
HAL Id: hal-02019830
https://hal.science/hal-02019830v1

Submitted on 4 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Flow of an elasto-viscoplastic fluid around a flat plate:
Experimental and numerical data

Fiacre Ahonguio, Laurent Jossic, Albert Magnin, Frederic Dufour

To cite this version:
Fiacre Ahonguio, Laurent Jossic, Albert Magnin, Frederic Dufour. Flow of an elasto-viscoplastic fluid
around a flat plate: Experimental and numerical data. Journal of Non-Newtonian Fluid Mechanics,
2016, 238, pp.131-139. �10.1016/j.jnnfm.2016.07.010�. �hal-02019830�

https://hal.science/hal-02019830v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Flow of an elasto-viscoplastic fluid around a flat plate: Experimental
and numerical data

Fiacre Ahonguioa,  Laurent Jossic a,∗, Albert Magnina,  Frédéric Dufourb 

a Univ. Grenoble Alpes, LRP, F-38000 Grenoble, France CNRS, LRP, F-38000 Grenoble, France
b Univ. Grenoble Alpes, 3SR, F-380 0 0 Grenoble, France CNRS, 3SR, F-380 0 0 Grenoble, France

This study focuses on the creeping flow of an elasto-viscoplastic fluid around a flat plate moving at a con- 

stant velocity. The flow is analyzed both experimentally and numerically. The experiments are performed

with a Carbopol gel whose behavior is described by an elasto-viscoplastic model in the numerical anal- 

ysis. This elasto-viscoplastic model is a 3D Elastic Herschel–Bulkley model implemented in a numerical

tool based on the Finite Element Method with Lagrangian Integration Points (FEMLIP). In this model, the

yield stress is detected by means of the second invariant of the Cauchy stress tensor and the fluid behaves

elastically below the yield stress. The model relies on the understanding of the flow properties especially

below the yield stress. After a presentation of the experimental protocol and the numerical method, the

numerical and experimental results are compared in terms of kinematic fields and drag coefficients.

1. Introduction

Industrial processes include numerous complex fluids often 

used for specific needs. Most of these fluids exhibit a solid-fluid 

transition, i.e. they behave as an elastic solid when they are not 

sufficiently stressed and flow like a fluid above a yield stress. This 

specificity has a strong impact on their flows around obstacles. 

These flows which have received a rising interest in the latest years 

have been recently reviewed by Balmforth et al. [1] and Coussot 

[2] . The present study focuses on the simulation of the non-inertial 

flow of a yield stress fluid around a flat plate with adherence con- 

ditions at its wall. This topic which represents a fundamental topic 

of fluid mechanics has received little consideration in the litera- 

ture. It has been theoretically considered by Oldroyd [3–4] . Using a 

Bingham model, he shows for high Oldroyd numbers, i.e. the ratio 

between plastic and viscous effects, that the fluid is rigid every- 

where except in a thin layer where both viscous and plastic effects 

coexist. The results of Oldroyd have been called into question by 

the analytical studies of Piau [5] and Piau and Debiane [6] . Piau 

and Debiane [6] have analyzed the evolutions of the drag coeffi- 

cient and the boundary layer thickness around a flat plate. By de- 

scribing the liquid or yielded region with a viscoplastic model and 

the solid or unyielded region with the Hooke constitutive equa- 

tion and by using a linear friction law, they predict a lens-shaped 
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boundary layer whose thickness at the mid-plate increases both 

with the length of the plate and the flow velocity. 

The flow of a yield stress fluid around an adhesive flat plate 

has also been analyzed experimentally [7–11] . Brookes and Whit- 

more [7] have studied the static drag force of a plate immersed in 

a Bingham plastic fluid. They observed that this force is directly 

proportional to the immersed area of the plate. For a wide veloc- 

ity range, Boujlel et al. [9] have measured the drag force and the 

velocity fields in the vicinity of a plate during its displacement. 

They observed that the boundary layer thickness does not vary a 

lot with the velocity; a puzzling result contradicting the theoreti- 

cal analysis of Piau and Debiane [6] which predicts a decrease of 

this thickness towards zero for zero velocity. In addition, Ahonguio 

et al. [11] have recently investigated the creeping flow of a yield 

stress fluid around a flat plate. They have particularly analyzed the 

influences of both the slip and the velocity on the drag force and 

the kinematic fields. Their results corroborate the weak influence 

of the velocity on the yielded and unyielded regions of the flows. 

They also reveal that slip has a significant influence both on these 

regions and the drag coefficient. 

The only numerical results concerning the non-inertial flow of 

elasto-viscoplastic materials over an adhesive blade have been ob- 

tained by Ferreira et al. [12] . Their analysis was performed with 

the thixotropic elasto-viscoplastic model proposed by de Souza 

Mendes [13] in which the Stokes equations are solved by a numer- 

ical code with finite elements based on the Galerkin least squares 

method. Ferreira et al. have only analyzed kinematics without 

addressing drag force calculations. They observed that elasticity 
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Nomenclature 

a: half-height of the plate (m) 

A: Lateral section (m 2 ) 

D : strain rates tensor 

D II : second invariant of the strain rates tensor (s −1 ) 

D v : viscous strain rates tensor 

D v II : second invariant of the viscous strain rates tensor 

(s −1 ) 

D e : elastic strain rates tensor 

D e II : second invariant of the elastic strain rates tensor 

(s −1 ) 

F d : drag force (N) 

f ext : external forces (N) 

G: shear elasticity modulus (Pa) 

G’: elastic modulus (Pa) 

G”: viscous modulus (Pa) 

K: consistency (Pa s n ) 

m: coefficient (-) 

n: shear-thinning index (-) 

p: pressure field 

Ra: roughness (m) 

U: norm of the velocity (m.s −1 ) 

U 0 : tank velocity (m.s −1 ) 

U r : transverse velocity (m.s −1 ) 

U z : axial velocity (m.s −1 ) 

v: velocity field 

r: transverse unitary vector (m) 

�t e : elastic time step (s) 

T: temperature ( °C) 

W : vorticity or rate-of-rotation tensor 

z: axial unitary vector (m) 

Greek symbols 

β: coefficient () 

Ŵ: elasticity number () 

ɛ : strain tensor 

ɛ II : second invariant of the strain tensor () 

ε ∗
II : non dimensional second invariant of the strain ten- 

sor corresponding to 
ε II 

( 
τ0 
G )

() 

˙ γ : shear rate (s −1 ) 

ηeff: effective viscosity (Pa.s) 

η′ : apparent viscosity (Pa.s) 

ρ: density (kg.m −3 ) 

τ : shear stress (Pa) 

τ: deviatoric stress tensor 

τ II : second invariant of the deviatoric stress tensor (Pa) 

τ
∗

II : non dimensional second invariant of the deviatoric 

stress tensor corresponding to 
τII 
τ0

() 

τ 0 : yield stress (Pa) 

τw : wall shear stress (Pa) 

τ ∗
w : non-dimensional wall shear stress corresponding to 

τw 
τ0

()

Non-dimensional numbers 

C ∗
d 
: drag coefficient 

C ∗
d , ∞ 

: asymptotic drag coefficient 

Od: Oldroyd number 

r ∗: non-dimensional transverse unitary vector corre- 

sponding to r/a 

Re: Reynolds number 

U ∗z : non-dimensional velocity corresponding to U z /U 0 

z ∗: non-dimensional axial unitary vector corresponding 

to z/a 

changes the shape of the yielded and unyielded regions close to 

the blade. They also observed a decrease in the extent of the un- 

yielded regions following an increase of the velocity. 

The scarcity of numerical data is due to the difficulty of mod- 

eling elasto-viscoplastic behavior. Such behavior includes a solid- 

fluid transition often described by the Von-Mises criterion. This 

transition leads to a discontinuity which is not straightforward 

to describe numerically. In order to alleviate this discontinuity, 

most numerical analyses are performed with viscoplastic models in 

which the solid-fluid transition is regularized. The most common 

regularized models are the two-viscosity model and the Papanasta- 

siou model [14–15] which substitute the behavior below the yield 

stress by a highly viscous behavior. Even though the regulariza- 

tion alleviates the simulations, it does not correctly describe the 

solid-fluid transition of elasto-viscoplastic materials. What is more, 

it does not enable to analyze the influence of the elasticity on flow 

properties. In order to better describe elasto-viscoplastic materi- 

als, advanced models have been proposed by Saramito [16] and 

Dimitriou et al. [17] . The latter authors have proposed an Elastic 

Herschel-Bulkley (EHB) model for describing Carbopol gels behav- 

ior. Their model relies on a strain decomposition in a plastic and 

an elastic contributions. The elastic contribution is taken into ac- 

count below and above the yield stress. The model used in this 

study is similar to the EHB model; it will be described later. 

The present study aims to compare the numerical and experi- 

mental data concerning the creeping flow of a Carbopol gel around 

an adhesive plate. The numerical data have been obtained by simu- 

lations performed with a code based on the Finite Element Method 

with Lagrangian Integration Points (FEMLIP). The gel behavior is 

described with an elasto-viscoplastic model. Firstly, the experimen- 

tal framework is presented. Then, the numerical method and the 

model used for the simulations are described. Finally, the experi- 

mental and numerical results are compared. 

2. Experimental framework

2.1. Rheological characterization 

The experiments were performed with an aqueous gel of poly- 

mer, namely Carbopol 940 [18] . The studies [1–2 , 17 , 19] provide a 

critical and complete view of the data concerning this yield stress 

fluid which is a concentrated suspension of deformable micro-gels 

swollen with a solvent. The yield stress of Carbopol gel stems from 

the spatial packing of the micro-gels whose size ranges from 2 

to 20 µm [19] . Carbopol gel 940 is characterized by its viscoplas- 

tic and non-thixotropic behavior [17 , 19–23] , its good stability over 

time and its transparency. The gel used is concentrated at 1 wt.% 

of Carbopol 940. Its pH is approximately 7.3 and its density about 

10 0 0 kg.m −3 . The rheological behavior of the gel has been finely 

characterized by simple shear measurements performed with an 

ARES rheometer manufactured by TA Instruments. The measure- 

ments were completed with a cone-plate cell at controlled speed, 

controlled temperature and controlled evaporation rate, for shear 

rates between 10 −4 and 30 s −1 . The surfaces of the cone-plate cell 

were covered with sandpaper with a roughness of approximately 

200 µm in order to avoid any slip. The cone used has an angle of 

0.04 rad and a diameter of 49 mm. 

The rheological behavior of the gel can be modeled by the 

Herschel–Bulkley model completed by the Hooke’s model.
⎧ 

⎪

⎨ 

⎪

⎩ 

τij = 2 

( 

τ0
√ 

−4 D II 

+ K 

√

−4 D II 

n −1

)

D ij if − τII > τ0 
2 

τij = 2G ε ij if − τII ≤ τ0 
2 

(1) 

where τ 0 , K and n represent the yield stress, the consistency and 

the shear thinning index respectively. G is the shear elasticity 
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Fig. 1. Flow curve of the gel.
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Fig. 2. Evolution of the elastic and viscous moduli as a function of the strain.

Table 1

Rheometrical properties of the gel.

τ 0 (Pa) K (Pa.s n ) n G (Pa)

131 39 0 .32 620

modulus, ɛ is the strain tensor, D II = −
1 
2 tr ( D 2 

ij 
) and τII = −

1 
2 tr ( τ

2 
ij 
) 

are the second invariants of the strain rates and deviatoric stress 

tensors respectively. It is worth noting that since the Hooke’s 

model is only limited to small strains, the neoHookean model [24–

25] is more likely to better describe the gel behavior below the

yield stress. 

Fig. 1 represents the evolution of the shear stress as a func- 

tion of the shear rate under steady conditions at T = 23 °C for the 

Carbopol gel. The measurement uncertainties can be estimated at 

about 10%. The parameters of the Herschel-Bulkley model are re- 

capped in Table 1 . The evolutions of the elastic and viscous mod- 

uli G’ and G’’ as a function of the strain are provided in Fig. 2 . 

They were obtained by dynamic frequency tests performed at a 

frequency of 1 Hz and T = 23 °C. The plateaus of G’ and G’’ are about 

625 Pa and 30 Pa respectively. The linear domain ends at a strain of 

about 1% and the cross-over point between G’ and G’’ is at a strain 

of about 144% (G’ = G”= 92 Pa). 

2.2. Experimental set-up 

Since the experimental device has already been presented in 

[11] , it is only briefly described here. The plate is a square with 

50 mm per side, 0.9 mm of thickness and a roughness Ra = 200 µm. 

It is immersed in a square base parallelepiped tank containing 

Carbopol gel. This tank is moved at constant controlled velocities 

ranging from 1 to 250 µm s −1 . With regards to the tank dimensions 

200 ×200 ×300 mm and the involved velocities, wall effects can be 

neglected. 

The drag force on the plate has been measured with a weighing 

balance with a precision of 0.1 g. It corresponds to the force mea- 

sured in steady state after the buoyancy force has been subtracted. 

The measurement uncertainties for the drag coefficient can be es- 

timated at 15%. They stem from undesirable effects such as friction 

on the nylon threads and the rigid plane parallel rod used for link- 

ing the plate to the weighing balance. 

The drag coefficient is defined by Eq. (2) in which F d , A, C 
∗

d , ∞
and Od are respectively the drag force, the lateral surface of the 
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plate, the asymptotic drag coefficient and the Oldroyd number de- 

fined in Eq. (14) , and β and m are coefficients. 

C ∗d = 
F d 

τ0 ∗A 
= C ∗d , ∞ + 

β

O d m 
(2) 

The velocity fields have been visualized by the PIV technique. 

To this end, the gel was seeded with silver-coated hollow glass 

particles whose diameter varies between 5 and 30 µm and whose 

density is approximately 1400 kg m −3 . The flow was illuminated by 

a continuous laser, with a wavelength of 532 nm and a power of 

100 mW. The mesh used in the PIV software Flow Manager V4.71 

corresponds to 46 ×34 vectors and to interrogation areas of 32 pix- 

els per side. The measurement uncertainties can be estimated at 

10% for the kinematic fields. 

3. Numerical method

3.1. Description of the FEMLIP 

The Finite Element Method with Lagrangian Integration Points 

(FEMLIP) has been proposed by Moresi and Solomatov [26] and 

Moresi et al. [27] . It originates from the Particle-In-Cell method 

for which the numerical integration weight is recomputed in each 

configuration in order to keep the finite element properties of the 

Gaussian integration scheme. It is a hybrid method coupling the 

Eulerian and Lagrangian approaches. The former approach is used 

for the mesh points which are spatially fixed nodes while the latter 

is used for the integration points which are a set of material points 

moving in a fixed mesh towards a new configuration. The fixed 

mesh enables to avoid the spurious distortion of the mesh and the 

Lagrangian property of particle advection avoids the numerical dif- 

fusion problems which can especially appear in the modeling of 

material interactions. The material points carrying the constitutive 

and history variables, are used in a given configuration as integra- 

tion points in order to compute the nodal velocity field. They are 

formally separated from the calculation points. In order to couple 

them, a quadrature of non-standard elements in which the parti- 

cles in each element serve as integration points can be used. At 

the end of each calculation step, the new location of particles is 

updated based on the velocity field by means of Finite Elements 

shape functions. 

FEMLIP has already been used in geotechnics for analyzing con- 

crete flows and landslides [28–32] . It can be used for studying 

numerous phenomena such as large strain phenomena and free 

surface flows. It can also be used for predicting the extent of 

sheared zones and the rheometrical parameters of a material. In 

the present study, an elasto-viscoplastic model has been imple- 

mented in a numerical tool based on the FEMLIP [33] . This model 

is a 3D elastic Herschel-Bulkley model in which the material be- 

havior is elastic below the yield stress and viscoplastic above it. 

Hence, the flow properties can be analyzed below and above the 

yield stress. 

3.2. Mechanical modeling 

The mechanical behavior of the gel can be described by Eqs. 

(3), (4) and (5) . The deviatoric stress tensor τ follows the Maxwell 

model, Eq. (3) . In this equation, the strain rate tensor D is split- 

ted into a viscous and an elastic contribution, D v and D e , respec- 

tively. Above the yield stress, the shear stress component is twice 

the product of the viscous strain rate tensor D v by an apparent 

viscosity η′ , Eq. (4) . This apparent viscosity depends on the shear

thinning index n, the consistency K, the yield stress τ 0 and the 

second invariant of the viscous strain rates tensor D v II . 

⎧

⎪ 
⎪

⎪ 
⎪ 
⎪

⎪

⎨ 

⎪

⎪

⎪

⎪

⎪

⎪ 
⎩ 

˙ τij 
2G 

+ 
τij
2 η′ 

= D ij = D v ij + D e ij 

τij = 

[ 
τ0

2 D vII 
+ K ( 2 D v II ) 

n −1 
]

D v ij = 2 η′ D v ij if − τII > τ 2
0

D v II = 

[ 
1 

2 

(

D 2 11 + D 2 22 + 2 ∗D 
2 
12

)

] 
1

2 

(3, 4, 5) 

The Stokes’ equations solved in the simulations are given by 

Eqs. (6) and (7) in which f ext , p and v represent the external forces, 

the pressure and the velocity field respectively. X i and X , i corre- 

spond to the component and the spatial derivative along the di- 

rection i of the field X.
{

( f ext ) i + τij , j − p , i = 0 
v i , i = 0 

(6, 7) 

Eq. (8) provides the temporal discretization of the convective 

derivative ˙ τij with the elastic time step 	te chosen to capture the 

elastic stress variations. This time step can be different from the 

advection time step chosen for updating particles locations. W rep- 

resents the vorticity tensor which corresponds to the antisymmet- 

ric part of the velocity gradient. 

˙ τ t+	te 
ij = 

τ t+	te 
ij 

− τ t 
ij 

	te 
+ τ t 

ij 
∗W 

t 
ij − W 

t 
ij 
∗τ t

ij (8) 

Coupling Eqs. (3) and (8) leads to the discretized elastic 

Herschel-Bulkley model used in the simulation. 
⎧

⎪ 
⎪ 
⎨ 

⎪

⎪ 
⎩ 

τ t+	te 
ij 

= ηeff 

[

2 ∗D 
t+	te 
ij + 

τ t 
ij 

G	te 
+ 

τ t 
ij 
∗W 

t 
ij − W t 

ij 
∗τ t

ij

G 

]

ηeff = η′
G ∗	te 

G ∗	te + η′ 

(9, 10) 

ηeff represents the effective viscosity of the gel. Eqs. (6) and 

(9) lead to Eqs. (11) and (12) .
⎧

⎪ 
⎪ 
⎪

⎨

⎪ 
⎪ 
⎪ 
⎩ 

( f ext ) i + 2 ηeff D 
t+	te 
ij + ( f e ) i − p , i = 0 

( f e ) i = ηeff 

[

τ t 
ij 

G	te 
+ 

τ t 
ij , j

∗W 
t 
ij , j − W t 

ij , j 
∗τ t 

ij , j

G 

]

(11, 12) 

Eqs. (11) and (12) are solved iteratively at each time step until 

a stability criterion is reached based on the residual of Eq. (11) . It 

is worth noting that the modeling used for describing the elasto- 

viscoplastic behavior of the gel does not require any regularization 

in order to alleviate the discontinuity due to the solid-fluid tran- 

sition. Moreover, it takes into account the elastic effects both be- 

low and above the yield stress. This modeling is similar to the one 

proposed by de Souza Mendes and Thompson [34] , which is an im- 

proved version of the modeling provided in [13] , in the limit of no 

thixotropy and zero retardation viscosity. 

3.3. Problem statement 

Fig. 3 represents the flow configuration considered in this simu- 

lation. Only one half of the simulation domain has been considered 

for symmetry reasons. The complete domain is bi-dimensional 

with a length L = 0.3 m and a width H = 0.2 m. The plate is ad- 

hesive and has no thickness. It is fixed and located at r = 0, be- 

tween z = 0.1 m and z = 0.2 m. The boundary conditions are such 

that both the upstream and downstream velocity profiles are uni- 

form with a constant velocity U 0 . The fluid is assumed to adhere to 

the wall of the plate; hence the velocity is set equal to zero at this 
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Fig. 3. Problem statement.

wall. Apart from the boundary conditions, the initial conditions for 

the overall field are set to zero. 

Three regular meshes were used: M1 = 97 ×33, M2 = 48 ×57 

and M3 = 72 ×80 elements respectively along the z-axis and the 

r-axis. The simulations were performed with an elastic time step 

	te about 0.1 s and a convergence criterion on the residual of 10 −5 . 

The rheological parameters used in the simulations are the ones 

of the gel considered in the experiments: τ 0 = 131 Pa, K = 39 Pa.s n , 

n = 0.32 and G = 620 Pa. The half-length of the plate a and the ve- 

locity U 0 are used as length and velocity scales respectively. 

Based on Eq. (1) and the mechanical behavior laws, the 

Reynolds, Oldroyd [3,4] and elasticity numbers can be expressed 

as follows: 

Re = 
ρU 

2 −n 
0 a n 

K 
, Od = 

τ0 

K 
(

U 0
a

)n and Ŵ = 
G 

K 
(

U 0
a

)n (13, 14, 15) 

where ρ represents the fluid density. The ratio between Od and 

Ŵ represents a critical deformation. For a given material, this ratio 

is constant and corresponds to the deformation which enables the 

solid-fluid transition. The simulations were performed for Reynolds 

numbers ranging from 4.10 −8 to 0.11, Oldroyd numbers ranging 

from 3 to 49 and for elasticity numbers ranging from 14 to 510. 

4. Results and discussions

4.1. Kinematic fields 

This section compares the experimental and numerical velocity 

fields in the vicinity of the plate. It focuses on the velocity pro- 

files at the mid-plate and at the leading and trailing edges. Then, 

it presents the velocity fields and the fields of the second invari- 

ants of the strain rate, the strain and the deviatoric stress tensors. 

4.1.1. Velocity profiles 

Fig. 4 provides the experimental and numerical dimensionless 

axial velocity profiles at the mid-plate as a function of r ∗ = r/a. 

The numerical profiles obtained with the three meshes, are all ob- 

tained by averaging 10 velocity profiles regularly spaced by 10 in- 

crements for reducing numerical fluctuations. They give similar re- 

sults even if meshes M2 and M3, more refined in the r direction, 

provide more precise results in the vicinity of the plate. Consider- 

ing the experimental uncertainties, the numerical profiles are over- 

all in good agreement with the experimental profile. The wall ve- 

locity gradient computed with the meshes M2 and M3, is around 

0.04 s −1 and estimated at 0.06 s −1 for the experimental data. 

The good agreement between the experimental and numerical 

results can also be observed in Fig. 5 which represents the dimen- 

sionless axial velocity profiles at the leading and trailing edges of 

the plate. The numerical profiles are averaged as previously ex- 

plained. However, some fluctuations can be observed in the vicin- 

ity of the trailing edge depending on the mesh. These fluctuations, 

due to high velocity gradients at the trailing edge, are not observ- 

able on the profile obtained with the mesh M3. As already ob- 

served experimentally in flows around obstacles [35–37] , the ex- 

perimental velocity profiles are not symmetrical because of the 

fluid elasticity [38] . This asymmetry is correctly reproduced nu- 

merically by the elasto-viscoplastic model; differences with the ex- 

perimental data are lower than a few percent. It has not been ob- 

served by Piau and Debiane [6] who predict a symmetrical lens- 

shaped boundary layer around the plate. 

Furthermore, the numerical and experimental thicknesses of 

the boundary layer are overall the same. Defining this thickness 

with the criterion U z = 0.99U 0 , it is about 9.5 mm numerically and 

10 mm experimentally. These values which confirm the ones ob- 

tained by Boujlel et al. [9] are twice higher than the theoretical 

values predicted by Piau and Debiane [6] at Od = 21. The difference 

can be explained by the viscoplastic model used to describe the 

gel behavior in their analysis. Such a model does not completely 

describe the gel behavior since it does not take into account the 

elastic properties of the material. 

4.1.2. Fields of the second invariant of the strain rate tensor 

Fig. 6 represents the numerical fields of the second invariant D II 

of the strain rate tensor for two materials: the one used in the ex- 

periments (a) and a more rigid material (b) whose elastic modulus 

0
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0.6

0.8

1

1.2

25.115.00

U
z
*

r*

M1
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M3

Exp.

Fig. 4. Non-dimensional axial velocity profiles as a function of r ∗ at the mid-plate. Numerical: Od = 21, Ŵ = 102. Experimental: Od = 16, Ŵ = 102. 
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Fig. 6. Numerical fields of the second invariant of the strain rates tensor: (a): Ŵ = 102 and (b): Ŵ = 510. Od = 21. 

G is five times higher; all other rheological parameters being equal. 

Considering the material used in the experiments, the field shows 

two main flow regions: a sheared zone close to the plate and a 

rigid mobile zone far from the plate. The sheared zone corresponds 

to colored zones in which D II decreases progressively from high- 

est values at the wall to values lower than 0.002 s −1 in the rigid 

mobile zone. Choosing D II ≤ 0.002 s −1 as a criterion for delineat- 

ing the boundary between the sheared and rigid mobile zones, the 

thickness of the liquid region is about 6 mm. 

Figs. 6 a and b illustrate the influence of elasticity on the flow 

morphology. In the case of the rigid material, the two flow re- 

gions previously evoked are also observed. However, the values of 

D II along the plate are higher than 0.019 s 
−1 , i.e. the material is 

less deformable than the one used in the experiments for which 

the values obtained at the wall are about 0.014 s −1 . The liquid 

region seems to be symmetrical between the leading and trailing 

edges of the plate. Its thickness is about 5 mm; approximately 15% 

lower than the thickness found with the material used in the ex- 

periments. The symmetry observed for the rigid material corrobo- 

rates the symmetrical lens-shaped observed by Piau and Debiane 

[6] . Hence, the asymmetry is due to the elastic properties of the 

material. 

4.1.3. Fields of the second invariants of the strain and deviatoric 

stress tensors 

Fig. 7 represents the numerical fields of the non-dimensional 

second invariants of the strain ε ∗II = 
ε II 

( 
τ0 
G )

( Figs. 7 a and b) and the 

deviatoric stress τ ∗

II = 
τII 
τ0 

tensors ( Figs. 7 c and d) for the two mate- 

rials previously considered. The ratio 
τ0 
G represents the critical de- 

formation enabling the solid-fluid transition of the material. Hence, 

sheared zones correspond to ε ∗II ≥ 1 . The fields of ε ∗II show that the 

deformation spreads in all the material. In the case of the more 

rigid material, the deformations are higher in the all the flow field. 

They start with higher values in the immediate vicinity of the plate 

and progressively decrease to 0 far from it. Overall, the highest val- 

ues of the deformations are computed along the plate and at its 

leading and trailing edges. In the case of the more rigid material, 

the extent of the sheared zone is approximately 3 times wider. The 

computed fields of τ ∗

II are similar. They start with values higher 

than 1, corresponding to the boundary between the sheared and 

non-sheared zones, in the immediate vicinity of the plate. Then, 

they decrease progressively towards 0.25 far from the plate where 

the material is less affected by the presence of the plate. 

4.2. Wall shear stress and drag coefficient 

This section focuses on the drag force undergone by the plate. 

It provides the evolution along the plate of the wall shear stress 

numerically computed. Then, it compares the numerical and ex- 

perimental evolutions of the drag coefficient as a function of the 

Oldroyd number. 

4.2.1. Wall shear stress 

Fig. 8 represents the numerical evolutions of the dimensionless 

wall shear stress τ ∗
w = 

τw 
τ0 

along the plate at Od = 21 for both

6



Fig. 7. Numerical fields of the second invariants of the strain tensor (a,b) and the deviatoric stress tensor (c,d). Od = 21. 

Fig. 8. Evolutions of the non-dimensional wall shear stress along the plate for two materials. Od = 21. 

materials considered in Fig. 6 . Considering the material used in 

the experiments, i.e. Ŵ = 102, the dimensionless wall shear stress 

is overall constant along the plate. Its value is about 1.13 except 

at the leading and trailing edges where the values are about 0.85 

and 0.74 respectively. This difference between the leading and 

trailing edges corroborates the asymmetry observed in the velocity 

profiles. Indeed, due to the elasticity of the gel, the leading edge 

of the plate is a region where the gel is compressed. This results 

in an increase of the wall stress. However, the trailing edge is a 

region characterized by a relaxation of the gel. There, the wall 

shear stress is lower than the one at the leading edge. 

Fig. 8 also provides the evolution of the wall shear stress along 

the plate for the more rigid material with Ŵ = 510. The evolution 

is overall similar to the one of the material with Ŵ = 102 although 

it is quite symmetrical like the field of D II , Fig. 6 . However, since 

the material is more rigid, the wall shear stresses are lower for 

Ŵ = 510 than for Ŵ = 102 except at the leading and trailing edges 

where they are about 0.88 and 0.83 respectively. The resulting drag 

coefficient for Ŵ = 510 is around 1.02. Hence, the wall shear stress 

for the rigid material is equal to the yield stress of the material. 

4.2.2. Drag coefficient 

This section focuses on the evolution of the drag coefficient as 

a function of the Oldroyd number. Since a change in the Oldroyd 

Table 2

Values of the parameters of Eq. (2) .

Analysis Exp. Piau and Debiane [6]

C ∗
d , ∞ 0 .85 1

β 1 .64 1 .26

m 0 .6 0 .75

number leads to a change in the elasticity number, the computa- 

tions were performed at a constant critical deformation about 21%. 

From the wall shear stress along the plate numerically computed, 

the drag coefficient can be calculated using Eq. (2) and then com- 

pared to the experimental value. To this end, the drag force is cal- 

culated by the integration of the wall shear stress along the plate. 

Fig. 9 represents the numerical and experimental evolutions of 

the drag coefficient as a function of the Oldroyd number. The pa- 

rameters of Eq. (2) are provided for the experimental evolution 

in Table 2 . Overall, the numerical and experimental data are in 

good agreement. The theoretical evolution obtained by Piau and 

Debiane [6] is also represented in Fig. 9 . This evolution is similar to 

the others albeit some differences concerning the values especially 

for the asymptotical drag coefficient. These differences could stem 

from the models used to describe the fluid behavior: a viscoplastic 
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Fig. 9. Evolutions of the drag coefficient as a function of the Oldroyd for a constant critical deformation of 21%.

model for the theoretical analysis and an elasto-viscoplastic model 

for the numerical analysis. They could also be due to the experi- 

mental measurement uncertainties. 

5. Conclusion

This study has analyzed the creeping flow of an elasto- 

viscoplastic fluid around an adhesive plate. It has compared ex- 

perimental and numerical data. The numerical simulations have 

been performed using an elasto-viscoplastic model implemented 

in a numerical tool based on the FEMLIP. The comparison be- 

tween the experimental and numerical data has highlighted a good 

agreement both on the kinematic fields and the drag coefficient. 

The flow asymmetry between the leading and trailing edges of 

the plate observed experimentally has been reproduced numer- 

ically, thus confirming the influence of elasticity. The study has 

shown the reduction of the extent of the liquid region and a 

symmetrical profile for more rigid materials. With regards to the 

good agreements between the experimental and numerical data, 

the EHB model implemented is a bright tool for analyzing elasto- 

viscoplastic flows around obstacles. 
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