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Abstract

Dependence measures based on reproducing kernel Hilbert spaces, also known as Hilbert-Schmidt Inde-
pendence Criterion and denoted HSIC, are widely used to statistically decide whether or not two random
vectors are dependent. Recently, non-parametric HSIC-based statistical tests of independence have been
performed. However, these tests lead to the question of prior choice of the kernels associated to HSIC,
there is as yet no method to objectively select specific kernels. In order to avoid a particular kernel
choice, we propose a new HSIC-based aggregated procedure allowing to take into account several Gaus-
sian kernels. To achieve this, we first propose non-asymptotic single tests of level α ∈ (0, 1) and second
type error controlled by β ∈ (0, 1). We also provide a sharp upper bound of the uniform seperation rate
of the proposed tests. Thereafter, we introduce a multiple testing procedure in the case of Gaussian
kernels, considering a set of various parameters. These agregated tests are shown to be of level α and to
overperform single tests in terms of uniform separation rates.

1 Introduction

In this paper, we study the problem of testing the independence of two random vectorsX = (X(1), . . . , X(p))
∈ Rp and Y = (Y (1), . . . , Y (q)) ∈ Rq. Let us first introduce some notations and assumptions. The couple
(X,Y ) is assumed to have a joint density f w.r.t. Lebesgue measure on Rp+q. The probability measure
associated to this density is denoted Pf . The marginal densities of X and Y are respectively denoted f1

and f2. We also denote by f1 ⊗ f2, the product of the marginal densities f1 and f2, defined as follows:

f1 ⊗ f2 : (x, y) ∈ R
p × R

q 7→ f1(x)f2(y).

By analogy with the notation Pf , the notation Pf1⊗f2 designates the probability measure associated to
f1 ⊗ f2. The density f is assumed to be unknown as well as the marginales f1 and f2. We also assume
that we have a n-sample (X1, Y1), . . . , (Xn, Yn) of i.i.d random variables with common density f . We
address here the question of testing the null hypothesis (H0): “X and Y are independent” against the
alternative (H1): “X and Y are dependent”. That is equivalent to test

(H0): “f = f1 ⊗ f2” against (H1): “f 6= f1 ⊗ f2”.

Throughout this document, the densities f , f1 and f2 are assumed to be bounded and Mf denotes the
maximum of their infinity norms: Mf = max{‖f‖∞, ‖f1‖∞, ‖f2‖∞}.

Non parametric tests of independence. To test independence between X and Y , many ap-
proaches have been explored in the last few decades. Among them, [Hoeffding, 1948] proposes an inde-
pendence test based on the difference between the distribution function of (X,Y ) and the product of
the marginal distribution functions. This test has good properties in the asymptotic framework: con-
sistent and distribution-free under the null hypothesis. But, it is only designated to univariate random
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variables (p = q = 1). Moreover, the statistic of this test is not practical to estimate. The authors of
[Bergsma et al., 2014] propose an improvement of Hoeffding’s test, which is also applicable to discrete
random variables. Besides, the statistic associated to this test is easier to estimate than Hoeffding’s one.
Lately, [Weihs et al., 2018] propose to extend Hoeffding’s test to the case of multivariate random vari-
ables. The estimation of the associated statistic requires a prior partition of the sample (Xi, Yi)1≤i≤n

space. Still, the chosen partition highly impacts the quality of the test, and there is no theoretical
method to objectively choose this partition. Another classical method for testing independence be-
tween X and Y is based on comparing the join density f and the product of the marginales f1 ⊗ f2

[Ahmad and Li, 1997, Rosenblatt and Wahlen, 1992]. For this, an intermediate step is to estimate these
densities using the kernel-based method of Parzen-Rosenblatt [Parzen, 1962]. The major drawback of this
method is that the convergence is slow for high dimensions i.e. when p+ q is large (this fact is also called
the curse of dimensionality, see e.g. [Scott, 2012]). This approach is therefore not feasible in the case of
high dimensions with limited sample size. More recently, many approaches based on Reproducing Kernel
Hilbert Spaces (RKHS, see [Aronszajn, 1950] for more details) have been developed. In particular, sev-
eral RKHS-based dependence measures have been proposed. These measures have all the characteristic
(under certain conditions on kernels) to be zero if and only if X and Y are independent. We mention the
Kernel Canonical Correlation (KCC), first introduced in [Bach and Jordan, 2002]. It has been shown that
this measure characterizes independence in the case of Gaussian kernels (see [Bach and Jordan, 2002]
for more details). Unfortunately, the estimation of KCC requires an extra regularisation which is not
practical. Other dependence measures, easier to estimate and characterizing independence for a largest
class of RKHS kernels: universal kernels [Micchelli et al., 2006] have been proposed later. For instance,
the Kernel Mutual Information (KMI) [Gretton et al., 2003, Gretton et al., 2005b] and the Constrained
covariance (COCO) [Gretton et al., 2005c, Gretton et al., 2005b], which are relatively easy to interpret
and implement, have been widely used. Last but not least, one of the most interesting kernel depen-
dence measure is the Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al., 2005a]. The HSIC
is very easy to compute and overperforms both analytically and numerically all previous kernel-based
dependence measures [Gretton et al., 2005a]. Furthermore, beyond the good quality of a given depen-
dence measure, a straightforward interpretation of its estimated value, may not be enough to discern the
dependence from the independence. To further study the independence between X and Y , independence
tests based on these measures can be used. The first RKHS-based statistical test for independence is
proposed by [Gretton et al., 2008]. This statistical test was proposed in an asymptotic framework for
HSIC measures using the distributions of HSIC estimators under (H0) and under (H1). These tests
remain by far the most commonly used kernel-based tests for independence. A generalisation of this test
for the joint and mutual independence of several random variables is presented in [Pfister et al., 2018].
We also mention the RKHS-based test [Póczos et al., 2012], inspired from [Gretton et al., 2008]. This
test is based on a new dependence measure called Copula-based kernel dependency measure. Yet, this
measure seems more difficult to estimate than the HSIC. Lately, the distance covariance which is based
on the difference between the characteristic function of (X,Y ) and the product of the marginal char-
acteristic functions has been introduced in [Székely et al., 2007]. The distance covariance has good
properties and has been used to study the independence between random variables of high dimensions
[Székely and Rizzo, 2013, Yao et al., 2018]. Furthermore, it is has been shown that the distance covari-
ance is not truly a new dependence measure. Indeed, this measure is none other than HSIC with specific
choice of the kernels. We also mention the statistical test of independence based on the kernel mutual in-
formation recently proposed by [Berrett and Samworth, 2017]. This new statistical test seems to achieve
comparable results with the classical tests based on HSIC. Still, the implementation of this test is more
difficult and time-consuming. For all these reasons, we focus in this paper on HSIC measures to test
independence between X and Y .

Review on HSIC measures. The definition of the HSIC is derived from the notion of cross-
covariance operator [Fukumizu et al., 2004], which can be seen as a generalisation of the classical co-
variance, measuring many forms of dependence between X and Y (not only linear ones). For this,
[Gretton et al., 2005a] associate to X a RKHS F composed of fonctions mapping from Rp to R (F
is a set of transformations for X), and characterized a scalar product 〈., .〉F . The same operation is
carried out for Y , considering a RKHS denoted G and a scalar product 〈., .〉G . The cross-covariance
operator CX,Y associated to RKHS F and G is the operator mapping from G to F and verifying for all
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(F,G) ∈ F × G,
〈F,CX,Y (G)〉F = Cov (F (X), G(Y )) .

Designating by (ui)i and (vj)j respectively orthonormal bases of F and G, the HSIC between X and Y
is the square of the operator’s CX,Y Hilbert-Schmidt norm [Gretton et al., 2005a] defined as

HSIC(X,Y ) = ‖CX,Y ‖2
HS =

∑

i,j

〈ui, CX,Y (vj)〉2
F =

∑

i,j

Cov (ui(X), vj(Y ))
2
.

The fundamental idea behind this definition is that HSIC(X,Y ) is zero if and only if Cov (F (X), G(Y )) =
0 for all (F,G) ∈ F × G. Furthermore, we already know (see e.g. [Jacod and Protter, 2012]) that X and
Y are independent if and only if Cov (F (X), G(Y )) = 0 for all bounded and continuous functions F and
G. It follows that, for well chosen RKHS, the nullity of the HSIC characterizes independence. Before
giving such a condition, we recall that [Gretton et al., 2005a] expressed HSIC(X,Y ) in a very convenient
form, using kernels k and l respectively associated to F and G,

HSIC(X,Y ) = E [k(X,X ′)l(Y, Y ′)] + E [k (X,X ′)]E [l (Y, Y ′)]

− 2E [E [k (X,X ′) | X ]E [l (Y, Y ′) | Y ]] , (1)

where (X ′, Y ′) is an independent and identically distributed copy of (X,Y ). Note that HSIC(X,Y ) only
depends on the density f of (X,Y ). We thus denote it HSIC(f) in the following.

Authors of [Gretton et al., 2005a] showed that a sufficient condition so that the nullity of the associ-
ated HSIC is characteristic of independence is that the RKHS F (resp. G) induced by k and (resp. l)
is dense in the space of bounded and continuous functions mapping from Rp (resp. Rq) to R. These
kernels are called universal [Micchelli et al., 2006]. Among this class of kernels, the most commonly used
are Gaussian kernels [Steinwart, 2001]. We consider in the rest of this paper Gaussian kernels. Let us
introduce some notations. We denote by gs the density of the standard Gaussian distribution on Rs

defined for all x ∈ Rs by

gs(x) =
1

(2π)s/2
exp

(
−1

2

s∑

i=1

x2
i

)
. (2)

For any bandwiths λ = (λ1, ..., λp) ∈ (0,+∞)p and µ = (µ1, ..., µq) ∈ (0,+∞)q, we define for any x ∈ Rp

and y ∈ Rq,

ϕλ(x) =
1

λ1 . . . λp
gp

(
x1

λ1
, . . . ,

xp

λp

)
, (3)

φµ(y) =
1

µ1 . . . µq
gq

(
y1

µ1
, . . . ,

yq

µq

)
. (4)

Finally, we define the Gaussian kernels, for x, x′ ∈ Rp and y, y′ ∈ Rq,

kλ(x, x′) = ϕλ(x− x′), lµ(y, y′) = φµ(y − y′).

We denote by HSICλ,µ (f) the HSIC measure defined in (1), where the kernels k and l are respectively
the Gaussian kernels kλ and lµ.

In practice, the computation of HSICλ,µ (f) is not feasible, since it depends on the unknown density f .
Given an i.i.d n-sample (Xi, Yi)1≤i≤n with common density f , HSICλ,µ (f) can be estimated by estimating
each expectation of Equation (1). For this, we introduce the following U -statistics, respectively with order
2, 3 and 4,

ĤSIC
(2)

λ,µ =
1

n(n− 1)

∑

(i,j)∈i
n
2

kλ (Xi, Xj) lµ (Yi, Yj) ,

ĤSIC
(3)

λ,µ =
1

n(n− 1)(n− 2)

∑

(i,j,r)∈i
n
3

kλ (Xi, Xj) lµ (Yj , Yr) ,
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and

ĤSIC
(4)

λ,µ =
1

n(n− 1)(n− 2)(n− 3)

∑

(i,j,q,r)∈i
n
4

kλ (Xi, Xj) lµ (Yq, Yr) ,

where in
r is the set of all r-tuples drawn without replacement from the set {1, ..., n}. We estimate

HSICλ,µ (f) by the U -statistic

ĤSICλ,µ = ĤSIC
(2)

λ,µ + ĤSIC
(4)

λ,µ − 2ĤSIC
(3)

λ,µ. (5)

Such estimators of the HSIC have been used to construct independence tests. A first asymptotic
test of level α ∈ (0, 1) has been proposed by [Gretton et al., 2008]. For this, the authors show that
under (H0), the asymptotic distribution of the HSIC estimator can be approximated by a Gamma
distribution with parameters which are easy to estimate. Furthermore, [Gretton and Györfi, 2010] also
show the asymptotic consistency of the test (the convergence to one of the power under any reasonable
alternative). However, there are two main disadvantages of this testing procedure. Firstly, it is purely
asymptotic in the sense that the critical value of the test is obtained from an approximation of the
asymptotic distribution under (H0). In particular, the first kind error is controlled only in the asymptotic
framework. Secondly, only an heuristic choice of the bandwidths λ and µ is proposed with no theoretical
guarantees. In order to avoid such an arbitrary choice, we consider aggregated procedures which may
lead to adaptive tests.

Towards adaptivity. To avoid the unjustified choice of the bandwidths λ and µ, a first step is
to define a criterion allowing to compare the performances of the HSIC-tests associated to different
bandwidths. For this, we consider the uniform separation rate as defined in [Baraud et al., 2003]. For
any level-α test ∆α with values in {0, 1}, rejecting independence when ∆α = 1, the uniform separation
rate ρ (∆α, Cδ, β) of the test ∆α, over a class Cδ of alternatives f such that f−f1 ⊗f2 satisfies smoothness
assumptions, with respect to the L2-norm, is defined for all β in (0, 1) by

ρ (∆α, Cδ, β) = inf

{
ρ > 0, sup

f∈Fρ(Cδ)

Pf (∆α = 0) ≤ β

}
, (6)

where Fρ(Cδ) = {f, f − f1 ⊗ f2 ∈ Cδ, ‖f − f1 ⊗ f2‖L2 > ρ}.

The uniform separation rate is then the smallest value in the sense of the L2-norm of f − f1 ⊗ f1

(the difference between the joint density and the product of marginales) allowing to control the 2nd-kind
error of the test by β. This definition is naturally the non-asymptotic version of the critical radius defined
and studied for several examples in a serie of Ingster papers (see e.g. [Ingster, 1993a, Ingster, 1996]).
A test of level α having the optimal performances, should then have the smallest possible uniform sep-
aration rate (up to a multiplicative constant) over Cδ. These tests are generally called optimal in the
minimax sense. The problem of non-asymptotic minimax rate of testing was raised in many papers over
the past years. Among them, we mention for example [Ingster and Suslina, 1998, Laurent et al., 2012]
for minimax detection of signals and [Donoho et al., 1996, Kerkyacharian and Picard, 1993] for mini-
max density estimation. However, only few works exist already for the problem of minimax indepen-
dence testing. The notable works are those of Ingster [Ingster, 1989, Ingster, 1993b] and those of Yodé
[Yodé, 2004, Yodé, 2011]. Still, these works are provided in the asymptotic framework. As far as we know,
no minimax rate of testing independence was yet proved in the non-asymptotic framework. Furthermore,
beyond the problem of minimax rate, the straightforward practical construction of a minimax test is im-
possible. Indeed, this construction depends on the unknown smoothness parameters defining the space
Cδ. The objective is then to construct a minimax test which does not need any smoothness property to
be implemented. These tests are called minimax adaptive (or assumption free). It has been shown that a
standard logarithmic price is sometimes inevitable for adaptivity [Spokoiny et al., 1996]. The problem of
adaptivity has received a good attention in the literature. We mention for instance [Baraud et al., 2003]
for testing a linear regression model with normal noise and [Butucea and Tribouley, 2006] for testing the
equality of two samples densities. For the specific case of testing independence, the adaptive testing pro-
cedure proposed in [Yodé, 2011] seems to be the only currently existing. As mentioned above this test is
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purely asymptotic, but we are interested here in the non-asymptotic framework. Recently, an interesting
approach of testing proposed in [Fromont et al., 2013], consists on testing the equality of intensities of
two poisson processes by aggregating several kernels in a unique testing procedure. It has been shown
in [Fromont et al., 2013] that this testing procedure is adaptive over several regularity spaces. Inspired
by these works, and following the work of [Gretton et al., 2008, Gretton and Györfi, 2010], we consider
in this paper a procedure of testing independence based on HSIC measures and aggregating a given
set of Gaussian-kernel HSIC tests. Firstly, this procedure allows to avoid a particular kernel for HSIC-
tests. Secondly, we show in this paper that the rate of this testing procedure over particular Sobolev
and Nikol’skii-Besov balls can be upper bounded by a rate which seems optimal compared to "classical"
rates of testing in other frameworks. This suggests that this test may be adaptive over these spaces of
regularity.

In this paper, we first study a theoretical test (in the sense the critical value depends on the unknown
marginal densities f1 and f2) based on such estimators of the HSIC, for which we provide non-asymptotic
conditions to control the second kind error. The study of this theoretical test allows us to introduce
a new procedure based on the aggregation of these tests for various bandwidths avoiding the arbitrary
choice of those parameters. We provide non-asymptotic theoretical guarantees for this aggregated pro-
cedure by proving that they satisfy a non-asymptotic oracle type condition for the uniform separation
rate and outperform single tests. Notice that in practice, we consider a permutation approach allowing
to implement the aggregated testing procedure, leading to a test with non-asymptotic prescribed level
α. We complete this study by establishing non-asymptotic uniform separation rates over Sobolev balls
and Nikol’skii-Besov balls. This document is organized as follows: in Section 2, we fist give in Section
2.1 a non-asymptotic condition on f in terms of the theorical value HSICλ,µ (f) so that the second error
type of the single test associated to λ and µ is controlled. We then provide in Section 2.2 such condition
w.r.t parameters λ, µ and the sample size n. Finally, we give in Section 2.4 a sharp upper bound of the
separation rate of single tests. In Section 3, we present in Section 3.1 the aggregated testing precedure.
Thereafter, we give in Section 3.2 an oracle type inequality of the separation rate of the aggregated test.
In Section 3.3, we consider two particular classes of functions: Sobolev balls and Nikol’skii-Besov balls,
showing that the uniform separation rate of a well chosen aggregated test is as the same order as the
optimal single one, up to a small factor of log log(n).

All along the paper, the generic notation C(a, b, . . .) denotes a positive constant depending only on
its arguments (a, b, . . .) and that may vary from line to line.

2 Single kernel-based tests

2.1 The testing procedures

A first theoretical test. Since Gaussian kernels are characteristic, testing independence between X
and Y is equivalent to test

(H0) : HSICλ,µ(f) = 0 against (H1) : HSICλ,µ(f) > 0.

The statistic ĤSICλ,µ is then a naturel choice to test independence between X and Y , since it is an

unbiased estimator of HSICλ,µ(f). The corresponding test rejects independence if ĤSICλ,µ is significantly

large. Specifically, for α ∈]0, 1[, we consider the statistical test which rejects (H0) if ĤSICλ,µ > qλ,µ
1−α,

where qλ,µ
1−α denotes the (1−α)-quantile of ĤSICλ,µ under Pf1⊗f2 . The associated test function is defined

by
∆λ,µ

α = 1
ĤSICλ,µ > qλ,µ

1−α

. (7)

Then, the null hypothesis is rejected if and only if ∆λ,µ
α = 1. By definition of the quantile, this theoretical

test is of non-asymptotic level α, that is if f = f1 ⊗ f2,

Pf

(
∆λ,µ

α = 1
)

≤ α.

Note that the non-asymptotic test ∆λ,µ
α is defined here using the quantiles as in [Albert et al., 2015]

rather than the p-values
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A permutation test of independence. The analytical computation of the quantile qλ,µ
1−α is not

possible since its value depends on the unknown marginals f1 and f2 of the couple (X,Y ). In practice, a

permutation method with a Monte Carlo approximation is applied to approach qλ,µ
1−α as follows. Denote

Zn = (Xi, Yi)1≤i≤n the original sample and compute the test statistic ĤSICλ,µ (Zn) defined by Equation
(5). Then, consider B independent and uniformly distributed random permutations of {1, ..., n}, denoted
τ1, ..., τB, independent of Zn. Define for each permutation τb the corresponding permuted sample Zτb

n =
(Xi, Yτb(i))1≤i≤n and compute the permuted test statistic

Ĥ⋆b
λ,µ = ĤSICλ,µ (Zτb

n )

on this new sample.

Under Pf1⊗f2 , each permuted sample Zτb
n has the same distribution than the original sample Zn.

Hence, the random variables Ĥ⋆b
λ,µ, 1 ≤ b ≤ B, have the same distribution as ĤSICλ,µ. We apply a trick,

based on [Romano and Wolf, 2005, Lemma 1], which consists in adding the original sample to the Monte
Carlo sample in order to obtain a test of non-asymptotic level α. To do so, denote

Ĥ⋆B+1
λ,µ = ĤSICλ,µ, and Ĥ

⋆(1)
λ,µ ≤ Ĥ

⋆(2)
λ,µ ≤ . . . ≤ Ĥ

⋆(B+1)
λ,µ

the order statistic. Then, the permuted quantile with Monte Carlo approximation q̂λ,µ
1−α is thus defined

as
q̂λ,µ

1−α = Ĥ
⋆(⌈(B+1)(1−α)⌉)
λ,µ . (8)

The permuted test with Monte Carlo approximation ∆̂λ,µ
α performed in practice is then defined as

∆̂λ,µ
α = 1

ĤSICλ,µ > q̂λ,µ

1−α

. (9)

Proposition 1.

Let α be in ]0, 1[ and ∆̂λ,µ
α the test defined by Equation (9). Then, under Pf1⊗f2 , that is if f = f1 ⊗ f2,

Pf

(
∆̂λ,µ

α = 1
)

≤ α, (10)

that is, this permuted test with Monte Carlo approximation is of prescribed non-asymptotic level α.

2.2 Control of the second kind error in terms of HSIC

For given β ∈ (0, 1), we propose in the following lemma a first non-asymptotic condition on the alternative
f ensuring that the probability of second kind error of the theoretical test under such f is at most equal
to β. This condition is given for the value of HSICλ,µ(f). It involves the variance of the estimator

ĤSICλ,µ which is finite since this estimator is a bounded random variable.

Lemma 1.

Let (Xi, Yi)1≤i≤n be an i.i.d. sample with distribution Pf and consider the test statistic ĤSICλ,µ defined

by (5). Let α, β in (0, 1), and qλ,µ
1−α be the (1−α)-quantile of ĤSICλ,µ under Pf1⊗f2 as defined in Section

2.1. Then Pf (ĤSICλ,µ ≤ qλ,µ
1−α) ≤ β as soon as

HSICλ,µ(f) >

√
Varf (ĤSICλ,µ)

β
+ qλ,µ

1−α.

Lemma 1 gives a threshold for HSICλ,µ(f) from which the dependence between X and Y is detectable
with probability at least 1−β using given Gaussian kernels kλ and lµ. Furthermore, it would be useful to
give more explicit conditions w.r.t the bandwidths λ and µ and the sample size n. The objective of this
section is to provide a condition w.r.t λ, µ and n on the theoretical value HSICλ,µ, so that the test ∆λ,µ

α

has a second type error controlled by arbitrarily small β ∈ (0, 1). For this, we already give in Lemma 1

a condition w.r.t Varf (ĤSICλ,µ) and qλ,µ
1−α. It is therefore necessary to provide sharp upper bounds for

these two quantities w.r.t λ, µ and n. Propositions 2 and 3 give these upper bounds.
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Proposition 2.

Let (Xi, Yi)1≤i≤n be an i.i.d. sample with distribution Pf and consider the test statistic ĤSICλ,µ defined
by (5). Assume that the densities f , f1 and f2 are bounded. Then,

Varf (ĤSICλ,µ) ≤ C (Mf , p, q)

{
1

n
+

1

λ1...λpµ1...µqn2

}
,

where Mf = max (‖f‖∞, ‖f1‖∞, ‖f2‖∞).

Proposition 3.

Let (Xi, Yi)1≤i≤n be an i.i.d. sample with distribution Pf and consider the test statistic ĤSICλ,µ defined

by (5). Let α in (0, 1) and qλ,µ
1−α be the (1 − α)-quantile of ĤSICλ,µ under Pf1⊗f2 as defined in Section

2.1. Assuming that the densities f1, f2 are bounded,

max (λ1...λp , µ1...µq) < 1 and n
√
λ1...λpµ1...µq > log

(
1

α

)
> 1.

Then,

qλ,µ
1−α ≤ C (‖f1‖∞, ‖f2‖∞, p, q)

n
√
λ1...λpµ1...µq

log

(
1

α

)
.

Combining Lemma 1, Propositions 2 and 3, we can then give a sufficient condition on HSICλ,µ

depending on the parameters λ, µ and the sample size n in order to control the second type error by β.
This result is presented in the following corollary.

Corollary 1.

Let (Xi, Yi)1≤i≤n be an i.i.d. sample with distribution Pf and consider the test statistic ĤSICλ,µ defined

by (5). Let α, β in (0, 1), and qλ,µ
1−α be the (1−α)-quantile of ĤSICλ,µ under Pf1⊗f2 as defined in Section

2.1. Assume that the densities f , f1 and f2 are bounded, and that

max (λ1...λp , µ1...µq) < 1 and n
√
λ1...λpµ1...µq > log

(
1

α

)
> 1.

Then, one has Pf (ĤSICλ,µ ≤ qλ,µ
1−α) ≤ β as soon as

HSICλ,µ(f) > C (Mf , p, q, β)

{
1√
n

+
1

n
√
λ1...λpµ1...µq

log

(
1

α

)}
,

where Mf = max (‖f‖∞, ‖f1‖∞, ‖f2‖∞).

Note that the right hand term given in Corollary 1 is not computable in practice since it depends on
the unknown density f . However, this dependence is weak since it only depends on the infinite norm of
f and its marginals.

For given β ∈ (0, 1), Corollary 1 provides conditions on the value of HSICλ,µ(f) ensuring that the
probability of second kind error of the theoretical test under such f is at most equal to β. We now
want to express such conditions in terms of the L2-norm of the function f − f1 ⊗ f2, for the sake of
interpretation, and in order to be able to determine separation rates with respect to this L2-norm for
our test.

2.3 Control of the second kind error in terms of L2-norm

In order to express a condition on the L2-norm of the function f − f1 ⊗ f2 ensuring a probability of
second kind error controlled by β, we first give in Lemma 2 a link between HSICλ,µ and ‖f − f1 ⊗ f2‖2

L2
.
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Lemma 2.

Let ψ = f − f1 ⊗ f2. The HSIC measure HSICλ,µ(f) associated to kernels kλ and lµ and defined in
Equation (1) can be written as

HSICλ,µ(f) = 〈ψ, ψ ∗ (ϕλ ⊗ φµ)〉L2 ,

where ϕλ and φµ are the functions respectively defined in Equations (3) and (4). Moreover, the notation
〈., .〉L2 designates the usual scalar product in the space L2. One can easily deduce the following Equation:

HSICλ,µ(f) =
1

2

(
‖ψ‖2

L2
+ ‖ψ ∗ (ϕλ ⊗ φµ)‖2

L2
− ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖2

L2

)
. (11)

The following proposition gives a sufficient condition on ‖f − f1 ⊗ f2‖2
L2

, for the test ∆λ,µ
α to be

β-powerful.

Theorem 1.

Let (Xi, Yi)1≤i≤n be an i.i.d. sample with distribution Pf and consider the test statistic ĤSICλ,µ defined

by (5). Denote ψ = f − f1 ⊗ f2. Let α, β in (0, 1), and qλ,µ
1−α be the (1 − α)-quantile of ĤSICλ,µ under

Pf1⊗f2 as defined in Section 2.1. Assume that the densities f , f1 and f2 are bounded, and that

max (λ1...λp , µ1...µq) < 1 and n
√
λ1...λpµ1...µq > log

(
1

α

)
> 1.

One has Pf (ĤSICλ,µ ≤ qλ,µ
1−α) ≤ β as soon as

‖ψ‖2
L2
> ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖2

L2
+

C (Mf , p, q, β)

n
√
λ1...λpµ1...µq

log

(
1

α

)
.

where Mf = max (‖f‖∞, ‖f1‖∞, ‖f2‖∞), and C (Mf , p, q) denotes a positive constant depending only on
its arguments.

In the condition given in Theorem 1, appears a compromise between a bias term ‖ψ − ψ ∗ (ϕλ ⊗
φµ)‖2

L2
and a term induced by the square-root of the variance of the estimator ĤSICλ,µ. Comparing the

conditions on the HSIC given in Corollary 1 and on ‖f − f1 ⊗ f2‖2
L2

given in Theorem 1, the meticulous
reader may notice that the term in 1/

√
n has been removed. This suppression seems to be necessary to

obtain optimal separation rates according to the literature in other testing frameworks. This derives from
quite tricky computations that we point out here. By combining Lemmas 1 and 2, direct computations
lead to the condition

‖ψ‖2
L2
> ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖2

L2
− ‖ψ ∗ (ϕλ ⊗ φµ)‖2

L2
+ 2

√
Varf (ĤSICλ,µ)

β
+ 2qλ,µ

1−α.

If one directly considers the upper bound of the variance Varf (ĤSICλ,µ) given in Proposition 2, one
would get the unwanted 1/

√
n term. The idea is to take advantage of the negative term −‖ψ∗(ϕλ⊗φµ)‖2

L2

to compensate such term. To do so, we need a more refined control of the variance given in the following
technical proposition.

Proposition 4.

Let (Xi, Yi)1≤i≤n be an i.i.d. sample with distribution Pf and consider the test statistic ĤSICλ,µ defined
by (5). Assume that the densities f , f1 and f2 are bounded. Then,

Varf (ĤSICλ,µ) ≤ C(Mf )‖ψ ∗ (ϕλ ⊗ φµ)‖2
L2

n
+

C (Mf , p, q)

λ1...λpµ1...µqn2
,

where Mf = max (‖f‖∞, ‖f1‖∞, ‖f2‖∞).

Finally, using standard inequalities such as
√
a+ b ≤ √

a+
√
b and 2

√
ab ≤ δa+ b/δ for all positive

a, b and δ, one can prove

2

√
Varf (ĤSICλ,µ)

β
≤ ‖ψ ∗ (ϕλ ⊗ φµ)‖2

L2
+
C(Mf , β)

n
+

C (Mf , p, q, β)

n
√
λ1...λpµ1...µq

,

which leads to Theorem 1. Notice that such trick is already present in [Fromont et al., 2013].
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2.4 Uniform separation rate

The bias term in Theorem 1 comes from the fact that we do not estimate ‖f−f1 ⊗f2‖2
L2

but HSICλ,µ(f).
In order to have a control of the bias term w.r.t λ and µ, we assume that f − f1 ⊗ f2 belongs some
class of regular functions. We introduce the two following classes: Sobolev balls (isotropic case) and
Nikol’skii-Besov balls (anisotropic case).

2.4.1 Case Sobolev balls

For d ∈ N∗, δ > 0 and R > 0, the Sobolev ball Sδ
d(R) is the set defined by

Sδ
d(R) =

{
s : Rd → R

/
s ∈ L

1(Rd) ∩ L
2(Rd),

∫

Rd

‖u‖2δ
2 |ŝ(u)|2du ≤ (2π)dR2

}
, (12)

where ŝ denotes the Fourier transform of s defined by ŝ(u) =

∫

Rd

s(x)ei〈x,u〉 dx, 〈., .〉 denotes the usual

scalar product in Rd and ‖.‖2 the Euclidean norm in Rd.

The following proposition gives an upper bound for the bias term in the case when f−f1 ⊗f2 belongs
to particular Sobolev balls.

Lemma 3.

Let ψ = f − f1 ⊗ f2. We assume that ψ ∈ Sδ
p+q(R), where δ ∈ (0, 2] and Sδ

d(R) is defined by (12). Let
ϕλ and φµ be the functions respectively defined in Equations (3) and (4). Then we have the following
inequality,

‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖2
L2

≤ C(R, δ)




p∑

i=1

λ2δ
i +

q∑

j=1

µ2δ
j


 .

One can deduce from Theorem 1 upper bounds for the uniform separation rates (defined in (6)) of
the test ∆λ,µ

α over Sobolev balls.

Theorem 2. Let α, β ∈ (0, 1) and consider the same notation and assumptions as in Theorem 1. Let
δ ∈ (0, 2] and R > 0. Then, the uniform separation rate ρ

(
∆λ,µ

α ,Sδ
p+q(R), β

)
defined in (6) over the

Sobolev ball Sδ
p+q(R) can be upper bounded as follows

[
ρ
(
∆λ,µ

α ,Sδ
p+q(R), β

)]2 ≤ C(R, δ)




p∑

i=1

λ2δ
i +

q∑

j=1

µ2δ
j


+

C (Mf , p, q, β)

n
√
λ1 . . . λpµ1 . . . µq

log

(
1

α

)
, (13)

where Mf = max (‖f‖∞, ‖f1‖∞, ‖f2‖∞), C (Mf , p, q, β) and C(R, δ) are positive constants depending
only on their arguments.

One can now determine optimal bandwidths (λ∗, µ∗) in order to minimize the right-hand side of
Equation (13). To do so, the idea is to find for which (λ, µ) both terms in the right hand side of (13)
are of the same order w.r.t. n. We also provide an upper bound for the uniform separation rate of the
optimized test ∆λ∗,µ∗

α on Sobolev balls.

Corollary 2.

Consider the assumptions of Theorem 2, and define for all i in {1, . . . , p} and for all j in {1, . . . , q},

λ∗
i = µ∗

j = n− 2
4δ+(p+q) .

The uniform separation rate of the test ∆λ∗,µ∗

α over the Sobolev ball Sδ
p+q(R) is controlled as follows

ρ
(

∆λ∗,µ∗

α ,Sδ
p+q(R), β

)
≤ C (Mf , p, q, α, β, δ)n

− 2δ
4δ+(p+q) . (14)

Note that, in the definition of the Sobolev ball Sδ
p+q(R), we have the same regularity parameter δ > 0

for all the directions in Rp+q. This corresponds to isotropic regularity conditions. We now introduce
other classes of functions allowing to take into account possible anisotropic regularity properties.
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2.4.2 Case of Nikol’skii-Besov balls

For d ∈ N∗, δ = (δ1, ..., δd) ∈ (0,+∞)d and R > 0, we consider the anisotropic Nikol’skii-Besov ball
N δ

2,d(R) defined by

N δ
2,d(R) =

{
s : Rd → R

/
s has continuous partial derivatives D

⌊δi⌋
i of order ⌊δi⌋ w.r.t ui, and ∀i = 1, ..., d,

u1, ..., ud, v ∈ R, ‖D⌊δi⌋
i s(u1, ..., ui + v, ..., ud) −D

⌊δi⌋
i s(u1, ..., ud)‖L2 ≤ R|v|δi−⌊δi⌋

}
,

(15)

where ⌊δi⌋ denotes the floor function of δi if δi is not integer and ⌊δi⌋ = δi − 1 if δi is an integer. We

give in the following proposition an upper bound of the bias term, similar to that of Lemma 3, in the
case when f − f1 ⊗ f2 belongs to particular Nikol’skii-Besov balls.

Lemma 4.

We assume that ψ ∈ N δ
2,p+q(R), where δ = (ν1, ..., νp, γ1, ..., γq) ∈ (0, 2]p+q. Then, we have the following

inequality,

‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖2
L2

≤ C(R, δ)




p∑

i=1

λ2νi

i +

q∑

j=1

µ
2γj

j


 .

As in Section 2.4.1, one can deduce from Theorem 1 upper bounds for the uniform separation rates
of the test ∆λ,µ

α over Nikol’skii-Besov balls.

Theorem 3. Let α, β ∈ (0, 1) and consider the same notation and assumptions as in Theorem 1. Let
δ = (ν1, ..., νp, γ1, ..., γq) ∈ (0, 2]p+q and R > 0. Then, the uniform separation rate ρ

(
∆λ,µ

α ,N δ
2,p+q(R), β

)

defined in (6) over the Nikol’skii-Besov ball N δ
2,p+q(R) can be upper bounded as follows

[
ρ
(
∆λ,µ

α ,N δ
2,p+q(R), β

)]2 ≤ C(R, δ)




p∑

i=1

λ2νi

i +

q∑

j=1

µ
2γj

j


+

C (Mf , p, q, β)

n
√
λ1...λpµ1...µq

log

(
1

α

)
. (16)

where Mf = max (‖f‖∞, ‖f1‖∞, ‖f2‖∞), C (Mf , p, q, β) and C(R, δ) are positive constants depending
only on their arguments.

As in Section 2.4.1, we now determine optimal bandwidths (λ∗, µ∗) which minimize the right-hand
side of Equation (16) and compute an upper bound for the uniform separation rate of the optimized test
∆λ∗,µ∗

α on Nikol’skii-Besov balls.

Corollary 3.

Consider the assumptions of Theorem 3, and define for all i in {1, . . . , p} and for all j in {1, . . . , q},

λ∗
i = n

− 2η

νi(1+4η) and µ∗
j = n

− 2η

γj (1+4η) ,

where η is defined by
1

η
=

p∑

i=1

1

νi
+

q∑

j=1

1

γj
,

The uniform separation rate of the test ∆λ∗,µ∗

α over the Nikol’skii-Besov ball N δ
2,p+q(R) is controlled

as follows

ρ
(

∆λ∗,µ∗

α ,N δ
2,p+q(R), β

)
≤ C (Mf , p, q, α, β, δ)n

− 2η

(1+4η) . (17)
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Notice that the upper bound obtained for Nikol’skii-Besov balls in Corollary 3 is analogue to that
obtained for Sobolev balls in Corollary 2. Indeed, if we consider the same regularities in all directions
in the case of Nikol’skii-Besov balls: ν1 = . . . = νp = γ1 = . . . = γq, we obtain a similar upper bound.
These upper bounds obtained in Corollaries 2 and 3 remind the asymptotic minimax separation rate of
testing independence w.r.t. the L2-norm over Hölder spaces [Ingster, 1989, Yodé, 2004]. However, the
test having a rate with the smallest upper bound is not adaptive, it depends on the regularity parameter
δ. In the next section, for the purpose of adaptivity, we build an aggregated testing procedure taking
into account a collection of bandwidths (λ, µ) ∈ Λ × U . In particular, this avoids the delicate choice of
arbitrary bandwidths. We then prove that the uniform separation rate of this aggregated procedure is
of the same order as the smallest uniform separation rate of the chosen collection, up to a logarithmic
term.

3 Multiple non-asymptotic kernel-based test

In Section 2, we consider single tests based on Gaussian kernels associated to a particular choice of the
bandwidths (λ, µ). However, applying such a procedure leads to the question of the choice of these
parameters. There is as yet no justified method to choose λ and µ. In many cases, authors choose these
parameters w.r.t the available data (Xi, Yi)1≤i≤n by taking for example λ (resp. µ) as the empirical
median or standard deviation of the Xi’s (resp. the Yi’s), which is not necessarily an optimal choice.
To avoid this delicate choice, we propose in this section an aggregated testing procedure combining a
collection of single tests based on different bandwithds.

3.1 The aggregated testing procedure

Consider now a collection of Gaussian kernels
{

(kλ, lµ) / (λ, µ) ∈ Λ × U
}

, where Λ and U are finite
or countable subsets of (0,+∞)p and (0,+∞)q respectively. Consider a collection of positive weights{
ωλ,µ / (λ, µ) ∈ Λ × U

}
such that

∑
(λ,µ)∈Λ×U e

−ωλ,µ ≤ 1.

For a given α ∈ (0, 1), we define the aggregated test which rejects (H0) if there is at least one
(λ, µ) ∈ Λ × U such that

ĤSICλ,µ > qλ,µ

1−uαe−ωλ,µ
,

where uα is the less conservative value such that the test is of level α, and is defined by

uα = sup

{
u > 0 ; Pf1⊗f2

(
sup

(λ,µ)∈Λ×U

(
ĤSICλ,µ − qλ,µ

1−ue−ωλ,µ

)
> 0

)
≤ α

}
. (18)

We should mention here that the supremum in Equation (18) exists. Indeed, for all (λ, µ) in Λ × U :
0 < 1 − u exp(−ωλ,µ), this leads to, u < inf(λ,µ)∈Λ×U (exp(ωλ,µ)) < +∞. Then, uα is well defined and
verify: uα < inf(λ,µ)∈Λ×U (exp(ωλ,µ)).

The test function ∆α associated to this aggregated test, takes values in {0, 1} and is defined by

∆α = 1 ⇐⇒ sup
(λ,µ)∈Λ×U

(
ĤSICλ,µ − qλ,µ

1−uαe−ωλ,µ

)
> 0. (19)

It is easy to check that the test ∆α is of level α, this is directly derived from the definitions of uα.

For implementational limitations, the collections Λ and U are finite in practice. Moreover, note that,
as for the quantile, the correction uα of the level is not analytically computable since it depends on the
unknown marginals f1 and f2. In practice, it can also be approached by a permutation method with
Monte Carlo approximation, as done in [Albert et al., 2015], by

ûα = sup



u > 0 ;

1

B

B∑

b=1

1
max(λ,µ)∈Λ×U

{
ĤSIC

[b]

λ,µ−q̂λ,µ

1−ue
−ωλ,µ

}
>0

≤ α



 .

In the next section, we will provide a uniform separation rate similar to that of Corollaries 2 and 3
for the test ∆α. This uniform separation rate will be given in the two cases mentioned earlier in Section
2.4 where f − f1 ⊗ f2 belongs to isotropic Sobolev balls or to anisotropic Nikol’skii-Besov balls.
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3.2 Oracle type conditions for the second kind error

As a reminder, our target is to construct a testing procedure with a uniform separation rate as small
as possible and, whose implementation does not require any information about the regularity of f . For
this, we will first show in the following lemma that the second kind error of the aggregated procedure
proposed in the previous section is of the same order of the smallest error over the chosen collection of
parameters.

Lemma 5. Let α, β in (0, 1), and consider the aggregated test ∆α defined in (19) . Then,

Pf (∆α = 0) ≤ inf
(λ,µ)∈Λ×U

{
Pf

(
∆λ,µ

αe−ωλ,µ
= 0
)}

.

In particular, if there exists at least one (λ, µ) ∈ Λ ×U such that the associated single test ∆λ,µ

αe−ωλ,µ
has

a probability of second kind error at most equal to β, then the probability of the second kind error of the
aggregated test ∆α is at most equal to β.

We now give an oracle inequality for the uniform separation rate of the aggregation procedure ∆α.
This inequality given in the following theorem shows the interest of this testing procedure.

Theorem 4. Let α, β ∈ (0, 1),
{

(kλ, lµ) / (λ, µ) ∈ Λ × U
}

a collection of Gaussian kernels and
{
ωλ,µ /

(λ, µ) ∈ Λ × U
}

a collection of positive weights, such that
∑

(λ,µ)∈Λ×U e
−ωλ,µ ≤ 1. We also assume that

all bandwidths (λ, µ) in Λ×U verify the conditions given in Theorem 1, and that f , f1 and f2 are bounded.
Then, the test ∆α of level α defined in Equation (19) has a uniform separation rate ρ (∆α, Cδ, β) which
can be upper bounded as follows

• If Cδ = Sδ
p+q(R), where δ ∈ (0, 2] and R > 0, then

[
ρ
(
∆α,Sδ

p+q(R), β
)]2 ≤ C (Mf , p, q, β, δ) inf

(λ,µ)∈Λ×U

{
1

n
√
λ1...λpµ1...µq

(
log

(
1

α

)
+ ωλ,µ

)
+




p∑

i=1

λ2δ
i +

q∑

j=1

µ2δ
j



}
,

(20)
where Mf = max (‖f‖∞, ‖f1‖∞, ‖f2‖∞) and C (Mf , p, q, β, δ) is a positive constant depending only on
its arguments.

• If Cδ = N δ
2,p+q(R), where δ = (ν1, ..., νp, γ1, ..., γq) ∈ (0, 2]p+q and R > 0, then

[
ρ
(
∆α,N δ

2,p+q(R), β
)]2 ≤ C (Mf , p, q, β, δ) inf

(λ,µ)∈Λ×U

{
1

n
√
λ1...λpµ1...µq

(
log

(
1

α

)
+ ωλ,µ

)
+




p∑

i=1

λ2νi

i +

q∑

j=1

µ
2γj

j



}
,

(21)
where C (Mf , p, q, β, δ) is a positive constant depending only on its arguments.

According to Theorem 4, the uniform separation rate of the aggregated testing procedure ∆α is the
infimum of all (λ, µ) ∈ Λ × U , up to the additional term ωλ,µ. This theorem can also be interpreted as
an oracle type condition for the second kind error of the test ∆α. Indeed, without knowing f − f1 ⊗ f2,
we prove that the uniform separation rate of ∆α is of the same order of the smallest uniform separation
rate over (λ, µ) ∈ Λ × U , up to ωλ,µ.

3.3 Uniform separation rate over Sobolev balls and Nikol’skii-Besov balls

In this section, we provide an upper bound of the uniform separation rate ρ (∆α, Cδ, β) of the multiple
testing procedure ∆α over the classes of Sobolev balls and Nikol’skii-Besov balls. For this, we consider
the sets Λ and U respectively of parameters λ and µ, defined by

Λ = {(2−m1,1 , . . . , 2−m1,p) ; (m1,1, . . . ,m1,p) ∈ (N∗)p}, (22)

and
U = {(2−m2,1 , . . . , 2−m2,q ) ; (m2,1, . . . ,m2,q) ∈ (N∗)q}. (23)
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In addition, we associate to every λ = (2−m1,1 , . . . , 2−m1,p) ∈ Λ and µ = (2−m2,1 , . . . , 2−m2,q ) ∈ U the
positive weights

ωλ,µ = 2

p∑

i=1

log

(
m1,i × π√

6

)
+ 2

q∑

j=1

log

(
m2,j × π√

6

)
, (24)

so that
∑

(λ,µ)∈Λ×U e
−ωλ,µ = 1. The following corollary gives these upper bounds.

Corollary 4. Assuming that log log(n) > 1, α, β ∈ (0, 1) and ∆α the test defined in (19), with the
particular choice of Λ, U and the weights (ωλ,µ)(λ,µ)∈Λ×U defined in (22), (23) and (24). Then, the

uniform separation rate ρ (∆α, Cδ, β) of the aggregated test ∆α can be upper bounded as follows.

• If Cδ = Sδ
p+q(R), where δ ∈ (0, 2] and R > 0, then,

ρ
(
∆α,Sδ

p+q(R), β
)

≤ C (Mf , p, q, α, β, δ)

(
log log(n)

n

) 2δ
4δ+(p+q)

, (25)

where Mf = max (‖f‖∞, ‖f1‖∞, ‖f2‖∞).

• If Cδ = N δ
2,p+q(R), where δ = (ν1, . . . , νp, γ1, . . . , γq) ∈ (0, 2]p+q and R > 0, then,

ρ
(
∆α,N δ

2,p+q(R), β
)

≤ C (Mf , p, q, α, β, δ)

(
log log(n)

n

) 2η

(1+4η)

, (26)

where
1

η
=

p∑

i=1

1

νi
+

q∑

j=1

1

γj
and Mf = max (‖f‖∞, ‖f1‖∞, ‖f2‖∞).

Comment. According to Corollary 4, the rate of the aggregation procedure over the classes of Sobolev
balls and Nikol’skii-Besov balls is in the same order of the best rate of single tests (given in Theorem 1),
up to a log log(n) factor.

4 Proofs

All along the proofs, we set Z = (X,Y ) and Zi = (Xi, Yi) for all i in {1, . . . , n}. We also denote by A,B
and C positive universal constants whose values may change from line to line. Furthermore, for all n in
N∗ and r in {1, . . . , n}, we denote:

(n)r =
n!

(n− r)!
. (27)

4.1 Proof of Proposition 1

Let α be in (0, 1). In order to prove that the permuted test with Monte Carlo approximation ∆̂λ,µ
α is of

prescribed level α, we use the following lemma of [Romano and Wolf, 2005].

Lemma 6 ([Romano and Wolf, 2005, Lemma 1]). Let R1, . . . , RB+1 be (B + 1) exchangeable random
variables. Then, for all u in (0, 1)

P

(
1

B + 1

(
1 +

B∑

b=1

1Rb≥RB+1

)
≤ u

)
≤ u.

Recall that for all 1 ≤ b ≤ B,

Ĥ⋆b
λ,µ = ĤSICλ,µ (Zτb

n ) and Ĥ⋆B+1
λ,µ = ĤSICλ,µ (Zn) = ĤSICλ,µ (ZτB+1

n ) ,

where τB+1 = id is the identity permutation of {1, . . . , B + 1} (deterministic).

Assume that f = f1 ⊗ f2. Then the random variables Ĥ⋆1
λ,µ, . . . , Ĥ

⋆B
λ,µ and Ĥ⋆B+1

λ,µ are exchangeable.
Indeed, let π be a (deterministic) permutation of {1, . . . , B + 1} and let us prove that

(
Ĥ⋆1

λ,µ, . . . , Ĥ
⋆B
λ,µ, Ĥ

⋆B+1
λ,µ

)
and

(
Ĥ

⋆π(1)
λ,µ , . . . , Ĥ

⋆π(B+1)
λ,µ

)
have the same distribution. (28)
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1st case: if π(B+1) = B+1. Then, since the permutations (τb)1≤b≤B are i.i.d., they are exchangeable.
Hence, (τπ(1), . . . , τπ(B)) is an i.i.d. sample of uniform permutations of {1, . . . , n}, independent of Zn and
(28) holds by construction.

2nd case: if π(B + 1) 6= B + 1. Then,

Ĥ
⋆π(B+1)
λ,µ = ĤSICλ,µ

(
Z

τπ(B+1)
n

)
= ĤSICλ,µ

(
Z̃n

)
, where Z̃n = Z

τπ(B+1)
n .

In particular, for all b in {1, . . . , B},





Ĥ
⋆π(b)
λ,µ = ĤSICλ,µ

(
Z

τπ(b)
n

)
= ĤSICλ,µ

(
Z̃

τπ(b)◦τ −1

π(B+1)
n

)
if π(b) 6= B + 1,

Ĥ
⋆π(b)
λ,µ = ĤSICλ,µ (Zn) = ĤSICλ,µ

(
Z̃

id ◦τ −1

π(B+1)
n

)
if π(b) = B + 1.

Therefore, in order to prove (28), it is sufficient to prove that {τπ(1) ◦ τ−1
π(B+1), . . . , τπ(B) ◦ τ−1

π(B+1)} is an

i.i.d. sample of uniform permutations of {1, . . . , n} independent of Z̃n.
Let A be a mesurable set, and σ1, . . . , σB be (fixed) permutations of {1, . . . , n}. Then

P
(
Z̃n ∈ A, τπ(1) ◦ τ−1

π(B+1) = σ1, . . . , τπ(B) ◦ τ−1
π(B+1) = σB

)

= P
(
Z

τπ(B+1)
n ∈ A, τπ(1) = σ1 ◦ τπ(B+1), . . . , τπ(B) = σB ◦ τπ(B+1) = σB

)

= E
[
P
(
Z

τπ(B+1)
n ∈ A, τπ(1) = σ1 ◦ τπ(B+1), . . . , τπ(B) = σB ◦ τπ(B+1)

∣∣τπ(B+1)

)]

= E


P(Zn ∈ A) ×




B+1∏

b=1
b6=π−1(B+1)

P
(
τπ(b) = σb ◦ τπ(B+1)

∣∣τπ(B+1)

)

× P

(
id = σπ−1(B+1) ◦ τπ(B+1)

∣∣τπ(B+1)

)

 ,

(29)

= E

[
P(Zn ∈ A)

(
1

n!

)B−1

P
(
id = σπ−1(B+1) ◦ τπ(B+1)

∣∣τπ(B+1)

)
]
,

= P(Zn ∈ A)

(
1

n!

)B−1

P

(
τπ(B+1) = σ−1

π−1(B+1)

)
,

= P(Zn ∈ A)

(
1

n!

)B

,

where (29) holds by independence of all permutations τb and of Zn and since, if f = f1 ⊗ f2, Z
τπ(B+1)
n

and Zn have the same distribution. This ends the proof of the exchangeability of the (Ĥ⋆b
λ,µ)1≤b≤B+1.

14



Then, by applying Lemma 6 to the (Ĥ⋆b
λ,µ)1≤b≤B+1, we obtain

Pf1⊗f2

(
∆̂λ,µ

α = 1
)

= Pf1⊗f2

(
ĤSICλ,µ > q̂λ,µ

1−α

)

= Pf1⊗f2

(
Ĥ⋆B+1

λ,µ > Ĥ
⋆(⌈(B+1)(1−α)⌉)
λ,µ

)

= Pf1⊗f2

(
B+1∑

b=1

1
Ĥ⋆b

λ,µ
<Ĥ⋆B+1

λ,µ

≥ ⌈(B + 1)(1 − α)⌉
)

= Pf1⊗f2

(
B+1∑

b=1

1
Ĥ⋆b

λ,µ
≥Ĥ⋆B+1

λ,µ

≤ ⌊α(B + 1)⌋
)

(30)

= Pf1⊗f2

(
B+1∑

b=1

1
Ĥ⋆b

λ,µ
≥Ĥ⋆B+1

λ,µ

≤ α(B + 1)

)

= Pf1⊗f2

(
1

B + 1

(
1 +

B∑

b=1

1
Ĥ⋆b

λ,µ
≥Ĥ⋆B+1

λ,µ

)
≤ α

)

≤ α, (31)

where (30) comes from the fact that

B + 1 − ⌈(B + 1)(1 − α)⌉ = ⌊α(B + 1)⌋,

and (31) is obtained from Lemma 6.

4.2 Proof of Lemma 1

Let α and β be in (0, 1). We aim here to give a condition on HSICλ,µ(f) w.r.t. the variance Varf (ĤSICλ,µ)

and the quantile qλ,µ
1−α, so that the statistical test ∆λ,µ

α has a second type error controlled by β. For this,

we use Chebyshev’s inequality. Since ĤSICλ,µ is an unbiased estimator of HSICλ,µ(f),

Pf



∣∣∣ĤSICλ,µ − HSICλ,µ(f)

∣∣∣ ≥

√
Varf (ĤSICλ,µ)

β


 ≤ β.

We then have the following inequality:

Pf


ĤSICλ,µ ≤ HSICλ,µ(f) −

√
Varf (ĤSICλ,µ)

β


 ≤ β.

Consequently, one has Pf

(
ĤSICλ,µ ≤ qλ,µ

1−α

)
≤ β, as soon as

HSICλ,µ(f) >

√
Varf (ĤSICλ,µ)

β
+ qλ,µ

1−α.

4.3 Proof of Proposition 2

In order to provide an upper bound of the variance Varf (ĤSICλ,µ) w.r.t. the bandwidths λ, µ and the
sample-size n, let us first give the following lemma for a general U -statistic of any order r in {1, . . . , n}.

Lemma 7. Let h be a symmetric function with r ≤ n inputs, V1, . . . , Vn be independent and identically
distributed random variables and Un be the U -statistic defined by

Un =
1

(n)r

∑

(i1,...,ir)∈in
r

h(Vi1 , . . . , Vir
),
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where (n)r is defined in (27). The following inequality gives an upper bound of the variance of Un,

Var(Un) ≤ C(r)

(
σ2

n
+
s2

n2

)
, (32)

where σ2 = Var (E[h(V1, . . . , Vr) | V1]) and s2 = Var (h(V1, . . . , Vr)).

Proof. First, using Hoeffding’s decomposition (see e.g. [Serfling, 2009]), the variance of Un can be de-
composed as

Var(Un) =

(
n

r

)−1 r∑

c=1

(
r

c

)(
n− r

r − c

)
ζc,

where ζc = Var(E[h(V1, . . . , Vr) | V1, . . . , Vc]).

Let us now prove that, for all n ∈ N∗, r ∈ {1, . . . , n} and c ∈ {1, . . . , r},

(
n

r

)−1(
r

c

)(
n− r

r − c

)
≤ C(r, c)

nc
. (33)

We first write

(
n

r

)−1(
r

c

)(
n− r

r − c

)
=

(
r

c

)
× (n− r)!

(r − c)!(n+ c− 2r)!
× r!(n − r)!

n!

=

(
r

c

)
× r!

(r − c)!
× (n− r)!

(n+ c− 2r)!
× (n− r)!

n!
. (34)

Moreover,

n! = (n− r)! × (n− r + 1) × . . .× (n− r + r)

≥ (n− r)! × (n− r + 1)r,

and

(n− r)! = (n− 2r + c)! × (n− 2r + +c+ 1) × . . .× (n− 2r + +c+ r − c)

≤ (n− 2r + c)! × (n− r + 1)r−c.

Then, we have
(n− r)!

(n+ c− 2r)!
× (n− r)!

n!
≤ 1

(n− r + 1)c
.

Furthemore, using that n ≥ r, one can write

n− r + 1

n
= 1 − r − 1

n

≥ 1 − r − 1

r

=
1

r
.

This leads to, n− r + 1 ≥ n

r
. Finally, using Equation (34) we have (33).

By upper bounding each term in Hoeffding’s decomposition of the variance of Un according to Inequation
(33), we obtain the following inequality:

Var(Un) ≤ C(r)

r∑

c=1

ζc

nc
(35)
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On the other hand, using the law of total variance (see e.g. [Weiss, 2006]), for all c in {2, .., r}: ζc ≤ s2.
By injecting this last inequality in Equation (35), we obtain for all n in N∗:

Var(Un) ≤ C(r)

(
σ2

n
+
s2

n2

)
,

which achieves the proof of Lemma 7.

Let us now apply Lemma 7 in order to control the variance of ĤSICλ,µ w.r.t λ, µ and n. For this,

we first recall that ĤSICλ,µ can be written as a single U -statistic of order 4 [Gretton et al., 2008] as

ĤSICλ,µ =
1

(n)4

∑

(i,j,q,r)∈i
n
4

hi,j,q,r,

where the general term hi,j,q,r of ĤSICλ,µ is defined as

hi,j,q,r =
1

4!

(i,j,q,r)∑

(t,u,v,w)

(kt,ult,u + kt,ulv,w − 2kt,ult,v) . (36)

where kt,u (resp. lt,u) is defined for all t, u in {1, . . . , n} as kt,u = k(Xt, Xu) (resp. lt,u = l(Yt, Yu)) and
the sum represents all ordered quadruples (t, u, v, w) drawn without replacement from (i, j, q, r).

Thus, using Lemma 7, the variance of ĤSICλ,µ can be upper bounded as follows:

Varf

(
ĤSICλ,µ

)
≤ C

(
σ2(λ, µ)

n
+
s2(λ, µ)

n2

)
, (37)

where σ2(λ, µ) = Varf (E[h1,2,3,4 | Z1]) and s2(λ, µ) = Varf (h1,2,3,4).

4.3.1 Upper bound of σ2(λ, µ)

By now, we upper bound σ2(λ, µ) defined in Equation (37) w.r.t. λ and µ. For this, we first notice that in
the cases when kλ(Xa, Xb)lµ(Yc, Yd) is independent from Z1, the variance of its expectation conditionally
on Z1 equals 0. That are the cases when a, b, c and d are all different from 1. We then have the following
inequality:

σ2(λ, µ) ≤ C

6∑

i=1

σ2
i (λ, µ),

where

σ2
1(λ, µ) = Varf (E[kλ(X1, X2)lµ(Y1, Y2) | Z1]) , σ2

2(λ, µ) = Varf (E[kλ(X1, X2)lµ(Y3, Y4) | X1]) ,

σ2
3(λ, µ) = Varf (E[kλ(X3, X4)lµ(Y1, Y2) | Y1]) , σ2

4(λ, µ) = Varf (E[kλ(X1, X2)lµ(Y1, Y3) | Z1]) ,

σ2
5(λ, µ) = Varf (E[kλ(X2, X1)lµ(Y2, Y3) | X1]) , σ2

6(λ, µ) =,Varf (E[kλ(X2, X3)lµ(Y2, Y1) | Y1]) .

Case 1. Upper bound of σ2
1(λ, µ)

σ2
1(λ, µ) ≤E

[(
E [kλ(X1, X2)lµ(Y1, Y2) | Z1]

)2
]

≤E [kλ(X1, X2)lµ(Y1, Y2)kλ(X1, X3)lµ(Y1, Y3)] .

Moreover, we have

E [kλ(X1, X2)kλ(X1, X3)lµ(Y1, Y2)lµ(Y1, Y3)]

=

∫
kλ(x1, x2)kλ(x1, x3)lµ(y1, y2)lµ(y1, y3)

3∏

k=1

f(xk, yk)dxkdyk.
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By upper bounding f(x2, y2) and f(x3, y3) by ‖f‖∞, we have

σ2
1(λ, µ) ≤ ‖f‖2

∞

∫
kλ(x1, x2)kλ(x1, x3)lµ(y1, y2)lµ(y1, y3) f(x1, y1)

3∏

k=1

dxkdyk

= ‖f‖2
∞

∫ [∫
kλ(x1, x2)dx2

] [∫
kλ(x1, x3)dx3

] [∫
lµ(y1, y2)dy2

] [∫
lµ(y1, y3)dy3

]
f(x1, y1)dx1dy1.

Finally, using that

∫
kλ(x, .)dx =

∫
lµ(., y)dy = 1, we write

σ2
1(λ, µ) ≤ ‖f‖2

∞. (38)

Case 2. Upper bound of σ2
2(λ, µ)

σ2
2(λ, µ) ≤E

[(
E [kλ(X1, X2)lµ(Y3, Y4) | X1]

)2
]

≤E

[(
E [kλ(X1, X2) | X1]

)2
] (

E [lµ(Y3, Y4)]
)2

≤E [kλ(X1, X2)kλ(X1, X3)]
(
E [lµ(Y3, Y4)]

)2
.

Moreover, it is easy to see that by upper bounding f1(x2) and f1(x3) by ‖f1‖∞, and recalling that∫
kλ(x1, x)dx = 1, we have,

E [kλ(X1, X2)kλ(X1, X3)] =

∫ [∫
kλ(x1, x2)f1(x2)dx2

] [∫
kλ(x1, x3)f1(x3)dx3

]
f1(x1)dx1

≤ ‖f1‖2
∞.

Besides, upper bounding f2(y3) by ‖f2‖∞ in the integral form of E [lµ(Y3, Y4)] gives

E [lµ(Y3, Y4)] ≤ ‖f2‖∞.

By combining these inequalities, we obtain

σ2
2(λ, µ) ≤ ‖f1‖2

∞‖f2‖2
∞. (39)

Case 3. Upper bound of σ2
3(λ, µ)

This case is similar to case 2 by exchanging X by Y and kλ by lµ. Thus, we have the inequality

σ2
3(λ, µ) ≤ ‖f1‖2

∞‖f2‖2
∞. (40)

Case 4. Upper bound of σ2
4(λ, µ)

σ2
4(λ, µ) ≤E

[(
E [kλ(X1, X2)lµ(Y1, Y3) | Z1]

)2
]

≤E [kλ(X1, X2)kλ(X1, X4)lµ(Y1, Y3)lµ(Y1, Y5)] .

By upper bounding f1(x2), f1(x4) by ‖f1‖∞ and f2(y3), f2(y5) by ‖f2‖∞ in the integral form of
E [kλ(X1, X2)kλ(X1, X4)lµ(Y1, Y3)lµ(Y1, Y5)], we obtain

σ2
4(λ, µ) ≤ ‖f1‖2

∞‖f2‖2
∞. (41)

Case 5. Upper bound of σ2
5(λ, µ)

σ2
5(λ, µ) ≤E

[(
E [kλ(X2, X1)lµ(Y2, Y3) | X1]

)2
]

≤E [kλ(X2, X1)kλ(X4, X1)lµ(Y2, Y3)lµ(Y4, Y5)] .
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By upper bounding f(x2, y2) and f(x4, y4) by ‖f‖∞ in the integral form of the last expectation, we have

σ2
5(λ, µ) ≤ ‖f‖2

∞. (42)

Case 6. Upper bound of σ2
6(λ, µ)

This case is similar to case 5 by exchanging X by Y and kλ by lµ. We have then the inequality

σ2
6(λ, µ) ≤ ‖f‖2

∞. (43)

Finally, by combining inequalities (38), (39), (40), (41), (42) and (43), we have the following inequality

σ2(λ, µ) ≤ C(Mf ). (44)

4.3.2 Upper bound of s2(λ, µ)

Let us first recall that the general term of the U -statistic ĤSICλ,µ is written as

h1,2,3,4(Z1, Z2, Z3, Z4) =
1

4!

(1,2,3,4)∑

(u,v,w,t)

kλ(Xu, Xv) [lµ(Yu, Yv) + lµ(Yw , Yt) − 2lµ(Yu, Yw)] .

Moreover, all the terms of the last sum have the same distribution. We then have:

Varf (h1,2,3,4(Z1, Z2, Z3, Z4)) ≤ C Varf (kλ(X1, X2) [lµ(Y1, Y2) + lµ(Y3, Y4) − 2lµ(Y1, Y3)]) ,

It follows that,

Varf (h1,2,3,4(Z1, Z2, Z3, Z4)) ≤ C [Varf (kλ(X1, X2)lµ(Y1, Y2)) + Varf (kλ(X1, X2)lµ(Y3, Y4))

+ Varf (kλ(X1, X2)lµ(Y1, Y3))]

≤ C
(
E
[
k2

λ(X1, X2)l2µ(Y1, Y2)
]

+ E
[
k2

λ(X1, X2)l2µ(Y3, Y4)
]

+ E
[
k2

λ(X1, X2)l2µ(Y1, Y3)
])
,

In order to bring back to multivariate normal densities, we express k2
λ and l2µ as

k2
λ =

kλ′

(4π)
p
2 λ1...λp

and l2µ =
lµ′

(4π)
q
2µ1...µq

,

where λ′ =
λ√
2

and µ′ =
µ√
2

.

Consequently, the expectation E
[
k2

λ(X1, X2)l2µ(Y1, Y2)
]

can be expressed as

E
[
k2

λ(X1, X2)l2µ(Y1, Y2)
]

=
1

(4π)
p+q

2 λ1...λpµ1...µq

E [kλ′ (X1, X2)lµ′(Y1, Y2)]

=
1

(4π)
p+q

2 λ1...λpµ1...µq

∫
kλ′(x1, x2)lµ′(y1, y2)f(x1, y1)f(x2, y2)dx1dx2dy1dy2.

By upper bounding f(x2, y2) by ‖f‖∞ in the last integral, we have
∫
kλ′(x1, x2)lµ′(y1, y2)f(x1, y1)f(x2, y2)dx1dx2dy1dy2

≤‖f‖∞

∫ [∫
kλ′ (x1, x2)dx2

] [∫
lµ′(y1, y2)dy2

]
f(x1, y1)dx1dy1

=‖f‖∞.

This leads to,

E
[
k2

λ(X1, X2)l2µ(Y1, Y2)
]

≤ ‖f‖∞

(4π)
p+q

2 λ1...λpµ1...µq

. (45)
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We can easily show by similar argument that

E
[
k2

λ(X1, X2)l2µ(Y3, Y4)
]

≤ ‖f1‖∞‖f2‖∞

(4π)
p+q

2 λ1...λpµ1...µq

. (46)

and

E
[
k2

λ(X1, X2)l2µ(Y1, Y3)
]

≤ ‖f‖∞

(4π)
p+q

2 λ1...λpµ1...µq

. (47)

From Equations (45), (46) and (47), we have

s2(λ, µ) ≤ C(Mf )

(4π)
p+q

2 λ1...λpµ1...µq

. (48)

From Equations (44) and (48) we obtain the following inequality for Varf (ĤSICλ,µ)

Varf (ĤSICλ,µ) ≤ C (Mf , p, q)

{
1

n
+

1

λ1...λpµ1...µqn2

}
.

4.4 Proof of Proposition 3

To give an upper bound for the quantile qλ,µ
1−α w.r.t λ and µ, we use concentration inequalities for

general U -statistics. However, sharp upper bounds are obtained only for degenerate U -statistics (see e.g.
[Houdré and Reynaud-Bouret, 2003]). We recall that, an U -statistic Un = Un(V1, ..., Vr) is degenerate

if E[Un | V1, ..., Vi] = 0 for all i in {1, ..., r − 1}. The first step to upper bound qλ,µ
1−α is then to write

ĤSICλ,µ as a sum of degenerate U -statistics. For this, we rely on ANOVA-decomposition (ANOVA for
ANalyse Of VAriance, see e.g. [Sobol, 2001]) of the symmetrical function hi,j,q,r introduced in Equation
(36). We then write:

hi,j,q,r =
1

2

(i,j,q,r)∑

(t,u)

ht,u +
1

6

(i,j,q,r)∑

(t,u,v)

ht,u,v + h̃i,j,q,r, (49)

where the first (resp. the second) sum represents all ordered pairs (t, u) (resp. triplets (t, u, v)) drawn

without replacement from (i, j, q, r) and the terms ht,u, ht,u,v and h̃i,j,q,r are defined as

ht,u = E [hi,j,q,r | Zt, Zu] ,

ht,u,v = E [hi,j,q,r | Zt, Zu, Zv] − 1

2

(t,u,v)∑

(t′,u′)

ht′,u′ ,

h̃i,j,q,r = hi,j,q,r − 1

6

(i,j,q,r)∑

(t,u,v)

ht,u,v − 1

2

(i,j,q,r)∑

(t,u)

ht,u.

Hence, by summing all terms hi,j,q,r for (i, j, q, r) in in
4 and then dividing by (n)4, we have:

ĤSICλ,µ = 6ĤSIC
(2,D)

λ,µ + 4ĤSIC
(3,D)

λ,µ + ĤSIC
(4,D)

λ,µ , (50)

where

ĤSIC
(2,D)

λ,µ =
1

(n)2

∑

(i,j)∈i
n
2

hi,j , ĤSIC
(3,D)

λ,µ =
1

(n)3

∑

(i,j,q)∈i
n
3

hi,j,q

ĤSIC
(4,D)

λ,µ =
1

(n)4

∑

(i,j,q,r)∈i
n
4

h̃i,j,q,r.

Lemma 8. Let us assume that f = f1 ⊗ f2. Then, the U -statistics ĤSIC
(2,D)

λ,µ , ĤSIC
(3,D)

λ,µ and ĤSIC
(4,D)

λ,µ

are degenerated.
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Proof. According to Theorem 2 of [Gretton et al., 2008], if f = f1 ⊗ f2, we have:

E[hi,j,q,r | Zi] = 0.

We then easily show that ĤSIC
(2,D)

λ,µ is degenerated by writing

E[hi,j | Zi] = E[hi,j,q,r | Zi] = 0. (51)

Moreover, to prove that ĤSIC
(3,D)

λ,µ is degenerated, we have

E[hi,j,q | Zi, Zj ] =E[hi,j,q,r | Zi, Zj ] − E[hi,j | Zi, Zj] − E[hi,q | Zi] − E[hj,q | Zj ]

=hi,j − hi,j (by definition of hi,j and Equation (51)) (52)

=0.

Finally, to show that ĤSIC
(4,D)

λ,µ is degenerated, we write

E[h̃i,j,q,r | Zi, Zj, Zq] =E[hi,j,q,r | Zi, Zj, Zq] − hi,j,q − hi,j − hi,q − hj,q

=0. (53)

Once we have upper bounds of the (1 − α)-quantiles of ĤSIC
(r,D)

λ,µ with r in {2, 3, 4} under the

assumption f = f1 ⊗ f2, an upper bound of the quantile qλ,µ
1−α is naturally obtained. In fact, we can

easily show that,
qλ,µ

1−α ≤ 6qλ,µ
1−α/3,2 + 4qλ,µ

1−α/3,3 + qλ,µ
1−α/3,4

where qλ,µ
1−α,r is the (1 − α)-quantiles of ĤSIC

(r,D)

λ,µ under the assumption f = f1 ⊗ f2.

4.4.1 Upper bound of qλ,µ
1−α,2

In this part, we give an upper bound of qλ,µ
1−α,2. For this, we use the concentration Inequality 3.5, page

15 of [Giné et al., 2000], given for degenerated U-statistics of order 2. We write for all t > 0:

P


|
∑

i,j

hi,j | > t


 ≤ A exp

(
− 1

A
min

[
t

M
,

(
t

L

)2/3

,

(
t

K

)1/2
])

, (54)

where
K = max

i,j
‖hi,j‖∞, M

2 =
∑

i,j

E[h2
i,j ]

L2 = max


‖
∑

i

E
[
h2

i,j (Zi, y)
]

‖∞, ‖
∑

j

E

[
h2

i,j

(
x, Z(j)

)]
‖∞


 .

By setting ε =
t

n2
, and using Equation (54), we obtain

P


 1

n2
|
∑

i,j

hi,j | > ε


 ≤ A exp

(
− 1

A
min

[
n2ε

M
,

(
n2ε

L

)2/3

,

(
n2ε

K

)1/2
])

.

Therefore, we have for all ε > 0,

P


 1

n2
|
∑

i,j

hi,j | > ε


 ≤A exp

(
− 1

A
min

[
n2ε

M
,

(
n2ε

L

)2/3

,

(
n2ε

K

)1/2
])

=Amax

[
exp

(
− n2ε

AM

)
, exp

(
−n4/3ε2/3

AL2/3

)
, exp

(
− nε1/2

AK1/2

)]
.
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By adjusting the constant A, we can replace in the last inequality
1

n2

∑

i,j

hi,j by ĤSIC
(2,D)

λ,µ ,

P

(
|ĤSIC

(2,D)

λ,µ | > ε

)
≤ Amax

[
exp

(
− n2ε

AM

)
, exp

(
−n4/3ε2/3

AL2/3

)
, exp

(
− nε1/2

AK1/2

)]
.

Furthermore, if εα is a positif number verifying

α = Amax

[
exp

(
−n2εα

AM

)
, exp

(
−n4/3ε

2/3
α

AL2/3

)
, exp

(
− nε

1/2
α

AK1/2

)]
.

Then, we can easily show the following inequality

qλ,µ
1−α,2 ≤ εα. (55)

By now, we upper bound εα (and consequently qλ,µ
1−α,2), in the 3 following cases.

Case 1. α = A exp

(
−n2εα

AM

)

In this case, εα is expressed as

εα =
AM

n2

(
log

(
1

α

)
+ log (A)

)
.

We can then upper bound εα as

εα ≤ CM

n2

(
log

(
1

α

)
+ 1

)
.

Furthermore, considering the values of α such that log
(

1
α

)
> 1 and by changing constant C value, we

obtain

εα ≤ CM

n2
log

(
1

α

)
. (56)

Let us upper bound M w.r.t λ, µ and n. For this, we first write

M2 =
∑

i,j

E[h2
i,j ] = n2

E[h2
1,2].

Moreover, using the law of total variance, we have under the hypothesis f = f1 ⊗ f2,

E[h2
1,2] = Var (E[h1,2,3,4 | Z1, Z2])

≤ Var (h1,2,3,4) .

Furthermore, we have shown in Annexe 4.3.2 that,

Var (h1,2,3,4) ≤ C (Mf , p, q)

λ1...λpµ1...µq
.

Hence, we can upper bound M as follows,

M ≤ C (Mf , p, q)n√
λ1...λpµ1...µq

. (57)

Consequently, by combining Equations (56) and (57), we obtain

qλ,µ
1−α,2 ≤ C (Mf , p, q)

n
√
λ1...λpµ1...µq

log

(
1

α

)
. (58)

Case 2. α = A exp

(
−n4/3ε

2/3
α

AL2/3

)

In this case, εα verify that,

ε2/3
α =

AL2/3

n4/3

(
log

(
1

α

)
+ log (A)

)
.
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Thus, εα can be upper bounded as

εα ≤ CL

n2
log

(
1

α

)3/2

, (59)

Let us upper bound L w.r.t n, λ and µ. For this, knowing that hi,j is symmetrical we write

L2 = ‖
∑

i

E[h2
i,j(Zi, y)]‖∞.

Moreover, according to [Gretton et al., 2008] page 10, we have under the hypothesis f = f1 ⊗ f2,

hi,j(Zi, Zj) =
1

6

[
kλ(Xi, Xj) + (kλ).,. − (kλ)i,. − (kλ).,j

][
lµ(Yi, Yj) + (lµ).,. − (lµ)i,. − (lµ).,j

]
,

where (kλ).,. = E[kλ(Xi, Xj)], (kλ)i,. = E[kλ(Xi, Xj) | Xi], (kλ).,j = E[kλ(Xi, Xj) | Xj] and (lµ).,.,
(lµ)i,., (lµ).,j are defined in a similar way.

Hence, we write for all y = (y1, y2) ∈ R2,

h2
i,j(Zi, y) =

1

36

[
kλ(Xi, y1) + (kλ).,. − E[kλ(Xi, Xj) | Xi] − E[kλ(Xi, y1)]

]2

×
[
lµ(Yi, y2) + (lµ).,. − E[lµ(Yi, Yj) | Yi] − E[lµ(Yi, y2)]

]2

.

Therefore, we have the following inequality for h2
i,j(Zi, y),

h2
i,j(Zi, y) ≤ C

[
kλ(Xi, y1)2 + (kλ)2

.,. + E[kλ(Xi, Xj) | Xi]
2 + E[kλ(Xi, y1]2

]

×
[
lµ(Yi, y2)2 + (lµ)2

.,. + E[lµ(Yi, Yj) | Yi]
2 + E[lµ(Yi, y2]2

]
.

Using that (X1, . . . , Xn) and (Y1, . . . , Yn) are independent, we write

L2 ≤ C (Mf )nE

[
kλ(Xi, y1)2 + (kλ)2

.,. + E[kλ(Xi, Xj) | Xi]
2 + E[kλ(Xi, y1]2

]

×E

[
lµ(Yi, y2)2 + (lµ)2

.,. + E[lµ(Yi, Yj) | Yi]
2 + E[lµ(Yi, y2]2

]
.

Each term can be upper bounded by similar arguments as 4.3.2, we then have

L2 ≤ C (Mf)n

(
1 +

1

λ1...λp

)(
1 +

1

µ1...µq

)
.

Thus, using that λ1...λp < 1 and µ1...µq < 1, we obtain:

L ≤ C (Mf)
√
n√

λ1...λpµ1...µq

. (60)

By combining Equations (59) and (60), we have

εα ≤ C (Mf)√
λ1...λpµ1...µqn3/2

[
log

(
1

α

)]3/2

.

Moreover, knowing that λ1...λpµ1...µq < 1, we obtain

εα ≤ C (Mf)

(n
√
λ1...λpµ1...µq)3/2

[
log

(
1

α

)]3/2

. (61)
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Case 3. α = A exp

(
− nε

1/2
α

AK1/2

)

In this case, εα is expressed as

ε1/2
α =

AK1/2

n

(
log

(
1

α

)
+ log (A)

)
.

Using that log
(

1
α

)
> 1 and by adjusting the value of A, we upper bound εα as

εα ≤ AK

n2

[
log

(
1

α

)]2

. (62)

Morover, we can easily show that

K ≤ 4

λ1...λpµ1...µq
. (63)

By combining Equations (62) and (63), we obtain:

qλ,µ
1−α,2 ≤ C

λ1...λpµ1...µqn2

[
log

(
1

α

)]2

. (64)

using (58), (61) and (64) and the fact that
1√

λ1...λpµ1...µqn
log

(
1

α

)
< 1, we have the following

inequality

qλ,µ
1−α,2 ≤ C (‖f1‖∞, ‖f2‖∞, p, q)

n
√
λ1...λpµ1...µq

log

(
1

α

)
. (65)

4.4.2 Upper bound of qλ,µ
1−α,3

In this part, we give an upper bound for the (1 − α)-quantile of ĤSIC
(3,D)

λ,µ . For this, we propose to use
the concentration inequality (c), page 1501 of [Arcones and Gine, 1993]. We write for all t > 0,

P


n−3/2|

∑

i,j,q

hi,j,q| > t


 ≤ A exp

[
− Bt2/3

M2/3 +K1/2t1/6n−1/4

]
, (66)

where K = ‖hi,j,q‖∞, M2 = E[h2
1,2,3] and B an absolute postitive constant.

By setting ε =
t

n3/2
and using Equation (66), we have

P


 1

n3
|
∑

i,j,q

hi,j,q| > ε


 ≤ A exp

[
− Bnε2/3

M2/3 +K1/2ε1/6

]
.

Moreover, by adjusting the value of B, we can write

P

(
|ĤSIC

(3,D)

λ,µ | > ε

)
≤ A exp

[
− Bnε2/3

M2/3 +K1/2ε1/6

]
. (67)

Furthermore, if εα is a positive number verifying

A exp

[
− Bnε

2/3
α

M2/3 +K1/2ε
1/6
α

]
= α, (68)

then, we have the following inequality
qλ,µ

1−α,3 ≤ εα.
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In order to upper bound εα in (68), we set γα = ε
1/6
α and we obtain

Bnγ4
α = K1/2 log

(
A

α

)
γα +M2/3 log

(
A

α

)
. (69)

The polynomial Equation (69) is not resolvable. However, it’s possible to give an upper bound of its
roots. Indeed,

Bnγ4
α ≤ 2 max

[
K1/2γα +M2/3

]
log

(
A

α

)
.

Case 1. max
[
K1/2γα +M2/3

]
= K1/2γα

In this case, γα verify the following inequality,

γ3
α ≤ BK1/2

n

(
log

(
1

α

)
+ log (A)

)
.

Hence,

εα ≤ BK

n2

(
log

(
A

α

))2

.

Since K ≤ 4
λ1...λpµ1...µq

,
1√

λ1...λpµ1...µqn
log

(
1

α

)
< 1 and log

(
1

α

)
> 1, we write

εα ≤ C

n
√
λ1...λpµ1...µq

log

(
1

α

)
.

Case 2. max
[
K1/2γα +M2/3

]
= M2/3

In this case,

γ4
α ≤ BM2/3

n

[
log

(
A

α

)]
.

Therefore, εα can be upper bounded as

εα ≤ BM

n3/2

[
log

(
A

α

)]2

.

Moreover, using the law of total variance, it’s easy to see that under the hypothesis f = f1 ⊗ f2,

M2 = Var (h1,2,3) ≤ C Var (h1,2,3,4) . (70)

Hence, according to Annexe 4.3.2, M can be upper bounded as

M ≤ C(Mf , p, q)√
λ1...λpµ1...µq

.

To conclude, in all cases we have the following inequality for qλ,µ
1−α,3

qλ,µ
1−α,3 ≤ C(‖f1‖∞, ‖f2‖∞, p, q)

n
√
λ1...λpµ1...µq

log

(
1

α

)
.

4.4.3 Upper bound of qλ,µ
1−α,4

In this part, we give an upper bound for the (1 − α)-quantile of ĤSIC
(4,D)

λ,µ . For this, we use the
concentration inequality (d), page 1501 of [Arcones and Gine, 1993]. We have for all t > 0:

P


 1

n2
|
∑

i,j,q,r

h̃i,j,q,r| > t


 ≤ A exp

(
−B

√
t

K

)
,
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where, K = ‖h̃1,2,3,4‖∞.

By setting ε =
t

n2
, we have

P


 1

n4
|
∑

i,j,q,r

h̃i,j,q,r| > ε


 ≤ A exp

(
−Bn

√
ε

K

)
.

Furthermore, by adjusting the constant B, we replace
1

n4

∑

i,j,q,r

h̃i,j,q,r by ĤSIC
(4,D)

λ,µ . We write

P

(
|ĤSIC

(4,D)

λ,µ | > ε

)
≤ A exp

(
−Bn

√
ε

K

)
. (71)

Moreover, if εα is a positive number verifying

A exp

(
−Bn

√
εα

K

)
= α, (72)

then,
qλ,µ

1−α,4 ≤ εα.

By resolving Equation (72), we obtain the following equality

εα =
BK

n2

[
log

(
A

α

)]2

.

Therefore, we can easily show that

εα ≤ CK

n2

[
log

(
1

α

)]2

.

Moreover, by using the Inequality K ≤ 4

λ1...λpµ1...µq
we have

qλ,µ
1−α,4 ≤ C

λ1...λpµ1...µqn2
log

(
1

α

)2

.

Consequently,

qλ,µ
1−α,4 ≤ C

n
√
λ1...λpµ1...µqn

log

(
1

α

)
. (73)

To conclude, the quantile qλ,µ
1−α can be upper bounded under the hypothesis f = f1 ⊗ f2 as follows,

qλ,µ
1−α ≤ C (‖f1‖∞, ‖f2‖∞, p, q)

n
√
λ1...λpµ1...µq

log

(
1

α

)
. (74)

4.5 Proof of Corollary 1

The proof of this corollary is immediately obtained from Lemma 1, Proposition 2 and Proposition 3.

4.6 Proof of Lemma 2

Recalling the formulation of HSICλ,µ(f) given in Equation (1) with k = kλ and l = lµ, we obtain

HSICλ,µ(f) =

∫
kλ(x, x′)lµ(y, y′)f(x, y)f(x′, y′)dxdydx′dy′

−2

∫
kλ(x, x′)lµ(y, y′)f(x, y)f1(x′)f2(y′)dxdydx′dy′

+

∫
kλ(x, x′)lµ(y, y′)f1(x)f2(y)f1(x′)f2(y′)dxdydx′dy′.
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This expression can be compacted using the symmetry of the kernels kλ and lµ:

HSICλ,µ(f) =

∫
kλ(x, x′)lµ(y, y′)

[
f(x, y) − f1(x)f2(y)

][
f(x′, y′) − f1(x′)f2(y′)

]
dxdydx′dy′

=

∫
kλ(x, x′)lµ(y, y′)ψ(x, y)ψ(x′, y′)dxdydx′dy′,

where ψ(x, y) = f(x, y) − f1(x)f2(y).

Thereafter, we reformulate this equation by replacing kλ(x, x′) with ϕλ(x − x′) and replacing lλ(y, y′)
with φµ(y − y′), where ϕλ and φµ are respectively the functions defined in Equations (3) and (4):

HSICλ,µ(f) =

∫
ψ(x, y)

[∫
ψ(x′, y′)ϕλ(x− x′)φµ(y − y′)dx′dy′

]
dxdy

=

∫ ∫
ψ(x, y) [ψ ∗ (ϕλ ⊗ φµ)] (x, y) dxdy

=〈ψ, ψ ∗ (ϕλ ⊗ φµ)〉L2

4.6.1 Proof of Proposition 4

First notice that according to Equations (37) and (48), one can write:

Varf (ĤSICλ,µ) ≤ C

n
Varf (E[h1,2,3,4 | Z1]) +

C (Mf , p, q)

λ1 . . . λpµ1 . . . µqn2
, (75)

where h1,2,3,4 is defined in Equation (36).

To prove the intended result from the last equation, we aim now to upper bound Varf (E[h1,2,3,4 | Z1])

by ‖ψ ∗ (ϕλ ⊗ φµ)‖2
L2

up to a positive constant which depends only on Mf . The following lemma gives
such an upper bound.

Lemma 9. For all λ in (0,+∞)p and µ in (0,+∞)q, we have

Varf (E[h1,2,3,4 | Z1]) ≤ C(Mf ) ‖ψ ∗ (ϕλ ⊗ φµ)‖2
L2
.

Proof. The first step to upper bound Varf (E[h1,2,3,4 | Z1]) is to rewrite h1,2,3,4 by isolating all the terms
depending on Z1.

h1,2,3,4 =
1

4!

(1,2,3,4)∑

(t,u,v,w)

[kt,ult,u + kt,ulv,w − 2kt,ult,v]

=
2

4!

(2,3,4)∑

(u,v,w)

[k1,ul1,u + k1,ulv,w + ku,vl1,w − kw,vlw,1 − ku,1lu,v − k1,ul1,v] +R(Z2, Z3, Z4),

where the last sum represents all triplets (u, v, w) drawn without replacement from (2, 3, 4) andR(Z2, Z3, Z4)
is a random variable depending only on Z2, Z3 and Z4.

Then,

h1,2,3,4 = R(Z2, Z3, Z4) +
1

12

(2,3,4)∑

(u,v,w)

[k1,u(l1,u − l1,v) − ku,1(lu,v − lv,w) − (kw,v − ku,v)l1,w] .
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The random variable R(Z2, Z3, Z4) being independent from Z1, the variance of its expectation condi-
tionally to Z1 is equal to 0. It is then easy to see that Varf (E[h1,2,3,4 | Z1]) can be upper bounded as
follows:

Varf (E[h1,2,3,4 | Z1]) ≤ C
[

Varf (E[k1,2(l1,2 − l1,3) | Z1]) + Varf (E[k2,1(l2,3 − l3,4) | X1])

+ Varf (E[(k2,3 − k4,3)l1,2 | Y1])
]
, (76)

By now, we reformulate the function ψ ∗ (ϕλ ⊗ φµ) in a simpler form in order to link its L2-norm with
the upper bound given in Equation (76). For notational convenience, we denote Gλ,µ = ψ ∗ (ϕλ ⊗ φµ).
We then write

Gλ,µ(x, y) =

∫
ψ(x′, y′)kλ(x, x′)lµ(y, y′) dx′dy′

= Cov (kλ(x,X ′), lµ(y, Y ′)) ,

where the random couple (X ′, Y ′) has f as distribution.

Thereafter, the conditional expectations in Equation (76) can all be expressed as follows:

E[k1,2(l1,2 − l1,3) | Z1] = Gλ,µ(X1, Y1),

E[k2,1(l2,3 − l3,4) | X1]= E [Gλ,µ(X1, Y3) | X1] ,

E[(k2,3 − k4,3)l1,2 | Y1]= E [Gλ,µ(X3, Y1) | Y1] .

Thus, using the law of total variance [Weiss, 2006], we have the following upper bound for Varf (E[h1,2,3,4 | Z1]):

Varf (E[h1,2,3,4 | Z1]) ≤ C

[
Varf (Gλ,µ(X1, Y1)) + Varf (Gλ,µ(X1, Y3)) + Varf (Gλ,µ(X3, Y1))

]
.

On the other hand, it is straightforward to upper bound the three variances in the last equation as

Varf (Gλ,µ(X1, Y1))≤ ‖f‖∞ ‖Gλ,µ‖2
L2
,

Varf (Gλ,µ(X1, Y3))≤ ‖f1 ⊗ f2‖∞ ‖Gλ,µ‖2
L2
,

Varf (Gλ,µ(X3, Y1))≤ ‖f1 ⊗ f2‖∞ ‖Gλ,µ‖2
L2
.

Consequently, combining the three last Equations with Equation (76) gives us the following upper bound
of Varf (E[h1,2,3,4 | Z1]):

Varf (E[h1,2,3,4 | Z1]) ≤ C(Mf ) ‖ψ ∗ (ϕλ ⊗ φµ)‖2
L2
.

We then obtain as a result of Equation (75) and Lemma 9:

Varf (ĤSICλ,µ) ≤
C(Mf ) ‖ψ ∗ (ϕλ ⊗ φµ)‖2

L2

n
+

C (Mf , p, q)

λ1 . . . λpµ1 . . . µqn2
.

4.7 Proof of Theorem 1

We aim here to give a condition on the L2-norm of ψ = f − f1 ⊗ f2 so that the second type error of the
test ∆λ,µ

α is controlled by a given β in (0, 1). For this, we first recall that Lemma 1 gives such a condition

on the theoretical value HSICλ,µ(f). More specifically, Pf (ĤSICλ,µ ≤ qλ,µ
1−α) ≤ β as soon as

HSICλ,µ(f) >

√
Varf (ĤSICλ,µ)

β
+ qλ,µ

1−α.

On the other hand, using the upper bound given in Proposition 3 for the quantile qλ,µ
1−α and the upper

bound of the variance Var(ĤSICλ,µ) provided by Proposition 4, one can easily deduce that if

max (λ1 . . . λp, µ1 . . . µq) < 1 and n
√
λ1 . . . λpµ1 . . . µq > log

(
1

α

)
> 1, (77)
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then we have the following inequality:

√
Varf (ĤSICλ,µ)

β
+ qλ,µ

1−α ≤
C(Mf , β) ‖ψ ∗ (ϕλ ⊗ φµ)‖

L2√
n

+
C (Mf , p, q, β)

n
√
λ1 . . . λpµ1 . . . µq

log

(
1

α

)
.

Under the conditions given in (77), a sufficient for the test ∆λ,µ
α to have a second error at most equal to

β is then

HSICλ,µ(f) >
C(Mf , β) ‖ψ ∗ (ϕλ ⊗ φµ)‖

L2√
n

+
C (Mf , p, q)

n
√
λ1 . . . λpµ1 . . . µq

log

(
1

α

)
.

On the other hand, according to Lemma 2, we have

HSICλ,µ(f) =
1

2

(
‖ψ‖2

L2
+ ‖ψ ∗ (ϕλ ⊗ φµ)‖2

L2
− ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖2

L2

)
.

We can then convert the condition on HSICλ,µ(f) in a condition in terms of ‖ψ‖2
L2

. Indeed, under the

conditions given in (77), Pf (ĤSICλ,µ ≤ qλ,µ
1−α) ≤ β as soon as

‖ψ‖2
L2
> ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖2

L2
+

C (Mf , p, q, β)

n
√
λ1 . . . λpµ1 . . . µq

log

(
1

α

)
+R(Mf , β, λ, µ, n),

where R(Mf , β, λ, µ, n) =
C(Mf , β) ‖ψ ∗ (ϕλ ⊗ φµ)‖

L2√
n

− ‖ψ ∗ (ϕλ ⊗ φµ)‖2
L2

.

By now, let us show that R(Mf , β, λ, µ, n) can be upper bounded by 1/n up to a postive constant
depending only on Mf and β. For this, we simply use that for all a > 0 and b > 0, we have the
inequality: 2ab < a2 + b2. We then write

C(Mf , β) ‖ψ ∗ (ϕλ ⊗ φµ)‖
L2√

n
≤ C(Mf , β)

n
+ ‖ψ ∗ (ϕλ ⊗ φµ)‖2.

We then obtain the following inequality:

R(Mf , β, λ, µ, n) ≤ C(Mf , β)

n
.

Consequently, under the conditions given in (77), Pf (ĤSICλ,µ ≤ qλ,µ
1−α) ≤ β as soon as

‖ψ‖2
L2
> ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖2

L2
+

C (Mf , p, q, β)

n
√
λ1 . . . λpµ1 . . . µq

log

(
1

α

)
.

4.8 Proof of Lemma 3

The objective here is the provide an upper bound of the bias term ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖2
L2

w.r.t λ and µ,

when ψ ∈ Sδ
p+q(R), where δ ∈ (0, 2]. We first set b = ψ∗(ϕλ⊗φµ)−ψ, using that b ∈ L1(Rp+q)∩L2(Rp+q),

Plancherel’s theorem gives that

(2π)p+q ‖b‖2
L2

=‖b̂‖2
L2

=‖(1 − ̂ϕλ ⊗ φµ)ψ̂‖2
L2
. (78)

Let us denote g1 as in Equation (2), the real function defined for all z ∈ R as g1(z) =
1√
2π

exp(−z2/2).

We then obviously have the following equation:

ϕλ ⊗ φµ(x, y) =

p∏

i=1

1

λi
g1

(
xi

λi

) q∏

j=1

1

µj
g1

(
yj

µj

)
.
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Moreover, it is quite known that ĝ1 =
√

2πg1, and that the Fourier transform of the product of functions
with separate variables is the product of Fourier transform of each of these functions. We also recall that
if G is a real function and a > 0 then, the Fourier transform of z 7→ 1/a · G (z/a) is u 7→ Ĝ (au). We
then obtain

̂ϕλ ⊗ φµ(ξ, ζ) =(2π)
p+q

2

p∏

i=1

g1(λiξi)

q∏

j=1

g1(µjζj)

= exp
(
−(λ2

1ξ
2
1 + . . .+ λ2

pξ
2
p + µ2

1ζ
2
1 + . . .+ µ2

qζ
2
q )/2

)
.

Thereafter, using Equation (78), the bias term ‖b‖2
L2

can then expressed as follows

‖b‖2
L2

=
1

(2π)p+q

∫ (
1 − exp

(
−(λ2

1ξ
2
1 + . . .+ λ2

pξ
2
p + µ2

1ζ
2
1 + . . .+ µ2

qζ
2
q )/2

))2

|ψ̂(ξ, ζ)|2 dξdζ

=
1

(2π)p+q

∫
(

1 − exp
(
−(λ2

1ξ
2
1 + . . .+ λ2

pξ
2
p + µ2

1ζ
2
1 + . . .+ µ2

qζ
2
q )/2

))2

‖(ξ, ζ)‖2δ
2

‖(ξ, ζ)‖2δ
2 |ψ̂(ξ, ζ)|2 dξdζ.

(79)

In order to upper bound the last integral, one can first notice that for all λ, ξ in (0,+∞)p and µ, ζ in
(0,+∞)p, we have: λ2

1ξ
2
1 + . . .+ λ2

pξ
2
p + µ2

1ζ
2
1 + . . .+ µ2

qζ
2
q ≤ ‖(λ, µ)‖2

2‖(ξ, ζ)‖2
2. We then obtain:

sup
(ξ,ζ)∈Rp+q\{0}

1 − exp
(
−(λ2

1ξ
2
1 + . . .+ λ2

pξ
2
p + µ2

1ζ
2
1 + . . .+ µ2

qζ
2
q )/2

)

‖(ξ, ζ)‖δ
2

≤ sup
(ξ,ζ)∈Rp+q\{0}

1 − exp
(
−‖(λ, µ)‖2

2‖(ξ, ζ)‖2
2/2
)

‖(ξ, ζ)‖δ
2

= ‖(λ, µ)‖δ
2 sup

H>0

1 − exp (−H/2)

Hδ/2
.

For δ in (0, 2], the function H → 1 − exp (−H/2)

Hδ/2
is bounded in (0,+∞). Indeed, it is continuous on

(0,+∞), tends to 0 in +∞ and has a finite limit at 0 (1/2 if δ = 2 and 0 else). Hence, we obtain the
following inequality:

sup
(ξ,ζ)∈Rp+q\{0}

(
1 − exp

(
−(λ2

1ξ
2
1 + . . .+ λ2

pξ
2
p + µ2

1ζ
2
1 + . . .+ µ2

qζ
2
q )/2

))2

‖(ξ, ζ)‖2δ
2

≤ C(δ)‖(λ, µ)‖2δ
2 .

Thereafter, using Hölder’s inequality, it is straightforward to see that

‖(λ, µ)‖2δ
2 ≤ C(δ)




p∑

i=1

λ2δ
i +

q∑

j=1

µ2δ
j


 .

Hence, combining the two last inequalities gives

‖b‖2
L2

≤ C(δ)




p∑

i=1

λ2δ
i +

q∑

j=1

µ2δ
j



∫

‖(ξ, ζ)‖2δ
2 |ψ̂(ξ, ζ)|2 dξdζ.

Recalling that ψ belongs to the Sobolev ball Sδ
p+q(R), we obtain

‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖2
L2

≤ C(R, δ)




p∑

i=1

λ2δ
i +

q∑

j=1

µ2δ
j


 .
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4.9 Proof of Theorem 2

We easily deduce from Theorem 1 and Lemma 3 that if ψ belongs to the Sobolev balls Sδ
d(R) with δ in

(0, 2], Pf (ĤSICλ,µ ≤ qλ,µ
1−α) ≤ β as soon as

‖ψ‖2
L2
> C(R, δ)




p∑

i=1

λ2δ
i +

q∑

j=1

µ2δ
j


+

C (Mf , p, q, β)

n
√
λ1 . . . λpµ1 . . . µq

log

(
1

α

)
.

It now follows from the definition (6) of the uniform separation rate that

[
ρ
(
∆λ,µ

α ,Sδ
p+q(R), β

)]2 ≤ C(R, δ)




p∑

i=1

λ2δ
i +

q∑

j=1

µ2δ
j


+

C (Mf , p, q, β)

n
√
λ1 . . . λpµ1 . . . µq

log

(
1

α

)
.

4.10 Proof of Corollary 2

The objective here is to give the uniform separation rate having the smallest upper bound w.r.t. the
sample-size n, when ψ belongs to a Sobolev ball Sδ

d(R) with δ in (0, 2]. For this, we recall that according
to Theorem 2, we have:

[
ρ
(
∆λ,µ

α ,Sδ
p+q(R), β

)]2 ≤ C(R, δ)




p∑

i=1

λ2δ
i +

q∑

j=1

µ2δ
j


+

C (Mf , p, q, β)

n
√
λ1 . . . λpµ1 . . . µq

log

(
1

α

)
.

In order to have the smallest behaviour of the right side of the last inequality w.r.t. n, one has then to
choose bandwidths λ∗ = (λ∗

1, . . . , λ
∗
p) and µ∗ = (µ∗

1, . . . , µ
∗
q) w.r.t. n in such a way that

p∑

i=1

λ∗2δ
i +

q∑

j=1

µ∗2δ
j and

1

n
√
λ∗

1 . . . λ
∗
pµ

∗
1 . . . µ

∗
q

have the same behaviour in n. Thereafter, it is clear that all λ∗
i ’s and µ∗

j ’s have the same behaviour
w.r.t. n. It obviously follows than for all i in {1, . . . , p} and all j in {1, . . . , q}, we have:

λ∗
i = µ∗

j = n− 2
4δ+(p+q) .

Consequently, the separation rate ρ
(
∆λ∗,µ∗

α ,Sδ
p+q(R), β

)
can be upper bound as

ρ
(

∆λ∗,µ∗

α ,Sδ
p+q(R), β

)
≤ C (Mf , p, q, α, β, δ)n

− 2δ
4δ+(p+q) .

4.11 Proof of Lemma 4

The objective here is to give an upper bound of the bias term ‖ψ − ψ ∗ (ϕλ ⊗ φµ)‖2
L2

w.r.t. λ and µ,

when ψ belongs to a Nikol’skii-Besov ball N δ
2,p+q(R), with δ = (ν1, . . . , νp, γ1, . . . , γq) in (0, 2]p+q. We

first set b = ψ ∗ (ϕλ ⊗ φµ) − ψ and we write

b(x, y) =ψ ∗ (ϕλ ⊗ φµ)(x, y) − ψ(x, y)

=

∫
ψ(x′, y′)ϕλ(x− x′)φµ(y − y′)dx′dy′ − ψ(x, y).

Moreover, using Equations (3) and (4), the fonction b can be written in terms of the functions gp and gq

defined in Equation (2):

b(x, y) =
1

λ1 . . . λpµ1 . . . µq

∫
ψ(x′, y′)gp

(
x1 − x′

1

λ1
, . . . ,

xp − x′
p

λp

)
gq

(
y1 − y′

1

µ1
, . . . ,

yq − y′
q

µp

)
dx′dy′ − ψ(x, y)

=

∫
ψ(x1 + λ1u1, . . . , xp + λpup, y1 + µ1v1, . . . , yq + µqvq)gp(u1, . . . , up)gq(v1, . . . , vq) dudv − ψ(x, y).
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Thereafter, using that

∫

Rp

gp =

∫

Rq

gq = 1, the function b can be expressed as

b(x, y) =

∫
gp(u1, . . . , up)gq(v1, . . . , vq)

[
ψ(x1+λ1u1, . . . , xp+λpup, y1+µ1v1, . . . , yq+µqvq)−ψ(x, y)

]
dudv.

Let us from now define for all i in {1, . . . , p} and j in {1, . . . , q}, the functions b1,i and b2,j by

b1,i(x, y) =

∫
gp(u1, . . . , up)gq(v1, . . . , vq)ω1,i(x, y, u1, . . . , ui) dudv

b2,j(x, y) =

∫
gp(u1, . . . , up)gq(v1, . . . , vq)ω2,j(x, y, u1, . . . , up, v1, . . . , vj) dudv,

where the function ω1,i is defined as

ω1,i(x, y, u1, . . . , ui) = ψ(x1+λ1u1, . . . , xi+λiui, xi+1, . . . , xp, y)−ψ(x1+λ1u1, . . . , xi−1+λi−1ui−1, xi, . . . , xp, y),

while the function ω2,j is defined as

ω2,j(x, y, u1, . . . , up, v1, . . . , vj) = ψ(x1 + λ1u1, . . . , xp + λpup, y1 + µ1v1, . . . , yj + µjvj , yj+1, . . . , yq)

− ψ(x1 + λ1u1, . . . , xp + λpup, y1 + µ1v1, . . . , yj−1 + µj−1vj−1, yj , . . . , yq).

It is then easy to see that the function b is the sum of all the functions b1,i and b2,j :

b(x, y) =

p∑

i=1

b1,i(x, y) +

q∑

j=1

b2,j(x, y).

One can then deduce that it would be sufficient for the control of the L2-norm of b, to control the
L2-normes of all the functions b1,i and b2,j. Using the triangular inequality, we have:

‖b‖L2 ≤
p∑

i=1

‖b1,i‖L2 +

q∑

j=1

‖b2,j‖L2 . (80)

By now, let us upper bound ‖b1,i‖2
L2

and ‖b2,j‖2
L2

for all i in {1, . . . , p} and j in {1, . . . , q}. We distinguish
two cases:

Case 1. 0 < νi ≤ 1
We first recall that ‖b1,i‖2

L2
can be written as

‖b1,i‖2
L2

=

∫ [∫
gp(u1, . . . , up)gq(v1, . . . , vq)ω1,i(x, y, u1, . . . , ui) dudv

]2

dxdy.

We use the following lemma from page 13 of [Tsybakov, 2009].

Lemma 10. Let ρ : Rd × Rd′ → R be a Borel function, then we have the following inequality:

∫ (∫
ρ(θ, z)dθ

)2

dz ≤
[∫ (∫

ρ2(θ, z)dz

)1/2

dθ

]2

.

By applying Lemma 10 to the function ((u, v), (x, y)) 7→ gp(u1, . . . , up)gq(v1, . . . , vq)ω1,i(x, y, u1, . . . , ui),
we obtain:

‖b1,i‖2
L2

≤
[∫ (∫

g2
p(u1, . . . , up)g2

q(v1, . . . , vq)ω2
1,i(x, y, u1, . . . , ui) dxdy

)1/2

dudv

]2

=

[∫
gp(u1, . . . , up)gq(v1, . . . , vq)

(∫
ω2

1,i(x, y, u1, . . . , ui) dxdy

)1/2

dudv

]2

. (81)
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On the other hand, since ψ belongs to the Nikol’skii-Besov ball N δ
2,p+q(R), we have:

(∫
ω2

1,i(x, y, u1, . . . , ui) dxdy

)1/2

≤ Rλνi

i |ui|νi .

We then have by injecting this last inequation in Equation (81), that

‖b1,i‖2
L2

≤ C(R, νi)λ
2νi

i .

Case 2. 1 < νi ≤ 2
In this case the function ψ has continuous first-order partial derivatives. Using Taylor expansion with
integral form of the remainder w.r.t. the ith variable of ψ, we have:

ω1,i(x, y, u1, . . . , ui) = λiui

∫ 1

0

(1 − τ)D1
i ψ(x1 + λ1u1, . . . , xi + τλiui, xi+1, . . . , y)dτ.

where D1
i denotes the first-order partial derivative of ψ w.r.t. the ith variable.

Thereafter, by injecting the last equation in the expression of b1,i, we obtain:

b1,i(x, y) =

∫
λiuigp(u1, . . . , up)gq(v1, . . . , vq)

[∫ 1

0

(1−τ)D1
i ψ(x1+λ1u1, . . . , xi+τλiui, xi+1, . . . , y)dτ

]
dudv.

Furthermore, using the fact that gp is the density function of the multivariate normal distribution with

mean 0 and covariance matrix equals identity, we have that

∫
uigp(u1, . . . , up)dui = 0. The function b1,i

can then be written as

b1,i(x, y) =

∫
λiuigp(u1, . . . , up)gq(v1, . . . , vq)

[∫ 1

0

(1 − τ)D1
i ω1,i(x, y, u1, . . . , τui) dτ

]
dudv.

We have then the following equation for the L2-norm of b1,i:

‖b1,i‖2
L2

=

∫ [∫
λiuigp(u1, . . . , up)gq(v1, . . . , vq)

(∫ 1

0

(1 − τ)D1
i ω1,i(x, y, u1, . . . , τui) dτ

)
dudv

]2

dxdy.

By now, we use as in case 1 Lemma 10 in order to upper bound ‖b1,i‖2
L2

. We then obtain:

‖b1,i‖2
L2

≤
(∫ [∫ (

λiuigp(u1, . . . , up)gq(v1, . . . , vq)

∫ 1

0

(1 − τ)D1
i ω1,i(x, y, u1, . . . , τui) dτ

)2

dxdy

]1/2

dudv

)2

=

(∫
λiuigp(u1, . . . , up)gq(v1, . . . , vq)

[∫ (∫ 1

0

(1 − τ)D1
i ω1,i(x, y, u1, . . . , τui) dτ

)2

dxdy

]1/2

dudv

)2

.

We apply a second time Lemma 10. For this, consider the function ρ ((x, y), τ) = (1−τ)D1
i ω1,i(x, y, u1, . . . , τui),

we then have:

‖b1,i‖2
L2

≤
(∫

λiuigp(u1, . . . , up)gq(v1, . . . , vq)

[∫ 1

0

(1−τ)

(∫ (
D1

i ω1,i(x, y, u1, . . . , τui)
)2
dxdy

)1/2

dτ

]
dudv

)2

.

(82)
On the other hand, using that ψ belongs to the Nikol’skii-Besov ball N δ

2,p+q(R):

(∫ (
D1

i ω1,i(x, y, u1, . . . , τui)
)2
dxdy

)1/2

≤ Rλνi−1
i |τui|νi−1.

We then obtain by injecting this last inequation in Equation (82), that

‖b1,i‖2
L2

≤ C(R, νi)λ
2νi

i .
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Besides, for all j in {1, . . . , q}, by similar arguments:

‖b2,j‖2
L2

≤ C(R, γj)µ
2γj

j .

Consequently, according to Equation (80), we have the following upper bound of ‖b‖2
L2

:

‖b‖2
L2

≤ C(R, δ)




p∑

i=1

λ2νi

i +

q∑

j=1

µ
2γj

j


 .

4.12 Proof of Theorem 3

The proof of this theorem is similar to that of Theorem 2. Indeed, assuming the conditions of The-
orem 1, we have according to this theorem and Lemma 4 that if ψ belongs to N δ

2,p+q(R), with δ =

(ν1, . . . , νp, γ1, . . . , γq) in (0, 2]p+q: Pf (ĤSICλ,µ ≤ qλ,µ
1−α) ≤ β as soon as

‖ψ‖2
L2
> C(R, δ)




p∑

i=1

λ2νi

i +

q∑

j=1

µ
2γj

j


+

C (Mf , p, q, β)

n
√
λ1 . . . λpµ1 . . . µq

log

(
1

α

)
.

One can then conclude from the definition (6) of the uniform separation rate that

[
ρ
(
∆λ,µ

α ,N δ
2,p+q(R), β

)]2 ≤ C(R, δ)




p∑

i=1

λ2νi

i +

q∑

j=1

µ
2γj

j


+

C (Mf , p, q, β)

n
√
λ1 . . . λpµ1 . . . µq

log

(
1

α

)
.

4.13 Proof of Corollary 3

We aim here to give the uniform separation rate having the smallest upper bound w.r.t. the sample-size
n, when ψ belongs to a Nikol’skii-Besov ball N δ

2,p+q(R), with δ = (ν1, . . . , νp, γ1, . . . , γq) in (0, 2]p+q. We
first recall that Theorem 3 shows that:

[
ρ
(
∆λ,µ

α ,N δ
2,p+q(R), β

)]2 ≤ C(R, δ)




p∑

i=1

λ2νi

i +

q∑

j=1

µ
2γj

j


+

C (Mf , p, q, β)

n
√
λ1 . . . λpµ1 . . . µq

log

(
1

α

)
.

So as to minimize the right side of the last inequality w.r.t. n, we have to choose bandwidths λ∗ =
(λ∗

1, . . . , λ
∗
p) and µ∗ = (µ∗

1, . . . , µ
∗
q) w.r.t. n such as




p∑

i=1

λ∗2νi

i +

q∑

j=1

µ
∗2γj

j


 and

1

n
√
λ∗

1 . . . λ
∗
pµ

∗
1 . . . µ

∗
q

have the same behaviour in n. Let us set for all i in {1, . . . , p} and all j in {1, . . . , q}, λ∗
i = nai and

µ∗
j = nbj . It is than clear that for all i and all j:

2aiνi = 2bjγj = −1

2

[
p∑

r=1

ar +

q∑

s=1

bs

]
− 1. (83)

One can first express all ai’s and all bj ’s w.r.t a1 as

ai = a1
ν1

νi
and bj = a1

ν1

γj
.

Thereafter, using Equation (83) we have the following:

2a1ν1 =
−a1ν1

2η
− 1.
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We then first write that a1 =
−2η

ν1(4η + 1)
. We next obtain for all i and for all j that:

ai =
−2η

νi(4η + 1)
and bj =

−2η

γj(4η + 1)
.

Consequently, the separation rate ρ
(
∆λ∗,µ∗

α ,N δ
2,p+q(R), β

)
can be upper bound as

ρ
(

∆λ∗,µ∗

α ,N δ
2,p+q(R), β

)
≤ C (Mf , p, q, α, β, δ)n

− 2η

(1+4η) .

4.14 Proof of Lemma 5

Let α be in (0, 1), we first prove that uα ≥ α. For this, we apply Bonferroni’s Inequality:

Pf1⊗f2

(
sup

(λ,µ)∈Λ×U

(
ĤSICλ,µ − qλ,µ

1−αe−ωλ,µ

)
> 0

)

=Pf1⊗f2

( ⋃

(λ,µ)∈Λ×U

{
ĤSICλ,µ > qλ,µ

1−αe−ωλ,µ

})

≤
∑

(λ,µ)∈Λ×U

Pf1⊗f2

(
ĤSICλ,µ > qλ,µ

1−αe−ωλ,µ

)

≤
∑

(λ,µ)∈Λ×U

αe−ωλ,µ

≤ α.

Then, by definition of uα we have: uα ≥ α. Thereafter, we obtain:

Pf (∆α = 0) = Pf

( ⋂

(λ,µ)∈Λ×U

{
ĤSICλ,µ ≤ qλ,µ

1−uαe−ωλ,µ

})

≤ inf
(λ,µ)∈Λ×U

Pf

(
ĤSICλ,µ ≤ qλ,µ

1−uαe−ωλ,µ

)

≤ inf
(λ,µ)∈Λ×U

Pf

(
ĤSICλ,µ ≤ qλ,µ

1−αe−ωλ,µ

)

= inf
(λ,µ)∈Λ×U

{
Pf

(
∆λ,µ

αe−ωλ,µ
= 0
)}

,

which concludes the proof.

4.15 Proof of Theorem 4

Let α and β be in (0, 1). According to Lemma 5, Pf (∆α = 0) ≤ β as soon as there exists (λ, µ) in Λ ×U
such that

Pf

(
∆λ,µ

αe−ωλ,µ
= 0
)

≤ β.

Then, according to Theorem 2 (resp. Theorem 3) if ψ belongs to N δ
2,p+q(R) (resp. ψ belongs to Sδ

p+q(R)):
we take the infimum of the upper bounds for the uniform separation rates of the single tests over Λ ×U

while replacing log

(
1

α

)
by log

(
1

α

)
+ ωλ,µ.

4.16 Proof of Corollary 4

Let us start with the case where ψ belongs to N δ
2,p+q(R). In this case, using Theorem 4, we have the

following inequality for ρ
(
∆α,N δ

2,p+q(R), β
)
,

[
ρ
(
∆α,N δ

2,p+q(R), β
)]2 ≤ C (Mf , p, q, β, δ) inf

(λ,µ)∈Λ×U

{
1√

λ1 . . . λpµ1 . . . µqn

(
log

(
1

α

)
+ ωλ,µ

)
+




p∑

i=1

λ2νi

i +

q∑

j=1

µ
2γj

j



}
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Let us take λ∗ = (2−m∗
1,1 , . . . , 2−m∗

1,p) and µ∗ = (2−m∗
2,1 , . . . , 2−m∗

2,q ), where the integersm∗
1,1, . . . ,m

∗
1,p,m

∗
2,1, . . . ,m

∗
2,q

are defined as follows

m∗
1,i =

⌊
log2

((
n

log log(n)

) 2η

νi(1+4η)
)⌋

and m∗
2,j =

⌊
log2

((
n

log log(n)

) 2η

γj (1+4η)
)⌋

.

where
1

η
=

p∑

i=1

1

νi
+

q∑

j=1

1

γj
.

Then, we obviously have

[
ρ
(
∆α,N δ

2,p+q(R), β
)]2 ≤ C (Mf , p, q, β, δ)

[
1√

λ∗
1 . . . λ

∗
pµ

∗
1 . . . µ

∗
qn

(
log

(
1

α

)
+ ωλ∗,µ∗

)
+

p∑

i=1

(λ∗
i )2νi +

q∑

j=1

(µ∗
j )2γj

]
.

Besides, using the inequalities

m∗
1,i ≤ log2

((
n

log log(n)

) 2η

νi(1+4η)
)

and m∗
2,j ≤ log2

((
n

log log(n)

) 2η

γj (1+4η)
)
,

we upper bound (λ∗
i )−1/2 and (µ∗

j )−1/2 by

(λ∗
i )−1/2 = 2m∗

1,i/2 ≤
(

n

log log(n)

) η

νi(1+4η)

and µ∗
j = 2m∗

2,j/2 ≤
(

n

log log(n)

) η

γj (1+4η)

.

Therefore, we obtain

(λ∗
1 . . . λ

∗
pµ

∗
1 . . . µ

∗
q)−1/2 ≤

(
n

log log(n)

) 1
(1+4η)

. (84)

Let us now upper bound ωλ∗,µ∗ , we first write

ωλ∗,µ∗ = 2

p∑

i=1

log(m∗
1,i × π/

√
6) + 2

q∑

j=1

log(m∗
2,j × π/

√
6)

= 2 log
(
m∗

1,1 . . .m
∗
1,pm

∗
2,1 . . .m

∗
2,q

)
+ 2(p+ q) log(π/

√
6).

Moreover, it is easy to see that

m∗
1,i ≤ 2η

νi(1 + 4η)
log(n) and µ∗

j ≤ 2η

γj(1 + 4η)
log(n).

Then,
log(m∗

1,1 . . .m
∗
1,pm

∗
2,1 . . .m

∗
2,q) ≤ C(δ) log log(n).

Thereafter, ωλ∗,µ∗ can be upper bound as

ωλ∗,µ∗ ≤ C(δ) log log(n). (85)

From Equations (84) and (85), we have

1

n
√
λ∗

1 . . . λ
∗
pµ

∗
1 . . . µ

∗
q

(
log

(
1

α

)
+ ωλ∗,µ∗

)
≤ C(α, δ)

(
log log(n)

n

) 4η

(1+4η)

. (86)

We aim now to upper bound
∑p

i=1(λ∗
i )2νi +

∑q
j=1(µ∗

j )2γj . For this, we first write

m∗
1,i ≥ log2

((
n

log log(n)

) 2η

νi(1+4η)
)

− 1 and m∗
2,j ≥ log2

((
n

log log(n)

) 2η

γj (1+4η)
)

− 1.
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We then have the following inequalities for (λ∗
i )2νi and (µ∗

j )2γj ,

(λ∗
i )2νi ≤ 22νi

(
log log(n)

n

) 4η

(1+4η)

and (µ∗
j )2γj ≤ 22γj

(
log log(n)

n

) 4η

(1+4η)

.

Therefore, we obtain
p∑

i=1

(λ∗
i )2νi +

q∑

j=1

(µ∗
j )2γj ≤ C(δ)

(
log log(n)

n

) 4η

(1+4η)

. (87)

Consequently, from Equations (86) and (87),

ρ
(
∆α,N δ

2,p+q(R), β
)

≤ C (Mf , p, q, α, β, δ)

(
log log(n)

n

) 2η

(1+4η)

.

In the case where ψ belongs to Sδ
p+q(R), the same arguments above is applied by taking δ1 = . . . =

δp = γ1 = . . . = γq = δ, lead to

ρ
(
∆α,Sδ

p+q(R), β
)

≤ C (Mf , p, q, α, β, δ)

(
log log(n)

n

) 2η

(1+4η)

,

where
1

η
= (p+ q)

1

δ
.
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