
SafeSysE: A Safety Analysis Integration

in Systems Engineering Approach
Faïda Mhenni, Nga Nguyen, and Jean-Yves Choley

Abstract—The main objective of this paper is the integration of
safety analysis in a SysML-based systems engineering approach in
order to make it more effective and efficient. It helps to ensure the
consistency between safety analyses and system design and then
to avoid late errors and to reduce system development time. To
achieve this purpose, we tackled the following axes: 1) formaliz-
ing a SysML-based design methodology that will be the support
for safety analyses; 2) providing an extension of SysML to enable
the integration of specific needs for safety concepts in the system
model; and 3) performing an automated exploration of the SysML
models to generate necessary information to elaborate safety arti-
facts such as failure mode and effects analysis (FMEA) and fault
tree analysis (FTA). The proposed methodology named safety inte-
gration in systems engineering (SafeSysE) is applied to a real case
study from the aeronautics domain: electromechanical actuator
(EMA).

Index Terms—Failure mode and effects analysis (FMEA), fault
tree analysis (FTA), model-based safety analysis (MBSA), model-
based systems engineering (MBSE), model checking, safety analy-
sis, systems engineering.

I. INTRODUCTION

M ODERN systems are getting more complex due to the

integration of several interacting components with dif-

ferent technologies to offer more functionality to the final

user. Accidents can result from unsafe interactions between

nonfailed components or software-related errors [1]. The com-

plexity in these systems requires new appropriate processes,

tools, and methodologies for their design, analysis, and val-

idation while remaining competitive with regard to cost and

time-to-market constraints. Model-based systems engineering

(MBSE) [2] is a systems engineering approach that explores

the use of models, which are more expressive and less ambigu-

ous than documents. Model simulation also offers an easier

way to perform tradeoffs and comparisons between alterna-

tive designs. Another major advantage of using models is that

traceability between the different views and between models of

different levels of abstraction is easily established. In the MBSE

approach, different languages and modeling tools can be used

according to the domains involved in the system, the level of

detail, the system aspects to be modeled, etc. SysML [3] is

a systems modeling language that aims at providing a unified

standard for “specifying, analyzing, designing, and verifying

F. Mhenni and J.-Y. Choley are with Quartz, SUPMECA, Paris 93400, France

(e-mail: faida.mhenni@supmeca.fr; jean-yves.choley@supmeca.fr).

N. Nguyen is with Quartz, EISTI, Cergy 95000, France (e-mail:

nga.nguyen@eisti.eu).

complex systems that may include hardware, software, infor-

mation, personnel, procedures, and facilities.” It also allows a

multiview model and building traceability links. This relatively

recent language is already widely used in both industrial and

academic worlds like in [4]–[11] to cite only few works.

Safety analysis has the objective to assess system safety dur-

ing design phase and ensure that the designed systems have

satisfactory safety level. Different techniques and methods exist

and are used for different purposes and at different design

levels [12]. The two most traditionally used techniques are

failure mode and effects’ analysis (FMEA) and fault tree anal-

ysis (FTA) [12], [13]. FMEA aims to evaluate the effects of

potential failure modes of components or functions, and elim-

inate these potential risks in the system design. FMEA is an

inductive bottom-up safety analysis that identifies the failure

modes of system functions or components and then deter-

mines their effects on the system level. Meanwhile, FTA, when

used in a qualitative approach, is a top-down deductive ana-

lytic method in which the analysis starts from an undesired

event called the top-level event and then, the initiating primary

events such as component failures, human errors, and external

events are traced through Boolean logic gates to this top-level

event. FTA can also be used in a quantitative analysis and in

this case, the probability of the top-level event is evaluated

based on the different probabilities of the leaf events of the

fault tree. These safety analyses, however, are based on inde-

pendent tools and performed separately by safety engineers.

The extraction of information from the system model is usu-

ally done manually. As a consequence, these analyses are error

prone and time-consuming. During safety analysis, the design

usually continues to evolve and thus safety studies are done

for obsolete versions of the design model. To be efficient and

correctly explored by system designers, safety analyses must

be performed in the early phase of design. That will help to

influence the design choices without having recourse to late

and costly changes. They should also be done rapidly enough

to keep consistent with design, and, of course, errorlessly. To

respond to these requirements, safety analyses should be inte-

grated into the design process. To reduce error proneness and

development time, the generation of safety artifacts via model-

to-model transformation approach (automating the building and

modification of models) is needed.

In this paper, we propose a methodology of safety inte-

gration in systems engineering approach named SafeSysE.

This methodology, we believe, contributes to solving the prob-

lems mentioned above. Based on a SysML system model, the

methodology provides to all the contributors, a common ref-

erence system model that takes into account the constraints of

1



all the domains. It is noteworthy, however, that this is a high-

level model useful at the early design stages and it shall be

complemented by domain-specific models at lower detail lev-

els. Based on this model, the methodology automates some

steps of the safety artifacts generation via model exploration

and model-to-model transformation. One important point of our

approach with respect to other methods in the literature is that

the design data and safety data are kept in the same SysML

model, via an integrated safety profile. Since safety artifacts can

be either constructed from structural models as well as from the

dynamic behavioral models of the system, a safety analysis can

be qualified as compositional or behavioral, respectively [14].

Our approach studies the two well-known compositional safety

techniques, namely FMEA and FTA, recommended by safety

standards such as IEC 61508 [15], and SAE ARP 4754 and

4761 [16], [17]. The general IEC 61508 concerns all systems

based on electric, electronics, and programmable electronics,

and SAE ARP 4754 and 4761 are civil aircraft and systems

standards. SafeSysE addresses also a behavioral safety analy-

sis (BSA) based on model checking [18], a formal verification

method that allows validating if the system dynamic behavior

satisfies some safety requirements written in temporal logic.

These interrelated analysis techniques are used by SafeSysE to

perform safety analyses in a very complementary way, during

the whole system design process. However, as the BSA is not

in the scope of the paper, the readers can reference to our other

publications [19], [20] for more details.

This paper is organized as follows. Section II represents

related work about the integration of systems engineering and

safety analysis. Section III details the SafeSysE methodol-

ogy. It also introduces the safety profile, a SysML extension

which allows integrating safety-relevant properties in the sys-

tem model to facilitate the automatic generation of safety

artifacts. The implemented tool supporting SafeSysE is also

described in this section. Section IV explains the automated

generation of the functional and the component FMEA from

SysML models. The fault tree generation algorithm, including

the pattern identification phase as well as the graph traversal

phase, is given in Section V. The same case study, i.e., elec-

tromechanical actuator (EMA), is used throughout Sections IV

and V to illustrate the different steps in SafeSysE. Finally, this

paper is concluded in Section VI.

II. RELATED WORK

This section discusses related work concerning the integra-

tion of safety analysis into MBSE, called model-based safety

analysis (MBSA). In order to compare them with SafeSysE, we

will focus on publications using SysML as systems modeling

language as well as literature on automating FMEA and fault

tree generation.

Laleau et al. [21] tried to combine SysML requirement dia-

grams and the B formal specification language. Since require-

ments in SysML are textual, the SysML requirement models are

first extended to represent some concepts in the goal-oriented

requirement engineering approach, such as expectation, ele-

mentary or abstract goal for requirement classes and milestone,

and/or refinement for relationship between requirements. Then,

derivation rules are proposed to translate the SysML goal

models into B specifications. By doing so, a more precise

semantics of SysML goal models is given, narrowing the gap

between the requirement phase and the formal specification.

Also regarding requirements, Albinet et al. [22] proposed

to directly include system requirements in the design process

but the separation with the proposed solutions as required by

safety standards such as ISO 26262 [23] is achieved by isolat-

ing the following triplet: requirement models, solution models,

and validation and verification models.1 A SysML profile called

requirement profile for MeMVaTEX (RPM) has been devel-

oped in [22]. The requirement stereotype of SysML is replaced

by the MeMVaTEX requirement, by adding various properties

such as verifiable, verification type, derived from, satisfied by,

refined by, traced to, etc. So, the traceability is assured between

requirement models, between requirement and solution models,

and between requirement and V&V models using these proper-

ties. These V&V models have also been explored in the work

of Guillerm et al. [25].

Another approach to integrate SysML and safety analysis

is the use of the common modeling Eclipse framework [26].

In this work, an independent tool called Obeo designer safety

viewpoint that implements classical risk analyses is developed.

Then, the interoperability of this modeling tool and the SysML

model is achieved through the Eclipse modeling framework.

To make the integration possible, the authors used the open

source SysML Topcased editor. Safety elements can reference

SysML model elements since they are both expressed in the

same framework. Furthermore, the Topcased GenDoc plugin

can also be used to generate safety documentation from the two

models. So, in this approach, SysML is not extended with a

safety profile to tune the SysML models. In a more recent work

[27], a translation from Obeo designer’s domain-specific lan-

guage for FMEA and preliminary hazard analysis (PHA) into

AltaRica [28] is added to enable formal verification. However,

no real system has been studied yet to prove the scalability of

the method.

Helle [11] presented an integration process of MBSA in a

SysML-based MBSE. In this work, an extension of SysML

allows to include safety-related information into the system

model allowing the systems engineer to take some light deci-

sions without the help of safety expert. A Java program called

safety analyzer retrieves the system model to extract relevant

information. The safety analyzer can then provide as outputs

the minimal cut set for each failure case and system alternative

as well as reliability block diagrams [29], [30] representing this

cut set.

1ISO 26262, an adaptation of the Functional Safety Standard IEC 61508

for automotive electric/electronic systems imposes a clear distinction between

the concepts: the solution has to be developed independently with respect to

the requirements as well as to the verification and validation (V&V) part. The

separation is important because from the given requirements, various solutions

can be defined. Also, as cited in [24], the developed solutions must be evaluated

by actors independently of the design process, which will promote a diversity

of analysis while increasing the coverage and confidence levels of the safety

conclusions. Of course, this is not in contradiction with an integrated framework

where the traceability between the solutions and the requirements as well as the

safety analysis will be respected.

2



Garro and Tundis [31] developed RAMSAS, a model-based

method for system reliability analysis that combines SysML

and the Simulink tool allowing the verification of reliabil-

ity performance of the system though simulation. A formal

verification method was not used in this research for safety

assessment.

Tajarrod and Latif-Shabgahi [32] described fault trees’ con-

struction from MATLAB Simulink models. In this work, the

nominal model is built in Simulink and then manually extended

with failure behavioral information of the system. Based on this

extended model and the classification of components, the fault

tree for a specific top event is automatically constructed.

An automatic generation of fault trees from architecture anal-

ysis and design language (AADL) models is proposed in [33].

In this work, the system architectural model is built with the

AADL language and then annotated with fault and failure infor-

mation using the error annex, a sublanguage of AADL. Based

on the annotated model, fault trees are automatically generated

in the commercial tool CAFTA.

FSAP/NuSMV-SA [34] is an automated safety analysis tool

that aims at providing a uniform environment for design and

safety assessment of complex systems. It provides a library of

predefined failure modes that can be injected to the initial sys-

tem model to augment it with failure behavior and thus create a

so-called extended system model. By having both nominal and

extended modeling, the tool allows to assess the system safety

both in nominal conditions and in user-specified degraded situ-

ations, i.e., in the presence of faults. The safety analysis engine

based on the NuSMV model checker can be used to produce

FTA. However, one limitation of this tool is that the fault trees

automatically generated with minimal cut sets have a flat struc-

ture with only two levels deep. This representation does not

reflect the structure of system and consequently, exploring the

fault tree to understand the fault propagation through the system

components is not very intuitive for systems engineers.

In her thesis [14], Sharvia dealt with the integration of the

compositional safety analysis (CSA) and the BSA. The first

part is carried out with hierarchically performed hazards’ origin

and propagation studies (HiP-HOPS), a safety analysis tech-

nique presented in [35]. In this part, system failure models

such as FTA and FMEA are constructed by establishing how

the local effects of component failures combine as they propa-

gate through the hierarchical structure of the system. CSA gives

preliminary information about state automata that represent the

transition between normal and failure states of the system. Next,

in the BSA, model checking can be carried out on these behav-

ioral models to verify automatically the satisfaction of safety

properties. So, the CSA and BSA could be effectively com-

bined to benefit from the advantages of both approaches. Even

so, behavioral information captured from CSA is rather lim-

ited because its main purpose is the failure propagation and

hierarchy, not the dynamic behavior.

David et al. [8] worked on the generation of an FMEA report

from system functional behaviors written in SysML models and

on the construction of dysfunctional models using the AltaRica

language to compute reliability indicators. In their methodol-

ogy called MéDISIS, they start with the automatic computation

of a preliminary FMEA. The structural diagrams, namely block

definition diagram (BDD) and internal block diagram (IBD),

and the behavioral diagrams such as sequence diagram (SD)

and activity diagram (AD) are analyzed in detail to give an

exhaustive list of failure modes for each component and each

function, with their possible causes and effects. Then the final

FMEA report is created with help from experts in the safety

domain. To facilitate a deductive and iterative method like

MéDISIS, a database of dysfunctional behaviors is kept updated

to rapidly identify failure modes in different analysis phases.

The next step of their work is the mapping between SysML

models and AltaRica data-flow language, so that existing tools

to quantify reliability indicators such as the global failure rate,

the mean time to failure, etc., can be used directly on the failure

modes identified in the previous step.

Yakymets et al. [36] presented a safety modeling framework

for fault tree generation SMF-FTA. This framework includes

metamodels, profiles, model transformation, verification, and

FTA tools. In this approach, several steps are needed. First,

the system to be analyzed is designed and its structural mod-

els are built using the SysML BDD and IBD diagrams. These

models are then annotated with failure behavior. Then the

entire model is converted into AltaRica language. An algorithm

already existing in the ARC tool analyzes the AltaRica model

and derives the different minimal cut sets from the model. These

cut sets are assembled to form the final fault tree. The result-

ing fault tree can be represented either with open-probabilistic

safety assessment (PSA) or a SysML dedicated profile.

In our work, the safety artifacts including FMEA, FTA, and

NuSMV programs are extracted directly from SysML system

models, not using an external language such as AltaRica. In this

way, we reduce the model-to-model transformations and thus

the possibility of data losses during successive transformations.

We also update the system model directly with the results of

different safety analyses via the integrated safety profile: safety

data and design data are stored in the same model. The work

of David et al. [8] requires accessing an external database to

import dysfunctional behavior. In addition, SafeSysE takes into

account both compositional and behavioral aspects of safety

analyses. The result of one analysis is used in the next step to

refine the other, assuring the consistency of the methodology.

A proof-of-concept tool has also been implemented to illustrate

SafeSysE.

III. SAFESYSE METHODOLOGY

This section begins with a description of the SafeSysE

process. The proposed safety profile, which is a part of

the methodology content, is discussed in Section III-B. The

implementation details of the SafeSysE tool are presented in

Section III-C.

A. SafeSysE Integrated Process

In this section, the integrated process of systems engineer-

ing and safety analysis is presented through a set of steps. In

Fig. 1, an AD is used to describe the process. Swim lanes are

used to make a distinction between systems engineering and

safety analysis activities (or processes). SafeSysE starts with a

3



Fig. 1. SafeSysE integrated process.

requirements’ definition and analysis process with, as a starting

point, a set of initial requirements describing the need. Data

stores are used to model the storage of the different artifacts

issued from each activity.

1) Step 1: Requirements Definition and Analysis: In this

step, system functionalities as well as its external interfaces are

described by a set of requirements. Several SysML diagrams

such as use case diagrams and BDDs for the system context

can be used to help in the identification of these requirements.

Since the requirement definition and analysis are not in the

main scope of this paper, refer to our paper about SysML-based

systems engineering methodology in [37] for more detail.

2) Step 2: Functional Architecture Definition: Based on the

functional requirements identified in Step 1), one or more func-

tional architectures are proposed during this step. The final

result is a hierarchical model of the breakdown of the system

main function(s) into subfunctions. In SysML, functions are

represented by activities, and the functional breakdown is mod-

eled through a set of ADs, each AD representing the breakdown

of a given function (activity) into subfunctions. ADs also show

the progressive transformation of input flows into output flows.

3) Step 3: Functional Risk Assessment: In this step, a func-

tional FMEA is used to identify potential hazards caused by

failures and their effects. The automatically generated FMEA

data sheet contains the list of functions and a list of generic

failure modes. The safety expert then performs the analysis

and completes the FMEA with the relevant data. All this new

safety information is then updated into the SysML model via

the safety profile extension (Section III-B). The gap between

safety analysis and design modification is shortened, thanks to

this integrated model. At the end of this step, safety require-

ments are derived and added to the set of requirements. The rule

is that for each failure mode with hazardous effects, at least one

safety requirement is added. Design changes can be done from

this early design stage at the functional level to eliminate or

reduce identified risks. Risk effects’ mitigation can be obtained

by eliminating or modifying high-risk functions, adding new

fault tolerance mechanisms such as diagnosis and reconfigu-

ration functions. Each time that the functional architecture is

modified, the FMEA shall be updated to take into account the

new changes. The previous steps iterate until a satisfactory

solution is identified.

4) Step 4: Logical Architecture Definition: Once the func-

tional architecture is defined taking into account the results of

the safety analysis in Step 3), one or more logical architec-

tures are built by allocating components to functions. A BDD

describes the components of the system and an IBD describes

the interactions between the components. The logical architec-

ture defined at this step already takes into account safety aspects

since it integrates the results of the functional safety assessment

performed in Step 3).

5) Step 5: Component Risk Assessment: When the structure

of the system is defined, the safety analysis results are updated

and a component-level risk assessment is performed. To ensure

consistency with previous safety analysis, the generated FMEA,

in addition to the components, contains in front of each compo-

nent the functions allocated to the component as well as the

failure modes identified at the functional level as a reminder.

The safety expert then identifies the failure modes at the compo-

nent level and performs FMEA analysis. If there are identified

risks at a nonacceptable level, then these risks shall be elimi-

nated or reduced to an acceptable level by performing changes

to the design. Once again, these safety data are saved back in the

same SysML model. This step, as well as Step 3), is explained

in more detail in Section IV.

6) Step 6: Fault Propagation and Reliability Assessment:

Fault trees are used for both qualitative and quantitative anal-

yses. In our approach, fault trees are automatically gener-

ated from SysML IBDs describing the system architecture.

Information from the previous FMEA analysis is taken into

account to create fault tree with specific failure modes. Fault

trees can be generated in a graphical form for qualitative anal-

ysis purposes like fault propagation studies and critical paths’

identifications. They can also be generated in an appropriate

format for existing FTA tools. For more details about fault tree

generation refer to Section V.

7) Step 7: Behavioral Safety Analysis: This final step is

carried out to complete the safety analyses. The SysML state

machines of different components representing the nominal and

error states as well as the IBD of the system modeling error

propagation are explored to generate automatically a NuSMV

program. This program, which is an abstraction model of the

system, will be used to verify if some safety requirements (writ-

ten in temporal logic formulas) are satisfied. Since this step is

not in the scope of this paper, the readers can reference to our

other publication [20] for more details.

B. SysML Safety Profile

During the design phase, the designers (systems or domain

engineers) may have relevant information concerning safety

especially if they are integrating new concepts or innovating

technology. In this case, they are recommended to transmit

these data to safety experts. And in the opposite direction, it is

4



Fig. 2. Safety profile diagram.

important for a safety expert to feedback safety analysis results

to systems engineers to take them into account in the system

design. In order to integrate safety information directly into

SysML models, we have explored the extension mechanism

of UML to create a so-called safety profile. A profile allows

adaptation or customization of UML metamodels to a specific

platform, domain, or method through stereotype and tag def-

inition concepts. In our case, the safety profile is built from

stereotypes and tag definitions that represent artifacts useful

for the safety analysis techniques we selected for our integrated

process, i.e., FMEA, FTA, and BSA.

Since in our methodology, a system function is represented

by an activity, it is straightforward to consider function as a

stereotype extending the activity metaclass. A system compo-

nent is a SysML block, so the component stereotype will extend

the class metaclass of UML. Because each activity may have

several parameters and each class may have several attributes,

Parameter and attribute are chosen as extended metaclasses for

FailureMode stereotype. By doing so, we could represent the

fact that each function and each component may have differ-

ent failure modes. The other information about a failure mode

such as rate, severity, causal factors, and detection methods can

be simply considered as the tag definitions of the FailureMode

stereotype. Fig. 2 gives the profile diagram of our safety pro-

file. This diagram models also a simple redundancy mechanism

as well as dysfunctional behavior information such as degraded

and failed states. It is also noted that there is no unique solu-

tion for the safety profile. A simple and efficient solution that

allows us to represent all needed information while not over-

loading the XML metadata interchange (XMI) file generated

from the SysML model is preferred.

C. SafeSysE Tool Implementation

To support and validate the methodology for real-scale appli-

cations, we have developed the SafeSysE tool to automatically

generate different safety artifacts. This proof-of-concept tool is

written in the Python language. For the automatic generation,

first the SysML model is exported into an XMI file [38]. Since

the most common usage of XMI is to exchange metadata for

UML models, it is straightforward for us to work with XMI

files generated from a SysML modeling tool, so our program

will be tool independent.

Fig. 3. SafeSysE tool.

In an XMI document, after the header section containing

information about the versions of the standards and the tool

that created it, we have the UML and SysML sections that

describe the model itself. Data are organized in a tree structure.

Our SafeSysE tool parses the XMI file using Beautiful Soup, a

Python library that provides methods to navigate, search, and

modify a parse tree. For each function, the tool builds a graph

with nodes and edges containing all information needed for the

generation of the corresponding safety artifacts. Fig. 3 shows

the program’s main functionalities with the corresponding input

and output data. Further algorithmic details will be given in the

following sections for each functionality.

IV. FMEA GENERATION FROM SYSML MODELS

FMEA is a reliability tool widely used in safety analysis. To

take full benefit of FMEA, it is critical to conduct it at early

design stages and continue concurrently with the design evolu-

tion, in order to reduce development time and error proneness.

In our work, the preliminary FMEA is automatically generated

from the system model, and the consistency with the system

model is then ensured. Information added by safety experts

in the generated FMEA then will be updated in SysML mod-

els via the safety profile. Concretely, our SafeSysE tool uses

the updated FMEA worksheet and the current XMI file corre-

sponding to the system model as input, and outputs a new XMI

file containing updated safety information in the appropriate

stereotypes and tag definitions.

A. Functional FMEA

As described in Step 2) of SafeSysE, the functional break-

down of the system mission into subfunctions is modeled with

ADs. A progressive breakdown of the system functions with

several levels of detail is performed. The decomposition is

stopped once the designer is able to allocate components to the

functions in an appropriate manner. This results in a tree-like

hierarchical representation of the functions. In our study, we

consider all the leaf functions in the FMEA generation because

the failure modes of the higher level functions are the result of

the failure modes of the lower level ones. In an AD, in addi-

tion to the functions’ list, we have the input/output flows of

each function, and we can see the way the system progres-

sively transforms inputs into outputs. This kind of information

5



not only is very important to understand the system functioning

but it is also critical for safety analysis.

When using SafeSysE tool, the user can choose to generate

a functional FMEA for a particular package that represents a

specific functional architecture solution. The functional FMEA

generation algorithm realizes the following steps.

1) AD Extraction: From the node corresponding to the

chosen package in the parsed tree, the tool extracts all the infor-

mation related to ADs and stores them in a graph. A node in

the graph can be an activity, an action, etc., which is made up

of its identity (id), name, type, and the activity it belongs to. If

the node is an action node, input and output pins are also col-

lected as nodes in the graph. The edges of the constructed graph

represent all possible relationships between nodes.

2) XLS File Generation: This step generates an .xls file

corresponding to the FMEA worksheet by creating columns

and adding information, when available, for each function in

the given columns. For the functional FMEA, the column

headers are “Function,” “Function failure mode,” “Causal fac-

tors,” “Immediate effects,” “System effects,” “Recommended

actions,” and “Severity” but this list can be modified if we want

to add other information. The prefilled columns are described

hereafter.

a) Function: Functions corresponding to activities are found

from the graph built from the previous step. Through

the edges connecting different nodes, information about

input and output pins as well as predecessor and successor

activities is used to fill the other columns.

b) Function failure mode: The list of generic failure modes

available in a functional FMEA is saved in a config-

uration file containing: “Fails to perform,” “Performs

incorrectly (degraded performance),” “Operates inadver-

tently,” “Operates at incorrect time (early, late),” “Unable

to stop operation,” “Receives erroneous data,” and “Sends

erroneous data.” This list is used to fill in automatically

the failure mode cells of each function. Other specific fail-

ure modes of the system functions will be added later by

safety experts directly in the FMEA worksheet.

c) Causal factors: They are the input and output parame-

ters of the current activity/function. These data are not

real information in an FMEA analysis, but they help to be

exhaustive in finding all possible causes of failures.

d) Immediate effects: As the causal factors, we prefill the

immediate effect cells by the upstream and downstream

activities which are direct predecessors and successors of

the current function, respectively. It means that a failure

mode of a function can cause immediate effects for the

functions that are related with the current function by flow

controls.

Once the preliminary worksheet is generated, the safety

expert then completes the FMEA by adding the relevant infor-

mation. He can add new failure modes that have not been

considered if any, or remove irrelevant failure modes. As failure

can propagate with the system flows, the failure in one func-

tion can be caused by a failure of the upstream functions. For

instance, because of a failure, the upstream function could send

a wrong flow causing an overload and consequently leading to

a failure of the function in question. In some cases, a function

Fig. 4. Functional architecture of the EMA.

can also fail because of the failure or degraded operating of the

downstream functions. The safety expert has to analyze each

failure mode and determine the failure effects at the local and

system levels and the possible corrective actions to eliminate or

reduce the risks caused by each failure mode. Finally, the sever-

ity of each failure mode is assessed to identify critical functions

and prioritize the list of corrective actions.

B. Component FMEA

The component FMEA generation is based on the structural

models of the system. In our case, it is generated from SysML

BDD and IBD. The first diagram provides the list of system

components, while the second one provides the interactions

among components. Knowing the way in which the compo-

nents interact and the different flows exchanged among them is

very useful for the safety analysis. Indeed, when errors occur,

they also propagate in the same way. As a result, the interac-

tions among components help in identifying potential causes

and effects of failures.

For the automated generation of component FMEA, a new

XMI file is generated from the SysML model. This XMI file

contains the latest version of the system including the list

of functions, the list of components, and the allocation links

between them. It also contains the information about the input

and output flows of each component and the connections among

the ports that give the communication paths among compo-

nents. The XMI file also contains the results of the safety

analysis performed at the functional level, thanks to the safety

profile. The elaboration of a component FMEA is quite simi-

lar to the functional FMEA. The only difference is that instead

of activity nodes, the graph is built from block data extracted

from the parsed tree. In the XLS file generation step, one

more column for the component name is added. If n func-

tions are allocated for this component, there will be in different

lines which have the same format as the functional FMEA

corresponding to this component.

C. Case Study

In this paper, the EMA example [39] is used to illustrate

SafeSysE. The use of EMAs in flight control is increasing

6



Fig. 5. Automatically generated functional FMEA.

Fig. 6. Functional FMEA completed by the safety expert.

since they have many advantages, such as better environmental

respect, weight saving, maintenance cost reduction, perfor-

mance increase, and speed accuracy. An EMA is mainly made

of three parts: an electric motor, a mechanical transmission, and

an electronic and software part composed of a calculator that

controls the system. After the requirements’ definition and anal-

ysis process, the functional analysis of the EMA is performed.

A functional breakdown is represented with nested ADs in

SysML. The resulting functional architecture of the EMA is

given in a BDD in Fig. 4.

By using SafeSysE tool and the flows exchanged between

functions in corresponding ADs (to avoid redundancy, these

diagrams will be given later, only for the updated functional

architecture), the preliminary FMEA automatically generated

for leaf functions in Fig. 4 is given in Fig. 5. The automatic

generation will ensure exhaustiveness of failure modes, causal

factors, and effects of failures. To save space, we only show an

extract of FMEA, i.e., for function “Measure Incidence.” Based

on this preliminary FMEA and on a good understanding of the

system functioning, the safety expert performs the analysis to

generate the complete FMEA (Fig. 6). Then, our SafeSysE tool

will update the system model with the new FMEA informa-

tion. This allows to regenerate new FMEA when needed (when

design changes occurred) without losing the safety expert’s

work. As seen in the FMEA in Fig. 6, several functions are

critical because their failure could have catastrophic effects.

Corrective measures are then required to reduce the risk. This

can be obtained by allocating components with very high reli-

ability to achieve these functions but also by performing some

changes at the functional level. In this case, we decided to add

a new function “Internal Diagnosis” to the system. This func-

tion collects measures of some critical parameters of the other

Fig. 7. Updated AD for Control Aileron Incidence.

functions and tries to identify potential faults in the system.

In case of abnormal behavior, this function will inform the

“Control and Command” function that will inform the pilot

and adjust the outputs it provides accordingly if needed. The

new added function implies modification of the other functions

since they have to provide this function with monitoring data.

The updated ADs of the top-level function “Control Aileron

Incidence” and the function “Actuate Aileron Updated” (as

an example) are given in Figs. 7 and 8, respectively. As the

functional architecture of the system has been modified, a new

iteration should be done in the functional FMEA to integrate

the new function, analyze the impact of its failure modes, and

also assess that this new function does not impact the already

established safety level.

7



Fig. 8. Updated AD for Actuate Aileron.

Fig. 9. EMA logical structure with functional allocation.

When no more change needs to be done at the functional

level, it is time to move to Step 4) of SafeSysE. The logical

architecture is obtained in two steps. The first one is the identi-

fication of the components and allocating them to the functions,

and the next one then consists in identifying the communica-

tion among components. This leads to the BDD representing

the system structure in Fig. 9 and the IBD representing the

interactions among the components in Fig. 10.

A preliminary FMEA generated from the IBD is given in

Fig. 11 containing the list of components. To ensure the con-

sistency of the component FMEA with respect to the functional

FMEA, the functions allocated to each component and their

failure modes are also added in the preliminary component

FMEA. The safety expert then associates the functional fail-

ure modes into the corresponding component failure to obtain

the final FMEA.

V. AUTOMATIC FAULT TREE GENERATION FROM SYSML

MODELS

In this section, we will describe our method to generate

fault treesautomatically from structural diagrams, i.e., SysML

Fig. 10. EMA internal architecture.

IBDs. IBD gives the internal structure of the system and

the interactions among components. The interfaces through

which the components interact are represented via standard

and flow ports, and the interactions are represented via paths

between the corresponding ports called “connectors.” If a fail-

ure occurs in one component, it will be propagated throughout

the system via these paths. The idea of this work is to automat-

ically generate fault trees using two concepts: directed graph

traversal and block design patterns. Each concept is detailed

hereafter.

A. Directed Graph Traversal

An IBD can be represented as a directed graph G = (V, E) 
where V is the set of vertices and E is the set of directed 
edges. The set of vertices is composed of system components 
and external interfaces, respectively, represented by the parts 
of an IBD and ports that are situated on the border of the sys-

tem. The external interfaces can be either input ports through 
which the system receives flows from its environment (users or 
contributing systems) or output ports through which the sys-

tem provides required output flows to its environment. The 
internal ports through which the components interact do not 
need to be represented since they can be abstracted by edges 
directly connecting parts. It is also noted that the graph G 
accepts multiedges between two parts that symbolize differ-

ent kinds of items flowing between these two parts. So, to 
build a fault tree for a given undesired top event, a graph 
traversal algorithm can be used to find out components relat-

ing to each other using the directed edges. This algorithm 
follows the principle of backtracking from the hazard to the 
leaf events. The traversal starts at an external output port and 
traces back to nodes that are his predecessors and continue 
to visit the other nodes. Since a node can have several prede-

cessors, a branch is finished when we reach an external input 
port, or when we arrive back to a node that has already been

visisted.
8



Fig. 11. Extract of the component FMEA of the EMA (the text in italics is generated automatically).

B. Block Design Patterns

To facilitate the fault tree generation, we also use the “divide

and conquer” principle by partitioning the IBD and treating

each partition separately. So, the IBD is splitted into smaller

IBDs which are more trivial to solve. Indeed, during the graph

traversal, the algorithm also identifies some interesting patterns

in an IBD. Each pattern gives rise to a subfault tree and the

whole fault tree will be assembled automatically using the men-

tioned graph traversal algorithm. The fault tree generated in this

way is a generic one transcribing the system topology, i.e., the

different paths within a system through which faults can prop-

agate to reach the mentioned output port. If the system has

several outputs, then a generic fault tree is built for each out-

put port to describe all the paths that could lead to an error on

this output.

In this work, we have identified different patterns, each of

which has a specific role in the system. These patterns are Entry,

Exit, Single, and Feedback. Another kind of pattern, named

Redundant pattern, related to safety design criteria where a

block part can have input ports coming from components

assuring redundancy for higher reliability is also studied.

The following sections describe the recognized patterns as

well as their generated partial fault trees. All these patterns

are grouped into an illustrating IBD in Fig. 12. Each pat-

tern is surrounded with a dashed rectangle annotated with the

corresponding name in an attached note.

1) Entry Pattern: An “Entry pattern” is composed of an

entry part and its ports. An entry part in an IBD is a block part

that has at least one input port receiving item flow from outside

the actual system/subsystem (block B1 in Fig. 12 is an entry

part). In the generated subfault tree [Fig. 13(a)], this special

input port will be transformed into a basic event representing

a failure or error of a system component that is outside the

actual block. We will have an OR logic gate whose operands

are as follows: the internal failure of the part and the basic

events representing the external failures (from input ports on

the boundary) and failure of all eventual input ports of the part

coming from other components.

2) Exit Pattern: An “Exit pattern” is composed of an exit

part and its ports. An exit part in an IBD is a block part that

has at least one output port sending item flow out of the actual

system/subsystem (block B6 in Fig. 12). In the corresponding

Fig. 12. IBD block design patterns.

Fig. 13. Fault trees for (a) entry and (b) exit patterns in Fig. 12.

fault tree [Fig. 13(b)], this special output port gives rise to a top

event undesired state of the actual block. We will have an OR

gate whose operands are: the internal failure of the exit part and

all other eventual intermediate events that characterize failures

coming from other input ports of the part.

9



Fig. 14. Fault tree for feedback pattern in Fig. 12.

Fig. 15. Fault trees for (a) single and (b) redundant patterns in Fig. 12.

3) Single Pattern: A “Single pattern” is an unique block

that is not an entry nor an exit pattern (block B5 in Fig. 12

for example). The construction of the fault tree corresponding

to this pattern is straightforward, based on the number of input

and output ports of the block as shown in Fig. 15(a).

4) Feedback Pattern: By traversing the directed graph rep-

resenting an IBD, if we encounter a node that has already been

visited, then we have a loop or a “Feedback pattern” in the cur-

rent graph. In Fig. 12, when generating the logic diagram for the

output port o4-2 of the part B4, we need to take into account the

input port i4 which comes from the output port o3 of the part

B3. In its turn, the logic diagram of o3 must consider errors that

may come from i3-2, propagated from B4. A cut can be realized

here in order not to take into consideration the input ports such

as i4 as an operand of the OR gate. The corresponding fault tree

of the feedback pattern of Fig. 12 is illustrated in Fig. 14.

5) Redundant Pattern: When a part in an IBD receives item

flows coming from redundant blocks that carry out the same

system function, then we have a “Redundant pattern” (B2, B11,

and B12 in Fig. 12). By using the safety profile described in

Section III-B, the blocks B11 and B12 are stereotyped “redun-

dant” and, in order to ensure consistency, the two blocks must

be allocated to the same system function. In this case, an AND

gate is used for different faults coming from different inputs to

model the fact that if there is no internal failure in the compo-

nent B2, the component will not work only if all the redundant

item flows fail. The fault tree for our example of redundant

pattern is given in Fig. 15(b).

Fig. 16. EMA generic fault tree.

When the whole fault tree is generated automatically from

an IBD using the identified patterns and a graph traversal algo-

rithm, we will have a generic fault tree for the corresponding

system top event. In order to have a specific fault tree for an

undesired top event failure, information from previous safety

analysis results, i.e., component FMEA can be used to refine

this generic fault tree. Knowledge of safety experts is also very

important in order to detail some branches with different failure

modes or to cut out some unreachable branches, regarding the

undesired top event failure. This proposal will be explained via

the case study given in Section V-C.

C. Case Study

The starting point of this step is the logical architecture for

the EMA given in Fig. 10. Based on this IBD, and according

to the patterns and the depth-first search graph traversal algo-

rithm given in the previous sections, the generic fault tree for

the “Mechanical Power” output is automatically generated and

given in Fig. 16.

Several undesired events can occur at each output. For each

specific undesired top event, we can extract from the FMEA

results of the previous steps related to the corresponding failure

modes of each component that lead to the top event in ques-

tion. The specific fault tree for the “Aileron locked” top event is

given in Fig. 17. In this fault tree, a branch is eliminated because

no failure mode of the geared motor with encoder leads to the

“Aileron locked” event. Internal failure of some components

such as geared motor with encoder and embedded MCU with

power bridge is completed by their specific failure modes.

Our SafeSysE tool can generate fault trees in different for-

mats. Actually, two options are proposed: the SVG image

format useful for visualizing the fault tree and the Open-PSA

model exchange format to make the results explorable by the

XFTA engine [40].

10



Fig. 17. EMA-specific fault tree for “Aileron locked” top event.

VI. CONCLUSION

The increasing complexity that characterizes new manufac-

tured systems is a real challenge for designers, mainly for

systems engineers and safety experts that deal with the whole

systems. The question is how to perform safety analyses effi-

ciently to have full benefit of their results and thus avoid

costly and time-consuming redesign iterations. The main con-

tribution of this paper is to deal with this issue by efficiently

merging systems engineering process and safety assessment

methods in a unique framework that we named SafeSysE. In

this SysML-based MBSE approach, we automated the gen-

eration of some well-known safety assessment artifacts such

as FMEA and FTA. We have extended SysML to integrate

some safety-relevant concepts to better support safety anal-

yses. A SysML safety profile has been developed for this

purpose. This paper, we believe, contributes to tackling the

current issues of designing complex safety critical systems.

The automated generation of safety artifacts reduces the time

spent in performing safety analyses and thus reduces the whole

development time and increases the competitiveness. It also

reduces error proneness since it automatically extracts the rele-

vant information from system models. The consistency between

the different safety analysis artifacts is also enhanced since, in

each step of safety analysis, the results of previous analyses are

explored.

As a continuity to this work, we will try to improve the

consistency between the system model and the safety analy-

sis artifacts by linking the safety properties of the system to

modeling elements such as requirements. We will also exam-

ine the different possible ways to model dysfunctional behavior

in SysML to improve the V&V of the system. Finally, scal-

ability will be addressed to prove the adequacy of SafeSysE

for larger and more complex systems, with different interact-

ing components and state combination problems. Quantitative

analysis about the performance of the suggested method will be

carried out with different benchmarks.

We would like to thank the anonymous reviewers for their

careful reading of our manuscript and their many insightful

comments and suggestions.

REFERENCES

[1] J. Thomas, “Extending and automating a systems-theoretic hazard anal-
ysis for requirements generation and analysis,” Ph.D. dissertation, Eng.
Syst. Division, Massachusetts Inst. Technol., Cambridge, MA, USA,
2013.

[2] INCOSE, Systems Engineering Handbook: A Guide for System Life Cycle

Processes and Activities. John Wiley and Sons ed., Int. Council Syst.
Eng., Hoboken, NJ, USA, Aug. 2015.

[3] OMG, Systems Modeling Language, Object Management Group Std. 1.3,
Jun. 2012 [Online]. Available: http://www.omg.org/spec/SysML/1.3/

[4] J. Holt and S. Perry, SysML for Systems Engineering. London, U.K.: Inst.
Eng. Technol., 2008.

[5] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML,

The Systems Modeling Language. San Mateo, CA, USA: Morgan
Kaufmann, 2009.

[6] T. Weilkiens, Systems Engineering With SysML/UML Modeling, Analysis,

Design. San Mateo, CA, USA: Morgan Kaufmann, 2008.
[7] T. A. Johnson, J. M. Jobe, C. J. J. Paredis, and R. Burkhart, “Modeling

continuous system dynamics in SysML,” in Proc. ASME Conf. Proc.,
2007, pp. 197–205.

[8] P. David, V. Idasiak, and F. Kratz, “Reliability study of complex physical
systems using SysML,” Reliab. Eng. Syst. Saf., vol. 95, no. 4, pp. 431–
450, 2010.

[9] E. Adrianarison and J.-D. Piques, “SysML for embedded automotive
systems—A practical approach,” in Embedded Real Time Software and

Systems. Toulouse, France, May 2010.
[10] J.-F. Pétin, D. Evrot, G. Morel, and P. Lamy, “Combining SysML and

formal models for safety requirements verification,” in Proc. 22nd Int.

Conf. Softw. Syst. Eng. Appl., Paris, France, Dec. 2010.
[11] P. Helle, “Automatic SysML-based safety analysis,” in Proc. 5th Int.

Workshop Model Based Archit. Constr. Embedded Syst., Jan. 2012,
pp. 19–24.

[12] C. A. Ericson, Hazard Analysis Techniques for System Safety. Hoboken,
NJ, USA: Wiley, 2005.

[13] E. Balz and J. Goll, “Use case-based fault tree analysis of safety-related
embedded systems,” in Proc. Softw. Eng. Appl., Nov. 2005.

[14] S. Sharvia, “Integrated application of compositional and behavioural
safety analysis,” Ph.D. dissertation, Comput. Sci., Univ. Hull, Hull, U.
K. Feb. 2011.

[15] IEC 61508 Functional Safety of Electrical/Electronic/Programmable

Electronic Safety-Related Systems., The International
Electrotechnical Commission Standard, 2010, [Online]. Available:
http://www.iec.ch/functionalsafety/standards/

[16] Guidelines for Development of Civil Aircraft and Systems, Society of
Automotive Engineers SAE International Standard, sAE-ARP-4754A,
2010.

[17] Guidelines and Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems and Equipment, Society of Automotive
Engineers International Standard, sAE-ARP-4761, 1996.

[18] E. M. Clarke, J. O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

11



[19] F. Mhenni, N. Nguyen, H. Kadima, and J.-Y. Choley, “Safety analysis
integration in a SysML-based complex system design,” in Proc. IEEE

Int. Syst. Conf., Orlando, FL, USA, Apr. 2013, pp. 70–75.
[20] F. Mhenni, “Safety analysis integration in a systems engineering approach

for mechatronic systems design,” Ph.D. dissertation, Sciences pour
l’Ingnieur, Ecole Centrale de Paris, Châtenay-Malabry, France, 2014.

[21] R. Laleau, F. Semmak, A. Matoussi, D. Petit, A. Hammad, and
B. Tatibouet, “A first attempt to combine SysML requirements diagrams
and B,” Innov. Syst. Softw. Eng., vol. 6, pp. 47–54, 2010.

[22] A. Albinet, J.-L. Boulanger, H. Dubois, M.-A. Peraldi-Frati, Y. Sorel, and
Q.-D. Van, “Model-based methodology for requirements traceability in
embedded systems,” in Proc. 3rd Eur. Conf. Model Driven Archit., Jun.
2007.

[23] ISO 26262 Road Vehicles-Functional Safety, International
Standardization Organization Standard, 2011.

[24] L. Vismari, J. Camargo, J. de Almeida, A. da Silva Neto, R. Gimenes,
and P. Cugnasca, “A practical analytical approach to increase confidence
in software safety arguments,” IEEE Syst. J., pp. 1–12, May 2015.

[25] R. Guillerm, H. Demmou, and N. Sadou, “Safety evaluation and man-
agement of complex systems: A system engineering approach,” Concurr.

Eng. Res. Appl., vol. 20, no. 2, pp. 149–159, Jun. 2012.
[26] F. Thomas and F. Belmonte, “Performing safety analyses and SysML

designs conjointly: A viewpoint matter,” in Proc. Complex Syst. Des.

Manage., Dec. 2011.
[27] F. Belmonte and E. Soubiran, “A model based approach for safety

analysis,” in Computer Safety, Reliability, and Security, F. Ortmeier
and P. Daniel, Eds. New York, NY, USA: Springer, 2012, vol. 7613,
pp. 50–63.

[28] A. Arnold, A. Griffault, G. Point, and A. Rauzy, “The AltaRica language
and its semantics,” Fundam. Inf., vol. 34, pp. 109–124, 2000.

[29] H. Xu, L. Xing, and R. Robidoux, “DRBD: Dynamic reliability block
diagrams for system reliability modeling,” Int. J. Comput. Appl., vol. 31,
no. 2, p 202, 2009.

[30] M. Rausand and A. Hoyland, System Reliability Theory—Models,

Statistical Methods, and Applications. Hoboken, NJ, USA: Wiley, 2008.
[31] A. Garro and A. Tundis, “Enhancing the RAMSAS method for system

reliability analysis—An exploitation in the automotive domain,” in Proc.

SIMULTECH, Jul. 2012, pp. 328–333.
[32] F. Tajarrod and G. Latif-Shabgahi, “A novel methodology for synthesis

of fault trees from MATLAB Simulink model,” World Acad. Sci., Eng.

Technol., vol. 17, no. 5, pp. 1256–1262, 2008.
[33] A. Joshi, P. Binns, and S. Vestal, “Automatic generation of static fault

trees from AADL models,” in Proc. IEEE / IFIP Conf. Dependable Syst.

Netw., Edinburgh, Scotland, Jun. 2007.
[34] M. Bozzano and A. Villafiorita, “The FSAP/NuSMV-SA safety analysis

platform,” Int. J. Softw. Tools Technol. Transfer, vol. 9, no. 1, pp. 5–24,
2007.

[35] Y. Papadopoulos and J. A. McDermid, “Hierarchically performed haz-
ard origin and propagation studies,” in Proc. 18th Int. Conf. Comput.

Saf., Reliab. Secur. (SAFECOMP), Toulouse, France, 1999, vol. 1698,
pp. 139–152.

[36] N. Yakymets, H. Jaber, and A. Lanusse, “Model-based system engi-
neering for fault tree generation and analysis,” in Proc. 1st Int. Conf.

Model-Driven Eng. Softw. Dev., Barcelona, Spain, Feb. 19–21, 2013,
pp. 210–214.

[37] F. Mhenni, J.-Y. Choley, O. Penas, R. Plateaux, and M. Hammadi,
“A SysML-based methodology for mechatronic systems architectural
design,” Adv. Eng. Informat., vol. 28, no. 3, pp. 218–231, 2014.

[38] Object-Management-Group, XML Metadata Interchange (XMI)

Specification, Object Management Group Standard [Online]. Available:
http://www.omg.org/spec/XMI/

[39] I. Moir and A. Seabridge, Aircraft Systems—Mechanical Electrical and

Avionics Subsystems Integration, 3rd ed. England, U.K.: John Wiley &
Sons,, Aug. 2008.

[40] M. Hibti, T. Friedlhuber, and A. Rauzy, “Overview of the open PSA
platform,” in Proc. Int. Joint Conf. PSAM’11/ESREL’12, Jun. 2012.

12


