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On the Problem of Pillai with Tribonacci Numbers and Powers of 3

Let (T n ) n≥0 be the sequence of tribonacci numbers defined by T 0 = 0, T 1 = T 2 = 1, and T n+3 = T n+2 +T n+1 +T n for all n ≥ 0. In this note, we find all integers c admitting at least two representations as a difference between a tribonacci number and a power of 3.

Introduction

We consider the sequence (T n ) n≥0 of tribonacci numbers defined by T 0 = 0, T 1 = 1, T 2 = 1, and T n+3 = T n+2 + T n+1 + T n for all n ≥ 0.

The tribonacci sequence is sequence A000073 on the Online Encyclopedia of Integer Sequences (OEIS) [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF]. The first few terms of the tribonacci sequence are (T n ) n≥0 = 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, . . . .

In this paper, we study the Diophantine equation

T n -3 m = c, (1) 
for a fixed integer c and variable integers n and m. In particular, we are interested in finding those integers c admitting at least two representations as a difference between a tribonacci number and a power of 3. This equation is a variation of the Pillai equation

a x -b y = c, (2) 
where x, y are non-negative integers and a, b, c are fixed positive integers.

In the 1930's, Pillai [START_REF] Pillai | On a x -b y = c[END_REF][START_REF] Pillai | A correction to the paper On a x -b y = c[END_REF] conjectured that for any given integer c ≥ 1, the number of positive integer solutions (a, b, x, y), with x ≥ 2 and y ≥ 2 to the equation ( 2) is finite. This conjecture is still open for all c = 1. The case c = 1 is the conjecture of Catalan which was proved by Mihȃilescu [START_REF] Mihȃilescu | Primary cyclotomic units and a proof of Catalan's conjecture[END_REF]. The work of Pillai work was an extension of the work of Herschfeld [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF][START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF], who had already studied a particular case of the problem with (a, b) = (2, 3). Since then, different variations of the Pillai equation have been studied. Several recent results for the different variations of the Pillai problem involving Fibonacci numbers, tribonacci numbers, Pell numbers, k-generalized Fibonacci numbers, and other linearly recurrent sequences, with powers of 2, have been completely studied. For example, see [START_REF] Bravo | On Pillai's problem with tribonacci numbers and powers of 2[END_REF][START_REF] Chim | On a variant of Pillai's problem[END_REF][START_REF] Chim | On a variant of Pillai's problem II[END_REF][START_REF] Ddamulira | On the problem of Pillai with Fibonacci numbers and powers of 3, To appear in[END_REF][START_REF] Ddamulira | On a problem of Pillai with Fibonacci numbers and powers of 2[END_REF][START_REF] Ddamulira | On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2[END_REF][START_REF] Hernane | On Pillai's problem with Pell numbers and powers of 2[END_REF][START_REF] Hernández Hernández | On Pillai's problem with the Fibonacci and Pell sequences, To appear in[END_REF].

We discard the situation when n = 1 and just count the solutions for n = 2 since T 1 = T 2 = 1. The reason for the above convention is to avoid trivial parametric families such as 1 -3 m = T 1 -3 m = T 2 -3 m . Thus, we always assume that n ≥ 2. The main aim of this paper is to prove the following result.

Theorem 1. The only integers c having at least two representations of the form T n -3 m with n ≥ 2 and m ≥ 0, are c ∈ {-2, 0, 1, 4}. Furthermore, all the representations of the above integers as T n -3 m with integers n ≥ 2 and m ≥ 0 are given by

-2 = T 5 -3 2 = T 2 -3 1 , 0 = T 9 -3 4 = T 2 -3 0 , (3) 1 = T 4 -3 1 = T 3 -3 0 , 4 = F 6 -3 2 = T 5 -3 1 .

Preliminary results

The tribonacci sequence

The characteristic polynomial of the tribonacci sequence (T n ) n≥0 is given by

Ψ(x) := x 3 -x 2 -x -1. Ψ(x) is irreducible in Q[x]
, and has a positive real zero

α = 1 3 1 + (19 + 3 √ 33) 1/3 + (19 -3 √ 33) 1/3 ,
lying strictly outside the unit circle and two complex conjugate zeros β and γ lying strictly inside the unit circle. Furthermore, |β| = |γ| = α -1/2 . According to Dresden and Zu [START_REF] Dresden | A simplified Binet formula for r-generalized Fibonacci numbers[END_REF], a Binet-like formula for the k-generalized Fibonacci sequences is established. For the tribonacci sequence, it states that

T n = C α α n-1 + C β β n-1 + C γ γ n-1 for all n ≥ 1, (4) 
where C X = (X -1)/(4X -6). Dresden and Zu [START_REF] Dresden | A simplified Binet formula for r-generalized Fibonacci numbers[END_REF], also showed that the contribution of the complex conjugate zeros β and γ to the right-hand side of ( 4) is very small. More precisely,

T n -C α α n-1 < 1 2 for all n ≥ 1. ( 5 
)
The minimal polynomial of C α over the integers is given by

44X 3 -44X 2 + 12X -1, has zeros C α , C β , C γ with |C α |, |C β |, |C γ | < 1. Numerically, 1.83 < α < 1.84, 0.73 < |β| = |γ| = α -1/2 < 0.74, 0.61 < |C α | < 0.62, 0.19 < |C β | = |C γ | < 0.20.
It is also a well known fact (see [START_REF] Bravo | On Pillai's problem with tribonacci numbers and powers of 2[END_REF][START_REF] Ddamulira | On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2[END_REF]) that

α n-2 ≤ T n ≤ α n-1 holds for all n ≥ 1. ( 6 
)
Let K := Q(α, β) be the splitting field of the polynomial Ψ over Q. Then, [K, Q] = 6. Furthermore, [Q(α) : Q] = 3. The Galois group of K over Q is given by 1), (αβ), (αγ), (βγ), (αβγ), (αγβ)} ∼ = S 3 .

G := Gal(K/Q) ∼ = {(
Thus, we identify the automorphisms of G with the permutations of the zeros of the polynomial Ψ. For example, the permutation (αγ) corresponds to the automorphism σ : α → γ, γ → α, β → β.

Linear forms in logarithms

In order to prove Theorem 1, we need to use several times a Baker-type lower bound for a nonzero linear form in logarithms of algebraic numbers. There are many such bounds in the literature like that of Baker and Wüstholz [2]. We use the one of Matveev [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II[END_REF]. Matveev [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II[END_REF] proved the following theorem, which is one of our main tools in this paper.

Let γ be an algebraic number of degree d with minimal primitive polynomial over the integers

a 0 x d + a 1 x d-1 + • • • + a d = a 0 d i=1 (x -γ (i) ),
where the leading coefficient a 0 is positive and the η (i) 's are the conjugates of γ. Then the logarithmic height of γ is given by

h(γ) := 1 d log a 0 + d i=1 log max{|γ (i) |, 1} .
In particular, if γ = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(γ) = log max{|p|, q}. Some of the properties of the logarithmic height function h(•), that will be used in the next sections of this paper without reference are as follows:

h(η ± γ) ≤ h(η) + h(γ) + log 2, h(ηγ ±1 ) ≤ h(η) + h(γ), (7) h 
(η s ) = |s|h(η) (s ∈ Z).
Theorem 2 (Matveev). Let γ 1 , . . . , γ t be positive real numbers in a number field K ⊆ R of degree D, and let b 1 , . . . , b t be nonzero integers. Assume that

Λ := γ b 1 1 • • • γ bt t -1, (8) 
is nonzero. Then,

log |Λ| > -1.4 × 30 t+3 × t 4.5 × D 2 (1 + log D)(1 + log B)A 1 • • • A t ,
where

B ≥ max{|b 1 |, . . . , |b t |} and 
A i ≥ max{Dh(γ i ), | log γ i |, 0.
16}, for all i = 1, . . . , t.

Baker-Davenport reduction procedure

During the course of our calculations, we get some upper bounds on our variables which are too large. Thus, we need to reduce them. To do so, we use some results from the theory of continued fractions. Specifically, for a nonhomogeneous linear form in two integer variables, we use a slight variation of a result due to Dujella and Pethő [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF], which itself is a generalization of a result of Baker and Davenport [START_REF] Baker | The equations 3x 2 -2 = y 2 and 8x 2 -7 = z[END_REF].

For a real number X, we write X := min{|X -n| : n ∈ Z} for the distance from X to the nearest integer.

Lemma 3 (Dujella, Pethő). Let M be a positive integer, p/q be a convergent of the continued fraction of the irrational number τ such that q > 6M , and let A, B, and µ be some real numbers with A > 0 and B > 1. Let further ε := µq -M τ q . If ε > 0, then there is no solution to the inequality Finally, the following lemma is also useful. It is Lemma 7 in [START_REF] Gúzman | Linear combinations of factorials and s-units in a binary recurrence sequence[END_REF].

0 < |uτ -v + µ| < AB -w ,
Lemma 4 (Gúzman, Luca). Let m 1, Y > (4m 2 ) m , and Y > x/(log x) m . Then

x < 2 m Y (log Y ) m .
3 Proof of Theorem 1

Let n, m, n 1 , and m 1 be non-negative integers such that (n, m) = (n 1 , m 1 ) and

T n -3 m = T n 1 -3 m 1 .
Without loss of generality, we assume that m

≥ m 1 . If m = m 1 , then T n = T n 1 , so (n, m) = (n 1 , m 1 )
, which gives a contradiction to our assumption. Thus, m > m 1 . Since

T n -T n 1 = 3 m -3 m 1 , (9) 
and the right-hand side is positive, we get that the left-hand side is also positive and so n > n 1 . Thus, n ≥ 3 and n 1 ≥ 2.

Using the equation ( 9) and the inequality (6), we get

α n-4 ≤ T n-2 ≤ T n -T n 1 = 3 m -3 m 1 < 3 m , ( 10 
) α n-1 ≥ T n ≥ T n -T n 1 = 3 m -3 m 1 ≥ 3 m-1 , (11) 
from which we get that

1 + log 3 log α (m -1) < n < log 3 log α m + 4. ( 12 
)
If n ≤ 300, then m ≤ 200. We ran a Mathematica program for 2 ≤ n 1 < n ≤ 300 and 0 ≤ m 1 < m ≤ 200 and found only the solutions from the list [START_REF] Bravo | On Pillai's problem with tribonacci numbers and powers of 2[END_REF]. From now, we assume that n > 300. Note that the inequality [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF] implies that m < 0.6n + 0.4. Therefore, to solve the Diophatine equation ( 1), it suffices to find an upper bound for n.

Bounding n

From ( 4) and ( 5), we get

C α α n-1 -3 m = (C α α n-1 -T n ) + (T n 1 -3 m 1 ) = (C α α n-1 -T n ) + (T n 1 -C α α n 1 -1 ) + (C α α n 1 -1 -3 m 1 ) < 1 + 7 10 α n 1 -1 + 3 m 1 < α n 1 + 3 m 1 < 2 max{α n 1 , 3 m 1 }.
In the above we have used the fact that |C α | < 0.62 < 0.7. Multiplying through by 3 -m , using the relation [START_REF] Hernane | On Pillai's problem with Pell numbers and powers of 2[END_REF] and using the fact that α < 3, we get

C α α n-1 3 -m -1 < 2 max α n 1 3 m , 3 m 1 -m < max{α n 1 -n+6 , 3 m 1 -m+1 }. ( 13 
)
For the left-hand side, we apply the result of Matveev, Theorem 2 with the following data:

t := 3, γ 1 := C α , γ 2 := α, γ 3 := 3, b 1 := 1, b 2 := n -1, and b 3 := -m.
Through out we work with the field K := Q(α) with D = 3. Since max{1, n -1, m} ≤ n, we take B := n. The minimal polynomial of C α over the integers is given by

44x 3 -44x 2 + 12x -1. Since |C α |, |C β |, |C γ | < 1, we get that h(C α ) = 1
3 log 44. So we can take A 1 := 3h(γ 1 ) = log 44. We can also take A 2 := 3h(γ 2 ) = log α and A 3 := 3h(γ 3 ) = 3 log 3. We put

Λ := C α α n-1 3 -m -1.
First we check that Λ = 0, if it were, then C α α n-1 = 3 m ∈ Z. Conjugating this relation by the automorphism (αβ), we obtain that C β β n-1 = 3 m , which is a contradiction because |C β β n-1 | < 1 while 3 m ≥ 3 for all m ≥ 1. Thus, Λ = 0. Hence, by Theorem 2, the left-hand side of ( 13) is bounded as follows:

log |Λ| > -1.4 • 30 6 • 3 4.5 • 3 2 (1 + log 3)(1 + log n)(log 44)(log α)(3 log 3).
By comparing with (13), we get min{(n -n 1 -5) log α, (m -m 1 -1) log 3} < 2.06 × 10 13 (1 + log n), which gives min{(n -n 1 ) log α, (m -m 1 ) log 3} < 2.12 × 10 13 (1 + log n).

Now we split the argument into two cases.

Case 1. min{(n -n 1 ) log α, (m -m 1 ) log 3} = (n -n 1 ) log α.

In this case, we rewrite (9) as

C α α n-1 -C α α n 1 -1 -3 m = C α α n-1 -T n ) + (T n 1 -C α α n 1 -1 ) -3 m 1 < 1 + 3 m 1 ≤ 3 m 1 +1 , which implies C α (α n-n 1 -1)α n 1 -1 3 -m -1 < 3 m 1 -m+1 . ( 14 
)
We put

Λ 1 := C α (α n-n 1 -1)α n 1 -1 3 -m -1.
As before, we take K := Q(α), so we have D = 3. We have Λ 1 = 0, for if Λ 1 = 0, then

C α (α n-n 1 -1)α n 1 -1 = 3 m .
By conjugating the above relation by the Galois automorphism (αβ), we get that

C β (β n-n 1 -1)β n 1 -1 = 3 m .
The absolute value of the left-hand side is at most

|C β (β n-n 1 -1)β n 1 -1 | ≤ |C β β n-1 | + |C β β n 1 -1 | < 2,
while the absolute value of the right-hand side is at least 3 m ≥ 3 for all m ≥ 1, which is a contradiction. We apply Theorem 2 on the left-hand side of ( 14) with the following data: Since

t := 3, γ 1 := C α (α n-n 1 -
h(γ 1 ) ≤ h(C α ) + h(α n-n 1 -1) < 1 3 log 44 + 1 3 (n -n 1 ) log α + log 2 < 1 3 (log 11 + log 32) + 1 3 × 2.12 × 10 13 (1 + log n) < 1 3 × 2.50 × 10 13 (1 + log n). (15) 
So, we can take A 1 := 2.50 × 10 13 (1 + log n). Furthermore, as before, we take A 2 := log α and A 3 := 3 log 3. Finally, since max{1, n 1 -1, m} ≤ n, we can take B := n. Then we get

log |Λ 1 | > -1.4 • 30 6 • 3 4.5 • 3 2 (1 + log 3)(1 + log n)(2.50 × 10 13 (1 + log n))(log α)(3 log 3). Then, log |Λ 1 | > -1.36 × 10 25 (1 + log n) 2 .
By comparing the above relation with ( 14), we get that

(m -m 1 ) log 3 < 1.40 × 10 26 (1 + log n) 2 . ( 16 
)
Case 2. min{(n -n 1 ) log α, (m -m 1 ) log 3} = (m -m 1 ) log 3.

In this case, we rewrite [START_REF] Dresden | A simplified Binet formula for r-generalized Fibonacci numbers[END_REF] as

C α α n -(3 m-m 1 -1) • 3 m 1 = (C α α n-1 -T n ) + (T n 1 -C α α n 1 -1 ) + C α α n 1 -1 < 1 + 7 10 α n-1 < α n-1 (beacause n ≥ 3),
which implies that

|C α (3 m-m 1 -1) -1 α n-1 3 -m 1 -1| < α n 1 3 m -3 m 1 ≤ 3α n 1 3 m < 3α n 1 -n+4 < α n 1 -n+6 . ( 17 
)
We put

Λ 2 := C α (3 m-m 1 -1) -1 α n-1 3 -m 1 -1. Clearly, Λ 2 = 0, for if Λ 2 = 0, then C α = (α -1 ) n-1 (3 m -3 m 1 )
implying that C α is an algebraic integer, a contradiction. We again apply Theorem 2 with the following data: We note that

t := 3, γ 1 := C α (3 m-m 1 -1) -1 ,
h(γ 1 ) = h(C α (3 m-m 1 -1) -1 ) ≤ h(C α ) + h(3 m-m 1 -1) = 1 3 log 44 + h(3 m-m 1 -1) < log(3 m-m 1 +2 ) = (m -m 1 + 2) log 3 < 2.50 × 10 13 (1 + log n).
So, we can take A 1 := 7.5 × 10 13 (1 + log n). Further, as in the previous applications, we take A 2 := log α and A 3 := 3 log 3. Finally, since max{1, n -1, m 1 } ≤ n, we can take B := n. Then, we get

log |Λ 2 | > -1.4 • 30 6 • 3 4.5 • 3 2 (1 + log 3)(1 + log n)(7.5 × 10 13 (1 + log n))(log α)(3 log 3). Thus, log |A 2 | > -4.08 × 10 26 (1 + log n) 2 .
Now, by comparing with [START_REF] Mihȃilescu | Primary cyclotomic units and a proof of Catalan's conjecture[END_REF], we get that

(n -n 1 ) log α < 4.10 × 10 26 (1 + log n) 2 . (18) 
Therefore, in both Case 1 and Case 2, we have min{(n -n 1 ) log α, (m -m 1 ) log 3} < 2.12 × 10 13 (1 + log n), max{(n -n 1 ) log α, (m -m 1 ) log 3} < 4.10

× 10 26 (1 + log n) 2 . (19) 
Finally, we rewrite the equation ( 9) as

C α α n-1 -C α α n 1 -1 -3 m + 3 m 1 = (C α α n-1 -T n ) + (T n 1 -C α α n 1 -1 ) < 1.
Dividing through by 3 m -3 m 1 , we get

C α (α n-n 1 -1) 3 m-m 1 -1 α n 1 -1 3 -m 1 -1 < 1 3 m -3 m 1 ≤ 3 3 m ≤ 3α -(n-4) ≤ α 6-n , (20) 
since 3 < α ≤ α n 1 . We again apply Theorem 2 on the left-hand side of ( 20) with the following data:

t := 3, γ 1 := C α (α n-n 1 -1) 3 m-m 1 -1 , γ 2 := α, γ 3 := 3, b 1 := 1, b 2 := n 1 -1, and b 3 := -m 1 .
By using the algebraic properties of the logarithmic height function, we get

3h(γ 1 ) = 3h C α (α n-n 1 -1) 3 m-m 1 -1 ≤ h C α (α n-n 1 -1) + h(3 m-m 1 -1) < log 352 + (n -n 1 ) log α + 3(m -m 1 ) log 3 < 6.80 × 10 26 (1 + log n) 2 ,
where in the above inequalities, we used the argument from [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF] as well as the bounds [START_REF] Pillai | On a x -b y = c[END_REF]. Thus, we can take A 1 := 6.80 × 10 26 (1 + log n), and again as before A 2 := log α and A 3 := 3 log 3. If we put

Λ 3 := C α (α n-n 1 -1) 3 m-m 1 -1 α n 1 -1 3 -m 1 -1,
we need to show that Λ 3 = 0. If not, Λ 3 = 0 leads to

C α (α n-1 -α n 1 -1 ) = 3 m -3 m 1 .
A contradiction is reached upon a conjugation by the automorphism (αβ) in K and by taking absolute values on both sides. Thus, Λ 

Reducing the bound for n

We need to reduce the above bound for n and to do so we make use of Lemma 3 several times. To begin, we return to [START_REF] Gúzman | Linear combinations of factorials and s-units in a binary recurrence sequence[END_REF] and put Γ := (n -1) log α -m log 3 + log C α .

For technical reasons we assume that min{n -n 1 , m -m 1 } ≥ 20. We go back to the inequalities for Λ, Λ 1 , and Λ 2 , Since we assume that min{n -n 1 , m -m 1 } ≥ 20 we get |e Γ -1| = |Λ| < 1 4 . Hence, |Λ| < 1 2 and since the inequality |y| < 2|e y -1| holds for all y ∈ -1 2 , 1 2 , we get 0

< |Γ| < 2 max{α n 1 -n+6 , 3 m 1 -m+1 } ≤ max{α n 1 -n+8 , 3 m 1 -m+2 }.
By substituting for Γ in the above inequality and dividing through by log 3, we get the inequality

0 < (n -1) log α log 3 -m + log C α log 3 < max α 8 (log 3)α n-n 1 , 9 (log 3)3 m-m 1 .
We apply Lemma 3 is such that q = q 88 > 6M . Furthermore, it yields ε > 0.0428119, and therefore either n -n 1 ≤ log ((α 8 / log 3)q/ε) log α < 193, or m -m 1 ≤ log ((9/ log 3)q/ε) log 3 < 105.

Thus, we have that either n -n 1 ≤ 193 or m -m 1 ≤ 105. Now we distinguish between the cases n -n 1 ≤ 193 and m -m 1 ≤ 105. First, we assume that n -n 1 ≤ 193. In this case we consider the inequality for Λ 1 , ( 14) and also assume that m -m 1 ≥ 20. We put

Γ 1 := (n 1 -1) log α -m log 3 + log C α (α n-n 1 -1) .
Then, inequality [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF] implies that

|Γ 1 | < 6 3 m-m 1 .
If we substitute for Γ 1 in the above inequality and divide through by log 3, we then get

0 < (n 1 -1) log α log 3 -m + log(C α (α n-n 1 -1)) log 3 < 6 (log 3)3 m-m 1 .
Again we apply Lemma 3 with the same τ as in the case of Γ. We use the 88-th convergent p/q = p 88 /q 88 of τ as before. But in this case we choose (A, B) := 6 log 3 , 3 and use 193]. For all values of ℓ, we get ε > 0.0000420218. Hence, by Lemma 3, we get m -m 1 < log ((6/ log 3)q/ε) log 3 < 110.

µ ℓ := log(C α (α ℓ -1)) log 3 , instead of µ for each possible value of ℓ := n -n 1 ∈ [1, 2, . . . ,
Thus, n -n 1 ≤ 193 implies that m -m 1 ≤ 110. Now let us turn to the case m -m 1 ≤ 105 and we consider the inequlity for Λ 2 , (17). We put

Γ 2 := (n -1) log α -m 1 log 3 + log C α 3 m-m 1 -1 ,
and we also assume that n -n 1 ≥ 20. We then have

|Γ 2 | < α 8 α n-n 1 .
If we substitute for Γ 2 in the above inequality and divide through by log 3, we then get 0 < (n -1) log α log 3 -m 1 + log(C α /(3 m-m 1 -1)) log 3 < α 8 (log 3)α n-n 1 .

We apply again Lemma 3 with the same τ, q, M, (A, B) := α 8 log 3 , α , and µ ℓ := log(C α /(3 ℓ -1)) log 3 for ℓ = 1, 2, . . . , 105.

We get ε > 0.00218297, therefore n -n 1 < log ((α 8 / log 3)q/ε) log α < 198.

To conclude, we first get that either n - Since n > 300, the inequality (20) implies that

|Γ 3 | < 2 α n-6 = α 8 α n .
Substituting for Γ 3 in the above inequality and dividing through by log 3, we get 0 < (n 1 -1) log α log 3 -m 1 + log(C α (α k -1)/(3 ℓ -1)) log 3 < α 8 (log 3)α n , where (k, ℓ) := (n-n 1 , m-m 1 ). We again apply Lemma 3 with the same τ, q, M, (A, B) := For the cases, we get ε > 0.0000115272, so we obtain n ≤ log ((α 8 / log 3)q/ε) log α < 207.

Hence, n ≤ 207. However, this contradicts our working assumption that n > 300. This completes the proof of Theorem 1.

  in positive integers u, v, and w with u ≤ M and w ≥ log(Aq/ε) log B .

1 ), γ 2 :

 12 = α, γ 3 := 3, b 1 := 1, b 2 := n 1 -1, and b 3 := -m.

γ 2 :

 2 = α, γ 3 := α, b 1 := 1, b 2 := n, and b 3 := -m 1 .

  3 = 0. Applying Theorem 2 gives log |Λ 3 | > -1.4 • 30 6 • 3 4.5 • 3 2 (1 + log 3)(1 + log n)(6.80 × 10 26 (1 + log n) 2 )(log α)(3 log 3), a comparison with (20) gives (n -6) < 3.70 × 10 39 (1 + log n) 3 , or n < 3.8 × 10 39 (1 + log n) 3 . (21) Now, by applying Lemma 4 on (21) with the data m := 3, Y := 3.8 × 10 39 , and x := n, leads to n < 3 × 10 46 .

n 1 ≤

 1 193 or m -m 1 ≤ 105. If n -n 1 ≤ 193, then m -m 1 ≤ 110, and if m -m 1 ≤ 105, then n -n 1 ≤ 198. Thus, we conclude that we always have n -n 1 ≤ 198 and m -m 1 ≤ 110.Finally, we go to the inequality of Λ 3 , (20). We putΓ 3 := (n 1 -1) log α -m 1 log 3 + log C α (α n-n 1 -1) 3 m-m 1 -1 .

α 8 log 3

 83 , α , and µ k,l := log(C α (α k -1)/(3 ℓ -1)) log 3 for 1 ≤ k ≤ 198 and 1 ≤ ℓ ≤ 110.

  with the following data Let τ = [a 0 ; a 1 , a 2 , . . .] = [0; 1, 1, 4, 13, 1, 6, 1, 4, 1, 10, 7, 1, 24, 3, 3, 2, 12, 4, 4, . . .] be the continued fraction expansion of τ . We choose M := 3 × 10 46 which is the upper bound on n. With the help of Mathematica, we find out that the convergent

	τ :=	log α log 3	, µ :=	log C α log 3	, and (A, B) :=	α 8 log 3	, α or	9 log 3	, 3 .
	p q	=	p 88 q 88	=	383979914200993729068715782793592146551951600940 692255294546383107303758900444711151890883197059
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