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Abstract

The analysis of the cumulative count of sources of
gamma-ray bursts as a function of their redshift
strongly suggests that the number density of star-
forming galaxies is roughly constant, up to z ≈ 3.5.
The analysis of the cumulative count of galaxies
in the Hubble Ultra Deep Field further shows that
the overall number density of galaxies is constant
as well, up to z ≈ 2 at least. Since ΛCDM does
not seem able to cope with the age of old objects,
both analyses were performed using a non-standard
redshift-distance relationship.
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Introduction

ΛCDM, the nowadays standard cosmological
model, has proved able to rationalize numerous ob-
servations, of various kinds. However, although the
reintroduction of a cosmological constant, twenty
years ago, did help a lot [1, 2], it is still suffer-
ing from an age problem [3, 4, 5, 6]. And though
this problem has been around since the earliest ver-
sion of the model [7], the level of accuracy reached
during the last decade for the measurements of cos-
mological parameters [8, 9, 10, 11, 12] leaves little
room for future major changes of the predicted age
of the Universe.

∗yves-henri.sanejouand@univ-nantes.fr

So, either the methods used for estimating ages
of objects like stars or galaxies require significant
improvements, or ΛCDM has to be replaced by an-
other model.

Since ΛCDM is built with still mysterious dom-
inant components like dark energy [13] or non-
baryonic dark matter [14], and since it requires
additional strong assumptions, like an exponential
expansion of space in the early Universe [15, 16],
it may prove worth considering the later hypoth-
esis. Hereafter, a non-standard redshift-distance
relationship is thus preferred. Note that it may
serve as an anchor for the development of the next
generation of cosmological models.

The age problem

Within the frame of a Friedmann-Lemaitre-
Robertson-Walker cosmology for the case of an ho-
mogeneous and isotropic Universe, τ(z), the age of
the Universe at a given redshift, is so that [13]:

τ(z) =

∫ ∞
z

dz′

(1 + z′)H(z′)
(1)

with:

H(z) = H0(Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ)
1
2 (2)

where H0 is the Hubble constant and where the
contribution of Ωr, the radiation term, has been
omitted, the radiation-dominated era being much
shorter than τ(z) for redshifts considered in the
present study.
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Table 1: Estimated age and incubation time of two old, well characterized, objects. The incubation
time is defined as the time elapsed between the birth of the Universe, according to ΛCDM or to the
Milne cosmological model (with H0=67.4 km s−1 Mpc−1 [12]), and the birth of the object. Negative
incubation times are underlined. HD 140283 is an extremely metal-deficient subgiant; APM 08279+5255
is an exceptionally luminous, gravitationaly lensed, quasar.

Object Redshift
Age

Ref.
Age of Universe Incubation time

(Gyr) (ΛCDM) (Milne) (ΛCDM) (Milne)

HD 140283 0

14.5 ± 0.8 [17]

13.8 14.5

-0.7 0
14.3 ± 0.8 [18] -0.5 0.2
13.7 ± 0.7 [19] 0.1 0.8
12.2 ± 0.6a [19] 1.6 2.3

APM 08279+5255 3.9
3 [20, 21]

1.6 3.0
-1.4 0

2.1b [22] -0.5 0.9

aWith AV =0.1 mag [19].
bThe lowest limit being 1.8 Gyr [22].

ΛCDM

Analyses of Planck measurements of the CMB
anisotropies are consistent with a flat (Ωk=0)
ΛCDM cosmological model, with H0=67.4 ± 0.5
km s−1 Mpc−1 and a matter density parameter
Ωm=0.315 ± 0.007 [12].

But with such parameters, according to eqn (1),
ΛCDM can hardly explain how a quasar as old as
APM 08279+5255 can be observed at z=3.9 [20].
Indeed, within the frame of the ΛCDM model, this
quasar should be at least 0.2 [22] and up to 1.4 Gyr
[21] older than the Universe itself (Table 1).

Other objects have been claimed to be older than
the age of the Universe predicted by ΛCDM like, in
our neighborhood, the metal-deficient subgiant HD
140283 [17, 18]. It has recently been shown that,
by assuming an extinction value of 0.1 mag, the
estimated age of this star can become comfortably
lower (12.2 ± 0.6 Gyr [19]; Table 1). However, for
stars as close as HD 140283, interstellar extinction
is usually assumed to be non-existent [19].

Note that the value of the Hubble constant ob-
tained by the Planck collaboration [12] is signif-
icantly lower than values recently obtained using
local measurements [9, 10, 11] meaning that, ac-
cording to ΛCDM, the age of the Universe could
be as low as 12.7 Gyr [11] (1.4 Gyr at z=3.9).

The Milne model

Let us now consider an open model where
Ωm=ΩΛ=0 (Ωk=1). Thus, eqn (2) becomes:

H(z) = H0(1 + z)

and eqn (1) yields:

τ(z) =
TH

1 + z
(3)

where TH = H−1
0 is the Hubble time.

This simple, one-parameter model, which is rem-
iniscent of the Milne cosmology [23], belongs to the
family of power-law cosmological models [24, 25, 26,
27, 28, 29]. Interestingly, it has been shown that,
at least as far as H(z) and τ(z) are concerned, the
predictions of this model are in good agreement
with observational data [25, 26, 27, 30, 31, 32, 33].
Noteworthy, as illustrated in Table 1, it seems able
to handle the age problem better than ΛCDM. As a
matter of fact, the Milne model would be seriously
challenged only if the upper estimates of the ages of
HD 140283 and APM 08279+5255 were confirmed.

Although a Ωm=0 model is not supported by ob-
servational data, note that within the frame of the
Dirac-Milne cosmology it is expected to be a fair
approximation on large scales [28, 34].
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Main hypotheses

Hereafter, it is assumed that:

I. Eqn (3) yields accurate enough predictions for
∆τ = τ(0)− τ(z), that is:

∆τ = TH
z

1 + z
(4)

II. During its travel, a photon ages as the Uni-
verse does, namely:

∆t = ∆τ (5)

where ∆t is the time taken by a photon to fly
from a source at redshift z to an observer on
Earth.

III. The speed of light, c0, is constant.

Main consequences

Hypothesis III yields:

Dc = c0∆t (6)

where Dc is the light-travel distance while, with
eqn (5), eqn (4) becomes:

∆t = TH
z

1 + z
(7)

Note that this later relationship has been obtained
in various contexts [32, 35].

Counts of galaxies

n(Dc), the cumulative count of galaxies as a func-
tion of the light-travel distance, is such that:

n(Dc) =

∫ Dc

0

4πρ(r)r2dr (8)

where ρ(r) is the number density of galaxies at dis-
tance r.

Let us assume that ρ(∆t), the number density of
galaxies as a function of the photon time-of-flight,
evolves slowly enough, so that:

ρ(∆t) ≈ ρ0 + ρ̇∆t (9)

where ρ̇ is the time derivative of ρ(∆t). With eqn
(6) and (9), eqn (8) yields:

n(Dc) =
4

3
πD3

cρ0

(
1 +

3

4

ρ̇

ρ0

Dc

c0

)

Figure 1: Cumulative count of galaxies in the Hub-
ble Ultra Deep Field (HUDF) and of sources of long
gamma-ray bursts (GRB) detected by Swift, as a
function of redshift. Both counts were normalized
using the value expected when z →∞, according to
a one-parameter function (plain line), as explained
in the text.

which becomes, with eqn (6) and (7):

n(z) = nst
z3

(1 + z)3

(
1 + ερ

z

1 + z

)
(10)

where:

nst =
4

3
πD3

Hρ0

and:

ερ =
3

4

ρ̇

ρ0
TH (11)

DH = c0H
−1
0 being the Hubble length.

Datasets

Studying n(z), that is, a cumulative count of ob-
jects as a function of redshift, requires a fair sam-
pling of these objects, for a range of redshifts as
large as possible. For this purpose, sources of
gamma-ray bursts (GRB) are attractive candidates
since their redshifts have been determined up to
z=8.23 [36], while major efforts have been under-
taken by follow-up telescopes for determining the
redshift of each of them as accurately as possible
[37].

In spite of this, redshifts are known for only 30%
of the GRBs detected by Swift [38], leaving room

3



for doubts on the fairness of the sampling [39, 40].
This is why, hereafter, redshifts of galaxies in the
Hubble Ultra Deep Field (HUDF) [41] are also con-
sidered since, in this small area of the sky, efforts
have focused on the accurate determination of the
redshift of every single, bright enough galaxy [42].

GRB

The 353 GRB sources observed by Swift [37], with a
redshift known with fair accuracy1, were considered
for the following analysis. Since they are expected
to have a different physical origin [43], the 26 short
GRBs (T90 < 0.8 s) were disregarded2.

HUDF

A compilation of 169 robust spectroscopic redshifts
of galaxies in the Hubble Ultra Deep Field was also
considered3. Half of the galaxies of this sample
have at least two redshift measurements, obtained
in separate surveys [42].

Results

Least-square fitting of the cumulative count of
GRB sources with eqn (10) + δ, for redshifts lower
than 3.5, yields a root-mean-square of the residuals
of 2.9, with nst = 650 ± 12, ερ = -0.13 ± 0.02 and
δ = 4.7 ± 0.6, that is, noteworthy, a low value of ερ,
meaning that the evolution of the number density
of GRB sources is slow, compared to the Hubble
time (eqn 11).

A negative value of ερ would mean that the num-
ber density of GRB sources was lower in the past,
at odds with the popular hypothesis that a merg-
ing process drives the evolution of galaxies [44, 45].
However, with ερ=0, fitting the cumulative count
of GRB sources yields a root-mean-square of the
residuals close to previous one, namely, of 3.0, with
nst= 584 ± 1 and δ = 7.1 ± 0.4.

This confirms that, as advocated in previous
studies [32, 46], it is not necessary to introduce
a time-varying number density for explaining the

1As provided on the Neil Gehrels Swift Observatory web
page (https://swift.gsfc.nasa.gov/archive/grb_table),
on October 2018, 27th.

2Ten GRBs with undefined values of T90 were considered
as being short ones.

3As found in Table 4 of reference [42].

cumulative count of GRB sources as a function of
redshift.

On the other hand, fitting the cumulative count
of galaxies in the HUDF for redshifts lower than
2.0 yields a root-mean-square of the residuals of
4.5, with nst = 482 ± 4 and δ = 5.9 ± 0.7. With
δ=0, fitting both cumulative counts yield, respec-
tively, nst= 607 ± 1 and nst= 513 ± 3. As shown
in Figure 1, when they are normalized with these
asymptotical values, both counts match well what
is predicted by eqn (10), up to z ≈ 2.

Discussion

A fair sample of star-forming galaxies

Figure 1 strongly suggests that the sample of GRB
sources obtained by Swift is a fair one, up to z ≈
3.5. If so, it means that when z > 3.5, in most cases,
follow-up telescopes were not able to determine the
redshift of the source. According to Figure 1, this
represents ≈ 50% of the GRBs, a number close to
the percentage of detected optical afterglows [38].
Indeed, detecting the optical afterglow of a GRB
increases chances to pinpoint its host galaxy and,
then, to determine its redshift [47]. But since red-
shifts are known for only 30% of the GRBs detected
by Swift [38], this also means that in 15% of the
cases the redshift of the source was not determined
for reasons other than its distance, probably as a
consequence of observational constraints or because
it occurred in a region highly obscured by dust
[48, 49].

Splitting events

Since long GRBs occur in star-forming galaxies [50,
51, 52], the fact that the number density of GRB
sources does not vary significantly as a function of
redshift (ερ ≈ 0) means that the number density
of star-forming galaxies does not as well. Previous
works had indicated that this is indeed the case [53],
up to z ≈ 2 [54]. The present study confirms that
this result can be extended up to z ≈ 3.5 [32, 46].

However, the analysis of counts of galaxies in
the HUDF further shows that the overall number
density of galaxies does not seem to vary as well
(Fig. 1). Since, on the other hand, galaxy mergers
[44, 45] are rather frequent, noteworthy in the local
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Universe [55, 56], this means that merging events
are compensated by the formation of new galax-
ies, at a similar rate. On the other hand, since
young galaxies seem to be rare in the local Uni-
verse [57, 58], this suggests that such new galax-
ies are formed through splitting events, like those
observed in cosmological simulations [59]. Interest-
ingly, being pairs of close galaxies with highly simi-
lar compositions, identifying recent splitters should
prove easy.

Conclusion

A redshift-age relationship (eqn 3) able to handle
the ages of the oldest objects known (Table 1) al-
lows to show, based on safe grounds, that the num-
ber density of galaxies is roughly constant, up to
z = 2–3.5.

Previous studies had already shown that the
mass density of star-forming galaxies seems con-
stant over a wide range of redshifts [53, 54]. How-
ever, though the number density of quiescent galax-
ies was also found constant over the interval 0.2
< z < 0.8 [60], and not significantly different at
z = 0.03–0.11 and z = 1–2 [61], a clear evolution
was reported for 0.4 < z < 2 [54]. The present
analysis of the count of galaxies in the Hubble Ul-
tra Deep Field supports the former claim.
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[6] López-Corredoira, M. (2017). Tests and prob-
lems of the standard model in cosmology.
Found. of Phys. 47(6), 711–768. https://

arxiv.org/abs/1701.08720.

[7] Lemaitre, G. (1927). Un Univers homogène de
masse constante et de rayon croissant rendant
compte de la vitesse radiale des nébuleuses
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