

2,p+q(R,R′), β
ä
≤ C

(
p, q, α, β, δ, R,R′

)
n−2η/(1+4η). (A.3)

Notice that the upper bound obtained for Nikol’skii-Besov balls in Corollary 4 is analogue to that
obtained for Sobolev balls in Corollary 2. Indeed, if we consider the same regularities in all directions
in the case of Nikol’skii-Besov balls: ν1 = . . . = νp = γ1 = . . . = γq, we obtain a similar upper
bound. These upper bounds obtained in Corollaries 2 and 4 coincide with the asymptotic minimax
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separation rate of testing mutual independence w.r.t. the L2-norm over isotropic Nikol’skii-Besov
spaces [Ingster, 1989]. This suggests that the test ∆λ∗,µ∗

α with optimal bandwidths is optimal in
the minimax sense over Nikol’skii-Besov balls with regularity parameter δ in (0, 2]p+q. Yet, as
in the Sobolev case, it cannot be adaptive since the optimal bandwidths (λ∗, µ∗) depend on the
regularity δ.

Finally, note that subsequently, [Kim et al., 2020] also generalized Theorem 5 to the permuted
tests, which suggests that the permuted test with bandwidths (λ∗, µ∗) defined in Corollary 4 is
optimal in the minimax sense. However, as in the Sobolev case, they only obtain a polynomial
dependence in α which is not sharp enough to provide adaptive tests by aggregating as done in
Section A.3.

A.2 Oracle-type conditions for the uniform separation rate over Nikol’skii-
Besov balls

Theorem 6 is equivalent to Theorem 3 over Nikol’skii-Besov balls and provides an oracle-type
inequality for the uniform separation rate of the aggregated testing procedure ∆α.

Theorem 6. Let α, β in (0, 1). Consider a finite or countable collection W ⊂ (0,+∞)p× (0,+∞)q
of bandwidths (λ, µ) and a collection of positive weights {ωλ,µ}(λ,µ)∈W such that

∑
(λ,µ)∈W e−ωλ,µ ≤ 1

and such that all (λ, µ) in W verifies Assumption A2(αe−ωλ,µ). Then, the uniform separation rate
over Nikol’skii-Besov balls N δ

2,p+q(R,R′) with δ = (ν1, . . . , νp, γ1, . . . , γq) in (0, 2]p+q and R,R′ > 0
of the aggregated test ∆α defined in Equation (3.2) can be upper bounded as followsî

ρ
Ä
∆α,N δ

2,p+q(R,R′), β
äó2
≤ C

(
p, q, β, δ, R,R′

)
inf

(λ,µ)∈W

{[
p∑
i=1

λ2νi
i +

q∑
j=1

µ
2γj
j

]

+ 1
n
√
λ1 . . . λpµ1 . . . µq

Å
log
Å 1
α

ã
+ ωλ,µ

ã}
,

where C(·) is a positive constant depending only on its arguments.

As in the Sobolev case, Theorem 6 can be interpreted as an oracle-type condition for the uniform
separation rate of the aggregated test ∆α over Nikol’skii-Besov balls. Indeed, without knowing the
regularity δ of f − f1 ⊗ f2, the uniform separation rate of ∆α is of the same order as the smallest
uniform separation rate of the single tests corresponding to bandwidths (λ, µ) in W, up to an
additional term ωλ,µ due to the level corrections.

A.3 Control of the uniform separation rate of the aggregated procedure

In this section, we provide an upper bound for the uniform separation rate of the aggregated testing
procedure ∆α over Nikol’skii-Besov balls for the following specific choice of bandwidth collection
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and weights. Let

W =
{(

2−m1,1 , . . . , 2−m1,p , 2−m2,1 , . . . , 2−m2,q
)
,

(m1,1, . . . ,m1,p,m2,1, . . . ,m2,q) ∈ (N∗)p+q ;
p∑
i=1

m1,i +
q∑
j=1

m2,j ≤ 2 log2

Å
n

log(n)

ã}
, (A.4)

In addition, we associate to every bandwidths (λ, µ) = (2−m1,1 , . . . , 2−m1,p , 2−m2,1 , . . . , 2−m2,q) in
W the positive weight

ωλ,µ = 2
p∑
i=1

log
Å
m1,i ×

π√
6

ã
+ 2

q∑
j=1

log
Å
m2,j ×

π√
6

ã
, (A.5)

so that
∑

(λ,µ)∈W e−ωλ,µ ≤ 1.

Corollary 5. Let α, β in (0, 1). Consider the aggregated test ∆α defined in (3.2), with the particular
choice of the collection W and the weights (ωλ,µ)(λ,µ)∈W defined in (A.4) and (A.5). Assume that
log log(n) > 1. Then, under the assumptions of Theorem 6, for any δ = (ν1, . . . , νp, γ1, . . . , γq)
in (0, 2]p+q and positive radii R,R′, there exists a positive constant C(p, q, α, δ) such that for all
n ≥ C(p, q, α, δ), the uniform separation rate over the Nikol’skii-Besov ball N δ

2,p+q(R,R′) of ∆α

can be upper bounded as follows:

ρ
Ä
∆α,N δ

2,p+q(R,R′), β
ä
≤ C

(
p, q, α, β, δ, R,R′

)Å log log(n)
n

ã2η/(1+4η)
,

where 1
η

=
p∑
i=1

1
νi

+
q∑
j=1

1
γj

.

As in the case of Sobolev regularity, according to Corollary 5, the uniform separation rate of the
aggregated procedure over Nikol’skii-Besov balls is of the same order as the one of the optimized
test ∆λ∗,µ∗

α (given in Corollary 4), up to a log log(n) factor which is, once again a usual price to
pay for aggregated tests (see, e.g., [Spokoiny, 1996, Ingster, 2000].)

B Further numerical simulations

B.1 Single tests comparison

Similarly to Section 5.1, the objective here is to check that the permutation approach does not
impact the power of the single HSIC test. To do so, we numerically illustrate that the power of
the permuted single HSIC tests approximates very well the power of the theoretical tests, as soon
as enough permutations are used for the estimation of the quantile under the null hypothesis.

In order to evaluate the accuracy of permuted single HSIC tests, we choose the kernel bandwidth
associated to X (resp. Y ) to be the empirical standard deviation s (resp. s′) of X (resp. Y ), which
is a usual choice in the literature on single HSIC-test (see, e.g. [De Lozzo and Marrel, 2017]).
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As in Section 5.1, we rely on the data generating mechanism inspired from the Ishigami function
[Ishigami and Homma, 1990] defined in (5.1). In the following, we illustrate the power for the three
sample sizes n in {50, 100, 200} and the two levels α in {0.05, 0.001}.

For each sample size n and level α, we first estimate the power of the theoretical test. To achieve
this, we simulate 500.000 n-samples under the null hypothesis1 and compute the Monte Carlo
estimator, denoted q̃MC

1−α, of the theoretical (1− α)-quantile of ’HSICs,s′ under the null hypothesis.
Then, we generate 1000 different n-samples of (X,Y ) under the alternative according to (5.1) and
we estimate the power of the theoretical test by π̂th(n, α) which is the ratio of times that the
observed test statistic ’HSICs,s′ exceeds the quantile q̃MC

1−α.
The second step consists in estimating the power of the permuted tests for several values of the

number of permutations B. The chosen values of B are {10, 20, . . . , 100, 200, . . . , 2500}. For each
value of n, α and B, we generate 1000 n-sample of (X,Y ) according to (5.1). For each n-sample,
we compute the permuted quantile q̂1−α defined in Equation (2.2) using B random permutations of
this sample. Thereafter, we estimate the power of the permuted test, by π̂(n, α,B) which is the ratio
of times the value of ’HSICs,s′ exceeds the permuted quantile q̂s,s

′

1−α (computed on the corresponding
sample).

As in Section 5.1, to compare the empirical powers of theoretical and permuted tests (resp.
π̂th(n, α) and π̂(n, α,B)), we consider the relative absolute error Err(n, α,B) defined as

Err(n, α,B) = |π̂(n, α,B)− π̂th(n, α)|
π̂th(n, α) .

The results obtained for α = 0.05 and different n values are given by Figure 3. We can see
that the accuracy of the permuted approach tends to increase as n increases. This is probably due
to the fact that the power of the theoretical test increases as the sample size increases. Another
explanation may be that, on the one hand, the power of the theoretical test is more difficult to
estimate for small sample sizes, which explains the fluctuations observed for n = 50. On the other
hand, as n increases, the approximation of the distribution of ’HSICs,s′ under the null hypothesis
based on B permutations becomes more accurate, and this for any value of B larger than 500.
Hence, the approximation of the quantile by permutation becomes more accurate, and thus, there
are less fluctuations for larger sample sizes.

Generally, the permutation approach allows to obtain the power of the theoretical test with an
acceptable precision, even for small values of B. In particular, we observe for n = 50 that aside
from very small values of B and two outliers, the absolute relative error is always less than 10%.
Moreover, from n = 100 this error is mostly less than 10% and no observed error is greater than
5% for n = 200.

Since the aggregated procedure requires an individual level correction, we also study the impact
of the level on the accuracy of the permutation approximation. We show in Figure 4 the relative
absolute error of the power w.r.t. n and B for the extreme level value α = 0.001. Contrary to
the case α = 0.05, we observe here much less precision of the power approximation. In particular,
for n = 50, B = 2000 permutations are required to obtain satisfactory accuracy (against B = 30
for α = 0.05). Similar observations are done for n = 100 and 200 with respectively B = 1200 and
B = 500 permutations required (against B = 30 and B = 10 for α = 0.05). This slow convergence

1To generate an independent n-sample of (X, Y ) under the null hypothesis, we first generate an independent
2n-sample of (X, Y ) according to (5.1). Only the first n elements are used to compute the marginal sample of Y and
the remaining n elements are considered to be the marginal sample of X.
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Figure 3: Absolute relative error between the empirical powers of the theoretical and permuted
HSIC-tests, w.r.t the number B of permutations, for samples generated according to Ishigami’s data
generating mechanism defined in Equation (5.1) with sizes n = 50, 100 and 200. The presumed
level is α = 0.05. The red (resp. orange) dashed line represents the error threshold of 10% (resp.
5%).
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Figure 4: Absolute relative error between the empirical powers of the theoretical and the permuted
HSIC-tests, w.r.t the number B of permutations, for samples generated according to Ishigami’s
data generating mechanism defined in Equation 5.1 of Section 5.1 with sizes n = 50, 100 and 200.
The presumed level of tests is α = 0.001. The red (resp. orange) dashed line represents the error
threshold of 10% (resp. 5%).
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results from the difficulty of estimating extreme quantiles. Moreover, this phenomenon seems more
significant for small sample sizes. Indeed, as in the previous case, the lowest the power of the test,
the biggest its sensitivity to the quantile estimation error.

Similar results for the aggregated procedures are illustrated in Section 5.1 of the main article.

B.2 Choice of the collections of bandwidths and the weights

In our aggregated procedure, the collection of bandwidthsW, together with the weights have to be
chosen. There is no universal best collection that would ensure optimal test power. To determine
the collection, we first study the impact of the bandwidth choice on single HSIC-based tests. This
leads us to particular forms of collections. Then, we investigate different choices of the collections
W and together with different weights (including the single test case).

B.2.1 Impact of the bandwidths choice on the power of the single tests

The optimal bandwidth depends on the intrinsic characteristics of X and Y and their dependence
structure. Consequently, it seems relevant to consider the possible bandwidths relatively to the
standard deviations of X and Y . Moreover, as already mentioned, the standard deviation is a
usual choice for the bandwidth in the literature on single HSIC-test. We assume here that the
exact values of standard deviations of X and Y , respectively denoted s and s′, are known. In such
a way, we are able to construct collections which do not depend on the observation. In practice,
when only a n-sample of (X,Y ) is available, we estimate these standard deviations by the usual
empirical estimators. Practice shows that the effect of this estimation does not significantly impact
the single tests performance. Indeed, standard deviation estimators converge in most cases rapidly
w.r.t. n. More particularly, this estimation error is small compared to the estimation error of the
quantiles.

For this, we consider the univariate mechanism of dependence (ii) with l = 2 defined in Section
5.2. Moreover, we consider, as possible bandwidths λ and µ, multiple or dyadic fractions of s and s′
respectively. For each couple (λ, µ), the power of the permuted single HSIC tests (with B = 1000)
is estimated as explained above. Figure 5 shows the obtained power maps w.r.t. (λ, µ), for different
sample sizes. First, we can observe that the bandwidths significantly impact the power: in this
case, there is an optimal area around (λ, µ) = (s/4, s′/4) with a power close to one for n = 200.
The power decreases progressively as we move away from this area, until being null for very high
and very low values of bandwidths. We can also see that the regularity of the maps increases
with the sample size (just like the power for each point). Similar conclusions can be observed for
other values of l and the other data generating mechanisms (i) and (iii) with one or several areas
with higher power, but are not presented here. These results illustrate that an arbitrary choice of
bandwidths is not relevant and justify the interest of considering several bandwidths through an
aggregation strategy. Note that, according to our experience, it might be appropriate to consider
bandwidths higher than standard deviations. However, in Section B.2.2, we consider aggregating
procedures based on collections Ws,s′

r of types

Ws,s′
r =

{
s, s/2, . . . , s/2r−1}× {s′, s′/2, . . . , s′/2r−1} , (B.1)

where r belongs to N∗. Note that in this univariate case, these collections generalize to other sizes
r, in an anisotropic way, the ones considered in Section 5.2 introduced in Equation (5.6).
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Figure 5: Power map of the permuted single HSIC test w.r.t. to kernel bandwidths λ and µ
respectively associated to X and Y , for sample generated according to the univariate mechanism
of dependence (ii) with l = 2 defined in Section 5.2 with sizes n = 50, 100 and 200, B = 1000 and
α = 0.05.

B.2.2 Impact of the weights choice on the power of the aggregated procedure

Following the results of Section B.2.1, we consider bandwidth collections Ws,s′
r as defined in Equa-

tion (B.1), where s and s′ are respectively the empirical standard deviations of the Xi’s and the
Yi’s. By now, let us compare two possible choices of weights: uniform and exponential weights. On
the one hand, we recall that uniform weights depend only on the cardinalitly of the collection, and
are defined in Equation (5.4) for all (λ, µ) in Ws,s′

r by

ωλ,µ = log(r2).

On the other hand, in analogy with Equation (A.5), we consider the exponential weights defined
for all bandwidths (s/2m1 , s′/2m2) in Ws,s′

r by

ωs/2m1 ,s′/2m2 = 2 log (m1 + 1) + 2 log (m2 + 1) + log
( ∑

1≤u,v≤r

1
u2v2

)
.

The results obtained with the two types of weights are given in Figure 6, for different values
of r and sample sizes n. In this case, the uniform weights seem to give a better power than the
exponential ones. However, we can observe a different behavior w.r.t. r. For the uniform weights,
the power increases until a specific r (r = 3 or 4 w.r.t n), before decreasing with r, to being lower
than the power with exponential weights. On the contrary, the power with exponential weights has
a more robust behavior, since it increases with r until it stabilizes. This is a crucial advantage in
favor of exponential weights, as the optimal r is unknown in practice. It prevents deterioration of
the quality of the test, when too large collection sizes have been chosen. We can also observe that
the two aggregated strategies yield a greater power than the single test (which corresponds to the
case r = 1), as soon as the collection W is large enough.

Similar conclusions have been drawn from the other analytical examples, which are not presented
here for the sake of brevity. Thus, from our experience, we recommend in practice the use of the
aggregated procedure with exponential weights with r = 5 or 6.

33



1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

r

P
ow

er
Uniform weights & n= 200
Exponential weights & n= 200
Uniform weights & n= 100
Exponential weights & n= 100
Uniform weights & n= 50
Exponential weights & n= 50

Figure 6: Empirical power of the permuted aggregated procedures with uniform and exponential
weights, w.r.t. the number r of aggregated bandwidths in each direction, for samples generated
according to the univariate mechanism of dependence (ii) with l = 2 defined in Section 5.2 of sizes
n = 50, 100 and 200, B1 = 3000, B2 = 500 and α = 0.05.

C Proofs
All along the proofs, we set Z = (X,Y ) and Zi = (Xi, Yi) for all i in {1, . . . , n}. We also denote by
A,B and C positive universal constants whose values may change from line to line. Moreover, the
generic notation C(a, b, . . .) denotes a positive constant depending only on its arguments (a, b, . . .)
and that may vary from line to line.

C.1 Proof of Proposition 1

Let α be in (0, 1). In order to prove that the permuted test with Monte Carlo approximation “∆λ,µ
α

defined in Equation (2.3) is of prescribed level α, we use Lemma 1 of [Romano and Wolf, 2005]
recalled here.

Lemma 9 ([Romano and Wolf, 2005, Lemma 1]). Let R1, . . . , RB+1 be (B + 1) exchangeable
random variables. Then, for all u in (0, 1)

P

(
1

B + 1

[
1 +

B∑
b=1

1Rb≥RB+1

]
≤ u

)
≤ u.

Recall that for all 1 ≤ b ≤ B,“H?b
λ,µ = ’HSICλ,µ (Zτbn ) and “H?B+1

λ,µ = ’HSICλ,µ (Zn) = ’HSICλ,µ (ZτB+1
n ) ,
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where τB+1 = id is the identity permutation of {1, . . . , n} (deterministic).
Assume that f = f1 ⊗ f2. Then the random variables “H?1

λ,µ, . . . ,
“H?B
λ,µ and “H?B+1

λ,µ are exchange-
able. Indeed, let π be a (deterministic) permutation of {1, . . . , B + 1} and let us prove thatÄ“H?1

λ,µ, . . . , “H?B
λ,µ, “H?B+1

λ,µ

ä
and

Ä“H?π(1)
λ,µ , . . . , “H?π(B+1)

λ,µ

ä
have the same distribution. (C.1)

Case 1. If π(B + 1) = B + 1, then, since the permutations (τb)1≤b≤B are i.i.d., they are
exchangeable. Hence, (τπ(1), . . . , τπ(B)) is an i.i.d. sample of uniform permutations of {1, . . . , n},
independent of Zn and (C.1) holds by construction.

Case 2. If π(B + 1) 6= B + 1, then“H?π(B+1)
λ,µ = ’HSICλ,µ

Ä
Zτπ(B+1)
n

ä
= ’HSICλ,µ

(
Z̃n
)
, where Z̃n = Zτπ(B+1)

n .

In particular, for all b in {1, . . . , B},
“H?π(b)
λ,µ = ’HSICλ,µ

Ä
Zτπ(b)
n

ä
= ’HSICλ,µ

Å
Z̃
τπ(b)◦τ−1

π(B+1)
n

ã
if π(b) 6= B + 1,“H?π(b)

λ,µ = ’HSICλ,µ (Zn) = ’HSICλ,µ

Å
Z̃

id ◦τ−1
π(B+1)

n

ã
if π(b) = B + 1.

Therefore, in order to prove (C.1), it is sufficient to prove that {τπ(1) ◦ τ−1
π(B+1), . . . , τπ(B) ◦ τ−1

π(B+1)}
is an i.i.d. sample of uniform permutations of {1, . . . , n} independent of Z̃n. Let A be a mesurable
set, and σ1, . . . , σB be (fixed) permutations of {1, . . . , n}. Then

P
(
Z̃n ∈ A, τπ(1) ◦ τ−1

π(B+1) = σ1, . . . , τπ(B) ◦ τ−1
π(B+1) = σB

)
= P

Ä
Zτπ(B+1)
n ∈ A, τπ(1) = σ1 ◦ τπ(B+1), . . . , τπ(B) = σB ◦ τπ(B+1)

ä
= E

[
P
Ä
Zτπ(B+1)
n ∈ A, τπ(1) = σ1 ◦ τπ(B+1), . . . , τπ(B) = σB ◦ τπ(B+1)

∣∣∣τπ(B+1)
ä]
.

This leads to

P
Ä
Z̃n ∈ A, τπ(1) ◦ τ−1

π(B+1) = σ1, . . . , τπ(B) ◦ τ−1
π(B+1) = σB

ä
= E

[
P(Zn ∈ A)×

Ü
B∏
b=1

b6=π−1(B+1)

P
(
τπ(b) = σb ◦ τπ(B+1)

∣∣τπ(B+1)
)ê
×

P
(
id = σπ−1(B+1) ◦ τπ(B+1)

∣∣∣τπ(B+1)
) ]
, (C.2)

where (C.2) holds by independence of all permutations τb and of Zn and since, if f = f1 ⊗ f2,
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Zτπ(B+1)
n and Zn have the same distribution. Hence,

P
(
Z̃n ∈ A, τπ(1) ◦ τ−1

π(B+1) = σ1, . . . , τπ(B) ◦ τ−1
π(B+1) = σB

)
= E

ñ
P(Zn ∈ A)

Å 1
n!

ãB−1
P
(
id = σπ−1(B+1) ◦ τπ(B+1)

∣∣∣τπ(B+1)
)ô
,

= P(Zn ∈ A)
Å 1
n!

ãB−1
P
Ä
τπ(B+1) = σ−1

π−1(B+1)

ä
,

= P(Zn ∈ A)
Å 1
n!

ãB
,

This ends the proof of the exchangeability of the (“H?b
λ,µ)1≤b≤B+1.

Then, by applying Lemma 9 to the (“H?b
λ,µ)1≤b≤B+1, we obtain

Pf1⊗f2

Ä“∆λ,µ
α = 1

ä
= Pf1⊗f2

Ä’HSICλ,µ > q̂λ,µ1−α
ä

= Pf1⊗f2

Ä“H?B+1
λ,µ > “H?(d(B+1)(1−α)e)

λ,µ

ä
= Pf1⊗f2

(
B+1∑
b=1

1“H?b
λ,µ

<“H?B+1
λ,µ

≥ d(B + 1)(1− α)e
)

= Pf1⊗f2

(
B+1∑
b=1

1“H?b
λ,µ
≥“H?B+1

λ,µ
≤ bα(B + 1)c

)
, (C.3)

where (C.3) comes from the fact that B + 1− d(B + 1)(1− α)e = bα(B + 1)c. Then,

Pf1⊗f2

Ä“∆λ,µ
α = 1

ä
= Pf1⊗f2

(
B+1∑
b=1

1“H?b
λ,µ
≥“H?B+1

λ,µ
≤ α(B + 1)

)

= Pf1⊗f2

(
1

B + 1

(
1 +

B∑
b=1

1“H?b
λ,µ
≥“H?B+1

λ,µ

)
≤ α

)
≤ α, (C.4)

where (C.4) is obtained from Lemma 9.

C.2 Proof of Lemma 1

Let α and β be in (0, 1). We aim here to give a condition on HSICλ,µ(f) w.r.t. the variance
Varf (’HSICλ,µ) and the quantile qλ,µ1−α, so that the statistical test ∆λ,µ

α defined in Equation (2.1) has
a second kind error controlled by β. For this, we use Chebyshev’s inequality. Since ’HSICλ,µ is an
unbiased estimator of HSICλ,µ(f),

Pf

Ñ∣∣∣’HSICλ,µ −HSICλ,µ(f)
∣∣∣ ≥

√
Varf (’HSICλ,µ)

β

é
≤ β.
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We then have the following inequality:

Pf

Ñ’HSICλ,µ ≤ HSICλ,µ(f)−

√
Varf (’HSICλ,µ)

β

é
≤ β.

Consequently, one has Pf
Ä’HSICλ,µ ≤ qλ,µ1−α

ä
≤ β, as soon as

HSICλ,µ(f) ≥

√
Varf (’HSICλ,µ)

β
+ qλ,µ1−α.

C.3 Proof of Proposition 2

In order to control the variance Varf (’HSICλ,µ) w.r.t. the bandwidths λ, µ and the sample size n,
let us first give the following lemma for a general U -statistic of any order r in {1, . . . , n}.

Lemma 10. Let h be a symmetric function with r ≤ n inputs, V1, . . . , Vn be independent and
identically distributed random variables and Un be the U -statistic defined by

Un = (n− r)!
n!

∑
(i1,...,ir)∈inr

h(Vi1 , . . . , Vir),

where inr is the set of all r-tuples drawn without replacement from {1, . . . , n}. The following in-
equality gives an upper bound of the variance of Un,

Var(Un) ≤ C(r)
Å
σ2

n
+ s2

n2

ã
, (C.5)

where σ2 = Var (E[h(V1, . . . , Vr) | V1]) and s2 = Var (h(V1, . . . , Vr)).

Proof of Lemma 10. First, using Hoeffding’s decomposition (see e.g. [Serfling, 2009, Lemma A, p.
183]), the variance of Un can be decomposed as

Var(Un) =
Ç
n

r

å−1 r∑
c=1

Ç
r

c

åÇ
n− r
r − c

å
ζc,

where ζc = Var(E[h(V1, . . . , Vr) | V1, . . . , Vc]).

Let us now prove that, for all n ∈ N∗, r ∈ {1, . . . , n} and c ∈ {1, . . . , r},Ç
n

r

å−1Ç
r

c

åÇ
n− r
r − c

å
≤ C(r, c)

nc
. (C.6)

We first writeÇ
n

r

å−1Ç
r

c

åÇ
n− r
r − c

å
=

Ç
r

c

å
× r!

(r − c)! ×
(n− r)!

(n+ c− 2r)! ×
(n− r)!
n! . (C.7)
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Moreover,

n! = (n− r)!× (n− r + 1)× . . .× (n− r + r)
≥ (n− r)!× (n− r + 1)r,

and

(n− r)! = (n− 2r + c)!× (n− 2r + c+ 1)× . . .× (n− 2r + c+ r − c)
≤ (n− 2r + c)!× (n− r + 1)r−c.

Then, we have
(n− r)!

(n+ c− 2r)! ×
(n− r)!
n! ≤ 1

(n− r + 1)c .

Furthemore, using that n ≥ r, one can write

n− r + 1
n

= 1− r − 1
n

≥ 1− r − 1
r

= 1
r
.

This leads to, 1
n− r + 1 ≤

r

n
. Finally, Equation (C.7) leads to Equation (C.6).

By upper bounding each term in Hoeffding’s decomposition of the variance of Un according to
Equation (C.6), we obtain

Var(Un) ≤ C(r)
r∑
c=1

ζc
nc
. (C.8)

On the one hand, ζ1 = σ2. On the other hand, using the law of total variance (see e.g. [Weiss, 2006]),
ζc ≤ s2 for all c in {2, .., r}. By injecting this last inequality in Equation (C.8), we obtain for all n
in N∗,

Var(Un) ≤ C(r)
Å
σ2

n
+ s2

n2

ã
,

which achieves the proof of Lemma 10.

Let us now apply Lemma 10 in order to control the variance of ’HSICλ,µ w.r.t λ, µ and n. For
this, we first recall that ’HSICλ,µ can be written as a single U -statistic of order 4 as’HSICλ,µ = 1

n(n− 1)(n− 2)(n− 3)
∑

(i,j,q,r)∈in4

hi,j,q,r,

where the general term hi,j,q,r of ’HSICλ,µ is defined as in [Gretton et al., 2008] by

hi,j,q,r = 1
4!

(i,j,q,r)∑
(t,u,v,w)

[
kλ(Xt, Xu)lµ(Yt, Yu) + kλ(Xt, Xu)lµ(Yv, Yw)− 2kλ(Xt, Xu)lµ(Yt, Yv)

]
.
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where the sum represents all ordered quadruples (t, u, v, w) drawn without replacement from (i, j, q, r).

Thus, using Lemma 10, the variance of ’HSICλ,µ can be upper bounded as follows:

Varf
Ä’HSICλ,µ

ä
≤ C

Å
σ2(λ, µ)

n
+ s2(λ, µ)

n2

ã
, (C.9)

where, recalling that Zi = (Xi, Yi) for all i in {1, . . . , n}, σ2(λ, µ) = Varf (E[h1,2,3,4 | Z1]) and
s2(λ, µ) = Varf (h1,2,3,4).

C.3.1 Upper bound of σ2(λ, µ)

By now, we upper bound σ2(λ, µ) = Varf (E[h1,2,3,4 | Z1]) w.r.t. λ and µ. For this, we first notice
that in the cases where kλ(Xa, Xb)lµ(Yc, Yd) is independent from Z1, the variance of its expectation
conditionally on Z1 equals 0. This corresponds to the cases where a, b, c and d are all different from
1. We then have the following inequality:

σ2(λ, µ) ≤ C
6∑
i=1

σ2
i (λ, µ),

where

σ2
1(λ, µ) = Varf (E[kλ(X1, X2)lµ(Y1, Y2) | Z1]) , σ2

2(λ, µ) = Varf (E[kλ(X1, X2)lµ(Y3, Y4) | X1]) ,
σ2

3(λ, µ) = Varf (E[kλ(X3, X4)lµ(Y1, Y2) | Y1]) , σ2
4(λ, µ) = Varf (E[kλ(X1, X2)lµ(Y1, Y3) | Z1]) ,

σ2
5(λ, µ) = Varf (E[kλ(X2, X1)lµ(Y2, Y3) | X1]) , σ2

6(λ, µ) =,Varf (E[kλ(X2, X3)lµ(Y2, Y1) | Y1]) .

Case 1. Upper bound of σ2
1(λ, µ):

σ2
1(λ, µ) ≤ E

î(
E [kλ(X1, X2)lµ(Y1, Y2) | Z1]

)2ó
≤ E [kλ(X1, X2)lµ(Y1, Y2)kλ(X1, X3)lµ(Y1, Y3)] .

Moreover, we have

E [kλ(X1, X2)kλ(X1, X3)lµ(Y1, Y2)lµ(Y1, Y3)]

=
∫

(Rp×Rq)3
kλ(x1, x2)kλ(x1, x3)lµ(y1, y2)lµ(y1, y3)

3∏
k=1

f(xk, yk)dxkdyk.

Since kλ and lµ are nonnegative, one can upper bound f(x2, y2) and f(x3, y3) by ‖f‖∞, and obtain

σ2
1(λ, µ) ≤ ‖f‖2∞

∫
(Rp×Rq)3

kλ(x1, x2)kλ(x1, x3)lµ(y1, y2)lµ(y1, y3) f(x1, y1)
3∏

k=1
dxkdyk

= ‖f‖2∞
∫
Rp×Rq

ï∫
Rp
kλ(x1, x)dx

ò2 ï∫
Rq
lµ(y1, y)dy

ò2
f(x1, y1)dx1dy1.

39



Finally, using that
∫
Rp
kλ(·, x)dx =

∫
Rq
lµ(·, y)dy = 1, we write

σ2
1(λ, µ) ≤ ‖f‖2∞ . (C.10)

Case 2. Upper bound of σ2
2(λ, µ):

σ2
2(λ, µ) ≤ E

î(
E [kλ(X1, X2)lµ(Y3, Y4) | X1]

)2ó
≤ E

î(
E [kλ(X1, X2) | X1]

)2ó (E [lµ(Y3, Y4)]
)2

≤ E [kλ(X1, X2)kλ(X1, X3)]
(
E [lµ(Y3, Y4)]

)2
.

Moreover, it is easy to see that by upper bounding f1(x2) and f1(x3) by ‖f1‖∞, and recalling that∫
Rp
kλ(x1, x)dx = 1, we have,

E [kλ(X1, X2)kλ(X1, X3)] =
∫
Rp

ï∫
Rp
kλ(x1, x2)f1(x2)dx2

ò ï∫
Rp
kλ(x1, x3)f1(x3)dx3

ò
f1(x1)dx1

≤ ‖f1‖2∞ .

Besides, upper bounding f2(y3) by ‖f2‖∞ in the integral form of E [lµ(Y3, Y4)] gives

E [lµ(Y3, Y4)] ≤ ‖f2‖∞ .

By combining these inequalities, we obtain

σ2
2(λ, µ) ≤ ‖f1‖2∞ ‖f2‖2∞ . (C.11)

Case 3. Upper bound of σ2
3(λ, µ): this case is similar to case 2 by exchanging X by Y and kλ

by lµ. Thus, we have the inequality

σ2
3(λ, µ) ≤ ‖f1‖2∞ ‖f2‖2∞ . (C.12)

Case 4. Upper bound of σ2
4(λ, µ):

σ2
4(λ, µ) ≤ E

î(
E [kλ(X1, X2)lµ(Y1, Y3) | Z1]

)2ó
≤ E [kλ(X1, X2)kλ(X1, X4)lµ(Y1, Y3)lµ(Y1, Y5)] .

By upper bounding f1(x2), f1(x4) by ‖f1‖∞ and f2(y3), f2(y5) by ‖f2‖∞ in the integral form of
E [kλ(X1, X2)kλ(X1, X4)lµ(Y1, Y3)lµ(Y1, Y5)], we obtain

σ2
4(λ, µ) ≤ ‖f1‖2∞ ‖f2‖2∞ . (C.13)

Case 5. Upper bound of σ2
5(λ, µ):

σ2
5(λ, µ) ≤ E

î(
E [kλ(X2, X1)lµ(Y2, Y3) | X1]

)2ó
≤ E [kλ(X2, X1)kλ(X4, X1)lµ(Y2, Y3)lµ(Y4, Y5)] .
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By upper bounding f(x2, y2) and f(x4, y4) by ‖f‖∞ in the integral form of the last expectation,
we have

σ2
5(λ, µ) ≤ ‖f‖2∞ . (C.14)

Case 6. Upper bound of σ2
6(λ, µ): this case is similar to case 5 by exchanging X by Y and kλ

by lµ. We have then the inequality
σ2

6(λ, µ) ≤ ‖f‖2∞ . (C.15)

Finally, by combining inequalities (C.10), (C.11), (C.12), (C.13), (C.14) and (C.15), we have the
following inequality

σ2(λ, µ) ≤ C(Mf ). (C.16)

C.3.2 Upper bound of s2(λ, µ)

Let us first recall that the general term of the U -statistic ’HSICλ,µ is written as

h1,2,3,4 = 1
4!

(1,2,3,4)∑
(u,v,w,t)

kλ(Xu, Xv) [lµ(Yu, Yv) + lµ(Yw, Yt)− 2lµ(Yu, Yw)] .

Moreover, all the terms of the last sum have the same distribution. We then have

s2(λ, µ) = Varf (h1,2,3,4)
≤ C Varf (kλ(X1, X2) [lµ(Y1, Y2) + lµ(Y3, Y4)− 2lµ(Y1, Y3)]) .

It follows that,

Varf (h1,2,3,4)
≤ C

[
Varf (kλ(X1, X2)lµ(Y1, Y2)) + Varf (kλ(X1, X2)lµ(Y3, Y4)) + Varf (kλ(X1, X2)lµ(Y1, Y3))

]
≤ C

(
E
[
k2
λ(X1, X2)l2µ(Y1, Y2)

]
+ E

[
k2
λ(X1, X2)l2µ(Y3, Y4)

]
+ E

[
k2
λ(X1, X2)l2µ(Y1, Y3)

] )
.

In order to bring back to multivariate normal densities, we express k2
λ and l2µ as

k2
λ = kλ′

(4π)
p
2λ1 . . . λp

and l2µ = lµ′

(4π)
q
2µ1 . . . µq

,

where λ′ = λ√
2
and µ′ = µ√

2
.

Consequently, the expectation E
[
k2
λ(X1, X2)l2µ(Y1, Y2)

]
can be expressed as

E
[
k2
λ(X1, X2)l2µ(Y1, Y2)

]
= 1

(4π)
p+q

2 λ1 . . . λpµ1 . . . µq
E
[
kλ′(X1, X2)lµ′(Y1, Y2)

]
= 1

(4π)
p+q

2 λ1 . . . λpµ1 . . . µq

∫
(Rp×Rq)2

kλ′(x1, x2)lµ′(y1, y2)f(x1, y1)f(x2, y2)dx1dx2dy1dy2.
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By upper bounding f(x2, y2) by ‖f‖∞ in the last integral, we have∫
(Rp×Rq)2

kλ′(x1, x2)lµ′(y1, y2)f(x1, y1)f(x2, y2)dx1dx2dy1dy2

≤ ‖f‖∞
∫
Rp×Rq

ï∫
Rp
kλ′(x1, x2)dx2

ò ï∫
Rq
lµ′(y1, y2)dy2

ò
f(x1, y1)dx1dy1

= ‖f‖∞ .

This leads to,
E
[
k2
λ(X1, X2)l2µ(Y1, Y2)

]
≤ ‖f‖∞

(4π)
p+q

2 λ1 . . . λpµ1 . . . µq
. (C.17)

We can easily show by similar argument that

E
[
k2
λ(X1, X2)l2µ(Y3, Y4)

]
≤ ‖f1‖∞ ‖f2‖∞

(4π)
p+q

2 λ1 . . . λpµ1 . . . µq
. (C.18)

and
E
[
k2
λ(X1, X2)l2µ(Y1, Y3)

]
≤ ‖f‖∞

(4π)
p+q

2 λ1 . . . λpµ1 . . . µq
. (C.19)

From Equations (C.17), (C.18) and (C.19), we have

s2(λ, µ) ≤ C(Mf )
(4π)

p+q
2 λ1 . . . λpµ1 . . . µq

. (C.20)

From Equations (C.16) and (C.20), we deduce the following inequality for Varf (’HSICλ,µ)

Varf (’HSICλ,µ) ≤ C(Mf , p, q)
ß 1
n

+ 1
n2λ1 . . . λpµ1 . . . µq

™
.

C.4 Proof of Proposition 3

To give an upper bound for the quantile qλ,µ1−α w.r.t λ and µ, we use concentration inequalities for
general U -statistics. Recall that ’HSICλ,µ can be written as a U -statistic of order 4,’HSICλ,µ = 1

n(n− 1)(n− 2)(n− 3)
∑

(i,j,q,r)∈in4

hi,j,q,r,

with general term hi,j,q,r defined by

hi,j,q,r = 1
4!

(i,j,q,r)∑
(t,u,v,w)

[
kλ(Xt, Xu)lµ(Yt, Yu) + kλ(Xt, Xu)lµ(Yv, Yw)− 2kλ(Xt, Xu)lµ(Yt, Yv)

]
.

where the sum represents all ordered quadruples (t, u, v, w) drawn without replacement from (i, j, q, r).

However, sharp upper bounds are obtained only for degenerate U -statistics (see e.g. [Houdré and Reynaud-Bouret, 2003]).
We recall that a U -statistic of order r, denoted Un = Un(V1, . . . , Vr), is degenerate if E[Un |
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V1, . . . , Vr−1] = 0. Note that this implies that E[Un | V1, . . . , Vi] = 0 for all i in {1, . . . , r−1}. Hence,
the first step to upper bound qλ,µ1−α is to write ’HSICλ,µ as a sum of degenerate U -statistics. For this,
we rely on the ANOVA-decomposition (ANOVA for ANalyse Of VAriance, see e.g. [Sobol, 2001])
of the symmetric function hi,j,q,r. We then write

hi,j,q,r = 1
2!

(i,j,q,r)∑
(t,u)

ht,u + 1
3!

(i,j,q,r)∑
(t,u,v)

ht,u,v + h̃i,j,q,r, (C.21)

where the first (resp. the second) sum represents all ordered pairs (t, u) (resp. triplets (t, u, v))
drawn without replacement from (i, j, q, r) and the terms ht,u, ht,u,v and h̃i,j,q,r are defined as

ht,u = E[hi,j,q,r | Zt, Zu] ,

ht,u,v = E[hi,j,q,r | Zt, Zu, Zv]−
1
2!

(t,u,v)∑
(t′,u′)

ht′,u′ ,

h̃i,j,q,r = hi,j,q,r −
1
3!

(i,j,q,r)∑
(t,u,v)

ht,u,v −
1
2!

(i,j,q,r)∑
(t,u)

ht,u.

Hence, by summing all terms hi,j,q,r for (i, j, q, r) in in4 and then dividing by n(n− 1)(n− 2)(n− 3),
we have ’HSICλ,µ = 6 ’HSIC

(2,D)
λ,µ + 4 ’HSIC

(3,D)
λ,µ + ’HSIC

(4,D)
λ,µ , (C.22)

where ’HSIC
(2,D)
λ,µ = 1

n(n− 1)
∑

(i,j)∈in2

hi,j , ’HSIC
(3,D)
λ,µ = 1

n(n− 1)(n− 2)
∑

(i,j,q)∈in3

hi,j,q’HSIC
(4,D)
λ,µ = 1

n(n− 1)(n− 2)(n− 3)
∑

(i,j,q,r)∈in4

h̃i,j,q,r.

Lemma 11. Let us assume that f = f1 ⊗ f2. Then, the U -statistics ’HSIC
(2,D)
λ,µ , ’HSIC

(3,D)
λ,µ and’HSIC

(4,D)
λ,µ are degenerated.

Proof of Lemma 11. According to Theorem 2 of [Gretton et al., 2008], if f = f1 ⊗ f2, we have

E[hi,j,q,r | Zi] = 0.

We then easily show that ’HSIC
(2,D)
λ,µ is degenerated by writing

E[hi,j | Zi] = E[hi,j,q,r | Zi] = 0. (C.23)

Moreover, to prove that ’HSIC
(3,D)
λ,µ is degenerated, we have

E[hi,j,q | Zi, Zj ] = E[hi,j,q,r | Zi, Zj ]− E[hi,j | Zi, Zj ]− E[hi,q | Zi]− E[hj,q | Zj ]
= hi,j − hi,j (C.24)
= 0,
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where (C.24) holds by definition of hi,j and Equation (C.23). Finally, from previous cases, and by
definition of hi,j,q, we obtain

E[h̃i,j,q,r | Zi, Zj , Zq] = E[hi,j,q,r | Zi, Zj , Zq]− hi,j,q − hi,j − hi,q − hj,q
= 0,

which proves that ’HSIC
(4,D)
λ,µ is degenerated.

Once we have upper bounds of the (1− α)-quantiles of ’HSIC
(r,D)
λ,µ with r in {2, 3, 4} under the

assumption Pf1⊗f2 , an upper bound of the quantile qλ,µ1−α is naturally obtained. In fact, we can
easily show that,

qλ,µ1−α ≤ 6 qλ,µ1−α/3,2 + 4 qλ,µ1−α/3,3 + qλ,µ1−α/3,4 (C.25)

where qλ,µ1−α,r is the (1− α)-quantiles of ’HSIC
(r,D)
λ,µ under Pf1⊗f2 .

C.4.1 Upper bound of qλ,µ1−α,2

First, [Gretton et al., 2008] page 10 prove that, under the hypothesis f = f1⊗f2, hi,j = E[hi,j,q,r | Zi, Zj ]
can be written as follows

hi,j = h(2)(Zi, Zj),

where, for all z1 = (x, y) and z′ = (x′, y′) in Rp × Rq,

h(2)(z, z′) = 1
6

ß
kλ(x, x′)− E

[
kλ(x,X ′)

]
− E

[
kλ(X,x′)

]
+ E

[
kλ(X,X ′)

]™
×
ß
lµ(y, y′)− E

[
lµ(y, Y ′)

]
− E

[
lµ(Y, y′)

]
+ E

[
lµ(Y, Y ′)

]™
,

for (X,Y ) and (X ′, Y ′) independent random variables with common density f1 ⊗ f2.

To upper bound the quantile qλ,µ1−α,2, we use the concentration inequality for degenerated U -
statistics of order 2 given in [Giné et al., 2000, p.15, Equation (3.5)]. We write for all t > 0,

P

Ñ∣∣∣∣∣∣ ∑(i,j)∈in2

h(2)(Zi, Zj)

∣∣∣∣∣∣ > t

é
≤ A exp

Ç
− 1
A

min
®
t

M
,

Å
t

L

ã2/3
,

Å
t

K

ã1/2´å
, (C.26)

where A > 1 is an absolute constant,

K =
∥∥∥h(2)

∥∥∥
∞
, and M2 =

∑
(i,j)∈in2

E
î
h2

(2)(Zi, Zj)
ó

= n(n− 1)E
î
h2

(2)(Z1, Z2)
ó
,

L2 = max


∥∥∥∥∥
n∑
i=1

E
î
h2

(2)(Zi, ·)
ó∥∥∥∥∥
∞

,

∥∥∥∥∥∥
n∑
j=1

E
î
h2

(2) (·, Zj)
ó∥∥∥∥∥∥
∞

 = n
∥∥∥Eîh2

(2)(Z1, ·)
ó∥∥∥
∞
.
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By setting ε = t

n2 , and using Equation (C.26), we obtain

P

Ñ
1
n2

∣∣∣∣∣∣ ∑(i,j)∈in2

hi,j

∣∣∣∣∣∣ > ε

é
≤ A exp

(
− 1
A

min
{
n2ε

M
,

Å
n2ε

L

ã2/3
,

Å
n2ε

K

ã1/2})
.

Therefore, we have for all ε > 0,

P

Ñ
1
n2

∣∣∣∣∣∣ ∑(i,j)∈in2

hi,j

∣∣∣∣∣∣ > ε

é
≤Amax

®
exp

Å
− n

2ε

AM

ã
, exp

Ç
−n

4/3ε2/3

AL2/3

å
, exp

Ç
− nε1/2

AK1/2

å´
.

By adjusting the constant A, we can replace in the last inequality 1
n2

∑
(i,j)∈in2

hi,j by ’HSIC
(2,D)
λ,µ ,

P
Å∣∣∣∣’HSIC

(2,D)
λ,µ

∣∣∣∣ > ε

ã
≤ Amax

®
exp

Å
− n

2ε

AM

ã
, exp

Ç
−n

4/3ε2/3

AL2/3

å
, exp

Ç
− nε1/2

AK1/2

å´
.

Hence, if εα is a positive number verifying

α = Amax
{

exp
Å
−n

2εα
AM

ã
, exp

(
−n

4/3ε
2/3
α

AL2/3

)
, exp

(
− nε

1/2
α

AK1/2

)}
,

then, by definition of the quantile,
qλ,µ1−α,2 ≤ εα. (C.27)

By now, we upper bound εα (and consequently qλ,µ1−α,2), in the 3 cases considered bellow.

Case 1. If α = A exp
(
−n2εα/ [AM ]

)
, then εα is expressed as

εα = AM

n2

Å
log
Å 1
α

ã
+ log (A)

ã
.

Since in A2(α), we assume that log(1/α) > 1, and since A > 1, we can then bound εα as

0 < εα ≤
CM

n2 log
Å 1
α

ã
. (C.28)

for some absolute positive constant C.

Let us upper bound M w.r.t λ, µ and n. First notice that

M2 = n(n− 1)E
î
h2

(2)(Z1, Z2)
ó
≤ n2E

[
h2

1,2
]
.

Moreover, by the law of total variance,

E
[
h2

1,2
]

= Var (E[h1,2,3,4 | Z1, Z2])
≤ Var (h1,2,3,4) .
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Furthermore, we have shown in Equation (C.20) (see Section C.3.2) that,

Var (h1,2,3,4) ≤ C(Mf1⊗f2 , p, q)
λ1 . . . λpµ1 . . . µq

≤ C(Mf , p, q)
λ1 . . . λpµ1 . . . µq

,

since we work under Pf1⊗f2 .
Hence, we can upper bound M as follows,

M ≤ C(Mf , p, q)n√
λ1 . . . λpµ1 . . . µq

. (C.29)

Consequently, by combining Equations (C.28) and (C.29), we obtain

qλ,µ1−α,2 ≤
C(Mf , p, q)

n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
. (C.30)

Case 2. If α = A exp
Ä
−n4/3ε2/3

α /
î
AL2/3

óä
, then εα verifies

ε2/3
α = AL2/3

n4/3

Å
log
Å 1
α

ã
+ log (A)

ã
.

Thus, since log(1/α) > 1, εα can be upper bounded as

εα ≤
CL

n2 log
Å 1
α

ã3/2
, (C.31)

Let us upper bound L w.r.t n, λ and µ, where

L2 = n sup
z∈Rp×Rq

¶
E
î
h2

(2)(Z1, z)
ó©
.

Yet, for all z = (x, y) ∈ Rp × Rq,

h2
(2)(Z1, z) = 1

36

ß
kλ(X1, x)− E[kλ(X1, X2) | X1]− E[kλ(X3, x)] + E[kλ(X3, X2)]

™2

×
ß
lµ(Y1, y)− E[lµ(Y1, Y2) | Y1]− E[lµ(Y3, y)] + E[lµ(Y3, Y2)]

™2
.

Therefore, we have the following inequality for h2
(2)(Z1, z),

h2
(2)(Z1, z) ≤ C

ß
k2
λ(X1, x) + E[kλ(X1, X2) | X1]2 + E[kλ(X3, x)]2 + E[kλ(X3, X2)]2

™
×
ß
l2µ(Y1, y) + E[lµ(Y1, Y2) | Y1]2 + E[lµ(Y3, y)]2 + E[lµ(Y3, Y2)]2

™
.

Using that (X1, . . . , Xn) and (Y1, . . . , Yn) are independent, and Jensen’s inequality,

E
î
h2

(2)(Z1, z)
ó
≤ C

ß
E
[
k2
λ(X1, x)

]
+ E

[
k2
λ(X1, X2)

]™
×
ß
E
[
l2µ(Y1, y)

]
+ E

[
l2µ(Y1, Y2)

]™
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Moreover, by similar arguments as in Section C.3.2, one can prove that for all x in Rp,

E
[
k2
λ(X1, x)

]
≤ C(‖f1‖∞ , p)

λ1 . . . λp
, and E

[
k2
λ(X1, X2)

]
≤ C(‖f1‖∞ , p)

λ1 . . . λp
,

and for all y in Rq,

E
[
l2µ(Y1, y)

]
≤ C(‖f2‖∞ , q)

µ1 . . . µq
and E

[
l2µ(Y1, Y2)

]
≤ C(‖f2‖∞ , q)

µ1 . . . µq
.

Hence, by taking the supremum over z = (x, y) in Rp × Rq, we obtain

L2 ≤ C(Mf , p, q)
n

λ1 . . . λpµ1 . . . µq
. (C.32)

By combining Equations (C.31) and (C.32), we have

εα ≤
C(Mf , p, q)

n3/2√λ1 . . . λpµ1 . . . µq

ï
log
Å 1
α

ãò3/2
.

Moreover, since from A2(α) we have λ1 . . . λpµ1 . . . µq < 1, we obtain

εα ≤
C(Mf )

(n
√
λ1 . . . λpµ1 . . . µq)3/2

ï
log
Å 1
α

ãò3/2
. (C.33)

Case 3. If α = A exp
Ä
−nε1/2

α /
î
AK1/2

óä
, then εα is expressed as

ε1/2
α = AK1/2

n

Å
log
Å 1
α

ã
+ log (A)

ã
.

Using that, from A2(α), log(1/α) > 1, we upper bound εα as

εα ≤
CK

n2

ï
log
Å 1
α

ãò2
. (C.34)

Moreover, we can easily show that

K =
∥∥∥h(2)

∥∥∥
∞

≤ C

Ç
sup

x,x′∈Rp
kλ(x, x′)

åÇ
sup

y,y′∈Rq
lµ(y, y′)

å
= C(p, q)
λ1 . . . λpµ1 . . . µq

. (C.35)

By combining Equations (C.34) and (C.35), we obtain:

εα ≤
C

n2λ1 . . . λpµ1 . . . µq

ï
log
Å 1
α

ãò2
. (C.36)

Finally, using Equations (C.27), (C.30), (C.33) and (C.36) and the fact that, from Assumption
A2(α),

1
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
< 1,

we have the following inequality

qλ,µ1−α,2 ≤
C(Mf , p, q)

n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
. (C.37)
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C.4.2 Upper bound of qλ,µ1−α,3

In this part, we give an upper bound for the (1− α)-quantile of’HSIC
(3,D)
λ,µ = 1

n(n− 1)(n− 2)
∑

(i,j,q)∈in3

h(3)(Zi, Zj , Zq),

where h(3) is define by

h(3)(Zi, Zj , Zq) = hi,j,q = E[hi,j,q,r | Zi, Zj , Zq]−
1
2!

(i,j,q)∑
(t,u)

ht,u.

For this, we use the concentration inequality (c), page 1501 of [Arcones and Gine, 1993]. We write
for all t > 0,

P

Ñ
n−3/2

∣∣∣∣∣∣ ∑
(i,j,q)∈in3

h(3)(Zi, Zj , Zk)

∣∣∣∣∣∣ > t

é
≤ A exp

Ç
− Bt2/3

M2/3 +K1/2t1/6n−1/4

å
, (C.38)

where K =
∥∥∥h(3)

∥∥∥
∞
, M2 = E

[
h2

1,2,3
]
and A > 1, B > 0 are absolute constant.

By setting ε = t

n3/2 and using Equation (C.38), we have

P

Ñ
1
n3

∣∣∣∣∣∣ ∑
(i,j,q)∈in3

hi,j,q

∣∣∣∣∣∣ > ε

é
≤ A exp

Ç
− Bnε2/3

M2/3 +K1/2ε1/6

å
.

Moreover, by adjusting the value of B, we can write

P
Å∣∣∣∣’HSIC

(3,D)
λ,µ

∣∣∣∣ > ε

ã
≤ A exp

Ç
− Bnε2/3

M2/3 +K1/2ε1/6

å
. (C.39)

Hence, if εα is a positive number verifying

A exp
(
− Bnε

2/3
α

M2/3 +K1/2ε
1/6
α

)
= α, (C.40)

then, we have the following inequality
qλ,µ1−α,3 ≤ εα.

In order to upper bound εα in (C.40), we set γα = ε
1/6
α and we obtain

Bnγ4
α = K1/2 log

Å
A

α

ã
γα +M2/3 log

Å
A

α

ã
. (C.41)

The polynomial Equation (C.41) has no explicit solutions. However, it is possible to give an upper
bound of its roots. Indeed,

Bnγ4
α ≤ 2 max

¶
K1/2γα,M

2/3
©

log
Å
A

α

ã
.
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Case 1. If K1/2γα ≥M2/3, then, γα verifies the following inequality,

γ3
α ≤ 2K1/2

Bn
log
Å
A

α

ã
≤ CK1/2

n
log
Å 1
α

ã
,

since log(1/α) > 1 in A2(α), one gets log(A/α) ≤ C log(1/α). Hence,

εα ≤ CK

n2

Å
log
Å 1
α

ãã2
.

Moreover, once again, one can upper bound K =
∥∥∥h(3)

∥∥∥
∞

by

K ≤ C

ñ
sup

x,x′∈Rp
kλ(x, x′)

ô ñ
sup

y,y′∈Rq
lµ(y, y′)

ô
= C(p, q)

λ1 . . . λpµ1 . . . µq
.

Hence,

εα ≤
C(p, q)

n2λ1 . . . λpµ1 . . . µq

Å
log
Å 1
α

ãã2
,

and, since from Assumption A2(α),

1
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
< 1,

we have the following inequality

εα ≤
C

n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
. (C.42)

Case 2. If K1/2γα ≤M2/3, then,

γ4
α ≤ 2M2/3

Bn
log
Å
A

α

ã
≤ CM2/3

n
log
Å 1
α

ã
,

since log(1/α) > 1 in A2(α). Therefore, εα can be upper bounded as

εα ≤
CM

n3/2

ï
log
Å 1
α

ãò3/2
.

Moreover, using the law of total variance, one can upper bound M2 = E
[
h2

1,2,3
]
by

M2 = Var (h1,2,3) ≤ C Var (h1,2,3,4) . (C.43)

Then, according Equation (C.20) (see Section C.3.2), under Pf1⊗f2 , M can be upper bounded as

M ≤ C(Mf1⊗f2 , p, q)√
λ1 . . . λpµ1 . . . µq

≤ C(Mf , p, q)√
λ1 . . . λpµ1 . . . µq

.

Hence,

εα ≤
C(Mf , p, q)

n3/2√λ1 . . . λpµ1 . . . µq

ï
log
Å 1
α

ãò3/2
,
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Moreover, since both assumptions in A2(α) imply that n−1 log(1/α) < 1, we obtain

εα ≤
C(Mf , p, q)

n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
. (C.44)

Finally, both (C.42) and (C.44) lead to

qλ,µ1−α,3 ≤
C(Mf , p, q)

n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
. (C.45)

C.4.3 Upper bound of qλ,µ1−α,4

In this part, we give an upper bound for the (1− α)-quantile of’HSIC
(4,D)
λ,µ = 1

n(n− 1)(n− 2)(n− 3)
∑

(i,j,q,r)∈in4

h(4)(Zi, Zj , Zq, Zr),

under Pf1⊗f2 where h(4) is define by

h(4)(Zi, Zj , Zq, Zr) = h̃i,j,q,r = hi,j,q,r −
1
3!

(i,j,q,r)∑
(t,u,v)

ht,u,v −
1
2!

(i,j,q,r)∑
(t,u)

ht,u.

For this, we use the concentration inequality (d), page 1501 of [Arcones and Gine, 1993]. We have
for all t > 0,

P

Ñ
1
n2

∣∣∣∣∣∣ ∑
(i,j,q,r)∈in4

h̃i,j,q,r

∣∣∣∣∣∣ > t

é
≤ A exp

Ç
−B

…
t

K

å
,

where A > 1 and B > 0 are absolute constants and K =
∥∥∥h(4)

∥∥∥
∞
.

By setting ε = t

n2 , we have

P

Ñ
1
n4

∣∣∣∣∣∣ ∑
(i,j,q,r)∈in4

h̃i,j,q,r

∣∣∣∣∣∣ > ε

é
≤ A exp

Å
−Bn

…
ε

K

ã
.

Furthermore, by adjusting the constant B, we can replace 1
n4

∑
(i,j,q,r)∈in4

h̃i,j,q,r by ’HSIC
(4,D)
λ,µ and

obtain
P
Å∣∣∣∣’HSIC

(4,D)
λ,µ

∣∣∣∣ > ε

ã
≤ A exp

Å
−Bn

…
ε

K

ã
. (C.46)

Hence, if εα is a positive number verifying

A exp
Å
−Bn

…
εα
K

ã
= α, (C.47)

then
qλ,µ1−α,4 ≤ εα.
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By resolving Equation (C.47), we obtain

εα = BK

n2

ï
log
Å
A

α

ãò2
.

Therefore, since log(1/α) > 1 in A2(α), we can easily show that

εα ≤
CK

n2

ï
log
Å 1
α

ãò2
.

Moreover, as above, one can upper bound K =
∥∥∥h(4)

∥∥∥
∞

by

K ≤ C

ñ
sup

x,x′∈Rp
kλ(x, x′)

ô ñ
sup

y,y′∈Rq
lµ(y, y′)

ô
= C(p, q)

λ1 . . . λpµ1 . . . µq
.

Hence,

qλ,µ1−α,4 ≤
C(Mf , p, q)

λ1 . . . λpµ1 . . . µqn2

Å
log
Å 1
α

ãã2
.

Consequently, since from Assumption A2(α),

1
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
< 1,

one finally obtains
qλ,µ1−α,4 ≤

C(Mf , p, q)
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
. (C.48)

Finally, combining (C.25), (C.37), (C.45) and (C.48) ends the proof of Proposition 3.

C.5 Proof of Corollary 1

The proof of this corollary is immediately obtained from Lemma 1, Proposition 2 and Proposition
3.

C.6 Proof of Lemma 2

Recalling the formulation of HSICλ,µ(f) given in Equation (1.5) with k = kλ and l = lµ, we obtain

HSICλ,µ(f) =
∫

(Rp×Rq)2
kλ(x, x′)lµ(y, y′)f(x, y)f(x′, y′)dxdydx′dy′

− 2
∫

(Rp×Rq)2
kλ(x, x′)lµ(y, y′)f(x, y)f1(x′)f2(y′)dxdydx′dy′

+
∫

(Rp×Rq)2
kλ(x, x′)lµ(y, y′)f1(x)f2(y)f1(x′)f2(y′)dxdydx′dy′.

This expression can be factorized using the symmetry of the kernels kλ and lµ as

HSICλ,µ(f) =
∫

(Rp×Rq)2
kλ(x, x′)lµ(y, y′)

ï
f(x, y)− f1(x)f2(y)

òï
f(x′, y′)− f1(x′)f2(y′)

ò
dxdydx′dy′

=
∫

(Rp×Rq)2
kλ(x, x′)lµ(y, y′)ψ(x, y)ψ(x′, y′)dxdydx′dy′,
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where ψ(x, y) = f(x, y)− f1(x)f2(y).

Thereafter, by replacing kλ(x, x′) with ϕλ(x− x′) and replacing lµ(y, y′) with φµ(y− y′), where ϕλ
and φµ are respectively the functions defined in Equation (1.4), one obtains

HSICλ,µ(f) =
∫
Rp×Rq

ψ(x, y)
ï∫

Rp×Rq
ψ(x′, y′)ϕλ(x− x′)φµ(y − y′)dx′dy′

ò
dxdy

=
∫
Rp×Rq

ψ(x, y) [ψ ∗ (ϕλ ⊗ φµ)] (x, y) dxdy

= 〈ψ,ψ ∗ (ϕλ ⊗ φµ)〉2.

C.7 Proof of Proposition 4

First recall that ’HSICλ,µ can be written as a U -statistic of order 4, that is’HSICλ,µ = 1
n(n− 1)(n− 2)(n− 3)

∑
(i,j,q,r)∈in4

hi,j,q,r,

where the general term hi,j,q,r of ’HSICλ,µ is defined by

hi,j,q,r = 1
4!

(i,j,q,r)∑
(t,u,v,w)

(kt,ult,u + kt,ulv,w − 2kt,ult,v) . (C.49)

where the sum represents all ordered quadruples (t, u, v, w) drawn without replacement from (i, j, q, r),
and for all t, u in {1, . . . , n},

kt,u = kλ(Xt, Xu) and lt,u = lµ(Yt, Yu).

According to Equations (C.9) and (C.20), we already proved that

Varf (’HSICλ,µ) ≤ C

n
Varf (E[h1,2,3,4 | Z1]) + C(Mf , p, q)

λ1 . . . λpµ1 . . . µqn2 . (C.50)

To prove the intended result, we need a sharper control of Varf (E[h1,2,3,4 | Z1]) in terms of
‖ψ ∗ (ϕλ ⊗ φµ)‖22, which is provided in Lemma 12.
Lemma 12. For all λ in (0,+∞)p and µ in (0,+∞)q, we have

Varf (E[h1,2,3,4 | Z1]) ≤ C(Mf ) ‖ψ ∗ (ϕλ ⊗ φµ)‖22 .

Finally, both Equation (C.50) and Lemma 12 end the proof of Proposition 4.

Proof of Lemma 12. The first step to upper bound Varf (E[h1,2,3,4 | Z1]) is to rewrite h1,2,3,4 by
isolating all the terms depending on Z1.

h1,2,3,4 = 1
4!

(1,2,3,4)∑
(t,u,v,w)

[kt,ult,u + kt,ulv,w − 2kt,ult,v]

= 2
4!

(2,3,4)∑
(u,v,w)

[k1,ul1,u + k1,ulv,w + ku,vl1,w − kw,vlw,1 − ku,1lu,v − k1,ul1,v] +R(Z2, Z3, Z4),
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where the last sum represents all triplets (u, v, w) drawn without replacement from (2, 3, 4) and
R(Z2, Z3, Z4) is a random variable depending only on Z2, Z3 and Z4.

Then,

h1,2,3,4 = 1
12

(2,3,4)∑
(u,v,w)

[k1,u(l1,u − l1,v)− ku,1(lu,v − lv,w)− (kw,v − ku,v)l1,w] +R (Z2, Z3, Z4) .

The random variable R(Z2, Z3, Z4) being independent from Z1, the variance of its expectation
conditionally to Z1 is equal to 0. It is then easy to see that Varf (E[h1,2,3,4 | Z1]) can be upper
bounded as follows:

Varf (E[h1,2,3,4 | Z1]) ≤ C
[

Varf (E[k1,2(l1,2 − l1,3) | Z1]) + Varf (E[k2,1(l2,3 − l3,4) | X1])
+ Varf (E[(k2,3 − k4,3)l1,2 | Y1])

]
. (C.51)

By now, we reformulate the function ψ ∗ (ϕλ ⊗ φµ) in a simpler form in order to link its L2-
norm with the upper bound given in Equation (C.51). For notational convenience, we denote
Gλ,µ = ψ ∗ (ϕλ ⊗ φµ). Then

Gλ,µ(x, y) =
∫
Rp×Rq

ψ(x′, y′)kλ(x, x′)lµ(y, y′) dx′dy′

=
∫
Rp×Rq×Rq

kλ(x, x′)
Å
lµ(y, y′)− lµ(y, y′′)

ã
f(x′, y′)f2(y′′)dx′dy′dy′′

= E
ï
kλ(x,X ′)

Å
lµ(y, Y ′)− lµ(y, Y ′′)

ãò
,

where (X ′, Y ′) and Y ′′ are independent random variables with respective densities f and f2.

Thereafter, the conditional expectations in Equation (C.51) can all be expressed as follows:

E[k1,2(l1,2 − l1,3) | Z1] = Gλ,µ(X1, Y1),
E[k2,1(l2,3 − l3,4) | X1] = E[Gλ,µ(X1, Y3) | X1] ,
E[(k2,3 − k4,3)l1,2 | Y1] = E[Gλ,µ(X3, Y1) | Y1] .

Thus, using the law of total variance [Weiss, 2006], we have the following upper bound:

Varf (E[h1,2,3,4 | Z1]) ≤ C
ï
Varf (Gλ,µ(X1, Y1)) + Varf (Gλ,µ(X1, Y3)) + Varf (Gλ,µ(X3, Y1))

ò
.

On the other hand, it is straightforward to upper bound the three variances in the last equation as

Varf (Gλ,µ(X1, Y1)) ≤ ‖f‖∞ ‖Gλ,µ‖
2
2 ,

Varf (Gλ,µ(X1, Y3)) ≤ ‖f1 ⊗ f2‖∞ ‖Gλ,µ‖
2
2 ,

Varf (Gλ,µ(X3, Y1)) ≤ ‖f1 ⊗ f2‖∞ ‖Gλ,µ‖
2
2 .

Finally, combining these inequalities with Equation (C.51) allows to upper bound Varf (E[h1,2,3,4 | Z1])
as

Varf (E[h1,2,3,4 | Z1]) ≤ C(Mf ) ‖ψ ∗ (ϕλ ⊗ φµ)‖22 ,
which ends the proof of Lemma 12.
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C.8 Proof of Lemma 3

Recall that for any bandwidths λ = (λ1, . . . , λp) in (0,+∞)p and µ = (µ1, . . . , µq) in (0,+∞)q, ϕλ
and φµ are defined in Equation (1.4) for any x in Rp and y in Rq,

ϕλ(x) = 1
λ1 . . . λp

gp

Ç
x(1)

λ1
, . . . ,

x(p)

λp

å
, φµ(y) = 1

µ1 . . . µq
gq

Ç
y(1)

µ1
, . . . ,

y(q)

µq

å
,

where gp and gq are the standard Gaussian density defined in Equation (1.3). The objective here
is the provide an upper bound of the bias term ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22 w.r.t λ and µ.

First of all, since ψ − ψ ∗ (ϕλ ⊗ φµ) belongs to L2, by Plancherel’s theorem we obtain that

(2π)p+q ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22 =
∥∥∥ψ − ψ ∗ (ϕλ ⊗ φµ)
∧∥∥∥2

2

=
∥∥∥ψ̂ (1−ÿ�ϕλ ⊗ φµ

)∥∥∥2

2

=
∫
Rp×Rq

∣∣∣1−ÿ�ϕλ ⊗ φµ(ξ, ζ)
∣∣∣2 ∣∣∣ψ̂(ξ, ζ)

∣∣∣2 dξdζ.

Moreover, by definition of ϕλ and φµ (see Equation (1.4)),ÿ�ϕλ ⊗ φµ(ξ, ζ) = ◊�gp ⊗ gq(λξ, µζ),

where λξ = (λ1ξ
(1), . . . , λpξ

(p)) and µζ = (µ1ζ
(1), . . . , µqζ

(q)). Besides, the Gaussian density satisfies
for all (u, v) in Rp × Rq,◊�gp ⊗ gq(u, v) = (2π)(p+q)/2gp ⊗ gq(u, v) = exp

Ç
−‖(u, v)‖2

2

å
.

Hence, the bias term satisfies

(2π)p+q ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22 =
∫
Rp×Rq

ñ
1− exp

Ç
−‖(λξ, µζ)‖2

2

åô2 ∣∣∣ψ̂(ξ, ζ)
∣∣∣2 dξdζ.

In addition, for all δ > 0, there exists Tδ in [0, 1] such that

∀x ≥ Tδ, 1− exp
(
−x2/2

)
≤ xδ. (C.52)

Indeed, the function gδ : x 7→ 1− exp(−x2/2)− xδ is continuous on R+, satisfies gδ(0) = 0, and for
all x ≥ 1, gδ(x) < 0 since

1− exp
(
−x2/2

)
< 1 ≤ xδ.

Note that if δ ≤ 2, then Tδ = 0 since, in addition, for all x in [0, 1],

1− exp(−x2/2) ≤ x2

2 ≤
xδ

2 ≤ x
δ.

Therefore, one can split the integral as

(2π)p+q ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22 = I1 + I2, (C.53)
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where

I1 =
∫
‖(λξ,µζ)‖<Tδ

ñ
1− exp

Ç
−‖(λξ, µζ)‖2

2

åô2 ∣∣∣ψ̂(ξ, ζ)
∣∣∣2 dξdζ

≤
Ä
1− e−T 2

δ /2
ä2 ∥∥∥ψ̂∥∥∥2

2

≤
Ä
1− e−T 2

δ /2
ä

(2π)p+q ‖ψ‖22 , since
Ä
1− e−T 2

δ /2
ä
< 1, (C.54)

and

I2 =
∫
‖(λξ,µζ)‖≥Tδ

ñ
1− exp

Ç
−‖(λξ, µζ)‖2

2

åô2 ∣∣∣ψ̂(ξ, ζ)
∣∣∣2 dξdζ

≤
∫
Rp×Rq

‖(λξ, µζ)‖2δ
∣∣∣ψ̂(ξ, ζ)

∣∣∣2 dξdζ,

by Equation (C.52). In addition, since for all 1 ≤ i ≤ p, λ2
i ≤ ‖(λ, µ)‖2 and for all 1 ≤ j ≤ q,

µ2
j ≤ ‖(λ, µ)‖2,

‖(λξ, µζ)‖2δ =
(

p∑
i=1

λ2
i

î
ξ(i)
ó2

+
q∑
j=1

µ2
j

î
ζ(j)
ó2)δ

≤ ‖(λ, µ)‖2δ ‖(ξ, ζ)‖2δ .

Thus, since ψ belongs to Sδp+q(R),

I2 ≤ (2π)p+qR2 ‖(λ, µ)‖2δ . (C.55)

Thereafter, using Hölder’s inequality if δ ≥ 1 and fact that ‖·‖1/δ ≤ ‖·‖1 if δ < 1, it is straightfor-
ward to see that

‖(λ, µ)‖2δ ≤ C(p, q, δ)
[

p∑
i=1

λ2δ
i +

q∑
j=1

µ2δ
j

]
, (C.56)

Finally, combining (C.54), (C.55) and (C.56) in (C.53) leads to

‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22 ≤
Ä
1− e−T 2

δ /2
ä
‖ψ‖22 + C(p, q, δ, R)

[
p∑
i=1

λ2δ
i +

q∑
j=1

µ2δ
j

]
.

Note once again that if δ ≤ 2, then Tδ = 0, and one directly obtains that

‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22 ≤ C(p, q, δ, R)
[

p∑
i=1

λ2δ
i +

q∑
j=1

µ2δ
j

]
.

C.9 Proof of Theorem 2

Assume that ψ belongs to the Sobolev balls Sδp+q(R,R′) with δ,R,R′ > 0. One may notice that,
by Lemma 3, since, Tδ ≤ 1, then

‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22 ≤
Ä
1− e−1/2

ä
‖ψ‖22 + C(p, q, δ, R)

[
p∑
i=1

λ2δ
i +

q∑
j=1

µ2δ
j

]
.
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Thus, since Mf ≤ R′, one may easily deduce from Theorem 1 that Pf (∆λ,µ
α = 0) ≤ β as soon as

e−1/2 ‖ψ‖22 > C(p, q, δ, R)
[

p∑
i=1

λ2δ
i +

q∑
j=1

µ2δ
j

]
+ C(R′, p, q, β)
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
,

that is, since constants may vary from line to line,

‖ψ‖22 > C(p, q, δ, R)
[

p∑
i=1

λ2δ
i +

q∑
j=1

µ2δ
j

]
+ C(R′, p, q, β)
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
.

It now follows from the definition (1.1) of the uniform separation rate thatî
ρ
Ä
∆λ,µ
α ,Sδp+q(R,R′), β

äó2
≤ C(p, q, δ, R)

[
p∑
i=1

λ2δ
i +

q∑
j=1

µ2δ
j

]
+ C(R′, p, q, β)
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
.

C.10 Proof of Corollary 2

The objective here is to give the uniform separation rate having the smallest upper bound w.r.t.
the sample size n, when ψ belongs to a Sobolev ball Sδp+q(R,R′). For this, we recall that according
to Theorem 2, we haveî

ρ
Ä
∆λ,µ
α ,Sδp+q(R,R′), β

äó2
≤ C(p, q, δ, R)

[
p∑
i=1

λ2δ
i +

q∑
j=1

µ2δ
j

]
+ C(R′, p, q, β)
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
.

In order to have the smallest behavior of the right side of the last inequality w.r.t. n, one has then
to choose bandwidths λ∗ = (λ∗1, . . . , λ∗p) and µ∗ = (µ∗1, . . . , µ∗q) w.r.t. n in such a way that[

p∑
i=1

λ∗2δi +
q∑
j=1

µ∗2δj

]
and 1

n
√
λ∗1 . . . λ

∗
pµ
∗
1 . . . µ

∗
q

have the same order. Thereafter, it is clear that all λ∗i ’s and µ∗j ’s have the same behavior w.r.t. n.
It follows that for all i in {1, . . . , p} and all j in {1, . . . , q}, we have

λ∗i = µ∗j = n−2/(4δ+p+q).

Consequently, the separation rate over Sδp+q(R,R′) can be upper bounded as

ρ
Ä
∆λ∗,µ∗
α ,Sδp+q(R,R′), β

ä
≤ C(p, q, α, β, δ, R,R′)n−2δ/(4δ+p+q).

C.11 Proof of Lemma 8

The objective here is to give an upper bound of the bias term ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖22 w.r.t. λ and µ,
when ψ belongs to a Nikol’skii-Besov ball N δ

2,p+q(R), with δ = (ν1, . . . , νp, γ1, . . . , γq) in (0, 2]p+q.
We first set b = ψ ∗ (ϕλ ⊗ φµ)− ψ and we write

b(x, y) = ψ ∗ (ϕλ ⊗ φµ)(x, y)− ψ(x, y)

=
∫
ψ(x′, y′)ϕλ(x− x′)φµ(y − y′)dx′dy′ − ψ(x, y).
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Moreover, using Equation (1.4), the fonction b can be written in terms of the functions gp and gq
defined in Equation (1.3) as

b(x, y) = 1
λ1 . . . λpµ1 . . . µq

∫
ψ(x′, y′)gp

Ç
x1 − x′1
λ1

, . . . ,
xp − x′p
λp

å
gq

Ç
y1 − y′1
µ1

, . . . ,
yq − y′q
µp

å
dx′dy′

−ψ(x, y)

=
∫
ψ(x1 + λ1u1, . . . , xp + λpup, y1 + µ1v1, . . . , yq + µqvq)gp(u1, . . . , up)gq(v1, . . . , vq) dudv

−ψ(x, y).

Thereafter, using that
∫
Rp
gp =

∫
Rq
gq = 1, the function b can be expressed as

b(x, y) =
∫
gp(u1, . . . , up)gq(v1, . . . , vq)

ï
ψ(x1 + λ1u1, . . . , yq + µqvq)− ψ(x, y)

ò
dudv.

Let us from now define for all i in {1, . . . , p} and j in {1, . . . , q}, the functions b1,i and b2,j by

b1,i(x, y) =
∫
gp(u1, . . . , up)gq(v1, . . . , vq)ω1,i(x, y, u1, . . . , ui) dudv,

b2,j(x, y) =
∫
gp(u1, . . . , up)gq(v1, . . . , vq)ω2,j(x, y, u1, . . . , up, v1, . . . , vj) dudv,

where the function ω1,i is defined as

ω1,i(x, y, u1, . . . , ui) = ψ(x1 + λ1u1, . . . , xi + λiui, xi+1, . . . , xp, y)
− ψ(x1 + λ1u1, . . . , xi−1 + λi−1ui−1, xi, . . . , xp, y),

while the function ω2,j is defined as

ω2,j(x, y, u1, . . . , up, v1, . . . , vj) = ψ(x1 +λ1u1, . . . , xp+λpup, y1 +µ1v1, . . . , yj +µjvj , yj+1, . . . , yq)
− ψ(x1 + λ1u1, . . . , xp + λpup, y1 + µ1v1, . . . , yj−1 + µj−1vj−1, yj , . . . , yq).

It is then easy to see that the function b is the sum of all the functions b1,i and b2,j

b(x, y) =
p∑
i=1

b1,i(x, y) +
q∑
j=1

b2,j(x, y).

One can then deduce that it would be sufficient for the control of the L2-norm of b, to control the
L2-normes of all the functions b1,i and b2,j . Using the triangular inequality, we have

‖b‖2 ≤
p∑
i=1
‖b1,i‖2 +

q∑
j=1
‖b2,j‖2 . (C.57)

By now, let us upper bound ‖b1,i‖22 and ‖b2,j‖22 for all i in {1, . . . , p} and j in {1, . . . , q}. We
distinguish two cases.

Case 1. Assume that 0 < νi ≤ 1. We first recall that ‖b1,i‖22 can be written as

‖b1,i‖22 =
∫ ï∫

gp(u1, . . . , up)gq(v1, . . . , vq)ω1,i(x, y, u1, . . . , ui) dudv
ò2

dxdy.

We use the following lemma from page 13 of [Tsybakov, 2009].
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Lemma 13. Let ρ : Rd × Rd′ → R be a Borel function, then we have the following inequality:

∫ Å∫
ρ(θ, z)dθ

ã2
dz ≤

ñ∫ Å∫
ρ2(θ, z)dz

ã1/2
dθ

ô2

.

By applying Lemma 13 to the function

((u, v), (x, y)) 7→ gp(u1, . . . , up)gq(v1, . . . , vq)ω1,i(x, y, u1, . . . , ui),

we obtain

‖b1,i‖22 ≤
ï∫ Å∫

g2
p(u1, . . . , up)g2

q (v1, . . . , vq)ω2
1,i(x, y, u1, . . . , ui) dxdy

ã1/2
dudv

ò2

=
ï∫

gp(u1, . . . , up)gq(v1, . . . , vq)
Å∫

ω2
1,i(x, y, u1, . . . , ui) dxdy

ã1/2
dudv

ò2
. (C.58)

On the other hand, since ψ belongs to the Nikol’skii-Besov ball N δ
2,p+q(R), we haveÅ∫

ω2
1,i(x, y, u1, . . . , ui) dxdy

ã1/2
≤ Rλνii |ui|

νi .

We then have by injecting this last inequation in Equation (C.58), that

‖b1,i‖22 ≤ C(νi, R)λ2νi
i .

Case 2. Now assume that 1 < νi ≤ 2. In this case the function ψ has continuous first-order
partial derivatives. Using Taylor expansion with integral form of the remainder w.r.t. the ith
variable of ψ, we have

ω1,i(x, y, u1, . . . , ui) = λiui

∫ 1

0
(1− τ)D1

i ψ(x1 + λ1u1, . . . , xi + τλiui, xi+1, . . . , y)dτ,

where D1
i denotes the first-order partial derivative of ψ w.r.t. the ith variable.

Thereafter, by injecting the last equation in the expression of b1,i, we obtain

b1,i(x, y) =
∫
λiuigp(u1, . . . , up)gq(v1, . . . , vq)ï∫ 1

0
(1− τ)D1

i ψ(x1 + λ1u1, . . . , xi + τλiui, xi+1, . . . , y)dτ
ò

dudv.

Furthermore, using the fact that gp is of order 2, we have that
∫
uigp(u1, . . . , up)dui = 0. The

function b1,i can then be written as

b1,i(x, y) =
∫
λiuigp(u1, . . . , up)gq(v1, . . . , vq)

ï∫ 1

0
(1− τ)D1

i ω1,i(x, y, u1, . . . , τui) dτ
ò

dudv.
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We have then the following equation for the L2-norm of b1,i:

‖b1,i‖22 =
∫ ï∫

λiuigp(u1, . . . , up)gq(v1, . . . , vq)
Å∫ 1

0
(1−τ)D1

i ω1,i(x, y, u1, . . . , τui) dτ
ã

dudv
ò2

dxdy.

By now, we use as in Case 1 of Lemma 13 in order to upper bound ‖b1,i‖22. We then obtain:

‖b1,i‖22 ≤
Å∫ ï∫ Å

λiuigp(u1, . . . , up)gq(v1, . . . , vq)∫ 1

0
(1− τ)D1

i ω1,i(x, y, u1, . . . , τui) dτ
ã2

dxdy
ò1/2

dudv
ã2

Then,

‖b1,i‖22 ≤
Å∫

λiuigp(u1, . . . , up)gq(v1, . . . , vq)ï∫ Å∫ 1

0
(1− τ)D1

i ω1,i(x, y, u1, . . . , τui) dτ
ã2

dxdy
ò1/2

dudv
ã2

We apply a second time Lemma 13. For this, consider the function

ρ : ((x, y), τ) 7→ (1− τ)D1
i ω1,i(x, y, u1, . . . , τui),

we then have

‖b1,i‖22 ≤
Å∫

λiuigp(u1, . . . , up)gq(v1, . . . , vq)ï∫ 1

0
(1− τ)

Å∫ (
D1
i ω1,i(x, y, u1, . . . , τui)

)2 dxdy
ã1/2

dτ

ò
dudv

ã2
. (C.59)

On the other hand, using that ψ belongs to the Nikol’skii-Besov ball N δ
2,p+q(R),Å∫ (

D1
i ω1,i(x, y, u1, . . . , τui)

)2 dxdy
ã1/2

≤ Rλνi−1
i |τui|νi−1 .

We then obtain by injecting this last inequation in Equation (C.59), that

‖b1,i‖22 ≤ C(νi, R)λ2νi
i .

Besides, for all j in {1, . . . , q}, by similar arguments, one can prove that

‖b2,j‖22 ≤ C(γj , R)µ2γj
j .

Consequently, according to Equation (C.57), we have the following upper bound of ‖b‖22

‖b‖22 ≤ C(δ,R)
[

p∑
i=1

λ2νi
i +

q∑
j=1

µ
2γj
j

]
.
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C.12 Proof of Theorem 5

This proof is similar to the one of Theorem 2. Assume that ψ belongs to the Sobolev balls
N δ

2,p+q(R,R′) with δ = (ν1, . . . , νp, γ1, . . . , γq) in (0, 2]p+q and R,R′ > 0. Then, since Mf ≤ R′, one
may easily deduce from Theorem 1 and Lemma 8 that Pf (∆λ,µ

α = 0) ≤ β as soon as

‖ψ‖22 > C(δ,R)
[

p∑
i=1

λ2νi
i +

q∑
j=1

µ
2γj
j

]
+ C(R′, p, q, β)
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
.

One can then conclude from the definition (1.1) of the uniform separation rate thatî
ρ
Ä
∆λ,µ
α ,N δ

2,p+q(R,R′), β
äó2
≤ C(δ,R)

[
p∑
i=1

λ2νi
i +

q∑
j=1

µ
2γj
j

]
+ C (R′, p, q, β)
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
.

C.13 Proof of Corollary 4

We aim here to give the uniform separation rate having the smallest upper bound w.r.t. the sample
size n, when ψ belongs to a Nikol’skii-Besov ball N δ

2,p+q(R,R′), with δ = (ν1, . . . , νp, γ1, . . . , γq) in
(0, 2]p+q. We first recall that Theorem 5 shows thatî

ρ
Ä
∆λ,µ
α ,N δ

2,p+q(R,R′), β
äó2
≤ C(δ,R)

[
p∑
i=1

λ2νi
i +

q∑
j=1

µ
2γj
j

]
+ C(R′, p, q, β)
n
√
λ1 . . . λpµ1 . . . µq

log
Å 1
α

ã
.

Hence, in order to minimize the right side of the last inequality w.r.t. n, we choose bandwidths
λ∗ = (λ∗1, . . . , λ∗p) and µ∗ = (µ∗1, . . . , µ∗q) w.r.t. n such that[

p∑
i=1

λ∗2νii +
q∑
j=1

µ
∗2γj
j

]
and 1

n
√
λ∗1 . . . λ

∗
pµ
∗
1 . . . µ

∗
q

have the same order. Let us set for all i in {1, . . . , p} and all j in {1, . . . , q}, λ∗i = nai and µ∗j = nbj .
Then, it is clear that for all i and all j

2aiνi = 2bjγj = −1
2

ñ p∑
r=1

ar +
q∑
s=1

bs

ô
− 1. (C.60)

One can first express all ai’s and all bj ’s w.r.t a1 as

ai = a1
ν1
νi

and bj = a1
ν1
γj
.

Thereafter, using Equation (C.60) we have

2a1ν1 = −a1ν1
2η − 1.

Thus, we first write that a1 = −2η
ν1(4η + 1). We next obtain for all i and for all j that

ai = −2η
νi(4η + 1) and bj = −2η

γj(4η + 1) .
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Note that the condition n ≥ (log(1/α))1+1/(4η) ensures that (λ∗, µ∗) satisfies Assumption A2(α).
Consequently, the separation rate over N δ

2,p+q(R,R′) can be upper bound as

ρ
Ä
∆λ∗,µ∗
α ,N δ

2,p+q(R,R′), β
ä
≤ C(p, q, α, β, δ, R,R′)n−

2η
1+4η .

C.14 Proof of Lemma 4

Let α be in (0, 1), we first prove that uα ≥ α. For this, we apply Bonferroni’s inequality

Pf1⊗f2

Ç
sup

(λ,µ)∈W

{’HSICλ,µ − qλ,µ1−αe−ωλ,µ

}
> 0
å

= Pf1⊗f2

Ñ ⋃
(λ,µ)∈W

{’HSICλ,µ > qλ,µ
1−αe−ωλ,µ

}é
≤

∑
(λ,µ)∈W

Pf1⊗f2

(’HSICλ,µ > qλ,µ
1−αe−ωλ,µ

)
≤

∑
(λ,µ)∈W

αe−ωλ,µ

≤ α.

Then, by definition of uα we have uα ≥ α. Thereafter, we obtain

Pf (∆α = 0) = Pf

Ñ ⋂
(λ,µ)∈W

{’HSICλ,µ ≤ qλ,µ1−uαe−ωλ,µ

}é
≤ inf

(λ,µ)∈W
Pf

(’HSICλ,µ ≤ qλ,µ1−uαe−ωλ,µ

)
≤ inf

(λ,µ)∈W
Pf

(’HSICλ,µ ≤ qλ,µ1−αe−ωλ,µ

)
= inf

(λ,µ)∈W

¶
Pf
Ä
∆λ,µ

αe
−ωλ,µ = 0

ä©
,

which concludes the proof.

C.15 Proof of Theorems 3 and 6

Let α and β be in (0, 1). According to Lemma 4, Pf (∆α = 0) ≤ β as soon as there exists (λ, µ) in
W such that

Pf
Ä
∆λ,µ

αe
−ωλ,µ = 0

ä
≤ β.

Then, according to Theorem 2 if ψ belongs to Sδp+q(R,R′), or Theorem 5 if ψ belongs to
N δ

2,p+q(R,R′), one can take the infimum of the upper bounds for the uniform separation rates
over Sδp+q(R) (resp. over N δ

2,p+q(R,R′)) of the single tests over W while replacing log(1/α) by
log(1/α) + ωλ,µ.

C.16 Proof of Corollary 3

Assume that ψ belongs to Sδp+q(R,R′) with regularity parameter δ > 0 and positive radiuses R,R′.
Let us first verify that A2(αe−ωλ,µ) holds for all (λ, µ) in W. Let (λ, µ) in W. Then, by definition
of Mp,q

n ,
n
√
λ1 . . . λpµ1 . . . µq ≥ n2−M

p,q
n ( p+q

2 ) ≥ log(n).
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Moreover,

log
Å 1
α

ã
+ ωλ,µ ≤ log

Å 1
α

ã
+ 2 log

Å
Mp,q
n

π√
6

ã
≤ log

Å 1
α

ã
+ 2 log

Å
π√
6

ã
+ log

Å 2
p+ q

ã
+ log(log2(n)).

This implies that there exists C(p, q, α) such that for n ≥ C(p, q, α), A2(αe−ωλ,µ) holds, and this
for all (λ, µ) in W. Hence, using Theorem 3, we have the following inequalityî

ρ
Ä
∆α,Sδp+q(R,R′), β

äó2
≤ C

(
p, q, β, δ, R,R′

)
inf

(λ,µ)∈W

{[
p∑
i=1

λ2δ
i +

q∑
j=1

µ2δ
j

]
+

+ 1
n
√
λ1 . . . λpµ1 . . . µq

Å
log
Å 1
α

ã
+ ωλ,µ

ã´
.

Let us take (λ∗, µ∗) = 2−m∗1p+q with m∗ satisfying the conditionÅ
n

log log(n)

ã 2
p+q+4δ

< 2m∗ ≤ 2
Å

n

log log(n)

ã 2
p+q+4δ

.

Note that there exists a positive constant C(p, q, δ) such that for n ≥ C(p, q, δ), m∗ ∈ {1, . . . ,Mp,q
n },

which implies that (λ∗, µ∗) ∈ W. Noticing that[
p∑
i=1

(λ∗i )2δ +
q∑
j=1

(µ∗j )2δ

]
+ 1

n
√
λ∗1 . . . λ

∗
pµ
∗
1 . . . µ

∗
q

Å
log
Å 1
α

ã
+ ωλ∗,µ∗

ã
≤ C (p, q, α, δ)

Å log log(n)
n

ã4δ/(4δ+p+q)
,

and applying Theorem 3, we obtain the desired result.

C.17 Proof of Corollary 5

Assume that ψ belongs to N δ
2,p+q(R,R′) with regularity parameter δ = (ν1, . . . , νp, γ1, . . . , γq) in

(0, 2]p+q and positive radiuses R,R′. Let us first verify that A2(αe−ωλ,µ) holds for all (λ, µ) inW.
The condition

∑p
i=1m1,i +

∑q
j=1m2,j ≤ 2 log2

îÄ
n

log(n)

äó
implies that for all (λ, µ) in W,

n
√
λ1 . . . λpµ1 . . . µq ≥ log(n).

Moreover, by definition of the weights ωλ,µ, we have that for all (λ, µ) in W,

log
Å 1
α

ã
+ ωλ,µ ≤ log

Å 1
α

ã
+ 2(p+ q) log

Å
π√
6

ã
+ 2

p∑
i=1

log(m1,i) + 2
q∑
j=1

log(m2,i)

≤ log
Å 1
α

ã
+ 2(p+ q) log

Å 2π√
6

ã
+ 2(p+ q) log(log2(n)).
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This implies that there exists some constant C(p, q, α) such that for n ≥ C(p, q, α), A2(αe−ωλ,µ)
holds for all (λ, µ) in W. Hence, using Theorem 6, we have the following inequalityî

ρ
Ä
∆α,N δ

2,p+q(R,R′), β
äó2
≤ C(p, q, β, δ, R,R′) inf

(λ,µ)∈W

{[
p∑
i=1

λ2νi
i +

q∑
j=1

µ
2γj
j

]

+ 1√
λ1 . . . λpµ1 . . . µqn

ï
log
Å 1
α

ã
+ ωλ,µ

ò}
.

Let us take λ∗ = (2−m
∗
1,1 , . . . , 2−m

∗
1,p) and µ∗ = (2−m

∗
2,1 , . . . , 2−m

∗
2,q), where the integersm∗1,1, . . . ,m∗1,p,

m∗2,1, . . . ,m
∗
2,q are defined by the inequalitiesÅ

n

log log(n)

ã 2η
νi(1+4η)

< 2m
∗
1,i ≤ 2

Å
n

log log(n)

ã 2η
νi(1+4η)

and Å
n

log log(n)

ã 2η
γi(1+4η)

< 2m
∗
2,j ≤ 2

Å
n

log log(n)

ã 2η
γj(1+4η)

,

where η−1 =
∑p
i=1(νi)−1 +

∑q
j=1(γj)−1. Note that there exists a positive constant C(δ) such that

for n ≥ C(δ), (λ∗, µ∗) belongs to W. Then, we obviously haveî
ρ
Ä
∆α,N δ

2,p+q(R,R′), β
äó2
≤ C(p, q, β, δ, R,R′)

{[
p∑
i=1

(λ∗i )2νi +
q∑
j=1

(µ∗j )2γj

]

+ 1√
λ∗1 . . . λ

∗
pµ
∗
1 . . . µ

∗
qn

Å
log
Å 1
α

ã
+ ωλ∗,µ∗

ã}
.

By definition of the integers m∗1,1, . . . ,m∗1,p, m∗2,1, . . . ,m∗2,q, we have

(λ∗i )−1/2 = 2m
∗
1,i/2 ≤

√
2
Å

n

log log(n)

ã η
νi(1+4η)

and (µ∗j )−1/2 = 2m
∗
2,j/2 ≤

√
2
Å

n

log log(n)

ã η
γj(1+4η)

.

Therefore, we obtain

(λ∗1 . . . λ∗pµ∗1 . . . µ∗q)−1/2 ≤ 2(p+q)/2
Å

n

log log(n)

ã 1
(1+4η)

. (C.61)

Let us now upper bound ωλ∗,µ∗ . We first write

ωλ∗,µ∗ = 2
p∑
i=1

log
Å
m∗1,i ×

π√
6

ã
+ 2

q∑
j=1

log
Å
m∗2,j ×

π√
6

ã
= 2 log

(
m∗1,1 . . .m

∗
1,pm

∗
2,1 . . .m

∗
2,q
)

+ 2(p+ q) log
Å
π√
6

ã
.

Moreover, it is easy to see that for n ≥ C(δ),

m∗1,i ≤
2η

νi(1 + 4η) log2(n) and m∗2,j ≤
2η

γj(1 + 4η) log2(n).
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Then, for n ≥ C(δ),
log(m∗1,1 . . .m∗1,pm∗2,1 . . .m∗2,q) ≤ C(δ) log log(n).

Thereafter, ωλ∗,µ∗ can be upper bound as

ωλ∗,µ∗ ≤ C(δ, p, q) log log(n). (C.62)

From Equations (C.61) and (C.62), we have

1
n
√
λ∗1 . . . λ

∗
pµ
∗
1 . . . µ

∗
q

Å
log
Å 1
α

ã
+ ωλ∗,µ∗

ã
≤ C(α, δ, p, q)

Å log log(n)
n

ã 4η
(1+4η)

. (C.63)

We aim now to upper bound
∑p
i=1(λ∗i )2νi+

∑q
j=1(µ∗j )2γj . By definition of the integersm∗1,1, . . . ,m∗1,p,

m∗2,1, . . . ,m
∗
2,q,

(λ∗i )2νi ≤
Å log log(n)

n

ã 4η
1+4η

and (µ∗j )2γj ≤
Å log log(n)

n

ã 4η
1+4η

.

Therefore, we obtain

p∑
i=1

(λ∗i )2νi +
q∑
j=1

(µ∗j )2γj ≤ (p+ q)
Å log log(n)

n

ã 4η
1+4η

. (C.64)

Consequently, from Equations (C.63) and (C.64),

ρ
Ä
∆α,N δ

2,p+q(R,R′), β
ä
≤ C(p, q, α, β, δ, R,R′)

Å log log(n)
n

ã 2η
1+4η

,

which ends the proof of Corollary 5

C.18 Proof of Lemma 5

Assume there exists a distribution f0 that satisfies (H0) such that the probability measure Pνρ∗ is
absolutely continuous w.r.t. Pf0 and verifies Equation (4.1).

Let us first lower bound β
[
Fρ∗(Cδ)

]
w.r.t. the distributions Pνρ∗ and Pf0 . We recall that

β
[
Fρ∗(Cδ)

]
= inf

∆α

sup
f∈Fρ∗ (Cδ)

Pf (∆α = 0) .

Using the assumption νρ∗(Fρ∗(Cδ)) ≥ 1− η, we obtain the following inequalities

Pνρ∗ (∆α = 0) =
∫
L2(Rp×Rq)

Pf (∆α = 0) dνρ∗(f)

≤
∫
Fρ∗ (Cδ)

Pf (∆α = 0) dνρ∗(f) + η

≤ sup
f∈Fρ∗ (Cδ)

Pf (∆α = 0) + η.

This leads to
sup

f∈Fρ∗ (Cδ)
Pf (∆α = 0) ≥ Pνρ∗ (∆α = 0)− η.
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Hence, we have

β
[
Fρ∗(Cδ)

]
≥ inf

∆α

Pνρ∗ (∆α = 0)− η

≥ 1− sup
∆α

Pνρ∗ (∆α = 1)− η

≥ 1− α− sup
∆α

∣∣Pνρ∗ (∆α = 1)− Pf0 (∆α = 1)
∣∣− η.

We denote by
∥∥Pνρ∗ − Pf0

∥∥
TV

the total variation distance between the distributions Pνρ∗ and Pf0 .
We recall that, ∥∥Pνρ∗ − Pf0

∥∥
TV

= sup
E∈E

∣∣Pνρ∗ (E)− Pf0(E)
∣∣ ,

where E is the space of measurable sets in Rn(p+q). We then obtain

β
[
Fρ∗(Cδ)

]
≥ 1− α− η −

∥∥Pνρ∗ − Pf0

∥∥
TV

.

Notice that, ∥∥Pνρ∗ − Pf0

∥∥
TV

= sup
E∈E

[
Pνρ∗ (E)− Pf0(E)

]
= sup

E∈E

[
Pf0(E)− Pνρ∗ (E)

]
.

It is then straightforward to show that∥∥Pνρ∗ − Pf0

∥∥
TV

= 1
2

∫
Rn(p+q)

∣∣Lνρ∗ − 1
∣∣ dPf0

= 1
2EPf0

[∣∣Lνρ∗ (Zn)− 1
∣∣]

≤ 1
2
Ä
EPf0

î
L2
νρ∗

(Zn)
ó
− 1
ä1/2

,

where the last inequality holds by applying Cauchy-Schwarz and the fact that EPf0

[
Lνρ∗ (Zn)

]
= 1.

Thus,
β
[
Fρ∗(Cδ)

]
≥ 1− α− η − 1

2
Ä
EPf0

î
L2
νρ∗

(Zn)
ó
− 1
ä1/2

.

If the condition (4.1) holds, we then obtain

β
[
Fρ∗(Cδ)

]
> β.

Furthermore, using that Fρ∗(Cδ) ⊂ Fρ(Cδ) for all ρ ≤ ρ∗, we have

β
[
Fρ(Cδ)

]
> β.

Let us now prove that this implies the lower bound

ρ (Cδ, α, β) = inf
∆α

ρ (∆α, Cδ, β) ≥ ρ∗. (C.65)

Assume β
[
Fρ∗(Cδ)

]
> β, then

∀∆α, sup
f∈Fρ∗ (Cδ)

Pf (∆α = 0) > β.

In particular, since the family {Fρ (Cδ)}ρ>0 is non increasing for the inclusion,

∀∆α, ρ (∆α, Cδ, β) = inf
®
ρ > 0 ; sup

f∈Fρ(Cδ)
Pf (∆α = 0) ≤ β

´
> ρ∗,

which directly implies (C.65).
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C.19 Proof of Lemma 6

Proof of 1 Assume that
C0 ≤ min{1, R′ − 1}ep+q. (C.66)

Let us first prove that fθ is a density function. First, it is obvious from Equation (4.3) that∫
Rp+q

fθ(x, y) dx dy = 1,

since 1[0,1]p+q is a probability density function and that
∫
R
G(x) dx = 0. It remains to check that

fθ is a non-negative function under Assumption (C.66).
Let j = (j1, . . . , jp) in {1, . . . ,Mn}p and l = (l1, . . . , lq) in {1, . . . ,Mn}q. Knowing that for all

1 ≤ r ≤ p and all 1 ≤ s ≤ q, the supports of the functions Ghn(· − jrhn) and Ghn(· − lshn) are
respectively the intervals

(
(jr − 1)hn, jrhn

]
and

(
(ls − 1)hn, lshn

]
, we deduce that the support of

the function
gn,j,l : (x, y) 7→

p∏
r=1

Ghn(xr − jrhn)
q∏
s=1

Ghn(ys − lshn) (C.67)

is the set
D(j,l) =

p∏
r=1

(
(jr − 1)hn, jrhn

]
×

q∏
s=1

(
(ls − 1)hn, lshn

]
. (C.68)

These supports are then disjoint for different multi-indexes (j, l) in In,p,q and have as union set
(0, 1]p+q (since Mnhn = 1). In particular, for all (x, y) in (0, 1]p+q,∣∣∣∣∣∣ ∑

(j,l)∈In,p,q

θ(j,l)

p∏
r=1

Ghn(xr − jrhn)
q∏
s=1

Ghn(ys − lshn)

∣∣∣∣∣∣ ≤ 1
hp+qn

Ç
sup

t∈[−1,0]
|G(t)|

åp+q
= 1

(ehn)p+q . (C.69)

Hence, if (x, y) belongs to [0, 1]p+q, then since hn ≤ 1,

fθ(x, y) ≥ 1− C0
hδn
ep+q

≥ 1− C0
ep+q

≥ 0,

by equation (C.66). Otherwise, if (x, y) /∈ [0, 1]p+q, then fθ(x, y) = 0. In particular, for all (x, y) in
Rp+q, fθ(x, y) ≥ 0.

Remains to prove that max{‖fθ‖∞ , ‖fθ,1‖∞ , ‖fθ,2‖∞} ≤ R′. On the one hand, since fθ,1 =
1[0,1]p and fθ,2 = 1[0,1]q , we directly obtain

‖fθ,1‖∞ = ‖fθ,2‖∞ = 1 ≤ R′.

On the other hand, by (C.69), for all (x, y) in Rp+q,

|fθ(x, y)| ≤ 1 + C0
hδn
ep+q

≤ 1 + C0
ep+q

.

Hence, assuming (C.66) directly leads to ‖fθ‖∞ ≤ R′, which ends the proof of this point.
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Proof of 2 Let us prove that, for all θ in {−1, 1}M
p+q
n , fθ satisfies

‖fθ − fθ,1 ⊗ fθ,2‖2 = C(p, q, δ, R,R′, η)hδn.

Since,
∫
RG(t)dt = 0, we know that fθ,1 = 1[0,1]p and fθ,2 = 1[0,1]q , thus fθ,1 ⊗ fθ,2 = 1[0,1]p+q and

fθ − fθ,1 ⊗ fθ,2 = C0h
δ+(p+q)
n

∑
(j,l)∈In,p,q

θ(j,l)gn,j,l(x, y),

where the functions gn,j,l are defined in (C.67), with disjoint supports.
In particular,

‖fθ − fθ,1 ⊗ fθ,2‖22 = C2
0h

2δ+2(p+q)
n

∑
(j,l)∈In,p,q

‖gn,j,l‖22 .

Moreover, for all (j, l) ∈ In,p,q,

‖gn,j,l‖22 =
∫
Rp+q

ñ p∏
r=1

G2
hn(xr − jrhn)

q∏
s=1

G2
hn(ys − lshn)

ô
dx1 . . . dxpdy1 . . . dyq

=
ñ p∏
r=1

Å∫
R
G2
hn(xr − jrhn)dxr

ãô
×
ñ q∏
s=1

Å∫
R
G2
hn(ys − lshn)dys

ãô
,

and for all k in {1, . . . ,Mn}, a simple change of variables implies that∫
R
G2
hn(t− khn)dt = 1

h2
n

∫
R
G2
Å
t− khn
hn

ã
dt = 1

hn

∫
R
G2(t)dt = ‖G‖22

hn
,

since G belongs to L2(R). We thus deduce that

‖gn,j,l‖22 = ‖G‖
2(p+q)
2

hp+qn

, (C.70)

and that, since the cardinality of In,p,q equals Mp+q
n , recalling that Mnhn = 1,

‖fθ − fθ,1 ⊗ fθ,2‖22 = C2
0 ‖G‖

2(p+q)
2 h2δ+2(p+q)

n × Mp+q
n

hp+qn

= C2
0 ‖G‖

2(p+q)
2 h2δ

n .

C.20 Proof of Lemma 7

Let us prove that there exists a positive constant C(p, q, δ, η) such that, if C2
0 ≤ (2π)p+qR2/[2C(p, q, δ, η)],

then the random function fΘ − fΘ,1 ⊗ fΘ,2 belongs to the Sobolev ball Sδp+q(R) with probability
greater that 1− η. This point relies on Lemma [Butucea, 2007, Lemma 2] recalled below.

Lemma 14 ([Butucea, 2007]). Let G be the function defined in Equation (4.2). Then G is an
infinitely differentiable function such that

∫
R
G(x) dx = 0. Its Fourier transform verifies∣∣∣“G(u)

∣∣∣ ≤ C exp
(
−a
»
|u|
)

as |u| → ∞,

for some positive constants C and a. Moreover, “G is an infinitely differentiable and bounded
function.
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According to the Fourier transform properties, we write, for all θ in {−1, 1}M
p+q
n ,

f̂θ(u, v) = f̂θ,1⊗f̂θ,2(u, v)+C0h
δ+(p+q)
n

∑
(j,l)∈In,p,q

θj,l

p∏
r=1

exp(iurjrhn)“G(hnur)
q∏
s=1

exp(ivslshn)“G(hnvs).

Then, ∣∣∣f̂θ(u, v)− f̂θ,1 ⊗ f̂θ,2(u, v)
∣∣∣2 = H1,n(u, v) +H2,n(u, v, θ), (C.71)

where the functions H1,n and H2,n are respectively defined by

H1,n(u, v) = C2
0M

p+q
n h2δ+2(p+q)

n

Ç p∏
r=1

∣∣∣“G(hnur)
∣∣∣2åÇ q∏

s=1

∣∣∣“G(hnvs)
∣∣∣2å , (C.72)

H2,n(u, v, θ) = C2
0h

2δ+2(p+q)
n

∑
(j1,l1)∈In,p,q
(j2,l2)∈In,p,q
(j1,l1)6=(j2,l2)

θj1,l1θj2,l2Gj1,l1,j2,l2(hnu, hnv), . (C.73)

and, the function Gj1,l1,j2,l2 is defined for all indexes jk = (jk,1, . . . , jk,p) and lk = (lk,1, . . . , lk,q),
k = 1, 2, as

Gj1,l1,j2,l2 : (u, v) 7→
Ç p∏
r=1

exp (iur(j1,r − j2,r))
∣∣∣“G(ur)

∣∣∣2åÇ q∏
s=1

exp (ivs(l1,s − l2,s))
∣∣∣“G(vs)

∣∣∣2å .
(C.74)

By now, our aim is to prove that

P
Å∫

Rp+q
‖(u, v)‖2δ

∣∣∣f̂Θ(u, v)− f̂Θ,1 ⊗ f̂Θ,2(u, v)
∣∣∣2 dudv ≤ (2π)p+qR2

ã
≥ 1− η.

First, by Equation (C.56), we have

‖(u, v)‖2δ ≤ C(p, q, δ)
[

p∑
i=1
|ui|2δ +

q∑
j=1
|vj |2δ

]
. (C.75)

We then obtain from Equations (C.72) and (C.75) the following result,∫
Rp+q
‖(u, v)‖2δH1,n(u, v) dudv

≤ C(p, q, δ)C2
0M

p+q
n h2δ+2(p+q)

n

Å∫
R
|t|2δ

∣∣∣“G(hnt)
∣∣∣2 dt

ãÅ∫
R

∣∣∣“G(hnz)
∣∣∣2 dz

ãp+q−1

= C(p, q, δ)C2
0 (Mnhn)p+q

Å∫
R
|t|2δ

∣∣∣“G(t)
∣∣∣2 dt

ãÅ∫
R

∣∣∣“G(z)
∣∣∣2 dz

ãp+q−1
.

The functions t 7→ |t|2δ
∣∣∣“G(t)

∣∣∣2 and z 7→
∣∣∣“G(z)

∣∣∣2 being integrable according to Lemma 14, we have∫
Rp+q
‖(u, v)‖2δH1,n(u, v) dudv ≤ C(p, q, δ)C2

0 (Mnhn)p+q

≤ (2π)p+qR2/2 (C.76)
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provided that C(p, q, δ)C2
0 ≤ (2π)p+qR2/2.

To complete the proof, let us now consider the random part. Starting from the expression of
H2,n in (C.73), we write∫
Rp+q
‖(u, v)‖2δH2,n(u, v,Θ) dudv = C2

0h
p+q
n

∑
(j1,l1)∈In,p,q
(j2,l2)∈In,p,q
(j1,l1)6=(j2,l2)

Θj1,l1Θj2,l2

∫
Rp+q
‖(u, v)‖2δ Gj1,l1,j2,l2(u, v) dudv.

Noting that Gj2,l2,j1,l1 = Gj1,l1,j2,l2 , we get∑
(j1,l1)∈In,p,q
(j2,l2)∈In,p,q
(j1,l1)6=(j2,l2)

Θj1,l1Θj2,l2Gj1,l1,j2,l2(u, v) =
∑

(j1,l1)≺(j2,l2)∈In,p,q

Θj1,l1Θj2,l2

(
Gj1,l1,j2,l2(u, v) + Gj1,l1,j2,l2

)

where (j1, l1) ≺ (j2, l2) means that (j1, l1) is strictly smaller that (j2, l2) in the lexicographic order.
In the following, we prove that there exists some positive constant C(p, q, δ, η) such that, with
probability greater that 1− η, we have∑
(j1,l1)≺(j2,l2)∈In,p,q

Θj1,l1Θj2,l2

∫
Rp+q
‖(u, v)‖2δ

(
Gj1,l1,j2,l2(u, v) + Gj1,l1,j2,l2

)
dudv ≤ C(p, q, δ, η)Mp+q

n .

(C.77)
Since Mnhn = 1, this implies that

P
Å∫

Rp+q
‖(u, v)‖2δH2,n(u, v,Θ) dudv ≤ (2π)p+qR2/2

ã
≥ 1− η,

choosing C0 such that C(p, q, δ, η)C2
0 ≤ (2π)p+qR2/2, and concludes the proof.

In order to show that (C.77) holds with probability greater that 1 − η, we use Hoeffding’s
inequality. For the sake of completeness, let us first recall this inequality.

Lemma 15. [Hoeffding, 1963] Let Z1, . . . , Zn be independent real random variables such that for
all i, a ≤ Zi ≤ b. Then we have, for all x > 0,

P(|Z1 + . . .+ Zn| ≥ x) ≤ 2 exp
Å
− 2x2

n(b− a)2

ã
.

We apply Hoeffding’s inequality to the variables (Zj1,l1,j2,l2)(j1,l1)∈In,p,q ,(j2,l2)∈In,p,q ,(j1,l1)≺(j2,l2),
where

Zj1,l1,j2,l2 = Θj1,l1Θj2,l2

∫
Rp+q
‖(u, v)‖2δ

(
Gj1,l1,j2,l2(u, v) + Gj1,l1,j2,l2(u, v)

)
dudv.

One easily verifies that the variables (Zj1,l1,j2,l2)(j1,l1)∈In,p,q ,(j2,l2)∈In,p,q ,(j1,l1)≺(j2,l2) are independent.
Furthermore,

|Zj1,l1,j2,l2 | ≤ 2
∫
Rp+q
‖(u, v)‖2δ

p∏
r=1
|“G(ur)|2

q∏
s=1
|“G(vs)|2 ≤ C(p, q, δ)
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by Lemma 14. Hence, we obtain from Hoeffding’s inequality that for all x > 0,

P

â∣∣∣∣∣∣∣∣∣∣∣
∑

(j1,l1)∈In,p,q
(j2,l2)∈In,p,q
(j1,l1)6=(j2,l2)

Zj1,l1,j2,l2

∣∣∣∣∣∣∣∣∣∣∣
≥ x

ì
≤ 2 exp

Ç
− x2

2C2(p, q, δ)M2p+2q
n

å
.

We deduce from the above inequality that

P

â∣∣∣∣∣∣∣∣∣∣∣
∑

(j1,l1)∈In,p,q
(j2,l2)∈In,p,q
(j1,l1)6=(j2,l2)

Zj1,l1,j2,l2

∣∣∣∣∣∣∣∣∣∣∣
≥ C(p, q, δ, η)Mp+q

n

ì
≤ η,

which yields (C.77) and concludes the proof.

C.21 Proof of Proposition 5

Let Zn = (Xi, Yi)1≤i≤n be an i.i.d sample with common uniform distribution Pf0 on [0, 1]p+q.
For simplicity, denote for all 1 ≤ i ≤ n and all (j, l) in In,p,q,

ai,j,l = C0h
δ+(p+q)
n gn,j,l(Xi, Yi) = C0h

δ+(p+q)
n

p∏
r=1

Ghn(X(r)
i − jrhn)

q∏
s=1

Ghn(Y (s)
i − lshn),

where gn,j,l is defined in Equation (C.67), such that fθ(Xi, Yi) = 1+
∑

(j,l)∈In,p,q θ(j,l)ai,j,l. Note that
ai,j,l 6= 0 if and only if (Xi, Yi) belongs to the set D(j,l) defined in Equation (C.68).

Then, since f0 = 1[0,1]p+q , the likelihood ratio equals

Lνρ∗n
(Zn) =

dPνρ∗n
dPf0

(Zn) =
∫ n∏

i=1

fθ
f0

(Xi, Yi)π(dθ)

= EΘ

 n∏
i=1

Ñ
1 +

∑
(j,l)∈In,p,q

Θ(j,l)ai,j,l

é ,
where Θ = (Θ(j,l))(j,l)∈In,p,q has i.i.d. Rademacher components Θ(j,l), and EΘ[·] denotes the expec-
tation w.r.t. Θ.

Noticing that for all 1 ≤ i ≤ n, there exists a unique (j, l) in In,p,q such that ai,j,l 6= 0, we obtain

1 +
∑

(j,l)∈In,p,q

Θ(j,l)ai,j,l =
∏

(j,l)∈In,p,q

(
1 + Θ(j,l)ai,j,l

)
.
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Thus,

Lνρ∗n
(Zn) = EΘ

 ∏
(j,l)∈In,p,q

n∏
i=1

(
1 + Θ(j,l)ai,j,l

)
=

∏
(j,l)∈In,p,q

ñ
1
2

n∏
i=1

(1− ai,j,l) + 1
2

n∏
i=1

(1 + ai,j,l)
ô
.

Moreover, for ε in {−1, 1},

n∏
i=1

(1 + εai,j,l) = 1 +
n∑
k=1

εk

( ∑
1≤i1<...<ik≤n

ai1,j,l . . . aik,j,l

)
.

Hence, by cancelling the odd terms, we obtain

1
2

n∏
i=1

(1− ai,j,l) + 1
2

n∏
i=1

(1 + ai,j,l) = 1 +
[n/2]∑
k=1

∑
1≤i1<...<i2k≤n

ai1,j,l . . . ai2k,j,l

= 1 +
[n/2]∑
k=1

Ak,j,l,

where [·] denotes the integer part, and

Ak,j,l =
∑

1≤i1<...<i2k≤n
ai1,j,l . . . ai2k,j,l. (C.78)

Thus, î
Lνρ∗n

(Zn)
ó2

=
∏

(j,l)∈In,p,q

(
1 +

[n/2]∑
k=1

Ak,j,l

)2

=
∏

(j,l)∈In,p,q

(1 +Bj,l) ,

where

Bj,l = 2
[n/2]∑
k=1

Ak,j,l +
[n/2]∑
k,k′=1

Ak,j,lAk′,j,l. (C.79)

Then, î
Lνρ∗n

(Zn)
ó2

= 1 +
Mp+q
n∑

m=1

1
m!

6=∑
(j1,l1),...,(jm,lm)

Bj1,l1 . . . Bjm,lm , (C.80)

where
6=∑

means that the indexes are all distinct.
After tedious computations, up to a possible permutation of the indexes (j1, l1), . . . , (jm, lm),

we can express the product Bj1,l1 . . . Bjm,lm as a sum of terms of the form

2P
[n/2]∑
k1=1

[n/2]∑
k′′2 ,...,k

′′
M=1

2Ak1,j1,l1 ×Ak′′2 ,j′2,l′2 × . . .×Ak′′M ,j′M ,l′M (C.81)
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or

2Q
[n/2]∑

k1,k′1=1

[n/2]∑
k′′2 ,...,k

′′
M=1

Ak1,j1,l1Ak′1,j1,l1 ×Ak′′2 ,j′2,l′2 × . . .×Ak′′M ,j′M ,l′M (C.82)

where P and Q are integers, M ∈ {m − 1, . . . , 2m − 2} and (j′2, l′2), . . . , (j′M , l′M ) are drawn in
(j2, l2), . . . , (jm, lm) such that each (jr, lr) for 2 ≤ r ≤ m appears exactly once or twice. To be more
precise, P and Q count the number of indexes (jr, lr)r, appearing exactly once in the product.

First note that in Equation (C.81), the index (j1, l1) appears only once. Moreover

Ef0

î
Ak1,j1,l1 ×Ak′′2 ,j′2,l′2 × . . .×Ak′′M ,j′M ,l′M

ó
=

∑
i1,1<...<i1,2k1

∑
i2,1<...<i2,2k′′2

. . .
∑

iM,1<...<iM,2k′′
M

Ef0

[
ai1,1,j1,l1 × . . .× ai1,2k1 ,j1,l1

×

× ai2,1,j′2,l′2 × . . .× ai2,2k′′2 ,j
′
2,l
′
2
× . . .× aiM,1,j′M ,l′M × . . .× aiM,2k′′

M
,j′M ,l

′
M

]
If i1,1 appears at least twice in the sums, that is there exists 2 ≤ r ≤M and 1 ≤ s ≤ 2k′′r such that
i1,1 = ir,s, then, ai1,1,j1,l1ai1,1,jr,lr = 0 since Dj1,l1 ∩Djr,lr = ∅. Otherwise, if i1,1 appears only once,
by independence between the (Xi, Yi)i, we obtain that

Ef0

ï
ai1,1,j1,l1 × . . .× ai1,2k1 ,j1,l1

× ai2,1,j′2,l′2 × . . .× aiM,2k′′
M
,j′M ,l

′
M

ò
= Ef0

[
ai1,1,j1,l1

]
× Ef0

ï
ai1,2,j1,l1 . . .× ai1,2k1 ,j1,l1

× ai2,1,j′2,l′2 × . . .× aiM,2k′′
M
,j′M ,l

′
M

ò
= 0

Hence,
Ef0 [Ak1,j1,l1 ×Ak′′2 ,j′2,l′2 × . . .×Ak′′M ,j′M ,l′M ] = 0.

and thus, all the terms of the form (C.81) have a null expectation.
Let us now consider Equation (C.82) (where the index (j1, l1) appears twice).

Ef0 [Ak1,j1,l1 ×Ak′1,j1,l1 ×Ak′′2 ,j′2,l′2 × . . .×Ak′′M ,j′M ,l′M ] =∑
i1,1<...<i1,2k1

∑
i′1,1<...<i

′
1,2k′1

∑
i2,1<...<i2,2k′′2

. . .
∑

iM,1<...<iM,2k′′
M

Ef0

[
ai1,1,j1,l1 × . . .× ai1,2k1 ,j1,l1

× ai′1,1,j1,l1×

× . . .× ai′
1,2k′1

,j1,l1 × ai2,1,j′2,l′2 × . . .× ai2,2k′′2 ,j
′
2,l
′
2
× . . .× aiM,1,j′M ,l′M × . . .× aiM,2k′′

M
,j′M ,l

′
M

]
If there exists at least one index i1,· or i′1,· that can be isolated, then by independence,

Ef0

[
ai1,1,j1,l1 × . . .× ai1,2k1 ,j1,l1

× ai′1,1,j1,l1 × . . .× ai′1,2k′1
,j1,l1×

× ai2,1,j′2,l′2 × . . .× ai2,2k′′2 ,j
′
2,l
′
2
× . . .× aiM,1,j′M ,l′M × . . .× aiM,2k′′

M
,j′M ,l

′
M

]
= 0.

Hence, the remaining terms are obtained for k1 = k′1 and i1,s = i′1,s for all 1 ≤ s ≤ 2k1. These
arguments are being valid for any index (jr, lr), we obtain that Q = 0 and
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Ef0

[
Bj1,l1 . . . Bjm,lm

]
=

[n/2]∑
k1,...,km=1

∑
i1,1<...<i1,2k1

. . .
∑

im,1<...<im,2km

Ef0

[
a2
i1,1,j1,l1 × . . .× a

2
i1,2k1 ,j1,l1

× . . .×

× a2
im,1,jm,lm × . . .× a

2
im,2km ,jm,lm

]

=
[n/2]∑

k1,...,km=1

∑
I1,...,Im⊂{1,...n}

Card(Ir)=2kr

Ef0

[ ∏
i1∈I1

a2
i1,j1,l1 × . . .×

∏
im∈Im

a2
im,jm,lm

]
.

If the subsets Ir are not pairwise disjoints, the product
∏
i1∈I1 a

2
i1,j1,l1

×. . .×
∏
im∈Im a

2
im,jm,lm

= 0,
since the supports D(jr,lr) are disjoint.

Thus,

Ef0 [Bj1,l1 . . . Bjm,lm ] =
[n/2]∑

k1,...,km=1

∑
I1,...,Im⊂{1,...n}
Ir∩Is=∅,∀r 6=s
Card(Ir)=2kr

Ef0

[ ∏
i1∈I1

a2
i1,j1,l1 × . . .×

∏
im∈Im

a2
im,jm,lm

]

=
[n/2]∑

k1,...,km=1

∑
I1,...,Im⊂{1,...n}
Ir∩Is=∅,∀r 6=s
Card(Ir)=2kr

∏
i1∈I1

Ef0

[
a2
i1,j1,l1

]
× . . .×

∏
im∈Im

Ef0

[
a2
im,jm,lm

]
,

by independence of the (Xi, Yi)1≤i≤n.
Besides, for all 1 ≤ i ≤ n,

Ef0

[
a2
i,j,l

]
= C2

0h
2δ+2p+2q
n ‖gn,j,l‖22 = C(p, q, δ, R,R′, η)h2δ+p+q

n ,

since C0 depends on p, q, δ, R,R′ and η, and by Equation (C.70). Thus,

Ef0 [Bj1,l1 . . . Bjm,lm ] =
[n/2]∑

k1,...,km=1

∑
I1,...,Im⊂{1,...n}
Ir∩Is=∅,∀r 6=s
Card(Ir)=2kr

Ä
C(p, q, δ, R,R′, η)h2δ+p+q

n

ä2k1+...+2km

=
[n/2]∑

k1,...,km=1

Ç
n

2k1, . . . , 2km, n−
∑m
r=1 2kr

åÄ
C(p, q, δ, R,R′, η)h2δ+p+q

n

ä2k1+...+2km
.

Moreover, the multinomial coefficient can be upper bounded as followsÇ
n

2k1, . . . , 2km, n−
∑m
r=1 2kr

å
≤ n2k1+...+2km .
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Hence,

Ef0 [Bj1,l1 . . . Bjm,lm ] ≤
[n/2]∑
k1=1

. . .

[n/2]∑
km=1

Ä
C(p, q, δ, R,R′, η)n× h2δ+p+q

n

ä2k1+...+2km

=
[[n/2]∑
k=1

Ä
C(p, q, δ, R,R′, η)n× h2δ+p+q

n

ä2k
]m

.

Furthermore, for hn defined in (4.5) we have

hn ≤ C(p, q, α, β, δ, R,R′, η)n−2/(4δ+p+q),

and thus, whatever the constant C(p, q, α, β, δ, R,R′, η) is,

C(p, q, δ, R,R′, η) n× h2δ+p+q
n ≤ C ′(p, q, α, β, δ, R,R′, η)n−(p+q)/(4δ+p+q) < 1/2

for n large enough. Thus, by property of geometric series, we get

[n/2]∑
k=1

{î
C(p, q, δ, R,R′, η) n× h2δ+p+q

n

ó2}k
≤

[
C(p, q, δ, R,R′, η) n× h2δ+p+q

n

]2
1−

î
C(p, q, δ, R,R′, η) n× h2δ+p+q

n

ó2
≤ 4

3
î
C(p, q, δ, R,R′, η) n× h2δ+p+q

n

ó2
.

We recall that the constants C(·) may vary from line to line. This being true for all (j, l) in In,p,q,
from Equation (C.80), we deduce that

Ef0

[¶
Lνρ∗n

(Zn)
©2]
≤ 1 +

Mp+q
n∑

m=1

Ç
Mp+q
n

m

åî
C(p, q, δ, R,R′, η) n× h2δ+p+q

n

ó2m
≤ 1 +

Mp+q
n∑

m=1

{
Mp+q
n

î
C(p, q, δ, R,R′, η) n× h2δ+p+q

n

ó2}m
≤ 1 +

Mp+q
n∑

m=1

î
C(p, q, δ, R,R′, η) n2 × h4δ+p+q

n

óm
,

since
(Mp+q

n
m

)
≤
[
Mp+q
n

]m and Mnhn = 1.

Finally, for hn defined in (4.5), with

C(p, q, α, β, δ, R,R′, η) =
Å 1
C(p, q, δ, R,R′, η) ×

4(1− α− β − η)2

1 + 4(1− α− β − η)2

ã1/(4δ+p+q)
,

we directly obtain that

C(p, q, δ, R,R′, η) n2 × h4δ+p+q
n ≤ 4(1− α− β − η)2

1 + 4(1− α− β − η)2 < 1.
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Hence, by property of the geometric series we obtain,

Ef0

[Ä
Lνρ∗n

(Zn)
ä2]

< 1 +
[
C(p, q, δ, R,R′, η) n2 × h4δ+p+q

n

]
1−

î
C(p, q, δ, R,R′, η) n2 × h4δ+p+q

n

ó
< 1 + 4(1− α− β − η)2,

which ends the proof of Proposition 5.
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