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Abstract

We consider the context of a telecommunications company that is at the same time an infrastruc-

ture operator and a service provider. When planning its network expansion, the company can

leverage over its knowledge of subscribers dynamic to better optimize the network dimensioning,

therefore avoiding unnecessary costs. In this work, the network expansion represents the deploy-

ment and/or reinforcement of several technologies (e.g. 2G,3G,4G), assuming that subscribers to

a given technology can be served by this technology or older ones. The operator can influence

subscribers dynamic by subsidies. The planning is made over a discretized time horizon while some

strategic guidelines requirements are demanded at the end of the time horizon. Following classical

models, we consider that the behavior of customers follows an S-shape piecewise constant function.

We propose a Mixed-Integer Linear Programming formulation and a heuristic algorithm for the

multi-year planning problem. The scalability of the formulation and the quality of the heuristic are

assessed numerically on real instances for a use-case with two generations.

Keywords: OR in Telecommunications, Mixed Integer Linear Programming, Capacity

Expansion, Bass model.

1. Introduction

Over the last few years, new bandwidth-consuming usages such as video streaming (see Table 1)

have appeared, increasing the average monthly consumption by user, known as Average Usage per

User. This phenomenon, correlated with an increase in the number of users, induces natural
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traffic growth. According to the Visual Networking Index of the IT and network company CISCO

(CISCO, 2017), traffic will globally reach 49 Exabyte per month in 2020 with a compound annual

growth rate of 47 %. This growth is particularly important in Africa (65%). Network expansion is

necessary to support such traffic growth. Besides, the telecommunication market is a competitive

one, constantly requesting a raise in service quality.

Service 2015 2018

Youtube videos viewed 2.78 M 4.3 M

Netflix hours watched 69444 266000

Instagram scrolling 38000 174000

Table 1: Number of usages of some services happening worldwide on the internet in 60 seconds (from DigitalInfor-

mationWorld (2018))

Whenever possible, telecommunication companies must hence satisfy the request of subscribers

in speed and volume to remain competitive, which requires network investments (several billion

e to improve the mobile network in the last six years, see Orange (2018)). Facing both needs of

offering a satisfying service and of not exploding the investments, the operator does not want to

under/over dimension its network.

In many countries, telecommunication companies are both infrastructure operators and service

providers. As infrastructure operators, these companies are responsible for planning their network

expansion. As service providers, they design the offers for users and have an influence on network

traffic. The network expansion decisions can benefit from taking into account the subscribers

dynamic, and vice-versa. Thus, operators wish to understand the behavior of subscribers in order

to plan optimally the investments in new mobile generations. Having a deep and rigorous analysis

of the demand evolution can be an advantage for an operator compared to others. This allows

planning financial subsidies, e.g. cost reduction on a phone having access to the newest generation,

in order to manage the network expansion and its market share.

1G 2G 3G 4G 5G

Date 1980s 1990 2003 2009 2020

Speed 2.4 KB/s 64 KB/s 2 MB/s 1 GB/s > 1 GB/s

Table 2: Evolution of speed through mobile generations (from Sharma (2013)).
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Planning the network expansion is a process that is inherently multi-period since investments

must be distributed along a couple of years. As often in such problems, it is more efficient to

use a strategy that considers multiple years simultaneously. This is even more important in mobile

networks because of the quick progress of mobile technology. This is illustrated in Table 2 that shows

the speed increase through mobile generations. According to the forecasts of GSM1 association

(see GSMA (2018) for the detailed report), 4G will become the leading mobile network technology

worldwide by number of connections (more than 3 billion) in 2019 while early commercial launches

will start for 5G. This fast roll-out of mobile generations and progress of technology lead to a

cyclic dependency between the subscriber and the network dynamics as investments in the network

promote new subscriptions which in turn lead to new investments.

As we could expect, the network dynamic add important constraints that must be considered

when planning investments related to new mobile generations. For example, dismantling one gen-

eration of a mobile network is not an easy option since operational teams are reluctant to abandon

well-functioning (and robust) technologies for new ones without back-up. Moreover, several services

may need old(er) technologies (machine-2-machine, roaming, ...). Hence, different technologies have

to co-exist and operators have to maintain simultaneously up to three generations.

1.1. Mobile Master Plan

The points raised above motivate us to study the design of multi-period master plans for mobile

network (Mobile Master Plans) which consists in deciding, for a given set of time points and in a

given area served by telecommunication sites, how to invest in the evolution of network technologies

regarding three aspects: densification, sites coverage extension and subscriptions upgrades. An

investment in densification means adding new pieces of equipment (modules) of a given technology

in order to increase the capacity of a site already covered by this technology. An investment in

coverage extension means the installation of a given technology in telecommunication sites not

covered so far by this technology. Finally, an investment in user upgrades means the proposition of

financial subsidies to the subscribers in order to promote upgrades from their current offers to the

newest technology available. As already mentioned, these three kinds of investment decisions must

1GSM association is an originally-European trade body that represents the interests of mobile network operators

worldwide.
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be synchronized.

In order to be well-placed in operator rankings (ARCEP, 2018), strategic guidelines are de-

cided by the operator at the end of time horizon and drive the investments in order to guarantee

competitiveness (for instance: sites coverage, user coverage, experienced throughput). In practice,

Mobile Master Plans are designed for a 5-year time horizon with decisions taken for each year in

this period. Mobile Master Plans are driven by cost minimization while ensuring strategic targets

over the whole time horizon.

1.2. Related literature

In this work, we are interested in optimizing, over a time horizon, investments decisions related

to network expansion and subscribers dynamics assuming the arrival of a new technology. Such

problems have been treated in the literature but with other targets in mind and a focus on network

investments.

1.2.1. Network expansion

Capacity expansion problems in telecommunications networks have been studied for a long time

in the integer programming community, see Knippel and Lardeux (2007); Gollowitzer et al. (2013)

among many others, including the case of multi-period planning (Garcia et al., 1998; Gendreau

et al., 2006; Kubat and Smith, 2001).

Closer to the context of mobile capacity expansion, Chardy et al. (2016) present an exact

mixed-integer formulation and a heuristic method to solve a Mobile Master Plan in a restrictive

framework. These models integrate the upgrade of subscribers thanks to subsidies. However, a

limitation of the models studied in Chardy et al. (2016) is that the amount of subsidy offered to

users is fixed and the number of users which upgrade is set as a variable, constrained only to be

positive and upper bounded by the total number of users. The possibility of offering subsidies in

order to increase users upgrades is hence not taken into account. Lim and Kim (2017) consider the

transition of a generation to another but from a subscriber migration point of view only, applied

for a South Korean network.

1.2.2. The Bass model

Our Mobile Master Plan shall offer financial subsidies to the clients to incentive them to move

to the newest technology. To model the effect of these subsidies, we rely on the well-known Bass
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model from the marketing literature.

First studies on diffusion of innovation and new products appeared in the 60’s, in a period

of high economic growth and important innovations (television, etc). Everett Rogers published

the diffusion of innovation theory in 1962 (see Rogers (2003)), based on the adoption curve of

Figure 1. This curve presents the percentage of subscribers which adopt a new product during

the time horizon. The curve assumes that the timing of a consumer’s initial purchase is related to

the number of previous buyers (imitation part) and enlightens different types of subscribers. The

innovators are the easiest to convince and the laggards are those who adopt the last. External

factors (marketing and attractiveness) due to decisions taken in the time horizon are not taken into

account, as well as the generation effect (new generation replacing an older one).

No subsidies

10 % savings on the price each year

20 % savings on the price each year
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Figure 1: Curve of the diffusion of innovation and influence of subsidies

In 1969, Bass formalized Roger’s model by using differential equations and later developed it

to tackle some of the issues with external variables (see Bass (1995)) and generations (see Norton

and Bass (1987)). This work considers marketing aspects by showing a left shift on the shape of

adoptions curves when regular savings (equivalent to constant subsidies) on the price of a product

are made, as illustrated in Figure 1. These models help the understanding of how subscribers react

in a telecommunication market: see Section 5 in Bass (2004) for a discussion on 2G/3G upgrade; Lim

and Kim (2017) for Bass model applied to the forecasting of the 5G upgrade; and Michalakelis et al.

(2008) for an application to the Greek mobile market.

In order to adapt this formalism to the current telecommunication context, we consider two
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important factors for modeling the adoption of a new technology. First, the percentage of users

upgrading from older technologies is very sensitive to the price gap between the new technology

and their current one. The second factor is the influence of network deployment which, from our

knowledge, has not been taken into account. Indeed, subscribers upgrade more easily when they

are sure to benefit from the new service, i.e. if the newest technology is deployed.

1.3. Contributions and structure of the paper

To the best of our knowledge, optimizing jointly the two dynamics (network and subscribers)

under capacity and targeting constraints has not yet been studied. Hence, the main contribution of

the manuscript is to provide a realistic model for the problem. Building on practical considerations,

we come up with a non-linear non-convex Mixed-Integer Programming (MIP) formulation which is

linearized using classical discretizations, making sense from the applied viewpoint. Our case study

assesses in details the performance and solutions provided by the model on real instances. We also

provide a simple decomposition matheuristic and compare its performance with the exact Mixed-

Integer Linear Programming (MILP) formulation. Finally, we provide valid inequalities which prove

successful in improving the performance of our MILP.

The remainder of this article is organized as follows. Section 2 introduces our Mobile Master

Plan problem, for which a mixed integer formulation is provided in Section 3. A linear version of

this formulation including a discrete modeling of the upgrade function is given in Section 4. This

model is assessed numerically in Section 5 on real instances and compared with a heuristic based

on year by year planning. Concluding remarks are given in Section 6.

2. Problem Description

We focus on the evolution of the mobile network on a global geographical area along a multi-

period time horizon, whose periods are assumed to be equally-sized (typically 5 periods of one year

each). We denote these time periods by t ∈ T = {1, . . . , t̄}, and we use “0” for denoting the time

period directly anterior to the time horizon.

The whole area is served by telecommunication sites equipped with several mobile networks tech-

nologies. We thus consider a set G = {1G, 2G, . . . , NG} of technologies and a set S = {1, . . . , NS}

of telecommunication sites. As we have already mentioned, the network capacity on a site can be

increased in two ways: by installing a technology on a site or by adding new modules of an already
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installed technology. In this work, we assume that the oldest technology 1G is installed in all sites

at the beginning of the time horizon and that only the newest technology can be installed during

the time horizon (focus on the investments towards the newest technology), with a cost by site of

CANG. The binary parameter Zs,i, s ∈ S, i ∈ G \{NG}, is equal to 1 iff technology i is installed on

site s. The binary parameter Z0
s,NG, s ∈ S, is equal to 1 iff the newest technology NG is installed at

the beginning of the time horizon. We also assume that increasing the capacity with new modules

is possible for all technologies with a cost CMi for each added module of technology i ∈ G. The

initial number of modules, for each site and each technology, is denoted by M0
s,i, s ∈ S, i ∈ G. For

each technology, we have an upper bound on the number of modules by site denoted by NMi, i ∈ G.

The capacity of a module, for each generation, is denoted by CAPi, i ∈ G.

We assume that each generation of set G has its own offer with its own subscribers. The

initial number of subscribers for each generation associated with each site is denoted by U0
s,i.

Subscribers to a technology cannot be served by a technology more recent than their offer (technical

incompatibility) and are served by the nearest technology available in order to receive the best

service. We denote by NU t, t ∈ T the percentage of incoming users at the beginning of each

time period and Pi, i ∈ G the proportion of incoming users subscribing to technology i ∈ G. New

subscribers are assumed to be assigned to sites proportionally to the number of subscribers at the

end of the previous time period.

As mentioned in the introduction, we assume in this work that the whole investments in user

upgrades are made towards the newest technology NG. We assume that the upgrade mechanism

modeling subscribers behavior depends only on two parameters. The first one is the value of the

subsidy denoted by σ. The set of possible values taken by σ will be denoted by K. The second

one is the proportion of sites already covered by the NG technology, denoted α in what follows.

The function modeling the upgrade mechanism, denoted by f : K × [0, 1] → [0, 1], provides the

proportion of subscribers reacting positively to the given subsidy σ under a given coverage α. This

function is assumed non-decreasing in both arguments. We hence consider that all subscribers are

subsided and react independently of their current offer.

As already pointed out, network and subscribers dynamics are linked. First, each network gen-

eration has to be dimensioned to handle the traffic demand pro subscriber Dt
i , i ∈ G, defined as the

95% quantile of the possible demands occurring over the time period. Hence, the capacity has to
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be sufficient to handle the resulting traffic 95% of the time. We assume that this traffic demand

depends on the network serving the subscribers rather than their current offer. Second, telecom-

munications operators are ranked according to their performances. Therefore, we decide to focus

on meeting satisfying levels for two key performances indicators: the proportion of sites covered by

NG at the end of the time horizon, which is denoted by αt̄ and of averaged quality of experience

to the corresponding subscribers. The averaged quality of experience is guaranteed by asking for a

minimal proportion of subscribers being NG subscribers associated with NG sites. These indeed

benefit from the new performances and have the maximum throughput. The thresholds required at

the end of the time horizon associated with these two targeting indicators are respectively denoted

by α and QoE.

Decisions are taken over the time horizon. These decisions are installation of the NG technology,

adding of modules (for all technologies), and the amount of the subsidy given to the subscribers

from older technologies for upgrading to the NG technology. The problem defined in this work,

denoted as the Mobile Master Plan Problem (MMPP), consists in finding the decisions which

minimize network and subscribers investments while satisfying capacity and targeting constraints.

3. Mathematical Modeling

3.1. Decision variables

We provide in this section a mixed-integer formulation for the problem described in Section 2.

First, we define the set of decision variables used in our formulation. For t ∈ T ∪ {0}, s ∈ S, let us

introduce the binary variable

zts,NG =

 1 if the newest technology is installed at site s at the end of time period t

0 otherwise

For t ∈ T ∪ {0}, s ∈ S, i ∈ G, the integer variable mt
s,i represents the total number of modules of

generation i installed at site s at the end of time period t.

We also use the following continuous variables.

• For each t ∈ T ∪{0}, s ∈ S, i ∈ G, let uts,i denote the total number of subscribers to generation

i in site s at the end of time period t and U
t
s,i an upper bound on this quantity,
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• For each t ∈ T , s ∈ S, i, j ∈ G, let uts,i,j denote the total number of subscribers to generation

i served by generation j in site s at the end of time period t.

In addition, the notations σt and αt introduced in the previous section become optimization vari-

ables.

• For each t ∈ T , let σt be the value of the subsidy, in ke, offered to subscribers of former

technologies for upgrading to technology NG at the beginning of time period t,

• For each t ∈ T , let αt =

∑
s∈S

zt−1
s,NG

NS
be the redundant variable that denotes the NG sites

coverage at the beginning of the time period t (fraction of sites where NG is deployed at the

end of time period t− 1).

The upgrade function, representing the percentage of users reacting positively to a subsidy σt, t ∈ T

for a given coverage αt, t ∈ T , is denoted by f(σt, αt−1) and will be modeled explicitly in Section 4.

3.2. General Formulation

The MMPP can be modelized as follows:

min
∑
t∈T

σt × f
(
σt, αt−1

)∑
s∈S

∑
i∈G\NG

ut−1
s,i +

∑
s∈S

∑
i∈G

CMi(m
t̄
s,i −M0

s,i)

+
∑
s∈S

CANG(z t̄s,NG − Z0
s,NG) (1)

s.t. mt
s,j ≤ NMjZs,j , ∀ s ∈ S,∀ t ∈ T , ∀ j ∈ G \ {NG}, (2)

mt
s,NG ≤ NMNGz

t
s,NG, ∀ s ∈ S,∀ t ∈ T , (3)

zts,NG ≤ mt
s,NG, ∀ s ∈ S,∀ t ∈ T , (4)

mt
s,j ≥ mt−1

s,j , ∀ s ∈ S,∀ t ∈ T , ∀ j ∈ G, (5)

uts,i =
∑

j∈G:j≤i
uts,i,j ∀ s ∈ S,∀ t ∈ T , ∀ i ∈ G, (6)

Zs,k

∑
i∈G:i≥k

∑
j∈G:j≤k

uts,i,j = 0, ∀ s ∈ S,∀ t ∈ T , ∀ k ∈ G \ {NG}, (7)

∑
j<NG

uts,NG,j ≤ U
t
s,NG(1− zts,NG), ∀ s ∈ S,∀ t ∈ T , (8)

∑
i

Dt
ju

t
s,i,j ≤ CAPjm

t
s,j , ∀ s ∈ S,∀ t ∈ T , ∀ j ∈ G, (9)
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uts,i = ut−1
s,i + PiNU

t(
∑
k∈G

ut−1
s,k )

− f
(
σt, αt−1

)
× ut−1

s,i ∀ s ∈ S,∀ t ∈ T , ∀ i ∈ G \ {NG}, (10)

uts,NG = ut−1
s,NG + PNGNU

t(
∑
k∈G

ut−1
s,k )

+ f
(
σt, αt−1

)
×

∑
i∈G\{NG}

ut−1
s,i , ∀ s ∈ S,∀ t ∈ T , (11)

∑
s∈S

ut̄s,NG,NG∑
s∈S

∑
i∈G

ut̄s,i
≥ QoE, (12)

αt̄ ≥ α, (13)

u0
s,i = U0

s,i, ∀ s ∈ S,∀i ∈ G, (14)

m0
s,i = M0

s,i, ∀ s ∈ S,∀i ∈ G, (15)

z0
s,NG = Z0

s,NG, ∀ s ∈ S, (16)

mt
s,i ∈ Z, ∀ s ∈ S,∀ t ∈ T ∪ {0}, ∀i ∈ G, (17)

zts,NG ∈ {0, 1}, ∀ s ∈ S,∀ t ∈ T ∪ {0}, (18)

uts,i ≥ 0, ∀ s ∈ S,∀ t ∈ T ∪ {0}, ∀ i ∈ G, (19)

uts,i,j ≥ 0, ∀ s ∈ S,∀ t ∈ T , ∀ i ∈ G,∀ j ∈ G, (20)

σt ∈ K, ∀ t ∈ T . (21)

The objective function (1) minimizes both subscribers migrations costs and network invest-

ments. It involves three types of costs: (i) costs incurred by the subsidies offered (user upgrades);

(ii) costs incurred by the installation of new modules for increasing the capacity (densification);

and (iii) costs incurred by the deployment of the newest technology (coverage extension). Con-

straints (2)–(5) are the network dynamic constraints, in charge of setting the number of modules.

Constraints (2) and (3) define the upper bounds on the numbers of modules for each technology

installed at each site. These constraints also ensure that if the corresponding technology is not

installed, no modules can be added. Constraints (4) impose that when the newest technology is

installed at a site at least one module of this technology be installed. Constraints (5) impose that

the total numbers of modules be non-decreasing during the time horizon for each technology and

site.
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Constraints (6)–(9) are the network dimensioning constraints, in charge of making the link be-

tween the network dynamic and the subscriber dynamic. Constraints (6) state that the subscribers

to a technology cannot be served by more recent technologies. Constraints (7) impose that the

nearest older technology installed is used. Constraints (8) are the counterpart of (7) for the newest

technology. Constraints (9) are the capacity constraints: for each site, the installed capacity has

to be sufficient for providing services for all users located at this site and having to be served by

this technology.

Constraints (10)-(11) refer to the subscribers dynamic. They define the total number of sub-

scribers to a technology at each site and each time period, taking into account incoming subscribers

and current subscribers who decide to upgrade to the newest generation, thanks to subsidies and

coverage improvements. Constraints (10) are related to all generations but the newest, which is

modeled by (11). Constraints (12) and (13) are the targeting constraints and refer to the end

of time horizon. Constraint (12) ensures that the threshold of subscribers covered by the latest

technology is met. The indicator is proportional to the quality of experience which measures the

percentage of users having access to the new technology throughput. Constraint (13) imposes that

the threshold on the number of sites served by the latest technology is met. Constraints (14)-(16)

refer to the initial conditions. Finally, constraints (17)–(21) define the domain of the variables.

The next section complements the above formulation by detailing function f and set K.

4. Upgrade function and discretization

As we have mentioned, the upgrade function is non-decreasing in both the subsidy amount, σ,

and the proportion of sites covered by NG α. We discretize the later and partition the interval [0, 1]

into C smaller intervals [Lc, Uc[, and define C = {1, . . . , C}. Specifically, we define a set of function

fc(σ) such that f(α, σ) = fc(σ) for all α ∈ [Lc, Uc[ and c ∈ C. We further model each fc(σ) as an

S-shape function, see the example from Figure 2 where the discretization of the coverage involves

four ranges: [0, 0.25[ (x axis), [0.25, 0.50[ (plain), [0.50, 0.75[ (dashed) and [0.75, 1] (dotted).
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Figure 2: Example of upgrade function

We further discretize each function fc by noticing that, in practice, subsidies are usually taken

from a small set of pre-defined values, e.g. multiple of 100 e. Hence, we define the set of possible

choices of subsidies asW ⊂ K and consider in what follows the restriction of each function fc toW.

To simplify the formulations that follow, we also define fw,c = fc(w). Hence, fw,c is the percentage

of subscribers that react positively when subsidy w is offered and the coverage belongs to the range

[Lc, Uc].

We must now incorporate functions fc to our MILP. In this aim, we define a binary variable

δtw,c, for each t ∈ T , w ∈ W, c ∈ C, taking value equal to one iff σt = w and αt−1 ∈ [Lc, Uc]. The

objective function from Section 3.2 can be rewritten as follows.

∑
t∈T

∑
w∈W

SUBw

∑
c∈C

fw,cδ
t
w,c

∑
s∈S

∑
i∈G\{NG}

ut−1
s,i +

∑
s∈S

∑
i∈G

CMi(m
t̄
s,i−M0

s,i)+
∑
s∈S

CANG(z t̄s,NG−Z0
s,NG)

(22)

Also, constraints (10) and (11) are written as:

uts,i = ut−1
s,i + PiNU

t(
∑
k∈G

ut−1
s,k )−

∑
t∈T

∑
w∈W

∑
c∈C

fw,cδ
t
w,cu

t−1
s,i , ∀i ∈ G \ {NG},∀s ∈ S, ∀ t ∈ T , (23)

uts,NG = ut−1
s,NG + PNGNU

t(
∑
k∈G

ut−1
s,k ) +

∑
t∈T

∑
w∈W

∑
c∈C

fw,cδ
t
w,c

∑
i∈G\{NG}

ut−1
s,i , ∀s ∈ S, ∀ t ∈ T , (24)

We linearize the products between binary variable δtw,c and continuous variable ut−1
s,i using a classical
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method (Fortet, 1960). Consequently, the MMMP can be formulated as the following MILP.

min
∑
t∈T

∑
w∈W

SUBw

∑
c∈C

fw,c

∑
s∈S

∑
i∈G\NG

πtw,c,s,i +
∑
s∈S

∑
i∈G

CMi(m
t̄
s,i −M0

s,i)

+
∑
s∈S

CANG(z t̄s,NG − Z0
s,NG) (25)

s.t. (2)− (9), (12)− (13), (14)− (16)

uts,i = ut−1
s,i + PiNU

t(
∑
k∈G

ut−1
s,k )

−
∑
t∈T

∑
w∈W

∑
c∈C

fw,c π
t−1
w,c,s,i, ∀ s ∈ S,∀ t ∈ T , ∀ i ∈ G \ {NG}, (26)

uts,NG = ut−1
s,NG + PNGNU

t(
∑
k∈G

ut−1
s,k )

+
∑
t∈T

∑
w∈W

∑
c∈C

fw,c

∑
i∈G\{NG}

πt−1
w,c,s,i, ∀ s ∈ S,∀ t ∈ T , (27)

∑
w∈W

∑
c∈C

δtw,c ≤ 1, ∀t ∈ T , (28)

∑
w∈W

δtw,c − 1 ≤ Uc − αt, ∀t ∈ T , ∀c ∈ C, (29)

1−
∑
w∈W

δtw,c ≥ Lc − αt, ∀t ∈ T ,∀c ∈ C, (30)

πtw,c,s,i ≤ δtw,cU
t−1
s,i , ∀ s ∈ S, ∀ t ∈ T , ∀ i ∈ G \ {NG},∀w ∈ W, ∀c ∈ C,

(31)

πtw,c,s,i ≤ ut−1
s,i , ∀ s ∈ S, ∀t ∈ T , ∀ i ∈ G \ {NG}, ∀w ∈ W,∀c ∈ C,

(32)

πtw,c,s,i ≥ ut−1
s,i − (1− δtw,c)U

t−1
s,i , ∀ s ∈ S, ∀ t ∈ T , ∀ i ∈ G \ {NG},∀w ∈ W, ∀c ∈ C,

(33)

mt
s,i ∈ Z, ∀ s ∈ S, ∀ t ∈ T ∪ {0}, ∀i ∈ G, (34)

zts,NG ∈ {0, 1}, ∀ s ∈ S, ∀ t ∈ T ∪ {0}, (35)

uts,i ≥ 0, ∀ s ∈ S, ∀ t ∈ T ∪ {0}, ∀ i ∈ G, (36)

uts,i,j ≥ 0, ∀ s ∈ S, ∀ t ∈ T ,∀ i ∈ G,∀ j ∈ G, (37)

δtw,c ∈ {0, 1}, ∀ t ∈ T , ∀w ∈ W,∀c ∈ C, (38)

πtw,c,s,i ∈ {0, 1}, ∀ t ∈ T , ∀w ∈ W,∀c ∈ C, ∀ s ∈ S,∀ i ∈ G. (39)
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Constraints (28) ensure that at most one subsidy from the setW is offered at each time period.

Constraints (29) and (30) ensure that, for each time period, variables δtw,c are set according to the

coverage at the previous time period. Constraints (29) (respectively (30)) set all δ related to a

range at 0 if the coverage is greater (resp. smaller) than the upper (resp. lower) bound of the

range. Constraints (31) – (33) are the typical linearizations of the products of a binary variable

with a continuous one. Constraints (34) –(39) define the domain of the variables.

Preliminary computational experiments on small instances with two generations have shown

that the solutions of linear relaxation present variables z and δ fractionary. Consequently, we

reinforce the model by proposing the following valid inequalities.

zts,NG ≤
∑
t′>t

zt
′
s,NG, ∀s ∈ S,∀t ∈ T ∪ {0} (40)

1−
∑
w

δtw,c ≥
∑
w

δt
′
w,c′ ,∀t ∈ T ∀c ∈ C, ∀c′ < c, ∀t′ > t (41)

Constraints (40) state that if we have installed the newest technology NG on a site, we should have

it in the future while constraints (41) say that if we are at a given range of coverage, we cannot be

in a lower range of coverage in the future.

5. Case study for 3G and 4G

The purpose of this case study is two-fold. First, we assess the scalability of the exact MILP

model. Second, we observe the behavior of the solutions in terms of costs, including when the

investment expenses are smoothed along the time horizon.

5.1. Instances and platform

Numerical tests are performed on instances of French telecommunication operator Orange in

the French area of Brittany representing a case study with two network generations: 3G and 4G.

The full area contains 1112 sites: 717 equipped only with 3G technology and 395 equipped with

both technologies. We create a set of smaller instances, out of this large instance, in order to have

different scenarios characterized by the number of sites and the 4G initial coverage: rural scenarios

where the 4G technology is initially installed on 17% of the sites, mid-dense scenarios where this

proportion is equal to 34% and urban scenarios where it is equal to 68 %.

14



The real data includes the number of modules and subscribers for each site. Others values

of this case study are realistic values taken from telecommunication equipment sellers. Each site

can carry a maximum of four 3G modules (carrier) of 5MHZ with a capacity of 3 Mbps and a

cost of 3 ke each and a maximum of five 4G modules of 10 MHZ (bandwidth) with a capacity

of 25 Mbps and a cost of 16 ke each. The cost for adding the 4G technology on a site is 75

ke. As for subsidies hypothesis, we take 10 discrete values for the discretization of the amount

of subsidy offered, σ ∈ [0, 100, 150, 200, 250, 300, 350, 400, 450, 500]e. We also use four levels of 4G

sites coverage: low, medium low, medium high and high respectively refer to ranges (in %) [0, 25[,

[25, 50[, [50, 75[ and [75, 100]. The curves from Figure 2 are hence discretized into the table of values

Table 3, which constitutes our reference upgrade function. Two other upgrades functions are also

Coverage level \Subsidies (in e) 0 100 150 200 250 300 350 400 450 500

low 0 0 0 0 0 0 0 0 0 0

medium low 0.5 5 12 21 30 40 42 43 44 45

medium high 5 10 20 30 40 50 60 62 64 65

high 10 20 33 45 58 70 80 83 87 90

Table 3: Reaction of the customers (in %) on reference markets for given subsidies and coverage levels.

considered for adapting to very technology-reluctant markets and technology-friendly markets. We

ask for final target objectives of QoE = 80% for the quality of experience and α = 70% for the 4G

sites coverage. We optimize on the typical time horizon of five years discretized in five time periods

of one year. The unit of the objective value is ke.

The computations have been made on a server of 16 processors Intel Xeon of CPU 5110 and

clocked at 1.6 GHz each. The code has been written in Julia 0.5.0, and the solver used is CPLEX

12.6 (default branch-and-bound algorithm). The time limit for MIP solving is set to 1800 seconds.

5.2. Results for algorithmic tests

Our objectives in this section are to assess the scalability of our formulation and to test its

sensitivity to the type of areas. We will hence focus on 15 instances considering five sizes between

25 and 125 sites and the three types of areas mentioned above. The upgrade function used here

is the reference one (see Table 3). Instances are displayed in the two left columns of Table 4,

column “NS” standing for the number of sites and column “area” standing for the type of area.
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The solutions of the linear relaxation and of the MIP are computed with and without the valid

inequalities. In Table 4, results without the valid inequalities are displayed under “MMMP without

((40)-(41))” while results with the valid inequalities are displayed under “MMMP with ((40)-(41))”.

The following indicators are used for both formulations. The linear relaxation is stored in column

“relax”. Column “sol” stands for the value of the solution obtained by CPLEX within the time

limit, labeled with a“∗” if the branch-and-bound procedure converges. The solver computation

time, in seconds, is given in column “time”. Column “f-gap” (final gap) represents the gap between

the solution found and the best lower bound found while “r-gap” (root gap) stands for the gap

between the solution found and the linear relaxation.

Table 4: Scalability test for (MMPP): 5 sizes, 3 density.

Instance (MMMP) without ((40)-(41)) (MMMP) with ((40)-(41))

NS area relax sol time f-gap r-gap relax sol time f-gap r-gap

25 rural 1525 2278* 437 0,00 33,07 1599 2278* 143 0,00 29,83

mid-dense 1160 1928* 897 0,00 39,81 1244 1928* 233 0,00 35,48

urban 405 1298* 63 0,00 68,82 677 1298* 45 0,00 47,83

50 rural 3031 4532 1800 5,79 33,13 3172 4532 1800 5,80 30,01

mid-dense 2346 3972 1800 6,31 40,94 2537 3972 1800 3,44 36,12

urban 853 2624* 517 0,00 67,48 1418 2624* 279 0,00 45,94

75 rural 4555 6920 1800 13,63 34,18 4770 6859 1800 7,07 30,45

mid-dense 3455 6008 1800 15,12 42,50 3726 5807 1800 5,88 35,83

urban 1271 3944 1800 2,53 67,78 2112 3944* 1641 0,00 46,45

100 rural 6077 9178 1800 13,32 33,78 6368 9141 1800 13,61 30,34

mid-dense 4714 8076 1800 18,80 41,63 5095 7841 1800 8,66 35,02

urban 1615 5113 1800 7,85 68,42 2696 5038 1800 1,84 46,47

125 rural 7541 11450 1800 15,44 34,13 7894 11424 1800 15,47 30,90

mid-dense 5874 10370 1800 17,45 43,36 6343 10087 1800 13,79 37,12

urban 1895 6107 1800 7,38 68,97 3212 6104 1800 4,44 47,37

We observe that the formulation with the valid inequalities has a tighter relaxation. Adding
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the valid inequalities also improves the computation time (up to 75 % better) when the branch-

and-bound procedure converges for both formulations. We also observe that the convergence of

the urban instance of 75 sites is achieved only when including the valid inequalities. Finally, we

see, for instances who do not converge within the time-limit, an improvement on the final gap

found by the branch-bound procedure when the valid inequalities are added. For following tests

and observations, we will hence focus on the formulation with the valid inequalities.

First, referring to scalability, we see that the branch-and-bound procedure converges to opti-

mality only for five instances: the three instances with 25 sites and the urban instances of 50 and 75

sites. The final gap remains below 7 % for instances until 75 sites but is greater than 15 % for the

rural instance of 125 sites. The branch-and-bound procedure proves hence to be adequate for small

sizes but cannot handle for solving larger instances, which leads us to propose a time-decomposition

heuristic solution method (see Section 5.4).

Second, we focus on the sensitivity to the type of area. We notice that the problem is easier

in urban areas, which can be explained by the decisions on coverage extension needed to satisfy

the strategic targets: having more sites already covered by the newest technology results indeed

in fewer decisions to take. This enlightens that the problem difficulty is strongly correlated with

the coverage extension. We notice that these resulting coverage extension investments also have a

significant financial impact. For instance, the optimal solution for the rural instance of 25 sites is

75 % more expensive than the optimal solution for the urban instance.
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Figure 3: Evolution of the coverage, subsidies decisions

and reactions.
Figure 4: Evolution of the costs.

Moreover, we aim to analyze the behavior of an optimal solution over the time horizon. We
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thus draw the features of the solution for the 25 sites mid-dense instance in Figure 3. The 4G sites

coverages, the amount of subsidies given and the reaction of the subscribers are plotted. On the

4G sites coverage curve, we can notice that the 4G sites coverage at the end of the time horizon

is 76 % and that this value is not reached progressively throughout the time horizon. Indeed, the

4G sites coverage at the end of the first year is already equal to this value. This fast deployment is

made to benefit from more reactions to subsidies thanks to coverage improvements (for instance,

three times more in the second year thanks to the change from coverage range medium low to range

high). This enlightens the financial interest for the operator in quickly having a network of good

quality. However, it results also in large budget variations, with the first year costing up to twice

the others years as we can see in Figure 4. These important variations do not match with the

financial context of a telecommunication operator as investments should be distributed along the

whole time horizon. This observation leads us to consider the case where the costs are smoothed

over the time horizon (see Section 5.3).

5.3. Results for business-oriented tests

In this section, we assess the impact of several business-oriented scenarios from both algorithmic

and financial perspectives:

• smoothing the costs over the time horizon,

• considering three upgrade functions: the reference upgrade used in the algorithmic tests, the

technology-reluctant and technology-friendly upgrades.

For these purposes, and in order to have a sufficient expected number of optimal solutions

(according to the algorithmic tests) for assessing financial aspects, we consider a set of 21 instances

made of:

• for the 25 sites instances: the three types of areas and the three types of markets (9 instances),

• for the 50 to 125 sites instances: the mid-dense area and the three types of markets (12

instances).

These 21 instances are presented in Table 5. The type of market is displayed in column “Upgrade ”:

“T.F markets”,“Ref. markets” and “T.R. markets” standing, respectively, for technology-friendly,

18



reference and technology-reluctant markets. In order to smooth the costs, we introduce a cost

equilibrium set of constraints which bounds the budget fluctuations by a percentage p. Let the

budget spent in year t ∈ T be denoted by

Bt =
∑
w∈W

SUBw

∑
c∈C

Fw,c

∑
s∈S

∑
i∈G\NG

πtw,c,s,i+
∑
s∈S

∑
i∈G

CMi(m
t
s,i−mt−1

s,i )+
∑
s∈S

CANG
(zts,NG

−zt−1
s,NG

), ∀t ∈ T

(42)

The objective function becomes equal to
∑
t∈T

Bt. The cost equilibrium set of constraints can be

written as follows:

(1− p)×
∑

t′∈T Bt′

T
≤ Bt ≤ (1 + p)×

∑
t′∈T Bt′

T
, ∀t ∈ T (43)

The constraints enforce all period expenses to lie between (1− p) and (1 + p) times the quotient of

the total expenses over the time horizon by the number of time periods.

Results for both formulations in Table 5 are displayed respectively below “(MMMP)” and

“(MMMP + cost equilibrium)”. The indicators provided are the same as in Section 5.2. The last

column “overcost” gives the resulting overcost (the relative gap in % between the solutions values

without and with the cost equilibrium set of constraint).

On a computational point of view, adding the cost equilibrium constraints hardens the problem,

increasing solution times and final gaps, especially for instances with a high number of sites. For

example, considering the 125 sites instances, final gaps are three to four times higher with the

additional set of constraints.
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On a financial point of view, we consider the 25 sites instances in order to discuss optimal

solutions. For the 25 sites urban area instance with the upgrade for the reference markets, we

plot in Figure 5 the counterpart of Figure 3 when requiring the costs to be smoothed. We see

on these curves that the range of coverages high is reached in three years in the solution with

cost equilibrium instead of one without cost equilibrium (see Figure 3). This has an impact on

the upgrade investments, which become higher as we can see on the figures. By comparing the

previous instance with the other 25 sites instances for reference markets in rural and urban areas,

we see the influence of the initial density on the overcost resulting from the cost smoothing. This

effect can be seen on Table 5, column “overcost” and rows Ref.markets: 8 % for rural instances,

7 % for mid-dense and only 1 % for urban ones. The needed investments for reaching the upper

range of coverages are indeed higher when starting from low initial 4G sites coverage, leading to

a higher gap between solutions with and without cost equilibrium. We hence are able to quantify

the overcost to get business-fit solutions and see that this overcost is limited in urban instances.

We notice that there seems to be no algorithmic sensitivity to the choice of the upgrade func-

tion. In what concerns the financial sensitivity, we notice that, as expected since more upgrade

investments are needed, the cost is higher on reluctant markets. For instance, the cost for the

instance of 25 sites and, 34 % initial 4G sites coverage with the upgrade for reluctant markets is

50 % more expensive than the instance with the upgrade for technology-friendly markets.
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Figure 5: Evolution of the coverage, subsidies decisions

and reactions (with cost equilibria constraints).
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Figure 6: Evolution of the costs (with cost equilibria con-

straints).
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5.4. Computational tests on larger instances

For solving large instances in shorter amounts of time, we have designed a heuristic based on

a year by year planning. We use the same formulation as before, however with only one period

(T = 1). We solve the five years problem iteratively (year by year) with the values of variables u1,

m1 and z1 becoming parameters U0,M0 and Z0 in the next run. This allows us to obtain good

solutions in shorter amounts of time. However, this model leads to optimize the four first years

without the target constraints on quality of experience and coverage. Preliminary tests have shown

that it could lead to infeasibility since the subscribers upgrade are delayed until the last period. In

order to avoid this, we decide to test the model with intermediary target objectives for the quality

of experience, see Algorithm 1. Notice that this heuristic does not apply when asking for costs to

be smooth. With the aim to assess the heuristic quality, we use the 15 instances of the algorithmic

tests and 4 instances corresponding to a French territorial division (called department). Instances

are displayed in Tables 6 and 7. Columns have the same meaning than in previous tables, with

in addition for the departments the name of the department “Department” and its initial 4G sites

coverage “α0” in %(replacing the type of area).

Results are displayed in Table 6 and Table 7, in the columns below “heuristic”. Columns

“sol” and “time” stand respectively for the value of the solution and the computation time of the

algorithm. Column “gap MIP” stands for the relative gap (in %) between the value of the best

solution found by the branch-and-bound procedure and the heuristic solution value.

Algorithm 1 Algorithm for year by year solving.

for t ∈ {1, . . . , t̄} do

solve (MMMP(U0,M0, Z0) + constraint(

∑
s∈S

ut
s,NG,NG∑

s∈S

∑
i∈G

ut
s,i
≥ QoEt = t

T ∗QoE))

U0 ←getvalue(u)

M0 ← getvalue(m)

Z0 ←getvalue(z)

end for
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Table 6: Results of heuristic and MIPstart methods.

Instance heuristic MIPstart

NS area sol time gap MIP sol time f-gap o-gap gap MIP

25 rural 2793 6 22,60 2278* 235 0,00 29,83 0,00

mid-dense 2389 1 23,90 1928* 134 0,00 35,48 0,00

urban 1459 10 12,41 1298* 50 0,00 47,83 0,00

50 rural 5418 2 19,55 4532 1800 3,92 30,01 0,00

mid-dense 4958 2 24,81 3972 1800 2,94 36,12 0,00

urban 3494 6 33,19 2624* 182 0,00 45,94 0,00

75 rural 8002 8 16,66 6837 1800 5,88 30,22 -0,32

mid-dense 7057 3 21,54 5807 1800 5,77 35,83 0,00

urban 4740 1 20,16 3944 1800 1,22 46,45 0,00

100 rural 10648 5 16,49 9102 1800 7,49 30,04 -0,43

mid-dense 9715 8 23,90 7841 1800 8,95 35,02 0,00

urban 6002 2 19,16 5037 1800 1,92 46,47 0,00

125 rural 13430 3 17,56 11452 1800 15,75 31,06 0,25

mid-dense 11712 15 16,10 10092 1800 14,61 37,15 0,05

urban 7301 2 19,61 6101 1800 5,01 47,35 0,00
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We observe a gap between the values of the best solution found with the MIP and the solution

found by the heuristic of around 20-25% for 25 sites (when the optimal solution of the MIP is

available). The same gap stays between 4 % and 18 % for the four French departments.

We use the solution obtained by the heuristic as an initial solution (MIPstart) for the MIP.

Results are presented in Tables 6 and 7, in the columns below “MIPstart”. Columns “sol” and

“time” stand, respectively, for the solving time and the value of the best solution. Column “gap

MIP” stands for the relative gap (in %) between the values of the best MIP solution found by

the branch-and-bound procedure without MIPstart and the one with, see Table 4. Note that the

negative values correspond to improvements with the MIPstart method. The improvements are

particularly important in the four department instances. For the department of Morbihan, we

notice that the heuristic solution (obtained in 20 seconds) is only 4% more expensive than the

solution provided by the MIP. This good quality of the solution allows the MIPstart method to

find a solution 10 % better within the time-limit.

6. Conclusion

We have introduced a problem of multi-year investments planning for a telecommunication op-

erator. Encompassing several real aspects faced by operators, our problem consists in optimizing

network and subscribers dynamic under capacity and targeting constraints. In particular, we have

modeled the fraction of subscribers’ adopting a new technology as depending on the coverage of

that technology. In addition, the operator can provide subsidies to incentive the subscribers to

migrate faster to that technology. We have provided a non-linear non-convex MIP formulation

for this problem which we linearize with classical discretization, making sense from the applied

viewpoint. Computational tests have been made for a real 3G/4G case-study. The efficiency of the

valid inequalities in improving the performances has been underlined. We also provide a simple

decomposition matheuristic which runs much faster than the exact MIP. The gaps between MIP

and heuristic solutions underline that the problem is not time-decomposable. However, using the

heuristic solution as an initial solution/MIPstart for the MIP formulation allow us to obtain signifi-

cant improvements. Our results also illustrate the effect of imposing additional constraints, needed

from the operational viewpoint. For instance, we have modeled the possibility for the operator

of smoothing its investments along the time-horizon, which allow us to quantify the overcost due
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to smoothing policies. This overcost is significant, especially in mid-dense and rural areas. This

could push operators to reconsider their investment policies and decide to do an important initial

investment in order to make savings on the whole time-horizon.
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