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Preface

This volume contains the papers presented at IPEC 2018: the 13th International Symposium
on Parameterized and Exact Computation, which took place on August 22-24 in Helsinki,
Finland. IPEC was collocated with five other algorithms conferences as a part of the annual
ALGO congress.

Previous IPEC
2004 Bergen, Norway
2006 Zürich, Switzerland
2008 Victoria, Canada
2009 Copenhagen, Denmark
2010 Chennai, India
2011 Saarbrücken, Germany
2012 Ljubljana, Slovenia
2013 Sophia Antipolis, France
2014 Wrocław, Poland
2015 Patras, Greece
2016 Aarhus, Denmark
2017 Vienna, Austria

The International Symposium on Parameterized and
Exact Computation (IPEC, formerly IWPEC) is a series
of international symposia covering research in all aspects
of parameterized and exact algorithms and complexity.
Started in 2004 as a biennial workshop, it became an
annual event in 2009.

In response to the call for papers, 48 papers were
submitted. Each submission was reviewed by at least 3
reviewers. The reviews came from the 15 members of the
program committee, and from 50 external reviewers con-
tributing 145 external reviews. The program committee
held electronic meetings through the EasyChair platform.
The program committee felt that the median submission
quality was very high, and in the end selected 24 of the
submissions for presentation at the symposium and for
inclusion in this proceedings volume. This year, both the
Best Paper Award and the Excellent Student Paper Award distinguish the paper Counting
Induced Subgraphs: A Topological Approach to #W[1]-hardness co-authored by Marc Roth
and Johannes Schmitt.

IPEC invited one plenary speaker to the ALGO meeting, Magnus Wahlström, as part of
the award ceremony for the 2017 EATCS-IPEC Nerode Prize for outstanding papers in the
area of multvariate algorithmics. The award was given by a committee consisting of Dániel
Marx, Jianer Chen and Hans L. Bodlaender to Stefan Kratsch and Magnus Wahlström for
their paper Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle
Transversal (ACM Transactions on Algorithms 10(4): 20:1-20:15 (2014)). IPEC also invited
Radu Curtipean to present a tutorial on Counting Problems in Parameterized Complexity.
Finally, IPEC hosted the ceremony of the 2018 PACE awards. The Parameterized Algorithms
and Computational Experiments Challenge (PACE) was conceived in Fall 2015 to deepen
the relationship between parameterized algorithms and practice. This volume contains a
report by Édouard Bonnet and Florian Sikora on the 2018 PACE challenge.

We would like to thank the program committee, together with the external reviewers, for
their commitment in the difficult paper selection process. We also thank all the authors who
submitted their work for consideration. Finally, we are grateful to the local organizers of
ALGO, chaired by Parinya Chalermsook, Petteri Kaski and Jukka Suomela, for their efforts,
which made chairing IPEC an enjoyable experience.

Christophe Paul and Michał Pilipczuk
Montpellier and Warsaw, November 2018
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Counting Problems in Parameterized Complexity
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Abstract
This survey is an invitation to parameterized counting problems for readers with a background in
parameterized algorithms and complexity. After an introduction to the peculiarities of counting
complexity, we survey the parameterized approach to counting problems, with a focus on two
topics of recent interest: Counting small patterns in large graphs, and counting perfect matchings
and Hamiltonian cycles in well-structured graphs.

While this survey presupposes familiarity with parameterized algorithms and complexity, we
aim at explaining all relevant notions from counting complexity in a self-contained way.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and
exact algorithms, Theory of computation → Problems, reductions and completeness

Keywords and phrases counting complexity, parameterized complexity, graph motifs, perfect
matchings, graph minor theory, Hamiltonian cycles
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collaborations over the last years.

1 Introduction

Many problems in computer science ask about the existence of solutions, such as satisfying
assignments or graph structures with certain properties. However, in both practice and
theory, it may be equally important to count solutions.

In network science, counting problems occur in the context of graph motifs [79], which are
small patterns in graphs that occur unexpectedly often. For instance, social networks exhibit
lower numbers of induced 3-vertex paths than one would expect in comparable random
networks. This is a consequence of the triadic closure [56], the fact that two people with a
common friend are likely to be friends themselves. Such phenomena cannot be observed by
merely testing existence of patterns.

In statistical physics, thermodynamic properties of discrete systems are determined by
partition functions [59]; such functions essentially count the admissible states of systems. As
an example, the dimer model is a graph-based system that models how atoms can pair up
to two-atom molecules [90, 65, 66]. In the 1960s, while attempting to find formulas for the
partition function of the dimer model, physicists invented a polynomial-time algorithm for
counting perfect matchings in planar graphs.

© Radu Curticapean;
licensed under Creative Commons License CC-BY
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1:2 Counting Problems in Parameterized Complexity

Counting can also help for problems that do not explicitly ask about numbers: Some
of the best known algorithms for Hamiltonicity or coloring problems rely on intermediate
counting problems [57, 8, 7].

1.1 Counting complexity
Most interesting counting problems are not known to admit polynomial-time algorithms.
Sometimes, this can be explained through NP-hardness: For instance, counting the satisfying
assignments of Boolean formulas is clearly NP-hard, since counting is certainly not easier than
deciding existence. Such arguments however do not show hardness for counting problems
that admit polynomial-time solvable decision versions, such as counting perfect matchings in
graphs, even though these problems are presumed to be hard.

This called for a complexity theory that is specific to counting problems—such a theory
was provided in 1979 by Valiant [93] in a seminal paper that introduced the complexity
class #P, which captures most natural counting problems. The problems in #P are the
counting versions of problems in NP: Rather than deciding the existence of a witness on a
given input, the task is to count the witnesses. Counting problems are #P-hard if they admit
polynomial-time Turing reductions from counting satisfying assignments of CNF formulas.
As desired, this includes natural counting problems with easy decision versions, such as the
problem of counting perfect matchings, as shown in Valiant’s paper [93]. The #P-hardness
proof for this problem required the introduction of several new reduction techniques, which
we survey in Section 1.3, and showed that counting complexity amounts to more than just
checking that NP-hardness reductions carry over to the counting setting.

Since the initial #P-hardness results, the study of counting problems advanced to a
rich sub-area of complexity theory. In particular, large territories of counting problems
were classified successfully by means of dichotomy theorems that sort into polynomial-time
solvable and #P-hard problems [46, 16, 45, 21, 19]. For instance, a dichotomy theorem for
the counting versions of constraint satisfaction problems was first shown a decade ago [17, 47],
while the analogous result for the decision version was a long-standing open problem that
was resolved only last year [18, 99]. The known dichotomy theorems for counting problems
show that most interesting problems are indeed #P-hard, with only few polynomial-time
solvable exceptions, such as counting perfect matchings in planar graphs [90, 65, 66], counting
spanning trees [67], and problems solved by holographic algorithms [94, 20].

Thus, even more so than for NP-hard decision problems, relaxations were needed to cope
with #P-hard counting problems. The most popular such coping technique is approximate
counting, which allows outputs within a multiplicative error of the actual count [38, 24,
54, 55, 64]. Important #P-hard counting problems admit randomized polynomial-time
approximation schemes; these famously include counting perfect matchings in bipartite graphs
[60]. (The same result for general graphs remains a major open problem in approximate
counting.) Counting problems were also investigated through parameterized, exponential-time,
and fine-grained complexity [48, 77, 40]. In this survey, we focus on these paradigms.

1.2 Parameterized counting complexity
The multivariate paradigm has proven to be very successful for decision and optimization
problems [44, 49, 82, 36], and it also enables a deeper understanding of counting problems.
One of the first results on parameterized counting actually lies in the three-fold intersection
of parameterization, approximation, and counting: Arvind and Raman [6] showed in 2002
how to approximately count H-subgraph copies in a graph G to within a multiplicative
error of 1 ± ε in randomized time f(k, ε) · ntw(H)+O(1). This gives an FPT-algorithm for
approximately counting k-paths, k-cycles, and k-matchings.
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However, no FPT-algorithm is known for counting such subgraph patterns exactly, creating
the need for a parameterized analogue of #P: While the problem of counting k-cliques (even
approximately) is W[1]-hard through its decision version, we cannot say the same about
counting k-paths, k-cycles, or k-matchings, as the decision versions of these problems are
FPT [4]. To deal with such issues, Flum and Grohe [48] and independently McCartin [77]
introduced the class #W[1], a natural parameterized version of #P: In analogy to W[1], the
canonical #W[1]-hard problem is that of counting k-cliques in a graph, and a problem is
#W[1]-hard if it admits a parameterized Turing reduction from counting k-cliques.

Apart from introducing the class #W[1], Flum and Grohe also proved an impressive
parameterized reduction from counting k-cliques to counting k-cycles and k-paths, thus
proving the #W[1]-hardness of these problems and paving the way for a rich complexity
theory of parameterized counting problems. Techniques in parameterized counting were later
used to classify the complexity of general subgraph counting problems parameterized by
pattern size [10, 27, 33, 78, 63, 61, 62, 15, 85, 86, 31], to obtain FPT-approximation results
for #P-hard problems [62, 63, 78, 1, 13], and to investigate classical #P-hard problems like
counting perfect matchings under structural parameters [28, 35, 32, 34].

As for decision and optimization problems, more precise running time bounds for param-
eterized counting problems can be obtained through the exponential-time hypothesis ETH
[58]. This hypothesis also admits a counting version #ETH, introduced by Dell et al. [40],
which asserts that counting satisfying assignments to Boolean 3-CNF-formulas requires time
2Ω(n). A sparsification lemma [40] and counting-specific reduction techniques [29] are known
for #ETH, enabling tight lower bounds for a variety of problems [14, 29]. Note that #ETH
may be a weaker assumption than ETH.

1.3 Techniques for counting problems

To gain some intuition for the algorithmic boundary of parameterized counting, let us examine
the fates of some techniques for parameterized algorithms as we go from decision to counting:

To start on a positive note, dynamic programming often carries over to counting problems.
For instance, in treewidth-based DPs, join nodes correspond very roughly to multiplication
(more realistically, convolution [51]) and forget nodes correspond roughly to summation
over the possible states of the vertex to be forgotten. Most importantly, Courcelle’s
theorem admits analogous counting versions [5, 26, 74]. There also is an FPT-algorithm
for counting the models of FOL formulas on structures of locally bounded treewidth [52].
On the other hand, win-win approaches like bidimensionality [42, 50] fail for counting
problems when the large-treewidth case “wins” via a guaranteed solution: As an example,
knowing that k-paths exist due to the presence of a

√
k×
√
k grid minor does a priori not

facilitate counting. However, if the large-treewidth case guarantees the absence of the
solutions sought for, then we only need to address the low-treewidth case: As mentioned
above, treewidth-based DPs for decision problems often support the extension to counting.
Color coding [4] fails, strictly speaking: While every k-set will be colorful under at least
one coloring, there is otherwise no guarantee on the number of such colorings. In fact, it
is known [2] that a perfectly balanced collection of colorings needs size Ω(nk/2) . There
are however approximately balanced collections that enable approximate counting [1, 3].
Most kernelization techniques preserve only the existence of solutions. However, under
proper definitions of a counting kernel, some techniques like the sunflower kernel for
bounded-cardinality k-hitting sets do carry over [91]. In Section 3.1, we will also see an
application of protrusion replacement [12] that works for counting.
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What we lose in algorithmic techniques when going into the counting world, we gain in
new reduction techniques for proving hardness. In the following, we survey some reduction
techniques for #P- and #W[1]-hardness that are unavailable for NP- and W[1]-hardness.

Cancellations in gadgets

Gadgets in NP- or W[1]-hardness proofs typically serve the purpose of testing local states:
They can be extended by an internal solution iff their external state is admissible in a
problem-specific sense. In counting problems with easy decision versions, gadgets with this
property may not necessarily exist, as they might imply hardness of the decision version. We
must actually use the power of counting: As first done by Valiant [93], we can design gadgets
that do admit unwanted internal extensions for non-admissible external states, but such that
the (weighted) contributions of unwanted internal extensions cancel out to zero.

As an example, let us consider a weighted version of counting perfect matchings: Given
an edge-weighted graph G = (V,E,w), we define

PerfMatch(G) =
∑
M

∏
e∈M

w(e),

where M ranges over the perfect matchings of G. The following edge-weighted gadget Γ with
special vertices X = {x1, . . . , x4} acts as an “equality gadget” for PerfMatch: For S = ∅ and
S = X, we have PerfMatch(Γ− S) = 1, and we also have PerfMatch(Γ− S) = 0 for all other
S ⊆ X. (The gadget is from [34] and was found with a computer algebra system.)

x1

x2 x3

x4

1

−1
1
2

− 1
2

Summarizing, if the gadget Γ is used in a larger construction, then effectively either all
or none of X must be matched by edges outside of Γ. Even though Γ does admit internal
matchings in some of the other cases, the weighted number of such matchings cancels to zero.

Interpolation

In the counting world, Turing reductions become very powerful, as the results of oracle queries
can be added, multiplied, subtracted—a luxury we do not have with Boolean values. This
enables linear algebra on oracle outputs, in particular, polynomial interpolation [93, 92, 98, 29].
As an example of this prevalent technique, we show a classical reduction that computes
PerfMatch(G) for an n-vertex graph G with edge-weights ±1 when given an oracle for
counting perfect matchings in unweighted graphs.

Let x be an indeterminate and define a graph Gx by replacing each edge of weight −1 in
G by an edge of weight x. Then p := PerfMatch(Gx) is a polynomial in x of degree at most
n
2 such that p(−1) = PerfMatch(G). If we knew the n

2 + 1 values p(0), . . . , p(n2 ), we could
recover all coefficients of p(G) via Lagrange interpolation and could thus evaluate p(−1).
But the evaluation p(i) for 0 ≤ i ≤ n

2 can be obtained as PerfMatch(Gi) for the graph Gi in
which each edge of weight x is replaced by an edge of weight i. Each such edge in turn can
be simulated by a bundle of i parallel unweighted edges.

Overall, we can recover the value of PerfMatch(G) for the ±1-weighted graph G by
counting perfect matchings in the unweighted graphs G0, . . . , Gn/2 via oracle calls and
performing linear algebra on the oracle results to interpolate the polynomial p.
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Inclusion-exclusion

Also taking linear combinations of oracle outputs, the inclusion-exclusion principle is a very
useful tool for parameterized hardness results [78, 39, 25, 33]. Given a universe Ω and “bad”
subsets A1, . . . , Ak ⊆ Ω, inclusion-exclusion allows us to count those elements of Ω that avoid
all bad subsets, provided that we know the sizes of intersections of bad subsets:∣∣∣∣∣Ω \

k⋃
i=1

Ai

∣∣∣∣∣ =
∑

S⊆{1,...,k}

(−1)|S| |AS | (1)

with A∅ := Ω and AS :=
⋂
i∈S Ai for ∅ ⊂ S ⊆ [k]. We can thus determine the left-hand side

with 2k oracle calls to numbers |AS | for S ⊆ [k].
We use (1) for a parameterized reduction from the colorful subgraph isomorphism problem

to the uncolored version [78, 33]. Let H and G be graphs such that G is (not necessarily
properly) vertex-colored with colors from {1, . . . , k} for k = |V (H)|. A subgraph copy of H
in G is colorful if it does not avoid any color. Thus, writing Ω for the set of all H-copies in
G, and defining Ai for i ∈ [k] to be the set of H-copies that do avoid color i, we can invoke
(1) to obtain the number of colorful H-copies if we knew the cardinalities |AS | for S ⊆ [k].
But |AS | is just the number of H-copies avoiding all colors in S. These are precisely the
H-copies in the graph GS obtained from G by removing all vertices with a color among S
and ignoring colors. The numbers of H-copies in GS can then be obtained by oracle calls to
counting uncolored H-copies, and we only need 2k such numbers to evaluate (1).

Somewhat peculiarly, this reduction goes the opposite way as in the decision problem:
In the decision version of subgraph isomorphism, color-coding reduces from the uncolored
to the colorful setting, while the reverse direction is generally not known. In the counting
version however, we have just seen a reduction from the uncolored to the colorful setting.
Furthermore, the converse reduction is generally false: Counting k-paths is #W[1]-hard [48],
whereas a simple FPT-algorithm counts colorful k-paths. See also an article by Meeks [78]
for a nice overview of the relationship between colored and uncolored subgraph problems.

Organization of this survey
After this brief introduction, we apply the multivariate perspective on counting to two specific
problems: In Section 2, we count small patterns in large graphs. Complementary to that, in
Section 3, we then count large patterns like perfect matchings and Hamiltonian cycles in
graphs excluding fixed minors or bounded treewidth.

2 Counting small patterns

Large networks can often be approached by counting small patterns [79, 73]. This naturally
leads to parameterized pattern counting problems: Given as input a pattern graph H and a
host graph G, determine the number of occurrences of H in G, parameterized by the size of
H. Such problems have been intensively studied in different communities; we survey some
results in Section 2.1 and present recent developments in Section 2.2.

2.1 Results for individual pattern types
There are different ways of formalizing an occurrence of a pattern in a graph, and they can
lead to stark differences in complexity. Below are some of the most common notions:
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Let us write sub(H,G) for the number of (not necessarily induced) subgraphs of G that
are isomorphic to H. Closely related is emb(H,G), the number of embeddings from H

to G: An embedding from H to G is an injective function f : V (H)→ V (G) such that
uv ∈ E(H) implies f(u)f(v) ∈ E(G). We have emb(H,G) = aut(H) · sub(H,G), where
aut(H) is the number of automorphisms of H.
Depending on the application, we may also ask for the number ind(H,G) of induced
subgraphs isomorphic to H. Extending this, Jerrum and Meeks introduced a more general
model [62, 61]: For a fixed property Φ of k-vertex graphs, we can ask to determine the
number ind(Φ, G) of k-vertex subsets inducing a subgraph with property Φ.
We could also ask for the number hom(H,G) of homomorphisms from H to G. These are
essentially embeddings that need not be injective, that is, functions f : V (H)→ V (G)
such that uv ∈ E(H) implies f(u)f(v) ∈ E(G). Homomorphism counts appear in the
setting of database queries [22], they are a fundamental notion in the theory of graph
limits and graph algebras [73], and we will see in Section 2.2 that they enable a depeer
understanding of subgraph and induced subgraph counting problems.

Improved algorithms

All of the above numbers can be computed in time O(f(k) · nk) by brute force; we write
k = |V (H)| and n = |V (G)| throughout. As even a moderate value of k can be prohibitively
large for large host graphs G, the possibility of improved algorithms was investigated:

Fast matrix multiplication solves the above problems in time f(k) · nωk/3+O(1), where
ω < 2.373 is the exponent of matrix multiplication [81].
For computing sub(H,G) and thin patterns H, an additional improvement to f(k) ·
n0.46k+2pw(H)+O(1) time is possible, where pw(H) denotes the pathwidth of H [9].
Again for sub(H,G), substantial improvements can be made when H has bounded vertex-
cover number vc(H): As an example, if H = K1,k is a star with k ≥ 2 rays, then
sub(H,G) =

∑
v∈V (G)

(
d(v)
k

)
, where d(v) denotes the degree of v. This formula can be

evaluated in linear time. More generally, if H has a vertex-cover C, then we can iterate
over all n|C| maps from C into G and determine, for each map, the number of ways to
extend the image of C to a full copy of H. This last step can be performed in polynomial
time, enabling an overall running time of f(k) · nvc(H)+O(1) [69, 97].
We will show in Section 2.2 that sub(H,G) can be computed in f(k) · n0.174`+O(1) time
when H has ` edges; this is useful for counting matchings, paths, or cycles.

It is natural to ask how far such improvements can be pushed. For fixed graphs H, let us
write sub(H, ·), ind(H, ·) and hom(H, ·) for the graph parameters1 that map input graphs G
to the numbers sub(H,G), ind(H,G) and hom(H,G). As it is interesting to quantify running
time improvements even for algorithms that are not FPT, we define the complexity exponent
of graph parameters like sub(H, ·) to be the infimum over all C ∈ R such that sub(H,G) can
be evlauated in time O(nC) on input G [30]. Note that the complexity exponent of sub(H, ·),
ind(H, ·) and hom(H, ·) for fixed H is always bounded from above by k, but it may be well
below k, say, for sub(H, ·) where H has low vertex-cover number.

1 A graph parameter f is a function from graphs into Q. Please note that graph parameters are not
(necessarily) parameters in the sense of parameterized complexity—it is a bit awkward to talk about the
“parameterized complexity of graph parameters”, but graph parameters are a well-established notion.
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Hardness results

We want to understand the optimal complexity exponents of graph parameters that count
small patterns. Parameterized complexity allows us to aggregate graph parameters into
classes H and prove statements on the asymptotic behaviour of the complexity exponents:
Given a graph class H, we define the problem sub(H, ·), where the task is to compute
sub(H,G) on input a pattern graph H ∈ H and an arbitrary host graph G. An analogous
definition gives the problems ind(H, ·) and hom(H, ·).

If a problem sub(H, ·) is FPT or even polynomial-time solvable, then there is a fixed
constant C that bounds all complexity exponents of sub(H, ·) for H ∈ H. If sub(H, ·) is
#W[1]-hard, then we believe that no such constant exists. Furthermore, conditional lower
bounds under #ETH enable lower bounds on the asymptotic growth of complexity exponents.
Indeed, such lower bounds are known for counting subgraphs, induced subgraphs, and
homomorphisms for restricted pattern classes H that are recursively enumerable.

If H is finite, then ind(H, ·) is polynomial-time solvable, otherwise it is #W[1]-hard [25].
Furthermore, if H is infinite, then there is no f(k) · no(k) time algorithm for ind(H, ·)
unless ETH fails. Note that this result holds for every fixed recursively enumerable class
H; it shows that no pattern structure whatsoever can be exploited for counting induced
subgraphs. Jerrum and Meeks generalized this result and proved that counting k-vertex
subgraphs with fixed properties Φ is #W[1]-hard for certain well-behaved properties Φ
like connectedness or having even/odd number of edges [61, 62, 63].
For counting not necessarily induced subgraphs, we have seen above that pattern structure
can be exploited: If the maximum vertex-cover number of graphs in H is finite, then
sub(H, ·) is polynomial-time solvable. Otherwise the problem is known to be #W[1]-hard
[33]. We will see in the next section that an f(k) · no(vc(H)/ log vc(H)) time algorithm
would refute #ETH, even for patterns from fixed classes H.
For counting homomorphisms, we may even allow bounded-treewidth patterns: If the
treewidth of H is finite, then hom(H, ·) is polynomial-time solvable; otherwise the problem
is #W[1]-hard [39]. As a consequence of Marx’s cornerstone “Can you beat treewidth”
paper, #ETH rules out an f(k) · no(tw(H)/ log tw(H)) time algorithm [76].

2.2 Graph motif parameters

Despite the similar appearance of the problems ind(H, ·), sub(H, ·), and hom(H, ·), their
dichotomy theorems were each proven about five years apart, by different people, using
somewhat different techniques. Recently, it was shown that these problems can be studied in
a uniform way: From the perspective of parameterized complexity, these problems become
the same problem when “extended linearly”.

More formally, graph parameters like sub(H, ·) or ind(H, ·) for fixed H are special cases
of so-called graph motif parameters, a notion introduced in [30] that adapts early works by
Lovász [71, 73] to study counting small patterns from a parameterized perspective. Apart
from sub(H, ·) and ind(H, ·), graph motif parameters include the graph parameters ind(Φ, ·)
that count induced k-vertex subgraphs with a fixed property Φ, and generally, every graph
parameter that depends only on the numbers of constant-sized subgraphs.

I Definition 1. A graph motif parameter is any graph parameter f that can be written as

f(·) =
∑
F∈F

αF · ind(F, ·) (2)
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for a finite set of graphs F and coefficients αF for F ∈ F . In other words, f is a (point-wise)
linear combination of a finite set of functions ind(F, ·) for fixed patterns F . Recall that the
function ind(F, ·) takes as input a graph G and outputs ind(F,G).

The graph motif parameter evaluation problem asks to evaluate f(G) when given as input
a graph G and a representation of f via F = {F1, . . . , Ft} and coefficients α1, . . . , αt. We
parameterize the problem by the description length of f .

Note that the functions ind(H, ·) for fixed H are graph motif parameters themselves, but
using linear combinations of such functions allows us to express much more counting functions
as graph motif parameters. As an example, for any H, we have

sub(H, ·) =
∑

F extends H
βF · ind(F, ·), (3)

where an unlabeled graph F extends H if F is a supergraph of H on |V (H)| vertices, and
the coefficient βF equals sub(F,H). Since only finitely many graphs F occur in (3), the
graph parameter sub(H, ·) for fixed H is a graph motif parameter. Moreover, the graphs
and coefficients can be computed in time depending only on H. It follows that the problem
of computing sub(H,G) on input H and G, parameterized by H, admits a parameterized
reduction to the graph motif evaluation problem.

Interestingly, (3) admits a converse form that expresses the number of induced subgraphs
ind(H, ·) as a finite linear combination of subgraph counts sub(F, ·), see [73, (5.17)]. Thus,
subgraph counts are finite linear combinations of induced subgraph counts, and vice versa.
We could thus replace ind with sub in Definition 1 and still end up defining the same objects:
Any graph motif parameter f =

∑
F∈F αF · ind(F, ·) can also be written as

f(·) =
∑
F∈F ′

βF · sub(F, ·). (4)

for a finite set of graphs F ′ and coefficients βF for F ∈ F ′ that can be computed from F and
the coefficients αF for F ∈ F . We call (4) the sub-expansion of f and (2) its ind-expansion.2

Homomorphism counts count

There are actually many equivalent ways of expanding graph motif parameters into finite
linear combinations of basis functions, with explicit formulas for changing bases between
such expansions [73, Chapter 5.2]. As it turns out, such basis changes enable a much better
understanding of the complexity of graph motif parameters. In particular, expanding graph
motif parameters into linear combinations of the previously neglected homomorphism counts
will prove to be extremely useful for algorithmic purposes.

Let us have a more detailed look at the relation between embeddings3 and homomorphisms:
We can easily express the number of homomorphisms hom(H, ·) as a finite linear combination
of embeddings emb(F, ·). A graph F is a quotient of H if F can be obtained from H by
repeated identifications of vertex pairs. These identifications can be performed all at once: If
π is a partition of V (H), then the quotient H/π is obtained from H by identifying, for each

2 We could have chosen to call the parameterized counting problem from Definition 1 the “evaluation
problem for graph motif parameters in the ind-expansion” and could have defined an analogous version
for the sub-expansion, but the fact that the sub-expansion and the ind-expansion can be transformed
into each other algorithmically implies that these problems are FPT-interreducible.

3 Recall that an embedding is an injective homomorphism, and that emb(H, ·) = aut(H) · sub(H, ·).
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block B of π, the vertices in B to a single vertex. Quotients of graphs H correspond to the
images that H can attain under homomorphisms, and we obtain

hom(H, ·) =
∑
π

emb(H/π, ·), (5)

where π ranges over all partitions of V (H). Different partitions can yield isomorphic quotients,
and after collecting for isomorphic copies in (5) and rewriting emb = aut · sub, we obtain a
formula for the sub-expansion of hom(H, ·).

More interestingly, as shown in [73, (5.18)], the formula (5) can be inverted4 to read

emb(H, ·) =
∑
π

(−1)k−|π|
∏
B∈π

(|B| − 1)!︸ ︷︷ ︸
=:µ(π)

·hom(H/π, ·), (6)

where we write |π| for the number of blocks in π. The precise form of (6) and µ(π) will
become important later on, but for now let us just use it to conclude that every graph motif
parameter f can be expressed as a linear combination of homomorphism counts

f(·) =
∑
F∈F ′′

γF · hom(F, ·) (7)

for a finite set of graphs F ′′ and coefficients γF for F ∈ F ′′. We call (7) the hom-expansion of
f . This works because every graph motif parameter has a sub-expansion via (4), and because
subgraph counts are rescaled embedding counts, which in turn are linear combinations of
homomorphism counts by (6).

Complexity monotonicity of the hom-expansion

Lovász showed that homomorphism counts enjoy a wealth of mathematical properties that
make them more well-behaved than subgraph or induced subgraph counts [73], and some
of these properties translate almost directly into complexity-theoretic properties. Most
importantly for us, the hom-expansion of graph motif parameters enjoys a monotonicity
property with respect to complexity exponents: Any linear combination of homomorphism
counts, as in (7), is unconditionally at least as hard to evaluate as its hardest terms.

I Theorem 2 ([30, 22]). Let f be a graph motif parameter with f =
∑
F∈F αF · hom(F, ·)

for a finite set of pairwise non-isomorphic graphs F with αF 6= 0 for all F ∈ F . Then
the complexity exponent of f is exactly the maximum over all complexity exponents of the
functions hom(F, ·) for F ∈ F .

I Remark. A result similar to Theorem 2 cannot be obtained for the sub-expansion or
the ind-expansion. In these cases, we can “hide” cliques in easy linear combinations: For
any k ∈ N, summing over the induced subgraph counts from all k-vertex graphs H gives∑
H ind(H,G) =

(|V (G)|
k

)
, which can be evaluated in linear time for any graph G, even

though the left-hand side contains a k-clique. Theorem 2 rules this out for homomorphisms.
Via Theorem 2, we obtain a good grip on the complexity of a graph motif parameter f if we
manage to understand (i) what patterns F occur in the hom-expansion of f , and (ii) how
hard counting homomorphisms hom(F, ·) is for these patterns. For the first item, we can use
enumerative combinatorics to obtain formulas like (6). For the second item, we can use the
known lower bounds under ETH for cliques [23] or patterns of large treewidth [76].

4 This is done via Möbius inversion on the partition lattice, a generalization of the inclusion-exclusion
principle, which can be viewed as Möbius inversion on the subset lattice [88].
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Understanding subgraph counting via homomorphisms

In the following, we use the two-step approach to give upper and lower bounds on the
complexity of counting subgraphs sub(H, ·) for fixed H. Let us start with an upper bound.

I Theorem 3 ([30]). On input H and G, the number sub(H,G) can be determined in time
kO(k) · n0.174`+O(1) with ` = |E(H)|.

Proof. Consider the formula (6) for transforming embedding counts into homomorphism
counts. The right-hand side sums over all partitions π of V (H), of which there are at most
kO(k), and requires homomorphism numbers from quotients H/π into G. Any quotient
H/π has at most ` edges, and the treewidth of `-edge graphs F is known to be at most
tw(F ) ≤ 0.174`+ o(`) [87]. By a standard DP approach, we can determine hom(H/π,G) in
time 2O(k) · n0.174`+O(1) for every fixed π, and the overall running time bound follows. J

It is not much harder to prove hardness results for subgraph counting via Theorem 2:

I Theorem 4. For any fixed recursively enumerable class H, the problem sub(H, ·) cannot
be solved in time f(k) · no(vc(H)/ log vc(H)) for patterns H ∈ H unless ETH fails.

Proof. Consider sub(H, ·) for H ∈ H. If H has vertex-cover number b ∈ N, then H contains
a matchingM with t = b/2 edges. We show that for every t-edge graph S, the hom-expansion
of sub(H, ·) contains a supergraph of S with non-zero coefficient. In particular, this holds for
bounded-degree expanders S of treewidth Ω(t). Supergraphs have only larger treewidth.

Every t-edge graph S is some quotient of the t-matching M in H. It follows that
some supergraph of S is a quotient of H. Using (6), we can see that every quotient H/π
appears with non-zero coefficient in the hom-expansion of sub(H, ·) even after collecting for
isomorphic graphs: While different partitions π, π′ may lead to isomorphic quotients, this
requires |π| = |π′|. But since the sign of µ(π) in (6) depends only on |π|, the contributions
of π and π′ cannot cancel. J

The hom-expansion of graph motif parameters is a fascinating object of study on its own that
connects various mathematical areas: After the results for subgraph counting, Theorem 2
was used by Roth [85] to classify the complexity of counting homomorphism variants such as
locally injective homomorphisms. This was obtained by finding large-treewidth patterns in the
relevant hom-expansions through matroid theory. Very recently, an almost exhaustive #W[1]-
hardness proof for counting induced k-vertex subgraphs with a fixed monotone property Φ
was given by Roth and Schmitt [86] by using topological properties of abstract simplicial
complexes. In unpublished work by the author, connections to finite model theory and
chromatic polynomials were also uncovered.

3 Counting large patterns in “simple” graphs

In this last and shorter part of the survey, we count large objects in graphs of simple structure:
In Section 3.1, we attempt to count perfect matchings in graphs that exclude fixed minors,
and in Section 3.2, we count Hamiltonian cycles in graphs of bounded pathwidth.

3.1 Counting perfect matchings in minor-free graphs
Counting perfect matchings was the first problem shown to be #P-hard for interesting
reasons, and it admits a beautiful polynomial-time algorithm on planar graphs, the Fisher-
Kasteleyn-Temperley (FKT) method [90, 65, 66], which we already mentioned earlier. Other
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than planar graphs, there are further tractable graph classes C: For instance, while planar
graphs exclude both K3,3 and K5 as minors, it was shown that excluding either of these two
minors is sufficient [70, 96, 89]. The FKT method was also extended to an FPT-algorithm
with running time 4γnO(1) for graphs that are embedded on a surface of genus γ [53]; together
with an FPT-algorithm for finding such embeddings [80], this shows that counting perfect
matchings is FPT when parameterized by genus. Furthermore, dynamic programming with
subset convolution yields an O(2tw(G)n) time algorithm when G is given with an optimal
tree-decomposition [95]. It is also possible to count perfect matchings in time O(ncw(G)+1)
on graphs of cliquewidth cw(G) given with an optimal parse-tree, but unlike the previous
results, this holds only for unweighted graphs [75].

The above list shows that, apart from cliquewidth, all tractability results for counting
perfect matchings address graphs that exclude some fixed minor. In fact, the algorithms for
K3,3-free and K5-free graphs make use of classical precursors to Robertson and Seymour’s
graph structure theorem for H-minor free graphs [84]: By Wagner’s theorem [43], the K3,3-
free and K5-free graphs admit tree-decompositions of adhesion 3 in which every torso is
planar or has bounded size. Prior to proving the full graph structure theorem, Robertson
and Seymour showed very similar decompositions for all graphs excluding minors H that
can be drawn in the plane with at most one crossing [83], such as H = K3,3 and H = K5.
Such decompositions can be used algorithmically:

I Theorem 5 ([28, 89]). For any fixed graph H that can be drawn in the plane with at most
one crossing, there is an O(n4) time algorithm for counting perfect matchings in H-minor
free graphs G.

Proof. For single-crossing minors H, a tree-decomposition of H-free graphs G into planar
and bounded-treewidth torsos of adhesion 3 can be obtained in O(f(H) ·n4) time [41]. Given
such a decomposition, the algorithm now uses a counting version of protrusion replacement
[12]: When counting perfect matchings, any 3-boundaried graph S can be simulated by
an equivalent planar 3-boundaried graph S′ with edge-weights [94], and the graph S′ can
be computed in FPT-time for planar and bounded-treewidth graphs S. Traversing the
decomposition of G bottom-up, we can successively replace torsos S by planar replacement
graphs S′ until all of G is processed. J

How far can we push this result? In particular, is it possible to obtain polynomial-time
algorithms for counting perfect matchings for any graph class that excludes some fixed graph
H? More strongly, is the problem FPT when parameterized by the Hadwiger number, which
is the maximum size of a clique minor in G? The answer to the second question is negative,
as we can show #W[1]-hardness on k-apex graphs. These are the graphs that become planar
after deleting at most k vertices; this upper-bounds their Hadwiger number by k + 5.

I Theorem 6 ([35]). Counting perfect matchings in k-apex graphs is #W[1]-hard and an
f(k)no(k/ log k) time algorithm would refute #ETH.

Thus, counting perfect matchings is also #W[1]-hard when parameterized by the Hadwiger
number. However, an XP-algorithm might still be possible, e.g., because there is a simple
O(nk+3) time algorithm for counting perfect matchings in k-apex graphs: Simply iterate
over all nk possible choices for matching the k apices to vertices in the planar base graph,
delete the apices together with their matching partners, and count perfect matchings in the
remaining planar graph via the FKT method.

To recapitulate, we know that counting perfect matchings is FPT parameterized by
genus, in XP parameterized by apex number, and we have seen some techniques for dealing
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with clique-sums in Theorem 5. By the graph structure theorem [84], these are almost all
the building blocks of H-minor free graphs, and thus an XP algorithm for counting perfect
matchings on such graphs almost seems within reach.

Alas, we blocked out vortices: In general, H-minor free graphs allow for graphs of bounded
pathwidth to be inserted at the faces of the bounded-genus parts; these structures are called
vortices. It turns out that counting perfect matchings is #P-hard even in planar graphs with
one single vortex, and such graphs can be seen to exclude a constant-sized minor.

I Theorem 7 (Unpublished work by the author with Mingji Xia). There is a fixed graph H
such that counting perfect matchings is #P-hard in graphs excluding H.

Thus, polynomial-time algorithms cannot be obtained for each excluded minor H, but it is
still open to find out which fixed graphs H can be excluded for polynomial-time algorithms.

3.2 Counting Hamiltonian cycles in low-pathwidth graphs

To conclude, we briefly consider counting Hamiltonian cycles parameterized by pathwidth.
The standard DP for this problem gives a running time of O∗(pwO(pw)) for counting and
decision, but celebrated improvements [37] enabled O∗((2 +

√
2)pw) time for the decision

problem and for counting modulo 2, and O∗(6pw) time for counting [11]. The bases 2 +
√

2
and 6 are optimal under the strong exponential-time hypothesis SETH [37, 32].

Curiously, the concrete numbers 2 +
√

2 and 6 can be explained through connection
matrices. These are particularly nice objects in the intersection of linear algebra and
combinatorics [72, 73]. Given a graph parameter f such as the number of Hamiltonian
cycles, and k ∈ N, the k-th connection matrix of f is an infinite matrix Cf,k, indexed by
k-boundaried graphs, that describes the behavior of f under graph separations of size k. The
entry Cf,k(G,H) for k-boundaried graphs G,H is defined to be f(G⊕H), where G⊕H is the
union of k-boundaried graphs G and H with matching vertices identified. Even though the
matrices Cf,k are infinite-sized, they have finite rank for many interesting graph parameters
f , including all MSOL-definable f [68]. It can be shown furthermore that evaluating graph
parameters f with finite-rank connection matrices is nonuniformly FPT when parameterized
by treewidth [73]; this gives an alternative proof of Courcelle’s theorem.

Let us focus again on the connection matrix CHC,k for the number of Hamiltonian cycles:
Lovász [72] upper-bounded the rank of CHC,k over Q by kO(k). This bound was recently
improved to Θ(6k) up to polynomial factors, with a matching lower bound [32]. It was also
known before that the rank of CHC,k drops to Θ((2 +

√
2)k) over the ring Z2 with a matching

lower bound [37]. Note that the constants 6 and 2 +
√

2 appearing in the rank of CHC,k
over Q and Z2 are the running time bases for counting Hamiltonian cycles over these rings
parameterized by pathwidth. This is a consequence of a more general statement:

I Theorem 8 ([32]). Let R be any of the rings Q or Zp for prime p. If the connection
matrix CHC,k of the number of Hamiltonian cycles has rank Ω(ck) over R, then an algorithm
with running time O∗((c− ε)pw) for counting Hamiltonian cycles over R refutes SETH.

While we do know that the rank of CHC,k is Ω(3.97k) over Zp when p 6= 2, resulting in a
corresponding complexity lower bound [32], algorithms faster than O∗(6pw) are not known.
It is also interesting to close this gap and to investigate to what extent the proof technique
in Theorem 8 can be applied to study problems other than Hamiltonian cycles through their
connection matrices.
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Abstract
For a fixed graph H, we are interested in the parameterized complexity of the following problem,
called {H}-M-Deletion, parameterized by the treewidth tw of the input graph: given an n-
vertex graph G and an integer k, decide whether there exists S ⊆ V (G) with |S| ≤ k such that
G\S does not contain H as a minor. In previous work [IPEC, 2017] we proved that if H is planar
and connected, then the problem cannot be solved in time 2o(tw) · nO(1) under the ETH, and can
be solved in time 2O(tw·log tw) ·nO(1). In this article we manage to classify the optimal asymptotic
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the problem where H is forbidden as a topological minor, the case H = K1,4 can be solved in
time 2Θ(tw) · nO(1). This exhibits, to the best of our knowledge, the first difference between the
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2:2 A Complexity Dichotomy for Hitting Small Planar Minors

1 Introduction

Let H be a fixed graph. In the {H}-M-Deletion (resp. {H}-TM-Deletion) problem,
we are given an n-vertex graph G and an integer k, and the objective is to decide whether
there exists a set S ⊆ V (G) with |S| ≤ k such that G \ S does not contain H as a minor
(resp. topological minor). These problems belongs to the more general category of graph
modification problems. The cases where H is planar and connected are already quite general,
as the cases H = K2 and H = K3 correspond to Vertex Cover and Feedback Vertex
Set, respectively. We are interested in the parameterized complexity of {H}-M-Deletion
and {H}-TM-Deletion taking as the parameter the treewidth of G, denoted by tw.

Determining the optimal asymptotic complexity of {H}-M-Deletion parameterized by
treewidth has been an active area in the parameterized complexity community during the last
years. As relevant examples, Vertex Cover is easily solvable in time 2O(tw) · nO(1), called
single-exponential, by standard dynamic-programming techniques, and no algorithm with
running time 2o(tw) · nO(1) exists unless the Exponential Time Hypothesis (ETH)1 fails [10].
For Feedback Vertex Set, the existence of a single-exponential algorithm remained open
for a while, until Cygan et al. [6] presented the Cut&Count technique. See also [2, 9, 11, 15].

We recently studied these problems in [1] and proved2, among other results, that if H is
planar and connected, then the problems cannot be solved in time 2o(tw) · nO(1) under the
ETH, and can be solved in time 2O(tw·log tw) · nO(1) (for {H}-TM-Deletion, we additionally
need H to have maximum degree at most 3). We also presented a dichotomy when H = Ci
is a cycle on i vertices, by proving that both problems (which are clearly equivalent for
subcubic graphs) can be solved in single-exponential time if and only if i ≤ 4. We aimed at
a similar dichotomy when H = Pi is a path on i vertices, but we left open the case H = P5.
In this article we obtain the following results, the lower bounds holding under the ETH:

1. When H = K1,i, the star with i leaves, {K1,i}-M-Deletion is solvable in time 2Θ(tw) ·
nO(1) for i ≤ 3, and in time 2Θ(tw·log tw) · nO(1) for i ≥ 4. On the other hand, {K1,i}-TM-
Deletion can be solved in time 2Θ(tw) ·nO(1) for every i ≥ 1. To the best of our knowledge,
this is the first example of a graph H for which the complexity of {H}-M-Deletion
and {H}-TM-Deletion differ.

2. When H = θi, the multigraph consisting of two vertices and i ≥ 1 parallel edges, both
problems can be solved in time 2Θ(tw) · nO(1) for i ≤ 2, and in time 2Θ(tw·log tw) · nO(1) for
i ≥ 3. The same dichotomy occurs when H = K2,i.

3. We classify the optimal asymptotic complexity of {H}-M-Deletion when H is a
connected planar graph on at most 5 vertices. Out of the 29 possibilities (discarding the
trivial case H = {K1}), we prove that 9 of them are solvable in time 2Θ(tw) · nO(1), and
that the other 20 ones are solvable in time 2Θ(tw·log tw) · nO(1); a summary is shown in
Figure 1. Note that K4 and the diamond are the only graphs on at most 4 vertices for
which the problem is solvable in time 2Θ(tw·log tw) ·nO(1), and that the chair and the banner
are the only graphs on 5 vertices for which the problem is solvable in time 2Θ(tw) · nO(1).
In particular, this settles the complexity of {P5}-M-Deletion, which we left open in [1].
All the lower bounds also hold for {H}-TM-Deletion, with the only difference that the
case H = K1,4 can be solved in time 2Θ(tw) · nO(1), as mentioned in item 1 above.

1 The ETH states that 3-SAT on n variables cannot be solved in time 2o(n); see [10] for more details.
2 In [1] we considered the more general case where all the graphs in a fixed finite family F are forbidden

as (topological) minors. For simplicity, we only consider here the case where F contains a single graph.
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P3 ∪ 2K1

P2 ∪ P3
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Figure 1 Classification of the complexity of {H}-M-Deletion for all connected simple planar
graphs H with |V (H)| ≤ 5 and |E(H)| ≥ 1: for the 9 graphs on the left (resp. 20 graphs on the right),
the problem is solvable in time 2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion,
K1,4 should be on the left. The results of this article correspond to the red (darker) graphs; the
other ones were either already known (namely, P2, P3, and C3) or obtained in [1].

Let us discuss about the techniques that we used to obtain the above results. The single-
exponential algorithms are ad hoc, some being easier than others. All of them exploit a
structural characterization of the graphs that exclude that particular graph as a (topological)
minor; cf. for instance Lemma 1. Intuitively, the “complexity” of this characterization is
what determines the difficulty of the corresponding dynamic programming algorithm, and is
also what makes the difference between being solvable in single-exponential time or not.

More precisely, the algorithms for {K1,s}-TM-Deletion are simple and use standard
dynamic programming techniques on graphs of bounded treewidth. The algorithm for {paw}-
TM-Deletion is more involved and uses the rank-based approach introduced by Bodlaender
et al. [2], similarly to the algorithm for {C4}-TM-Deletion that we presented in [1]. Finally,
the algorithms for {chair}-TM-Deletion and {banner}-TM-Deletion are a combination
of some of the algorithms given here and in [1], the latter one using the rank-based approach.

The superexponential lower bounds of this article are inspired by a reduction of Bonnet et
al. [4]. Namely, we prove subexponential lower bounds for P5, K1,i with i ≥ 4 for the minor
version, K2,i and θi for i ≥ 3 (note that if G is a simple graph, {θ3}-Deletion is equivalent
to {diamond}-Deletion), and the following graphs depicted in Figure 1: the px, the kite,
the dart, the bull, the butterfly, the cricket, and the co-banner. All these reductions are based
on a general construction (cf. Section 4.1), and then we need particular small gadgets to deal
with each of the graphs. On the other hand, one can easily check that all the other graphs
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on the right hand side of Figure 1, namely K4, C5, K3 ∪ 2K1, K5-e, W4, P3 ∪ 2K1, P2 ∪ P3,
the gem, and the house, satisfy the general condition given in [1, Theorem 20], and therefore
the superexponential lower bound follows for both problems and each of these graphs. This
completes the dichotomy for all connected (simple) planar graphs on at most 5 vertices.
The remainder of this article is organized as follows. In Section 2 we provide some preliminaries.
The single-exponential algorithms are presented in Section 3 and the superexponential lower
bounds in Section 4. We conclude the article in Section 5. Due to space constraints, the
proofs of the results marked with ‘(?)’ can be found in the full version of this article.

2 Preliminaries

We use standard graph-theoretic notation, and we refer to [7] for any undefined term and
the notions of minor and topological minor. We also refer to [8, 5] for the basic definitions of
parameterized complexity, tree decompositions, and treewidth. We need to introduce nice
tree decompositions, which make the presentation of the algorithms much simpler.

Let D = (T,X ) be a tree decomposition of G, r be a vertex of T , and G = {Gt | t ∈ V (T )}
be a collection of subgraphs of G, indexed by the vertices of T . We say that the triple
(D, r,G) is a nice tree decomposition of G if the following conditions hold:

Xr = ∅ and Gr = G,
each node of D has at most two children in T ,
for each leaf t ∈ V (T ), Xt = ∅ and Gt = (∅, ∅). Such t is called a leaf node,
if t ∈ V (T ) has exactly one child t′, then either
Xt = Xt′ ∪ {vinsert} for some vinsert 6∈ Xt′ and Gt = G[V (Gt′) ∪ {vinsert}]. The node t
is called introduce vertex node and the vertex vinsert is the insertion vertex of Xt,
Xt = Xt′ \ {vforget} for some vforget ∈ Xt′ and Gt = Gt′ . The node t is called forget
vertex node and vforget is the forget vertex of Xt.

if t ∈ V (T ) has exactly two children t′ and t′′, then Xt = Xt′ = Xt′′ , and E(Gt′) ∩
E(Gt′′) = ∅. The node t is called a join node.

For each t ∈ V (T ), we denote by Vt the set V (Gt). Given a tree decomposition, it is possible
to transform it in polynomial time to a nice new one of the same width [12]. Moreover, by
Bodlaender et al. [3] we can find in time 2O(tw) · n a tree decomposition of width O(tw) of
any graph G. Hence, since in this article we focus on single-exponential algorithms, we may
assume that a nice tree decomposition of width w = O(tw) is given with the input.

If a graph G contains a graph H as a minor (resp. topological minor), we denote it by
H �m G (resp. H �tm G). For a fixed graph H and a graph G, we define the parameter
m{H}(G) (resp. tm{H}(G)) as the minimum size of a set S ⊆ V (G) such that H 6�m G \ S
(resp. H 6�tm G \ S).

3 Single-exponential algorithms

In this section we present single-exponential algorithms for hitting particular graphs. Since
the algorithms when H = K1,s use standard dynamic programming techniques, they have
been moved to the full version. In what follows we present a single-exponential algorithm
for {paw}-TM-Deletion. For completeness, the basic ingredients and notations of the
rank-based approach of Bodlaender et al. [2] are given in the full version. The algorithms for
the chair and the banner are also given in the full version.

We start with a simple structural characterization of the simple graphs that exclude the
paw as a topological minor; recall the paw graph in Figure 1.
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I Lemma 1. A simple graph G satisfies paw 6�tm G if and only if each connected component
of G is either a cycle or a tree.

Proof. It is easy to see that neither a cycle nor a tree contain the paw as a topological minor.
Let G be a graph such that paw 6�tm G. Let us assume w.l.o.g. that G is connected. If G
does not contain a cycle, then it is a tree. Otherwise, let C be a chordless cycle in G. If G
contains a vertex v that is not in C, then, as G is connected, there exists a path from v to C
containing at least 2 vertices. This is not possible, as it would imply that G contains the
paw as a topological minor. As C is chordless and G is simple, we obtain that G is exactly
the cycle C, and the lemma follows. J

We present an algorithm that solves the decision version of {paw}-TM-Deletion. As
the algorithm that we presented for {C4}-TM-Deletion in [1], this algorithm is based on
the one given in [2, Section 3.5] for Feedback Vertex Set. Let G be a graph and k be an
integer. The idea of the following algorithm is to partition V (G) into three sets. The first one
will be the solution set S, the second one will be a set F of vertices that induces a forest, and
the third one will be a set C of vertices that induces a collection of cycles. If we can partition
our graph into three such sets (S, F,C) such that there is no edge between a vertex of F and
a vertex of C and such that |S| ≤ k, then, using Lemma 1, we know that tm{paw}(G) ≤ k.
On the other hand, if such a partition does not exist, we know that tm{paw}(G) > k. The
main idea of this algorithm is to combine classical dynamic programming techniques in order
to verify that C induces a collection of cycles, and the rank-based approach in order to verify
that F induces a forest.

As for {C4}-TM-Deletion (see [1]), we define a new graph G0 = (V (G)∪ {v0}, E(G)∪
E0), where v0 is a new vertex and E0 = {{v0, v} | v ∈ V (G)}. For each subgraph H of G0,
for each Z1 ⊆ V (H), and for each Y ⊆ E0 ∩ E(H[Z1]), we denote by H〈Z1, Y 〉 the graph(
Z1, Y ∪ E

(
H[Z1 \ {v0}]

))
.

Given a nice tree decomposition of G of width w, we define a nice tree decomposition
((T,X ), r,G) of G0 of width w + 1 such that the only empty bags are the root and the leaves
and for each t ∈ T , if Xt 6= ∅, then v0 ∈ Xt. Note that this can be done in linear time. For
each bag t, each integers i, j, and `, each function s : Xt → {0, 1, 20, 21, 22}, each function
s0 : {v0} × s−1(1)→ {0, 1}, and each partition p ∈ Π(s−1(1)), we define:

Et(p, s, s0, i, j, `) = {(Z1, Z2, Y ) | (Z1, Z2, Y ) ∈ 2Vt × 2Vt × 2E0∩E(Gt), Z1 ∩ Z2 = ∅,
|Z1| = i, |Z2| = `, |E(Gt[Z1 \ {v0}]) ∪ Y | = j,

∀e ∈ E0 ∩ Et, s0(e) = 1⇔ e ∈ Y,
∀v ∈ Z2 ∩Xt, s(v) = 2z with z = degGt[Z2](v),
∀v ∈ Z2 \Xt, degGt[Z2](v) = 2,
Z1 ∩Xt = s−1(1), v0 ∈ Xt ⇒ s(v0) = 1,
∀u ∈ Z1 \Xt : either t is the root or

∃u′ ∈ s−1(1) : u and u′ are connected in Gt〈Z1, Y 〉,
∀v1, v2 ∈ s−1(1) : p v Vt[{v1, v2}]⇔ v1 and v2 are con-

nected in Gt〈Z1, Y 〉,
∀(u, v) ∈ (Z1 \ {v0})× Z2, {u, v} 6∈ E(Gt)}

At(s, s0, i, j, `) = {p | p ∈ Π(s−1(1)), Et(p, s, s0, i, j, `) 6= ∅}.
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In the definition of Et, the sets Z1 (resp. Z2) correspond to the set F (resp. C) restricted to
Gt. The vertex v0 and the set Y exist to ensure that F will be connected.

By Lemma 1, we have that the given instance of {paw}-TM-Deletion is a Yes-instance
if and only if for some i and `, i+ ` ≥ |V (G) ∪ {v0}| − k and Ar(∅, i, i− 1, `) 6= ∅. For each
t ∈ V (T ), we assume that we have already computed At′ for every children t′ of t, and we
proceed to the computation of At. As usual, we distinguish several cases depending on the
type of node t.

Leaf. By definition of At, we have At(∅,∅, 0, 0, 0) = {∅}.
Introduce vertex. Let v be the insertion vertex of Xt, let t′ be the child of t, let s : Xt →
{0, 1, 20, 21, 22}, s0 : {v0} × s−1(1)→ {0, 1}, and let H = Gt

〈
s−1(1), s−1

0 (1)
〉
.

If v = v0 and s(v0) ∈ {0, 20, 21, 22}, then by definition of At we have that
At(s, s0, i, j, `) = ∅.
Otherwise, if v = v0, then by construction of the nice tree decomposition, we know
that t′ is a leaf of T and so s = {(v0, 1)}, j = ` = i − 1 = 0 and At(s, s0, i, j, `) =
ins({v0},At′(∅,∅, 0, 0, 0)).
Otherwise, if s(v) = 0, then, by definition of At, it holds that At(s, s0, i, j, `) =
At′(s|Xt′ , s|Et′ , i, j, `).
Otherwise, if s(v) = 2z, z ∈ {0, 1, 2}, then let Z ′2 = NGt[Xt](v) \ s−1(0). If Z ′2 6⊆
s−1({21, 22}) or |Z ′2| 6= z, then At(s, s0, i, j, `) = ∅. Otherwise Z ′2 ⊆ s−1({21, 22}) and
|Z ′2| = z, and with s′ : Xt′ → {0, 1, 20, 21, 22} defined such that ∀v′ ∈ Xt′ \Z ′2, s′(v′) =
s(v′) and for each v′ ∈ Z ′2 such that s(v′) = 2z′ , z′ ∈ {1, 2}, s′(v′) = 2z′−1. It holds
that At(s, s0, i, j, `) = At′(s′, s0, i, j, `− 1).
Otherwise, we know that v 6= v0, s(v) = 1, and v0 ∈ NG[s−1(1)](v). First, if NGt[Xt](v)\
s−1(0) 6⊆ s−1(1), then At(s, s0, i, j, `) = ∅. Indeed, this implies that the cycle part and
the forest part are connected. As s(v) = 1, we have to insert v in the forest part and
we have to make sure that all vertices of NH [v] are in the same connected component
of H. The only remaining choice is to insert the edge {v, v0} or not. Again, this is
handled by the function s0. By adding v, we add one vertex and |NH(v)| edges in the
forest part. Therefore, we have that
At(s, s0, r, i, j, `) =
glue(NH [v], ins({v},At′(s|Xt′ , s0|Et′ , i− 1, j − |NH(v)|, `))).

Forget vertex. Let v be the forget vertex of Xt, let t′ be the child of t, and let s : Xt →
{0, 1, 20, 21, 22}. As a vertex from the collection of cycles can be removed only if it has
exactly two neighbors, we obtain that
At(s, i, j, `) = At′(s ∪ {(v, 0)}, s0, i, j, `)

∪↓ proj({v}, At′(s ∪ {(v, 1)}, s0 ∪ {({v0, v}, 0)}, i, j, `))
∪↓ proj({v}, At′(s ∪ {(v, 1)}, s0 ∪ {({v0, v}, 1)}, i, j, `))
∪↓ At′(s ∪ {(v, 22)}, s0, i, j, `).

Join. Let t′ and t′′ be the two children of t, let s : Xt → {0, 1, 20, 21, 22}, s0 : {v0} ×
s−1(1)→ {0, 1}, and let H = Gt

〈
s−1(1), s−1

0 (1)
〉
. Given three functions s∗, s′, s′′ : Xt →

{0, 1, 20, 21, 22}, we say that s∗ = s′⊕ s′′ if for each v ∈ s−1({0, 1}), s∗(v) = s′(v) = s′′(v),
and for each v ∈ Xt such that s∗(v) = 2z, z ∈ {0, 1, 2}, there exist z′, z′′ ∈ {0, 1, 2} such
that s′(v) = 2z′ , s′′(v) = 2z′′ , and z = z′ + z′′ − degGt[Xt\s−1(0)](v).
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We join every compatible entries At′(s′, s′0, i′, j′, `′) and At′′(s′′, s′′0 , i′′, j′′, `′′). For two
such entries being compatible, we need s′ ⊕ s′′ to be defined and s′0 = s′′0 . We obtain that
At(s, s0, i, j, `) =

⋃↓
s′,s′′:Xt→{0,1,20,21,22},

s=s1⊕s2
i′+i′′=i+|V (H)|
j′+j′′=j+|E(H)|

`′+`′′=`+|s−1({20,21,22})|

join(At′(s′, s0, i
′, j′, `′), At′′(s′′, s0, r′′, i′′, j′′, `′′)).

I Theorem 2. {paw}-TM-Deletion can be solved in time 2O(tw) · n7.

Proof. The algorithm works in the following way. For each node t ∈ V (T ) and for each
entry M of its table, instead of storing At(M), we store A′t(M) = reduce(At(M)) by using [2,
Theorem 3.7]. As each of the operations we use preserves representation by [2, Lemma 3.6],
we obtain that for each node t ∈ V (T ) and for each possible entry M , A′t(M) represents
At(M). In particular, we have that A′r(M) = reduce(Ar(M)) for each possible entry M .
Using the definition of Ar and Lemma 1, we have that tm{paw}(G) ≤ k if and only if for
some i and `, i+ ` ≥ |V (G) ∪ {v0}| − k and A′r(∅, i, i− 1, `) 6= ∅.

We now focus on the running time of the algorithm. The size of the intermediate sets
of weighted partitions for a leaf node and for an introduce vertex node, are upper-bounded
by 2|s−1(1)|. For a forget vertex node, we take the union of four sets of size 2|s−1(1)|, so the
intermediate sets of weighted partitions have size at most 4 · 2|s−1(1)|. For a join node, as
in the big union operation we take into consideration at most 5|Xt| possible functions s′, as
many functions s′′, at most n+ |s−1(1)| choices for i′ and i′′, at most n+ |s−1(1)| choices for
j′ and j′′ (as we can always assume, during the algorithm, that H is a forest), and at most
n+ |s−1({20, 21, 22}| choices for `′ and `′′, we obtain that the intermediate sets of weighted
partitions have size at most 25|Xt| · (n + |s−1(1)|)2 · (n + |s−1({20, 21, 22}|) · 4|s

−1(1)|. We
obtain that the intermediate sets of weighted partitions have size at most (n+ |Xt|)3 · 100|Xt|.
Moreover, for each node t ∈ V (T ), the function reduce will be called as many times as the
number of possible entries, i.e., at most 2O(w) · n3 times. Thus, using [2, Theorem 3.7], A′t
can be computed in time 2O(w) · n6. The theorem follows by taking into account the linear
number of nodes in a nice tree decomposition. J

4 Superexponential lower bounds

Let Q = {P5} ∪ {K2,s | s ≥ 3} ∪ {θs | s ≥ 3} and let R = {K1,s | s ≥ 4}. In this section,
we provide superexponential lower bounds for {H}-M-Deletion when H ∈ Q ∪ R, for
{H}-TM-Deletion when H ∈ Q, and for both problems for some particular graphs on 5
vertices depicted in Figure 1, namely the cricket, the px, the butterfly, the co-banner, the
bull, the kite, and the dart. As mentioned before, the reductions of this section are strongly
inspired by the ideas of Bonnet et al. [4]. More precisely, we will prove the following theorems.

I Theorem 3. Let H ∈ Q ∪R. Unless the ETH fails, {H}-M-Deletion cannot be solved
in time 2o(tw log tw) · nO(1).

I Theorem 4. Let H ∈ Q. Unless the ETH fails, {H}-TM-Deletion cannot be solved in
time 2o(tw log tw) · nO(1).

I Theorem 5. Let H ∈ {{cricket}, {px}, {butterfly}, {co-banner}, {bull}, {kite}, {dart}}. Un-
less the ETH fails, neither {H}-M-Deletion nor {H}-TM-Deletion can be solved in
time 2o(tw log tw) · nO(1).
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In the following we focus on the proof of Theorem 3 and Theorem 5. Theorem 4 can
be proved by using the same reductions as for Theorem 3 by just replacing “minor” by
“topological minor” and “-M-Deletion” by “-TM-Deletion”. Note that this holds when
H ∈ Q but not when H ∈ R.

We first provide in Section 4.1 a general framework that will be used for every H ∈ Q∪R
and the graphs H listed in Theorem 5, and then we explain how to modify this framework
for each specific H. Namely, in Section 4.2 we deal with P5 and in Section 4.3 with the stars.
The other cases can be found in the full version of this article. All these proofs for particular
graphs are quite similar and follow the same structure, but we need different gadgets and
slight changes in the analysis to deal with each of the graphs H.

4.1 The general construction
In order to prove Theorems 3 and 5, we present several reductions from k× k Permutation
Independent Set, introduced by Lokshtanov et al. [14].

k × k Permutation Independent Set
Input: An integer k and a graph G with vertex set [1, k]× [1, k].
Parameter: k.
Output: Is there an independent set of size k in G with exactly one element from each
row and one element from each column?

I Theorem 6 (Lokshtanov et al. [14]). The k×k Permutation Independent Set problem
cannot be solved in time 2o(k log k) unless the ETH fails.

The general construction that we proceed to present only depends on the number of vertices
of H. Let H ∈ Q ∪ R ∪ {{cricket}, {px}, {butterfly}, {co-banner}, {bull}, {kite}, {dart}} and
let (G, k) be an instance of k × k Permutation Independent Set. As we are asking for
an independent set that contains exactly one vertex in each row, we will assume w.l.o.g.
that, for each (i, j), (i, j′) in V (G), {(i, j), (i, j′)} ∈ E(G). Let n = |V (G)| and m = |E(G)|.
We proceed to construct a graph F that displays the encoding of the m subgraphs of G
consisting of exactly one edge. This is done in such a way that each edge is encoded exactly
once. Moreover, these encodings are arranged in a cyclic way separated by gadgets ensuring
the consistency of the selected solution.

Namely, we first define the graph K = Kh−1 where h = |V (H)|. For each e ∈ E(G), and
each (i, j) ∈ [1, k]2, we define the graph Bei,j to be the disjoint union of two copies of K and
two new vertices aei,j and bei,j . Informally, every graph Bei,j , e ∈ E(G), plays the same role
and corresponds to the vertex (i, j) ∈ V (G). For each e ∈ E(G) and each j ∈ [1, k], we define
the graph Cej obtained from the disjoint union of every Bei,j , i ∈ [1, k], such that two graphs
Bei1,j and B

e
i2,j

, i1 6= i2, are complete to each other, i.e., for every i1 6= i2, if v1 ∈ V (Bei1,j)
and v2 ∈ V (Bei2,j), then {v1, v2} ∈ E(Cej ). Informally, every graph Cej , e ∈ E(G), plays the
same role and corresponds to the column j of G.

For every e ∈ E(G), we also define the graph De obtained from the disjoint union of every
Cej , j ∈ [1, k], by adding, if e = {(i, j), (i′, j′)}, every edge {v1, v2} such that v1 ∈ V (Bei,j) and
v2 ∈ V (Bei′,j′). The graph De is depicted in Figure 2. Informally, the graph De, e ∈ E(G),
encodes the edge e of the graph G.

For every e ∈ E(G), we also define Je such that V (Je) = {cej | j ∈ [1, k]}∪{rei | i ∈ [1, k]}
is a set of new vertices and E(Je) = ∅. The graphs Je, e ∈ E(G), are the separators that
will ensure the consistency of the selected solution.

Finally, the graph F is obtained from the disjoint union of every De, e ∈ E(G), and
every Je, e ∈ E(G), by adding the following edges, for a given fixed cyclic permutation
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Ce1

Be1,1

Be2,1

Be3,1

Ce2

Be1,2

Be2,2

Be3,2

Ce3

Be1,3

Be2,3

Be3,3

Figure 2 The graph De for e = {(1, 1), (2, 2)} ∈ E(G) where k = 3. A bold edge means that two
graphs B are connected in a complete bipartite way.

Je1 De1 Je2 De2 Je3 De3

Figure 3 The shape of the framework graph F assuming that k = 3, G contains only the three
edges e1, e2, and e3, and σ is the cyclic permutation (e1, e2, e3).

σ of the elements of E(G): for each e ∈ E(G) and each i, j ∈ [1, k], we add the edges
{aei,j , rei }, {rei , b

σ−1(e)
i,j }, {bσ

−1(e)
i,j , cej}, and {cej , ai,j} to E(F ). This concludes the definition of

the framework graph F , which is depicted in Figure 3 (a similar figure appears in [4]). The
pair (F, ` := 2h(k − 1)km) is called the H-framework of (G, k). For convenience, we always
assume that we know the permutation σ linked to the graph F .

Let us now discuss about the treewidth of F . First note that for each e ∈ E(G),
the set V (Je) ∪ V (Jσ(e)) disconnects the vertex set V (De) from the remaining part of
F . Moreover, if e = {(i, j), (i′, j′)}, then the bags V (Ce1) ∪ V (Bei,j) ∪ V (Bei′,j′), V (Ce2) ∪
V (Bei,j) ∪ V (Bei′,j′), . . . , V (Cek) ∪ V (Bei,j) ∪ V (Bei′,j′) form a path decomposition of De of
width 2h(k + 2)− 1. Combining this decomposition with the circular shape of F and the
fact that V (Je) ∪ V (Jσ(e)) disconnects the vertex set V (De) from the remaining part of F ,
we obtain that the treewidth (in fact, also the pathwidth) of F is at most 6k+ 2h(k+ 2)− 1,
and therefore tw(F ) = O(k).

For each graph H, we will consider (F, `), the H-framework of (G, k), and create another
pair (FH , `), where FH is a graph obtained starting from F by adding some vertices and
edges. We will claim that there exists a solution of k× k Permutation Independent Set
on (G, k) if and only if there exists a solution of {H}-M-Deletion on (FH , `). In order to
do this, we will prove the two following properties for each graph H.

I Property 1. Let S be a solution of {H}-M-Deletion on (FH , `). For every e ∈ E(G)
and j ∈ [1, k] such that |V (Cej ) \S| is maximized, there exists i ∈ [1, k] such that V (Cej ) \S ⊆
V (Bei,j).

The above property states that for each column Cej , j ∈ [1, k] and e ∈ E(G), containing
a minimum number of vertices of the solution, the remaining vertices all belong to the same
row.
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I Property 2. Let S be a solution of {H}-M-Deletion on (FH , `). For every e ∈ E(G),
and for every i, j ∈ [1, k], if bei,j 6∈ S, then for every i′ ∈ [1, k] \ {i}, we have aσ(e)

i′,j ∈ S.

The above property states that the choices of the vertices aei,j , bei,j are consistent through
the whole framework graph FH .

If we assume that Property 1 holds, we have the following lemma.

I Lemma 7. If Property 1 holds, then for every solution S of {H}-M-Deletion on
(FH , ` = 2h(k − 1)km), for every e ∈ E(G), and for every j ∈ [1, k], there exists i ∈ [1, k]
such that V (Cej ) \ S = V (Bei,j). Moreover, for every e ∈ E(G), V (Je) ∩ S = ∅.

Proof. Assume that Property 1 holds and let S be a solution of {H}-M-Deletion on
(FH , 2h(k− 1)km). By Property 1, we know that for every e ∈ E(G), and for every j ∈ [1, k],
|V (Cej )∩S| ≥ 2h(k−1). As there are exactly m edges and k columns, the budget is tight and
we obtain that |V (Cej ) ∩ S| = 2h(k − 1). This implies that |V (Cej ) \ S| = 2h, corresponding
to the size of a set Bei,j for some i ∈ [1, k]. The lemma follows. J

For each specific graph H, in order to prove Property 1 and Property 2, we will first
prove Property 1 and then use Lemma 7 in order to prove Property 2.

I Lemma 8 (?). If Property 1 and Property 2 hold and there exists a solution S of {H}-
M-Deletion on (FH , ` = 2h(k − 1)km), then, for any e ∈ E(G), the set T e = {(i, j) |
V (Bei,j) ∩ S = ∅} is a solution of k × k Permutation Independent Set on (G, k).

Using the same argumentation, we obtain the same results for the topological minor
version.

I Property 3. Let S be a solution of {H}-TM-Deletion on (FH , `). For every e ∈ E(G)
and j ∈ [1, k] such that |V (Cej ) \S| is maximized, there exists i ∈ [1, k] such that V (Cej ) \S ⊆
V (Bei,j).

I Property 4. Let S be a solution of {H}-TM-Deletion on (FH , `). For every e ∈ E(G),
and for every i, j ∈ [1, k], if bei,j 6∈ S, then for every i′ ∈ [1, k] \ {i}, we have aσ(e)

i′,j ∈ S.

I Lemma 9. If Property 3 holds, then for every solution S of {H}-TM-Deletion on
(FH , ` = 2h(k − 1)km), for every e ∈ E(G), and for every j ∈ [1, k], there exists i ∈ [1, k]
such that V (Cej ) \ S = V (Bei,j). Moreover, for every e ∈ E(G), V (Je) ∩ S = ∅.

I Lemma 10. If Property 3 and Property 4 hold and there exists a solution S of {H}-
TM-Deletion on (FH , ` = 2h(k − 1)km), then, for any e ∈ E(G), the set T e = {(i, j) |
V (Bei,j) ∩ S = ∅} is a solution of k × k Permutation Independent Set on (G, k).

Given a solution T of k × k Permutation Independent Set on (G, k), we define
ST = {v ∈ V (FH) | v ∈ Bei,j : e ∈ E(G), (i, j) ∈ [1, k]2 \ T}. Note that |ST | = 2h(k − 1)km.

4.2 The reduction for P5

We are ready to present the hardness reduction when H = P5.

I Theorem 11. {P5}-M-Deletion cannot be solved in time 2o(tw log tw) · nO(1) unless the
ETH fails.
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Proof. Let H = P5. Let (G, k) be an instance of k × k Permutation Independent
Set and let (F, `) be the H-framework of (G, k), as defined in Section 4.1. Note that
` = 10(k − 1)km. In this theorem, we define FP5 = F without any modification.

Let T be a solution of k×k Permutation Independent Set on (G, k). One can check
that every connected component of F \ ST is of size 4. Indeed, the connected components
of F \ ST are either the copies of the graph K, which is of size 4, or the subgraph induced
by the edges {aei,j , rei }, {rei , b

σ−1(e)
i,j }, {bσ

−1(e)
i,j , cej}, and {cej , aei,j}, for every (i, j) ∈ T . Thus

F \ ST does not contain any P5 as a minor and ST is a solution of {P5}-M-Deletion of
size 10(k − 1)km.

Assume now that S is a solution of {P5}-M-Deletion on G of size 10(k − 1)km. We
first prove that Property 1 holds. Let e ∈ E(G) and j ∈ [1, k] that maximize the size of
|V (Cej ) \ S|. By the pigeonhole principle, |V (Cej ) \ S| ≥ 10. Let UM be a set V (Bei,j) \ S,
i ∈ [1, k], with the maximum number of elements, and let UA = V (Cej ) \ (S ∪ UM ). If
|UM | = 1, then, as |V (Cej ) \ S| ≥ 10, we obtain that K10 is a subgraph of Cej , contradicting
the definition of S. If |UM | ≥ 2 and |UA| ≥ 3 or if |UM | ≥ 3 and |UA| ≥ 2, then Cej contains
a K2,3 as a subgraph, also contradicting the definition of S. Finally if |UA| = 1, we have that
|UM | = 9 and so, Cej [UM ] contains a K4 that, combined with the element of UA, produces a
K5 that is forbidden by the definition of S. Thus |UA| = 0 and Property 1 holds.

Let e ∈ E(G) and let i, j ∈ [1, k] such that bei,j 6∈ S. Let i′ ∈ [1, k] such that
i 6= i′. If aσ(e)

i′,j 6∈ S, then, as by Lemma 7 S ∩ V (Jσ(e)) = ∅, we have that the path
r
σ(e)
i′ , a

σ(e)
i′,j , c

σ(e)
j , bei,j , r

e
i is a subgraph of F \ S. Since, by definition of S, F \ S does not

contain P5 as a minor, we have that aσ(e)
i′,j ∈ S. Thus Property 2 holds and the theorem

follows. J

4.3 The reduction for K1,s

The next theorem should be compared to the result in the full version stating that there
exist single-exponential algorithms for hitting K1,s as a topological minor for every s ≥ 1,
while in Theorem 12 we prove that it is not the case for hitting K1,s as a minor, for every
s ≥ 4. It should be noted that the bound on s of Theorem 12 is tight, as if s ≤ 3, then
{K1,s}-M-Deletion is exactly {K1,s}-TM-Deletion, and therefore it can be solved in
single-exponential time; see the full version for the details.

I Theorem 12. Given s ≥ 4, {K1,s}-M-Deletion cannot be solved in time 2o(tw log tw) ·nO(1)

unless the ETH fails.

Proof. Let s ≥ 4 and let H = K1,s. Let (G, k) be an instance of k × k Permutation
Independent Set and let (F, `) be the H-framework of (G, k), as defined in Section 4.1.
Note that ` = 2(s+ 1)(k − 1)km. We construct the graph FH from F by adding a pendant
vertex to every vertex aei,j , e ∈ E(G), i, j ∈ [1, k], and by adding s− 3 pendant vertices to
every vertex bei,j , e ∈ E(G), i, j ∈ [1, k].

Let T be a solution of k × k Permutation Independent Set on (G, k). Then every
connected component of FH \ ST is either a copy of the graph K, which is of size s, or
the subgraph induced by aei,j , rei , b

σ−1(e)
i,j , cej , and the vertices that are pendant to aei,j and

b
σ−1(e)
i,j , for every (i, j) ∈ T . This latter subgraph, depicted in Figure 4, does not contain
K1,s as a minor. Thus FH \ ST does not contain any K1,s as a minor and ST is a solution of
{K1,s}-M-Deletion of size 2(s+ 1)(k − 1)km.

Assume now that S is a solution of {K1,s}-M-Deletion on G of size 2(s+ 1)(k− 1)km.
We first prove that Property 1 holds. Let e ∈ E(G) and j ∈ [1, k] that maximize the size of
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c
σ(e)
j

r
σ(e)
i

bei,j a
σ(e)
i,j

s− 3 pendant vertices

Figure 4 A connected component of FH \ S that is not a copy of K, with s = 6.

|V (Cej )\S|. By the pigeonhole principle, |V (Cej )\S| ≥ 2(s+ 1). Let UM be a set V (Bei,j)\S,
i ∈ [1, k], with the maximum number of elements, and let UA = V (Cej ) \ (S ∪ UM ). If
1 ≤ |UM | < s, then |UA| ≥ s and K1,s is a subgraph of Cej , contradicting the definition of
S. If |UM | ≥ s and |UA| ≥ 1, then again K1,s is a subgraph of Cej , contradicting again the
definition of S. Thus |UA| = 0 and Property 1 holds.

Let e ∈ E(G) and let i, j ∈ [1, k] such that bei,j 6∈ S. Let i′ ∈ [1, k] such that i 6= i′. If
a
σ(e)
i,′j 6∈ S, then, as by Lemma 7 it holds that S ∩ V (Jσ(e)) = ∅, we have that the path
r
σ(e)
i′ , a

σ(e)
i′,j , c

σ(e)
j , bei,j , r

e
i combined with the vertex pendant to aσ(e)

i′,j and the s − 3 vertices
pendant to bei,j is a subgraph of FH \ S and K1,s is a minor of it. As, by definition of S,
FH \ S does not contains K1,s as a minor, we have that aσ(e)

i′,j ∈ S. Thus Property 2 holds
and the theorem follows. J

5 Conclusions and further research

The ultimate goal in this line of research is to establish the tight complexity of {H}-M-
Deletion and {H}-TM-Deletion for any graph H, but we are still very far from it. In
particular, we do not know whether there exists some H for which a double-exponential lower
bound can be proved. Very recently, Kociumaka and Pilipczuk [13] studied the problem of
deleting a minimum number of vertices to obtain a graph of Euler genus at most g, and
presented an algorithm running in time 2Og(tw·log tw) · nO(1). Generalizing their technique to
H-minor-free graphs (which would correspond to the general {H}-M-Deletion problem)
seems quite challenging, as this would involve a huge amount of technical details.

We managed to classify the complexity of {H}-M-Deletion when H is a connected
planar graph on at most 5 vertices (cf. Figure 1). While we consider this dichotomy a
significant result, most of the algorithms and the reductions are ad hoc, and therefore our
approach does not seem to be easily applicable for dealing with larger graphs H. The case
where H is planar and connected is already very interesting, since the results in [1] imply that
{H}-M-Deletion cannot be solved in time 2o(tw) · nO(1) under the ETH and can be solved
in time 2O(tw·log tw) · nO(1). Thus, it makes sense to guess that, in this case, the complexity of
{H}-M-Deletion is either 2Θ(tw) · nO(1) or 2Θ(tw·log tw) · nO(1), as it happens if |V (H)| ≤ 5.
We conjecture that for every connected simple planar graph H with |V (H)| ≥ 6, the latter
case holds. In fact, we conjecture the following property, which is easily seen to imply the
previous conjecture: if H and H ′ are graphs such that H �m H ′ and {H}-M-Deletion
is not solvable under the ETH in time f(tw) · nO(1) for some function f , then {H ′}-M-
Deletion is not solvable under the ETH in time f(tw) · nO(1) either. We think that the
equivalent property for the topological minor version also holds. Note that for establishing
a dichotomy for {H}-TM-Deletion when H is a connected planar graph on at most 5
vertices, it remains to obtain algorithms in time 2O(tw·log tw) · nO(1) for the graphs in Figure 1
that have maximum degree 4, like the gem or the dart, as for those graphs [1, Theorem 6]
cannot be applied.
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Finally, note that the only connected (simple) graph on at most 5 vertices missing
in Figure 1 is K5. We think that, using techniques similar as those developed in [11],
{K5}-M-Deletion is solvable in time 2O(tw·log tw) · nO(1), which would be tight.
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3:2 Lower Bounds for Dynamic Programming on Planar Graphs of Bounded Cutwidth

1 Introduction

Dynamic programming on graphs of bounded treewidth is a powerful tool in the algorithm
designer’s toolbox, which has many applications (cf. [5]) and is captured by several meta-
theorems [7, 25]. Through clever use of techniques such as Möbius transformation, fast
subset convolution [2, 28], cut & count [9], and representative sets [4, 8, 14], algorithms
were developed that can solve numerous combinatorial problems on graphs of treewidth tw
in O∗(ctw) time, for a problem-specific constant c. In recent work [23], it was shown that under
the Strong Exponential Time Hypothesis (SETH, see [18, 19]), the base of the exponent c
achieved by the best-known algorithm is actually optimal for Dominating Set (c = 3) and
Independent Set (c = 2), amongst others. This prompts the following questions:
1. Do faster algorithms exist for bounded-treewidth graphs that are planar?
2. Do faster algorithms exist for a more restrictive graph parameter, such as cutwidth?
It turns out that these questions are related, because the nature of cutwidth allows crossover
gadgets to be inserted to planarize a graph without increasing its width significantly.

Before going into our results, we briefly motivate these questions. There is a rich
bidimensionality theory (cf. [10]) of how the planarity of a graph can be exploited to obtain
better algorithms than in the nonplanar case, leading to what has been called the square-root
phenomenon [24]: in several settings, parameterized algorithms on planar graphs can be
faster by a square-root factor in the exponent, compared to their nonplanar counterparts.
Hence it may be tempting to believe that problems on bounded-width graphs can be solved
more efficiently when they are planar. Lokshtanov et al. [23, §9] explicitly ask whether their
SETH-based lower bounds continue to apply for planar graphs. The same problem is posed
by Baste and Sau [1, p. 3] in their investigation on the influence of planarity when solving
connectivity problems parameterized by treewidth. This motivates question 1.

When faced with lower bounds for the parameterization by treewidth, it is natural
to investigate whether these continue to hold for more restrictive graph parameters. We
work with the parameter cutwidth since it is one of the classic graph layout parameters
(cf. [11]) which takes larger values than treewidth [22], and has been the subject of frequent
study [17, 26, 27]. In their original work, Lokshtanov et al. [23] showed that their lower
bounds also hold for pathwidth instead of treewidth. However, the parameterization by
cutwidth has so far not been considered, which leads us to question 2. (See Section 2 for the
definition of cutwidth.)

Our results. We answer questions 1 and 2 for the problems Independent Set and
Dominating Set, which are formally defined in Section 2. Our conceptual contribution
towards answering question 1 comes from the following insight: any graph G can be drawn in
the plane (generally with crossings) such that the graph G′ obtained by replacing each crossing
by a vertex of degree four, does not have larger cutwidth than G. Hence the property of having
bounded cutwidth can be preserved while planarizing the graph, which was independently2
discovered by Eppstein [13]. When we planarize by replacing each crossing by a planar
crossover gadget H instead of a single vertex, then we obtain ctw(G′) ≤ ctw(G) + ctw(H) + 4
if the endpoints of the crossing edges each obtain at most one neighbor in the crossover
gadget. This gives a means to reduce a problem instance on a general graph of bounded

2 We learned of Eppstein’s result while a previous version of this work was under submission at a different
venue; see Footnote 2 in [13]. Our previous manuscript, cited by Eppstein, was later split into two
separate parts due to its excessive length. The present paper is one part, and [21] is the other.
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cutwidth to a planar graph of bounded cutwidth, if a suitable crossover gadget is available.
The parameter cutwidth is special in this regard: one cannot planarize a drawing of K3,n
while keeping the pathwidth or treewidth constant [12, 13].

For the Independent Set problem, the crossover gadget developed by Garey, Johnson,
and Stockmeyer [15] can be used in the process described above. Together with the observation
that the SETH-based lower bound construction by Lokshtanov et al. [23] for the treewidth
parameterization also works for the cutwidth parameterization, this yields our first result.3

I Theorem 1. Assuming SETH, there is no ε > 0 such that Independent Set on a planar
graph G given along with a linear layout of cutwidth k can be solved in time O∗((2− ε)k).

For the Dominating Set problem, more work is needed to obtain a lower bound for
planar graphs of bounded cutwidth. While the lower bound construction of Lokshtanov
et al. [23] also works for the parameter cutwidth after a minor tweak, no crossover gadget
for the Dominating Set problem was known. Our main technical contribution therefore
consists of the design of a crossover gadget for Dominating Set, which we believe to be of
independent interest. Together with the framework above, this gives our second result.

I Theorem 2. Assuming SETH, there is no ε > 0 such that Dominating Set on a planar
graph G given along with a linear layout of cutwidth k can be solved in time O∗((3− ε)k).

Since any linear ordering of cutwidth k can be transformed into a tree decomposition of
width at most k in polynomial time (cf. [3, Theorem 47]), the lower bounds of Theorems 1
and 2 also apply to the parameterization by treewidth. Hence our work resolves the question
raised by Lokshtanov et al. [23] and by Baste and Sau [1] whether the SETH-lower bounds
for Independent Set and Dominating Set parameterized by treewidth also apply for
planar graphs.

Organization. In Section 2 we provide preliminaries. In Section 3 we present a general
theorem for planarizing graphs of bounded cutwidth, using a crossover gadget. It leads to a
proof of Theorem 1. In Section 4 we prove Theorem 2. Finally, we provide some conclusions
in Section 5. Due to space restrictions, proofs for statements marked (F) have been deferred
to the full version [16].

2 Preliminaries

We use N to denote the natural numbers, including 0. For a positive integer n and a set X
we use

(
X
n

)
to denote the collection of all subsets of X of size n. The power set of X is

denoted 2X . The set {1, . . . , n} is abbreviated as [n]. The O∗ notation suppresses polynomial
factors in the input size n, such that O∗(f(k)) is shorthand for O(f(k)nO(1)). All our
logarithms have base two.

We consider finite, simple, and undirected graphs G, consisting of a vertex set V (G) and
edge set E(G) ⊆

(
V (G)

2
)
. The neighbors of a vertex v in G are denoted NG(v). The closed

neighborhood of v is NG[v] := NG(v)∪{v}. For a vertex set S ⊆ V (G) the open neighborhood
is NG(S) :=

⋃
v∈S NG(v) \ S and the closed neighborhood is NG[S] := NG(S) ∪ S. The

subgraph of G induced by a vertex subset U ⊆ V (G) is denoted G[U ]. The operation of
identifying vertices u and v in a graph G results in the graph G′ that is obtained from G by
replacing the two vertices u and v by a new vertex w with NG′(w) = NG({u, v}).

3 The analogous lower bound of Ω((2−ε)k) for solving Independent Set on planar graphs of pathwidth k
was already observed by Jansen and Wulms [20], based on an elaborate ad-hoc argument.
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3:4 Lower Bounds for Dynamic Programming on Planar Graphs of Bounded Cutwidth

An independent set is a set of pairwise nonadjacent vertices. A vertex cover in a graph G
is a set S ⊆ V (G) such that S contains at least one endpoint from every edge. A set S ⊆ V (G)
dominates the vertices NG[S]. A dominating set is a vertex set S such that NG[S] = V (G).
The associated decision problems ask, given a graph G and integer t, whether an independent
set (dominating set) of size t exists in G. The size of a maximum independent set (resp.
minimum dominating set) in G is denoted optis(G) (resp. optds(G)). The q-SAT problem
asks whether a given Boolean formula, in conjunctive normal form with clauses of size at
most q, has a satisfying assignment.

I Strong Exponential Time Hypothesis ([18, 19]). For every ε > 0, there is a constant q
such that q-SAT on n variables cannot be solved in time O∗((2− ε)n).

Drawings. A drawing of a graph G is a function ψ that assigns a unique point ψ(v) ∈ R2 to
each vertex v ∈ V (G), and a curve ψ(e) ⊆ R2 to each edge e ∈ E(G), such that the following
four conditions hold. (1) For e = {u, v} ∈ E(G), the endpoints of ψ(e) are exactly ψ(u)
and ψ(v). (2) The interior of a curve ψ(e) does not contain the image of any vertex. (3)
No three curves representing edges intersect in a common point, except possibly at their
endpoints. (4) The interiors of the curves ψ(e), ψ(e′) for distinct edges intersect in at most
one point. If the interiors of all the curves representing edges are pairwise-disjoint, then
we have a planar drawing. In this paper we combine (nonplanar) drawings with crossover
gadgets to build planar drawings. A graph is planar if it admits a planar drawing.

Cutwidth. For an n-vertex graph G, a linear layout of G is a linear ordering of its vertex
set, as given by a bijection π : V (G)→ [n]. The cutwidth of G with respect to the layout π is:

ctwπ(G) = max
1≤i<n

∣∣{{u, v} ∈ E(G)
∣∣π(u) ≤ i ∧ π(v) > i

}∣∣.
The cutwidth ctw(G) of a graph G is the minimum cutwidth attained by any linear layout.
It is well-known that ctw(G) ≥ pw(G) ≥ tw(G), where the latter denote the pathwidth and
treewidth of G, respectively (cf. [3]).

3 Planarizing graphs while preserving cutwidth

In this section we show how to planarize a graph without blowing up its cutwidth. An intuitive
way to think about cutwidth is to consider the vertices as being placed on a horizontal line
in the order dictated by the layout π, with edges drawn as x-monotone curves. For any
position i we consider the gap between vertex π−1(i) and π−1(i+ 1), and count the edges
that cross the gap by having one endpoint at position at most i and the other at position
after i. The cutwidth of a layout is the maximum number of edges crossing any single gap;
see Figure 1. The simple but useful fact on which our approach hinges is the following. If we
obtain G′ by replacing a crossing in the drawing by a new vertex of degree four, and we let π′
be the left-to-right order of the vertices in the resulting drawing, then ctwπ(G) = ctwπ′(G′).
Hence by repeating this procedure we can eliminate all crossings to obtain a planarized
version of G without increasing the cutwidth. To utilize this idea in reductions, we formalize
a version of this approach where we planarize the graph by inserting gadgets, rather than
simply replacing crossings by degree-four vertices.

I Definition 3. A crossover gadget is a graph H with terminal vertices u, u′, v, v′ such that:
1. there is a planar drawing ψ of H in which all terminals lie on the outer face, and
2. there is a closed curve intersecting the drawing ψ only in the terminals, which visits the

terminals in the order u, v, u′, v′.
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Figure 1 Top-left: a linear layout π of a graph G with ctwπ(G) = 4. The largest cutsize is
attained after vertices 4 and 5. Bottom-left: after inserting vertices at the crossings to obtain G′ and
extending π to π′ based on the x-coordinates of the inserted vertices, we have ctwπ(G) = ctwπ′ (G′).
Top-right: enlarged view. Bottom-right: replacing a crossing by gadget H.

I Definition 4. Let {a, b} and {c, d} be disjoint edges of a graph G, and let H be a crossover
gadget. The operation of replacing {{a, b}, {c, d}} by H removes edges {a, b} and {c, d},
inserts a new copy of the graph H, and inserts the edges {a, u}, {u′, b}, {c, v}, {v′, d}.

For a crossover gadget to be useful to planarize instances of a decision problem, a replacement
should have a predictable effect on the answer. To formalize this, we say that a decision
problem Π on graphs is a decision problem whose input consists of a graph G and integer t.

I Definition 5. A crossover gadget H is useful for a decision problem Π on graphs if there
exists an integer cΠ such that the following holds. If (G, t) is an instance of Π containing
disjoint edges {a, b}, {c, d}, and G′ is the result of replacing these edges by H, then (G, t) is
a yes-instance of Π if and only if (G′, t+ cΠ) is a yes-instance of Π.

The following theorem proves that a useful crossover gadget can be used to efficiently
planarize instances without blowing up their cutwidth.

I Theorem 6. If H is a crossover gadget that is useful for decision problem Π on graphs,
then there is a polynomial-time algorithm that, given an instance (G, t) of Π and a linear
layout π of G, outputs an instance (G′, t′) and a linear layout π′ of G′ such that:
1. G′ is planar,
2. ctwπ′(G′) ≤ ctwπ(G) + ctw(H) + 4, and
3. (G, t) is a yes-instance of Π if and only if (G′, t′) is a yes-instance of Π.

Proof. Consider the crossover gadget H for Π with terminals u, u, v, v′. Let πH be a linear
layout of H of minimum cutwidth, which is hardcoded into the algorithm along with the
integer cΠ described in Definition 5.

Let (G, t) be an instance of Π with a linear layout π. We start by constructing a
(nonplanar) drawing ψ of G with the following properties.
1. The vertices of G are placed on the x-axis, in the order dictated by π.
2. The image of each edge of G is a strictly x-monotone curve.
3. If the drawings of two edges intersect in their interior, then their endpoints are all distinct

and the corresponding curves properly cross; they do not only touch.
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3:6 Lower Bounds for Dynamic Programming on Planar Graphs of Bounded Cutwidth

4. For each pair of edges, their drawings intersect in at most one point.
5. The x-coordinates of all crossings are distinct from each other, and from the x-coordinates

of the vertices.
It is easy to see that such a drawing always exists and can be found in polynomial time;
we omit the details as they are not interesting. Properties 1 and 2 together ensure that for
any i ∈ [|V (G)| − 1], the set of edges that cross the gap after vertex π−1(i) in the linear
layout is exactly the set of edges intersected by a vertical line between π−1(i) and π−1(i+ 1),
which therefore has size at most ctwπ(G). We will use this property later.

The algorithm replaces the crossings one by one. If two edges {a, b} and {c, d} intersect in
their interior, then their endpoints are all distinct by (3) and they properly cross. Hence we
can replace these two edges by a copy of H as in Definition 4. Since there is a planar drawing
of H with the terminals alternating along the outer face, after possibly swapping the labels
of a and b, and of c and d, the drawing can be updated so that the crossing between {a, b}
and {c, d} is eliminated. Since each of a, b, c, d is made adjacent to exactly one vertex of H,
the replacement can be done such that the remaining crossings are in exactly the same
locations as before; see the right side of Figure 1. When inserting the crossover gadget, we
scale it down sufficiently far that the following holds: all vertices and crossings that were
originally on the left of the crossing between {a, b} and {c, d} lie to the left of all vertices
that are inserted to replace this crossing; and all vertices and crossings that were on the right
of the {{a, b}, {c, d}} crossing, lie to the right of all vertices inserted for its replacement.

Since each pair of edges intersects at most once by (4), the number of crossings
is O(|V (G)|2). Hence in polynomial time we can replace all crossings by copies of H
to arrive at a graph G′. If ` is the number of replaced crossings, then we set t′ := t+` ·cΠ. By
Definition 5 and transitivity it follows that (G, t) is a yes-instance of Π if and only if (G′, t′)
is a yes-instance. By construction, G′ is planar. It remains to define a linear layout of G′
and bound its cutwidth.

The layout π′ of G′ is defined as follows. Let the elements of the original drawing ψ
of G consist of its vertices and its crossings. The elements of ψ are linearly ordered by their
x-coordinates, by (5). The linear layout π′ of G′ has one block per element of ψ, and these
blocks are ordered according to the x-coordinates of the corresponding element. For elements
that consist of a vertex v, the block simply consists of v. For elements that consist of a
crossing X, the block consists of the vertices of the copy of H that was inserted to replace X,
in the order dictated by πH . It is easy to see that π′ can be constructed in polynomial time.

We classify the edges of G′ into two types. We have internal edges, which are edges
within an inserted copy of H, and we have external edges which connect two different copies
of H, or which connect a vertex of V (G)∩ V (G′) to a copy of H. Using this classification we
argue that for an arbitrary vertex v∗ of G′, the cut crossing the gap after vertex v∗ in π′
contains at most ctwπ(G) + ctw(H) + 4 edges. To do so, we distinguish two cases depending
on whether v∗ is an original vertex from G, or was inserted as part of a copy of H.

I Claim 7. If v∗ ∈ V (G)∩ V (G′), then the size of the cut after v∗ in π′ is at most ctwπ(G).

Proof. The layout π′ consists of blocks, and v∗ ∈ V (G) ∩ V (G′) is a block. So for each
copy C of a crossover gadget, the vertices of C all appear on the same side of v∗ in the
ordering. Hence no internal edge of C crosses the cut after v∗, implying that no internal
edge is in the cut. Each external edge crossing the cut is (a segment of) an edge of G that is
intersected by a vertical line after v∗ in the drawing ψ; see Figure 1. As such a line intersects
at most ctwπ(G) edges as observed above, the cut after v∗ has size at most ctwπ(G). y
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I Claim 8. If v∗ ∈ V (G′) is a vertex of a copy C of a crossover gadget that was inserted to
replace a crossing X, then the size of the cut after v∗ in π′ is at most ctwπ(G) + ctw(H) + 4.

Proof. The number of internal edges in the cut after v∗ is at most ctw(H), since the only
internal edges in the cut all belong to the same copy C that contains v∗ and we ordered
them according to an optimal layout πH . There are at most four external edges incident on
a vertex of C, which contribute at most four to the cut. Finally, for each of the remaining
external edges in the cut there is a unique edge of G intersected by a vertical line through
crossing X in the drawing ψ. As at most ctwπ(G) edges are intersected by any vertical line,
as observed above, it follows that the size of the cut is at most ctwπ(G) + ctw(H) + 4. y

The two claims together show that any gap in the ordering π′ is crossed by at most
ctwπ(G) + ctw(H) + 4 edges, which bounds the cutwidth of G′ as required. J

Using Theorem 6 we can now elegantly prove Theorem 1 by combining two known results.

I Theorem 1. Assuming SETH, there is no ε > 0 such that Independent Set on a planar
graph G given along with a linear layout of cutwidth k can be solved in time O∗((2− ε)k).

Proof. First, we observe that the crossover gadget for Vertex Cover due to Garey, Johnson,
and Stockmeyer [15, Thm. 2.7] satisfies our conditions of a useful crossover gadget. Since
an n-vertex graph has a vertex cover of size k if and only if it has an independent set of
size n − k, it also acts as a useful crossover gadget for Independent Set with cπ = 9
(cf. [20, Proposition 20]). Second, we observe that by a different analysis of a construction
due to Lokshtanov et al. [23], it follows that (assuming SETH) there is no ε > 0 such
that Independent Set on a graph G with a linear layout of cutwidth k can be solved in
time O∗((2− ε)k). We prove this in the full version [16]. By Theorem 6, if such a runtime
could be achieved on planar graphs of a given cutwidth, it could be achieved for a general
graph as well, since the insertion of crossover gadgets increases the cutwidth by only a
constant. Hence Theorem 1 follows. J

4 Lower bound for dominating set on planar graphs of bounded
cutwidth

In this section we prove a runtime lower bound for solving Dominating Set on planar graphs
of bounded cutwidth. Our starting point is the insight that through a minor modification,
the lower bound by Lokshtanov et al. [23] for the parameterization by pathwidth can be
lifted to apply to the parameterization by cutwidth as well.

I Theorem 9 (F). Assuming SETH, there is no ε > 0 such that Dominating Set on
a (nonplanar) graph G given along with a linear layout of cutwidth k can be solved in
time O∗((3− ε)k).

Our contribution is to extend the lower bound of Theorem 9 to apply to planar graphs.
Following the strategy outlined in Section 3, to achieve this it suffices to develop a useful
crossover gadget for Dominating Set as per Definition 5. Since our crossover gadget is
fairly complicated (it has more than 100 vertices), we describe its design in steps. The
main idea is as follows. We first show that an edge in a Dominating Set instance can be
replaced by a longer double-path structure, which contains several triangles. Then we show
that when two triangles cross, we can replace their crossing by a suitable adaptation of the
Vertex Cover crossover gadget due to Garey, Johnson, and Stockmeyer [15, Thm. 2.7].
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Figure 2 Overview of the method to eliminate an edge crossing in an instance of Dominating
Set. Each edge is transformed into a double-path structure, to turn a single crossing edge into four
crossing triangles (middle figure). Then each crossing triangle is replaced by a planar gadget (right
figure). Some vertices have been omitted for readability. For each red edge {u, v}, there is a hidden
degree-two vertex in the graph that forms a triangle with u and v.

This two-step approach is illustrated in Figure 2. We follow the same two steps in proving
its correctness, starting with the insertion of the double-path structure.

I Lemma 10. Let {x, y} be an edge in a graph G. If G′ is obtained from G by replacing
{x, y} by a double-path structure as shown in Figure 3, then optds(G′) = optds(G) + 6.

Proof. We prove equality by establishing matching upper- and lower bounds.
(≤ To show optds(G′) ≤ optds(G) + 6, consider a minimum dominating set S ⊆ V (G)

of G. If S ∩ {x, y} = ∅, or S ∩ {x, y} = {x, y}, then the edge {x, y} is not used to dominate
vertex x or y, and therefore S ∪ {bx, by, ex, ey, gx, gy} is a dominating set of size |S|+ 6 =
optds(G) + 6 in graph G′; see Figure 3. If S ∩{x, y} = {x}, then S ∪{cx, fx, hx, ey, gy, ay} is
a dominating set of size optds(G) + 6 in G′: the vertex ay takes over the role of dominating y
after the direct edge {x, y} is removed, while ax is dominated from x. Symmetrically,
if S∩{x, y} = {y}, then S∪{cy, fy, hy, ex, gx, ax} is a dominating set in G′ of size optds(G)+6.

(≥ To show optds(G′) ≥ optds(G) + 6, we instead prove optds(G) ≤ optds(G′) − 6.
Consider a minimum dominating set S′ ⊆ V (G′) of G′. Let B be the vertices in the interior
of the double-path structure that was inserted into G′ to replace edge {x, y}. If |S′ ∩B| ≥ 7,
then (S \B) ∪ {x} is a dominating set of size at most |S′| − 6 ≤ optds(G′)− 6 in G, since x
dominates itself and y using the edge {x, y}. We assume |S′ ∩ B| ≤ 6 in the remainder.
Then we have |S′ ∩B| = 6: the closed neighborhoods of the six vertices {bx, by, tx, ty, t′′x, t′′y}
are contained entirely within B, and are pairwise disjoint. Hence these six vertices must be
dominated by six distinct vertices from B. If S′ ∩ {ax, ay} = ∅ then the vertices x and y are
not dominated from within the double-path structure, implying that S′ \B is a dominating
set in G of size |S′| − 6 ≤ optds(G′)− 6. It remains to consider the case that S′ contains ax,
or ay, or both.

I Claim 11. Let B′ ⊆ B be a set of size six that dominates the vertices B \ {ax, ay}. If B′
contains ax, then B′ does not dominate ay. Analogously, if B′ contains ay then it does not
dominate ax.

Proof. We prove that if ay ∈ B′, then B′ does not dominate ax. The other statement follows
by symmetry. So assume for a contradiction that B′ contains ay and dominates ax, which
implies it contains ax or bx. Since B′ dominates the interior of the double-path structure, it
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Figure 3 The double-path structure for Dominating Set is the subgraph on the top right minus
the vertices x and y. Top: an edge {x, y} is replaced by a double-path structure. Bottom-left: the
interior of the double-path structure can be dominated by six vertices (in red). Bottom-right: there
is a set of six vertices that dominates y and all vertices of the double-path structure except ax.

contains at least one vertex from the closed neighborhoods of tx, ty, t′′x, t′′y . Since these are
pairwise disjoint, and do not contain ay, ax, or bx, the set B′ contains a vertex from the
closed neighborhood of each of {tx, ty, t′′x, t′′y}. Since B′ has size six, besides the four vertices
from these closed neighborhoods, the vertex ay, and the one vertex in {ax, bx} there can be
no further vertices in B′. Hence B′ does not contain cx or dx, as these do not occur in the
stated closed neighborhoods. This implies that to dominate dx, the set B′ contains ex. Then
vertex t′x is not dominated by the vertex from NG′ [tx], and must therefore be dominated by
the vertex in B′ from NG′ [t′′x], implying that gx ∈ B′. But the vertices mentioned so far do
not dominate cy, and regardless of how a vertex is chosen from the closed neighborhoods
of ty and t′′y , the resulting choice does not dominate cy since no vertex from the closed
neighborhoods of ty, t′′y is adjacent to cy. So cy is not dominated by B′; a contradiction. y

Using the claim we finish the proof. The set B′ := S ∩B has size six and dominates all
of B \ {ax, ay}, since those vertices cannot be dominated from elsewhere. If B′ contains ax,
then B′ does not dominate ay. Since S′ is a dominating set, and y is the only neighbor of ay
outside of B, it follows that y ∈ S′. But then S′ \B is a dominating set in G of size |S′|−6 =
optds(G′) − 6 in G: the edge {x, y} in G ensures that y dominates x. If B′ contains ay
instead, then the symmetric argument applies. Hence optds(G) ≤ optds(G′)− 6. J

Using Lemma 10, we can replace a direct edge by a double-path structure while controlling
the domination number. This allows two crossing edges to be reduced to four crossing triangles
as in Figure 2. Even though more crossings are created in this way, these crossing triangles
actually help to planarize the graph. The key point is that crossing triangles enforce a
dominating set to locally act like a vertex cover, which allows us to exploit a known gadget
for Vertex Cover. The following two statements are useful to formalize these ideas. Recall
that a vertex v is simplicial in a graph G if NG(v) forms a clique.

I Observation 12. If I is an independent set of simplicial degree-two vertices in a graph G,
then G has a minimum dominating set that contains no vertex of I.

I Proposition 13. Let U be a set of vertices in a graph G, such that for each edge {x, y} ∈
E(G[U ]) there is a vertex v ∈ V (G) \ U with NG(v) = {x, y}. Then there is a minimum
dominating set S of G such that S forms a vertex cover of G[U ].

Proof. Construct a set I as follows. For each {x, y} ∈ E(G[U ]), add a vertex v ∈ V (G) \ U
with NG(v) = {x, y} to I. Then I is an independent set of simplicial degree-two vertices.
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Figure 4 Three copies of the 18-vertex gadget graph Hvc, which has four terminals {x, y, p, q}.
Left: A vertex cover for Hvc that contains p and q and has size eleven is shown in red. Middle: Any
vertex cover for Hvc that does not contain p or q contains the neighbors of p and q and at least one
endpoint of the three thick edges, and contains at least eleven non-terminals. Right: Any vertex
cover for Hvc that does not contain x or y contains the four neighbors of x and y and at least three
vertices from each of the two highlighted five-cycles, and contains at least ten non-terminals.

By Observation 12 there is a minimum dominating set S of G that contains no vertex of I.
Then S ∩ U is a vertex cover of G[U ]: for an arbitrary edge {x, y} ∈ E(G[U ]) there is a
vertex v in I whose open neighborhood is {x, y}. Since I ∩ S = ∅, at least one of x and y
belongs to S to dominate v. Hence the edge {x, y} is covered by S. J

Proposition 13 relates minimum dominating sets to vertex covers. We therefore use
a simplified version of a Vertex Cover crossover gadget in our design. We exploit the
graph Hvc with four terminals {x, y, p, q} that is shown in Figure 4. It was obtained by
applying the “folding” reduction rule for Vertex Cover [6, Lemma 2.3] on the gadget
by Garey et al. [15] and omitting two superfluous edges. We use the following property of
the graph Hvc. It states that in Hvc, for every axis from which a vertex cover contains no
terminal vertex, the number of non-terminal vertices used in a vertex cover increases.

I Proposition 14. Let S be a vertex cover of Hvc and let ` ∈ {0, 1, 2} be the number of pairs
among {p, q} and {x, y} from which S contains no vertices. Then |S \ {p, q, x, y}| ≥ 9 + `.

Proof. We first show |S \ {p, q, x, y}| ≥ 9 for any vertex cover S of Hvc, proving the claim
for ` = 0. The non-terminal vertices of Hvc can be partitioned into four vertex-disjoint
triangles and an edge that is vertex-disjoint from the triangles. From any triangle, a vertex
cover contains at least two vertices. From the remaining edge, it contains at least one vertex.

If S contains no vertex of {p, q}, then as illustrated in the middle of Figure 4, S contains
at least eleven non-terminals. Hence |S \ {p, q, x, y}| ≥ 11 ≥ 9 + `.

If the previous case does not apply, then ` ≤ 1 since S contains a vertex of {p, q}. If S
contains no vertex of {x, y}, then as illustrated on the right of Figure 4, S contains at least
ten non-terminals. Hence |S \ {p, q, x, y}| ≥ 10 ≥ 9 + `. J

Using Proposition 14 we prove that replacing two crossing triangles in a Dominating
Set instance by the gadget, increases the optimum by exactly nine.

I Lemma 15. Let G be a graph, and let {x, y, z} and {p, q, r} be two vertex-disjoint triangles
in G such that z and r have degree two in G. Then the graph G′ obtained from G by
replacing z and r by Hvc as in Figure 5 satisfies optds(G′) = optds(G) + 9.

Proof. We prove equality by establishing matching upper- and lower bounds.
(≤ Consider a minimum dominating set S in G that does not contain r or z, which exists

by Observation 12. Then S contains at least one of {p, q} to dominate z, and at least one
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Figure 5 Illustration of how a crossing between two triangles is eliminated in an instance of
Dominating Set. A copy of Hvc is inserted, whose four terminals are identified with the four
endpoints of the crossing edge. For each edge {u, v} of the inserted copy of Hvc, an additional
degree-two vertex is inserted that forms a triangle with u and v.

of {x, y} to dominate r. We assume without loss of generality, by symmetry, that p ∈ S
and x ∈ S. As shown in Figure 4, there is a vertex cover for Hvc of size 11 that contains p
and x, and therefore contains nine vertices from the interior of Hvc. Let T be this set of
nine vertices, and note that T includes a neighbor of q and a neighbor of y. We claim
that S′ := S ∪ T is a dominating set for G′ of size |S|+ 9 ≤ optds(G) + 9. Since T ∪ {p, x}
is a vertex cover of Hvc and Hvc has no isolated vertices, each vertex of Hvc has a neighbor
in S′ and is dominated. The degree-two vertices that are inserted into G′ in the last step are
dominated by the vertex that covers the edge with which they form a triangle. Vertices q
and y are dominated from their neighbors in T . Finally, the remaining vertices of G′ are
dominated in the same way as in G.

(≥ To prove optds(G′) ≥ optds(G) + 9, we instead show optds(G) ≤ optds(G′) − 9.
Let U ⊆ V (G′) denote the vertices from the copy ofHvc that was inserted; U contains p, q, x, y,
but U does not contain the degree-two vertices that were inserted as the last step of the
transformation. By Proposition 13, there is a minimum dominating set S′ of G′ such
that S′ ∩ U is a vertex cover of G′[U ]. Let ` ∈ {0, 1, 2} be the number of pairs among {p, q}
and {x, y} from which S′ contains no vertices. Since S′ ∩U is a vertex cover of G′[U ], which
is isomorphic to Hvc, by Proposition 14 we know that |(S′ ∩ U) \ {p, q, x, y}| ≥ 9 + `. Now
let S be obtained from S′ by removing all vertices of (S′ ∩ U) \ {p, q, x, y}, adding vertex x
if S′ ∩ {x, y} = ∅, and adding vertex y if S′ ∩ {p, q} = ∅. Then |S| ≤ |S′| − 9 since we
remove 9 + ` vertices and add ` new ones. Since S contains at least one vertex from {p, q}
and at least one vertex from {x, y}, it dominates the two triangles in G. Since it contains a
superset of the terminal vertices that S′ contains, the remaining vertices of the graph are
dominated as before. Hence S is a dominating set in G and optds(G) ≤ optds(G′)− 9. J

Using the material so far, we can prove that the transformation operation in Figure 2
increases the size of an optimal dominating set by exactly 48.

I Lemma 16. Let {a, b} and {c, d} be two disjoint edges of a graph G. Let G′ be the graph
obtained by replacing these two edges as in Figure 2. Then optds(G′) = optds(G) + 48.

Proof. The transformation depicted in Figure 2 can be broken down into six steps: trans-
form {a, b} into a double-path structure, transform {c, d} into a double-path structure, and
perform four operations in which crossing triangles are replaced by gadgets. By Lemma 10,
the two double-path insertions increase the size of a minimum dominating set by exactly 2 · 6.
By Lemma 15, the four steps in which crossing triangles are eliminated increase the size of a
minimum domination set by exactly 4 · 9. Hence optds(G′) = optds(G) + 12 + 36. J
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Using Lemma 16 we easily obtain the following.

I Lemma 17. There is a useful crossover gadget for Dominating Set.

Proof. The gadget that is inserted to replace two edges {a, b} and {c, d} in the procedure
of Figure 2 is planar and has its terminals u, u′, v, v′ on the outer face in the appropriate
cyclic ordering. Since Lemma 16 shows that the replacement increases the size of a minimum
dominating set by exactly 48, it follows that the structure serves as a useful crossover gadget
for Dominating Set as per Definition 5. J

Theorem 2 now follows by combining Lemma 17 with the planarization argument of
Theorem 6 and the lower bound for the nonplanar case given by Theorem 9.

I Theorem 2. Assuming SETH, there is no ε > 0 such that Dominating Set on a planar
graph G given along with a linear layout of cutwidth k can be solved in time O∗((3− ε)k).

Proof. Suppose Dominating Set on a planar graph with a given linear layout of cutwidth k
can be solved in O∗((3 − ε)k) time for some ε > 0, by an algorithm called A. Then
Dominating Set on a nonplanar graph with a given layout of cutwidth k can be solved in
time O∗((3− ε)k) by reducing it to a planar graph with a linear layout of cutwidth k +O(1)
(using Theorem 6 and the existence of a useful crossover gadget; this blows up the graph
size by at most a polynomial factor) and then running A. By Theorem 9, this contradicts
SETH. J

5 Conclusion

In this work we have investigated whether SETH-based lower bounds for solving problems
on graphs of bounded treewidth also apply for (1) planar graphs and (2) graphs of bounded
cutwidth. To answer these questions, we showed that the graph parameter cutwidth can be
preserved when reducing to a planar instance using suitably restricted crossover gadgets.

For both problems considered in this work, the runtime lower bound for solving the
problem on graphs of bounded cutwidth continues to hold for planar graphs of bounded
cutwidth. Hence planarity seems to offer no algorithmic advantage when working with graphs
of bounded cutwidth. Moreover, for both Independent Set and Dominating Set the
runtime lower bound for the treewidth parameterization also applies for cutwidth.

Future work may explore other combinatorial problems on graphs of bounded cutwidth.
For example, what is the optimal running time for Feedback Vertex Set, Odd Cycle
Transversal, or Hamiltonian Cycle on graphs of bounded cutwidth? What is the
complexity of the cutwidth parameterization of these problems on planar graphs? For the
Graph q-Coloring problem, these questions are answered in a recent manuscript by an
overlapping set of authors [21]: planarity offers no advantage, but the parameterization by
cutwidth k can be solved in time O∗(2k) for all q, sharply contrasting that the treewidth
parameterization cannot be solved in time O∗((q − ε)k) under SETH.
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Abstract
We show that the eccentricities, diameter, radius, and Wiener index of an undirected n-vertex
graph with nonnegative edge lengths can be computed in time O(n ·

(
k+dlogne

k

)
·2kk2 logn), where

k is the treewidth of the graph. For every ε > 0, this bound is n1+ε expO(k), which matches a
hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open
problem in the multivariate analysis of polynomial-time computation. To this end, we show
that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of
non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching,
improving bounds of the form logd n to

(
d+dlogne

d

)
, as originally observed by Monier (J. Alg.

1980).
We also investigate the parameterization by vertex cover number.
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1 Introduction

Pairwise distances in an undirected, unweighted graph can be computed by performing a
graph exploration, such as breadth-first search, from every vertex. This straightforward
procedure determines the diameter of a given graph with n vertices and m edges in time
O(nm). It is surprisingly difficult to improve upon this idea in general. In fact, Roditty
and Vassilevska Williams [14] have shown that an algorithm that can distinguish between
diameter 2 and 3 in an undirected sparse graph in subquadratic time refutes the Orthogonal
Vectors conjecture.

1 Swedish Research Council grant VR-2016-03855 and Villum Foundation grant 16582.

© Karl Bringmann, and Thore Husfeldt, and Måns Magnusson;
licensed under Creative Commons License CC-BY

13th International Symposium on Parameterized and Exact Computation (IPEC 2018).
Editors: Christophe Paul and Michał Pilipczuk; Article No. 4; pp. 4:1–4:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kbringma@mpi-inf.mpg.de
mailto:thore@itu.dk
https://orcid.org/0000-0001-9078-4512
mailto:mans.magnusson.888@student.lu.se
https://doi.org/10.4230/LIPIcs.IPEC.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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However, for very sparse graphs, the running time becomes linear. In particular, the
diameter of a tree can be computed in linear time O(n) by a folklore result that traverses the
graph twice. In fact, an algorithm by Cabello and Knauer shows that for constant treewidth
k ≥ 3, the diameter (and other distance parameters) can be computed in time O(n logk−1 n),
where the Landau symbol absorbs the dependency on k as well as the time required for
computing a tree decomposition. The question raised in [1] is how the complexity of this
problem grows with the treewidth of the graph. We show the following result:

I Theorem 1. The eccentricities, diameter, radius, and Wiener index of a given undirected
n-vertex graph G of treewidth tw(G) and nonnegative edge lengths can be computed in time
linear in

n ·
(
k + dlogne

k

)
· 2kk2 logn (1)

where k = 5 tw(G) + 4.

For every ε > 0, the bound (1) is n1+ε expO(tw(G)). This improves the dependency on
the treewidth over the running time n1+ε expO

(
tw(G) log tw(G)

)
of Abboud, Vassilevska

Williams, and Wang [1]. Our improvement is tight in the following sense. Abboud et al. [1]
also showed that under the Strong Exponential Time Hypothesis of Impagliazzo, Paturi, and
Zane [10], there can be no algorithm that computes the diameter with running time

n2−δ exp o(tw(G)) for any δ > 0 . (2)

In fact, this holds under the potentially weaker Orthogonal Vectors conjecture, see [17] for
an introduction to these arguments. Thus, under this assumption, the dependency on tw(G)
in Theorem 1 cannot be significantly improved, even if the dependency on n is relaxed from
just above linear to just below quadratic. Our analysis encompasses the Wiener index, an
important structural graph parameter left unexplored by [1].

Perhaps surprisingly, the main insight needed to establish Theorem 1 has nothing to
do with graph distances or treewidth. Instead, we make – or re-discover – the following
observation about the running time of d-dimensional range trees:

I Lemma 2 ([13]). A d-dimensional range tree over n points supporting orthogonal range
queries for the aggregate value over a commutative monoid has query time O(2d · B(n, d))
and can be built in time O(nd ·B(n, d)), where

B(n, d) =
(
d+ dlogne

d

)
.

This is a more careful statement than the standard textbook analysis, which gives the
query time as O(logd n) and the construction time as O(n logd n). For many values of d, the
asymptotic complexities of these bounds agree – in particular, this is true for constant d and
for very large d, which are the main regimes of interest to computational geometers. But
crucially, B(n, d) is always nε expO(d) for any ε > 0, while logd n is not.

After Lemma 2 is realised, Theorem 1 follows via divide-and-conquer in decomposable
graphs, closely following the idea of Cabello and Knauer [6] and augmented with known
arguments [1, 5]. We choose to give a careful presentation of the entire construction, as some
of the analysis is quite fragile.

Using known reductions, this implies that the following multivariate lower bound on
orthogonal range searching is tight:
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I Theorem 3 (Implicit in [1]). A data structure for the orthogonal range query problem for
the monoid (Z,max) with construction time n · q′(n, d) and query time q′(n, d), where

q′(n, d) = n1−ε exp o(d)

for some ε > 0, refutes the Strong Exponential Time hypothesis.

We also investigate the same problems parameterized by vertex cover number:

I Theorem 4. The eccentricities, diameter, and radius of a given undirected, unweighted
n-vertex graph G with vertex cover number k can be computed in time O(nk + 2kk2). The
Wiener index can be computed in time O(nk2k).

Both of these bounds are n expO(k). It follows from [1] that a lower bound of the form
(2) holds for this parameter as well.

1.1 Related work
Abboud et al. [1] show that given a graph and an optimal tree decomposition, various
graph distances can be computed in time O(k2n logk−1 n), where k = tw(G). This bound is
n1+ε expO(k log k) for any ε > 0. This subsumes the running time for finding an approximate
tree decomposition with k = O(tw(G)) from the input graph [5], which is n expO(k). Their
algorithm extends the construction of Cabello and Knauer [6] to superconstant treewidth.
According to [6], the idea of expressing graph distances as coordinates was first mentioned
by Shi [15].

If the diameter in the input graph is constant, the diameter can be computed in time
n expO(tw(G)) [9]. This is tight in both parameters in the sense that [1] rules out the
running time (2) even for distinguishing diameter 2 from 3, and every algorithm needs to
inspect Ω(n) vertices even for treewidth 1. For non-constant diameter ∆, the bound from [9]
deteriorates as n expO(tw(G) log ∆). However, the construction cannot be used to compute
the Wiener index.

The literature on algorithms for graph distance parameters such as diameter or Wiener
index is very rich, and we refer to the introduction of [1] for an overview of results dir-
ectly relating to the present work. A recent paper by Bentert and Nichterlein [2] gives a
comprehensive overview of many other parameterisations.

Orthogonal range searching using a multidimensional range tree was first described by
Bentley [3], Lueker [12], Willard [16], and Lee and Wong [11], who showed that this data
structure supports query time O(logd n) and construction time O(n logd−1 n). Several papers
have improved this in various ways by factors logarithmic in n; for instance, Chazelle’s
construction [8] achieves query time O(logd−1 n).

1.2 Discussion
In hindsight, the present result is a somewhat undramatic resolution of an open problem that
has been viewed as potentially fruitful by many people [1], including the second author [9]. In
particular, the resolution has led neither to an exciting new technique for showing conditional
lower bounds of the form n2−ε expω(k), nor a clever new algorithm for graph diameter.
Instead, our solution follows the ideas of Cabello and Knauer [6] for constant treewidth,
much like in [1]. All that was needed was a better understanding of the asymptotics of
bivariate functions, rediscovering a 40-year old analysis of spatial data structures [13] (see
the discussion in Sec. 3.3), and using a recent algorithm for approximate tree decompositions
[5].

IPEC 2018



4:4 Multivariate Analysis of Orthogonal Range Searching and Graph Distances

Of course, we can derive some satisfaction from the presentation of asymptotically
tight bounds for fundamental graph parameters under a well-studied parameterization. In
particular, the surprisingly elegant reductions in [1] cannot be improved. However, as we
show in the appendix, when we parameterize by vertex cover number instead of treewidth,
we can establish even cleaner and tight bounds without much effort.

Instead, the conceptual value of the present work may be in applying the multivariate
perspective on high-dimensional computational geometry, reviving an overlooked analysis
for non-constant dimension. To see the difference in perspective, Chazelle’s improvement
[8] of d-dimensional range queries from logd n to logd−1 n makes a lot of sense for small d,
but from the multivariate point of view, both bounds are nε exp Ω(d log d). The range of
relationships between d and n where the multivariate perspective on range trees gives some
new insight is when d is asymptotically just shy of logn, see Sec. 2.1.

It remains open to find an algorithm for diameter with running time n expO(tw(G)), or
an argument that such an algorithm is unlikely to exist under standard hypotheses. This
requires better understanding of the regime d = o(logn).

2 Preliminaries

2.1 Asymptotics
We summarise the asymptotic relationships between various functions appearing in the
present paper:

I Lemma 5.

B(n, d) = O(logd n) . (3)

For any ε > 0,

B(n, d) = nε expO(d) , (4)
logd n = nε exp Ω(d log d) , (5)
logd n = nε expO(d log d) . (6)

The first expression shows that B(n, d) is always at least as informative as O(logd n).
The next two expressions show that from the perspective of parameterised complexity, the
two bounds differ asymptotically: B(n, d) depends single-exponentially on d (no matter how
small ε > 0 is chosen), while logd n does not (no matter how large ε is chosen). Expression (6)
just shows that (5) is maximally pessimistic.

Proof. Write h = dlogne. To see (3), consider first the case where d < h. Using
(
a
b

)
≤ ab/b!

we see that(
d+ h

d

)
≤
(

2h
d

)
≤ (2h)d

d! = 2d

d! h
d = O(logd n) . (7)

Next, if d ≥ h then(
d+ h

d

)
=
(
d+ h

h

)
≤
(

2d
h

)
= 2h

h! d
h ≤ dh ,

provided h ≥ 4. It remains to observe that dh ≤ hd = O(logd n). Indeed, since the
function α 7→ α/ lnα is increasing for α ≥ e, we have h/ ln h ≤ d/ ln d, which implies
exp(h ln d) ≤ exp(d ln h) as needed.
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For (4), we let δ = d/h and consider two cases. First, from Stirling’s formula we know(
a
b

)
≤
( ea
b

)b, so(
d+ h

d

)
=
(

(1 + δ)h
δh

)
≤
(e(1 + δ)h

δh

)δh
≤
(e(1 + δ)

δ

)2δ logn
= n2δ log(e(1+δ)δ−1) .

Using that δ 7→ 2δ log(e(1 + δ)δ−1) is a monotone increasing function in the interval
(
0, 1

2
]

that tends to 0 for δ → 0, we obtain
(
d+h
d

)
≤ nε for any sufficiently small δ.

It remains to consider the case that δ ≥ c for some positive constant c depending only
on ε. In this case, we have(

d+ h

d

)
≤
(

(1 + 1/c)d
d

)
< 2(1+1/c)d = expO(d) .

We turn to (5). Assume that there is a function g such that

logd n = ncg(d) .

Then choose b > 1 and consider d such that d = b−1 logn . Then

g(d) ≥ logd n
nc

= 2d log logn−c logn = 2d log (bd)−cbd = exp Ω(d log d) .

Finally for (6), we repeat the argument from [1]. If d ≤ ε logn/ log logn then logd n =
2d log logn ≤ nε . In particular, if d = o(logn/ log logn) then logd n = no(1). Moreover, for
d ≥ log1/2 n we have log logn ≤ 2 log d and thus logd n = 2d log logn ≤ 4d log d. J

These calculations also show the regimes in which these considerations are at all interesting.
For d = o(logn/ log logn) then both functions are bounded by no(1), and the multivariate
perspective gives no insight. For d ≥ logn, both bounds exceed n, and we are better off
running n BFSs for computing diameters, or passing through the entire point set for range
searching.

2.2 Model of computation
We operate in the word RAM, assuming constant-time arithmetic operations on coordinates
and edge lengths, as well as constant-time operations in the monoid supported by our range
queries. For ease of presentation, edge lengths are assumed to be nonnegative integers; we
could work with abstract nonnegative weights instead [6].

3 Orthogonal Range Queries

3.1 Preliminaries
Let P be a set of d-dimensional points. We will view p ∈ P as a vector p = (p1, . . . , pd).

A commutative monoid is a set M with an associative and commutative binary operator
⊕ with identity. The reader is invited to think of M as the integers with −∞ as identity
and a⊕ b = max{a, b}.

Let f : P →M be a function and define for each subset Q ⊆ P

f(Q) =
⊕
{ f(q) : q ∈ Q}

with the understanding that f(∅) is the identity in M .

IPEC 2018
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x

y

z

p

q

rs

p (0, 0, 0) f(p) = 5
q (2, 0, 0) f(q) = 6
r (0, 2, 1) f(r) = 7
s (2, 1, 2) f(s) = 8

Figure 1 Four points in three dimensions. With the monoid (Z, max) we have f({p, r, s}) = 8.

3.2 Range Trees
Consider dimension i ∈ {1, . . . , d} and enumerate the points in Q as q(1), . . . , q(r) such
that q(j)

i ≤ q
(j+1)
i , for instance by ordering after the ith coordinate and breaking ties

lexicographically. Define medi(Q) to be the median point q(dr/2e), and similarly mini(Q) =
q(1) and maxi(Q) = q(r). Set

QL = {q(1), . . . , q(dr/2e)}, QR = {q(1+dr/2e), . . . , q(r)} . (8)

For i ∈ {1, . . . , d}, the range tree Ri(Q) for Q is a node x with the following attributes:
L[x], a reference to range tree Ti(QL), called the left child of x. Only exists if |Q| > 1.
R[x], a reference to range tree Ti(QR), called the right child of x. Only exists if |Q| > 1.
D[x], a reference to range tree Ti+1(Q), called the secondary, associate, or higher-
dimensional structure. Only exists for i < d.
l[x] = mini(Q).
r[x] = maxi(Q).
f [x] = f(Q). Only exists for i = d.

Construction

Constructing a range tree for Q is a straightforward recursive procedure:

I Algorithm C (Construction). Given integer i ∈ {1, . . . , d} and a list Q of points, this
algorithm constructs the range tree Ri(Q) with root x.
C1 [Base case Q = {q}.] Recursively construct D[x] = Ti+1(Q) if i < d, otherwise set

f [x] = f(q). Set l[x] = r[x] = qi. Return x.
C2 [Find median.] Determine q = mediQ, l[x] = mini(Q), r[x] = maxi(Q).
C3 [Split Q.] Let QL and QR as given by (8), note that both are nonempty.
C4 [Recurse.] Recursively construct L[x] = Ri(QL) from QL. Recursively construct R[x] =

Ri(QR) from QR. If i < d then recursively construct D[x] = Ti+1(Q). If i = d then set
f [x] = f [L[x]]⊕ f [R[x]].

The data structure can be viewed as a collection of binary trees whose nodes x represent
various subsets Px of the original point set P . In the interest of analysis, we now introduce a
scheme for naming the individual nodes x, and thereby also the subsets Px. Each node x is
identified by a string of letters from {L,R,D} as follows. Associate with x a set of points,
often called the canonical subset of x, as follows. For the empty string ε we set Pε = P . In
general, if Q = Px then PxL = QL, PxR = QR and PxD = Q. The strings over {L,R,D} can
be understood as uniquely describing a path through in the data structure; for instance, L
means ‘go left, i.e., to the left subtree, the one stored at L[x]’ and D means ‘go to the next
dimension, i.e., to the subtree stored at D[x].’ The name of a node now describes the unique
path that reaches it.
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DRDR

DRD

DRD

D DD

Figure 2 Part of the range tree for the points from Fig. 1. The label of node x appears in red on
the arrow pointing to x. Nodes contain l[x]:r[x]. The references L[x] and R[x] appear as children
in a binary tree using usual drawing conventions. The reference D[x] appears as a dashed arrow
(possibly interrupted); the placement on the page follows no other logic than economy of layout and
readability. References D[x] from leaf nodes, such as D[LL] leading to node LLD, are not shown; this
conceals 12 single-node trees. The ‘3rd-dimensional nodes,’ whose names contain two Ds, show the
values f [x] next to the node. To ease comprehension, leaf nodes are decorated with their canonical
subset, which is a singleton from {p, q, r, s}. The reader can infer the canonical subset for an internal
node as the union of leaves of the subtree; for instance, PDR = {r, s}. However, note that these
point sets are not explicitly stored in the data structure.

I Lemma 6. Let n = |P |. Algorithm C computes the d-dimensional range tree for P in time
linear in nd ·B(n, d).

Proof. We run Algorithm C on input P and i = 1.
Disregarding the recursive calls, the running time of algorithm C on input i and Q is

dominated by Steps C2 and C3, i.e., splitting Q into two sets of equal size. It is known that
this task can be performed in time linear in |Q| [4]. Thus, the running time for constructing
Ri(Q) is linear in |Q| plus the time spent in recursive calls.

This means that we can bound the running time for constructing T1(P ) by bounding the
sizes of the sets Px associated with every node x in the data structure. If for a moment X
denotes the set of all these nodes then we want to bound∑

x∈X
|Px| =

∑
x∈X
|{ p ∈ P : p ∈ Px }| =

∑
p∈P
|{x ∈ X : p ∈ Px }| .

Thus, we need to determine, for given p ∈ P , the number of subsets Px in which p appears.
By construction, there are fewer than d occurrences of D in x. Moreover, if x contains more
than h occurrences of either L or R then Px is empty. Thus, x has at most h + d letters.
For two different strings x and x′ that agree on the positions of D, the sets Px and Px′ are
disjoint, so p appears in at most one of them. We conclude that the number of sets Px such
that p ∈ Px is bounded by the number of ways to arrange fewer than d many Ds and at most
h non-Ds. Using the identity

(
a+0

0
)

+ · · ·+
(
a+b
b

)
=
(
a+b+1
b

)
repeatedly, we compute

d−1∑
i=0

h∑
j=0

(
i+ j

j

)
=
d−1∑
i=0

(
i+ h+ 1

h

)
=
d−1∑
i=0

(
i+ h+ 1
i+ 1

)
=

(−1) +
d∑
i=0

(
i+ h

i

)
=
(
h+ d+ 1

d

)
− 1 = h+ d+ 1

h+ 1

(
h+ d

d

)
− 1 ≤ d

(
d+ h

d

)
.

The bound follows from aggregating this contribution over all p ∈ P . J

IPEC 2018
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Search

In this section, we fix two sequences of integers l1, . . . , ld and r1, . . . , rd describing the query
box B given by

B = [l1, r1]× · · · × [ld, rd] .

I Algorithm Q (Query). Given integer i ∈ {1, . . . , d}, a query box B as above and a range
tree Ri(Q) with root x for a set of points Q such that every point q ∈ Q satisfies lj ≤ qj ≤ rj
for j ∈ {1, . . . , i− 1}, this algorithm returns

⊕
{ f(q) : q ∈ Q ∩B }.

Q1 [Empty?] If the data structure is empty, or li > r[x], or l[x] > ri, then return the identity
in the underlying monoid M .

Q2 [Done?] If i = d and ld ≤ mind[x] and maxd[x] ≤ rd then return f [x].
Q3 [Next dimension?] If i < d and li ≤ l[x] and r[x] ≤ ri then query the range tree at D[x]

for dimension i+ 1. Return the resulting value.
Q4 [Split.] Query the range tree L[x] for dimension i; the result is a value fL. Query the

range tree R[x] for dimension i; the result is a value fR. Return fL ⊕ fR.

To prove correctness, we show that this algorithm is correct for each point set Q = Px.

I Lemma 7. Let i = D(x) + 1, where D(x) is the number of Ds in x. Assume that Px is
such that lj ≤ pi ≤ rj for all j ∈ {1, . . . , i− 1} for each p ∈ Px. Then the query algorithm
on input x and i returns f(B ∩ Px).

Proof. Backwards induction in |x|.
If |x| = h+ d then Px is the empty set, in which case the algorithm correctly returns the

identity in M .
If the algorithm executes Step Q2 then B is satisfied for all q ∈ Px, in which case the

algorithm correctly returns f [x] = f(Px).
If the algorithm executes Step Q3 then B satisfies the condition in the lemma for i+ 1,

and the number of Ds in PxD is i+ 1, and D[x] store the (i+ 1)th range tree for PxD. Thus,
by induction the algorithm returns f(PxD ∩B), which equals f(Px ∩B) because PxD = Px.

Otherwise, by induction, fL = f(PxL ∩B) and fR = f(PxR ∩B). Since PxL ∪ PxR = Px,
we have f(Px ∩B) = f((PxL ∩B) ∪ (PxR ∩ P )) = fL ⊕ fR. J

I Lemma 8. If x is the root of the range tree for P then on input i = 1, x, and B, the query
algorithm returns f(P ∩B) in time linear in 2dB(n, d).

Proof. Correctness follows from the previous lemma.
For the running time, we first observe that the query algorithm does constant work in

each visited node. Thus it suffices to bound the number of visited nodes as

2d
(
h+ d

d

)
(d ≥ 1, h ≥ 0) . (9)

We will show by induction in d that (9) holds for every call to a d-dimensional range tree
for a point set Px, where h = dlog |Px|e. The two easy cases are Q1 and Q2, which incur no
additional nodes to be visited, so the number of visited nodes is 1, which is bounded by (9).
Step Q3 leads to a recursive call for a (d− 1)-dimensional range tree over the same point set
PxD = Px, and we verify

1 + 2d−1
(
h+ d− 1
d− 1

)
≤ 2d

(
h+ d

d

)
.
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The interesting case is Step Q4. We need to follow two paths from x to the leaves of the
binary tree of x. Consider the leaves l and r in the subtree rooted at x associated with the
points mini(Px) and maxi(Px) as defined in Sec. 3.2. We describe the situation of the path
Y from l to x; the other case is symmetrical. At each internal node y ∈ Y , the algorithm
chooses Step Q4 (because li ≥ l[y]). There are two cases for what happens at yL and yR. If
li ≤ medi(Py) then PyR satisfies li ≤ mini(PyR) ≤ ri, so the call to yR will choose Step Q3.
By induction, this incurs 2d−1(d−1+i

d−1
)
visits, where i is the height of y. In the other case,

the call to yL will choose Step Q1, which incurs no extra visits. Thus, the number of nodes
visited on the left path is at most

h+
h−1∑
i=0

2d−1
(
d− 1 + i

d− 1

)
,

and the total number of nodes visited is at most twice that:

2h+ 2d
h−1∑
i=0

(
d− 1 + i

d− 1

)
≤ 2d

h∑
i=0

(
d− 1 + i

d− 1

)
= 2d

(
d+ h

d

)
. J

3.3 Discussion
The textbook analysis of range trees, and similar d-dimensional spatial algorithms and data
structures sets up a recurrence relation like

r(n, d) = 2r(n/2, d) + r(n, d− 1) ,

for the construction and

r(n, d) = max{ r(n/2, d), r(n, d− 1) } ,

for the query time. One then observes that n logd n and logd n are the solutions to these
recurrences. This analysis goes back to Bentley’s original paper [3].

Along the lines of the previous section, one can show that the functions n ·B(n, d) and
B(n, d) solve these recurrences as well. A detailed derivation can be found in [13], which
also contains combinatorial arguments of how to interpret the binomial coefficients in the
context of spatial data structures. A later paper of Chan [7] also takes the recurrences as
a starting point, and observes asymptotically improved solution for the related question of
dominance queries.

4 Graph Distances

We present the algorithm for computing the diameter. The construction closely follows
Cabello and Knauer [6], but uses the range tree bounds from Section 3. The analysis
is extended to superconstant dimension as in Abboud et al. [1]. Using the approximate
treewidth construction of Bodlaender et al. [5], we can pay more attention to the parameters
of the recursive decomposition into small-size separators.

4.1 Preliminaries
We consider an undirected graph G with n vertices and m edges with nonnegative integer
weights. The set of vertices is V (G). For a vertex subset U we write G[U ] for the induced
subgraph.
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4:10 Multivariate Analysis of Orthogonal Range Searching and Graph Distances

A path from u to v is called a u, v-path and denoted P . The length of a path, denoted
l(P ), is the sum of its edge lengths.

The distance from vertex u to vertex v, denoted d(u, v), is the minimum length of shortest
u, v-path. The Wiener index of G, denoted wien(G) is

∑
u,v∈V (G) d(u, v). The eccentricity

of a vertex u, denoted e(u) is given by e(u) = max{ d(u, v) : v ∈ V (G) }. The diameter
of G, denoted diam(G) is max{ e(u) : u ∈ V (G) }. The radius of G, denoted rad(G) is
min{ e(u) : u ∈ V (G) }.

4.2 Separation
A vertex subset Z separates X and Y if every x, y-path with x ∈ X and y ∈ Y contains a
vertex from Z. A skew k-separator tree T of G is a binary tree such that each node t of T is
associated with a vertex set Zt ⊆ V (G) such that
|Zt| ≤ k,
If Lt and Rt denote the vertices of G associated with the left and right subtrees of t,
respectively, then Zt separates Lt and Rt and

n

k + 1 ≤ |Lt ∪ Zt| ≤
nk

k + 1 , (10)

T remains a skew k-separator even if edges between vertices of Zt are added.

It is known that such a tree can be found from a tree decomposition, and an approximate
tree decomposition can be found in single-exponential time. We summarise these results in
the following lemma:

I Lemma 9 ([6, Lemma 3] with [5, Theorem 1]). For a given n-vertex input graph G, a skew
(5 tw(G) + 4)-separator tree can be computed in time n expO(tw(G)).

4.3 Algorithm
We follow the construction of [6].

Given graph G, let Sx,w denote the set of shortest x,w-paths. We refine the notion of
eccentricity to a subset W of vertices. Formally,

e(x,W ) = max
w∈W
{ l(P ) : P ∈ Sx,w } .

We will consider a situation where V (G) = X ∪ Y with separator Z = X ∩ Y . We can then
compute e(x) as max{e(x,X), e(x, Y )} for each x ∈ X. The first term is found recursively
in G[X]; the interesting part is the computation of e(x, Y ).

Enumerate Z = {z1, . . . , zk}. For i ∈ {1, . . . , k} define the ith eccentricity ei(x, Y ) as the
maximum distance from x to any vertex in Y ‘via zi.’ Formally,

ei(x, Y ) = max
y∈Y
{ l(P ) : P ∈ Sx,y, zi ∈ V (P ) } .

See Figure 3 for a small example.

I Lemma 10. If Z separates X and Y then e(x, Y ) = maxki=1 ei(x, Y ) for x ∈ X.

Proof. A shortest x, y-path with y ∈ Y must contain a vertex from Z, say zi. Thus, e(x, Y ) ≤
ei(x, Y ). Conversely, e(x, Y ) ≥ ej(x, Y ) for all j ∈ {1, . . . , k} from the definition. J

Now we can write the eccentricity via zi as the distance to zi plus a range query:
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Figure 3 Left: Example with Z = {z1, z2, z3} and Y = Z ∪ {y, y′, y′′}. We have e(x, Y ) = 5
(along xz1y) and e(x′, Y ) = 3. For the case i = 3 we see e3(x, Y ) = 4 along xz3y′′, because there are
no shortest paths from x via z3 to y or y′, and the one-edge path xz3 itself is shorter. Similarly,
e3(x′, Y ) = 3 (along x′z3y′). Right: The corresponding points in Z2, only the first two coordinates
are shown, and only for the points in Y \ Z. The points corresponding to y′ and y′′ both belong
to the rectangle for x′, certifying that there are shortest x′, y′- and x′, y′′-paths through z3. Right:
Over Rx′ , the point py′ maximises f . We have e3(x′, Y ) = l(x′z3y′) = d(x′, z3) + f(py′) = 1 + 2 = 3.

I Lemma 11. Let i ∈ {1, . . . , k} and assume {z1, . . . , zk} separates X and Y . Define for
each y ∈ Y the k-dimensional point

py =

d(zi, y)− d(z1, y)
...

d(zi, y)− d(zk, y)

 with f(py) = d(zi, y) . (11)

Define for each x ∈ X the rectangle

Rx = "kj=1[−∞, d(x, zj)− d(x, zi)] . (12)

Then

ei(x, Y ) = d(x, zi) + max
y : py∈Rx

f(py) .

Proof. Consider a shortest x, y-path P containing zi ∈ Z. No other x, y-path is shorter than
P , so in particular we have

d(x, zi) + d(zi, y) ≤ d(x, zj) + d(zj , y) , j ∈ {1, . . . , k} ,

equivalently,

d(zi, y)− d(zj , y) ≤ d(x, zj)− d(x, zi) , j ∈ {1, . . . , k} . (13)

which means py ∈ Rx. Moreover, if y is chosen so that P attains the eccentricity ei(x, Y )
then ei(x, Y ) = l(P ) = d(x, zi) + d(zi, y) and py maximises f(py) = d(zi, y) over the points
in Rx. J

One observes that the ith coordinate of py is always 0 and of Ry is always [−∞, 0], so
the reduction is actually to a (k − 1)-dimensional range query instance. However, we are
mainly interested in the asymptotic dependency on k, so we avoid this possible (but tedious)
improvement.

We are ready for the algorithm.

I Algorithm E (Eccentricities). Given an undirected, connected graph G with nonnegative
integer weights and a skew k-separator tree with root t, this algorithm computes the eccentricity
e(v) of every vertex v ∈ V (G). We write Z = Zt, X = Lt ∪ Zt, and Y = Rt ∪ Zt.
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4:12 Multivariate Analysis of Orthogonal Range Searching and Graph Distances

E1 [Base case.] If n/ lnn < 4k(k+1) find all distances using Dijkstra’s algorithm. Terminate.
E2 [Distances from separator.] Compute d(z, v) for each z ∈ Z, v ∈ V (G) using k applications

of Dijkstra’s algorithm. Compute e(z, Y ) = maxy∈Y d(z, y) for each z ∈ Z.
E3 [Add shortcuts.] For each pair z, z′ ∈ Z, add the edge zz′ to G, weighted by d(z, z′).

Remove duplicate edges, retaining the shortest.
E4.1 [Start iterating over {z1, . . . , zk}.] Let i = 1.
E4.2 [Build range tree for zi.] Construct a k-dimensional range tree for the points { py : y ∈

Y } given by (11) using the monoid (Z,max).
E4.3 [Query range tree.] For each x ∈ X, query the rectangle Rx given by (12) and add

d(x, zi). The result is ei(x, Y ) by Lemma 11.
E4.4 [Next zi.] If i < k then increase i and go to E4.1.
E5 [Recurse on G[X] and combine.] Recursively compute the distances in G[X] using the

left subtree of t as a skew k-separator tree. The result are eccentricities e(x,X) for
each x ∈ X. For each x ∈ X, set e(x, Y ) = maxki=1 ei(x, Y ) from Step E4.3, then set
e(x) = max{e(x,X), e(x, Y )}.

E6 [Flip.] Repeat Steps E4–5 with the roles of X and Y exchanged.

4.4 Running Time
I Lemma 12. The running time of Algorithm E is O(n ·B(n, k) · 2kk2 logn).

We omit the proof. We can now establish Theorem 1 for diameter and radius.

Proof of Thm. 1, distances. To compute all eccentricities for a given graph we find a k-skew
separator for k = 5 tw(G)+4 using Lemma 9 in time n expO(tw(G)). We then run Algorithm
E, using Lemma 12 to bound the running time. From the eccentricities, the radius and
diameter can be computed in linear time using their definition. J

Algorithm E can be modified to compute the Wiener index, as described in [6, Sec. 4],
completing the proof of Theorem 1. The main observation is that the sum of distances
between all pair u, v ∈ V (G) can be written as pairwise distances within X, within Y ,
and between X and Y , carefully subtracting contributions from these sums that were
included twice. The orthogonal range queries for vertex x ∈ X now need to report the
sum of distances to every y ∈ Y , rather than just the value of the maximum distance
e(x;Y ). To this end, we use the monoid of positive integer tuples (d, r) with the operation
(d, r)⊕ (d′, r′) = (d+ d′, r+ r′) with identity element (0, 0). The value associated with vertex
x in Step E4.2 is f(p(y)) = (1, d(zi, y)). To avoid overcounting, the definition of Rx and
ei(x, Y ) have to be changed carefully.
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Abstract
We consider the problem of counting the linear extensions of an n-element poset whose cover
graph has treewidth at most t. We show that the problem can be solved in time Õ(nt+3), where
Õ suppresses logarithmic factors. Our algorithm is based on fast multiplication of multivariate
polynomials, and so differs radically from a previous Õ(nt+4)-time inclusion–exclusion algorithm.
We also investigate the algorithm from a practical point of view. We observe that the running
time is not well characterized by the parameters n and t alone, fixing of which leaves large variance
in running times due to uncontrolled features of the selected optimal-width tree decomposition.
For selecting an efficient tree decomposition we adopt the method of empirical hardness models,
and show that it typically enables picking a tree decomposition that is significantly more efficient
than a random optimal-width tree decomposition.
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1 Introduction

Consider a partially ordered set (V,≺), or poset for short, formed by an n-element set V
and an irreflexive and transitive binary relation ≺ on V , called a partial order. Another
partial order < on V is a linear extension of ≺ if it contains ≺ and for any distinct elements
x, y ∈ V either x < y or y < x. The problem of counting linear extensions (#LE) asks the
number of linear extensions of a given poset; equivalent to #LE is the problem of counting
the topological sorts of a given directed (acyclic) graph. The problem has applications in
numerous areas, for example, in sequence analysis [22], sorting [27], preference reasoning [21],
convex rank tests [24], partial order plans [25], and learning graphical models [32, 26].
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5:2 A Faster Tree-Decomposition Based Algorithm for Counting Linear Extensions

The #LE problem is #P-complete [11] but admits a fully polynomial approxima-
tion scheme [13]. The best known asymptotic bounds for the expected running time are
O(ε−2n3 log2 ` logn) [6] and O(ε−2n5 log2 n) [30], where ` is the number of linear extensions
and ε the allowed relative error. These bounds, while polynomial, become prohibitively large
in practice if, say, one requires an accuracy of ε = 0.01 and n is around one hundred.

Exact and parameterized algorithms offer an alternative approach to design practical
algorithms for the problem. For the required number of arithmetic operations, the best known
worst-case bound is O(2nn) in general, which is achieved by a simple dynamic programming
algorithm. For several special instance classes better bounds are known: O(nww) for width-w
posets, O(n2) for series–parallel posets [23], and O(n2) also for posets whose cover graph is
a forest [5]; the cover graph of a poset (V,≺) is the directed graph (V,E) where the edge set
E is the transitive reduction of ≺ (a.k.a. Hasse diagram). If parameterized by the treewidth
of the cover graph, t, the problem can be solved with O(nt+3) arithmetic operations by an
inclusion–exclusion algorithm [17]. On the other hand, the problem parameterized by t is
W [1]-hard [14], and so it may be difficult, or even impossible, to find an algorithm that runs
in time O(f(t)nd) for some computable function f and constant d.

1.1 Theoretical contributions
In this paper, we give a new algorithm that exploits small treewidth. Write Õ(f) as a
shorthand for f(log f)O(1). We prove the following in Section 3.

I Theorem 1 (Main). The linear extensions of a given n-element poset can be counted with
Õ(nt+3) bit-operations, where t is the treewidth of the cover graph of the poset.

We state the bound in terms of bit-complexity to emphasize the fact that the dominating
computations deal with large integers. Indeed, the bounds stated in the previous paragraph
refer to the number of arithmetic operations. Thus, in particular, our bound improves the
previous bound of Kangas et al. [17] by a factor of n. For large n and small t the improvement
is relatively significant; for instance, for t = 2 the bound is reduced from Õ(n6) to Õ(n5).

Perhaps more importantly, the design of our algorithm is very different from that of
the inclusion–exclusion algorithm. In the latter, the idea is to view a linear extension as a
bijective mapping and then remove the global bijectivity constraint by inclusion–exclusion,
similarly to previous applications to matrix permanent [29], Hamiltonian path [18], and set
partitioning [19], but incurring only a polynomial overhead. Once the bijectivity constraint
is removed, what remains is a collection of simpler subproblems with local constraints. The
subproblems can be handled by standard routines that exploit small treewidth [7, 12]; see
Section 2.4 for some additional details.

The present algorithm, in contrast, takes care of the bijectivity constraint within dynamic
programming along a tree decomposition and is, with this respect, similar to a folklore
tO(t)n-time algorithm for the Hamiltonian path problem. However, #LE being W[1]-hard
one may expect it to require a significantly larger dynamic programming table. We give a
formulation, where each node of a tree decomposition is associated with Θ(nt+1) counts.
This formulation leads to a challenge: a step in the dynamic program that combines two (or
more) arrays of such counts appears to require a quadratic number of arithmetic operations,
Θ(n2t+2), if implemented in a straightforward manner. Fortunately, we discover that the key
ingredient of the step takes a form of multidimensional convolution, which we can compute
efficiently using known (deep) results for fast multiplication of multivariate polynomials.

Concerning space complexity we only make a couple of observations here: Both our
algorithm and the inclusion–exclusion algorithm by Kangas et al. [17] require Õ(nt+2) bits of
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space; this can be reduced by a factor about linear in n by carrying the computations modulo
several small relative primes and constructing the final output using the Chinese remainder
theorem. The simple dynamic programming algorithm requires Õ(2n) bits of space.

1.2 Empirical contributions

In the second part of the paper we address the practical value of the algorithm. Given that
the present algorithm is technically more convoluted than the inclusion–exclusion algorithm,
it is natural to ask, whether the improvement in the asymptotic worst case time requirement
can be realized in practice. Our interest is particularly in instances where t is small (at most
four) and n ranging up to a few hundred.

A well known challenge in practical implementation of tree-decomposition based algorithms
is that finding an optimal-width tree decomposition may be insufficient for minimizing the
computational cost: the running time of the dynamic programming algorithm can be sensitive
to the shape of the tree decomposition. Bodlaender and Fomin [9] addressed this issue from
a theoretical viewpoint by studying the complexity of finding a tree decomposition that
minimizes a sum of costs associated with each node of a tree decomposition. In their f -cost
framework the cost of a node is allowed to depend only on the width of the node (i.e., the size
of the associated bag; see Section 2). Recently, Abseher et al. [1, 2] presented a more general
and more practical heuristic approach. Their htd library [1] allows a user to generate a
variety of optimal-width tree decompositions and also (locally) optimize a given cost function.
Moreover, they proposed and evaluated [2] a method to learn an appropriate cost function,
or regression model, from collected empirical data on running times on varying instances.
The method can be viewed as an instantation of the method of empirical hardness models
[20] for the algorithm selection problem [28].

Following these ideas we have implemented and tested our algorithm for #LE using
a collection of synthetically generated instances (posets) together with a variety of tree
decompositions generated by htd for each instance. We will report on and discuss our
preliminary observations, which suggest that selecting the tree decomposition using a learned
regression model can make a difference, at least for the smallest treewidth (t = 2): compared
to the median running time over generated tree decompositions, the selected one typically
yields almost an order-of-magnitude speedup.

1.3 Organization

Some preliminary material is given in Section 2. Section 3 is devoted to proving Theorem 1.
In Section 4 we descibe some implementation details and report on empirical results. We
conclude in Section 5 by highlighting the main observations and some open questions.

2 Preliminaries

In this section we introduce some basic terminology, notation, and facts.

2.1 Basic notation

We denote by N the set of natural numbers {0, 1, 2, . . .}. For two sets S and U we write SU
for the set of functions from U to S. If m ∈ N we write [m] for the set {1, . . . ,m}. By Sm
we denote the set of m-tuples a = (ai)mi=1 with ai ∈ S.

IPEC 2018
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The restriction of a function α : U → S to a subset A ⊂ U is defined in the standard
manner and denoted by α|A; conversely, we say that α is an extension of α|A. We also denote
by αv 7→i the extension of α that we obtain by mapping an added element v 6∈ U to i.

We use the Iverson’s bracket notation: for a proposition P , the expression [P ] evaluates
to 1 if P is true, and to 0 otherwise.

2.2 Factorials and multiplication of polynomials
Let a = (a1, . . . , ak) ∈ Nk. We denote a! := a1! · · · ak! and |a| := a1 + · · ·+ ak. Since |a|!/a!
is a multinomial coefficient, we have the following.

I Fact 2. If a is a tuple of nonegative integers, then a! divides |a|!.

Another fact we need concerns the complexity of multiplying two multivariate polynomials
that are sparse in the sense that their total degree is given an upper bound, while the degrees
of the individual variables may be large (not larger than the total degree, of course). We
assume that a polynomial is represented by a list of its coefficients. The following result can
be obtained by a straightforward specialization of a more general and detailed bound due to
van der Hoeven and Lecerf [31, Cor. 4].

I Fact 3. Two k-variate polynomials with Õ(n)-bit integer coefficients and total degree at
most n can be multiplied with Õ

((
n+k
k

)
(n+ k)

)
bit-operations.1

For univariate polynomials the bound is quadratic in n because the coefficients can be large.

2.3 Tree decomposition
I Definition 4 (Tree decomposition). A tree decomposition of a graph G = (V,E) is a pair
(T,B) where T = (I, F ) is a tree and B maps each x ∈ I to a bag Bx ⊆ V such that
1. for each v ∈ V , the set {x ∈ I : v ∈ Bx} induces a nonempty connected subtree of T ,
2. for each uv ∈ E, there exists x ∈ I with u, v ∈ Bx.
The width of the tree decomposition is the size of its largest bag minus one, maxx∈I |Bx| − 1,
and the treewidth of a graph is the minimum width over all its tree decompositions.

For a graph of treewidth t, we can find a tree decomposition of width t in time tO(t3)n

using Bodlaender’s algorithm [8] or in time Õ(nt+2) using the approach of Arnborg et al. [4].
A tree decomposition is rooted if the edges of the tree are directed so that there is a

unique node, the root, that has no parent. Clearly, one obtains a rooted tree decomposition
by simply choosing one node as the root and directing the edges accordingly.

I Definition 5 (Nice tree decomposition). A rooted tree decomposition (T,B) of a graph
G = (V,E) is nice if each node x of T is of one of the following types:
(leaf) x has no children and |Bx| = 1;
(introduce) x has a unique child y and Bx = By ∪ {v} for some v ∈ V \By;
(forget) x has a unique child y and Bx = By \ {v} for some v ∈ By;
(join) x has exactly two children y, z and Bx = By = Bz.

We can convert a given tree decomposition of width t and O(n) nodes into a nice tree
decomposition of width t and O(tn) nodes in time tO(1)n [10].

1 In fact, this result assumes we have access to a Ω̃(n)-bit prime p and to a primitive element (i.e.,
generator) of F∗

p, a multiplicative field of order p. Finding such numbers seem hard, theoretically: no
deterministic polynomial time algorithm is known for the former, and no polynomial time algorithm is
known for the latter. The result thus concerns the non-uniform model of computational complexity.
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2.4 Counting linear extensions via inclusion–exclusion
Kangas et al. [17] showed that the number of linear extensions of a poset (V,≺) whose cover
graph is G = (V,E) is given by the formula

n∑
k=1

(
n

k

)
(−1)n−k

∑
τ

∏
uv∈E

[τ(u) < τ(v)] ,

where τ runs over all functions from V to [k].
Supposing G has treewidth t, it is well known that there is an elimination ordering

v1, . . . , vn of the vertices, such that when removing the vertices from the graph in this order
and always connecting the neighbors of the removed vertex, the size of the largest clique in
the obtained graphs is t+ 1. The n-dimensional inner summation over the variables τ(vi),
for i ∈ [n], can be processed iteratively along such an ordering, the ith one-dimensional
summation over τ(vi) requiring O(nikt+1) additions and multiplications of O(n logn)-bit
numbers, for some n1, . . . , nn that sum up to O(n). In total, the evaluation of the inclusion–
exclusion formula thus requires Õ(nt+4) bit-operations. We omit a more detailed treatment
of the algorithm, as the method applied for computing the inner summation is standard.
(The original analysis of Kangas et al. [17] use a looser bound of ni = O(n) for each i, arriving
at a bound that is larger by a factor of n.)

3 The algorithm – proof of Theorem 1

We implement a standard recipe of designing a tree-decomposition based algorithm. The
outline of the algorithm is as follows.

A1 Compute the cover graph of the input poset.
A2 Find a minimum-width nice tree decomposition of the cover graph.
A3 Run dynamic programming over the nice tree decomposition.

We will next consider each step in detail. We will see that the last step dominates our
asymptotic running time bounds.

3.1 Computing the cover graph
The cover graph G = (V,E) is obtained by computing the transitive reduction of the input
poset (V,≺). The transitive reduction can be computed in time O(|V | · |≺ |) [3], which is
O(nt+2) for all t ≥ 1.

3.2 Finding a minimum-width nice tree decomposition
As mentioned in Section 2, if the cover graph has treewidth t, then a width-t nice tree
decomposition of the cover graph can be found in Õ(nt+2) time.

3.3 Dynamic programming
Suppose now that a width-t nice tree decomposition (T,B) of the cover graph G is available.
Our idea will be to associate each node of T with an array of numbers such that (i) the
numbers at the root node are sufficient for computing the number of linear extensions and
(ii) the array of a node can be computed from the arrays of its child nodes.
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The following notation will be useful. Denote by Vx the set of vertices covered by the
subtree of T rooted at x, that is, Vx is the union of the bags By of nodes y to which there is
a directed path from x. Write nx for the size |Vx| and Ex for set of edges in the induced
graph G[Vx].

Now, for each node x ∈ T and injection α ∈ [nx]Bx , define `x(α) as the number of
bijections π ∈ [nx]Vx such that π(v) = α(v) for all v ∈ Bx, and π(u) < π(v) whenever
uv ∈ Ex. In other words, `x(α) is the number of ways to extend α to a linear extension of
the induced poset (Vx,≺ ∩(Vx × Vx)), where we view a linear extension as a bijection from
Vx to [nx] that satisfies the ordering constraints.

We begin by showing that the values `x(α) are sufficient for computing the number of
linear extensions of the poset, that is, they satisfy the listed conditions (i) and (ii). After
that we consider the time requirement of computing the values `x(α) for each node of the
nice tree decomposition.

Consider first the root node.

I Lemma 6 (Root). We have `(V ) =
∑
α `r(α), where α runs over all injections in [nx]Br .

Proof. Since Vr = V , Er = E, and nr = n, we have that∑
α

`r(α) =
∑
π

∏
uv ∈E

[π(u) < π(v)] = `(V ) ,

where α and π run over all injections in [n]Br and [n]V , respectively. J

Next we will show separately for each node type of the nice tree decomposition, how the
values `x(α) are determined by the corresponding values for the child node or child nodes of
x. For all but join nodes the results are immediate, and we omit the proofs.

I Lemma 7 (Leaf). If x is a leaf node, then `x(α) = 1 for the unique injection α in [nx]Bx .

For an introduce node, we simply restrict the injection α to the bag in question and check
that the ordering constraint holds.

I Lemma 8 (Introduce). If x is an introduce node with child y, then

`x(α) = `y(α|By
)

∏
u,v ∈Bx:uv ∈E

[α(u) < α(v)] .

For a forget node, we extend the injection α to the larger bag by mapping the new vertex to
some value.

I Lemma 9 (Forget). If x is a forget node with child y and Bx = By \ {v}, then

`x(α) =
ny∑
a=1

`y(αv 7→a) .

To handle a join node, we introduce some convenient notation. Let α be an injection
from a k-element set S to a range of integers [m]. Label the elements of S such that
α(v1) < · · · < α(vk). For i = 1, . . . , k − 1, denote by αi the number of integers between
α(vi) and α(vi+1), that is, αi := α(vi+1) − α(vi) − 1; in addition, denote α0 := α(v1) − 1
and αk := m − α(vk). Observe that α0 + · · · + αk = m − k. Furthemore, if β is another
injection from S′ to [m′], write β ∼ α if β and α specify the same linear order on S ∩ S′,
that is, β(u) < β(v) if and only if α(u) < α(v) for all u, v ∈ S ∩ S′.
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I Lemma 10 (Join). If x is a join node with children y and z, then

`x(α) =
∑
β

∑
γ

[α ∼ β ∼ γ]
|Bx|∏
i=0

[αi = βi + γi]
(
αi
βi

)
`y(β) `z(γ) ,

where β and γ run over all injections in [ny]By and [nz]Bz , respectively.

Proof. By definition,

`x(α) =
∑
π

∏
uv∈Ex

[π(u) < π(v)] ,

where π runs over all bijections from Vx to [nx] that extend α. Observe that by the tree
decomposition properties, the sets Vy \Bx and Vz \Bx are disjoint and their union is Vx \Bx.
Thus we may represent any bijection π : Vx → [nx] that extends α uniquely by a pair of
injections β′ : Vy → [nx] and γ′ : Vz → [nx] whose restrictions to Bx are equal to α and
whose images β′(Vy) and γ′(Vz) cover [nx].

`x(α) =
∑
β′

∑
γ′

[
β′(Vy) ∪ γ′(Vz) = [nx]

] ∏
uv∈Ey

[
β′(u) < β′(v)

] ∏
uv∈Ez

[
γ′(u) < γ′(v)

]
,

where β′ and γ′ run over all injections that extend α in [nx]Vy and [nx]Vz , respectively.
Consider then a mapping that “compresses” any such injection β′ into a bijection β′′ :

Vy → [ny] by letting β′′(v) := |{u ∈ Vy : β′(u) ≤ β′(v)}|; let γ′′ denote the bijection obtained
similarly from an injection γ′. Let β denote the restriction of β′′ to Bx and γ the restriction
of γ′′ to Bx. We have that β′ and γ′ extend α if and only if β ∼ α and γ ∼ α. Thus we get
that

`x(α) =
∑

β′′:β∼α

∑
γ′′:γ∼α

|Bx|∏
i=0

[αi = βi+γi]
(
αi
βi

) ∏
uv∈Ey

[
β′′(u) < β′′(v)

] ∏
uv∈Ez

[
γ′′(u) < γ′′(v)

]
,

where β′′ and γ′′ run over all bijections in [ny]By and [nz]Bz , respectively. The product of the
binomial coefficients

(
αi

βi

)
is the number of pairs (β′, γ′) that map to the same pair (β′′, γ′′),

that is, the number of interleavings of the βi + γi elements to the range of αi elements.
To complete the proof, it suffices to write the summation over β′′ as a double-summation:

the outer summation being over all injections β : By → [ny] and the inner summation being
over all bijections β′′ : Vy → [ny] that extend β; similarly for the summation over γ′′. J

I Example 11 (Join in a tree). Consider the example illustrated in Figure 1. The cover
graph is a tree with vertex set V = {a, b, c, d, e, f, g}. In a nice tree decomposition (not
shown) the root node x is a join of nodes y and z, with By = Bz = Bx = {c, f}. The vertex
sets associated with the nodes are Vx = V , Vy = {a, c, d, e, f}, and Vz = {b, c, f, g}. For the
shown injection α, the value of `x(α) is obtained by a sum of `y(β) · `z(γ) over valid pairs
(β, γ), multiplied by the number of possible interleavings, which is given by a product of
binomial coefficient. Shown is one pair (β, γ), for which `y(β) = 1 and `z(γ) = 1 and the
number of interleavings is equal to

(2
1
)(2

2
)(1

0
)

= 4.

It remains to bound the running time of the algorithm.

I Lemma 12 (Time complexity). Given a width-t nice tree decomposition of the cover graph
of an n-element poset, the linear extensions can be counted in Õ(nt+3) bit-operations.

IPEC 2018



5:8 A Faster Tree-Decomposition Based Algorithm for Counting Linear Extensions

a

c

e

d

f b

g

Injection 1 2 3 4 5 6 7
α a b c d e f g

β a c d e f

γ b c f g

Figure 1 An illustration of the recurrence for a join node; see Example 11 for a description.

Proof. Let x be a node in the nice tree decomposition. For brevity, denote k := |Bx|. If x is
a leaf node, introduce node, or forget node, then the values `x(α) for all injections α ∈ [nx]Bx

can clearly be computed using O(knk) = O(tnt+1) basic operations, some of which are
additions of two O(n logn)-bit numbers, thus using Õ(nt+2) bit-operations (observe that the
factor t is O(lognt+2) and can thus be omitted).

Consider then the remaining case: x is a join node. Let y and z be the two children of x.
Recall that Bx = By = Bz.

Represent an injection α in [nx]Bx as a pair (σ, a), where a = (ai)k+1
i=1 with ai = αi−1 and

σ is a bijection from Bx to [k] that captures the specified linear order, that is, σ(u) < σ(v) if
α(u) < α(v). Clearly, the mapping α 7→ (σ, a) is a bijection when we require that ai ∈ N
and |a| = nx − k. Using this representation and Lemma 10, write

`x(σ, a) =
∑
b

∑
c

k∏
i=0

[ai = bi + ci]
(
ai
bi

)
`y(σ, b) `z(σ, c) ,

where b and c run over Nk+1. By writing `′x(σ, a) := `x(σ, a)/a!, we get the convolution form

`′x(σ, a) =
∑
a=b+c

`′y(σ, b) `′z(σ, c) .

To treat this as a multiplication of multivariate polynomials, consider a fixed bijection σ
and let Px(r1, . . . , rk) be the k-variate polynomial where the coefficient of ra1

1 · · · r
ak

k equals
n! · `′x(σ, a); we define Py and Pz similarly. Note that k variables suffice, since ak+1 is
determined by the fixed |a|. Here we multiplied by the factorial n! to get integer coefficients
(by Fact 2, since n ≥ |a|, |b|, |c|). We have that n! · Px = PyPz, that is, we obtain Px by
multiplying Py and Pz and dividing each coefficient of the resulting polynomial by n!.

We bound the bit-complexity of the polynomial multiplication using Fact 3. The total
degrees of the polynomials are at most n−k. Each coefficient of the polynomials is a Õ(n)-bit
integer. Thus the multiplication takes Õ(

(
n
k

)
n) bit-operations.

Multiplying the obtained bound by the number of bijections σ, we get that all `x(σ, a)
can be computed using Õ(nk+1) = Õ(nt+2) bit-operations.

Because there are O(tn) nodes in the nice tree decomposition, Õ(nt+3) bit-operations
suffice in total. J

4 Experiments

This section is devoted to empirical results. We first describe our implementation of the
algorithm and the test instances used in the experiments. Then we show how the performance
on the algorithm depends on the way we choose the tree decomposition.
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4.1 Implementation
We have implemented the algorithm described in Section 3 in a C++ program Countle.2 For
multiplication of polynomials we used a C library FLINT [16]. For finding an optimal tree
decomposition we used the C++ library htd [1]. We ran all experiments on machines with
Intel Xeon E5540 CPUs; the same machines were used by Kangas et al. [17], which makes
their running time measurements directly comparable to the present results.

Two implementation details are worth mentioning. First, for multiplication of multivariate
polynomials, we transformed the polynomials into univariate polynomials using an appropriate
Kronecker substitution. Specifically, separately for each node x of the tree decomposition and
the considered vertex ordering (bijection) σ, we encode a k-variate polynomial in variables
r1, . . . , rk as a univariate polynomial in variable s by substituting rj := s(d1+1)···(dj−1+1),
where each di is an upper bound for the degree of ri in the polynomial. Using knowledge
associated with the node x and ordering σ, we aim at finding a value di that is smaller than
the trivial upper bound nx − k. To this end, we set di to the sum of the largest realized
exponents of ri in the already computed polynomials for the two child nodes of x.

Second, we wish to ignore any impossible ordering σ at a node x of the tree decomposition,
and so save both time and space. The key observation is that, even if the value `x(σ, a) is
nonzero, we can ignore it if σ assigns some two vertices in the bag Bx an order that violates
the partial order ≺, that is, for some u, v ∈ Bx we have u ≺ v and σ(u) > σ(v).

4.2 Instances
We generated random instances (posets) of different sizes for small values of treewidth t. We
varied the number of elements n from 10 to 199 (t = 2), 109 (t = 3), and 59 (t = 4). For each
pair (t, n) we generated 5 posets; following Kangas et al. [17], we let each poset be a “grid
tree,” constructed by randomly joining t-by-t grids along the (boundary) edges, orienting the
edges so that no directed cycles are introduced, and finally taking the transitive closure.

4.3 Results
Because the running time of Countle may be sensitive to the particular (nice) tree decom-
position selected, we ran the program on 50 optimal-width tree decompositions, which we
generated using htd; we checked that for every encountered instance, htd indeed generated
tree decompositions of optimal width. We allowed each individual run to take up to 20
minutes of CPU time and 30 GB of memory.

First we considered the scaling of Countle in terms of the number of elements n and
treewidth t. We observed that, while the growth of the running time follows the rate suggested
by the worst case bound, there is significant variance in the running times for any fixed (n, t),
due to differences in the five posets and the 50 tree decompositions per poset (compare median
to best in Figure 2). Compared to an implementation of the inclusion–exclusion algorithm by
Kangas et al. [17], VEIE, we find that Countle is an order of magnitude faster. For example,
Countle can solve a typical (median) poset with a typical (median) tree decomposition in
about 20 seconds if n = 100 and t = 2, or if n = 50 and t = 3, while VEIE requires about
200 seconds on such instances [17, Fig. 8] (not reproduced here). We have observed that
the same pattern also holds for t = 4; we omit the detailed results here, as such posets are
handled faster by another, exponential time algorithm of Kangas et al. [17, Fig. 8].

2 Countle is free and publicly available at https://bitbucket.org/samsalo/countledist/.
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Figure 2 The running time of Countle (in seconds) on random “grid tree” posets of treewidth 2
and 3, with a varying number of elements n. For each poset, we generated 50 optimal-width tree
decompositions and collected the median running time and the running times for the selected and
the best tree decomposition. Shown are the medians of these three statistics over five independent
posets for each value of n.

Then we investigated whether one can efficiently select a near-optimal tree decomposition
from a collection of generated candidates. The observed variance in running times suggests
that, if successful, this could lead to a significant expedition of Countle, by up to one order
of magnitude. To constuct a “selector” we applied the method of Abseher et al. [2] in a
straightforward manner:
C1 We collected a data set of measured running times for multiple pairs of posets and tree

decompositions. We used the procedure described in the previous section, except that we
used a single poset (instead of five) for each combination of n and t. If a run was not
completed within the 20-minute time limit, we simply discarded the instance (and thus
introduced some bias).

C2 We computed for each tree decomposition the values of several features, such as statistics
of bag sizes (by node type), node depths (by node type), and distances between join
nodes; for a full feature list, see Abseher et al. [2].

C3 We fitted a multivariate linear regression model, separately for each t = 2, 3, 4, with the
features as the predictor variables and the logarithm of the running time as the response
variable. We used the machine learning software WEKA 3.6.13 [15] with default options.

To select a tree decomposition for a given new poset, we first generated 50 candidate tree
decompositions for the poset, and then selected the one for which the model predicted the
shortest running time.

We observed (Figure 2) that, for t = 2, the model is almost always able to select a top-3
tree decomposition, which yields a nearly as good (i.e., short) running time as the best among
the 50 tree decompositions. For t = 3 the performance degrades: the model is usually able to
select a top-10 tree decomposition, which yields a running time that is systematically better
than for a typical (median) tree decomposition, yet not quite achieving the performance
of the best among the generated candidates. For t = 4 the performance degrades further,
yet being better than by selecting a random tree decomposition (results not shown). In
more quantitative terms, the proportions of tree decompositions (among 50) better than the
selected one were 2.5 %, 12 %, 28 % for t = 2, 3, 4, respectively; these numbers are medians
of averages over 5 test posets (one per fixed n and t).



K. Kangas, M. Koivisto, and S. Salonen 5:11

5 Concluding remarks

We have presented a new tree-decomposition based algorithm for counting linear extensions.
The algorithm relies on fast multiplication of multivariate polynomials, thus differing radically
from the inclusion–exclusion approach of Kangas et al. [17]. For any constant treewidth t
the obtained asymptotic speedup is about linear in the number of elements n.

A question not settled here is whether one could save another factor of n, that is, solve
the problem in time Õ(nt+2). The present authors find this question particularly intriguing
for two reasons: One is that for finding an optimal-width tree decomposition, the best known
time complexity bound is Õ(nt+2), assuming we let t grow at least logarithmically in n. The
other reason is that for posets whose cover graph is a tree (t = 1), Atkinson’s [5] algorithm
takes – at least seemingly – a different approach and runs in time Õ(n3). Furthermore,
Atkinson’s algorithm is monotonic in the sense that all arithmetic operations are carried out
with nonnegative numbers. This is in sharp contrast to both the present algorithm and the
inclusion–exclusion algorithm, which crucially rely on a richer algebraic structure.

Our preliminary empirical study confirmed that the improvement in the asymptotic
bound consistently transfers to the running times measured in practice. That said, the
observed speedup, for n around one hundred, was by one order of magnitude rather than two.
This “leak” of efficiency can, at least in part, be explained by the present algorithm’s higher
sensitivity to the shape of the selected tree decomposition. Indeed, we observed that the
best of 50 generated tree decompositions typically yields a 5- to 10-fold speedup in relation
to a median tree decomposition. We also showed that there is an efficient way to select the
best or close-to-best tree decomposition using a linear regression model that was fitted to a
collected data set of instances along with the measured running times, following the method
of Abseher et al. [2].

However, we observed that the performance of the regression method rapidly degraded as
the treewidth t increases. This suggests that the general-purpose method may not suit well
for the problem of counting linear extensions. A potential reason for suboptimal performance
is that the default set of features [2] does not include perhaps the most informative quantity
associated with a node x in a tree decomposition, namely the term nkx (or some variant of it),
which combines the size k of the bag of x with the number of vertices in the subtree rooted
at x. This issue could be addressed by extending the feature set accordingly, or, potentially,
by using some nonlinear regression model. On the other hand, we did inspect how well a
single feature can predict a well-performing tree decomposition. We observed that for t = 2
and t = 3 the average depth of join nodes alone yielded predictions that were almost as good
as the predictions by the full regression model that used all the features. Nevertheless, these
observations also encourage looking for a simpler solution: manually constructing a heuristic
function that approximates the actual running time by adding up estimated contributions of
each tree decomposition node. Note that here the f -cost framework [9] is insufficient, as in
that framework the contribution of each node can only depend on the size of the bag.
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6:2 Generalized Distance Domination Problems on mim-width

solutions are vertex sets with constraints on how many neighbours each vertex of the graph
has in the set. The framework generalizes important and well-studied problems such as
Maximum Independent Set and Minimum Dominating Set, as well as Perfect Code,
Minimum subgraph with minimum degree d and a multitude of other problems. See Table
1. Bui-Xuan, Telle and Vatshelle [6] showed that (σ, ρ)-domination and locally checkable
vertex partitioning problems can be solved in time XP parameterized by mim-width, if we
are given a corresponding decomposition tree. Roughly speaking, the structural parameter
mim-width measures how easy it is to decompose a graph along vertex cuts inducing a
bipartite graph with small maximum induced matching size [20].

In this paper, we consider distance versions of problems related to independence and
domination, like Distance-r Independent Set and Distance-r Dominating Set. The
Distance-r Independent Set problem, also studied under the names r-Scattered Set
and r-Dispersion (see e.g. [2] and the references therein), asks to find a set of at least k
vertices whose vertices have pairwise distance strictly longer than r. Agnarsson et al. [1]
pointed out that it is identical to the original Independent Set problem on the r-th power
graph Gr of the input graph G, and also showed that for fixed r, it can be solved in linear time
for interval graphs, and circular arc graphs. The Distance-r Dominating Set problem
was introduced by Slater [18] and Henning et al. [11]. They also discussed that it is identical
to solve the original Dominating Set problem on the r-th power graph. Slater presented a
linear-time algorithm to solve Distance-r Dominating Set problem on forests.

We generalize all of the (σ, ρ)-domination and LCVP problems to their distance versions,
which naturally captures Distance-r Independent Set and Distance-r Dominating
Set. Where the original problems put constraints on the size of the immediate neighborhood
of a vertex, we consider the constraints to be applied to the ball of radius r around it.
Consider for instance the Minimum Subgraph with Minimum Degree d problem; where
the original problem is asking for the smallest (number of vertices) subgraph of minimum
degree d, we are instead looking for the smallest subgraph such that for each vertex there
are at least d vertices at distance at least 1 and at most r. In the Perfect Code problem,
the target is to choose a subset of vertices such that each vertex has exactly one chosen
vertex in its closed neighbourhood. In the distance-r version of the problem, we replace the
closed neighbourhood by the closed r-neighbourhood. This problem is known as Perfect
r-Code, and was introduced by Biggs [4] in 1973. Similarily, for every problem in Table 1
its distance-r generalization either introduces a new problem or is already well-known.

We show that all these distance problems are XP parameterized by mim-width if a
decomposition tree is given. The main result of the paper is of structural nature, namely that
for any positive integer r the mim-width of a graph power Gr is at most twice the mim-width
of G. It follows that we can reduce the distance-r version of a (σ, ρ)-domination problem to
its non-distance variant by taking the graph power Gr, whilst preserving small mim-width.

The downside to showing results using the parameter mim-width, is that we do not know
an XP algorithm computing mim-width. Computing a decomposition tree with optimal
mim-width is NP-complete in general and W[1]-hard parameterized by itself. Determining
the optimal mim-width is not in APX unless NP = ZPP, making it unlikely to have a
polynomial-time constant-factor approximation algorithm [17], but saying nothing about an
XP algorithm. However, for several graph classes we are able to find a decomposition tree
of constant mim-width in polynomial time, using the results of Belmonte and Vatshelle [3].
These include; permutation graphs, convex graphs and their complements, interval graphs
and their complements (all of which have linear mim-width 1); (circular k-) trapezoid graphs,
circular permutation graphs, Dilworth-k graphs, k-polygon graphs, circular arc graphs and
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complements of d-degenerate graphs. Fomin, Golovach and Raymond [10] show that we can
find linear decomposition trees of constant mim-width for the very general class of H-graphs,
see Definition 10, in polynomial time, given2 an H-representation of the input graph. For
all of the above graph classes, our results imply that the distance-r (σ, ρ)-domination and
LCVP problems become polynomial time solvable.

Graphs represented by intersections of objects in some model are often closed under
taking powers. For instance, interval graphs, and generally d-trapezoid graphs [9, 1], circular
arc graphs [16, 1], and leaf power graphs (by definition) are such graphs. We refer to [5,
Chapter 10.6] for a survey of such results. For these classes, we already know that the
distance-r version of a (σ, ρ)-domination problem can be solved in polynomial time. However,
this closure property does not always hold; for instance, permutation graphs are not closed
under taking powers. Our result provides that to obtain such algorithmic results, we do not
need to know that these classes are closed under taking powers; it is sufficient to know that
classes have bounded mim-width. To the best of our knowledge, for the most well-studied
distance-r (σ, ρ)-domination problem, Distance-r Dominating Set, we obtain the first
polynomial time algorithms on Dilworth k-graphs, convex graphs and their complements,
complements of interval graphs, k-polygon graphs, H-graphs (given an H-representation of
the input graph), and complements of d-degenerate graphs.

The natural question to ask after obtaining an XP algorithm, is whether we can do
better, e. g. can we show that for all fixed r, the distance-r (σ, ρ)-domination problems are
in FPT? Fomin et al. [10] answered this in the negative by showing that (the standard,
i.e. distance-1 variants of) Maximum Independent Set, Minimum Dominating Set
and Minimum Independent Dominating Set problems are W[1]-hard parameterized by
(linear) mim-width + solution size. We modify their reductions to extend these results
to several families of (σ, ρ)-domination problems, including the maximization variants of
Induced Matching, Induced d-Regular Subgraph and Induced Subgraph of Max
Degree ≤ d, the minimization variants of Total Dominating Set and d-Dominating
Set and both the maximization and the minimization variant of Dominating Induced
Matching.

The remainder of the paper is organized as follows. In Section 2 we introduce the (σ, ρ)
problems and define their distance-r generalization. In Section 3 we introduce mim-width,
and state previously known results. In Section 4 we show that the mim-width of a graph grows
by at most a factor 2 when taking (arbitrary large) powers and give algorithmic consequences.
We discuss LCVP problems, their distance-r versions and algorithmic consequences regarding
them in Section 5 and in Section 6 we present the above mentioned lower bounds. Finally,
we give some concluding remarks in Section 7. Proofs of statements marked with ‘F’ are
deferred to the full version [12].

2 Distance-r (σ, ρ)-Domination Problems

Let σ and ρ be finite or co-finite subsets of the natural numbers σ, ρ ⊆ N. Furthermore, for a
graph G, one of its vertices v ∈ V (G), and a positive integer r, let Nr(v) denote the ball of
radius r around v, i. e. Nr(v) ..= {w ∈ V (G) \ {v} | distG(v, w) ≤ r}. A vertex set S ⊆ V (G)
is called a distance-r (σ, ρ)-dominating set, if

for each vertex v ∈ S it holds that |Nr(v) ∩ S| ∈ σ, and

2 We would like to remark that it is NP-complete to decide whether a graph is an H-graph whenever H
is not a cactus [7].
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6:4 Generalized Distance Domination Problems on mim-width

Table 1 Some vertex subset properties expressible as (σ, ρ) sets, with N = {0, 1, ...} and N+ =
{1, 2, ...}. Column d shows d = max(d(σ), d(ρ)). For each problem, at least one of the minimization,
the maximization and the existence problem is NP-complete. For problems marked with ? (resp., ??),
W[1]-hardness of the maximization (resp., minimization) problem parameterized by mim-width +
solution size is shown in the present paper. For problems marked with ∗ (resp., ∗∗) the W[1]-hardness
of maximization (resp., minimization) in the same parameterization was shown by Fomin et al. [10].

σ ρ d Standard name

{0} N 1 Independent set ∗
N N+ 1 Dominating set ∗∗
{0} N+ 1 Maximal Independent set ∗∗
N+ N+ 1 Total Dominating set ??
{0} {0, 1} 2 Strong Stable set or 2-Packing
{0} {1} 2 Perfect Code or Efficient Dom. set
{0, 1} {0, 1} 2 Total Nearly Perfect set
{0, 1} {1} 2 Weakly Perfect Dominating set
{1} {1} 2 Total Perfect Dominating set
{1} N 2 Induced Matching ?
{1} N+ 2 Dominating Induced Matching ?, ??
N {1} 2 Perfect Dominating set
N {d,d+ 1,...} d d-Dominating set ??
{d} N d+ 1 Induced d-Regular Subgraph ?
{d,d+ 1,...} N d Subgraph of Min Degree ≥ d
{0, 1,..., d} N d+ 1 Induced Subg. of Max Degree ≤ d ?

for each vertex v ∈ V (G) \ S it holds that |Nr(v) ∩ S| ∈ ρ.

For the special case of r = 1, we call a distance-1 (σ, ρ)-dominating set simply a (σ, ρ)-
dominating set or (σ, ρ) set. This recovers many well-studied naturally defined vertex sets of
graphs. For instance, a ({0},N) set is an independent set as there are no edges inside of the
set, and we do not care about adjacencies between S and V (G) \ S; and a (N,N+) set is a
dominating set since each vertex in V (G) \ S has to have at least one neighbor in S.

There are three types of distance-r (σ, ρ)-domination problems: minimization, maximiza-
tion, and existence. For r = 1, we denote the problem of finding a minimum (maximum)
(σ, ρ) set as the Min-(σ, ρ) (Max-(σ, ρ)) problem, see Table 1 for examples.

The d-value of a distance-r (σ, ρ) problem is a constant which will ultimately affect the
runtime of the algorithm. For a set µ ⊆ N, the value d(µ) should be understood as the
highest value in N we need to enumerate in order to describe µ. Hence, if µ is finite, it is
simply the maximum value in µ, and if µ is co-finite, it is the maximum natural number not
in µ (1 is added for technical reasons).

I Definition 1 (d-value). Let d(N) = 0. For every non-empty finite or co-finite set µ ⊆ N,
let d(µ) = 1 + min(max{x | x ∈ µ},max{x | x ∈ N \ µ}).

For a given distance-r (σ, ρ) problem Πσ,ρ, its d-value is defined as d(Πσ,ρ) ..= max{d(σ), d(ρ)},
see column d in Table 1.

3 Mim-width and Applications

Maximum induced matching width, or mim-width for short, was introduced in the Ph.D.
thesis of Vatshelle [20], used implicitly by Belmonte and Vatshelle [3], and is a structural
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graph parameter described over decomposition trees (sometimes called branch decompositions),
similar to graph parameters such as rank-width and module-width. Decomposition trees
naturally appear in divide and conquer style algorithms where one recursively partitions
the pieces of a problem into two parts. When the algorithm is at the point where it
combines solutions of its subproblems to form a full solution, the structure of the cuts are
(unsurprisingly) important to the runtime; this is especially true of dynamic programming
when one needs to store multiple sub-solutions at each intermediate node. We will briefly
introduce the necessary machinery here, but for a more comprehensive introduction we refer
the reader to [20].

A graph of maximum degree at most 3 is called subcubic. A decomposition tree for a graph
G is a pair (T, δ) where T is a subcubic tree and δ : V (G)→ L(T ) is a bijection between the
vertices of G and the leaves of T . Each edge e ∈ E(T ) naturally splits the leaves of the tree
in two groups depending on their connected component when e is removed. In this way, each
edge e ∈ E(T ) also represent a partition of V (G) into two partition classes Ae and Ae. One
way to measure the cut structure is by the maximum induced matching across a cut of (T, δ).
A set of edges M is called an induced matching if no pair of edges in M shares an endpoint
and if the subgraph induced by the endpoints of M does not contain any additional edges.

I Definition 2 (mim-width). Let G be a graph, and let (T, δ) be a decomposition tree
for G. For each edge e ∈ E(T ) and corresponding partition of the vertices Ae, Ae, we let
cutmimG(Ae, Ae) denote the size of a maximum induced matching of the bipartite graph on
the edges crossing the cut. Let the mim-width of the decomposition tree be

mimwG(T, δ) = max
e∈E(T )

{cutmim(Ae, Ae)}

The mim-width of the graph G, denoted mimw(G), is the minimum value of mimwG(T, δ)
over all possible decompositions trees (T, δ). The linear mim-width of the graph G is the
minimum value of mimwG(T, δ) over all possible decompositions trees (T, δ) where T is a
caterpillar.

In previous work, Bui-Xuan et al. [6] and Belmonte and Vatshelle [3] showed that all (σ, ρ)
problems can be solved in time nO(w) where w denotes the mim-width of a decomposition
tree that is provided as part of the input. More precisely, they show the following.3

I Proposition 3 ([3, 6]). There is an algorithm that given a graph G and a decomposition
tree (T, δ) of G with w ..= mimwG(T, δ) solves each (σ, ρ) problem Π with d ..= d(Π)
(i) in time O(n4+2d·w), if T is a caterpillar, and
(ii) in time O(n4+3d·w), otherwise.

4 Mim-width on Graph Powers

I Definition 4 (Graph power). Let G = (V,E) be a graph. Then the k-th power of G,
denoted Gk, is a graph on the same vertex set where there is an edge between two vertices
if and only if the distance between them is at most k in G. Formally, V (Gk) = V (G) and
E(Gk) = {uv | distG(u, v) ≤ k}.

3 We would like to remark that the original results in [6] are stated in terms of the number of d-
neighborhood equivalence classes across the cuts in the decomposition tree (necd(T, δ)) giving a runtime
of n4 · necd(T, δ)c (where c = 2 if the given decomposition is a caterpillar and c = 3 otherwise). In [3,
Lemma 2], Belmonte and Vatshelle show that necd(T, δ) ≤ nd·mimwG(T,δ).

IPEC 2018



6:6 Generalized Distance Domination Problems on mim-width

u

v

u′

v′

w

x

w′

x′

A

A

ud

vd

wd

xd

Figure 1 Structure of two paths Puv and Pwx when the edge u′x′ exists in G. Dashed edges
appear in Gk, solid edges appear in G, squiggly lines are (shortest) paths existing in G (possibly of
length 0, and possibly crossing back and forth across the cut).

I Theorem 5. For any graph G and positive integer k, mimw(Gk) ≤ 2 ·mimw(G).

Proof. Assume that there is a decomposition tree of mim-width w for the graph G. We
show that the same decomposition tree has mim-width at most 2w for Gk.

We consider a cut A,A of the decomposition tree. LetM be a maximum induced matching
across the cut for Gk. To prove our claim, it suffices to construct an induced matching across
the cut M ′ in G such that |M ′| ≥ |M |2 .

We begin by noticing that for an edge uv ∈M , the distance between u and v is at most
k in G. For each such edge uv ∈M , we let Puv denote some shortest path between u and v
in G (including the endpoints u and v).

I Claim 5.1. Let uv,wx ∈M be two distinct edges of the matching. Then Puv and Pwx are
vertex disjoint.

Proof. We may assume that u,w ∈ A and v, x ∈ A. Now assume for the sake of contradiction
there exists a vertex y ∈ Puv ∩Pwx. Because both paths have length at most k, we have that
distG(u, y) + distG(y, v) ≤ k, and distG(w, y) + distG(y, x) ≤ k. Adding these together,
we get

distG(u, y) + distG(y, v) + distG(w, y) + distG(y, x) ≤ 2k.

Since uv and wx are both in M , there can not exist edges ux and wv in Gk. Hence, their
distance in G is strictly greater than k, i.e. distG(u, y) + distG(y, x) ≥ distG(u, x) > k,
and distG(w, y) + distG(y, v) > k. Putting these together, we obtian our contradiction:

distG(u, y) + distG(y, x) + distG(w, y) + distG(y, v) > 2k

This concludes the proof of the claim. y

Our next observation is that for each uv ∈M , the path Puv starts (without loss of generality)
in A, and ends in A. There must hence exist at least one point at which the path cross from
A to A. For each uv ∈ M , we can thus safely let u′v′ ∈ E(Puv) denote an edge in G such
that u′ ∈ A and v′ ∈ A.

We plan to construct our matching M ′ by picking a subset of such edges. However, we
can not simply take all of them, since some pairs may be incompatible in the sense that
they will not form an induced matching across the cut A,A. We examine the structures that
arise when two such edges u′v′ and w′x′ are incompatible, and can not both be included in
the same induced matching across the cut. For easier readability, we let αd be a shorthand
notation for distG(α, α′) for α ∈ {u, v, w, x}.
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I Claim 5.2. Let uv,wx ∈M be two distinct edges of M and let u′v′ and w′x′ be edges on
the shortest paths as defined above. If there is an edge u′x′ ∈ E(G), then all of the following
hold. See Figure 1.
(a) ud + xd = k

(b) ud + vd = wd + xd = k − 1
(c) wd = ud − 1

Proof. (a) Since ux is not an edge in Gk, the distance between u and x must be at least
k + 1 in G, and so ud + xd must be at least k. It remains to show that ud + xd ≤ k for
equality to hold. Similarily to the proof of Claim 5.1, we know that Puv and Pwx both are of
length at most k. We get

ud + vd + wd + xd ≤ 2k − 2 (1)

The −2 at the end is because we do not include the length contributed by edges u′v′ and
w′x′ in our sum. Now assume for the sake of contradiction that ud + xd ≥ k + 1. Then we
get that

vd + wd ≤ 2k − 2− k − 1 = k − 3

Because distG(v′, w′) ≤ 3 (follow the edges u′v′ → u′x′ → w′x′), this implies that
distG(v, w) ≤ k, and the edge vw would hence exist in Gk. This contradicts that uv
and wx were both in the same induced matching M .

(b) Assume for the sake of contradiction that ud + vd ≤ k − 2. Then, rather than
Equation 1, we get the following bound

ud + vd + wd + xd ≤ 2k − 3

By (a) we know that ud+xd = k, so by a similar argument as above we get that vd+xd ≤ k−3,
obtaining a contradiction. An anolgous argument holds for wd + xd.

(c) This follows immidiately by substituting (a) into (b). y

We will now construct our induced matching M ′. We construct two candidates for M ′, and
we will pick the biggest one. First, we construct M ′0 by including u′v′ for each edge uv ∈M
where distG(u, u′) is even. Symetrically, M ′1 is constructed by including u′v′ if distG(u, u′)
is odd. Clearly, at least one of M ′0,M ′1 contains ≥ |M |2 egdes. It remains to show that M ′
indeed forms an induced matching across the cut A,A in G.

Consider two distinct edges u′v′ and w′x′ from M ′. By Claim 5.1, the two edges are
vertex disjoint. If there is an edge violating that u′v′ and w′x′ are both in the same induced
matching, it must be either u′x′ or v′w′. Without loss of generality we may assume it is
an edge of the type u′x′. By Claim 5.2 (c), we then have that the parities of distG(u, u′)
and distG(w,w′) are different. But by how M ′ was constructed, this is not possible. This
concludes the proof. J

I Observation 6. For a positive integer r, a graph G and a vertex u ∈ V (G), the r-
neighbourhood of u is equal to the neighbourhood of u in Gr, i.e. Nr

G(u) = NGr (u).

The observation above shows that solving a distance-r (σ, ρ) problem on G is the same as
solving the same standard distance-1 variation of the problem on Gr. Hence, we may reduce
our problem to the standard version by simply computing the graph power. Combining
Theorem 5 with the algorithms provided in Proposition 3, we have the following consequence.

IPEC 2018
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I Corollary 7 (F). There is an algorithm that for all r ∈ N, given a graph G and a
decomposition tree (T, δ) of G with w ..= mimwG(T, δ) solves each distance-r (σ, ρ) problem
Π with d ..= d(Π)
(i) in time O(n4+4d·w), if T is a caterpillar, and
(ii) in time O(n4+6d·w), otherwise.

5 LCVP Problems

A generalization of (σ, ρ) problems are the locally checkable vertex partitioning (LCVP)
problems. A degree constraint matrix D is a q × q matrix where each entry is a finite or
co-finite subset of N. For a graph G and a partition of its vertices V = {V1, V2, . . . Vq}, we
say that it is a D-partition if and only if, for each i, j ∈ [q] and each vertex v ∈ Vi, it holds
that |N(v) ∩ Vj | ∈ D[i, j]. Empty partition classes are allowed.

For instance, if a graph can be partitioned according to the 3× 3 matrix whose diagonal
entries are {0} and the non-diagonal ones are N, then the graph is 3-colorable. Typically, the
natural algorithmic questions associated with LCVP properties are existential.4 Interesting
problems which can be phrased in such terms include the H-Covering and Graph H-
Homomorphism problems where H is fixed, as well as q-coloring, Perfect Matching
Cut and more. We refer to [19] for an overview.

We generalize LCVP properties to their distance-r version, by considering the ball of
radius r around each vertex rather than just the immediate neighbourhood.

I Definition 8 (Distance-r neighbourhood constraint matrix). A distance-r neighbourhood
constraint matrix D is a q × q matrix where each entry is a finite or co-finite subset of
N. For a graph G and a partition of its vertices V = {V1, V2, . . . Vq}, we say that it is a
D-distance-r-partition if and only if, for each i, j ∈ [q] and each vertex v ∈ Vi, it holds that
|Nr(v) ∩ Vj | ∈ D[i, j]. Empty partition classes are allowed.

We say that an algorithmic problem is a distance-r LCVP problem if the property in
question can be described by a distance-r neighbourhood constraint matrix. For example,
the distance-r version of a problem such as q-coloring can be interpreted as an assignment
of at most q colours to vertices of a graph such that no two vertices are assigned the same
colour if they are at distance r or closer.

For a given distance-r LCVP problem Π, its d-value d(Π) is the maximum d-value over
all the sets in the corresponding neighbourhood constraint matrix.

As in the case of (σ, ρ) problems, combining Theorem 5 with Observation 6 and the
works [3, 6] we have the following result.

I Corollary 9. There is an algorithm that for all r ∈ N, given a graph G and a decomposition
tree (T, δ) of G with w ..= mimwG(T, δ) solves each distance-r LCVP problem Π with
d ..= d(Π)
(i) in time O(n4+4qd·w), if T is a caterpillar, and
(ii) in time O(n4+6qd·w), otherwise.

4 Note however that each (σ, ρ) problem can be stated as an LCVP problem via the matrix D(σ,ρ) =[
σ N
ρ N

]
, so maximization or minimization of some block of the partition can be natural as well.



L. Jaffke, O. Kwon, T. J. F. Strømme, and J. A. Telle 6:9

6 Lower Bounds

We show that several (σ, ρ)-problems are W[1]-hard parameterized by linear mim-width plus
solution size. Our reductions are based on two recent reductions due to Fomin, Golovach and
Raymond [10] who showed that Independent Set and Dominating Set are W[1]-hard
parameterized by linear mim-width plus solution size. In fact they show hardness for the
above mentioned problems on H-graphs (the parameter being the number of edges in H plus
solution size) which we now define formally.

I Definition 10 (H-Graph). Let X be a set and S a family of subsets of X. The intersection
graph of S is a graph with vertex set S such that S, T ∈ S are adjacent if and only if S∩T 6= ∅.
Let H be a (multi-) graph. We say that G is an H-graph if there is a subdivision H ′ of
H and a family of subsetsM ..= {Mv}v∈V (G) (called an H-representation) of V (H ′) where
H ′[Mv] is connected for all v ∈ V (G), such that G is isomorphic to the intersection graph of
M.

All of the hardness results presented in this section are obtained via reductions to the
respective problems on H-graphs, and the hardness for linear mim-width follows from the
following proposition.

I Proposition 11 (Theorem 2 in [10]). Let G be an H-graph. Then, G has linear mim-width
at most 2 · ||H|| and a corresponding decomposition tree can be computed in polynomial time
given an H-representation of G.

The first lower bound concerns several maximization problems that can be expressed
in the (σ, ρ) framework. Recall that the Independent Set problem can be formulated
as Max-({0},N). The following result states that a class of problems that generalize the
Independent Set problem where each vertex in the solution is allowed to have at most
some fixed number of d neighbors of the solution, and several variants thereof, is W[1]-hard
on H-graphs parameterized by ||H|| plus solution size.

I Theorem 12. For any fixed d ∈ N and x ≤ d+ 1, the following holds. Let σ∗ ⊆ N≤d with
d ∈ σ∗. Then, Max-(σ∗,N≥x) Domination is W[1]-hard on H-graphs parameterized by the
number of edges in H plus solution size, and the hardness holds even if an H-representation
of the input graph is given.

Proof. To prove the theorem, we provide a reduction from Multicolored Clique where
given a graph G and a partition V1, . . . , Vk of V (G), the question is whether G contains a
clique of size k using precisely one vertex from each Vi (i ∈ [k]). This problem is known to
be W[1]-complete [8, 14].

Let (G,V1, . . . , Vk) be an instance of Multicolored Clique. We can assume that k ≥ 2
and that |Vi| = p for i ∈ [k]. If the second assumption does not hold, let p ..= maxi∈[k] |Vi|
and add p− |Vi| isolated vertices to Vi, for each i ∈ [k]. (Note that adding isolated vertices
does not change the answer to the problem.) For i ∈ [k], we denote by vi1, . . . , vip the vertices
of Vi. We first describe the reduction of Fomin et al. [10] and then explain how to modify it
to prove the theorem.

The Construction of Fomin, Golovach and Raymond [10]. The graph H is obtained as
follows.
1. Construct k nodes u1, . . . , uk.
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2. For every 1 ≤ i < j ≤ k, construct a node wi,j and two pairs of parallel edges uiwi,j and
ujwi,j .

We then construct the subdivision H ′ of H by first subdividing each edge p times. We denote
the subdivision nodes for 4 edges of H constructed for each pair 1 ≤ i < j ≤ k in Step 2 by
x

(i,j)
1 , . . . , x

(i,j)
p , y(i,j)

1 , . . . , y
(i,j)
p , x(j,i)

1 , . . . , x
(j,i)
p , and y(j,i)

1 , . . . , y
(j,i)
p . To simplify notation,

we assume that ui = x
(i,j)
0 = y

(i,j)
0 , uj = x

(j,i)
0 = y

(j,i)
0 and wi,j = x

(i,j)
p+1 = y

(i,j)
p+1 = x

(j,i)
p+1 =

y
(j,i)
p+1 .

We now construct the H-graph G′′ by defining its H-representationM = {Mv}v∈V (G′′)
where each Mv is a connected subset of V (H ′). (Recall that G denotes the graph of the
Multicolored Clique instance.)
1. For each i ∈ [k] and s ∈ [p], construct a vertex zis with model

Mzi
s

..=
⋃

j∈[k],j 6=i

({
x

(i,j)
0 , . . . , x

(i,j)
s−1

}
∪
{
y

(i,j)
0 , . . . , y

(i,j)
p−s

})
.

2. For each edge visv
j
t ∈ E(G) for s, t ∈ [p] and 1 ≤ i < j ≤ k, construct a vertex r(i,j)

s,t with:

M
r

(i,j)
s,t

..=
{
x(i,j)
s , . . . , x

(i,j)
p+1

}
∪
{
y

(i,j)
p−s+1, . . . , y

(i,j)
p+1

}
∪
{
x

(j,i)
t , . . . , x

(j,i)
p+1

}
∪
{
y

(j,i)
p−t+1, . . . , y

(j,i)
p+1

}
.

Throughout the following, for i ∈ [k] and 1 ≤ i < j ≤ k, respectively, we use the notation

Z(i) ..=
⋃

s∈[p]

{
zis
}

and R(i, j) ..=
⋃

vi
sv

j
t∈E(G),
s,t∈[p]

{
r

(i,j)
s,t

}
.

We now observe the crucial property of G′′.

I Observation 12.1 (Claim 18 in [10]). For every 1 ≤ i < j ≤ k, a vertex zih ∈ V (G′) (a
vertex zjh ∈ V (G′)) is not adjacent to a vertex r(i,j)

s,t ∈ V (G′) corresponding to the edge
visv

j
t ∈ E(G) if and only if h = s (h = t, respectively).

The New Gadget. We now describe how to obtain from G′′ a graph G′ that will be the
graph of the instance of Max-(σ∗,N≥x) Domination. We do so by adding a gadget to each
set Z(i) and R(i, j) (for all 1 ≤ i < j ≤ k). We first describe the gadget and then explain
how to modify H ′ to a new graph K ′ such that G′ is a K-graph (where K denotes the graph
obtained from K ′ by undoing the above described subdivisions that were made in H to
obtain H ′). Let X be any set of vertices of G′′. The gadget B(X) is a complete bipartite
graph on 2d− 1 vertices and bipartition ({β1,1, . . . , β1,d}, {β2,1, . . . , β2,d−1}). such that for
h ∈ [d], each vertex β1,h is additionally adjacent to each vertex in X. For 1 ≤ i < j ≤ k, we
use the notation B(i) ..= B(Z(i)) and B(i, j) ..= B(R(i, j)) and we denote their vertices by
βi·,· and β

(i,j)
·,· , respectively.

We obtain K ′ by ‘hardcoding’ each gadget B(·) into H ′. That is, for i ∈ [k], we add the
graph B(i) and connect it to the remaining vertices via the edges uiβi1,h for h ∈ [d]. For
1 ≤ i < j ≤ k, we proceed analogously in encoding B(i, j) into H ′. For an illustration of the
graph K, see Figure 2. We observe that |K| = 2d

(
k +

(
k
2
))

= kd(k + 1) and

||K|| = 4
(
k

2

)
+
(
k +

(
k

2

))
· (d+ d(d− 1)) = 1

2k
(
d2(k + 1) + 4(k − 1)

)
. (2)

We subdivide all newly introduced edges, i.e. all edges in E(K ′) \ E(H ′) and for an edge
xy ∈ E(K ′) \E(H ′), we denote the resulting vertex by s(x, y). We are now ready to describe
(the K-representation of) G′.
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u1

w(1,3)

u3

u2

w(1,2) w(2,3)

B(i) B(3)

B(2)

B(1, 3)

B(2, 3)B(1, 2) u1

w(1,3)

Figure 2 The graph K with respect to which the graph G′ constructed in the proof of Theorem 12
is a K-graph. In this example, we have k = 3 and d = 4.

Z(i) R(i, j) Z(j)

B1(i)

B2(i)

B1(j)

B2(j)

B1(i, j)

B2(i, j)

Figure 3 A part of the graph G′, where 1 ≤ i < j ≤ k and d = 4.

1. For all i ∈ [k] and s ∈ [p], we add the vertices s(ui, βi1,h) (where h ∈ [d]) to the model of zis.
For all 1 ≤ i < j ≤ k and s, t ∈ [p] with visv

j
t ∈ E(G), we add the vertices s(w(i,j), β

(i,j)
1,h )

for h ∈ [d] to the model of r(i,j)
s,t .

2. For all i ∈ [k] and h ∈ [d], we add a vertex bi1,h with model {βi1,h, s(ui, βi1,h)} ∪⋃
h′∈[d−1]{s(βi1,h, βi2,h′)}.

3. For all i ∈ [k] and h ∈ [d−1], we add a vertex bi2,h with model {βi2,h}∪
⋃
h′∈[d]{s(βi2,h, βi1,h′)}.

4. For all visv
j
t ∈ E(G) (where 1 ≤ i < j ≤ k and s, t ∈ [p]) and h ∈ [d], we add a vertex

b
(i,j)
1,h with model {β(i,j)

1,h , s(w(i,j), β
(i,j)
1,h )} ∪

⋃
h′∈[d−1]{s(β

(i,j)
1,h , β

(i,j)
2,h′ )}.

5. For all visv
j
t ∈ E(G) (where 1 ≤ i < j ≤ k and s, t ∈ [p]) and h ∈ [d− 1], we add a vertex

b
(i,j)
1,h with model {β(i,j)

2,h } ∪
⋃
h′∈[d]{s(β

(i,j)
2,h , β

(i,j)
1,h′ )}.

One can verify that these five steps introduce the above described vertices to G′. For an
illustration of G′, see Figure 3. The correctness proof of the reduction is given in the appendix;
it is essentially a proof of the following claim.

I Claim 12.2 (F). G has a multicolored clique if and only if G′ has a (σ∗,N≥x) set of size
k′ = 2d · (k +

(
k
2
)
).

We observe that |V (G′)| = O(|V (G)|+ d2 · k2) and clearly, G′ can be constructed from G in
time polynomial in |V (G)|, d and k as well. Furthermore, by (2), ||K|| = O(d2 · k2) and the
theorem follows. J

By Proposition 11, the previous theorem implies
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I Corollary 13. For any fixed d ∈ N and x ≤ d+ 1, the following holds. Let σ∗ ⊆ N≤d with
d ∈ σ∗. Then, Max-(σ∗,N≥x) Domination is W[1]-hard parameterized by linear mim-width
plus solution size, and the hardness holds even if a corresponding decomposition tree is given.

We now turn to hardness of minimization problems that can be expressed in (σ, ρ) notation.
First, with a slight modification of the reduction due to Fomin et al. [10], we obtain hardness
for problems such as Total Dominating Set and Dominating Induced Matching.

I Theorem 14 (F). For σ∗ ⊆ N+ with 1 ∈ σ∗ and ρ∗ ⊆ N+ with {1, 2} ⊆ ρ∗, Min-
(σ∗, ρ∗) Domination is W[1]-hard on H-graphs parameterized by the number of edges in H
plus solution size, and the hardness holds even when an H-representation of the input graph
is given.

As a somewhat orthogonal result to Theorem 12, we now show hardness of several problems
related to the d-Dominating Set problem, where each vertex that is not in the solution set
has to be dominated by at least some fixed number of d neighbors in the solution.

I Theorem 15 (F). For any fixed d ∈ N≥2,5 the following holds. Let σ∗ ⊆ N with
{0, 1, d− 1} ⊆ σ∗ and ρ∗ ⊆ N≥d with {d, d+ 1} ⊆ ρ∗. Then, Min-(σ∗, ρ∗) Domination is
W[1]-hard on H-graphs parameterized by the number of edges in H plus solution size, and
the hardness even holds when an H-representation of the input graph is given.

Similarly to above, a combination of the previous two theorems with Proposition 11 yields
the following hardness results for (σ, ρ) mimization problems on graphs of bounded linear
mim-width.

I Corollary 16. Let σ∗ ⊆ N and ρ∗ ⊆ N. Then, Min-(σ∗, ρ∗) Domination is W[1]-hard
parameterized by linear mim-width plus solution size, if one of the following holds.
(i) σ∗ ⊆ N+ with 1 ∈ σ∗ and ρ∗ ⊆ N+ with {1, 2} ⊆ ρ∗.
(ii) For some fixed d ∈ N≥2, {0, 1, d− 1} ⊆ σ∗ and ρ∗ ⊆ N≥d with {d, d+ 1} ⊆ ρ∗.

Furthermore, the hardness holds even if a corresponding decomposition tree is given.

7 Concluding Remarks

We have introduced the class of distance-r (σ, ρ) and LCVP problems. This generalizes
well-known graph distance problems like distance-r domination, distance-r independence,
distance-r coloring and perfect r-codes. It also introduces many new distance problems for
which the standard distance-1 version naturally captures a well-known graph property.

Using the graph parameter mim-width, we showed that all these problems are solvable
in polynomial time for many interesting graph classes. These meta-algorithms will have
runtimes which can likely be improved significantly for a particular problem on a particular
graph class. For instance, blindly applying our results to solve Distance-r Dominating
Set on permutation graphs yields an algorithm that runs in time O(n8): Permutation graphs
have linear mim-width 1 (with a corresponding decomposition tree that can be computed
in linear time) [3, Lemmas 2 and 5], so we can apply Corollary 7(i). However, there is
an algorithm that solves Distance-r Dominating Set on permutation graphs in time
O(n2) [15]; a much faster runtime.

We would like to draw attention to the most important and previously stated [13, 17, 20]
open question regarding the mim-width parameter: Is there an XP approximation algorithm

5 Note that the analogous statement for d = 1 follows from the reduction given in [10].
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for computing mim-width? An important first step could be to devise a polynomial-time
algorithm deciding if a graph has mim-width 1, or even linear mim-width 1.

Regarding lower bounds, we expanded on the previous results by Fomin et al. [10] and
showed that many (σ, ρ) problems are W[1]-hard parameterized by mim-width. However,
it remains open whether there exists a problem which is NP-hard in general, yet FPT by
mim-width. In particular, there are currently no hardness results when σ and ρ are both
finite. Even so, we conjecture that every NP-hard (distance) (σ, ρ) problem is W[1]-hard
parameterized by mim-width.
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Abstract
We study the NP-hard graph problem Collapsed k-Core where, given an undirected graph G

and integers b, x, and k, we are asked to remove b vertices such that the k-core of remaining graph,
that is, the (uniquely determined) largest induced subgraph with minimum degree k, has size at
most x. Collapsed k-Core was introduced by Zhang et al. [AAAI 2017] and it is motivated
by the study of engagement behavior of users in a social network and measuring the resilience
of a network against user drop outs. Collapsed k-Core is a generalization of r-Degenerate
Vertex Deletion (which is known to be NP-hard for all r ≥ 0) where, given an undirected
graph G and integers b and r, we are asked to remove b vertices such that the remaining graph
is r-degenerate, that is, every its subgraph has minimum degree at most r.

We investigate the parameterized complexity of Collapsed k-Core with respect to the
parameters b, x, and k, and several structural parameters of the input graph. We reveal a
dichotomy in the computational complexity of Collapsed k-Core for k ≤ 2 and k ≥ 3. For the
latter case it is known that for all x ≥ 0 Collapsed k-Core is W[P]-hard when parameterized
by b. We show that Collapsed k-Core is W[1]-hard when parameterized by b and in FPT
when parameterized by (b + x) if k ≤ 2. Furthermore, we show that Collapsed k-Core is in
FPT when parameterized by the treewidth of the input graph and presumably does not admit a
polynomial kernel when parameterized by the vertex cover number of the input graph.
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1 Introduction

In recent years, modelling user engagement in social networks has received substantial
interest [23, 24]. A popular assumption is that a user engages in a social network platform
if she has at least a certain number of contacts, say k, on the platform. Further, she is
inclined to abandon the social network if she has less than k contacts [2, 7, 8, 11, 19, 25]. In
compliance with this assumption, a suitable graph-theoretic model for the “stable” part of a
social network is the so-called k-core of the social network graph, that is, the largest induced
subgraph with minimum degree k [21].4

Now, given a stable social network, that is, a graph with minimum degree k, the departure
of a user decreases the degree of her neighbors in the graph by one which then might be
smaller than k for some of them. Following our assumption these users now will abandon the
network, too. This causes a cascading effect of users dropping out (collapse) of the network
until a new stable state is reached. From an adversarial perspective a natural question is
how to maximally destabilize a competing social network platform by compelling b users to
abandon the network. This problem was introduced as Collapsed k-Core by Zhang et
al. [25] and the decision version is formally defined as follows.

Collapsed k-Core
Input: An undirected graph G = (V, E), and integers b, x, and k.
Question: Is there a set S ⊆ V with |S| ≤ b such that the k-core of G−S has size
at most x?

In the mentioned motivation, one would aim to minimize x for a given b and k. Alternatively,
we can also interpret this problem as a measure for resilience agains user drop outs of a social
network by determining the smallest b for a given k and x.

Related Work. In 2017 Zhang et al. [25] showed that Collapsed k-Core is NP-hard for
any k ≥ 1 and gave a greedy algorithm to compute suboptimal solutions for the problem.
However, for x = 0 and any fixed k, solving Collapsed k-Core is equivalent to finding b

vertices such that after removing said vertices, the remaining graph is (k − 1)-degenerate5.
This problem is known as r-Degenerate Vertex Deletion and it is defined as follows.

r-Degenerate Vertex Deletion
Input: An undirected graph G = (V, E), and integers b and r.
Question: Is there a set S ⊆ V with |S| ≤ b such that G− S is r-degenerate?

It is easy to see that Collapsed k-Core is a generalization of r-Degenerate Vertex
Deletion. In 2010 Mathieson [20] showed that r-Degenerate Vertex Deletion is
NP-complete and W[P]-complete when parameterized by the budget b for all r ≥ 2 even if
the input graph is already (r + 1)-degenerate and has maximum degree 2r + 1. In the mid-
90s Abrahamson et al. [1] already claimed W[P]-completeness for r-Degenerate Vertex
Deletion with r = 2 when parameterized by b under the name Degree 3 Subgraph

4 Note that the k-core of a graph is uniquely determined.
5 A graph G is r-degenerate if every subgraph of G has a vertex with degree at most r [10].
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Annihilator. For r = 1, the problem is equivalent to Feedback Vertex Set and for r = 0
it is equivalent to Vertex Cover, both of which are known to be NP-complete and fixed-
parameter tractable when parameterized by the solution size [9, 12]. The aforementioned
results concerning r-Degenerate Vertex Deletion in fact imply the hardness results
shown by Zhang et al. [25] for Collapsed k-Core.

Our Contribution. We complete the parameterized complexity landscape of Collapsed
k-Core with respect to the parameters b, k, and x. Specifically, we correct errors in the
literature [1, 20] concerning the W[P]-completeness of r-Degenerate Vertex Deletion
when parameterized by b for r = 2. We clarify the parameterized complexity of Collapsed
k-Core for k ≤ 2 by showing W[1]-hardness for parameter b and fixed-parameter tractability
for the combination of b and x. Together with previously known results, this reveals a
dichotomy in the computational complexity of Collapsed k-Core for k ≤ 2 and k ≥ 3.

We present two single exponential linear time FPT algorithms, one for Collapsed
k-Core with k = 1 and one for k = 2. In both cases the parameter is (b + x). In particular,
the algorithm for k = 2 runs in O(1.755x+4b · n) time which means that it solves Feedback
Vertex Set in O(9.487b · n) time (here, b is the solution size of Feedback Vertex Set).
Cao [5] independently developed a very similar algorithm for Feedback Vertex Set. In
comparison, we additionally generalize the algorithm for Collapsed k-Core and give a
more thorough running time analysis. To the best of our knowledge, despite of its simplicity
this algorithm improves many previous linear time parameterized algorithm for Feedback
Vertex Set [13, 17]. However, recently a linear time computable polynomial kernel for
Feedback Vertex Set was shown [14], which together with e.g. [16] yields an even faster
linear time parameterized algorithm.

Furthermore, we conduct a thorough parameterized complexity analysis with respect to
structural parameters of the input graph. On the positive side, we show that Collapsed
k-Core is fixed-parameter tractable when parameterized by the treewidth of the input graph
and show that it presumably does not admit a polynomial kernel when parameterized by
either the vertex cover number or the bandwidth of the input graph. We also show that
the problem is fixed-parameter tractable when parameterized by the combination of the
cliquewidth of the input graph and b or x. Further results include W[1]-hardness when
parameterized by the clique cover number of the input graph and para-NP-hardness for the
domination number of the input graph.

Due to space contraints, results marked with (?) are (in parts) deferred to a full version [18].

2 Hardness Results from the Literature

In this section, we gather and discuss known hardness results for Collapsed k-Core. Recall
that that Collapsed k-Core with x = 0 is the same problem as r-Degenerate Vertex
Deletion with r = k − 1. Hence, the hardness of Collapsed k-Core was first established
by Mathieson [20] who showed that r-Degenerate Vertex Deletion is NP-complete and
W[P]-complete when parameterized by the budget b for all r ≥ 2 even if the input graph
is already (r + 1)-degenerate and has maximum degree 2r + 1. However, in the proof of
Mathieson [20] the reduction is incorrect for the case r = 2. Abrahamson et al. [1] claim
W[P]-completeness for r = 2 but their reduction is also flawed. We provide counterexamples
for both cases and show how to adjust the reduction of Mathieson [20] in a full version [18].

I Theorem 1 (Corrected from [20]) (?). For any r ≥ 2 r-Degenerate Vertex Deletion
is NP-hard and W[P]-complete when parameterized by b, even if the degeneracy of the input
graph is r + 1 and the maximum degree of the input graph is 2r + 1.
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The following observation shows that the hardness result by Mathieson [20] (Theorem 1)
easily transfers to Collapsed k-Core (also in the cases where x 6= 0).

I Observation 2 (?). Let x′ > 0 be a positive integer. There is a reduction which transforms
instances (G, b, x, k) of Collapsed k-Core with x = 0 into equivalent instances (G′, b, x′, k)
of Collapsed k-Core.

With that, we arrive at the following corollary.

I Corollary 3. Collapsed k-Core is NP-hard and W[P]-hard when parameterized by b

for all x ≥ 0 and k ≥ 3, even if the degeneracy of the input graph is max{k, x− 1} and the
maximum degree of the input graph is max{2k − 1, x− 1}.

Note that r-Degenerate Vertex Deletion is known to be NP-hard for all r ≥ 0.6 Hence,
we also know that Collapsed k-Core is NP-hard for k ≤ 2 and all x ≥ 0. However, the
parameterized complexity with respect to b is open in this case. We settle this in the next
section.

3 Algorithms and Complexity for k = 1 and k = 2

In this section we investigate the parameterized complexity of Collapsed k-Core for the
case that k ≤ 2. Since Theorem 3 only applies for k ≥ 3 we first show in the following that
the problem is W[1]-hard with respect to the combination of b and (n − x) for all k ≥ 1.
Furthermore, we present two algorithms; one that solves Collapsed k-Core with k = 1
and one for the k = 2 case. Both algorithms run in single exponential linear FPT-time with
respect to the parameter combination (b + x).

We first give a parameterized reduction from Clique to Collapsed k-Core. Note that
since this hardness result holds for the combination of b and the dual parameter of x, it is
incomparable to Theorem 3 even for k ≥ 3.

I Proposition 4 (?). Collapsed k-Core is W[1]-hard when parameterized by the combina-
tion of b and (n−x) for all k ≥ 1, even if the input graph is bipartite and max{2, k}-degenerate.

Proof. We reduce from W[1]-hard problem Clique [9], where given a graph G = (V, E) and
an integer p, the task is to decide whether G contains a clique of size at least p. Let (G, p)
be an instance of Clique and k be a given constant. We build an instance (G′, b, x, k) of
Collapsed k-Core as follows. We can assume that p ≤ |V (G)|, as otherwise we can output
a trivial no-instance. We further assume that each vertex of G has degree at least p + 1.
Vertex of degree less than p− 1 is not part of a clique of size at least p, while for all vertices
of degree p− 1 or p we can check in O(n · p3) time whether there is a clique of size at least p

containing any of them.
We let V (G′) = V ∪ U ∪W , where V = V (G) are the vertices of G, U = {ui

e | e ∈
E, i ∈ {1, . . . , k}}, and W = {wi

e | e ∈ E, i ∈ {1, . . . , k− 1}}. We also let E(G′) = EU ∪EW ,
where EU = {{v, ui

e} | e ∈ E, i ∈ {1, . . . , k}, v ∈ e}, and EW = {{ui
e, wi′

e } | e ∈ E, i ∈
{1, . . . , k}, i′ ∈ {1, . . . , k − 1}}. We actually only introduce the sets W and EW if k ≥ 2.

Finally we set b = p and x = n− (p + (2k − 1)
(

p
2
)
), where n = |V (G′)| is the number of

vertices of graph G′.

6 Theorem 1 states NP-hardness of r-Degenerate Vertex Deletion for r ≥ 2. Recall that for r = 1
r-Degenerate Vertex Deletion is equivalent to Feedback Vertex Set and for r = 0 it is equivalent
to Vertex Cover, both of which are known to be NP-hard [12].
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Algorithm 1: Algorithm for Collapsed k-Core with k = 1.
1 SolveRec(G, S, Q, b, x)
2 if |S| > b or |Q| > b + x then return No solution;
3 Let G′ be the 1-core of G \ S.
4 if |V (G′)| ≤ x then return S;
5 if V (G′) ⊆ Q then return No solution;
6 Let v be the vertex with the highest degree in G′ which is not in Q

7 T ← SolveRec(G, S ∪ {v}, Q, b, x)
8 if T 6= No solution then return T ;
9 else return SolveRec(G, S, Q ∪ {v}, b, x);

We claim that (G′, b, x, k) is a yes-instance of Collapsed k-Core if and only if (G, p)
is a yes-instance of Clique. We defer the proof of this claim to a full version [18]. J

Now we proceed with the algorithm for Collapsed k-Core with k = 1. While there is a
simple algorithm with O(3x+b(m + n)) running time7 for this case, we consider an algorithm
with the slightly worse running time as stated, since we then generalize this algorithm to the
case k = 2 with some modifications.

I Proposition 5 (?). Collapsed k-Core with k = 1 can be solved in O(2x+2b(m + n))
time and in O(2O(b+

√
bx) · n) time. Assuming the Exponential Time Hypothesis, there is no

2o(b)·f(x)nO(1) time algorithm for Collapsed k-Core with k = 1, for any function f .

Algorithm: We present a recursive algorithm (see Algorithm 1 for pseudocode) that
maintains two sets S and Q. The recursive function is supposed to return a solution to
the instance, whenever there is a solution B containing all of S and there is no solution
containing S and anything of Q. If some of the conditions is not met, then the function
should return “No solution”. In other words, S is the set of deleted vertices and Q is the set
of vertices the algorithm has decided not to delete in the previous steps but may be collapsed
in the future. Hence, the solution to the instance, or the information that there is none, is
obtained by calling the recursive function with both sets S and Q empty.

The correctness proof and running time analysis of Algorithm 1 is deferred to a full
version [18]. In the remainder of the section, we show how to adapt this algorithm for
Collapsed k-Core with k = 2.

I Theorem 6. Collapsed k-Core with k = 2 can be solved in O(1.755x+4b ·n) time and in
O(2O(b+

√
bx) ·n) time. Assuming the Exponential Time Hypothesis, there is no 2o(b)·f(x)nO(1)

time algorithm for Collapsed k-Core with k = 2, for any function f .

The above theorem in particular yields an O(9.487b · n) algorithm for Feedback Vertex
Set.

Algorithm: Our algorithm for k = 2 is similar to Algorithm 1 with two main differences
(see Algorithm 2 for pseudocode). First |Q| > b + x is replaced by |Q| > 3b + x. Second when
selecting the maximum degree vertex from V (G′) \Q, we need to make sure that this vertex

7 An informal description of the algorithm: We use an initially empty set X that should contain vertices
of the remaining 1-core. We branch over edges where both endpoints are not in X and either remove
one of the endpoints or put both endpoint into X. Then we branch over all edges that have exactly one
endpoint in X and either remove the other endpoint or put the other endpoint into X as well.
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Algorithm 2: Algorithm for Collapsed k-Core with k = 2.
1 SolveRec2(G, S, Q, b, x)
2 if |S| > b or |Q| > 3b + x then return No solution;
3 Let G′ be the 2-core of G \ S.
4 if |V (G′)| ≤ x then return S;
5 if V (G′) ⊆ Q then return No solution;
6 Let v be the vertex with the highest degree in G′ which is not in Q

7 if degG′(v) ≤ 2 then
8 Let C1, . . . , Cr be the connected components of G′ not containing vertices of Q,

ordered such that |V (C1)| ≥ |V (C2)| ≥ . . . ≥ |V (Cr)|;
9 Let r′ ← min{r, b− |S|};

10 if |V (G′)| −
∑r′

i=1 |V (Ci)| ≤ x then
11 for i = 1, . . . , r′ do Select an arbitrary vertex from Ci and add it to S;
12 return S

13 end
14 else return No solution;
15 end
16 T ← SolveRec2(G, S ∪ {v}, Q, b, x) ;
17 if T 6= No solution then return T ;
18 else return SolveRec2(G, S, Q ∪ {v}, b, x) ;

has degree greater than 2. Otherwise, either we can directly select vertices from V (G′) \Q

to break cycles in G′ and get a 2-core of size at most x, or the algorithm rejects this branch.
We start by claiming that Algorithm 2 has the following running time.

I Lemma 7 (?). Algorithm 2 runs in O(1.755x+4b · n) time and in O(2O(b+
√

bx) · n) time.

Next we claim the following conditional lower bound on the running time for any algorithm
for Collapsed k-Core with k = 2.

I Lemma 8 (?). Assuming the Exponential Time Hypothesis, there is no 2o(b)·f(x)nO(1) time
algorithm for Collapsed k-Core with k = 2, for any function f .

Before showing the correctness of Algorithm 2, we give the following lemmata which will
be helpful in the correctness proof. The following lemma claims that, except for some specific
connected components, we can limit the solution to contain vertices of degree at least three.

I Lemma 9 (?). For any instance (G, b, x, 2) of Collapsed k-Core with k = 2, where G

is a 2-core and does not contain a cycle as a connected component, if there is a solution B

for (G, b, x, 2), then there is also a solution B′ for (G, b, x, 2) which contains only vertices
with degree larger than 2.

The next lemma helps to show that line 14 is correct.

I Lemma 10 (?). If line 14 of Algorithm 2 applies, and for every q ∈ Q there no solution
containing whole S ∪ {Q}, then there is no solution containing the whole S.

Next, we show that the second part of line 2 of Algorithm 2 is correct.

I Lemma 11. If Q is of size more than 3b + x, then there is no solution containing whole S

and no vertex from Q.
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S

Q

vi0

vj0

Figure 1 Illustration of function f . Vertices in Q are separated into two parts: gray vertices
from X and blue vertices from Q′ = Q\X. Every vertex in S is mapped to a set of three consecutive
blue vertices in Q′ from the right to the left. Graph Gj0 with the property that i > max{j | j ∈ f(i)}
for every i with vi ∈ B ∩ V (Gj0 ) is contained in the green box.

Proof. Suppose for contradiction that there is a set Q of size at least 3b + x + 1 and a
solution B such that |B| ≤ b, S ⊆ B and B ∩Q = ∅. Let v1, v2, . . . , vr′ be the vertices of the
set S ∪Q in the order as they were added to the set by successive recursive calls. Moreover,
if B \ S is empty, then let r = r′. Otherwise, let B \ S = {vr′+1, . . . , vr}, i.e., in both cases
{v1, . . . , vr} = B ∪Q. Without loss of generality, we can assume that for every vertex vi ∈ B,
vi is contained in the 2-core of G \ (B ∩ {v1, v2, . . . , vi−1}), since otherwise vi must come
from B \ S, then B′ = B \ {vi} is also a solution such that |B′| ≤ b, S ⊆ B′ and B′ ∩Q = ∅.
Let G′ be the 2-core of G \B and let X = V (G′) ∩Q. Since B is a solution, we know that
|X| ≤ x.

We construct a function f that maps every vertex of B to a set of three consecutive
vertices of Q \X (see also Figure 1). First let vi be the vertex in B with the largest i. We let
f(i) be the set {j1, j2, j3}, where j1 = max{j | vj ∈ Q \X}, j2 = max{j < j1 | vj ∈ Q \X},
and j3 = max{j < j2 | vj ∈ Q \ X}. Now let vi be the vertex from B with the largest
i such that f(i) was not set yet and vi′ be the vertex from B with the least i′ such that
i′ > i. We set f(i) = {j1, j2, j3}, where j1 = max{j < min{k ∈ f(i′)} | vj ∈ Q \ X},
j2 = max{j < j1 | vj ∈ Q \X}, and j3 = max{j < j2 | vj ∈ Q \X}. Since the set Q \X

contains at least 3b + 1 vertices, while B contains at most b, this way we find a mapping
for every vertex in B, keeping the images of different vertices disjoint. Moreover, denote
p = |Q \X| − 3|B| ≥ 1. There remains p vertices in Q \X not being in the union of images
of f , let us denote them vq1 , . . . , vqp .

For t ∈ {1, . . . , r} let Gt be the 2-core of the graph G\(B∩{v1, . . . , vt−1}). For v ∈ V (Gt)
let degt(v) be the degree of the vertex v in Gt. By the way we selected vt we again know that
degt(vt) ≥ degt(vt′) ≥ degt′(vt′) for every t < t′ ≤ r′ and degt(vt) ≥ degt(vt′) ≥ degt′(vt′)
for every t ≤ r′ < t′. Note also that degt(vt) ≥ 3 for all vt ∈ Q.

If for every vertex vi ∈ B we have i > max{j | j ∈ f(i)}, then degi(vi) ≤ degj(vj) for
vertex vi in B and every j ∈ f(i). Together with degt(vt) ≥ 3 for all vt ∈ Q, we have
degi(vi)−

∑
j∈f(i) degj(vj) + 6 ≤ 0 for every vertex vi in B. Let V = B ]Q′ ]X ] Y ] Z,

where Q′ = Q \X, Y is the set of collapsed vertices not contained in Q and Z = V (G′) \X

the part of the core of G \B not in Q. Now we transform graph G into a partial directed
graph by considering the collapsing process (see also Figure 2). More precisely, for every
edge in G, except for edges which have two endpoints in X ∪ Z, we will assign it a direction.
To this end, we just need to give an order of vertices in V (G) \ (X ∪ Z). We define this
order based on the time vertices being deleted or collapsed. It may happen that several
vertices in Q′ or Y collapse at the same time. For this situation, we just order these vertices
according to an arbitrary but fixed order. Since k = 2, every collapsed vertex in Q′ ∪ Y has
at most one outgoing edge. Let us consider the number, denoted by N , of edges of the form
−−→vivj such that the head vj is in Q′. Since every vertex in Q′ has at most one outgoing edge,
we have N ≥

∑
vj∈Q′ degj(vj)− |Q′|.
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B Q′ X

Y

N−−→
BQ′

N−−→
BY

N−−→
Y Q′

N−−→
Q′Y

Figure 2 Illustration of the partial directed graph when considering the collapsing process. The
set B contains the deleted vertices and X is the set of vertices remaining in the 2-core of G \ B.
The set Q′ contains vertices the algorithm has decided not to delete but eventually collapse and Y

is the set of other collapsed vertices.

On the other hand, let
N−−→

BQ′ be the number of edges going from B to Q′;
N−−→

BY
be the number of edges going from B to Y ;

N−−→
Y Q′ be the number of edges going from Y to Q′;

N−−→
Q′Y

be the number of edges going from Q′ to Y .
We claim that N−−→

Y Q′ ≤ N−−→
BY

+ N−−→
Q′Y

. To show that, denote the number of edges in G[Y ] by
N−−→

Y Y
. Since every vertex in Y has at least one incoming edge but at most one outgoing edge,

we have
∑

v∈Y deg−(v) ≤
∑

v∈Y deg+(v), where deg+(v) (deg−(v)) is the number of incoming
(outgoing) edges of vertex v in G, respectively. This means N−−→

Y Q′ +N−−→
Y Y
≤ N−−→

BY
+N−−→

Q′Y
+N−−→

Y Y
,

therefore, N−−→
Y Q′ ≤ N−−→

BY
+ N−−→

Q′Y
, finishing the proof of the claim.

Since the edges which have their heads in Q′ have their tails from B ∪ Y ∪Q′,

N ≤ N−−→
BQ′ + N−−→

Y Q′ + (|Q′| −N−−→
Q′Y

) ≤ N−−→
BQ′ + |Q′|+ N−−→

BY

≤
∑

vi∈B

deg−(vi) + |Q′| ≤
∑

vi∈B

degi(vi) + |Q′|.

The last inequality holds since for every vertex vi ∈ B, vi is contained in the 2-core of
G \ (B ∩ {v1, v2, . . . , vi−1}), which means all outgoing edges of vi are counted in degi(vi).
Then we have that

∑
vi∈B deg−(vi) ≤

∑
vi∈B degi(vi).

0 ≤
∑

vi∈B

degi(vi) + |Q′| −
( ∑

vj∈Q′

degj(vj)− |Q′|
)

=
∑

vi∈B

degi(vi)−
∑

vj∈Q′

(degj(vj)− 2)

≤
∑

vi∈B

degi(vi)−
( ∑

vi∈B

∑
j∈f(i)

(degj(vj)− 2) +
p∑

i=1
(degqi

(vqi
)− 2)

)
<
∑

vi∈B

degi(vi)−
∑

vi∈B

∑
j∈f(i)

(degj(vj)− 2)

=
∑

vi∈B

(
degi(vi)−

∑
j∈f(i)

degj(vj) + 6
)
≤ 0

which is a contradiction.
The remaining case where there exist a i such that i < max{j | j ∈ f(i)} is analogous

and deferred to a full version [18]. J
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The last part of the proof of Theorem 6 is deferred to a full version [18].

4 Structural Graph Parameters

In this section, we investigate the parameterized complexity of Collapsed k-Core with
respect to several structural parameters of the input graph. Theorem 3 already implies
hardness for constant values of several structural graph parameters. We expand this picture
by observing that the problem remains NP-hard on graphs with a dominating set of size
one and by showing that the problem is W[1]-hard when parameterized by the combination
of b and the clique cover number of the input graph. On the positive side, we show that
the problem is in FPT when parameterized by the treewidth of the input graph or the
clique-width of the input graph and k combined with either b, x, n− x, or n− b. Lastly, we
show that the problem presumably does not admit a polynomial kernel for any k ≥ 2 when
parameterized by the combination of b and the vertex cover number of the input graph, or
by the combination of b, k, and the bandwidth of the input graph.

We start with an easy observation that we will make use of in most of the hardness results
in this section.

I Observation 12 (?). If (G, b, x, k) is an instance of Collapsed k-Core and vertex v is
a part of the (k + b)-core of G, and S ⊆ V is of size at most b, then either v ∈ S or v is part
of the k-core of G \ S.

The following observation yields that we can reduce the size of a dominating set of any
instance of Collapsed k-Core to one by introducing a universal vertex. Note that, for
example, this only increases the degeneracy by one.

I Observation 13 (?). Let (G, b, x, k) be an instance of Collapsed k-Core and G′ be the
graph obtained from G by adding a universal vertex, then (G′, b + 1, x, k) is an equivalent
instance of Collapsed k-Core.

Considering a larger parameter than, e.g., the size of the dominating set, namely the clique
cover number8, we can show W[1]-hardness, even in combination with b. This can be done
with a parameterized reduction from Multicolored Clique parameterized by the solution
size.

I Proposition 14 (?). Collapsed k-Core is W[1]-hard when parameterized by the com-
bination of b and the clique cover number of the input graph.

On the positive side, we sketch a dynamic program on the tree decomposition of the
input graph G which implies that Collapsed k-Core is in FPT when parameterized by
the treewidth of the input graph.

I Proposition 15 (?). Collapsed k-Core is in FPT when parameterized by the treewidth
of the input graph.

Proof Sketch. Let (G, b, x, k) be an instance of Collapsed k-Core. Observe that either
k ≤ tw(G) or the k-core of G is (already) empty and we can answer Yes. Hence, for the rest of
the proof we assume that k ≤ tw(G). We assume that we are given a nice tree decomposition

8 The clique cover number of a graph G is the minimum number of induced cliques such that their union
contains all vertices of G.
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of G [15, 3] and use dynamic programming on the nice tree decomposition of G. The indices
of the table are formed for each bag of the decomposition by the number of vertices of the
solution already forgotten, the number of vertices in the core already forgotten, a partition
of the bag into three set B, X, and Q, an (elimination) order for the vertices in Q, and for
each vertex in Q the number of its neighbors in X or higher in the order. This number is
always in 0, . . . , k − 1, as otherwise it would not be possible to eliminate the vertex.

The set B represents the partial solution (or rather its intersection with the bag), i.e.,
the vertices to be deleted. The set X represents the vertices which (are free to) remain in
the core. The vertices in Q should collapse after removing the vertices of the solution and
the collapse of the vertices preceding them in the order.

There are 3tw(G) · (tw(G))O(tw(G)) · ktw(G) = (tw(G))O(tw(G)) possible indices for each bag.
Hence the slightly superexponential running time of (tw(G))O(tw(G)) · nO(1) follows. J

Using monadic second order (MSO) logic formulas, it can be shown that for a smaller
structural parameter, namely the cliquewidth of the input graph, there are also positive
results. Here however, we can only show fixed-parameter tractability for the combination of
the cliquewidth of the input graph with k and either b, x, n− x, or n− b.

I Proposition 16 (?). Collapsed k-Core is in FPT when parameterized by the cliquewidth
of the input graph combined with k and either b, x, n− x, or n− b.

In the remainder of this section, we show that Collapsed k-Core does not admit a
polynomial kernel when parameterized by rather large parameter combinations. We first
show an OR-cross composition [4, 9] from Cubic Vertex Cover.

I Theorem 17. For all k ≥ 2 Collapsed k-Core does not admit a polynomial kernel when
parameterized by the combination of b and the vertex cover number of the input graph unless
NP ⊆ coNP/poly.

Proof. We apply an OR-cross composition [4, 9] from the NP-hard problem Cubic Vertex
Cover [12]. In Cubic Vertex Cover, we are given a 3-regular graph G and an integer s,
and the task is to find a vertex subset of size at most s which contains at least one endpoint
of each edge of G.

We say an instance of Cubic Vertex Cover is malformed if the string does not
represent a pair (G, s), where G is a 3-regular graph and s is a positive integer. It is trivial,
if s ≥ |V (G)|. We define the equivalence relation R as follows: all malformed instances are
equivalent, all trivial instances are equivalent and two well-formed non-trivial instances (G, s)
and (G′, s′) are R-equivalent if |V (G)| = |V (G′)| and s = s′. Observe that R is a polynomial
equivalence relation.

Let the input consist of T R-equivalent instances of Cubic Vertex Cover. If the
instances are malformed or trivial, we return a constant size no- or yes- instance of Collapsed
k-Core, respectively. Let (Gi, s)0≤i≤T−1 be well-formed non-trivial R-equivalent instances
of Cubic Vertex Cover. Since all instances have the same size of the vertex set, we can
assume they share the same vertex set V = {v1, v2, . . . , vn} . We assume T to be a power of
2, as otherwise we can duplicate some instances. Now we create an instance (G, b, x, k) of
Collapsed k-Core for some arbitrary but fixed k ≥ 2 as follows.

Set b = s + 2ks log T and x = N −N ′, where N = n + 3
2 nT + 4ks log T + k + s + 3

2 n(k−2)
is the number of all vertices in graph G we will construct and N ′ = s + 2ks log T + 3

2 n.
First for every vertex vi in V , create a vertex vi in G.
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selection gadget

C . . .

V E
1

. . .

V E
2

. . .

V E
3

. . . . . .

V E
T

. . .

V
...

...

C0
1

C1
1

C0
2

C1
2

C0
3

C1
3

. . .

. . .

C0
log T

C1
log T

C

Figure 3 Illustration of the OR-cross composition from Cubic Vertex Cover to Collapsed
k-Core with k = 5. The selection gadget is all the circles contained in the green box. Every gray
edge in this figure means that all vertices in one endpoint of this edge are connected to all vertices
in the other endpoint. Every vertex in V E

i connects to two endpoints of its corresponding edge
in Gi. For example, the yellow vertex in V E

2 is connected to the blue and the red vertex in V , which
represents the two endpoints of the corresponding edge in G2. The big clique C is separated into
two parts. Every vertex in V E

i is connected to k − 2 vertices in the upper part of C. Since k = 5,
the yellow vertex in V E

2 is connected to three vertices in C. Vertices contained in thick outlined
vertex sets form a vertex cover. To keep the picture simple, edges that contain vertices from V E

i

with i 6= 2 are not depicted.

For every edge set E(Gi), create a vertex set V E
i in G, in which a vertex vp,q represents

an edge vpvq in E(Gi). Then we have T of these vertex sets and each set has 3
2 n vertices.

For every edge vpvq in E(Gi), add 2 edges vp,qvp and vp,qvq in G.
Now create the selection gadget in G. It contains log T pairs of cliques Cd

i (1 ≤ i ≤
log T, d ∈ {0, 1}), and all of them have the same size of 2ks. For every vertex set V E

i , let
i = (dlog T−1dlog T−2 . . . d0)2 be the binary representation of the index i, where dj ∈ {0, 1}
for 0 ≤ j ≤ log T − 1 and we add leading zeros so that the length of the representation is
exactly log T . We add edges between all vertices in V E

i and all vertices in
⋃log T−1

j=0 C
dj

j .
Finally we create a clique C with |C| = k + b + 3

2 n(k − 2), which contains two parts of
vertices. The first part contains k + b vertices and each of them connects to all vertices
in V ∪

⋃log T−1
j=0

⋃1
d=0 Cd

j . The second part of 3
2 n(k − 2) vertices is connected to vertices

in V E
i in the following way. For every vertex vp,q in V E

i , add edges between vp,q and
k − 2 vertices in C. We make sure that all vertices in the same V E

i connect to different
vertices in C. In other words, every vertex in the second part of C connects to exactly
one vertex in every V E

i .
Notice that the vertex cover number of G is n+4ks log T +k+b+ 3

2 n(k−2). The construction is
illustrated in Figure 3. We now show that at least one instance (Gi, s) is a yes-instance if and
only if the instance (G, b, x, k) of Collapsed k-Core constructed above is a yes-instance.
⇒: If (Gi, s) is a yes-instance, which means that there is a vertex subset V ∗ of size s that

covers all edges in Gi, then we delete the corresponding s vertices in G and all vertices in⋃log T−1
j=0 C

dj

j , where i = (dlog T−1 . . . d0)2 is the binary representation of i. So far, we deleted
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s + 2ks log T vertices, and all vertices in V E
i will collapse, since they just have at most k − 1

edges remaining, k − 2 of which connect to vertices in C and at most one to vertices in V .
Therefore, the number of remaining vertices is x and instance (G, b, x, k) is a yes-instance.
⇐: If (G, b, x, k) is a yes-instance, we need to show that there is at least one instance

which has a vertex cover of size at most s. Let S be the set of deleted vertices of size at
most b and let S′ be the set of all collapsed vertices. Since N ′ = s + 2ks log T + 3

2 n, we
have |S′| ≥ 3

2 n. In the subgraph of G induced by V , C and
⋃log T−1

j=0
⋃1

d=0 Cd
j all vertices in

V ∪
⋃log T−1

j=0
⋃1

d=0 Cd
j ∪ C have degree larger than k + b. Hence, by Theorem 12 they will

not collapse and all collapsed vertices come from
⋃T−1

i=0 V E
i .

We show that all collapsed vertices can only come from one single V E
i for some i. Suppose

two vertices v and v′ from different sets of V E
i (0 ≤ i ≤ T − 1) collapse after deleting S,

then there is at least one pair of cliques C0
j0

and C1
j0

such that v is connected to all vertices
in Cd0

j0
for some d0 ∈ {0, 1} and v′ is connected to all vertices in C1−d0

j0
. To make v collapse,

at least 2ks log T − (k − 1) vertices from the corresponding cliques in the selection gadget
need to be deleted. Then to make v′ collapse, at least 2ks − (k − 1) vertices from C1−d0

j0

need to be deleted. Therefore, at least 2ks log T + 2ks− 2(k − 1) vertices need to be deleted,
which is strictly more than b. This means that the collapsed vertices come from one single
V E

i . Since |S′| ≥ 3
2 n and |V E

i | = 3
2 n, we have S′ = V E

i and S ∩ V E
i = ∅ for some i.

We consider the vertex set S. We know that after deleting S, all vertices in V E
i collapse.

Denote VI the vertex set of all vertices in
⋃log T−1

j=0 C
dj

j , where i = (dlog T−1 . . . d0)2 is the
binary representation of i. Since every vertex in VI is connected to all vertices in V E

i , to
make V E

i collapse, it is always better to choose vertices from VI than any other vertex. If S

does not contain all vertices from VI , we can update S by replacing any |VI \ S| vertices in S

with vertices in VI \ S. Then VI ⊆ S.
Suppose there is a vertex vp,q in V E

i such that both vp and vq are not in S ∩ V , then S

contains at least one vertex vc in C connected to vp,q, as otherwise vp,q has degree at least k

and will not collapse. We update S by replacing vc with vp. This will not influence the
size of S and more importantly, this will not influence the collapsed set S′ = V E

i , since vc

in C is connected to only one vertex vp,q in V E
i , and vp,q will still collapse under the new S.

By updating S in the same way for other vertices in V E
i not covered by vertices in S ∩ V ,

we get a vertex set S ∩ V which covers all vertices in V E
i at least once. And |S ∩ V | ≤ s,

since VI ⊆ S and |VI | = 2ks log T . This corresponds to a vertex cover of size s in Gi. J

Lastly, we claim that there is a simple OR-cross composition [4, 9] from Collapsed k-
Core onto itself. Note that the parameter combination of the following result is incomparable
to that of Theorem 17.

I Proposition 18 (?). Collapsed k-Core does not admit a polynomial kernel when
parameterized by the combination of b, k, and the bandwidth of the input graph unless
NP ⊆ coNP/poly.

5 Conclusion

Our results highlight a dichotomy in the computational complexity of Collapsed k-Core
for k ≤ 2 and k ≥ 3. Along the way, we correct some inaccuracies in the literature concerning
the parameterized complexity of Collapsed k-Core with k = 3 and x = 0 and give a
simple single exponential linear time parameterized algorithm for Collapsed k-Core with
k = 2, which almost matches the simplest known, independently found, single exponential
linear time algorithm for Feedback Vertex Set. We leave as an open question whether
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Collapsed k-Core with k = 2 on graphs of maximum degree 3 is polynomial time solvable
similarly as Feedback Vertex Set [6, 22]. This would improve also the running time of
our algorithm for Collapsed k-Core with k = 2 on general graphs. We further investigate
the parameterized complexity with respect to several structural parameters of the input
graph. As a highlight we show that Collapsed k-Core does not admit polynomial kernels
for rather large parameter combinations. We leave the complexity of Collapsed k-Core
when parameterized solely by the cliquewidth of the input graph open.
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Abstract
Hubs are high-degree nodes within a network. The examination of the emergence and centrality
of hubs lies at the heart of many studies of complex networks such as telecommunication net-
works, biological networks, social networks and semantic networks. Furthermore, identifying and
allocating hubs are routine tasks in applications. In this paper, we do not seek a hub that is a
single node, but a hub that consists of k nodes. Formally, given a graph G = (V,E), we a seek
a set A ⊆ V of size k that induces a connected subgraph from which at least p edges emanate.
Thus, we identify k nodes which can act as a unit (due to the connectivity constraint) that is a
hub (due to the cut constraint). This problem, which we call Multi-Node Hub (MNH), can
also be viewed as a variant of the classic Max Cut problem. While it is easy to see that MNH
is W[1]-hard with respect to the parameter k, our main contribution is the first parameterized
algorithm that shows that MNH is FPT with respect to the parameter p.

Despite recent breakthrough advances for cut-problems like Multicut and Minimum Bisec-
tion, MNH is still very challenging. Not only does a connectivity constraint has to be handled
on top of the involved machinery developed for these problems, but also the fact that MNH is
a maximization problem seems to prevent the applicability of this machinery in the first place.
To deal with the latter issue, we give non-trivial reduction rules that show how MNH can be
preprocessed into a problem where it is necessary to delete a bounded-in-parameter number of
vertices. Then, to handle the connectivity constraint, we use a novel application of the form
of tree decomposition introduced by Cygan et al. [STOC 2014] to solve Minimum Bisection,
where we demonstrate how connectivity constraints can be replaced by simpler size constraints.
Our approach may be relevant to the design of algorithms for other cut-problems of this nature.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases hub, bisection, tree decomposition

Digital Object Identifier 10.4230/LIPIcs.IPEC.2018.8

1 Introduction

Hubs are high-degree nodes within a network. The examination of the emergence and central-
ity of hubs lies at the heart of many studies of complex networks such as telecommunication
networks, biological networks, social networks and semantic networks [25, 5, 1, 19, 35]. For
example, hubs have been examined in the context of complex phylogenetic diseases such as
asthma [33]; indeed, deletion of a hub protein is more likely to be lethal than deletion of a
non-hub protein [21, 24]. Furthermore, identifying and allocating hubs are routine tasks in a
wide-variety of applications [6]. In fact, the concept of hubs is also of significant interest in
studies of hyperlinked environments [27], viral marketing [30], outbreaks of epidemics [4] and
the Blogosphere [41].
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8:2 Parameterized Complexity of Multi-Node Hubs

It is natural to ask whether one can not only efficiently find a hub that is merely a single
node, but a hub that consists of at most k nodes or (more generally) exactly k nodes.1 More
precisely, given a threshold parameter p, a hub can be defined as a node of degree at least
p. Here, we introduce the concept of a multi-node hub, which is a connected set of nodes of
degree at least p. In other words, we aim to identify k nodes which can act as a unit (due to
the connectivity constraint) that is a hub (due to the cut constraint). For example, in the
context of biological networks, we might want to seek a module or a protein complex that
acts as a hub, and in the context of social networks, we might want to identify a group of
people that together act as a hub. Formally, we solve the following problem.

Multi-Node Hub (MNH) Parameters: k, p

Input: An undirected graph G such that |V (G)| = n, and positive integers k and p.
Question: Does there exist a subset A ⊆ V (G) of size exactly k such that G[A] is
connected, and E(G) contains at least p edges with exactly one endpoint in A?

Multi-node hubs are of interest also for large values of k: when k is close to n, a multi-node
hub allows us to “shave” a few nodes from the network while ensuring that the core stays
connected and has a large number of links to the nodes that were shaved. Moreover, we
believe that multi-node hubs deserve to be studied also because they are simple, elegant
combinatorial objects. The MNH problem involves three different types of constraints,
namely a cut constraint, a size constraint and a connectivity constraint. On the one hand, it
is easily seen to be MNH is W[1]-hard with respect to k; that is, it is unlikely that MNH is
FPT with respect to k. On the other hand, it can be shown to be FPT with respect to k+ p

(by a simple application of color-coding [3]). This brings us to the parameter p. By relying on
a preprocessing phase inspired by algorithms for the Max Leaf Spanning Tree problem
along with a novel application of special tree decompositions, namely “unbreakable tree
decompositions”, we are able to establish that MNH is FPT with respect to the parameter p.

Related Work. MNH is closely related to the classical NP-hard Max-Cut problem. Here,
the input consists of a graph G and a positive integer p, and the objective is to check
whether there is a cut of size at least p. A cut of a graph is a partition of the vertices
of the graph into two disjoint subsets. The size of the cut is the number of edges whose
endpoints belong to different subsets of the partition. Max-Cut has been the focus of
extensive study from the algorithmic perspective of computer science as well as the extremal
perspective of combinatorics. Papadimitriou and Yannakakis showed that Max-Cut is
APX-hard [37]. It is also well known that given an arbitrary partition of the vertex-set of G,
by repeatedly moving vertices from one subset of the partition to the other as long as the
size of the cut increases, one obtains a cut of size at least |E(G)|/2. A breakthrough result
by Goemans and Williamson [20] gave a 0.878-approximation algorithm, which is optimal
under the Unique Games Conjecture [26]. Max-Cut has also been well studied from the
viewpoint of parameterized complexity [12, 13, 34, 38]. In this context, a notable work is the
parameterized algorithm for an above-guarantee version of Max-Cut [13].

The (k, n − k)-Max Cut problem, which is a variant of Max Cut that has been
extensively studied in the literature, is linked even more tightly to MNH. This variant asks
whether there exists a subset A of the vertex-set of a given graph G = (V,E) such that

1 If we solve the problem with the condition “exactly”, then we solve the version with the condition “at
most” by trying every option to choose k. The condition “exactly” is of use when we have k tokens that
should be placed on distinct nodes, which together should act as a hub.
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|A| = k and E contains at least p edges with exactly one endpoint in A. For this specific
variant, Ageev and Sviridenko gave a 0.5-approximation algorithm [2], which has been slightly
improved by Feige and Langberg [17]. It is also known that this variant is W[1]-hard with
respect to the parameter k [9]. With respect to the parameter p, (k, n− k)-Max Cut can
be solved in time O∗(pp) [8]. This bound was improved to O∗(4p+o(p)) in [40], and to O∗(2p)
in [39]. The latter work also gives a polynomial kernel for (k, n− k)-Max Cut with respect
to the parameter p. Bonnet et al. [8] also gave a parameterized approximation scheme for
(k, n− k)-Max Cut with respect to the parameter k.

Furthermore, Connected Max-Cut (CMC), the variant of Max Cut where G[A]
should be a connected graph, has also been investigated in the literature. This variant
is of interest, for example, in image segmentation [42]. Essentially, MNH can be defined
as the variant of (k, n − k)-Max Cut that adopts the connectivity constraint of CMC.
Hajiaghayi et al. [23] studied CMC from the view point of approximation, and obtained
an Ω( 1

log n )-approximation algorithm for this problem. They explicitly note that since
CMC has the flavors of both cut and connectivity problems simultaneously, well-known
approaches used to develop algorithms for either connectivity problems or cut problems such
as Minimum Bisection are not applicable to CMC. Recently, Lee et al. [29] developed a
0.5-approximation algorithm for the special case of CMC where the input graph has bounded
treewidth. We remark that the study of the parameterized complexity of natural connectivity
variants of well-known problems, such as Connected Vertex Cover [7, 14, 16, 18, 22, 36],
is an active research area that has received considerable attention.

Our Contribution. In this paper, we initiate the study of multi-node hubs in general, and of
algorithmic aspects of MNH in particular. Since the concept of multi-node hubs is a natural
generalization of the concept of hubs, it can be of significant interest in various studies of
complex networks where hubs play a central role. We believe that connectivity is the most
fundamental condition to demand from multi-node hubs; in particular, it is the most basic
requirement that can allow the nodes to act as a single unit. In specialized scenarios, one
may want the hub to be “highly-connected” or to be structured in a manner compatible with
some application-specific demands. We believe that our paper can lead to several follow-up
works, not only from the viewpoint of Parameterized Complexity, on (possibly enriched)
multi-node hubs.

While it is easy to observe that MNH is W[1]-hard with respect to the parameter k, our
main contribution is the first parameterized algorithm that shows that MNH is FPT with
respect to p (Section 4). Our algorithm is primarily a classification result and should be
viewed as a proof of concept that the problem is FPT with respect to p. As a corollary to
our algorithm we also get that CMC is FPT with respect to p.

Despite the recent breakthrough advances for cut-problems like Multicut and Minimum
Bisection, MNH is still very challenging. Not only does a connectivity constraint has
to be handled on top of the involved machinery developed for these problems, but also
the fact that MNH is a maximization problem seems to prevent the applicability of this
machinery in the first place. To deal with the latter issue, we give non-trivial reduction rules
that show how MNH can be preprocessed into a problem where it is necessary to delete a
bounded-in-parameter number of vertices. Then, to handle the connectivity constraint, we
use a novel application of the form of tree decomposition introduced by Cygan et al. [15]
to solve Minimum Bisection, where we demonstrate how connectivity constraints can be
replaced by simpler size constraints. A more detailed description of this approach can be
found in Section 3. We believe that our approach can be relevant to the design of algorithms
for other cut-problems of this nature.
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2 Preliminaries

Tree Decompositions. A tree decomposition of a graph G is a pair (D,β), where D is a
rooted tree and β : V (D)→ 2V (G) is a mapping that satisfies the following conditions.

For each vertex v ∈ V (G), the set {d ∈ V (D) : v ∈ β(d)} induces a nonempty and
connected subtree of D.
For each edge {v, u} ∈ E(G), there exists d ∈ V (D) such that {v, u} ⊆ β(d).

The set β(d) is called the bag at d, while sets β(d) ∩ β(t) for {d, t} ∈ E(D) are called
adhesions. Furthermore, given a node d ∈ V (D), we denote σ(d) = β(d) ∩ β(parent(d)) in
case d is not the root, and σ(d) = ∅ otherwise. We also denote γ(d) = (

⋃
t∈des(d) β(t)) ∪ β(d).

Unbreakability. Given a graph G, we say that a pair (A,B) such that A ∪B = V (G) is a
separation if E(A \B,B \A) = ∅. The order of the separation is |A ∩B|.

Roughly speaking, a vertex-set U ⊆ V (G) is unbreakable in the graph G if every separation
of V (G) of a small order must contain a large chunk of U in one of its two sets. Intuitively,
this means that the set U is “highly-connected”: any attempt to “break” it severely by using
a separation of a small order is futile. Formally, an unbreakable set is defined as follows.

I Definition 1. Given a graph G, a set U ⊆ V (G) is (q, p)-unbreakable in G if for any
separation (A,B) of order at most p, we have that |(A \B) ∩ U | ≤ q or |(B \A) ∩ U | ≤ q.

A (q, p)-unbreakable tree decomposition, a concept introduced in [15], is a tree decomposi-
tion which satisfies several properties relating to the unbreakability and connectendness of
the “parts” to which it partitions the graph. These properties will be extremely valuable in
Section 4, where we solve the MNH problem. In particular, such a decomposition consists of
(q, p)-unbreakable bags; thus, for example, if we remove at most p vertices from the graph,
and we want to ensure that there remains a path between two vertices that belong to the
same bag, it is sufficient to ensure that each of these vertices is contained in a large enough
connected component (consisting of vertices from the bag). Formally, an unbreakable tree
decomposition is defined as follows.

I Definition 2. We say that a tree decomposition (D,β) of a graph G is (q, p)-unbreakable
if |V (D)| ≤ |V (G)| and the following conditions hold.
1. For each d ∈ V (D), the graph G[γ(d) \ σ(d)] is connected and N(γ(d) \ σ(d)) = σ(d).
2. For each d ∈ V (D), the set β(d) is (q, p)-unbreakable in G[γ(d)].
3. For each non-root d ∈ V (D), we have that |σ(d)| ≤ q and σ(d) is (2p, p)-unbreakable in

G[γ(parent(d))].

Cygan et al. [15] gave an efficient computation of unbreakable tree decompositions,
summarized in the result below.

I Theorem 3. For some constant c > 0, there is an O∗(2O(p2))-time algorithm that, given a
connected graph G, computes a (2cp, p)-unbreakable tree decomposition of G.

3 Our Technique

To handle the cut constraint (|E(A, V (G) \A)| ≥ p), we employ the randomized contractions
technique [10], for which an excellent high-level description is given in Section 1.1 of [11].
Since our problem also involves a size constraint (|A| = k), we also rely on Theorem 3
(Section 2). In short, Cygan et al. [15] showed how to replace the recursion scheme of
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the randomized contractions technique with a dynamic programming computation over a
static tree decomposition; this enabled a possibility for a DP state to depend on a few
counters (like sizes of parts in the case of Minimum Bisection of [15]), unachievable in
the pure randomized contractions framework. The randomized contractions framework,
regardless of whether one uses the original recursion scheme or the tree decomposition of
[15], always requires significant technical work, but in most so-far known cases, this work is
not particularly novel – it follows the bumpy but well-paved way of [10]. This is not the case
in the study of the MNH problem.

First, note that the MNH problem asks for a cut of size at least p, whereas all known uses
of randomized contractions focused on cuts of size bounded-in-parameter. Thus, directly, it
seems that randomized contractions or the decomposition of [15] would not give much. Our
first main insight is that if n ≥ k + p, then a subgraph being a small enough tree with at
least p leaves witnesses a YES-instance, in which case the problem becomes similar to the
Max Leaf Spanning Tree problem [28], and can be solved using the method of bounded
search trees. Thus we are left with the case where |V (G) \A| ≤ p, that is, we are to delete
bounded-in-parameter number of vertices from the graph (delete V (G) \A), such that the
graph stays connected, but at least p edges “stick out” of the remaining graph. Now we think
of the set V (G)\A as the “cut-set” for the randomized contractions technique, and finally we
can start up the entire machinery. To this end, we give one more important problem-specific
insight that greatly simplifies the use of randomized contractions: once we know n < k + p,
then it is easy to check if a vertex v of degree > 2p can be put outside A – any set A of size
k not containing v needs to have ≥ p edges that touch v. Thus, after easy filtering, we can
put all vertices of degree > 2p into A. By replacing each of these vertices by a binary tree,
we obtain a graph of degree bounded by 2p. This degree bound makes the use of “flower
cuts” (see [10]) unnecessary; intuitively, it makes the picture much closer to edge-cuts than
vertex-cuts.

At this point, we finally employ the special form of tree decomposition of Cygan et
al. [15]. We use this decomposition in a non-standard manner, which relies on a twist of the
understanding of the meaning of a cut-set in the randomized contractions framework, that
may be of independent interest. In particular, we demonstrate how this decomposition can be
used to tackle difficult connectivity constraints by replacing them by simpler size constraints:
since each bag in the tree decomposition is a “highly-connected” subgraph of G (see Section
2), removing a few vertices from G cannot create two (separate) connected components that
contain many vertices from the bag. Thus, instead of using direct computations to ensure the
existence of paths between certain vertices, which may be very inefficient in case the paths
are long, we can sometimes merely verify that the vertices are contained in large connected
components.

Each node of the tree decomposition will be associated with a problem reflecting the
“work” that should be performed when handling its bag. The definition is quite technically
involved, since it is has to capture both connectivity and cut constraints, and since it has
to incorporate information provided by solutions for problems associated with the bags of
the children (which also capture both connectivity and cut constraints), while providing
enough information that will next allow us to solve the problem associated with the bag of
the parent. By proving several observations that aim to bound the sizes of “problematic”
sets of vertices (e.g., vertices in the “surroundings” of vertices that should not be put in
A), we can develop a procedure that solves the problem associated with a single bag, based
on the classic color coding method [3]. More precisely, by relying on the properties of an
unbreakable tree decomposition as well as the fact that n < k+p and ∆G < 2p, we implicitly

IPEC 2018



8:6 Parameterized Complexity of Multi-Node Hubs

show that only for a bounded-in-parameter number of the problems associated with the bags
of the children we may not simply take all of the vertices of the graph, and that it is sufficient
to classify correctly (via color coding) only a bounded-in-parameter number of vertices in the
“surroundings” of vertices that should not be put in A. We also bound the number of vertices
that surround these “surroundings”, and thus, essentially, we obtain connected components
that can be handled in a partially independent manner that relies on dynamic programming.
The solutions to the problems associated with the individual bags are combined by using a
somewhat technically involved procedure that is also based on dynamic programming.

4 Multi-Node Hub is FPT with Respect to p

In this section we prove our main result:

I Theorem 4. The MNH problem is solvable in time O∗(22O(p)).

We first solve simple cases of MNH (Section 4.1), where either the graph G contains
many vertices (more precisely, n ≥ k + p) or there exists a solution A such that V (G) \ A
contains a vertex of high-degree. Then, we turn to focus on the difficult instances whose
handling relies on the properties of an unbreakable tree decomposition (Section 4.2).

4.1 The Preprocessing Phase
We first handle instances where G contains many vertices (Lemma 6). Then, we handle the
remaining instances to which there is a solution A that excludes a high-degree vertex (Lemma
7). Thus, we overall define special instances (called useful instances) of a new problem (called
Special MNH (SMNH)), which encapsulates the difficult instances of MNH (Lemma 8).

Assume WLOG that G is a connected graph. To solve instances where n ≥ k + p, we
need the following notation. Given a rooted tree T , leaves(T ) and internal(T ) denote the
leaf-set and the set of internal vertices of T , respectively. Given two trees, T and Te, we say
that Te extends T if T is a subtree of Te. Observe that if Te extends T , then the number of
leaves of Te is larger or equal to the number of leaves of T . This leads us to the next simple
observation.

I Observation 5. If a graph G on at least k + p vertices contains a subtree T with at most
k internal vertices and at least p leaves, then (G, k, p) is a yes-instance of MNH.

Proof. Recall that G is a connected graph. Thus, since n ≥ k+p, as long as | internal(T )| < k

and |V (T )| < k+ p, we can extend T to a tree Te such that |V (Te)| = |V (T )|+ 1. At the end
of this process, we obtain a tree T ′ with at least p leaves (since the original tree T had at
least p leaves) such that | internal(T ′)| ≤ k and |V (T ′)| ≥ k + p. We let A = internal(T ′) ∪ U
where U is an arbitrarily chosen subset of leaves(T ′) of size exactly k − | internal(T ′)|. Thus,
we obtain a solution A to the instance (G, k, p) of MNH. J

We are now ready to handle instances where n ≥ k + p.

I Lemma 6. MNH restricted to instances where n ≥ k + p is solvable in time O∗(2O(p)).

Proof. Let (G, k, p) be an instance of MNH where n ≥ k+ p. The main reason why such an
instance is simple lies in Observation 5, which implies that once we find a tree with a small
number of internal vertices and a large number of leaves, we are done. This observation is
exploited by our bounded search tree-based procedure, called MNH. During its execution, we
maintain a tree T , and make “difficult” decisions (that is, decisions made by using branching
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rather than reduction rules) relating to the insertion of vertices into a solution A when
handling vertices that should next be internal vertices with at least two children or fixed as
leaves in the tree T . Since a tree with at most p leaves has at most p internal vertices with at
least two children, Observation 5 bounds the number of difficult decisions we need to make
(along each branch of the search tree) before we can conclude whether there is a solution.

Each call to MNH has the form MNH(G, k, p, T,O, I), where T is a rooted subtree of G,
O ⊆ leaves(T ), and I ⊆ leaves(T ) \O such that NG(I) ⊆ V (T ). Informally, internal(T ) ∪ I
contains the vertices we decided to insert into the solution A that we attempt to construct,
while O contains those we decided to leave outside A. We further ensure that for every vertex
v ∈ internal(T ), T contains the entire set NG(v) (i.e., NG(v) ⊆ V (T )). In other words, given
a vertex which we decided to insert into A (by inserting it into either I or internal(T )), we can
assume that all of its neighbors belong to T . That is, we rely on the following assumption:

For every vertex v ∈ I ∪ internal(T ), we have that NG(v) ⊆ V (T ).

Since T , O and I are the only arguments changed during the execution, we use the
abbreviation MNH(T,O, I). The goal of such a call is to accept if there is a solution A to
the instance (G, k, p) of MNH such that internal(T ) ∪ I ⊆ A and O ∩A = ∅, and to reject if
there is no solution A to this instance (in the other cases, we can either accept or reject).
Clearly, we can use MNH to solve MNH in the following manner. We call it with every
subtree T of G that consists of exactly one internal vertex along with all of its neighbors as
children (which will be leaves), and O = I = ∅. Then, we accept if and only if at least one of
the calls to MNH accepts.

To analyze the rules of MNH, we use the measure 3p−|E(internal(T )∪I,O)|−| leaves(T )|−
|I ∪O|. The necessity of incorporating |E(internal(T ) ∪ I,O)| in the measure will be clear at
the analysis of the branching vector of our last rule. Initially, the measure is at most 3p. At
the latest, when the measure drops to a non-positive value, we will ensure that MNH returns
an answer in polynomial time. We will also ensure that the branching rules performed by
MNH are associated with branching vectors whose roots are bounded by a fixed c. Thus,
we get that the overall running time is bounded by O∗(2O(p)). Now, it remains to give the
list of rules of MNH(T,O, I), and prove that they satisfy the above mentioned properties.
We note that although our problem resembles the Max Leaf Spanning Tree problem
[28], there are important differences between the two problems, which forces us to devise a
different, somewhat technically involved, set of rules (which is, nevertheless, inspired by the
approach of [28]). In particular, recall that our goal is not to accept if and only if G contains
a subtree with at least p leaves – however, if we do find a small enough such subtree, we can
terminate the execution of our procedure.

Due to lack of space, the list of rules is omitted. J

We are only left with the case n < k + p. Next, we show a lemma that will help us in
assuming that the maximum degree of the input graph is bounded by 2p.

I Lemma 7. Given an instance (G, k, p) of MNH where n < k+p, in polynomial time we can
decide whether there exists a solution A that does not contain R̃ = {v ∈ V (G) : |N(v)| ≥ 2p}.

Proof. Suppose there exists a solution A such that R̃ \A 6= ∅. Furthermore, let v∗ ∈ (R̃ \A).
Then, there is a connected component C∗ in G[V \ {v∗}] on at least k vertices. As long
as |V (C∗)| > k, compute a tree that spans C∗ and remove from C∗ a vertex that is a leaf
in this tree. At the end of this process, we obtain a connected subgraph A of G[V \ {v∗}]
on exactly k vertices. Since n < k + p and |N(v)| ≥ 2p, this subgraph contains at least p
vertices from N(v). Therefore, |E(V (A), V (G) \ V (A))| ≥ p. Thus, we get that V (A) is a
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solution to (G, k, p) of the desired kind. Our argument shows that to decide whether there is
a solution A such that R̃ \A 6= ∅, we can simply check whether there is a vertex v ∈ R̃ such
that G \ {v} has a connected component of size at least k. This can be done in polynomial
time. J

When we will solve difficult instances, it will be useful to assume that we handle graphs G
such that ∆G < 2p. To this end, we define the Special MNH (SMNH) problem as follows.
The input (G, k, p,R) consists of an instance (G, k, p) of MNH and a subset R ⊆ V (G). The
goal is to decide if there is a solution A to the instance (G, k, p) of MNH such that R ⊆ A.
We say that an instance (G, k, p,R) for SMNH is useful if n < k+ p and ∆G < 2p. Next, we
show that we can focus on solving useful instances of SMNH rather than instances of MNH.

I Lemma 8. Given an instance (G, k, p) of MNH, there is an O∗(2O(p))-time algorithm
that either solves (G, k, p) or returns a useful instance (G′, k′, p, R) of SMNH such that
(1) |V (G′)| = O(|E(G)|), and (2) (G, k, p) is a yes-instance if and only if (G′, k′, p, R) is a
yes-instance.

Proof. Let R̃ = {v ∈ V (G) : |NG(v)| ≥ 2p}. By Lemmas 6 and 7, we can assume that (a)
n < k + p, and (b) there is no solution A for (G, k, p) such that R̃ \A 6= ∅. For each vertex
v ∈ R̃, let Tv be a binary tree on |NG(v)| leaves and |NG(v)| − 1 internal vertices. While G
contains a vertex v ∈ R̃, insert Tv into G such that each leaf of Tv is connected by an edge to
a distinct vertex in NG(v), and then remove v (and the edges containing v) from G. Let the
resulting graph be G′. Clearly, ∆G′ < 2p and property (1) holds. Let k′ = |V (G′)| − (n− k),
and R =

⋃
v∈R̃

V (Tv). By assumption (a), |V (G′)| = k′ + (n − k) < k′ + p, and thus we
conclude that (G′, k′, p, R) is useful. By assumption (b) and our definition of G′, k′ and R,
A is a solution for (G, k, p) if and only if (A \ R̃) ∪ R is a solution for (G′, k′, p, R). Thus,
property (2) holds. J

4.2 An Algorithm for the Difficult Instances
First, we briefly discuss some of the details of the dynamic programming computation that
combines solutions to problems associated with individual bags (Section 4.2.1). Then, we
formally define the problem associated with a single bag (Section 4.2.2). Due to lack of space,
the algorithm that solves it is omitted.

4.2.1 Combining Individual Bags (Overview)
Let (G, k, p,R) be a useful instance of SMNH (i.e., n < k + p and ∆G < 2p). Recall that
we assume WLOG that G is a connected graph. Then, by Theorem 3, we can construct a
(2O(p), p)-unbreakable tree decomposition (D,β) in time O∗(2O(p2)). We let c be the constant
such that (D,β) is (2cp, p)-unbreakable. Let r ∈ V (D) be the root of D, and recall that
σ(r) = ∅. As usual for tree decompositions, we will use dynamic programming. Unlike
dynamic programming over normal tree decompositions where the size of the bag is bounded,
we have that for all d ∈ V (D), β(d) is (2cp, p)-unbreakable. Thus, the problem we need to
solve even for one bag becomes a problem in itself.

The Definition of M. At every node d of the tree decomposition we keep a matrix (table)
that stores how an optimal solution A∗ when restricted to G[γ(d)] could potentially look
like. Towards this we use a matrix M that has an entry [d, T, q, P ∗] for all d ∈ V (D),
R∩β(d) ⊆ T ⊆ (R∩β(d))∪σ(d), q ∈ {max{0, k−|(V (G)\γ(d))∪(T∩σ(d))|}, . . . ,min{|γ(d)\
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σ(d)|, k − |T ∩ σ(d)|}}, and P ∗ ⊆ {{v, u} : v, u ∈ σ(d) ∩ T}. The set T is used to guess the
intersection of A∗ with σ(d), and the edge-set P ∗ is used to determine the partition of T into
connected components. That is, if we look at the graph, say T ∗, induced by T ∩σ(d) together
with edges from P ∗, we get a set of connected components, and the idea is that when we
restrict A∗ to G[γ(d)], say A∗d, then every connected component of A∗d must contain exactly
one connected component of T ∗. In other words, we use T ∗ to remember the connected
components of A∗d in G[γ(d)]. Next, consider some entry M[d, T, q, P ∗].

We say that a subset A ⊆ γ(d) is (d, T, q, P ∗)-valid if the following conditions hold.
1. T ⊆ A, (σ(d) \ T ) ∩A = ∅ and R ∩ γ(d) ⊆ A.
2. If σ(d) ∩ T 6= ∅, then every connected component of G[A] contains a vertex from σ(d),

and otherwise G[A] is a connected graph.
3. For all {v, u} ∈ P ∗: G[A] has a connected component containing both v and u.
4. |A \ σ(d)| = q.
5. If A 6= ∅, then A ∩ β(d) 6= ∅.
For a (d, T, q, P ∗)-valid set A, we define p̃(A) = |E(A, γ(d) \A) \E(A∩ σ(d), σ(d) \A)|. The
entry M[d, T, q, P ∗] is meant to store p̃d,T,q,P∗ , the maximum value such that there exists a
(d, T, q, P ∗)-valid set A satisfying p̃(A) = p̃d,T,q,P∗ .

Having computed M, we can solve the useful instance (G, k, p,R) of SMNH. Indeed,
(G, k, p,R) is a yes-instance if and only if a value that is at least p is stored in at least one
entry of the form M[d, T, k, ∅] where σ(d) ∩ T = ∅. Since M contains O∗(22O(p)) entries, it is
sufficient to show that each entry of M can be computed in time O∗(22O(p)).

Constructing an Instance of Single Bag. We compute the entries ofM by using a postorder
traversal; the order of computation between entries having the same argument d is arbitrary.
Now, consider some entry M[d, T, q, P ∗], where it is possible that d is a leaf, and assume that
all of the preceding entries of M have been already computed correctly. To compute the entry
M[d, T, q, P ∗], we construct an instance (H, k, p, T, U∗, P ∗,U , edges, size, cut) of a problem
that we call Single Bag, and let M[d, T, q, P ∗] store the result Wq obtained by calling the
algorithm we shall develop for Single Bag, which runs in the desired time O∗(22O(p)). Here,
edges, size and cut are appropriate functions that are specified using the previously computed
matrices at the children nodes. The parameters k and p are the same as those in the original
instance of SMNH, and T and P ∗ are specified by the entry of M. We let H = G[β(d)] and
U∗ = σ(d). Since ∆G < 2p, we have that ∆H < 2p. Moreover, we let U denote the multiset
{σ(d′) : d′ ∈ childrenD(d)}. For each occurrence U ∈ U , we let dU denote a different child
such that σ(dU ) = U . The functions are defined as follows.

For each U ∈ U , edges(U) contains every edge-set in 2{{v,u}:v,u∈U}. This is used to
represent how a partial solution is connected in the graph G[σ(dU )].
For each U ∈ U , let size(U) = |γ(dU ) \ σ(dU )|. Moreover, let size(U∗) = |V (G) \ γ(d)|.
cut : {(U,AU , EU , sU ) : U ∈ U , AU ⊆ U,EU ∈ edges(U), sU ∈ {0, 1, . . . , size(U)}} →
{−∞, 0, 1, 2, . . .}. The function cut assigns a value to every tuple (U,AU , EU , sU ). Such
a tuple represents a problem already solved that is associated with the bag β(dU ). The
tuple implies that in this problem, it is required that AU is contained in the partial
solution, connectivity of the partial solution is similar to the one given by edges in EU ,
and exactly sU vertices from γ(dU ) \ β(d) are part of this partial solution. The value
assigned by cut is the maximum number of edges that could emanate from a partial
solution satisfying the connectivity and the size requirements given by AU , EU and sU .
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4.2.2 The Problem Associated with a Single Bag
In this section we define the problem, called Single Bag, which reflects the “work” that
should be performed when handling each bag individually.

Input. The input is of the form (H, k, p, T, U∗, P ∗,U , edges, size, cut), where
1. (H, k, p, T ) is an instance of SMNH, where ∆H < 2p.
2. U∗ ⊆ V (H), P ∗ ⊆ {{v, u} : v, u ∈ U∗ ∩ T}.
3. U is a multiset of subsets of V (H).
4. edges is a function that assigns to each set U ∈ U a subfamily of the family of edge-sets

2{{v,u}:v,u∈U}. The family 2{{v,u}:v,u∈U} includes the edge-set EU
com = {{v, u} : v, u ∈ U}

such that the graph on the vertex-set U and the edge-set EU
com is a clique.

5. size : {U∗} ∪ U → {0, 1, . . . , n}. Recall that n = |V (G)|.
6. cut : {(U,AU , EU , sU ) : U ∈ U , AU ⊆ U,EU ∈ edges(U), sU ∈ {0, 1, . . . , size(U)}} →
{−∞, 0, 1, 2, . . .}.

We now attempt to give informal explanations of the intuition underlying the choice of
the arguments of the input. Roughly speaking, they relate to a bag as follows. Let β(d)
be the bag associated with the node d of the tree decomposition that is currently being
examined, β(dp) be the bag associated with the parent dp, β(dc

1), β(dc
2), . . . , β(dc

t) be the bags
associated with the children, and γ(dc

i ) be the union of β(dc
i ) and the bags of the descendants

of the child dc
i for all i ∈ {1, 2, . . . , t}.

Recall that G is the graph in the original instance of SMNH. In that context, we will let
the graph H be the subgraph of G induced by the set of vertices in the current bag β(d),
i.e., H = G[β(d)]. The parameters k and p are the same as those in the original instance of
SMNH, while T may contain, in addition to R, vertices from U∗. The arguments U∗, P ∗ and
size(U∗) allow using solutions to the current problem (defined by d) when we next solve the
problem defined by dp, while the remaining arguments allow using solutions to the problems
defined by dc

1, d
c
2, . . . , d

c
t when solving the current problem. More precisely, U∗ is the adhesion

between d and dp (i.e., U∗ = β(d) ∩ β(dp)), while each set U ∈ U is the adhesion between
β(d) and the child β(dc

i ). The function size assigns U∗ the size of V (G)\γ(d) (which contains
vertices yet to be handled), while it assigns each set U ∈ U the size of β(dc

i ) \ U for the
appropriate i (which contains vertices already handled). The set P ∗ contains pairs of vertices
that should be connected in the solution for the current problem, to ensure the connectivity
of the the graph induced by the solution A that we ultimately attempt to construct (upon
handling all of the bags). When we solve the problem associated with dp, it might not be
possible/worthy to connect these vertices, and thus we need to have a set that specifies
connectivity requirements that must already be addressed.

For each set U ∈ U , edges assigns a family of edge-sets. Exactly one edge-set can be
added to the graph H (see “Valid Triples”), and it is aimed to allow finding solutions that
cannot be found without it (since a connectivity constraint will be broken). Each edge in
such an edge-set represents a path that exists in a solution already computed (for a problem
associated with a bag of a descendant). For example, when we next solve the problem
associated with dp, we will be able to use P ∗ as such an edge-set. Note that each edge-set
is associated with a certain value, specified by cut, and thus it is not true that it is always
best to choose a large, or even a non-empty, edge-set from edges(U). Finally, the function
cut assigns a value to each tuple (U,AU , EU , sU ). Such a tuple represents a problem already
solved, associated with dc

i for the appropriate i (in particular, β(d) ∩ β(dc
i ) = U). The tuple

implies that in this problem, it was required that AU is contained in the solution, paths
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between every two vertices in EU are located, and exactly sU vertices from γ(dc
i ) \ β(d) are

inserted to the solution. The value assigned by cut is the number of edges between vertices
in the solution (to the problem already solved) and the other vertices in γ(dc

i ) (excluding
edges between vertices in U).

Restrictions. Next, we denote tSize = |V (H)| +
∑

U∈{U∗}∪U size(U). For the sake of
efficiency of our algorithm for Single Bag, we impose several restrictions on an input
instance.
1. For all U ∈ U ∪ {U∗}: |U | ≤ 2cp, and each vertex in V (H) is contained in at most 2p

(not necessarily distinct) sets in the multiset U .
2. tSize = n < k + p.
3. For all (U,AU , EU , sU ) ∈ domain(cut) such that EU 6= {{v, u} : v, u ∈ U}, U = AU and

sU = size(U): cut(U,AU , EU , sU ) = −∞.

The first restriction bounds the size of sets that are part of an input instance, and thus it
is clear that this restriction can potentially make the instance easier to solve efficiently. The
second restriction will allow us to assume that there are not too many sets U ∈ U for which
we may not use the default options AU = U and sU = size(U), while the third restriction
will overall allow us to conclude that there are not too many sets U ∈ U for which we may
not use the default option EU = {{v, u} : v, u ∈ U}. The claims are made precise in “Goal”.

Output. For each q ∈ {max{0, k−size(U∗)−|U∗∩T |}, . . . ,min{tSize−size(U∗)−|U∗|, k−
|U∗ ∩ T |}}, we will need to find the “best” triple (A, f, g) that satisfies certain conditions.
Thus, we first work towards defining which triples are valid with respect to a given q.

Valid Triples. A triple (A, f, g) is potentially valid if T ⊆ A ⊆ V (H) \ (U∗ \ T ), f is a
function such that f(U) ∈ edges(U) for all U ∈ U , and g is a function such that g(U) ∈
{0, 1, . . . , size(U)} for all U ∈ U . We say that a set U ∈ U is A-damaged, f-damaged and
g-damaged if U \A 6= ∅, f(U) 6= {{v, u} : v, u ∈ U} and g(U) 6= size(U), respectively. Roughly
speaking, a set U ∈ U is A-damaged if we do not “take” all of its vertices, f-damaged if
we do not “take” all edges between its vertices, and g-damaged if we do not “take” all of
the vertices “below” U . Overall, a set U ∈ U is damaged if it is A-damaged, f-damaged or
g-damaged. We will show below (in “Goal”) that only few sets are damaged; the efficiency
of our algorithm crucially relies on this observation, which essentially says that only few
sets need “special attention”. Moreover, we say a vertex v ∈ V (H) is damaged if v ∈ A
and at least one of the two following conditions hold: (1) v ∈ U for a damaged set U ; (2)
v ∈ NH(u) for a vertex u ∈ V (H) \A. Finally, we define the damage control graph, H(A, f),
as the graph H[A] to which we add the edges in

⋃
U∈U f(U). Formally, V (H(A, f)) = A

and E(H(A, f)) = E(H[A]) ∪ (
⋃

U∈U f(U) ∩ {{v, u} : v, u ∈ A}). We say that a connected
component is huge if it contains at least 2cp vertices.

We are now ready to define which triples are valid with respect to a given q ∈ {max{0, k−
size(U∗)− |U∗ ∩ T |}, . . . ,min{tSize− size(U∗)− |U∗|, k − |U∗ ∩ T |}}.

I Definition 9. A potentially valid (A, f, g) is q-valid if the following conditions hold.
1. For each damaged vertex v such that the connected component C of H(A, f) containing

v is not huge, at least one of the following conditions holds.
a. V (C) ∩ (U∗ ∩A) 6= ∅.
b. |V (H)| ≤ 2cp + p and H(A, f) is a connected graph.
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2. If there exists a damaged vertex v such that the connected component C of H(A, f)
containing v is huge, then at least one of the following conditions holds.
a. H(A, f) has a huge connected component C ′ such that V (C ′) ∩ (U∗ ∩A) 6= ∅.
b. H(A, f) has no connected component that contains a damaged vertex and is not huge.

3. For all {v, u} ∈ P ∗, either H(A, f) has a connected component containing both v and u
or each of its connected components containing v or u is huge.

4. q = |A \ U∗|+
∑

U∈U g(U).

Each q-valid triple is a potential solution for Single Bag. The first three conditions are
related to the connectivity demand of a solution to MNH, and the fourth to the size demand.
The value of a q-valid triple (A, f, g) is

W (A, f, g) = |E(A, V (H) \A) \ E(U∗ ∩A,U∗ \A)|+
∑
U∈U

cut(U,A ∩ U, f(U), g(U)).

Informally, W (A, f, g) is the sum of the number of edges between vertices in A and
vertices outside A (excluding edges with both endpoints in U∗), to which we add the sum of
the values of previously computed solutions.

Goal. For each q ∈ {max{0, k − size(U∗)− |U∗ ∩ T |}, . . . ,min{tSize− size(U∗)− |U∗|, k −
|U∗ ∩ T |}}, we need to compute the maximum value Wq for which there exists a q-valid
triple (A, f, g) such that Wq = W (A, f, g). In case Wq is not defined, since there does not
exist a q-valid tuple, we set Wq = −∞.

The following observation bounds the number of damaged sets in U and the number of
damaged vertices corresponding to a q-valid triple. The main intuition is that if the current
bag has several children then the size of the graph (which is less than k+ p) forces a solution
to select all vertices of all the subgraphs induced by the children, except p of them. This
observation is used to allow us to apply the color coding method efficiently. Due to lack of
space, the proof is omitted.

I Observation 10. If (A, f, g) is a q-valid triple such that Wq = W (A, f, g), then
|V (H) \A| ≤ p and (A, f, g) damages at most 2p2 sets in U ,
(A, f, g) damages at most 2p2 · (2cp + 1) vertices, and
g(U) ≥ size(U)− p for all U ∈ U .

5 Conclusion

In this paper, we initiated the study of multi-node hubs in general, and of algorithmic aspects
of MNH in particular. The concept of multi-node hubs is a natural generalization of the
concept of hubs, therefore it might play a central role in the analysis of complex networks.
We showed that although MNH is W[1]-hard parameterized by k, it is FPT parameterized
by p. Our algorithm is primarily a classification result and should be viewed as a proof
of concept that the problem is FPT. While our approach may lead to an algorithm with
running time O∗(2pO(1)) (or even O∗(2O(p log p))), developing an algorithm with running time
O∗(2O(p)) seems challenging. It may also be interesting to consider other natural restrictions
on the set A such as properties expressible in monadic second order logic, or to study MNH
with respect to parameters other than k and p.

To the best of our knowledge, besides our algorithm, only algorithms for Bisection and a
problem called Judicious Partition [32] are based on the decomposition of [15]. Exploring
the power of this decomposition more deeply might be fruitful; in this context, it is noteworthy
to mention [31]. In our application, we showed how an instance of a maximization problem
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can be preprocessed to a form that enables using known tools to solve cut-problems and in
particular the decomposition of [15], as well as a manner in which connectivity constraints
can be handled on top of cut and size constraints. We believe that our approach can be
relevant to the design of algorithms for other cut-problems of this nature.
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Abstract
The maximum modularity of a graph is a parameter widely used to describe the level of clustering
or community structure in a network. Determining the maximum modularity of a graph is
known to be NP-complete in general, and in practice a range of heuristics are used to construct
partitions of the vertex-set which give lower bounds on the maximum modularity but without
any guarantee on how close these bounds are to the true maximum. In this paper we investigate
the parameterised complexity of determining the maximum modularity with respect to various
standard structural parameterisations of the input graph G. We show that the problem belongs
to FPT when parameterised by the size of a minimum vertex cover for G, and is solvable in
polynomial time whenever the treewidth or max leaf number of G is bounded by some fixed
constant; we also obtain an FPT algorithm, parameterised by treewidth, to compute any constant-
factor approximation to the maximum modularity. On the other hand we show that the problem
is W[1]-hard (and hence unlikely to admit an FPT algorithm) when parameterised simultaneously
by pathwidth and the size of a minimum feedback vertex set.
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1 Introduction

The increasing availability of large network datasets has led to great interest in techniques to
discover network structure. An important and frequently observed structure in networks is
the existence of groups of vertices with many connections between them, often referred to as
‘communities’.

Newman and Girvan introduced the modularity function in 2004 [22]. Modularity gives
a measure of how well a graph can be divided into communities and is used in the most
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popular algorithms to cluster large networks. For example, the Louvain method, an iterative
clustering technique, uses the modularity function to choose which parts from the previous
step to fuse into larger parts at each step [2, 15]. The widespread use of modularity and
empirical success in finding communities makes modularity an important function to study
from an algorithmic point of view.

In this paper we are concerned with the computational complexity of computing the
maximum modularity of a given input graph, and specifically in the following decision
problem.

Modularity
Input: A graph G and a constant q ∈ [0, 1].
Question: Is the maximum modularity of G at least q?

This problem was shown to be NP-complete in general by Brandes et. al. [3], using a
construction that relies on the fact that all vertices of a sufficiently large clique must be
assigned to the same part of an optimal partition. They also showed that a variation of
the problem in which we wish to find the optimal partition into exactly two sets is hard;
their proof for this relied again on the use of large cliques, but DasGupta and Desai [5]
later showed that this 2-clustering problem remains NP-complete on d-regular graphs for
any fixed d ≥ 9. It has also been shown that it is NP-hard to approximate the maximum
modularity within any constant factor [7], although there is a polynomial-time constant-factor
approximation algorithm for certain families of scale-free networks [9]. The hardness of
computing constant-factor multiplicative approximations in general has motivated research
into approximation algorithms with an additive error [7, 16]: the best known result is an
approximation algorithm with additive error roughly 0.42084 [16].

In this paper we initiate the study of the parameterised complexity of Modularity,
considering its complexity with respect to several standard structural parameterisations. On
the positive side, we show that the problem is in FPT when parameterised by the cardinality of
a minimum vertex cover for the input graph G, and that it belongs to XP when parameterised
by either the treewidth or max leaf number of G. The XP algorithm parameterised by
treewidth can easily be adapted to give an FPT algorithm, parameterised by treewidth, to
compute any constant-factor approximation maximum modularity. On the other hand, we
demonstrate that Modularity, parameterised by treewidth, is unlikely to belong to FPT:
we prove that the problem is W[1]-hard even when parameterised simultaneously by the
pathwidth of G and the size of a minimum feedback vertex set for G. For background on
parameterised complexity, and the complexity classes discussed here, we refer the reader to
[4, 10].

These results follow the same pattern as those obtained for the problem Equitable
Connected Partition [11], and indeed our hardness result involves a reduction from a
specialisation of this problem. There are clear similarities between the two problems: in a
partition that maximises the modularity, every part will induce a connected subgraph and,
in certain circumstances, we achieve the maximum modularity with a partition into parts
that are as equal as possible. However, the crucial difference between the two problems
is that the input to Equitable Connected Partition includes the required number of
parts, whereas Modularity requires us to maximise over all possible partition sizes; in
fact, if we restrict to partitions with a specified parts, it is no longer necessarily true that
a partition maximising the modularity must induce connected subgraphs. This difference
makes reductions between the two problems non-trivial.
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1.1 The modularity function
The definition of modularity was first introduced by Newman and Girvan in [22]. Many or
indeed most popular algorithms used to search for clusterings on large datasets are based on
finding partitions with high modularity [17, 14], and the heuristics within them sometimes
also use local modularity optimisation, for example in the Louvain method [2]. See [23, 13]
for surveys on community detection including modularity based methods.

Knowledge on the maximum modularity for classes of graphs helps to understand the
behaviour of the modularity function. There is a growing literature on this which began
with cycles and complete graphs in [3]. Bagrow [1] and Montgolfier et al. [6] showed some
classes of trees have high maximum modularity which was extended in [19] to all trees with
maximum degree o(n), and furthermore to all graphs where the product of treewidth and
maximum degree grows more slowly than the number of edges. Many random graph models
also have high modularity, see [20, 21] for a treatment of Erdős-Renyi random graphs, [19] for
random regular graphs and also [24] which includes the preferential attachment model.

Given a set A of vertices, let e(A) denote the number of edges within A, and let vol(A)
(sometimes called the volume of A) denote the sum of the degree dv (in the whole graph G)
over the vertices v in A. For a graph G with m ≥ 1 edges and a vertex partition A of G, set
the modularity of A on G to be

qA(G) = 1
2m

∑
A∈A

∑
u,v∈A

(
1uv∈E −

dudv
2m

)
= 1
m

∑
A∈A

e(A)− 1
4m2

∑
A∈A

vol(A)2;

the maximum modularity of G is q∗(G) = maxA(G), where the maximum is over all partitions
A of the vertices of G. Graphs with no edges are defined conventially to have modularity 0.

The modularity function is designed to score partitions highly when most edges fall within
the parts and penalise partitions with very few or very big parts. These two objectives
are encoded as the edge contribution or coverage qEA(G) = 1

m

∑
A∈A e(A), and degree tax

qDA (G) = 1
4m2

∑
A∈A vol(A)2, in the modularity of a vertex partition A of G.

Note that for any graph with m ≥ 1 edges 0 ≤ q∗(G) < 1. To see the lower bound, notice
that the trivial partition which places all vertices in the same part has modularity zero. For
example, complete graphs and stars have modularity 0 as noted in [3]. A graph consisting of
c disjoint cliques of the same size has modularity 1− 1/c with the optimal partition taking
each clique to be a part.

As modularity is at most 1 it is sometimes useful to consider the modularity defect
q̃A(G) = 1 − qA(G). Denote by ∂(A) the number of edges between A and the rest of the
graph. Then

q̃A(G) = 1
2m

∑
A∈A

(
∂(A) + vol(A)2

2m

)
and we may equivalently minimise the modularity defect as maximise the modularity. In
particular

q̃(G) = min
A∈A

q̃A(G) = 1− q∗(G).

We will make use of several facts about the maximum modularity of a graph.

I Fact 1.1 (Lemma 3.3 of [3]). If A is a partition of V (G) such that qA(G) = q∗(G) then
no part A consists of a single vertex of degree 1.

IPEC 2018



9:4 The Parameterised Complexity of Computing the Maximum Modularity of a Graph

I Fact 1.2 (Lemma 3.4 of [3]). Suppose that G is a graph that contains no isolated vertices.
If A is a partition of V (G) such that qA(G) = q∗(G) then, for every A ∈ A, G[A] is a
connected subgraph of G.

I Fact 1.3 (Corollary 1 of [3]). Let G = (V,E) and suppose that V0 ⊆ V is a set of isolated
vertices. Then q(G) = q(G \ V0). Moreover, if partitions A and A′ agree on all vertices of
V \ V0, then qA(G) = qA′(G).

I Fact 1.4 (Lemma 1 of [8],Lemma 2.1 of [5]). For any integer c > 0 and any graph G,

max
|A|≤c

qA(G) > q∗(G)
(

1− 1
c

)
.

1.2 Notation and definitions
Given a graph G = (V,E), and a set U ⊆ V of vertices, we write G[U ] for the subgraph of G
induced by U and G \ U for G[V \ U ]. Given two disjoint subsets of vertices A,B ⊆ V , we
write e(A,B) for the number of edges with one endpoint in A and the other in B. We shall
often want to denote the number of edges between a set of vertices and the remainder of the
graph so set ∂(A) = e(A, Ā). If P is a partition of a set X, and Y ⊂ X, we write P[Y ] for
the restriction of P to Y .

A vertex cover of a graph G = (V,E) is a set U ⊆ V such that every edge has at least
one endpoint in U ; equivalently, G \ U is an independent set (i.e. contains no edges). The
vertex cover number of G is the smallest cardinality of any vertex cover of G. A feedback
vertex set for G is a set U ⊆ V such that G \ U contains no cycles. Notice that the vertex
cover number of G gives an upper bound on the size of the smallest feedback vertex set for
G, written fvs(G). The max leaf number of G is the maximum number of leaves (degree one
vertices) in any spanning tree of G.

A tree decomposition of a graph G is a pair (T,D) where T is a tree and D = {D(t) : t ∈
V (T )} is a collection of non-empty subsets of V (G) (or bags), indexed by the nodes of T ,
satisfying:
1. V (G) =

⋃
t∈V (T )D(t),

2. for every e = uv ∈ E(G), there exists t ∈ V (T ) such that u, v ∈ D(t),
3. for every v ∈ V (G), if T (v) is defined to be the subgraph of T induced by nodes t with

v ∈ D(t), then T (v) is connected.
If T is in fact a path, we say that (T,D) is a path decomposition of G. The width of the tree
decomposition (T,D) is defined to be maxt∈V (T ) |D(t)| − 1, and the treewidth of G, written
tw(G), is the minimum width over all tree decompositions of G. The pathwidth of G, pw(G),
is the minimum width over all path decompositions of G.

2 Positive results

In this section we identify a number of structural restrictions on the input graph that allow
us to compute the maximum modularity of a graph, or a good approximation to this quantity,
efficiently.

2.1 Parameterisation by vertex cover number
In this section we demonstrate that Modularity is in FPT when parameterised by the
vertex cover number of the input graph.
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I Theorem 2.1. Modularity, parameterised by cardinality of a minimum vertex cover for
the input graph G, is in FPT.

To prove this result, we make use of recent work of Lokshtanov [18] which gives an FPT
algorithm for the following problem.

Integer Quadratic Programming
Input: An n× n integer matrix Q, an m× n integer matrix A, and an m-dimensional
vector b.
Parameter: n+ α, where α is the maximum absolute value of any entry in A or Q.
Problem: Find a vector x ∈ Zn which minimises xTQx, subject to Ax ≤ b.

Before proving Theorem 2.1, we introduce some notation. Suppose that the graph G =
(V,E) has |E| = m, and that U = {u1, . . . , uk} is a vertex cover for G. Let P = {P1, . . . , P`}
be a partition of U , and set W = V \ U (so W is an independent set).

We can partition the vertices of W into 2k sets based on their type: the type τU (w) ∈
{0, 1}k of a vertex w ∈W describes which of the vertices in U are neighbours of w. Formally
τU (w)j = 1 if ujw ∈ E(G) and τU (w)j = 0 otherwise. For each σ ∈ {0, 1}k, we set Sσ to be
the set of all vertices in W with type exactly σ, that is, Sσ = {w ∈W : τ(w) = σ}.

Now let A = {A1, . . . , Ar} be a partition of V . We write xAσ,i for the number of vertices
of type σ which are assigned to Ai, that is, xAσ,i = |Sσ ∩Ai|. Finally, we introduce 0-1 vectors
to encode the sets Pi ∈ P: for 1 ≤ i ≤ `, we let πi ∈ {0, 1}k be given by πij = 1 if uj ∈ Pi,
and πij = 0 otherwise.

We now argue that, if the partition A extends P, we can compute the modularity of
A using only the values xAσ,i, together with information about P. This shows that the
modularity depends only on the number of vertices of each type assigned to a given partition,
and not the assignment of individual vertices. The proof is omitted due to space constraints.

I Lemma 2.2. Let U = {u1, . . . , uk} be a vertex cover for G = (V,E), where |E| = m, and
let P be a partition of U . If A is any partition of V which extends P and has the property
that every A ∈ A has non-empty intersection with U , then

qEA(G) = 1
m

∑̀
i=1

e(Pi) + 1
m

∑
(σ,i)

xAσ,i(σ · πi),

and

4m2qDA′ = 4
∑
i

e(Pi)2 + 4
∑
(σ,i)

xAσ,ie(Pi)(σ · (1 + πi))

+
∑

(σ,i)(σ′,j)

xAσ,ix
A
σ′,j(σ · (1 + πi))(σ′ · (1 + πj)).

Proof of Theorem 2.1. We will assume that the input to our instance of Modularity is a
graph G = (V,E), where |E| = m. We may assume without loss of generality that we are
also given as input a vertex cover U = {u1, . . . , uk} for G (as if not we can easily compute
one in the allowed time). We may further assume that G does not contain any isolated
vertices, as we can delete any such vertices (in polynomial time) without changing the value
of the maximum modularity (by Fact 1.3).
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Note that the total number of possible partitions of U into non-empty parts is equal to
the kth Bell number, Bk (and hence is certainly less than kk). It therefore suffices to describe
an fpt-algorithm which determines, given some partition P of U ,

qP(G) = max{qA(G) : A[U ] = P}.

The maximum modularity of G can then be calculated by taking

max{qP(G) : P is a partition of U}.

From now on, we consider a fixed partition P = {P1, . . . , P`} of U , and describe how to
compute qP(G).

It follows from Facts 1.1 and 1.2, together with the fact that W is an independent set
that, if A = {A1, . . . , Aj} is a partition of V which achieves the maximum modularity, then
every part Ai has non-empty intersection with U . We will call a partition with this properties
a U -partition of G. It then suffices to maximise the modularity over all U -partitions in order
to determine the value of qP(G).

Now, by Lemma 2.2, we know that we can express the modularity of a U -partition A as

qA(G) = 1
m

∑̀
i=1

e(Pi) + 1
m

∑
(σ,i)

xAσ,i(σ · πi)−
1
m2

∑
i

e(Pi)2

− 1
m2

∑
(σ,i)

xAσ,ie(Pi)(σ · (1 + πi))

− 1
4m2

∑
(σ,i)(σ′,j)

xAσ,ix
A
σ′,j(σ · (1 + πi))(σ′ · (1 + πj)). (1)

As we have fixed the partition P, all values e(Pi) can be regarded as fixed constants. In
order to determine the maximum modularity we can obtain with a U -partition, we therefore
need to find the values of xAσ,i which maximise this expression.

We can rewrite (1) as the sum of a constant term, two linear functions θ and φ of the
xAσ,i and a quadratic function ψ of the xAσ,i (up to scaling by constants):

qA(G) = 1
m

∑̀
i=1

e(Pi)−
1
m2

∑
i

e(Pi)2

︸ ︷︷ ︸
constant

+ 1
m

∑
(σ,i)

xAσ,i(σ · πi)︸ ︷︷ ︸
θ(A)

− 1
m2

∑
(σ,i)

xAσ,i e(Pi)(σ · (1 + πi))

︸ ︷︷ ︸
φ(A)

− 1
4m2

∑
(i,σ)(j,σ′

xAσ,ix
A
σ′,j(σ · (1 + πi))(σ′ · (1 + πj))

︸ ︷︷ ︸
ψ(A)

.

To find the maximum value of qA(G) over all U -partitions it therefore suffices to determine,
for all possible values of θ(A) and φ(A), the minimum possible value of ψ(A). Before
describing how to do this, we observe that the number of combinations of possible values
for θ(A) and φ(A) and is not too large. Note that 0 ≤

∑
σ,i x

A
σ,i(σ · πi) < nk, and 0 ≤∑

σ,i x
A
σ,ie(Pi)(σ · (1 + πi)) < n

(
k
2
)
2k < nk3, so the number of possible pairs (θ(A), φ(A))
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is at most n2k4. Thus, if we know the minimum possible value of ψ(A) corresponding to
each possible pair (θ(A), φ(A)), we can compute the maximum modularity achieved by any
U -partition A such that (θ(A), φ(A)) = (y, z), and maximising over the polynomial number
of possible pairs (y, z) will give qP(G).

Now, given a possible pair of values (y, z) for (θ(A), φ(A)), we describe how to compute

min{ψ(A) : A is a U -partition with θ(A) = y and φ(A) = z}.

Our strategy is to express this minimisation problem as an instance of Integer Quadratic
Programming and then apply the FPT algorithm of [18].

In this instance, we have n = `2k ≤ k2k, and our vector of variables x = (x1, . . . , xn)T is
given by

xi = xA(σi mod 2k ),di/2ke,

where σ1, . . . , σ2k is a fixed enumeration of all vectors in {0, 1}k. The matrix Q expresses
the value of ψ(A) in terms of x: if we set Q = {qi,j} where

qi,j =
(
σ(i mod 2k) ·

(
1 + πdi/2ke

))(
σ(j mod 2k) ·

(
1 + πdj/2ke

))
,

then it is easy to see that ψ(A) = xTQx. Note also that the maximum absolute value of any
entry in Q is at most 4k2.

We now use the linear constraints to express the conditions that
1. θ(A) = y,
2. φ(A) = z, and
3. the values xi,σ correspond to a valid U -partition A.
The first of these conditions can be expressed as a single linear constraint:∑

(σ,i)

xAσ,i(σ · πi) = y,

or equivalently a1x = y where a1 is the 1× n row vector with ith entry equal to

σ(i mod 2k) · πdi/2ke.

We can similarly express the second condition as a single linear constraint:∑
(σ,i)

xAσ,i e(Pi)(σ · (1 + πi)) = z,

or equivalently a2x = z, where a2 is the 1× n row vector with ith entry equal to

e
(
Pdi/2ke

) (
σ(i mod 2k) ·

(
1 + πdi/2ke

))
.

Note that every entry in the vectors a1 and a2 has absolute value no more than 2k3. For
the third condition, note that the values xi,σ correspond to a valid U -partition if and only if
every xi,σ is non-negative, and for each σ we have

∑`
i=1 x

A
i,σ = |Sσ|.

We can therefore express all three conditions in the form Ax = b, where A is a(
4 + (`+ 1)2k

)
× n and b is a

(
4 + (`+ 1)2k

)
-dimensional vector (notice that we use two

inequalities to express each of the linear equality constraints).
Altogether, this means that a solution to this instance of Integer Quadratic Pro-

gramming will determine the values of xAi,σ which minimize (out of all values corresponding to
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some U -partition A) the value of ψ(A), subject to the additional requirement that θ(A) = y

and φ(A) = z. Note that the number of variables n is at most k2k and the largest absolute
value of any entry in A or Q is at most 2k3, so the parameter in the instance of Integer
Quadratic Programming is bounded by a function of k. This completes the proof. J

We note the algorithm described can easily be modified to output an optimal partition.

2.2 Parameterisation by treewidth
In this section we demonstrate that Modularity, parameterised by the treewidth of the
input graph G, belongs to XP and so is solvable in polynomial time on graph classes whose
treewidth is bounded by some fixed constant. We further show that for any fixed ε > 0
there is an FPT-algorithm, parameterised by treewidth, which computes a factor (1− ε)-
approximation; i.e. returning a value between (1 − ε)q∗ and q∗ where q∗ is the maximum
modularity of the graph.

I Theorem 2.3. Modularity parameterised by the treewidth of the input graph G is in XP.

This result makes use of standard dynamic programming techniques, and details are
omitted due to space constraints. The key property of modularity we use is that each part
in a partition that maximises modularity must induce a connected subgraph, so it suffices to
keep track of feasible statistics for each part that intersects the bag of the tree decomposition
under consideration, together with the contribution to modularity from parts that are entirely
“below” the current bag.

To obtain our FPT approximation result, we use a very similar approach; the key is to
restrict our attention to partitions with only a constant number of parts. For any constant
c ∈ N, we write q∗≤c(G) for the maximum modularity for G achievable with a partition into
at most c parts, that is

q∗≤c(G) = max
|A|≤c

qA(G).

We refer to the problem of deciding whether q∗≤c(G) ≥ q for a given input graph G and
constant q ∈ [0, 1] as c-Modularity. We now argue that c-Modularity is in FPT
parameterised by the treewidth of the input graph.

I Lemma 2.4. c-Modularity is in FPT when parameterised by the treewidth of the input
graph.

The crucial difference from our XP algorithm above is the fact that, when we fix the
number of parts in the partition, we can no longer assume that every part is connected.
However, if the maximum number of parts c is a constant, we can keep track of the necessary
statistics for every possible part, not just those that intersect the bag under consideration.

Recall (Fact 1.4) that q∗(G) ≥ q∗≤c(G)) > q∗(G)
(

1 − 1
c

)
; thus, for any constant ε > 0,

we obtain a multiplicative approximation with relative error at most ε by solving d 1
ε e-

Modularity. This immediately gives the following result.

I Corollary 2.5. Given any constant ε > 0, there is an FPT-algorithm, parameterised by the
treewidth of the input graph G, that that returns a partition A with qA(G) > (1− ε)q∗(G).

We conclude this section by noting that sparse graphs, in particular graphs G with low
tree width, tw(G), and maximum degree, 4(G), can have high maximum modularity. In
particular Theorem 1.11 of [19] shows q∗(G) ≥ 1− 2((tw(G) + 1)4(G)/|E(G)|)1/2.
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2.3 Parameterisation by max leaf number

In this section we demonstrate that Modularity can be solved in time linear in the number
of connected subgraphs of the input graph G; as a consequence of this result, we deduce that
the problem belongs to XP when parameterised by the max leaf number of G.

I Theorem 2.6. Let G be a graph on n vertices with m edges and at most h connected
subgraphs. Then Modularity can be solved in time O(h2n).

This is achieved by means of a dynamic programming strategy, in which we compute
the maximum value of a modularity-like function for each connected subgraph in turn,
considering the subgraphs in nondecreasing order of their number of vertices. Full details of
the proof are omitted due to space constraints.

It is known that, if the max leaf number of G is c, then G is a subdivision of some graph
H on at most 4c vertices [12]; a graph on n vertices that is a subdivision of such a graph
H has at most 24cn(4c)2 connected subgraphs (once we have decided which branch vertices
belong to a subgraph, it remains only to decide where to cut each path from one of the
chosen branch vertices to one we have not chosen). Thus, if the max leaf number of G is
bounded by a constant it follows that G has at most a polynomial number of connected
subgraphs, and the following result is an immediate consequence of Theorem 2.6.

I Corollary 2.7. Modularity is in XP when parameterised by the max leaf number of the
input graph G.

We conjecture that this result is not optimal, and that Modularity is in fact in FPT
with respect to this parameterisation.

3 Hardness results

In this section we complement our positive result about the FPT approximability of the
problem parameterised by treewidth by demonstrating that computing the exact value of
the maximum modularity is hard even in a more restricted setting.

I Theorem 3.1. Modularity, parameterised simultaneously by the pathwidth and the size
of a minimum feedback vertex set for the input graph, is W[1]-hard.

Our proof of this result relies on the hardness of the following problem.

Equitable Connected Partition (ECP)
Input: A graph G = (V,E) and r ∈ N.
Question: Is there a partition of V into r classes V1, . . . , Vr such that |Vi| − |Vj | ≤ 1 for
all 1 ≤ i < j ≤ r, and the induced subgraph G[Vi] is connected for each i ∈ 1, . . . , r?

The parameterised complexity of ECP was investigated thoroughly in [11]. Among other
results, the problem is shown to be W[1]-hard even when parameterised simultaneously by
r, pw(G) and fvs(G). In proving this hardness result, the authors implicitly consider the
following variation of ECP.
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Anchored Equitable Connected Partition (AECP)
Input: A graph H = (VH , EH), and a set of distinguished anchor vertices a1, . . . , ar ∈ V .
Question: Is there a partition of VH into r classes V1, . . . , Vr such that ai ∈ Vi for all i,
||Vi| − |Vj || ≤ 1 for all 1 ≤ i < j ≤ r, and the induced subgraph G[Vi] is connected for
each i ∈ 1, . . . , r?

From the proof of [11, Theorem 1] we can extract the following statement about the
hardness of AECP.

I Lemma 3.2 ([11], implicit in proof of Theorem 1). AECP is W[1]-hard, parameterised
simultaneously by pw(H) and fvs(H), even if the following conditions hold simultaneously:
1. H is connected;
2. the graph H ′ obtained from H by deleting all vertices of degree one is a subdivision of a

3-regular graph H̃;
3. the branch vertices of H ′ (i.e. vertices of H̃) are precisely the anchor vertices a1, . . . , ar;
4. r ≥ 4 is even and divides |VH |;
5. H \ {a1, . . . , ar} is a disjoint union of isolated vertices and paths with pendant edges.

In the proof of Theorem 3.1, it is useful to analyse the ‘per unit modularity defect’ fm(B)
of vertex subsets B. Intuitively, the following lemma (proof omitted due to space constraints)
says that, if you are restricted to parts B with δ(B) = 4, the modularity maximising volume
is vol(B) = 2

√
2m. Moreover, while it would usually be better to take parts with δ(B) < 4

these parts are actually worse (i.e. higher fm(B) value) if their volumes are too big or too
small. The function fm(B) plays a similar role to the n-cost in Proposition 1 of [19].

I Lemma 3.3. Assume that m ≥ 1, vol(B) ≥ 1 and define

fm(B) = ∂(B)
vol(B) + vol(B)

2m .

Then the following properties hold:
0: if ∂(B) = 0 and vol(B) > 4

√
2m then fm(B) > 2

√
2/m.

1: if ∂(B) = 1 and vol(B) > 3.7321
√

2m or vol(B) < 0.2679
√

2m then fm(B) > 2
√

2/m.
2: if ∂(B) = 2 and vol(B) > 3.4143

√
2m or vol(B) < 0.5857

√
2m then fm(B) > 2

√
2/m.

3: if ∂(B) = 3 and vol(B) > 3
√

2m or vol(B) <
√

2m then fm(B) > 2
√

2/m.
4: if ∂(B) = 4 and vol(B) = 2

√
2m then fm(B) = 2

√
2/m.

5: if ∂(B) ≥ 5 then fm(B) > 2
√

2/m.

Proof of Theorem 3.1. We give a reduction from AECP. Let (H, {a1, . . . , ar}) be the input
to an instance of AECP; we will describe how to construct a graph G, where pw(G) and
fvs(G) are both bounded by a function of r, together with an explicit q0 ∈ (0, 1) such that
(G, q0) is a yes-instance for Modularity if and only if (H, {a1, . . . , ar}) is a yes-instance for
AECP.

We may assume without loss of generality that our instance of AECP satisfies all of the
conditions of Lemma 3.2.

We define a new graph G, obtained from H by adding the following (see Figure 1):
α new leaves adjacent to each anchor vertex a1, . . . , ar,
β isolated edges disjoint from G, and
an arbitrary perfect matching on the anchor vertices a1, . . . , ar,
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a1

a2

a4

a3  
...

α
...

α

...

α

...

α

a1

a2

a4

a3

..
.

β

Figure 1 Possible input graph H with anchors a1, a2, a3, a4 and the graph G constructed from it
by adding α new leaves adjacent to each anchor, β isolated edges and a perfect matching between
the anchors.

where the values of α and β will be determined later. Notice that, even with these modifica-
tions, G \ {a1, . . . , ar} is still a disjoint union of isolated vertices and paths with pendant
edges; hence pw(G) ≤ r+1 and fvs(G) ≤ r. We set m = |E(G)| so m = |E(H)|+αr+β+r/2.

We now define our instance of Modularity to be (G, q0), where

q0 = 1− β

m2 −
2
√

2(m− β)
m3/2

We now argue that (G, q0) is a yes-instance if and only if (H, {a1, . . . , ar}) is a yes-instance
for AECP. Recall that

q∗(G) = 1−min
A

∑
A∈A

(
∂(A)
2m + vol(A)2

4m2

)
.

and that the partition A which achieves the minimum in the expression above is exactly
the modularity maximal A. In any modularity optimal partition, A, each isolated edge will
form its own part: this follows from Facts 1.1 and 1.2. Write V ′ for vertices of G without
the vertices supporting the β isolated edges, and let the minimisation be over A′ which are
vertex partitions of V ′. We then have

q∗(G) = 1− β

m2 −min
A′

∑
A∈A′

∂(A)
2m + vol(A)2

4m2 .

Rearranging, we see that

1− β

m2 − q
∗(G′) = m− β

m
min
A′

∑
A∈A′

vol(A)
2(m− β)

(
∂(A)

vol(A) + vol(A)
2m

)
= m− β

m
min
A′

∑
A∈A′

vol(A)
2(m− β)fm(A) (2)

≥ m− β
m

min
A⊆V ′

fm(A). (3)

The last inequality holds because
∑
A vol(A) = 2(m− β) and so (2) is a weighted sum of the

fm(A) with total weight one. This, together with the fact that no A has zero volume, also
implies that (2)≥(3) with equality if and only if fm(A) = minB⊂V ′ fm(B) for every A ∈ A′.

IPEC 2018



9:12 The Parameterised Complexity of Computing the Maximum Modularity of a Graph

Note that, since A′ is the restriction of some modularity optimal partition A to a connected
component of G, we may assume that, for all A ∈ A′, G[A] is connected. Moreover, if v is a
pendant vertex adjacent to u then u and v are in the same part in A′; we call a partition
with this last property (or, abusing notation, a set that would not violate this condition in a
partition) ‘pendant-consistent’.

We make the following claim, whose proof is omitted due to space constraints; we write
s = |H|/r for the desired part size in our instance of AECP.

I Claim 3.4. Suppose that α > 32|E(H)|2 and that we have
√

2m = s+ α+ 1. Then:
(a) for any connected, pendant-consistent set B ⊆ V ′ we have fm(B) ≥ 2

√
2/m, and if

fm(B) = 2
√

2/m then B contains exactly one anchor and vol(B) = 2
√

2m;
(b) if (H, {a1, . . . , ar}) is a yes-instance, then there is a vertex partition A′ of V ′ so that

fm(A) = 2
√

2/m for all A ∈ A′;
(c) if there is a vertex partition A′ = {A1, . . . , Ar} of V ′ so that for all Ai ∈ A, fm(Ai) =

2
√

2/m, A is pendant-consistent and G[A] is connected for all A ∈ A′, then
(H, {a1, . . . , ar}) is a yes-instance.

Note that, by Claim 3.4(a) and line (3), we always have

q∗(G) ≤ q0 = 1− β

m2 −
2
√

2(m− β)
m3/2 .

Hence in particular (G, q0) is a yes-instance if and only if there is a partition A′ of V ′ such
that ∀A ∈ A′ fm(A) = 2

√
2/m.

Claim 3.4(b) , together with line (2), implies that, if (H, {a1, . . . , ar}) is a yes-instance,
then so is (G, q0). Converesly, if (G, q0) is a yes-instance, it follows from Claim 3.4(c), that
(H, {a1, . . . , ar}) is a yes-instance.

It remains only to show that we can choose suitable values of α and β. Set α to be the
least integer such that

α ≥ 32|E(H)|2, (α+ s+ 1)2 > 2|E(H)|+ 2αr + r and α = s+ 1 (mod 2). (4)

Recall that r is even. This, along with our parity constraint between α and s, implies that
(α+ s+ 1)2 − r is even. Thus we can choose β to be

β = 1
2
(
(α+ s+ 1)2 − r

)
− |E(H)| − αr; (5)

note β is positive because we set α so that (α+ s+ 1)2 > 2|E(H)|+ 2αr+ r. Finally, observe
that we do have

√
2m = s+ α+ 1 because, by the chosen value of β,

m = |E(H)|+ αr + β + r/2 = (s+ α+ 1)2/2. J

4 Conclusions and Open Problems

We have shown that Modularity belongs to FPT when parameterised by the vertex cover
number of the input graph, and that the problem is solvable in polynomial time on input
graphs whose treewidth or max leaf number is bounded by some fixed constant; we also
showed that there is an FPT algorithm, parameterised by treewidth, which computes any
constant-factor approximation to the maximum modularity. In contrast with the positive
approximation result, we demonstrated that the problem is unlikely to admit an exact FPT
when the treewidth is taken to be the parameter, as it is W[1]-hard even when parameterised
simultaneously by the treewidth and size of a minimum feedback vertex set for the input
graph.
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We conjecture that our XP algorithm parameterised by max leaf number is not optimal,
and that Modularity in fact belongs to FPT with respect to this parameterisation. Another
natural open question arising from our work is whether our approximation result can be
extended to larger classes of graphs, for example those of bounded cliquewidth or bounded
expansion.
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Abstract
Numerous problems consisting in identifying vertices in graphs using distances are useful in
domains such as network verification and graph isomorphism. Unifying them into a meta-problem
may be of main interest. We introduce here a promising solution named Distance Identifying
Set. The model contains Identifying Code (IC), Locating Dominating Set (LD) and
their generalizations r-IC and r-LD where the closed neighborhood is considered up to distance
r. It also contains Metric Dimension (MD) and its refinement r-MD in which the distance
between two vertices is considered as infinite if the real distance exceeds r. Note that while
IC = 1-IC and LD = 1-LD, we have MD = ∞-MD; we say that MD is not local.

In this article, we prove computational lower bounds for several problems included in
Distance Identifying Set by providing generic reductions from (Planar) Hitting Set
to the meta-problem. We focus on two families of problem from the meta-problem: the first one,
called bipartite gifted local, contains r-IC, r-LD and r-MD for each positive integer r while the
second one, called 1-layered, contains LD, MD and r-MD for each positive integer r. We have:

the 1-layered problems are NP-hard even in bipartite apex graphs,
the bipartite gifted local problems are NP-hard even in bipartite planar graphs,
assuming ETH, all these problems cannot be solved in 2o(

√
n) when restricted to bipartite

planar or apex graph, respectively, and they cannot be solved in 2o(n) on bipartite graphs,
even restricted to bipartite graphs, they do not admit parameterized algorithms in 2O(k) ·nO(1)

except if W[0] = W[2]. Here k is the solution size of a relevant identifying set.
In particular, Metric Dimension cannot be solved in 2o(n) under ETH, answering a question
of Hartung in [20].
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1 Introduction and Corresponding Works

Problems consisting in identifying each element of a combinatorial structure with a hopefully
small number of elements have been widely investigated. Here, we study a meta identific-
ation problem which generalizes three of the most well-known identification problems in
graphs, namely Identifying Code (IC), Locating Dominating Set (LD) and Metric
Dimension (MD). These problems are used in network verification [3, 5], fault-detection in
networks [22, 28], graph isomorphism [2] or logical definability of graphs [23]. The versions
of these problems in hypergraphs have been studied under different names in [6], [7] and [8].
Given a graph G with vertex set V , the classical identifying sets are defined as follows:

IC: Introduced by Karposky et al. [22], a set C of vertices of G is said to be an identifying
code if none of the sets N [v] ∩ C are empty, for v ∈ V and they are all distinct.
LD: Introduced by Slater [25, 26], a set C of vertices of G is said to be a locating-
dominating set if none of the sets N [v] ∩ C are empty, for v ∈ V \ C and they are all
distinct. When not considering the dominating property (N [v] ∩C may be empty), these
sets have been studied in [2] as distinguing sets and in [23] as sieves.
MD: Introduced independently by Harary et al. [18] and Slater [24], a set C of vertices of
G is said to be a resolving set if C contains one vertex from each connected component
of G and, for every distinct vertices u and v of G, there exists a vertex w of C such that
d(w, u) 6= d(w, v). The metric dimension of G is the minimum size of its resolving sets.

The corresponding minimization problems of the previous identifying sets are defined
as follows: given a graph G, compute a suitable set C of minimal size, if one exists. In this
paper, we mainly focus on the computational complexity of these minimization problems.

Known results. A wide collection of NP-hardness results has been proven for the problems.
For IC and LD, the minimization problems are indeed NP-hard [10, 11]. Charon et al.

showed the NP-hardness when restricted to bipartite graphs [9], while Auger showed it for
planar graphs with arbitrarily large girth [1]. For trees, there exists a linear algorithm [25].

The MD problem is also NP-hard, even when restricted to Gabriel unit disk graphs [17, 21].
Epstein et al. [14] showed that MD is polynomial on several classes as trees, cycles, cographs,
partial wheels, and graphs of bounded cyclomatic number, but it remains NP-hard on split
graphs, bipartite graphs, co-bipartite and line graphs of bipartite graphs. Additionally, Diaz
et al. [12] proved a quite tight separation: the problem is polynomial on outerplanar graphs
whereas it remains NP-hard on bounded degree planar graphs.

In a recent publication, Foucaud et al. [16] also proved the NP-hardness of the three
problems restricted to interval graphs and permutation graphs.

These notions may be considered under the parameterized point of view; see [13] for a
comprehensive study of Fixed Parameter Tractability (FPT). In the following, the parameter
k is chosen as the solution size of a distance identifying set.

For IC and LD, the parameterized problems are clearly FPT since the number of vertices
of a positive instance is bounded by 2k + k (k vertices may characterize 2k neighbors).

Such complexity is not likely to be achievable in the case of MD, since it would imply
W[2] = FPT (= W[0]). Indeed, Hartung et al. [19, 20] showed MD is W[2]-hard for bipartite
subcubic graphs. The problem is however FPT on families of graphs with degree ∆ growing
with the number of vertices because the size k of a resolving set must satisfy log3(∆) < k.
Finally, Foucaud et al. [16] provided a FPT algorithm on interval graphs.
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1-layered r-local 0-layered r-local
problems problems problems

Planar
Hitting Set

NP-hard on
bipartite

apex graphs

NP-hard on
bipartite

planar graphs

(bipartite) planar gadget ⇒
NP-hard on (bipartite)

planar graphs
with ETH no algorithm running in 2O(

√
n) time for relevant classes of graphs.

Hitting Set NP-hard on bipartite graph (bipartite) gadget ⇒
NP-hard on (bipartite) graphs

with ETH no algorithm running in 2O(n) for (bipartite) graphs.
with W[2] 6= W[0] no parameterized algorithm in 2O(k) · nO(1) for (bipartite) graphs.

Figure 1 The computational lower bounds implied by our generic reductions.

Our contributions. In order to unify the previous minimization problems, we introduce the
concept of distance identifying functions. Given a distance identifying function f and a value
r as a positive integer or infinity, the Distance Identifying Set meta-problem consists in
finding a minimal sized r-dominating set which distinguishes every couple of vertices of an
input graph thanks to the function f . Here, we mainly focus on two natural subfamilies of
problems of Distance Identifying Set named local, in which a vertex cannot discern the
vertices outside of its i-neighborhood, for i a fixed positive integer, and 1-layered, where a
vertex is able to separate its open neighborhood from the distant vertices.

With this approach, we obtain several computational lower bounds for problems included
in Distance Identifying Set by providing generic reductions from (Planar) Hitting
Set to the meta-problem. The reductions rely on the set/element-gadget technique, the
noteworthy adaptation of the clause/variable-gadget technique from SAT to Hitting Set.

As we provide a 1-layered generic gadget, the 1-layered reductions operate without
condition. For local problems, the existence of a local gadget is not always guaranteed.
Thus, a local reduction operates only if a local gadget is provided. However, the local
planar reduction is slightly more efficient than its 1-layered counterpart: it indeed implies
computational lower bounds for planar graphs whereas the 1-layered reduction requires an
auxiliary apex, limiting the consequences to apex graphs.

The reductions in general graphs are designed to exploit the W[2]-hardness of Hitting
Set parameterized by the solution size kHS of an hitting set, hereby using:

I Theorem 1 (folklore). Let nHS and mHS be the number of elements and sets of an Hitting
Set instance, and kHS be its solution size. A parameterized problem with parameter k
admitting a reduction from Hitting Set verifying k = O(kHS + log(nHS +mHS)) does not
have a parameterized algorithm running in 2O(k) · nO(1) time except if W[2] = FPT.

Proof. Given a reduction from Hitting Set to a parameterized problem Π such that the
reduced parameter satisfies k = O(kHS + log(nHS + mHS)) and the size of the reduced
instance verifies n = (nHS +mHS)O(1), an algorithm for Π of running time 2O(k) · nO(1) is
actually an algorithm for Hitting Set of running time 2O(kHS) · (nHS +mHS)O(1), meaning
that Hitting Set is FPT, a contradiction to its W[2]-hardness (otherwise W[2] = FPT). J

Hence, as each gadget contributes to the resulting solution size of a distance identifying set,
we set up a binary compression of the gadgets to limit their number to the logarithm order.
From the best of our knowledge, this merging gadgets technique has never been employed.

The organization of the paper is as follows. After a short reminder of the computational
properties of Hitting Set, Section 2 contains the definitions of distance identifying functions
and sets, allowing us to precise the computation lower bounds we obtain. Section 3 designs
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the supports of the reductions as distance identifying graphs and compressed graph. Finally,
the gadgets needed for the reductions to apply are given in Section 4.

2 Definition of the Meta-Problem and Related Concepts

2.1 Preliminaries
Notations. Throughout the paper, we consider simple non oriented graphs.

Given a positive integer n, the set of positive integers smaller than n is denoted by
[[n]]. By extension, we define [[∞]] = N>0 ∪ {∞}. Given two vertices u, v of a graph G, the
distance between u and v corresponds to the number of vertices in the shortest path between
u and v and is denoted d(u, v). The open neighborhood of u is denoted by N(u), its closed
neighborhood is N [u] = N(u)∪{u}, and for a value r ∈ [[∞]], the r-neighborhood of u is Nr[u],
that is the set of vertices at distance less than r+ 1 of u. For r =∞, the ∞-neighborhood of
u is the set of vertices in the same connected component than u. We recall that a subset D of
V is called a r-dominating set of G if for all vertices u of V , the set Nr[u] ∩D is non-empty.
Thus an ∞-dominating set of G contains at least a vertex for each connected component
of G.

Given two subsets X and Y of V , the distance d(X,Y ) corresponds to the value d(X,Y ) =
min{d(x, y) | x ∈ X, y ∈ Y }. For a vertex u, we will also use d(u,X) and d(X,u), defined
similarly. The symmetric difference between X and Y is denoted by X ∆Y , and the
2-combination of a set X is denoted P2(X)

Given two graphs G = (VG, EG) and H = (VH , EH), H is an induced subgraph of G if
VH ⊆ VG and for all vertices u and v of VH , (u, v) ∈ EG if and only if (u, v) ∈ EH . We
denote H = G[VH ] and VG \ VH by VG\H . Symmetrically, G is an induced supergraph of H.

The (Planar) Hitting Set problem

Consider a universe of n elements denoted Ω = {ui | i ∈ [[n]]} and a set of m non-empty
subsets of Ω denoted S = {Si | i ∈ [[m]]} such that every element belongs to at least a subset.
Then, a subset of Ω intersecting every set of S is called an hitting set of S:

Hitting Set
Input: A universe Ω and a set S of non-empty subsets of Ω whose union covers Ω.
Output: A minimal-sized hitting set C of S, i.e. a subset of Ω satisfying ∀Si ∈ S, Si ∩ C 6= ∅.
The parameterized version Hitting Set(k) decides if there exists a hitting set of size k.

I Theorem 2 (R.G. Downey and M.R Fellows [13]). Hitting Set cannot be solved in 2o(n)

time under ETH even if m = O(n). Moreover, Hitting Set(k) is W[2]-hard.

Hitting Set may be translated into a dominating problem on bipartite graphs. Given
an instance (Ω,S) of Hitting Set, let us define φ(Ω,S) = (VΩ ∪ VS , E) as the bipartite
graph of size n + m such that for each i ∈ [[n]], there exists a vertex vΩ

i in VΩ, for each
j ∈ [[m]], there exists a vertex vSj in VS , and the edge (vΩ

i , v
S
j ) is present in E if and only if

the element ui belongs to the subset Sj . Henceforth, a hitting set of S is equivalent to a
subset C of VΩ that dominates VS . We call φ(Ω,S) the associated graph of (Ω,S):

Planar Hitting Set
Input: An instance (Ω,S) of Hitting Set such that φ(Ω,S) is planar.
Output: A hitting set C of S of minimal size.
We also consider the parameterized version Planar Hitting Set(k) of the latter problem.
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I Theorem 3 (folklore). There exists a reduction from SAT to Planar Hitting Set(n)
producing associated graphs of quadratic size in the number n of variables of the instances of
SAT. Thus Planar Hitting Set cannot be solved in 2o(

√
n) under ETH even if m = O(n).

Sketch of proof. A linear reduction from SAT to Hitting Set is known. To guarantee
the planarity of φ(Ω,S), we apply the reduction on a restriction of SAT named Separate
Simple Planar SAT which is not solvable in 2o(

√
n) under ETH. See [27]. J

2.2 The Distance Identifying Set meta-problem
Given a graph G = (V,E) and r ∈ [[∞]], the classical identifying sets may be rewritten:

r-IC: a subset C of V is a r-identifying code of G if it is an r-dominating set and for
every distinct vertices u, v of V , a vertex w in C verifies w ∈ Nr[u] ∆Nr[v].
r-LD: a subset C of V is a r-locating dominating set of G if it is an r-dominating set and
for every distinct vertices u, v of V , a vertex w in C verifies w ∈ (Nr[u] ∆Nr[v]) ∪ {u, v}.
r-MD: a subset C of V is a r-resolving set of G if it is an r-dominating set and for every
distinct vertices u, v of V , a vertex w in C verifies w ∈ Nr[u]∪Nr[v] and d(u,w) 6= d(v, w).

A pattern clearly appears: the previous identifying sets only deviate on the criterion that
the vertex w must verify. The pivotal idea is to consider an abstract version of the criterion
which does not depend on the input graph. Hence:

I Definition 4 (identifying function). A function f of type: G→ (V ×P2(V )→ {true, false}),
is called an identifying function. Given three vertices u, v and w of a graph G such that
u 6= v, we write fG[w](u, v) to get the resulting boolean. The notation P2(V ) implies that
fG is symmetric, that is fG[w](u, v) = fG[w](v, u).

We need to require some useful properties on identifying functions to produce generic
results. By mimicking the classical identifying sets, the main property we consider is that a
vertex cannot distinguish two vertices at the same distance from it. Then:

I Definition 5 (distance function). A distance identifying function f is an identifying function
such that for every graph G and all vertices u,v and w of G with u 6= v:
(α) fG[w](u, v) is false when d(u,w) = d(v, w).
Besides this mandatory criterion, we suggest two paradigms related to the neighborhood of
a vertex. Let i ∈ [[∞]]. First, we may restrain the range of a vertex to its i-neighborhood:
a vertex should not distinguish two vertices if they do not lie in its i-neighborhood but it
should always distinguish them whenever exactly one of them lies to that i-neighborhood.
Reciprocally, we may ensure that a vertex could distinguish the vertices of its i-neighborhood:
a vertex should distinguish a vertex belonging to its i-neighborhood from all the other
vertices, assuming the distances are different. Formally, we have:

IDefinition 6 (i-local function). For i ∈ [[∞]], an i-local identifying function f is an identifying
function such that for every graph G and all vertices u, v, w of G with u 6= v:
(β1) fG[w](u, v) is true when d(u,w) ≤ i < d(v, w) or, symmetrically, d(v, w) ≤ i < d(u,w).
(β2) fG[w](u, v) is false when i < min{d(u,w), d(v, w)}.

I Definition 7 (i-layered function). For i ∈ [[∞]], an i-layered identifying function f is an
identifying function such that for every graph G and all vertices u,v,w of G with u 6= v:
(γ) fG[w](u, v) is true when min{d(u,w), d(v, w)} ≤ i and d(u,w) 6= d(v, w).
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In the following, given an identifying function f and three vertices u, v, w of a graph G,
we say that w f -distinguishes u and v if and only if fG[w](u, v) is true. By extension, given
three vertex sets C, X and Y of G, we say that C f -distinguishes X and Y if for every u in
X and v in Y , either u = v or there exists w in C verifying fG[w](u, v). Finally, a graph G
of vertex set V is f -distinguished by C when C f -distinguishes V and V .

We are now ready to define the Distance Identifying Set meta-problem.
I Definition 8 ((f, r)-distance identifying set). For a distance identifying function f and
r ∈ [[∞]], a (f, r)-distance identifying set of a graph G is an r-dominating set of G that
f -distinguishes G.
Distance Identifying Set
Input: A distance identifying function f and r ∈ [[∞]]. A graph G.
Output: A (f, r)-distance identifying set of G of minimal size, if one exists.
Given a distance identifying function f and r ∈ [[∞]] as inputs of the meta-problem, the
resulting problem is called (f, r)-Distance Identifying Set and denoted (f, r)-DIS. The
problem (f, r)-DIS is said to be i-layered when the function f is i-layered, and it is said to
be i-local when f is i-local and r = i. A problem is local if it is i-local for an integer i. Recall
that our local reductions need a local gadget to operate: the subfamilies of local problems
admitting a (bipartite) local gadget is called (bipartite) gifted local. We do not need to define
gifted 1-layered as every 1-layered problem admits a 1-layered gadget. We also consider the
parameterized version Distance Identifying Set(k).

2.3 Detailed Computational Lower Bounds
Using the Distance Identifying Set meta-problem, we get the following lower bounds:
I Theorem 9. For each 1-layered distance identifying function f and every r ∈ [[∞]], the
(f, r)-Distance Identifying Set problem restricted to bipartite apex graphs is NP-hard,
and does not admit an algorithm running in 2O(

√
n) time under ETH.

I Theorem 10. The (bipartite) gifted local problems restricted to (bipartite) planar graphs
are NP-hard, and do not admit an algorithm running in 2O(

√
n) time under ETH.

I Theorem 11. For each r-local 0-layered distance identifying function f , (f, r)-DIS
restricted to bipartite planar graphs is NP-hard, and cannot be solved in 2O(

√
n) under

ETH.
I Theorem 12. Let f, g and h be distance identifying functions such that f is 1-layered, g
is q-local 0-layered and h is p-local and admits a local (bipartite) gadget. Let r ∈ [[∞]]. The
(f, r)-, (g, q)- and (h, p)- DIS problems are NP-hard, and do not admit:

algorithms running in 2o(n) time, except if ETH fails,
parameterized algorithms running in 2O(k) · nO(1) time, except if W [2] = FPT.

The parameter k denotes here the solution size of a relevant distance identifying set.
All bounds still hold in the bipartite case (whenever the gadget associated with h is bipartite).

As a side result, the 1-layered general reduction answers a question of Hartung in [20]:
I Corollary 13. Under ETH, Metric Dimension cannot be solved in 2o(n).

Finally, notice that the parameterized lower bound from Theorem 12 may be complemented
by an elementary upper bound inspired from the kernel of IC and LD of size 2k + k:
I Proposition 14. For every r-local distance identifying function f , the (f, r)-Distance
Identifying Set problem has a kernel of size (r + 1)k + k where k is the solution size.
Therefore, it admits a naive parameterized algorithm running in O(nk+3) ∈ O∗(r(k2)) time.
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3 The Supports of the Reductions for Distance Identifying Set

3.1 The Distance Identifying Graphs
Consider the associated graph φ(Ω,S) as defined in Section 2.1. The differences between
the Distance Identifying Set meta-problem and the dominating problem related to
associated graphs actually raise two issues for a reduction based on these latter notions to be
effective on Distance Identifying Set. First, contrarily to the dominating problem where
a vertex may only discern its close neighborhood, the meta-problem may allow a vertex to
discern further than its direct neighborhood. In that case, we cannot certify that a vertex
vΩ

i does not distinguish a vertex vSj when ui is not in Sj , the adjacency not remaining a
sufficient argument. Secondly, one may object that a vertex vΩ

i formally has to distinguish a
vertex vSj from another vertex, but that distinguishing a single vertex is not defined.

To circumvent these problems, we suggest the following fix: rather than producing a
single vertex for each Sj ∈ S, the set VS may contain two vertices vSj and v̄Sj . Then, the
role of vΩ

i would be to distinguish them if and only if ui ∈ Sj . To ensure that the vertex vΩ
i

distinguishes vSj and v̄Sj when ui ∈ Sj , we may use the properties (β1) and (γ) of Definition
6 and 7 for the r-local and 1-layered problems, respectively. Precisely, when ui ∈ Sj , vΩ

i

should be at distance r to vSj (with r = 1 in the 1-layered cases) while v̄Sj should not be in
the r-neighborhood of vΩ

i . Similarly, to ensure that vΩ
i cannot distinguish vSj and v̄Sj when

ui 6∈ Sj , we may use properties (α) or (β2) of Definitions 5 and 6. Hence, when ui 6∈ Sj , vSj
should not be in the r-neighborhood of vΩ

i , or d(vΩ
i , v

S
j ) and d(vΩ

i , v̄
S
j ) should be equal.

That fix fairly indicates how to initiate the transformation of the associated graphs in
order to deliver an equivalence between a hitting set formed by elements of Ω and the vertices
of a distance identifying set included in VΩ. However, it is clearly not sufficient since we also
have to distinguish the couples of vertices of VΩ for which nothing is required. To solve that
problem, we suggest to append to each vertex of the associated graph a copy of some gadget
with the intuitive requirement that the gadget is able to distinguish the close neighborhood
of its vertices from the whole graph. We introduce the notion of B-extension:

I Definition 15 (B-extension). Let H = (VH , EH) be a connected graph, and B ⊆ VH . An
induced supergraph G = (VG, EG) is said to be a B-extension of H if it is connected and for
every vertex v of VG\H , the set N(v) ∩ VH is either equal to ∅ or B.

A vertex v of VG\H such that N(v)∩VH = B is said to be B-adjacent. The B-extensions of
H such that VG\H contains exactly a B-adjacent vertex or two B-adjacent (but not neighbors)
vertices are called the B-single-extension and the B-twin-extension of H, respectively.

Here, the border B makes explicit the connections between a copy of a gadget H and a
vertex outside the copy. In particular, a B-single-extension is formed by a gadget with its
related vertex vΩ

i , while a B-twin-extension contains a gadget with its two related vertices
vSj and v̄Sj . Piecing all together, we may adapt the associated graphs to the meta-problem:

I Definition 16 (distance identifying graph). Let (Ω = {ui | i ∈ [[n]]},S = {Si | i ∈ [[m]]}) be
an instance of Hitting Set. Let H be a connected graph, B a subset of its vertices, and r
a positive integer. The (H,B, r)-distance identifying graph Φ[H,B, r](Ω,S) is as follows.

for each i ∈ [[n]], the graph Φ[H,B, r](Ω,S) contains as induced subgraph a copy HΩ
i of

H together with a BΩ
i -adjacent vertex vΩ

i , where BΩ
i denotes the copy of B.

similarly, for each j ∈ [[m]], the graph Φ[H,B, r](Ω,S) contains a copy HSj of H together
with two BSj -adjacent vertices vSj and v̄Sj ; the latter vertices are not adjacent.
finally, for each Sj ∈ S and each ui ∈ Sj , vΩ

i is connected to vSj by a path of r− 1 vertices
denoted lki,j with d(vΩ

i , l
k
i,j) = k for each k ∈ [[r − 1]].
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Figure 2 A (H, B, 3)-distance identifying graph and a (H, B)-apex distance identifying graph
built on the planar instance formed by Ω = {1, 2, 3, 4} and S = {{1, 2}, {2, 3, 4}}.

When the problem is not local, we prefer the following identifying graph:

I Definition 17 ((H,B)-apex distance identifying graph). An (H,B)-apex distance identifying
graph Φ∗[H,B](Ω,S) is the union of a (H,B, 1)-distance identifying graph with an additional
vertex a called apex such that:

for each ui ∈ Ω, the apex a is BΩ
i -adjacent to HΩ

i .
for each Sj ∈ S, the apex a is adjacent to vSj and v̄Sj .

I Proposition 18. Given an instance (Ω,S) of Planar Hitting Set where |Ω| = n,
|S| = m, the graphs G = Φ[H,B, r](Ω,S) and G′ = Φ∗[H,B](Ω,S)

are connected and have size bounded by (|H|+ 2r)(n+m), (with r = 1 for G′),
may be built in polynomial time in their size,
are bipartite if the B-single extension of H is bipartite,
are respectively planar and an apex graph if the B-twin-extension of H is planar.

Having defined the (apex) distance identifying graphs, the main effort to obtain generic
reduction from Planar Hitting Set is done. We now define relevant gadgets:

I Definition 19 ((f, r)-gadgets). Let f be a distance identifying function and r ∈ [[∞]]. Let
H = (VH , EH) be a connected graph, and B,C be two subsets of VH . We said that the triple
(H,B,C) is a (f, r)-gadget if for every B-extension G of H:
(ph) C f -distinguishes VH and VG.
(pb) C f -distinguishes NB and VG\H \NB , where NB is the set of B-adjacent vertices of G.
(pd) C is an r-dominating set of G[VH ∪NB ].
(ps) For all (f, r)-distance identifying set S of G, |C| ≤ |S ∩ VH |.

I Definition 20 (local gadgets). A (f, r)-gadget is a local gadget, if f is a r-local identifying
function with r 6=∞, and (pl): for every k ∈ [[r]], there exists c ∈ C such that d(c,B) = k− 1.

Consistently, we say that a (f, r)-gadget (H,B,C) is bipartite if the B-single-extension of
H is bipartite, and that it is planar if the B-twin-extension of H is planar.

I Theorem 21. Let (Ω,S) be an instance of Hitting Set such that |Ω| = n > 1, |S| = m.
Let (H,B,C) be a (f, r)-gadget for a 1-layered identifying function f and let (H ′, B′, C ′) be
a local (g, q)-gadget. The following propositions are equivalent:

there exists a hitting set of S of size k.
there exists a (f, r)-distance identifying set of Φ∗[H,B](Ω,S) of size k + |C|(n+m).
there exists a (g, q)-distance identifying set of Φ[H ′, B′, q](Ω,S) of size k + |C ′|(n+m).
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Proof of Theorem 21. We focus on the equivalence between the first and second items.
Suppose first that P is a hitting set of (Ω,S) of size k. By denoting CΩ

i and CSj the
copies of C associated to the copies HΩ

i and HSj of H, we suggest the following set I of size
k + |C|(n+m) as a (f, r)-distance identifying set of G = Φ∗[H,B](Ω,S):

I = {vΩ
i : ui ∈ P} ∪

⋃
i∈ [[n]]

CΩ
i ∪

⋃
j ∈ [[m]]

CSj .

Recall that by construction, G is a BΩ
i -extension of HΩ

i (respectively BSj -extension of HSj )
for any i ∈ [[n]] (respectively j ∈ [[m]]). This directly implies that I is an r-dominating set of
G. Indeed, the condition (pd) of Definition 19 implies that CΩ

i (respectively CSj ) r-dominates
HΩ

i plus vΩ
i (respectively of HSj plus vSj , v̄Sj ). The remaining apex is also r-dominated by

any CΩ
i , as it is BΩ

i -adjacent for every i ∈ [[n]].
We now have to show that I f -distinguishes G. We begin with the vertices of the gadget

copies because the condition (ph) implies that CΩ
i ⊆ I f -distinguishes the vertices of HΩ

i

and G for every i ∈ [[n]], and I f -distinguishes the vertices of HSj and G for every j ∈ [[m]].
Thereby, we only have to study the vertices of the form vΩ

i , vSj , v̄Sj , and the apex a (there is
no vertex of the form lki,j in an apex distance identifying graph). To distinguish them, we
use the condition (pb). Recall that n > 1. Then, for each distinct i, i′ ∈ [[n]], we have:

vΩ
i is BΩ

i -adjacent but not BΩ
i′ -adjacent,

a is both BΩ
i -adjacent and BΩ

i′ -adjacent,
a vertex of the form vSj or v̄Sj is neither BΩ

i -adjacent nor BΩ
i′ -adjacent.

Enumerating the relevant i and i′, we deduce that every couple of vertices is distinguished
except when they are both of the form vSj or v̄Sj′ for j, j′ ∈ [[m]]. But we may distinguish vSj
or v̄Sj′ for distinct j, j′ by applying (pb) on HSj .

It remains to distinguish vSj and v̄Sj for j ∈ [[m]]. We now use the fact that P is a hitting
set for (Ω,S). By definition of a hitting set, for any set Sj ∈ S, there exists a vertex ui ∈ P
such that ui ∈ Sj . We observe that d(vΩ

i , v
S
j ) = 1 < d(vΩ

i , v̄
S
j ) by construction of G and that

vΩ
i ∈ I by definition of I. Since f is 1-layered, I f -distinguishes vSj and v̄Sj .

In the other direction, assume that I is a distance identifying set of G of size k+|C|(n+m).
As every set of S is not empty, we may define a function ϕ : [[m]]→ [[n]] such that uϕ(j) ∈ Sj .

We suggest the following set P as an hitting set of S of size at most k:

P = {ui ∈ Ω | vΩ
i ∈ I} ∪ {uϕ(j) ∈ Ω | vSj ∈ I or v̄Sj ∈ I}

We claim that the only vertices that may f -distinguish vSj and v̄Sj are themselves and
the vertices vΩ

i such that ui ∈ Sj . To prove so, we apply propriety (α) of Definition 5:
the apex a verifies d(a, vSj ) = 1 = d(a, v̄Sj )
a vertex vΩ

i such that ui 6∈ Sj verifies d(vΩ
i , v

S
j ) = 3 = d(vΩ

i , v̄
S
j )

a vertex v of HΩ
i verifies d(v, vSj ) = 2 + d(v,BΩ

i ) = d(v, v̄Sj )
a vertex v of HSj′ with j 6= j′ verifies d(v, vSj ) = 3 + d(v,BSj ) = d(v, v̄Sj )
both vSj and v̄Sj are BSj -adjacent, so they are at the same distance of any vertex of HSj .

We deduce that vSj and v̄Sj are f -distinguished only if either one on them belongs to I (in
that case uϕ(j) ∈ P ∩ Sj) or there exists vΩ

i ∈ I such that ui ∈ Sj (and then ui ∈ P ∩ Sj).
It remains to show that |P | ≤ k. By the condition (ps) of Definition 19, we know that

|I ∩ VHΩ
i
| ≥ |CΩ

i | and |I ∩ VHS
j
| ≥ |CSj | for any i ∈ [[n]] and j ∈ [[m]], implying

k = |I| − |C|(n+m) ≥
∑
i∈[n]

|I ∩{vΩ
i }|+

∑
j∈[m]

|I ∩{vSj , v̄Sj }| ≥
∑

vΩ
i
∈I

1 +
∑

I∩{vS
j

,v̄S
j
}6=∅

1 = |P |

The equivalence between the first and third points is proven in [4]. J
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3.2 Binary Compression of Gadgets
The Theorem 21 is a powerful tool to get reductions, in particular in the planar cases.
However, the number of involved gadgets does not allow to use Theorem 1. This limitation
is due to the uses of a gadget per vertex to identify in the distance identifying graphs. Using
power set, we may obtain a better order: given k gadgets, we may identify 2k − 1 vertices
(we avoid to identify a vertex with the empty subset of gadgets). Thus, we will consider
binary representations of integers as sequences of bits, with weakest bit at last position. For
a positive integer n, we define the integer lgn = 1 + blog2(n)c and introduce a new graph:

I Definition 22 ((H,B, r)-compressed graph). Let (Ω = {ui | i ∈ [[n]]},S = {Si | i ∈ [[m]]})
be an instance of Hitting Set. Let H be a connected graph, B be a subset of its vertices,
and r be a positive integer. The (H,B, r)-compressed graph Ψ[H,B, r](Ω,S) is defined as
follows. Ψ[H,B, r](Ω,S) contains as induced subgraphs lgn+1 copies of H denoted HΩ

i for
i ∈ [[lgn+1]] and lgm another copies of H denoted HSj for j ∈ [[lgm]]. Then:

for each j ∈ [[m]], we add two non-adjacent vertices vSj and v̄Sj . They are BSk -adjacent for
each k ∈ [[lgm]] such that the kth bit of the binary representation of j is 1.
for each i ∈ [[n]], we add r vertices denoted lj−1

i with j ∈ [[r]] to form a fresh path such
that d(vΩ

i , l
j−1
i ) = j − 1 where vΩ

i = l0i . We make vΩ
i BΩ

k -adjacent for each k ∈ [[lgn+1]]
such that the kth bit of the binary representation of i is 1.
for each Sj ∈ S and each ui ∈ Sj , we add the edge (lr−1

i , vSj ).
we add r vertices denoted aj−1 with j ∈ [[r]] to form a path such that d(a0, aj−1) = j − 1.
The vertex a0 is BΩ

k -adjacent for every k ∈ [[lgn+1]], and we add the edges (ar−1, vSj ) and
(ar−1, v̄Sj ) for each j ∈ [[m]].

By definition of lgn+1, for every i ∈ [[n]], one of the last lgn+1 bits of the binary representation
of i is 0. So, a0 has a distinct characterization in the power set formed by the gadgets HΩ

i .

I Proposition 23. The graph Ψ[H,B, r](Ω,S) built on an instance (Ω,S) of Hitting Set
is connected and has size at most |H|(lgn+1 + lgm) + r(n + 1) + 2m, where |Ω| = n,
|S| = m

may be built in polynomial time in its size,
is bipartite if the B-single extension of H is bipartite.

I Theorem 24. Let (Ω,S) be an instance of Hitting Set such that |Ω| = n, |S| = m. Let
(H,B,C) be a (f, r)-gadget for a 1-layered identifying function f and let (H ′, B′, C ′) be a
local (g, q)-gadget. The following propositions are equivalent:

there exists a hitting set of S of size k.
there exists a (f, r)-distance identifying set of Ψ[H,B, 1](Ω,S) of size k+|C|(lgn+1 + lgm).
there exists a (q, r)-distance identifying set of Ψ[H ′, B′, q](Ω,S) of size k+|C ′|(lgn+1 + lgm).

4 On Providing Gadgets to Establish Generic Reductions

In this section, we finalize the reductions by furnishing some gadgets and combining them
with the suitable theorems and propositions from Section 3. We directly define the gadgets.

I Definition 25 (The 1-layered gadget). Let H be the bipartite planar graph such that:
Its ten vertices are denoted b, b̄, u1, ū1, u2, ū2, v1, v̄1, v2 and v̄2,
The vertices u1, u2, ū1 and ū2 form a cycle as well as the vertices v1, v2, v̄1 and v̄2.
The vertices b and b̄ are adjacent to u1, ū1, v1 and v̄1.
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Figure 3 A (H,B,2)-compressed graph built
with Ω = {1, 2, 3, 4} and S = {{1, 2}, {2, 3, 4}}.
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B

Figure 4 The 1-layered gadget (H, B, C).
C contains the colored vertices.
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Figure 5 The 2-local 0-layered gadget.
C2 contains the colored vertices.
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Figure 6 The 2-IC gadget.
C2 contains the colored vertices.

We define the sets B = {b, b̄} and C = {b, u1, u2, v1, v2}.
The triple (H,B,C) is called the 1-layered gadget (see Fig. 4).

I Definition 26 (The r-local 0-layered gadget). Given an integer r > 1 (respectively r = 1),
let Hr be the bipartite planar graph of size 4r + 2 (respectively 8) such that:

its vertices are denoted ai and bi for i ∈ [[2r + 1]] (respectively i ∈ [[4]]),
for each i ∈ [[2r]] (respectively i ∈ [[3]]), both ai and bi are adjacent to ai+1 and bi+1

We define the sets Br = {a1, b1} and Cr = {ai | i ∈ [[2r + 1]]} (respectively C1 =
{a1, a2, a3, a4}). The triple (Hr, Br, Cr) is called the r-local 0-layered gadget (see Fig. 5).

For each positive integer r, r-LD and r-MD are r-local 0-layered problems, whereas r-IC
is not 0-layered. We define a specific gadget for this remaining problem.

I Definition 27 (The r-IC gadget). Given a positive integer r, let Hr be the bipartite planar
graph of size 6r + 4 such that:

its vertices are denoted ai−1 and bi−1 for i ∈ [[r+ 2]], and aj
i and bj

i for i ∈ [[r]] and j ∈ [[2]].
We also denote a0 as a1

r+1 and a2
r+1 and we denote b0 as b1r+1, b2r+1, a1

0 and a2
0.

the edges are all included in the six following paths
from a0 to ar+1 such that d(a0, ai) = i for i ∈ [[r + 1]].
from b0 to br+1 such that d(b0, bi) = i for i ∈ [[r + 1]].
from a1

0 to a1
r+1 such that d(a1

0, a
1
i ) = i for i ∈ [[r + 1]].

from a2
0 to a2

r+1 such that d(a2
0, a

2
i ) = i for i ∈ [[r + 1]].

from b11 to b1r+1 such that d(b11, b1i ) = i− 1 for i ∈ [[r + 1]].
from b21 to b2r+1 such that d(b21, b2i ) = i− 1 for i ∈ [[r + 1]].

We define the sets Br = {b11, b21} and Cr = {ar+1, br+1} ∪
⋃

i∈[[r+1]]
{a1

i , b
1
i }.

The triple (Hr, Br, Cr) is called the r-IC gadget (see Fig. 6).

As expected, we have the following propositions:
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I Proposition 28. The 1-layered gadget is a bipartite planar (f, r)-gadget for any
1-layered distance identifying function f and r ∈ [[∞]].

I Proposition 29. Given a positive integer r, the r-local 0-layered gadget is a local bipartite
planar (f, r)-gadget for every r-local 0-layered distance identifying function f .

I Proposition 30. Given a positive integer r, the r-IC gadget is a local bipartite planar
(f, r)-gadget for the identifying function f associated with r-IC, where fG[w](u, v) = true if
w ∈ Nr[u]∆Nr[v] for relevant inputs G, u, v and w.

With Propositions 28 to 30, we can now prove the Theorems 9 to 12. We focus here on
1-layered distance identifying functions and show the other reductions in [4].

Proof of Theorems 9 and 12 for each 1-layered identifying function f and r ∈ [[∞]].
We first suggest a reduction from Planar Hitting Set to (f, r)-DIS based on the bipartite
planar 1-layered gadget (H,B,C). Let (Ω,S) be an instance of Planar Hitting Set with
|Ω| = n and |S| = m such that m = O(n). According to Proposition 18, the bipartite
apex graph G = Φ∗[H,B](Ω,S) has size n′ linear in n + m = O(n) and may be built in
polynomial-time in its size. Recall that (H,B,C) is a (f, r)-gadget by Proposition 28. By
Theorem 21, G admits a (f, r)-distance identifying set of size k′ = k + |C|(n+m) if an only
if S admits an hitting set of size k. Thus, an algorithm solving (f, r)-DIS in 2o(

√
n′) would

solve Planar Hitting Set in time 2o(
√

n), a contradiction to Theorem 3 (assuming ETH).
We adapt the previous argumentation to get a reduction from Hitting Set to (f, r)-DIS,

the instance (Ω,S) belonging now to the Hitting Set problem. According to Proposition
23, the bipartite graph G = Ψ[H,B, 1](Ω,S) has size n′ linear in n+m = O(n) and may also
be built in polynomial-time in its size. By Theorem 24, G admits a (f, r)-distance identifying
set of size k′ = k + |C|(lgn+1 + lgm) if an only if S admits an hitting set of size k. Thus, an
algorithm solving (f, r)-DIS in 2o(n′) would solve Hitting Set in time 2o(n), contradicting
Theorem 2 when assuming ETH. Moreover, a parameterized algorithm solving (f, r)-DIS in
2O(k) · n′O(1) would be in contradiction with Theorem 1 when assuming W[2] 6= FPT. J

5 Conclusion

In this paper, we showed generic tools to analysis identifying problems and their computational
lower bounds. This study opens some new questions. First of all, we observe that our toolbox
does not contain a r-local gadget. Does one exist? Furthermore, there is still a gap between
the computational lower bound provided by Theorem 12 and the elementary upper bound
from Proposition 14 in the local cases. We wonder if local problems may be solved in
kO(k) · nO(1). Notice that a polynomial kernel would imply such a complexity (but the
reciprocal is not true). For non-local problems, an FPT upper bound is globally unknown. In
particular, W[2]-hard problems like MD cannot admit FPT algorithms unless W[2] = FPT.
Then, which non-local problem is W[2]-hard? We mention that we actually get a FPT
reduction from Hitting Set to some scarce non-local problems (however including MD)
proving their W[2]-hardness, but the family of involved problems is not precise nor wide.
Nevertheless, we remark that most of our reductions may be generalized to the oriented
version of Distance Identifying Set sometimes even for the strongly connected graphs
–this is due to the fact that the paths in our distance identifying graphs and gadgets may
often be seen as oriented–. Thus, we inform the community that the oriented version of MD
(studied for Cayley graphs in [15]) remains W[2]-hard.
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Abstract
We consider problems where the input is a set of points in the plane and an integer k, and the
task is to find a subset S of the input points of size k such that S satisfies some property. We
focus on properties that depend only on the order type of the points and are monotone under
point removals. We exhibit a property defined by three forbidden patterns for which finding a k-
point subset with the property is W[1]-complete and (assuming the exponential time hypothesis)
cannot be solved in time no(k/ log k). However, we show that problems of this type are fixed-
parameter tractable for all properties that include all collinear point sets, properties that exclude
at least one convex polygon, and properties defined by a single forbidden pattern.
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1 Introduction

In this work, we study the parameterized complexity of finding subsets of planar point sets
having hereditary properties, by analogy to past work on hereditary properties of graphs.

Hereditary properties of graphs have long been a central organizing principle for such
diverse topics as coloring, perfection, intersection graph theory, and the theories of claw-free
and triangle-free graphs. Finding the largest induced subgraph with any hereditary property
is NP-hard [11,21]. The parameterized complexity of finding a k-vertex induced subgraph
with a given hereditary property was resolved by Khot and Raman [19]. If all cliques and
all independent sets have the property, then only graphs of bounded size can fail to include
a k-vertex induced subgraph with the property. If there exist a clique and an independent
set that do not have the property, then only bounded-size induced subgraphs can have the
property. In all remaining cases the problem is W[1]-complete. For hereditary properties
with finitely many minimal forbidden induced subgraphs, removing k vertices so that the
remaining induced subgraph has the property is always fixed-parameter tractable, as a hitting
set problem [1,10]. The parameterized complexity of problems of this type with more than
finitely many obstacles, such as deletion to a planar graph (k-apex graph recognition) [5, 17]
or to a bipartite graph (odd cycle transversal) [18,20], also remains of interest.
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11:2 The Parameterized Complexity of Finding Point Sets with Hereditary Properties

Point sets in the Euclidean plane can be described combinatorially by their order type,
the specification for each ordered triple of points of whether that triple forms the vertices of
a triangle in clockwise or counterclockwise order, or whether the three points are collinear.
It is natural to define a hereditary property of point sets to be a property that depends only
on the order type, and that remains true for every subset of a point set having the property.
This concept of hereditary properties has been adopted recently as a central organizing
principle in discrete geometry [8] and encompasses many famous and well-studied problems:

The happy ending problem concerns conditions that force some k-point subset to be
in convex position [9, 24]. The property of not containing a k-point convex subset is
hereditary [8, Chapter 11]. It can be tested in polynomial time for points in the plane [6,7],
but is NP-hard in three dimensions, and finding the largest 3d k-point convex set that
does not enclose any other input points is W[1]-hard [12].
The no-three-in-line problem concerns the size of the largest general-position subset of an
n× n grid [15, 23]. Here, “general position” means having no three collinear points. The
property of not containing a k-point general-position subset is hereditary [8, Chapter 9].
The Erdős–Ulam problem asks whether there exist dense sets with all distances rational [25];
Harborth’s conjecture is that every planar graph can be drawn with non-crossing straight
edges of rational length [16]. The existence of a rational-distance point set with the same
order type as the given point set is hereditary. If every general-position order type has
a rational-distance realization then Harborth’s conjecture follows, and if not then the
Erdős–Ulam problem has a negative answer [8, Section 13.5].

Every hereditary property can be defined by its forbidden patterns, the point-minimal
order types that do not have the property. The first author’s recent book on these problems
asked whether every problem of finding k points with a hereditary property defined by finitely
many forbidden patterns is fixed-parameter tractable [8, Open Problem 7.6]. We answer this
question negatively, by finding a property for which (under standard complexity-theoretic
assumptions) no FPT algorithm exists. However, we show that several natural classes of
properties have fixed-parameter tractable algorithms. Specifically, we show:

There exists a hereditary property Π, defined by finitely many forbidden patterns, such
that finding a k-point subset with property Π is W[1]-complete and (assuming the
exponential time hypothesis) cannot be solved in time no(k/ log k)).
Finding a k-point subset with a given hereditary property is fixed-parameter tractable
whenever all collinear sets have the property.
Finding a k-point subset with a given hereditary property is fixed-parameter tractable
whenever there exists a convex polygon that does not have the property.
Finding a k-point subset that avoids a single forbidden pattern is fixed-parameter tractable.

As with the analogous graph problems, the dual problem of removing k points to make the
remaining points have a given property is fixed-parameter tractable whenever the property
has finitely many forbidden patterns, as a hitting set problem for the copies of the patterns
within the point set [8, Theorem 7.9].

Our algorithmic results apply to any model of point set input that allows us to determine
the orientation of a triple of points in constant (or polynomial) time. For points given by
Cartesian coordinates, these orientations can be determined from the sign of a quadratic
polynomial of these coordinates. Not all order types can be realized with integer coordinates,
and even when this is possible a realization may need very large coordinates [13], but our
algorithms could instead use inputs that specify an n × n × n three-dimensional array of
orientations. The point sets used for our hardness results and lower bounds can be constructed
using explicit integer coordinates of polynomial magnitude.
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Figure 1 The three forbidden patterns for a compliant point set.

2 A hard property

The property for which we will prove finding a k-point subset hard is defined by the three
forbidden patterns in Figure 1: four points in a line (left), an eight-point pattern based on a
complete quadrilateral3 (center), and a nine-point pattern resembling a tic-tac-toe board or
3× 3 grid, but with the central vertical line broken rather than straight (right). We call a
set of points compliant if it does not contain any of these three patterns.

The hard inputs to our problem will be point sets of a special form, which we call yards.
A yard consists of points with the following properties:

Most of its points are arranged onto horizontal lines of at least three points per line, which
we call rows. We call the leftmost and rightmost points of each row the guards of the
row (or more specifically the left and right guards, respectively). We call the remaining
points, that are neither leftmost nor rightmost in their row, the inmates.
Some triples of points from different rows form non-horizontal lines of three points, but
there are no non-horizontal lines of four points.
Every line between two inmates of different rows passes completely above or completely
below all left guards, and completely below or completely above (respectively) all right
guards. Similarly, every line through two left guards or through two right guards passes
completely above or completely below all inmates. (These points may determine vertical
lines, which we consider to pass above and below all points.)
The only lines of three or more points with both inmate and guard points are rows.
No subset of nine guards forms the configuration on the right of Figure 1.
In addition to the points on rows, the yard has six additional points, forming a complete
quadrilateral. We call these points the fence.
The only lines of three or more points that include points of the fence are the four lines
from which the fence was defined. No other six points of the yard form a complete
quadrilateral.
The fence encloses the inmates but not the guards. Every two inmates on a single row,
plus the fence, form the middle forbidden pattern of Figure 1, and every instance of the
middle forbidden pattern is formed in this way.

An example of a yard is shown in Figure 2. For a yard with r rows, we define a lineup to
be a compliant subset of k = 3r + 6 points from the yard.

I Lemma 1. Every lineup must consist of all six points of the fence, and two guards and
one inmate from each row. Whenever three rows have the property that their three left guards
and their three right guards form two collinear triples of points, the three inmates of the
lineup from these rows must also be collinear.

3 A complete quadrilateral consists of four lines and six points, with each line containing three points and
each point contained in two lines. It can be constructed from four Euclidean lines, no two parallel and
no three crossing in a single point, by including the six crossing points of pairs of lines.

IPEC 2018
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Figure 2 A yard with three rows. The fence and its points are shown in red; the rows and their
guards are blue, and the inmates on each row are yellow. The green lines are the most far from
vertical among the lines through pairs of inmates that are not both on the same row as each other;
they can be used to verify that all non-horizontal and non-vertical lines through pairs of inmates
pass above or below the guards on each side, and that no pair of inmates on different rows from
each other forms a forbidden pattern with the fence. By Lemma 1, every lineup in this yard consists
of all of the blue and red points together with three collinear yellow points, one from each row. In
this example all the left guards and all the right guards are collinear, but in larger examples only
certain triples of guards would be collinear.

Proof. The forbidden four-point line forces the lineup to contain at most three points from
each row, so if it contains 3r + 6 points it must include exactly three points from each row
and all six points of the fence. The forbidden pattern in the form of a complete quadrilateral
plus two points forces the lineup to contain at most one inmate from each row, so in order
for it to contain three points from each row it must contain both guards.

If the three left guards and the three right guards of a triple of rows are collinear (as they
are in Figure 2), then the three inmates of the lineup from the same three rows must also
be collinear. For otherwise, they would form the forbidden pattern on the right of Figure 1,
either as shown or under a 180◦ rotation (which causes no change to the order type of the
configuration). Therefore, every such triple of inmates must be collinear. J

Lemma 1 is not a necessary and sufficient condition (for instance, it is possible to have a
subset of points that meets the condition of the lemma but contains a copy of the rightmost
forbidden pattern, rotated by 90◦) but we will see that it is necessary and sufficient for the
yards constructed by the reduction that we describe next.

We prove hardness of finding lineups in yards via a parameterized reduction from
partitioned subgraph isomorphism. This problem’s input consists of two graphs, a host graph
H and a pattern graph G, whose sizes (numbers of edges) are n and k respectively. The
vertices of G and H are colored, with all vertices of G having distinct colors. The problem is
to find a subgraph of H that is isomorphic to G and matches it in coloring. Thus, the color
classes of H partition its vertices. We must choose a representative vertex from each color
class so that whenever two vertices in G are adjacent their representatives in H are also
adjacent. The color partition of the vertices in H is what gives rise to the name, partitioned
subgraph isomorphism. In our hardness reduction, we will consider a restricted case of this
problem, cubic partitioned subgraph isomorphism, in which we require the pattern graph G
to be a cubic (that is, 3-regular) graph. H is not restricted. This problem is W[1]-complete
and, assuming the exponential time hypothesis, cannot be solved in time no(k/ log k).
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Cubic partitioned subgraph isomorphism has been used for the same sort of hardness
reduction previously [3, 4]. The W[1]-completeness of partitioned subgraph isomorphism
appears to be folklore, but it has a straightforward proof by reduction from the W[1]-complete
clique problem.4 In turn, partitioned subgraph isomorphism on graphs of minimum degree
at least three can be reduced to the 3-regular case by expanding each high-degree vertex into
a 3-regular tree, as follows:

Choose for each vertex v of the pattern graph a tree Tv having degree three at each
internal vertex and having the neighbors of v as its leaves. Let T ′v be the subtree of Tv

consisting only of the interior nodes of Tv.
Form the disjoint union of the trees T ′v. For each edge uv of the pattern graph add an
edge to this union, connecting the node in T ′u to which the leaf for v is attached to the
node in T ′v to which the leaf for u is attached.
For each vertex w of the host graph, having the same color as a vertex v of the pattern
graph, make a tree T ′w isomorphic to T ′v. Form a new host graph from the disjoint union
of these trees T ′w.
For each pair of vertices wx of the host graph such that w has the same color as a vertex
u of the pattern graph, x has the same color as a vertex v of the pattern graph, u and v
are adjacent, and w and x are adjacent, add an edge to this union, connecting the node
in T ′w corresponding to the one in T ′u to which the leaf for v would be attached with the
node in T ′x corresponding to the one in T ′v to which the leaf for u would be attached.

The ETH-based lower bounds on cubic partitioned subgraph isomorphism come from Corollary
6.1 of Marx [22], using the fact that a cubic expander graph G has treewidth Ω(k) [14].

To translate an instance of cubic partitioned subgraph isomorphism to the problem of
finding lineups in yards, we construct a yard with a row for each vertex or edge of the pattern
graph G. We will arrange the guards and inmates of the yard in such a way that collinearities
of guards correspond to vertex-edge incidences in the pattern graph, and collinearities of
inmates correspond to vertex-edge incidences in the host graph. In this way, every lineup of
the yard will necessarily correspond to a solution to the partitioned subgraph isomorphism
instance. We take some care in the construction in order to ensure that the resulting yard
uses only points with integer coordinates of small magnitude.

The rows of the yard will be placed on horizontal lines, with positive integer y-coordinate
yv or yuv for each vertex v or edge uv of the pattern graph. It will be convenient to be able
to place arbitrary integer-coordinate points on two vertex rows and have the intersection of
the line through these points with an edge row automatically be an integer-coordinate point.
To ensure this property, we will always choose yuv = 2yv− yu (where yv > yu). However, this
requires that we choose the coordinates yu and yv carefully, so that no two vertices or edges
have rows with equal y-coordinates. We make this choice greedily, choosing the coordinates
yv for the vertices in an arbitrary order. For each vertex v in this order, we choose yv to be
the smallest positive integer that obeys the following constraints:

yv is unequal to any yu for an earlier vertex u
yv is unequal to any yuw for any two adjacent earlier vertices u and w

4 The reduction uses the tensor product product G × H of graphs G and H. This product has as vertices
the pairs (u, v) where u is a vertex in G and v is a vertex in H. Pairs (u, v) and (u′, v′) are adjacent if
and only if either u = u′ and v is adjacent to v′, or v = v′ and u is adjacent to u′. If we properly color
Kk and assign each vertex (u, v) in G × Kk the same color as v, then G has a k-clique if and only if the
partitioned subgraph isomorphism instance for G × Kk and Kk (with these colors) has a solution. This
reduction proves the W[1]-completeness of partitioned subgraph isomorphism problem from the known
completeness of the clique problem.

IPEC 2018
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yv does not make any yu = yvx for any earlier vertex u and earlier neighbor x of v
yv does not make yuw = yvx for any three earlier vertices u, w, or x with u adjacent to w
and x to v.

These conditions are each determined by at most one earlier vertex u, at most one of three
neighbors w of u, and at most one of three neighbors x of v. For each combination of these
vertices, each condition causes one integer to be unavailable as a choice for yv. Therefore, O(k)
positive integers are unavailable. Because our greedy algorithm chooses the first available
integer in each case, it chooses all coordinates yv and yuv to have magnitude O(k). Our
actual row coordinates will be scaled and translated from these values, but both of these kinds
of transformations preserve the property that two integer points on vertex rows determine
an integer point on an edge row.

The first points we determine in the construction are the six points of the fence. We
construct a complete quadrilateral with integer coordinates, by using lines with rational
coefficients and then clearing denominators. We scale it by a sufficiently large factor so that
there are as many integer-coordinate horizontal lines through the fence as we need rows
(given the assignment of row coordinates to vertices and edges of the pattern graph) and so
that each row intersects the region inside the fence in a segment of length proportional to the
diameter of the fence. We scale these fences and rows a second time, by a polynomially-large
factor φ, to ensure that the following steps can be carried out using integer coordinates for
the remaining points. We leave φ unspecified for now, and will later state constraints on how
large it needs to be for the construction to work.

Next, we choose three intervals on the x-coordinate axis: a left interval that will contain
the x-coordinates of all left guards, a middle interval that will contain the x-coordinates of
all inmates, and a right interval that will contain the x-coordinates of all right guards. The
middle interval should be chosen so that its intersection with all row lines is inside the fence
(using the fact that there is a vertical line segment inside the fence that crosses all row lines)
and the left and right intervals should intersect all row lines outside the fence, on either side
of it. inside the fence and the left and right intervals should be outside it, on either side
of the fence. These intervals should be sufficiently narrow that all lines through pairs of
points on corresponding intervals of different rows pass in the correct way above or below the
points of the fence and the intervals of other types. In order to prevent an inmate from being
collinear with two guards from other rows than its own, we also require that there be no line
that crosses a row line in the left interval, a second row line in the middle interval, and a
third row line in the right interval. In order to achieve this, it will be sufficient to choose the
interval widths to be smaller than the diameter of the fence by a sufficiently large factor ρ.
With this factor, we can choose the left and right guard intervals first, arbitrarily subject to
the above constraints. Given this choice, let C be the set of crossing points of the rows with
non-horizontal lines through potential left and right guard points. Then C is a union of a
cubic number of intervals (one for each triple of rows). Each of these intervals defining C is
wider than the left and right intervals by a factor of O(k), because the slopes of the lines
through points within the left and right intervals on different rows are bounded away from
zero by Ω(1/k). Therefore, the projection of C onto the x-axis has length O(k4/ρ) relative to
the diameter of the fence. For ρ = ρ0k

4 for a sufficiently large constant factor ρ0, a constant
fraction of the length within the fence will remain disjoint from C, and at least one interval
within this constant fraction of the length will be long enough to use as the middle interval.

After these choices, we place the two guards on each row, with the left guard having its
x-coordinate within the left interval and the right guard within the right interval. We choose
the positions of the vertex guards (the guards on the rows that correspond to vertices of the
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pattern graph), one at a time. As each vertex guard is placed, it may also determine the
location of one or more edge guards (the guards on the rows that correspond to edges of the
pattern graph). An edge guard’s location is determined when the vertex guards for its two
endpoints have been placed. Whenever this happens, we place the edge guard at the point
where the line through the two vertex guards crosses the edge’s row. In order to ensure that
the edge guards are placed within the left and right intervals, we place each vertex guard
within the middle third of its interval. In this way, for each edge uv of the pattern graph we
will produce two collinear triples of guards: the triple of left guards for u, v, and uv, and
the triple of right guards for u, v, and uv. We will position the vertex guards in sufficiently
general position so that these are the only collinearities between triples of guards. As with
our choice of row coordinates, we achieve this absence of extra collinearities by a greedy
algorithm, in which we place one vertex guard at a time, subject to the constraint that this
choice should not create any undesired collinearities between the new vertex guard, the new
edge guards whose position becomes determined by the new vertex guard, and the previously
determined vertex and edge guards. Each potential undesired collinearity is determined by
the choice of two previous guard positions (for which there are O(k) choices) and possibly
one of the three neighbors of the vertex whose guard we are trying to place. This implies
that, when we are placing each vertex guard, there may be up to O(k2) positions that we
should not place it, because placing it in one of those positions would cause a collinearity.
Recall that, when constructing the fence, we left a scaling factor φ undetermined, and that
the left and right interval each contain Ω(kφ/ρ) integer coordinates, where ρ = O(k4) is the
factor by which the intervals are narrower than the diameter of the fence and where the
factor of k comes from the earlier scaling used to make the fence big enough to include as
many integer-coordinate rows as we need. We will choose our scaling factor φ to be large
enough (at least a sufficiently large multiple of k5) to ensure that the middle thirds of the
left and right intervals contain more integer coordinates than the number of unavailable
positions. With this choice of φ, our greedy guard-placing strategy will always be able to
determine a valid integer-coordinate placement for each vertex guard point. By our previous
choice of the row coordinates, the edge guard points will also have integer coordinates.

Finally, we place the inmates on each row, within the middle interval. Each edge or
vertex of the host graph corresponds to exactly one inmate point, which we place on the
row for the corresponding edge or vertex of the pattern graph, given by the coloring of the
host graph vertex or the coloring of the endpoints of the host graph edge. We choose the
locations for these inmate points in exactly the same way as we chose them for the guard
points, greedily one vertex at a time, with the vertex guards placed within the middle third
of the middle interval. We place each edge inmate point on the intersection between each
edge row and the line through the inmate points for its two endpoints, as soon as these two
vertex inmate points have been placed. This will cause each triple of an edge and its two
endpoints in the host graph to correspond to three collinear inmate points. We require in
addition that no three inmate points on different rows are collinear if they do not form such
a triple, and that no two points on the same row as each other coincide. Each potential
undesired collinearity is determined by the choice of two previous guard positions (for which
there are O(n2) choices, as the host graph may be dense) and possibly one of up to O(n)
neighbors of the vertex whose guard we are trying to place. This implies that there may be
O(n5) positions in the row of the new vertex guard that would cause an unwanted collinearity
or coincidence. We will choose our scaling factor φ to be large enough (at least a sufficiently
large multiple of k3n5) to ensure that the middle third of the middle interval in which we
place the inmate points contains more integer coordinates than this number of unavailable
positions. In this way, we ensure the success of our greedy inmate-placing strategy.

IPEC 2018



11:8 The Parameterized Complexity of Finding Point Sets with Hereditary Properties

a b

c

d e

Figure 3 Illustration for the proof of Lemma 2.

I Lemma 2. The translation described above constructs a yard.

Proof. The construction explicitly ensures that most properties of a yard are true: there is
a fence, and rows of points, each having two guards outside the fence and inmates inside the
fence. There are no non-horizontal lines of four points, and all non-horizontal lines defined
by pairs of guards or pairs of inmates pass above or below the other points and through the
fence in the proper manner. There are no lines of three points that include both guards and
inmates and are not rows. It remains to verify two properties, not stated explicitly as part
of the construction: there must be no complete quadrilateral other than the fence, and no
subset of guards that form the forbidden pattern on the right of Figure 1.

If either of these forbidden patterns existed, but did not include three points from the
same row of the configuration, then all of its three-point lines would have to be non-horizontal
lines, composed only of guards or only of inmates. But an edge point can only participate in
one such line, and both forbidden patterns include at least one line all three points of which
participate in two three-point lines. So all three of the points on this line would have to be
vertex points, an impossibility.

The only remaining possibility is a complete quadrilateral that uses at least one row as
one of its lines. Let a and b be any two points of this row, and choose c, d, and e so acd and
bce are distinct lines of the quadrilateral. Then triples acd and ade must each be the crossing
points of their lines with three rows that correspond in G to an edge and its two endpoints.
The choice of the row through a and b, and a second row through c, determines the third
row, which must therefore include both d and e. But then lines ab and de are parallel, and
cannot intersect to produce the sixth point of a complete quadrilateral (Figure 3). J

I Lemma 3. An instance (H,G, c) of partitioned subgraph isomorphism (where c is the
coloring of the instance) is solvable if and only if the yard constructed from it admits a lineup.

Proof. If a lineup exists, it must include all fence and guard points, and one inmate from
each row. This choice of the inmate for each row selects one vertex or edge from the host
graph H, of the appropriate color class (or pair of endpoint color classes), for each vertex or
edge in the pattern graph G. If the selected collection of vertices and edges in H does not
form an isomorph of G, it will include two vertices u and v in H that are adjacent in G but
for which the edge uv does not exist in H, or has not been selected by the choice of inmate
for its row. In this case, the guards for the rows of u, v, and uv will be collinear in triples
(because the corresponding vertices in G are adjacent) but the inmates will not be collinear,
creating an instance of the forbidden pattern on the right of Figure 1. So when H does not
contain a subgraph isomorphic to G, the yard admits no lineup.

If H does contain a subgraph isomorphic to G, we can choose the points corresponding
to the vertices and edges of that subgraph as the inmates of a lineup. As the following case
analysis shows, the resulting system of points does not include any forbidden pattern.
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It does not include four points in a line.
Because it has only one inmate on each row and the fence is the only complete quadrilateral
in the yard, it does not include the middle forbidden pattern in Figure 1.
It does not include a copy of the right forbidden pattern in which none of its lines are
rows, or in which only one of the vertical lines is a row, because in that case (as in
Lemma 2) the other vertical line would be a line of three points, each of which belongs to
two non-row lines of three points. This is an impossibility because the points on edge rows
only belong to one non-row three-point line, and each non-row three-point line includes
at least one of these edge points.
It does not include a copy of the right forbidden pattern in which only one or two of its
horizontal lines is a row, because then the two vertical lines could only be lines through
three guards. This would force the remaining horizontal lines to contain a left guard, a
right guard, and a point between them, and therefore be rows themselves.
It does not include a copy of the right forbidden pattern with two rows as its two three-
point vertical lines. If these rows represent two vertices u and v of G, the three points not
on these lines would belong to the row for edge uv, as they belong to a line containing a
representative for u and a representative for v. If the rows represent a vertex u and edge
uv of G, the three points not on these lines would all belong to the row for vertex v. In
either case these points form another line, unlike the forbidden pattern.
The only remaining possibility is that the three horizontal lines of this pattern are rows.
To form this pattern, the guards of these three rows must be collinear, meaning that
they represent two adjacent vertices and the edge between them in G. But since we have
selected the inmates on each row to form a correctly-colored subgraph isomorphic to G,
the three inmates must also be collinear, preventing the forbidden pattern from occurring.

Thus, the selected points form a lineup of the yard, as required. J

By combining these results with the known hardness of partitioned subgraph isomorphism
we obtain our main result:

I Theorem 4. Finding a k-vertex compliant subset of a given n-point set is W[1]-complete
and, under the exponential time hypothesis, cannot be solved in time no(k/ log k).

3 Collinearity and convex subsets

We have claimed that finding a k-point subset with a given hereditary property is fixed-
parameter tractable whenever the property is true for all collinear sets, or whenever there
exists a convex polygon for which the property is not true. We split the proof into cases:

Properties that are true for all collinear point sets and for all convex polygons.
Properties that are neither true for all collinear point sets nor for all convex polygons.
Properties that are true for all collinear point sets but not true for all convex polygons

However, the first two cases follow easily from known results.
The first case covers properties that are true for all collinear subsets and for all convex

polygons. By the happy ending theorem, every n points in the plane include Ω(logn) points
that are either all collinear or all in convex position. So, if property Π is true for all collinear
subsets and for all convex polygons (the first case), then every sufficiently large point set has
a k-point subset with property Π. Here, “sufficiently large” means large enough that this
Ω(logn) bound is at least k. For smaller values of n we can search by brute force all subsets
of the point set in time that is fixed-parameter tractable in k, because (for these values) n
itself is bounded by a function of k. For larger values of n, we can either just answer yes (for
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Figure 4 If G (blue) is a maximal general-position subset of P , the remaining points of P (yellow)
must be covered by lines through pairs of points in G, or else they could be added to G.

a decision problem) or reduce the input arbitrarily to the smallest number of points that
ensures the existence of a solution (a number bounded by a function of k) and then perform
a brute force search for a solution within the reduced subproblem.

The second case covers properties that exclude a collinear subset and a convex polygon.
By the happy ending theorem, sets of points with the property have bounded size (at most
some number p independent of the parameter k), because all sufficiently large sets contain a
collinear or convex subset without the property, and by heredity do not have the property
themselves. To test whether there exists a k-point subset with such a property, we answer
no immediately when k > p. Otherwise we perform a brute-force search over all subsets of
the input of size k. The time for this search is O(np), a polynomial with constant exponent.

We now detail a fixed-point-tractable solution for the remaining case.

I Lemma 5. Let decidable hereditary property Π be true for all collinear point sets but not
true for all convex polygons. Then it is fixed-parameter tractable to find a k-point subset
having property Π, among a given set of points in the plane.

Proof. It is straightforward, in polynomial time, to find all lines through pairs of input
points and determine whether any of these lines contains k or more points. If so, we can
immediately return a subset of k collinear points. So for the remainder of the proof we
assume without loss of generality that each line contains at most k − 1 input points.

Let q be the smallest number of vertices in a convex polygon that does not have property
Π. By assumption, q exists, and by the definition of hereditary properties, any set of points
containing the vertices of a convex q-gon does not have property Π. Let r be the largest
number of points in a set of points in general position (no three in a line) that does not
include a convex q-gon; by Suk’s improvement to the happy ending theorem [24], r ≤ 2q+o(q).
Let P be the unknown k-point subset (assuming it exists), and G be a maximal subset of P
that is in general position (meaning that no other point from P can be added to G without
creating a three-point line). Then |G| ≤ r, or else G and P would contain a convex q-gon
and P would not have property Π. The pairs of points in G determine

(|G|
2

)
≤

(
r
2
)
lines, and

these lines together must cover all of P , or else G would not be maximal (Figure 4).
Therefore, we can solve the problem of finding a k-point subset P with property Π by

guessing an
(

r
2
)
-tuple of lines that cover P , among all

(
n
2
)
lines through pairs of input points,

and then for each tuple of lines performing a brute-force search among the points covered by
those lines. Because r is a constant (depending on Π but not on the input parameter k),
there are a polynomial number of tuples of lines to be searched. Each tuple covers at most
(k − 1)

(
r
2
)
points, so performing each brute-force search takes time bounded by a function of

k, independent of the input size. Therefore, this algorithm is fixed-parameter tractable. J



D. Eppstein and D. Lokshtanov 11:11

This completes the last case of the following result:

I Theorem 6. Let decidable hereditary property Π either be true for all collinear point sets
or not be true for at least one convex polygon (or both). Then it is fixed-parameter tractable
to find a k-point subset having property Π, among a given set of points in the plane.

Not every hereditary property is decidable: there are uncountably many hereditary
properties,5 only countably many of which are decidable. When a hereditary property is not
decidable, the same technique applies, but (because of the need to test the property within
each brute-force search used as a subroutine of the algorithms) it gives us a non-uniform
fixed-parameter tractable algorithm.

4 Properties with a single obstacle

If X is any fixed point set, we can define hereditary property ΠX to be true for the point
sets that do not contain X, and false otherwise. We are then interested in testing whether a
given input includes k points with property ΠX . That is, are there at least k points in the
largest point set that avoids X? If X is not itself collinear, then all collinear point sets have
property ΠX . Therefore, there is only one family of possible choices for X that is not already
covered by Theorem 6: the family of sets X consisting of q points on a single line. The order
type of any such point set depends only on q. We call a point set with this order type Lq.

I Lemma 7. Let q be fixed. Then it is fixed-parameter tractable to find a k-point subset
avoiding Lq, among a given set of points in the plane.

Proof. We assume q > 2 for otherwise the problem is trivial (an L2-avoiding set can only
be a single point, and an L1-avoiding set must be empty). We begin by finding a maximal
subset G of the input that is in general position (no three in a line). If |G| ≥ k, we return
any k points from G as our k-point Lq-avoiding set. Otherwise, as in Lemma 5 and Figure 4,
the input can be covered by at most

(
k−1

2
)
lines, the lines through pairs of points in G.

Observe that, on each of these lines, an Lq-avoiding set can include at most q − 1 points
from the line. Consider a single line ` and a process in which we build up a k-point Lq-
avoiding set, one point at a time, starting from a subset of points that are disjoint from
` and then adding points from ` in an arbitrary order. At each step of this process, at
most q − 2 points from ` have already been chosen, and the next point must be chosen
to be disjoint from these already-chosen points and from any of the lines through pairs of
points (neither on `) that already contain q − 1 points. There at most

(
k−1

2
)
of these lines

through pairs of already-chosen points (because we have already chosen at most k−1 points),
and each can prevent only a single point of ` from being chosen. So, as long as ` contains(

k−1
2

)
+ q − 1 points, there will always remain at least one point that is free to be added

until we have included exactly q − 1 points from `. Therefore, if we reduce the input to
contain any arbitrary subset of

(
k−1

2
)

+ q − 1 points on `, keeping the points disjoint from `

unchanged, we cannot affect the existence or nonexistence of a k-point Lq-avoiding subset.

5 This follows from the fact that there are infinite families of point sets in which no family member has
the same order type as a subset of another family member. For example, the set of vertices and edge
midpoints of a convex r-gon is not a subset of the set of vertices and edge midpoints of any other convex
polygon, so choosing one such point set for each r gives a family of point sets none of which have the
order type of a subset of another. This family has uncountably many subfamilies, each of which forms
the set of forbidden patterns for a hereditary property. See [8, Observation 5.9].
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By applying this observation repeatedly we can kernelize the problem. That is, we find a
polynomial-time algorithm that reduces any parameterized instance to an equivalent instance
(the “kernel”) whose size is bounded by a function of the parameter. To do so, we consider
the lines through pairs of points of G, one at a time. Whenever any such line contains more
than

(
k−1

2
)

+ q − 1 points of the remaining input, we delete arbitrarily chosen points until
it contains exactly

(
k−1

2
)

+ q − 1 points. At the end of this process, the total number of
remaining points is at most

(
k−1

2
) ((

k−1
2

)
+ q − 1

)
= O(k4), depending only on k. We may

then find a k-point Lq-avoiding subset by a brute force search of this kernel. J

This includes as a special case the problem of finding an L3-avoiding subset (that is,
a subset in general position), the central computational task for the no-3-in-line problem.
(We already proved this special case to be NP-hard in [8, Theorem 9.3] and fixed-parameter
tractable in [8, Theorem 9.5].) It completes the last case of the following result:

I Theorem 8. Let X be any fixed finite set of points. Then it is fixed-parameter tractable to
find a k-point subset avoiding X, among a given set of points in the plane.

5 Conclusions

We have identified a hereditary property of point sets such that finding a k-point subset with
this property is unlikely to be fixed-parameter tractable, and identified several general classes
of properties for which the corresponding problems are fixed-parameter tractable. These
include properties that include all collinear sets, properties that exclude a convex polygon,
and properties with a single obstacle. Several additional cases are fixed-parameter tractable:

The largest convex subset (avoiding two forbidden patterns, one of three points on a line
and the other of a triangle with an interior point) is polynomially solvable, in cubic time
and linear space [6, 7].

If finding k-point subsets is fixed-parameter tractable for two properties Π and Π′, then
it is also fixed-parameter tractable for their disjunction (the point sets that have at least
one of the two properties), by running both algorithms and returning any k-point set
found by either of them.

If finding k-point subsets is fixed-parameter tractable for property Π, then it is also
fixed-parameter tractable for the property Πq of being partitionable into q subsets that
have property Π, by color-coding [2]. Alternatively one could use a different hereditary
property for each color class.

We have been unable to complete a classification of which of these problems are fixed-
parameter tractable and which are not. We leave this as open for future research.

Another open problem concerns properties (such as being in convex position) that can
be true only of point sets in general position. That is, these properties have a three-point
line as one of their forbidden patterns. Can it be hard, for such a property, to find a k-point
subset with the property? We suspect that the answer is yes, by a reduction that mimics the
one we have given, using more complex constraints on general-position subsets of points to
make them act like the collinear subsets of points in our reduction. However, we have not
worked out the details of such a reduction.
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Abstract
Given a graph G, a proper k-coloring of G is a partition c = (Si)i∈[1,k] of V (G) into k stable
sets S1, . . . , Sk. Given a weight function w : V (G) → R+, the weight of a color Si is defined as
w(i) = maxv∈Si

w(v) and the weight of a coloring c as w(c) =
∑k

i=1 w(i). Guan and Zhu [Inf.
Process. Lett., 1997] defined the weighted chromatic number of a pair (G,w), denoted by σ(G,w),
as the minimum weight of a proper coloring of G. The problem of determining σ(G,w) has
received considerable attention during the last years, and has been proved to be notoriously
hard: for instance, it is NP-hard on split graphs, unsolvable on n-vertex trees in time no(log n)

unless the ETH fails, and W[1]-hard on forests parameterized by the size of a largest tree.
We focus on the so-called dual parameterization of the problem: given a vertex-weighted

graph (G,w) and an integer k, is σ(G,w) ≤
∑

v∈V (G) w(v)− k? This parameterization has been
recently considered by Escoffier [WG, 2016], who provided an FPT algorithm running in time
2O(k log k) · nO(1), and asked which kernel size can be achieved for the problem.

We provide an FPT algorithm running in time 9k · nO(1), and prove that no algorithm in
time 2o(k) · nO(1) exists under the ETH. On the other hand, we present a kernel with at most
(2k−1+1)(k−1) vertices, and rule out the existence of polynomial kernels unless NP ⊆ coNP/poly,
even on split graphs with only two different weights. Finally, we identify some classes of graphs
on which the problem admits a polynomial kernel, in particular interval graphs and subclasses of
split graphs, and in the latter case we present lower bounds on the degrees of the polynomials.
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1 Introduction

A (vertex) k-coloring of a graph G = (V,E) is a function c : V (G) → {1, . . . , k}. Such
coloring c is proper if c(u) 6= c(v) for every edge {u, v} ∈ E(G). All the colorings we
consider in this paper are proper, hence we may omit the word “proper”. The chromatic
number χ(G) of G is the minimum integer k such that G admits a k-coloring. Given a
graph G, determining χ(G) is the goal of the classical Vertex Coloring problem. If c is
a k-coloring of G, then Si = {u ∈ V (G) | c(u) = i} is a stable (or independent) set. With
slight abuse of notation, we shall also call such a set Si a color.

In this paper we study a generalization of Vertex Coloring for vertex-weighted graphs
that has been defined by Guan and Zhu [24]. Given a graph G and a weight function
w : V (G) → R+, the weight of a color Si is defined as w(i) = maxv∈Si w(v). Then, the
weight of a coloring c is w(c) =

∑k
i=1 w(i). In the Weighted Coloring problem, the goal

is to determine the weighted chromatic number of a pair (G,w), denoted by σ(G,w), which is
the minimum weight of a coloring of (G,w). A coloring c of G such that w(c) = σ(G,w) is an
optimal weighted coloring. Guan and Zhu [24] also defined, for a positive integer r, σ(G,w; r)
as the minimum of w(c) among all r-colorings c of G, or as +∞ if no r-coloring exists. Note
that σ(G,w) = minr≥1 σ(G,w; r). It is worth mentioning that the Weighted Coloring
problem is also sometimes called Max-Coloring in the literature; see for instance [34, 37, 18].
Guan and Zhu defined this problem in order to study practical applications related to resource
allocation, which they describe in detail in [24]. One should observe that if all the vertex
weights are equal to one, then σ(G,w) = χ(G), for every graph G. Consequently, determining
σ(G,w) is an NP-hard problem on general graphs [33]. In fact, this problem has been shown
to be NP-hard even on very restricted graph classes, such as split graphs with only two
different weights, interval graphs, triangle-free planar graphs with bounded degree, and
bipartite graphs [12, 11, 19]. On the other hand, the weighted chromatic number of cographs
and of some subclasses of bipartite graphs can be found in polynomial time [12, 11].

https://doi.org/10.4230/LIPIcs.IPEC.2018.12
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The complexity of Weighted Coloring on trees (and forests) has attracted considerable
attention in the literature. Guan and Zhu [24] left as an open problem whether Weighted
Coloring is polynomial on trees and, more generally, on graphs of bounded treewidth.
Escoffier et al. [19] found a polynomial-time approximation scheme to solve Weighted
Coloring on bounded treewidth graphs, and Kavitha and Mestre [34] showed that the
problem is in P on the class of trees where vertices with degree at least three induce a stable
set. But the question of Guan and Zhu has been answered only recently, when Araújo et al. [2]
showed that, unless the Exponential Time Hypothesis (ETH)1 fails, there is no algorithm
computing the weighted chromatic number of n-vertex trees in time no(log n). Moreover, as
discussed in [2], this lower bound is tight. Very recently Araújo et al. [1] focused on the
parameterized complexity of computing σ(G,w) and σ(G,w; r) when G is a forest, and they
proved that computing σ(G,w) is W[1]-hard parameterized by the size of a largest tree of G,
and that computing σ(G,w; r) is W[2]-hard parameterized by r.

In view of the above discussion, we can conclude that Weighted Coloring is a
particularly hard problem from a computational point of view, and that the positive results
in the literature are quite scarce. In this paper we adopt the perspective of parameterized
complexity and consider the dual parameterization of the problem, which we call Dual
Weighted Coloring and is formally defined as follows:

Dual Weighted Coloring
Input: A vertex-weighted graph (G,w) and a positive integer k.
Parameter: k.
Question: Is σ(G,w) ≤

∑
v∈V (G) w(v)− k?

Since by definition of parameterized problem (cf. [16, 10]) the parameter needs to be a
non-negative integer, for the above parameterization to make sense we will assume henceforth
that all vertex-weights are positive integers. We will denote by n the number of vertices of
the input graph of Dual Weighted Coloring.

The motivation for considering such parameterization is to take as the parameter the
“savings” with respect to the trivial upper bound of

∑
v∈V (G) w(v) on σ(G,w). This approach

has proved to be very useful for the classical Vertex Coloring problem, especially from
the approximation point of view [13, 28, 26, 27, 17, 18]. From a parameterized perspective,
Chor et al. [9] presented an FPT algorithm for Dual Vertex Coloring. Concerning
kernelization, it is not difficult to see [10, Exercise 2.22] that the problem admits a kernel
with at most 3k vertices, by applying the so-called crown reduction rule to the complement
of the input graph G. Other results concerning dual parameterization are, for instance,
FPT algorithms for the Grundy and b-chromatic numbers of a graph [29], the parameterized
approximability of subset graph problems [8], or the existence of polynomial kernels for the
Set Cover and Hitting Set problems [25, 3].

The dual parameterization of the Weighted Coloring problem, under the equivalent
name of Max Coloring, has been recently considered by Escoffier [18], who provided an
FPT algorithm running in time 2O(k log k) · nO(1), and asked which is the smallest kernel size
that can be achieved for the problem.

Our results. Improving over Escoffier’s algorithm [18], our first result is an FPT algorithm
for Dual Weighted Coloring running in time 9k ·nO(1), based on some standard dynamic
programming ideas used in coloring and partition problems (see, for example, [35] and [20,

1 The ETH states that 3-SAT cannot be solved in subexponential time; see [32, 31] for more details.
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12:4 Dual Parameterization of Weighted Coloring

Section 3.1.2]). It is easy to see that a subexponential algorithm is unlikely to exist. Indeed,
consider the 3-Coloring problem, which corresponds to the unweighted version of Dual
Weighted Coloring with parameter k = n− 3. Since 3-Coloring cannot be solved in
time 2o(n) under the ETH [36], the existence of an algorithm for Dual Weighted Coloring
running in time 2o(k) ·nO(1) would imply, in particular, an algorithm for 3-Coloring running
in time 2o(k) · nO(1) = 2o(n), contradicting the ETH.

Our main contribution concerns the existence of (polynomial) kernels for Dual Weighted
Coloring. By the well-known equivalence of admitting an FPT algorithm and a kernel
(cf. [16, 10]), the FPT algorithm mentioned above directly yields a kernel for Dual Weighted
Coloring of size at most 9k. On the one hand, we considerably improve this bound by
providing a kernel with at most (2k−1 + 1)(k−1) vertices, inspired by an approach attributed
to Jan Arne Telle [16, Exercise 4.12.12] for obtaining a quadratic kernel for Dual Vertex
Coloring. On the other hand, we complement this result by showing that, unlike the Dual
Vertex Coloring problem, Dual Weighted Coloring does not admit a polynomial
kernel unless NP ⊆ coNP/poly, even on split graphs with only two different weights. We
prove this result by a polynomial parameter transformation from the Set Cover problem
parameterized by the size of the universe, proved not to admit polynomial kernels unless
NP ⊆ coNP/poly by Dom et al. [15]. Our reduction is an appropriate modification of a
reduction of Demange et al. [12] to prove the NP-hardness of Weighted Coloring on split
graphs. Altogether, these results answer Escoffier’s question [18] about the smallest kernel
size for the problem.

Motivated by the above hardness result, it is natural to identify graph classes on which
the Dual Weighted Coloring problem admits polynomial kernels. We prove that this
is the case of graph classes with bounded clique number and of interval graphs, for which
we present a linear and a cubic kernel, respectively. Finally, we identify subclasses of split
graphs admitting polynomial kernels. Namely, we prove that Dual Weighted Coloring
restricted to split graphs where each vertex in the clique has at most d non-neighbors in the
stable set, for some constant d ≥ 1, admits a kernel with at most kd+1 vertices. We show that
the dependency on d in the exponent is necessary, by proving that for any d ≥ 2 and ε > 0, a
kernel with O(k d−3

2 −ε) vertices on that graph class does not exist unless NP ⊆ coNP/poly. In
other words, we rule out the existence of a uniform kernel, that is, a kernel of size f(d) · kO(1)

for any function f .

Organization of the paper. In Section 2 we present some basic preliminaries about graphs
and parameterized complexity. In Section 3 we present the FPT algorithm and in Section 4
we provide the kernelization results. Finally, we conclude the article in Section 5.

2 Preliminaries

Graphs. We use standard graph-theoretic notation, and we consider simple undirected
graphs without loops or multiple edges; see [14] for any undefined terminology. Given a
graph G = (V,E), X ⊆ V , and v ∈ V , we denote NX(v) = N(v) ∩X, where N(v) = {u ∈
V | {u, v} ∈ E}, and NX(v) = X \ {NX(v) ∪ {v}}. An antimatching in a graph G is a
matching in the complement of G. Two vertices u, v ∈ V (G) are twins if N(u) = N(v). A
vertex v ∈ V (G) is universal if N(v) = V (G) \ {v}. A graph G is a split graph if V (G)
can be partitioned into an independent set and a clique, and an interval graph if one can
associate a real interval with each vertex, so that two vertices are adjacent if and only if the
corresponding intervals intersect.
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Parameterized complexity. We refer the reader to [16, 10] for basic background on para-
meterized complexity, and we recall here only some basic definitions, with special emphasis
on tools for polynomial kernelization. A parameterized problem is a language L ⊆ Σ∗ × N.
For an instance I = (x, k) ∈ Σ∗ × N, k is called the parameter. A parameterized problem is
fixed-parameter tractable (FPT) if there exists an algorithm A, a computable function f , and
a constant c such that given an instance I = (x, k), A (called an FPT algorithm) correctly
decides whether I ∈ L in time bounded by f(k) · |I|c.

A fundamental concept in parameterized complexity is that of kernelization. A kernel-
ization algorithm, or just kernel, for a parameterized problem Π takes an instance (x, k)
of the problem and, in time polynomial in |x| + k, outputs an instance (x′, k′) such that
|x′|, k′ 6 g(k) for some function g, and (x, k) ∈ Π if and only if (x′, k′) ∈ Π. The function g
is called the size of the kernel and may be viewed as a measure of the “compressibility” of
a problem using polynomial-time preprocessing rules. A kernel is called polynomial (resp.
linear) if the function g(k) is a polynomial (resp. linear) function in k. A breakthrough
result of Bodlaender et al. [5] gave the first framework for proving that certain parameterized
problems do not admit polynomial kernels, by establishing so-called composition algorithms.
Together with a result of Fortnow and Santhanam [21] this allows to exclude polynomial
kernels under the assumption that NP * coNP/poly, otherwise implying a collapse of the
polynomial hierarchy to its third level [38]. Very successful notions for proving such type of
result are those of cross-composition, introduced by Bodlaender et al. [6], and of polynomial
parameter transformation, introduced by Bodlaender et al. [7]. We need to define the latter.
A polynomial parameter transformation from a parameterized problem P to a parameterized
problem Q is an algorithm that, given an instance (x, k) of P , computes in polynomial time
an equivalent instance (x′, k′) of Q such that k′ is bounded by a polynomial depending only
on k.

Within parameterized problems, the class W[1] may be seen as the parameterized equi-
valent to the class NP of classical optimization problems. Without entering into details
(see [16, 10] for the formal definitions), a parameterized problem being W[1]-hard can be
seen as a strong evidence that this problem is not FPT. The class W[2] of parameterized
problems is a class that contains W[1], and such that the problems that are W[2]-hard are
even more unlikely to be FPT than those that are W[1]-hard (again, see [16, 10] for the
formal definitions).

3 FPT algorithm

In this section we present an FPT algorithm for the Dual Weighted Coloring problem.

I Theorem 1. The Dual Weighted Coloring problem can be solved in time 9k · nO(1).

Proof. We start by computing a maximum unweighted antimatching M̄ in G (this idea has
been already used, in particular, in [12]); note that this can be done in polynomial time by
computing a maximum matching in the complement of G. If |M̄ | ≥ k, since we assume that
all the vertex weights are at least 1, by putting in the same color class each pair of vertices
that belong to a non-edge of M̄ and coloring any other vertex with a new color, we obtain a
coloring of G with weight at most

∑
v∈V (G) w(v)− k, and we can output a constant-sized

yes-instance. Thus, we assume henceforth that |M̄ | ≤ k − 1.
Let V (M̄) ⊆ V (G) be the set of vertices that appear in the non-edges in M̄ . Since M̄ is

maximum, the set of vertices K := V (G) \ V (M̄) induces a clique in G. Note that, in any
coloring c of G, at least |K| colors will be needed. Let K = {v1, . . . , v|K|} and let c(vi) = ci.
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12:6 Dual Parameterization of Weighted Coloring

Hence, it remains just to color the vertices in V (M̄), which may be colored with some colors
previously used in K or with new ones.

Let X ⊆ V (M̄) and 0 ≤ i ≤ |K|. We define T (X, i) as the minimum weight of a coloring
of G[K ∪X] such that no color cj , for j > i, is assigned to a vertex of X, i.e., the colors
assigned to vertices in X are either from the set {c1, . . . , ci} or new colors not assigned to
any vertex of K. Note that, by definition, σ(G,w) = T (V (M̄), |K|).

We now describe how to compute T (X, i) for every X ⊆ V (M̄) and every 0 ≤ i ≤ |K|.
If X = ∅, then, for any i,

T (∅, i) =
∑
v∈K

w(v),

since K is a clique. This can be done in linear time.
If i = 0, then the colors used in K and in X are disjoint. By applying brute force over all

possible stable sets of X we get

T (X, 0) = min
∅6=S⊆X
S stable

T (X \ S, 0) + w(S),

where w(S) = maxv∈S w(v). The values T (X, 0), for all possible sets X ⊆ V (M̄), can be
computed in time|V (M̄)|∑

j=0

(
|V (M̄)|

j

)
· 2j

 · nO(1) = 3|V (M̄)| · nO(1),

corresponding to considering the sets X by increasing size and choosing an arbitrary subset S
inside X, and where the polynomial factor comes from checking whether such a set S is
stable or not.

Now, if i > 0 and X 6= ∅, we have two possibilities, namely either color ci is used in V (M̄)
or not. If ci is not used, clearly we have T (X, i) = T (X, i − 1). Otherwise, there is a
non-empty set S ⊆ X of vertices colored with color ci. Therefore, taking into account both
cases, we can iterate over every possible set S ⊆ X and compute T (X, i) as follows:

T (X, i) = min
S⊆X

S∪{vi} stable

T (X \ S, i− 1) + w(S ∪ {vi})− w(vi).

Here we have to subtract the weight of vi, which was, in the partial solution T (X \ S, i− 1),
the weight of color ci, and replace it by w(S ∪{vi}), which may be larger. As in the previous
case, for every i it is possible to compute T (X, i) for every X in time 3|V (M̄)| · nO(1).

Hence, since |V (M̄)| ≤ 2k−2, in time bounded by 32k ·nO(1) = 9k ·nO(1) we can compute
T (V (M̄), |K|) = σ(G,w) and answer whether σ(G,w) ≤

∑
v∈V (G) w(v)− k or not. J

4 Kernelization results

In this section we focus on the existence of (polynomial) kernels for Dual Weighted
Coloring.

I Theorem 2. The Dual Weighted Coloring problem admits a kernel with at most
(2k−1 + 1) · (k − 1) vertices.

Proof. We start with the following trivial polynomial-time reduction rule.
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Rule 1. If G contains a universal vertex, delete it.

I Claim 1. Rule 1 is safe.

Proof. Since a universal vertex u appears as a singleton in any proper coloring of G, it follows
that σ(G,w) ≤

∑
v∈V (G) w(v)− k if and only if σ(G− {u}, w) ≤

∑
v∈V (G)\{u} w(v)− k. J

As in the proof of Theorem 1, we compute in polynomial time a maximum unweighted
antimatching M̄ in G. Again, if |M̄ | ≥ k, we can correctly answer that we have a yes-instance,
so we assume henceforth that |M̄ | ≤ k − 1. Let again V (M̄) ⊆ V (G) be the set of vertices
that appear in the non-edges in M̄ , and recall that since M̄ is maximum, the set of vertices
K = V (G) \ V

(
M̄
)
induces a clique in G.

We now partition K into a set of equivalence classes C according to the neighborhood
in V

(
M̄
)
. That is, u, v ∈ K belong to the same class in C if and only if NV (M̄)(u) =

NV (M̄)(v). Note that C can be constructed in polynomial time, by iteratively processing the
vertices of K, comparing the neighborhood in V (M̄) of the currently processed vertex v with
those of the already processed vertices, and creating a new class containing only v if no class
has exactly the set NV (M̄)(v) as neighbors in V

(
M̄
)
. Given an equivalence class C ∈ C and

a non-edge ē ∈ M̄ , we denote by Nē(C) the set of neighbors of any vertex in C in the set
consisting of the two endpoints of ē. We proceed to analyze the number and the size of the
classes in C. We start with an easy claim.

I Claim 2. Let C ∈ C be an equivalence class with |C| ≥ 2. For every non-edge ē ∈ M̄ it
holds that |Nē(C)| ≥ 1.

Proof. Suppose for contradiction that |Nē(C)| = 0, let x, y be the endvertices of ē, and let
u, v be any two vertices in C. Then we can obtain from M̄ a larger antimatching M̄ ′ by
replacing the non-edge {x, y} with the two non-edges {u, x} and {v, y}, a contradiction. J

In the next claim we restrict further the neighborhoods of the equivalence classes in V (C̄).

I Claim 3. Let C1, C2 ∈ C be two equivalence classes and let ē ∈ M̄ be a non-edge with
endpoints x and y. Then it is not possible that x /∈ Nē(C1) and y /∈ Nē(C2), or vice versa.

Proof. Suppose for contradiction that x /∈ Nē(C1) and y /∈ Nē(C2), and let u ∈ C1 and
v ∈ C2. Then we can obtain from M̄ a larger antimatching M̄ ′ by replacing the non-
edge {x, y} with the two non-edges {u, x} and {v, y}, a contradiction. J

We call an equivalence class C ∈ C special if for some non-edge ē ∈ M̄ , |Nē(C)| = 0, and
we call such an ē a special non-edge; otherwise we call an equivalence class normal. We call
a non-edge ē ∈ M̄ normal if for every C ∈ C, |Nē(C)| ≥ 1. Let ks and kn be the number of
special and normal non-edges in M̄ , respectively, and note that ks + kn = |M̄ | ≤ k − 1.

By Claim 2, every special class contains exactly one vertex. If ē ∈ M̄ is a special non-edge
and C ∈ C is such that |Nē(C)| = 0, then Claim 3 implies that for every other class C ′ ∈ C
different from C, it holds that |Nē(C ′)| = 2. Therefore, the number of special classes in C is
at most the number of special non-edges in M̄ , that is, at most ks.

Let ē ∈ M̄ be a normal non-edge with endpoints x, y, let C ∈ C be such that |Nē(C)| = 1,
and assume that Nē(C) = {x}. Then Claim 3 implies that for every class C ′ ∈ C such
that |Nē(C ′)| = 1, it holds that Nē(C ′) = {x}. Hence, every normal non-edge ē ∈ M̄ has at
most one endpoint that has some non-neighbor in K; we call such a vertex the avoidable
vertex of ē. This means that for every normal class C ∈ C and every non-edge ē ∈ M̄ , there
are exactly two possibilities: either |Nē(C)| = 2, or |Nē(C)| = 1 and Nē(C) consists of the
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12:8 Dual Parameterization of Weighted Coloring

endpoint of ē distinct from its avoidable vertex. Moreover, by Claim 3 the latter case can
only occur if ē is a normal non-edge. Therefore, the number of normal classes in C is at most
2kn−1, corresponding to all the choices of neighborhoods in the set consisting of the avoidable
vertices in the normal edges in M̄ , and excluding the class C with NV (M̄)(C) = V (M̄), since
these vertices would be deleted by Rule 1.

Finally, in order to bound the size of the equivalence classes in C, we state the following
reduction rule, which says that it is enough to keep, for each equivalence class, the |M̄ |
heaviest vertices.

Rule 2. Suppose there exists an equivalence class C ∈ C with |C| > |M̄ |. Let W ⊆ C be
a subset of vertices with |W | = |M̄ | and such that, if u ∈ W and v ∈ C \W , then
w(u) ≥ w(v). Delete from G all the vertices in C \W .

I Claim 4. Rule 2 is safe.

Proof. We need to prove that if (G′, w, k) results from (G,w, k) after the application of
Rule 2, then (G,w, k) and (G′, w, k) are equivalent instances of Dual Weighted Coloring.

Assume first that σ(G′, w) ≤
∑

v∈V (G′) w(v) − k, and let c′ be a coloring of (G′, w)
satisfying this bound. We define a coloring c of (G,w) starting from c′ and creating a new color
for each of the vertices in C \W . Clearly, w(c) = w(c′) +

∑
v∈C\W w(v) ≤

∑
v∈V (G) w(v)−k.

Conversely, assume that σ(G,w) ≤
∑

v∈V (G) w(v)− k, and let c be a coloring of (G,w)
satisfying this bound. Due to Rule 1, we can clearly assume that |M̄ | ≥ 1. Hence, since Rule 2
has been applied on C ∈ C, it follows that |C| ≥ 2. Thus, by Claim 2, we have that for every
non-edge ē ∈ M̄ , |Nē(C)| ≥ 1. This implies, together with the fact that the vertices in C
induce a clique, that in the coloring c of (G,w), at most |M̄ | vertices of C appear in colors
containing vertices of V (M̄), and every other vertex in C is a singleton in its color. Let T ⊆ C
be this set of at most |M̄ | vertices, and let W ⊆ C be the set such that Rule 2 has deleted
from G the vertices in C \W . We iteratively modify the coloring c by updating the set T as
follows (the set W remains the same). While there exists a vertex u ∈ V (G) such that u ∈ T
and u /∈ W , let v ∈ W such that v /∈ T (note that vertex v exists, since |T | ≤ |M̄ | = |W |),
and swap u and v in the coloring, that is, now u is a singleton in its color and v is in a
color containing vertices of V (M̄). Since u and v are twins, this procedure indeed creates a
proper coloring of G, which we also call c with abuse of notation. Let us now argue that
the weight of the coloring has not increased. Note that since u /∈W and v ∈W , it follows
that w(v) ≥ w(u). If we denote by Si and Sj the colors of c before the swapping, so that
u ∈ Si and Sj = {v}, and by S′i and S′j the corresponding colors after the swapping, note that
w(Si) ≥ w(u), w(Sj) = w(v), w(S′i) = max{w(Si), w(v)}, and w(S′j) = w(u). Therefore,

w(S′i) + w(S′j) = max{w(Si), w(v)}+ w(u) ≤ w(Si) + w(v) = w(Si) + w(Sj),

where we have used that w(v) ≥ w(u). Thus, at the end of this procedure we obtain a
coloring c with w(c) ≤

∑
v∈V (G) w(v)− k such that every vertex in C \W is a singleton in

its color class. We define c′ to be the restriction of c to G′. Since every vertex in C \W =
V (G) \ V (G′) is a singleton in its color class in c, it follows that

w(c′) = w(c)−
∑

v∈C\W

w(v) ≤

 ∑
v∈V (G)

w(v)− k

− ∑
v∈C\W

w(v) =
∑

v∈V (G′)

w(v)− k,

and the claim follows. J



J. Araújo, V. A. Campos, C. V. G. C. Lima, V. F. dos Santos, I. Sau, and A. Silva 12:9

We can easily apply Rule 2 exhaustively in polynomial time to all the classes C ∈ C
with |C| > |M̄ |. We call an instance reduced if none of Rule 1 and Rule 2 can be applied
anymore. The above discussion implies that if (G,w, k) is a reduced instance, then

|V (G)| = |V (M̄)|+ |K| ≤ 2(k − 1) + ks + (2kn − 1) · (k − 1).

Using that ks + kn ≤ k − 1, from the above equation we get that

|V (G)| ≤ 2(k − 1) + (2k−1 − 1) · (k − 1) = (2k−1 + 1) · (k − 1),

and the theorem follows. J

It is worth mentioning that the analysis of the kernel size in the proof of Theorem 2 is
tight. Indeed, let G consist of an antimatching M̄ of size k− 1, and let K consist of 2k−1 − 1
equivalence classes with k − 1 vertices, each having a distinct non-complete neighborhood
in the set consisting of one (arbitrary) vertex of each non-edge in M̄ . One can easily check
that |V (G)| = (2k−1 + 1) · (k − 1), that none of Rule 1 and Rule 2 can be applied to G, and
that G contains no antimatching strictly larger than k − 1.

We complement the result of Theorem 2 by showing that, unless NP ⊆ coNP/poly, the
problem does not admit polynomial kernels.

I Theorem 3. The Dual Weighted Coloring problem does not admit a polynomial
kernel unless NP ⊆ coNP/poly, even on split graphs with only two different weights.

Proof. We present a polynomial parameter transformation from the Set Cover problem
parameterized by the size of the universe; Dom et al. [15] proved that this problem does not
admit a polynomial kernel unless NP ⊆ coNP/poly. Our reduction is almost the same as the
reduction of Demange et al. [12] from Set Cover to Weighted Coloring on split graphs,
only the vertex weights change. Let (U,S, k, `) be an instance of Set Cover, where S is
a family of sets of elements over a universe U of size k, and the question is whether there
exists a subset S ′ ⊆ S of at most ` sets covering all the elements of U . We construct an
instance (G,w, k′) of Dual Weighted Coloring as follows. The graph G contains a
clique K on |S| vertices and an independent set I on k vertices. The vertices of K and I
are associated, respectively, with the sets in S and the elements in U . There is an edge
between a vertex in K and a vertex in I if and only if the corresponding set does not contain
the corresponding element. All the vertices in K have weight `, and all the vertices in I
have weight ` + 1. Note that G is indeed a split graph with only two different weights.
Finally, we set k′ = k(`+ 1)− `. Since we can clearly assume that ` ≤ k, as otherwise the
instance is trivial, it follows that k′ = O(k2), which is required in a polynomial parameter
transformation. We claim that (U,S, k, `) is a yes-instance of Set Cover if and only if
σ(G,w) ≤

∑
v∈V (G) w(v)− k′.

Assume first that (U,S, k, `) is a yes-instance, and let S ′ ⊆ S be a solution with |S ′| ≤ `.
We define a coloring c of G as follows. We start with a color for each vertex in K and, for every
element of U , we include its corresponding vertex of I into one of the colors corresponding
to the sets in S ′ containing that element. One can easily check that w(c) ≤ |S| · ` + ` =∑

v∈V (G) w(v)− k′.
Conversely, assume that σ(G,w) ≤

∑
v∈V (G) w(v)−k′ = |S|·`+`, and let c be a coloring of

(G, k) achieving this bound. Since
∑

v∈K w(v) = |S| · ` and the vertices in I have weight `+1,
all the vertices in I have to be included in at most ` out of the |S| colors of c containing the
vertices of the clique K. By construction of G, this is possible only if there exists a subset of
at most ` sets in S covering all the elements of U , and the theorem follows. J
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In view of Theorem 3, in what follows we focus on identifying graph classes on which the
Dual Weighted Coloring problem admits a polynomial kernel.

I Remark. The problem clearly admits a kernel of size O(k) on sparse graphs, since if
there are no large cliques, then the clique K defined in the proof of Theorem 3 (that is,
the remaining vertices of those in a maximum antimatching) is of constant size. More
formally, if ω is the maximum clique size of a graph in the class, then we get a kernel with at
most 2k − 2 + ω vertices.

In our next result we provide a polynomial kernel on a relevant class of dense graphs,
namely that of interval graphs.

I Proposition 4. The Dual Weighted Coloring problem restricted to interval graphs
admits a kernel with at most k3 − k2 + k − 1 vertices.

Proof. We will proceed as in the proof of Theorem 2 and show that, if the input graph G is
an interval graph, then the number of equivalence classes is quadratic in the parameter k.
As before, we assume that M̄ is a maximum antimatching of G, that |M̄ | ≤ k − 1, and also
that Rule 1 and Rule 2 have been exhaustively applied. We also consider K = V (G) \ V (M̄)
and, as before, note that K induces a clique.

We will show that the number of maximal cliques of G is bounded by a linear function
of |M̄ |. For that, we will make use of a well-known result of Fulkerson and Gross [22] stating
that a graph G is an interval graph if and only if the 0/1 incidence matrixM of vertices
and maximal cliques of G has the consecutive ones property, i.e., the columns ofM can be
permuted so that the ones in each row appear consecutively. A consequence of this result is
that the set C of maximal cliques of G can be arranged as {C1, . . . , Cp} in such a way that,
for each vertex v, there are indices `v and rv such that v ∈ Ci if and only if `v ≤ i ≤ rv. It
is worth mentioning that this property appears implicitly in [23, proof of Theorem 2].

Note that the incidence of a vertex to the maximal cliques completely defines its neigh-
borhood. This implies that G has at most

(
p
2
)
neighborhood classes. Hence, for obtaining a

cubic kernel it suffices to show that p = O(k). In what follows we provide explicit bounds on
both p and the size of the kernel; we will show later that these bounds are tight.

I Claim 5. Let G be an interval graph with p ≥ 2 maximal cliques and let M̄ be a maximum
antimatching of G. Then p ≤ 2|M̄ |+ 1.

Proof. We proceed by induction on p. Clearly, if p ∈ {2, 3}, then there are at least two
non-adjacent vertices, so |M̄ | ≥ 1 and p ≤ 2|M̄ |+ 1.

Let {C1, . . . , Cp} be an ordering of the maximal cliques of G as defined above. Since
the Ci’s are maximal cliques, for any two consecutive cliques Ci and Ci+1 it holds that
Ci \ Ci+1 6= ∅ and Ci+1 \ Ci 6= ∅. In particular, together with the consecutive ones
property, this implies that C1 has an exclusive vertex u, that is, a vertex that does not
belong to any maximal clique other than C1. Similarly, Cp has an exclusive vertex v. Let
G′ = G[V (G) \ {u, v}], M̄ ′ be a maximum antimatching of G′, and p′ be the number of
maximal cliques of G′. By the induction hypothesis, p′ ≤ 2|M̄ ′|+ 1.

Note that C2, . . . , Cp−1 are maximal cliques in G′, hence p− 2 ≤ p′. On the other hand,
|M̄ ′| ≤ |M̄ | − 1, otherwise M̄ ′ ∪ {uv} would be an antimatching of cardinality greater than
|M̄ | in G. Putting all together,

p− 2 ≤ p′ ≤ 2|M̄ ′|+ 1 ≤ 2(|M̄ | − 1) + 1 = 2|M̄ | − 1,

and p ≤ 2|M̄ |+ 1. This completes the proof of the claim. J
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Since K is a clique, there is an index i such that K ⊆ Ci. For each v ∈ K, let `v be the
smallest index such that v ∈ C`v

and rv be the largest index such that v ∈ Crv
. Recall that `v

and rv completely define the neighborhood of v. Note that for all v ∈ K, `v ≤ i ≤ rv and that
either `v 6= 1 or rv 6= p, since otherwise v would be a universal vertex, which is impossible
because we applied Rule 1 exhaustively. Hence, the maximum number of distinct possible
combinations of indices `v and rv is i · (p− i+ 1)− 1, which is maximized when i =

⌊
p+1

2
⌋
,

giving a total number of⌊
p+ 1

2

⌋
·
⌈
p+ 1

2

⌉
− 1

distinct equivalence classes. Using the fact that p ≤ 2|M̄ |+1 by Claim 5, and that |M̄ | ≤ k−1,
we get⌊

p+ 1
2

⌋
·
⌈
p+ 1

2

⌉
− 1 = k2 − 1.

Since, by virtue of the application of Rule 2, each class has at most (k− 1) elements, we have

|V (G)| = |V (M̄)|+ |V (K)| ≤ 2(k − 1) + (k − 1) · (k2 − 1) = k3 − k2 + k − 1. J

Similarly to Theorem 2, we can show that the analysis of the kernel size in the proof of
Proposition 4 is tight. Indeed, given an integer k, it is possible to build an interval graph
with 2k − 1 maximal cliques, with (k − 1) vertices belonging exactly to cliques Ci, . . . , Cj ,
for each

(i, j) ∈ [1, k]× [k, 2k − 1] \ {(1, 2k − 1)},

and one exclusive vertex in each clique, except for clique Ck, corresponding to vertices of
V (M̄). That interval graph attains the bound in the statement of Proposition 4 and cannot
be reduced by Rule 1 or Rule 2.

I Remark. The result of Proposition 4 cannot be generalized to chordal graphs, as split
graphs are chordal, and by Theorem 3 the existence of a polynomial kernel on split graphs
would imply that NP ⊆ coNP/poly.

Our last result deals with a subclass of split graphs motivated by the fact that Dual
Weighted Coloring on split graphs seems to have a close relation with the Set Cover
problem.

I Proposition 5. The Dual Weighted Coloring problem restricted to split graphs
such that each vertex in the clique has at most d non-neighbors in the stable set, for some
constant d ≥ 1, admits a kernel with at most kd+1 vertices. Furthermore, for any d ≥ 2 and
ε > 0, a kernel with O(k d−3

2 −ε) vertices does not exist unless NP ⊆ coNP/poly.

Proof. For the positive result, let (G,w, k) be an instance of Dual Weighted Coloring,
with G being a split graph such that each vertex in the clique has at most d non-neighbors
in the stable set, for some integer d ≥ 2. We mimic the proof of Theorem 2, and we
slightly change the analysis. Recall that |V (M̄)| ≤ 2(k − 1) and that the number of special
classes in C, each containing exactly one vertex, is at most ks. Concerning the normal
classes in C, we will obtain an improved bound using that each vertex in the clique has at
most d non-neighbors in the stable set, and therefore in the graph G itself as well. Thus,
the number of distinct neighborhoods in the set consisting of the avoidable vertices in
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the normal edges in M̄ , which is an upper bound on the number of normal classes, is at
most

∑d
i=0
(

kn
i

)
≤
∑d

i=0
ki

n
i! ≤ max{2, kd

n}, where the last inequality can be easily proved by
induction.

Therefore, if (G,w, k) is a reduced instance, then

|V (G)| = |V (M̄)|+ |K| ≤ 2(k − 1) + ks + kd
n · (k − 1)

≤ 2(k − 1) + (k − 1)d · (k − 1) ≤ kd+1.

For the negative result, we reuse the reduction of Theorem 3, but starting from the
d-Set Cover problem, that is, the restriction of Set Cover to instances where each set
contains at most d elements. Hermelin and Wu [30] proved that, for any fixed d ≥ 2, d-Set
Cover does not admit kernels of size O(kd−3−ε) for any ε > 0, unless NP ⊆ coNP/poly,
where k is the size of the solution. Nevertheless, in the hardness proof for d-Set Cover
given in [30], the size of the universe of the constructed instance is equal to kd. Therefore,
we can conclude that d-Set Cover does not admit kernels of size O(kd−3−ε) for any ε > 0,
unless NP ⊆ coNP/poly, where k is the size of the universe. Moreover, the results in [30] also
rule out the existence of a bikernel, that is, a relaxed kernelization notion where the output
instance is not necessarily of the same problem.

Given an instance (U,S, k, `) of d-Set Cover, where k is the size of the universe, we
construct an instance (G,w, k′) of Dual Weighted Coloring as in the proof of Theorem 3.
Note that G is indeed a split graph such that each vertex in the clique has at most d non-
neighbors in the stable set, and recall that k′ = k(`+ 1)− `. Since we may assume that ` ≤ k,
it follows that k′ ≤ k2. Assume for contradiction that Dual Weighted Coloring restricted
to this type of instances admits a kernel with O(k d−3

2 −ε) vertices, for some ε > 0. Then
the composition of the above reduction with such a kernel would yield a bikernel for d-Set
Cover of size O(kd−3−ε) for some ε > 0, which is impossible by the results of [30] unless
NP ⊆ coNP/poly. J

5 Further research

In this article we investigated the dual parameterization of the Weighted Coloring problem,
and we provided several positive and negative results, especially concerning polynomial
kernelization. It would be interesting to identify other classes of (dense) graphs on which
the problem admits polynomial kernels. It remains to close the gap in the degree of the
polynomial kernels on the subclasses of split graphs considered in Proposition 5. Another
question is whether the cubic kernel on interval graphs given in Proposition 4 can be improved,
even on proper interval graphs.

Concerning Theorem 1, using the techniques of Björklund et al. [4] it may be possible to
compute the values T (X, i) defined in the proof, for every X and i, in time 2|V (M̄)| · nO(1) ·
maxv∈V (G) w(v), which would yield an overall running time of 4k · nO(1) ·maxv∈V (G) w(v).
Finally, one could try to prove lower bounds under the SETH (see [36]) on the running time
of any FPT algorithm solving Dual Weighted Coloring, hopefully getting close to the
running time given in Theorem 1.
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Abstract
Parallel fixed-parameter tractability studies how parameterized problems can be solved in parallel.
A surprisingly large number of parameterized problems admit a high level of parallelization, but
this does not mean that we can also efficiently compute small problem kernels in parallel: known
kernelization algorithms are typically highly sequential. In the present paper, we establish a
number of upper and lower bounds concerning the sizes of kernels that can be computed in
parallel. An intriguing finding is that there are complex trade-offs between kernel size and the
depth of the circuits needed to compute them: For the vertex cover problem, an exponential
kernel can be computed by AC0-circuits, a quadratic kernel by TC0-circuits, and a linear kernel
by randomized NC-circuits with derandomization being possible only if it is also possible for
the matching problem. Other natural problems for which similar (but quantitatively different)
effects can be observed include tree decomposition problems parameterized by the vertex cover
number, the undirected feedback vertex set problem, the matching problem, or the point line
cover problem. We also present natural problems for which computing kernels is inherently
sequential.
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1 Introduction

The core objective of parameterized complexity has classically been to determine which
problems can be solved in “FPT time,” meaning time f(k) · nc for instances of size n, where
c is a constant, f is an arbitrary computable function (usually at least exponential), and
k is a hopefully small instance parameter. Over the last 25 years, theoreticians in the field
have been very successful at determining which problems admit algorithms of this kind and
practitioners have been very successful at implementing them. In both cases, the focus has
traditionally been on finding sequential algorithms, but in recent years interest in parallel
algorithms has sparked, leading to the new field of parallel fixed parameter tractability.

In classical sequential FPT algorithms, kernelization algorithms play a key role. They
shrink the input to a small but difficult core (called the kernel), leading to the following design
principle of modern parameterized algorithms: Firstly, in polynomial time, a kernelization
algorithm computes a kernel that is, secondly, solved using an exponential (or worse) time
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algorithm – yielding a total running time of the form f(k) +nc. Regarding the parallelization
of these two algorithmic steps, it turns out that the second one is usually the easier one: the
kernel is typically processed using the search tree technique or just by “brute force,” both
of which allow natural parallelizations. In contrast, kernelization algorithms are typically
described in a very sequential way, namely “apply these reduction rules over and over again.”
This means that designing parallel fixed-parameter algorithms effectively means designing
parallel kernelization algorithms – which is exactly what this paper addresses.

Our Contributions. We start our systematic investigation of parallel kernelization by linking
the parameterized analogues of the NC-hierarchy to kernel computation using NC-circuits.
Such a link is already known for FPT and kernels computed in polynomial time. We establish
a circuit version of the well-known result that all algorithms running in time f(k) · nc can
also be implemented with running time g(k) + nc: We can turn any circuit family of size
f(k) · nc and depth f(k) + c logi n into one of size g(k) + nc

′ and depth c′ logi n (note that
we can remove the parameter dependence from the depth).

The bulk of the paper consists of a series of lower and upper bounds on the size of kernels
that can be computed by circuits of certain depths. We show that for natural problems like
the vertex cover problem intriguing trade-offs arise: the faster our algorithm, the worse our
kernel. For p-vertex-cover we show that a simple exponential kernel can be computed
in AC0, a quadratic kernel can be computed in TC0, and a linear kernel can be computed
in randomized NC. Other problems for which we establish similar results include the tree
width, path width, and tree depth problems parameterized by the vertex cover number of
the input graph.

On the negative side, we also establish a number of lower bounds for the parallel
computation of small kernels. We show that a classical 2k kernel for the vertex cover problem
can only be computed in parallel if the maximum matching problem for bipartite graphs
is in NC, for which RNC2 and quasi-NC2 are the best known upper bounds; that classic
reduction rules for feedback vertex set are P-complete (but an exponential kernel can be
computed in AC2); that for the point line cover problem we cannot (absolutely, without any
assumptions) compute any kernel in AC0 (but we can compute a quadratic one in TC0);
and that kernels for generalized versions of Horn satisfiability, linear programming, and
maximum flow cannot be computed in polylogarithmic time unless NC = P. The later results
in fact presents three natural FPT-complete problems, which demonstrate the limits of fixed
parameter parallelization.

Table 1 summarizes which trade-offs are established in this paper between the parallel
time needed to compute kernels and their sizes.

Related Work. Parameterized complexity is a rapidly growing field, see [14, 15, 18] for
an introduction, in which parallelization is a recent research direction. Early research in
the late 1990s was done by Cai, Chen, Downey, and Fellows [9] who studied parameterized
logaritmic space. A structural study of parameterized logspace and parameterized circuit
classes was started around 2015 by Elberfeld et al. [16]; see also the references therein. The
parameterized version of the NC-hierarchy we use in this paper was introduced in [2]. Chen
and Flum studied lower bounds in this context and especially provide some details and
alternative characterizations for parameterized AC0. There is a huge body of literature on
polynomial-time algorithms for computing small kernels, but the authors are not aware of
results concerning how quickly these kernels can be computed in parallel.
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Table 1 An overview of problems studied in this paper, showing which kernel size can be achieved
in certain layers of the NC-hierarchy. An explicit function represents the best bound the authors are
aware of, pointed out in this work or (for the P-column) in cited works; f(k) corresponds to kernels
originating from Theorem 2.3; and “–” means that there is no kernel of any size (either absolutely
or unless TC0 = L for –1, unless TC0 = NL for –2, unless TC0 = P for –3, unless NC = P for –4,
unless P ⊆ RNC for –5, and unless NC1 = P for –6). For problems parameterized by the vertex
cover number, S is the given vertex cover; the δ in the first column can be any fixed positive integer.

Problem Kernel size achievable in
AC0 TC0 NC RNC P

p-vertex-cover 2
δ√
k k2 + 2k k2 + 2k 2k 2k − c log k

p-matching 2
δ√
k 6k2 6k2 1 1

pvc-tree-width 2 δ
√
|S| |S|3 |S|3 |S|3 |S|3

pvc-path-width 2 δ
√
|S| |S|3 |S|3 |S|3 |S|3

pvc-tree-depth 2 δ
√
|S| |S|3 |S|3 |S|3 |S|3

p-point-line-cover – k2 k2 k2 k2

p-feedback-vertex-set – –1 f(k) f(k) 2k2 + k

p-strong-backdoor-2cnf-sat – –2 f(k) f(k) f(k)
p-strong-backdoor-horn-sat – –3 –3 –5 f(k)
p-mixed-integer-programming – –6 –4 –5 f(k)
p-max-flow-quantities – –6 –4 –5 f(k)

Organization of This Paper. We review basic terminology in Section 2, where we also
establish the link between parameterized parallel complexity and parallel kernel computation.
Each of the following sections studies a different well-known parameterized problem and
establishes trade-offs between kernel size and speed. We start with the vertex cover and the
matching problem in Section 3, followed by the feedback vertex set problem in Section 4,
structural parameterizations for tree width, path width, and tree depth in Section 5, the p-
point-line-cover problem in Section 6, and finally generalized versions of Horn satisfiability,
linear programming, and maximum flow in Section 7. Due to lack of space, most proofs are
given only in the full version, but we sketch some of them in the main text.

2 Parameterized Parallel Complexity Classes and Kernelization

We use standard terminology of parameterized complexity theory, see for instance [18]. A
parameterized problem is a tuple (Q, κ) consisting of a language Q ⊆ Σ∗ and a parameterization
κ : Σ∗ → N. The complexity of κ should not exceed the power of the classes that we consider,
and since we study small parameterized circuit classes, we require κ to be computable by
dlogtime-uniform constant-depth AC-circuits or, equivalently, to be first-order computable.
We denote parameterized problems by a leading “p-” as in p-vertex-cover, and, whenever
the parameterization κ is not clear from the context, we add it as an index as in pvc-
tree-width. A parameterized problem (Q, κ) is fixed-parameter tractable (or in FPT)
if there is a computable function f : N → N and a constant c such that we can decide
x ∈ Q in time f(κ(x)) · |x|c for all x ∈ Σ∗. In this paper we study the parallel complexity
of parameterized problems, that is, the parameterized counter part of the NC-hierarchy.
Formally we study the following classes, see for instance [2, 11] for a detailed discussion:
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I Definition 2.1. For each i > 0, a parameterized problem (Q, κ) is in dlogtime-uniform
para-ACi if there exists a computable function f : N→ N, a constant c ∈ N, and a family of
AC-circuits (Cn,k)n,k∈N such that:
1. For all x ∈ Σ∗ we have C|x|,κ(x)(x) = 1 ⇐⇒ x ∈ Q.
2. The depth of each Cn,k is at most f(k) + c logi n.
3. The size of each Cn,k is at most f(k) · nc.
4. There is a deterministic Turing machine that on input of bin(i)# bin(k)# bin(n), where

bin(x) is the binary encoding of x, outputs the ith bit of a suitable encoding of Cn,k in
at most f(k) + c logn steps.

The class para-AC0 is defined as above, but with circuits of constant depth. Additionally,
we define for all i ≥ 0 the class para-ACi↑ with circuits of depth f(k) · logi n. In particular,
para-AC0↑-circuits have depth f(k). Recall that AC-circuits are defined over the standard
base of not-, or-, and and-gates and that the last two may have unlimited fan-in. The same
definition works for NC-circuits (all gates have bounded fan-in) and TC-circuits (additional
threshold gates are allowed). It is known that the parameterized classes inherit their inclusion
structure from their classical counterparts [2]:

para-AC0 ( para-TC0 ⊆ para-NC1 ⊆ para-AC1 ⊆ para-TC1 ⊆ · · · ⊆ para-NC ⊆ FPT.

A Parallel Analogue of “FPT = Kernels Computable in Polynomial Time”. One of the
most fruitful aspects of parameterized complexity is the concept of kernelization. Let
f : N→ N be a computable function. A kernelization of a parameterized problem (Q, κ) is a
self-reduction K : Σ∗ → Σ∗ such that for every x ∈ Σ∗ we have x ∈ Q ⇐⇒ K(x) ∈ Q and
|K(x)| ≤ f(κ(x)). The images of K are called kernels and as they later need to be processed
by at least exponential-time algorithms, we are interested in kernels that are as small as
possible – while they still need to be efficiently computable, meaning in polynomial time
from the view point of FPT theory. The following result is well-known and gives a deep
connection between parameterized complexity and kernelization:

I Fact 2.2 (for instance [18]). A decidable parameterized problem (Q, κ) is in FPT if, and
only if, it admits a polynomial-time computable kernelization.

The following theorem shows that the same relation also connects the AC-hierarchy with its
parameterized counterpart. Note that in the theorem the ACi-circuits are really “normal
ACi-circuits,” meaning that their size is just polynomial in the input length.

I Theorem 2.3. A decidable parameterized problem (Q, κ) is in para-ACi if, and only if, it
admits a kernelization computable by a dlogtime-uniform family of ACi-circuits.

Sketch of Proof. For the reverse direction, let (Cn)n∈N be a family computing a kernelization.
Circuit Cn,k uses Cn as a first black box and reduces the input to an instance of size at most
f(κ(x)). Then the circuit essentially applies naive “brute force” in the form of a big or-gate
that checks if any element of Q of length at most f(κ(x)) equals the computed kernel. For
the other direction let k̃ ∈ N be the maximum k such that f(k) ≤ c logi n and let Cn consist
of k̃ subcircuits C0

n, . . . , C
k̃
n that are evaluated in parallel. The circuit Cjn first checks on

input x whether κ(x) = j, and, if so, uses Cn,j to solve the problem and outputs a trivial
kernel. Otherwise, it signals that it is not responsible for this instance. If any Cjn produces a
kernel, then Cn just presents this kernel as result. Otherwise Cn can just present the input
as output, as we have κ(x) > k̃ and f(κ(x)) > c logi n. J

The theorem also holds if we replace ACi with NCi or TCi. The only exception is NC0, as
this class may not be powerful enough to compute κ.
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Application: Improve the Work of Parallel Algorithms. When we study the performance
of parallel algorithms, we usually do not only measure the time of the algorithm (as we would
in the sequential case), but also its work (the total number of computational steps performed
by the algorithm). This is important as a parallel algorithm may need polynomially many
processors to reach its promised runtime: For instance, an algorithm that runs in time
O(logn) with O(n2) work will need at least time O(n2/p) on a machine with p processors –
which is bad if there exists a linear time sequential algorithm and p < n. In the circuit
model the parallel time of an algorithm corresponds to the depth of the circuit, and the
work to its size. While the layers of the AC- and para-AC-hierarchy measure the time of
parallel algorithms quite precisely, they only require the size of the circuits to be polynomial
or to be bounded by f(k) · nc, respectively. Using Theorem 2.3, we can improve the work of
any parameterized parallel algorithm from f(k) · nc to g(k) + nc

′ while, at the same time,
reducing the depth of the circuit from f(k) + c logi n to c′ logi n.

I Lemma 2.4. Let (Q, κ) be a parameterized problem with (Q, κ) ∈ para-ACi. Then there
are a computable function g : N→ N and a constant c′ such that there is a dlogtime-uniform
family (C ′n,k)n,k∈N of para-ACi-circuits that decides (Q, κ) and in which every C ′n,k has depth
at most c′ logi n and size at most g(k) + nc

′ .

Sketch of Proof. Use the ACi-circuit from Theorem 2.3 to compute a kernel in depth c logi n
and solve the kernel using “brute force” in constant depth afterwards. J

Note that the function g from the lemma may grow exponentially faster then f , as the circuit
from the lemma internally solves an instance x′ with |x′| ≤ f(κ(x)) and κ(x′) ≤ f(κ(x)). A
direct application of Lemma 2.4 is therefore only of theoretical interest. It shows, however,
that we can always search for parameterized parallel algorithms that run in polylogarithmic
time and whose work is polynomial plus an additive term depending only on the parameter.

3 Parallel Kernels for Vertex Cover and Matching

The parameterized vertex cover problem is a prime example used to demonstrate many
different kernelization techniques, and an outrider in the race for small kernels. In this
section we revisit the problem from the point of view of circuit complexity and establish a
link between circuit complexity and kernel size. An early result in this context is due to Cai
et al. [9] which, translated into the terminology of the present paper, implies that a kernel
for p-vertex-cover can be computed in logarithmic space and, hence, in AC1. Elberfeld
et al. [16] later noticed that the kernel of size k2 + 2k computed by Cai et al. can actually
also be computed in TC0. This result was later once more refined by showing that the same
kernel can be computed in para-AC0 [2]. Together with Theorem 2.3 this implies that a
kernel of size f(k) can be computed in AC0 for some computable function f . In fact, we can
improve the bound in this case to 2

δ√
k for any fixed δ > 0:

I Lemma 3.1. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that,
on input of a tuple (G, k), outputs a p-vertex-cover kernel with at most 2

δ√
k vertices.

Proof. Let I be the input instance and let n = |I| be the size of its encoding. The circuit
first checks if we have k ≤ logδ(n). If not, we have 2

δ√
k > n and the instance is already the

desired kernel. Otherwise the circuit can simulate threshold gates up to k using standard
hashing techniques, as AC0-circuits can simulate polylogarithmic threshold gates [30]. Since
the TC0-circuit from Elberfeld et al. [16] only uses threshold gates up to k, it follows that the
AC0-circuit under construction can simulate this TC0-circuit, which completes the proof. J
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The central observation in the proof of Lemma 3.1 is that the threshold-gates in the
corresponding family of TC0-circuits only “count up to the parameter.” We will use exactly
the same trick for other TC0-kernelizations, but will then only formulate it as corollary.
Summarizing the statements from above, we can compute an exponential kernel for p-
vertex-cover in AC0 and a quadratic kernel in TC0. However, the best known kernelizations
for p-vertex-cover are able to produce linear kernels – and a reasonable next step is to
implement them in parallel as well. Unfortunately, this is a way more challenging task, as
both the classical 3k kernel based on crown decomposition [14] and the 2k kernel due to
Chen et al. [10] require the computation of sufficiently large matchings. We can state this
more precisely for the latter observation, by showing that the core part of the kernelization
is NC-equivalent to computing maximum matchings in bipartite graphs. The kernelization of
Chen et al. is based on the following fact, known as the Nemhauser–Trotter Theorem:

I Fact 3.2 ([29]). Let G = (V,E) be a graph and I = {xv | v ∈ V } be a set of variables.
For every optimal solution β : I → R for the following linear program (LPVC)

min
∑
v∈V xv

xu + xv ≥ 1 for all {u, v} ∈ E
xv ≥ 0 for all v ∈ V

let V0 = { v | β(xv) < 1/2 }, V1/2 = { v | β(xv) = 1/2 }, V1 = { v | β(xv) > 1/2 } be a
partition of V . There is a minimum vertex cover S of G that satisfies V1 ⊆ S ⊆ V1 ∪ V1/2.

Chen et al. have shown that one can obtain the desired kernel from a solution of LPVC
by discarding the vertices of V0 and by taking the vertices of V1 into the solution. The
remaining 2k vertices of V1/2 constitute the kernel [10]. The following theorem shows that
solving LPVC is tightly linked to the maximum matching problems for bipartite graphs.

I Theorem 3.3. Computing a solution for LPVC is NC-equivalent to computing a maximum
matching in bipartite graphs.

Sketch of Proof. For the first direction we construct a bipartite auxiliary graph H such
that an optimal vertex cover of H can be turned into a half-integral solution of LPVC
on G. This vertex cover of H can be computed using a maximum matching subroutine and
König’s Theorem [25]. In the second direction we wish to compute a maximum matching in
a bipartite graph with the help of LPVC. We first turn an optimal real solution of LPVC
into an optimal half-integral solution. Afterwards, we transform this half-integral solution
into an optimal integral solution, that is, into a minimal vertex cover. Applying König’s
Theorem again results in the desired matching. J

The parallel complexity of the maximum matching problem is still not fully resolved. The
currently best parallel algorithms run in RNC2 [28] or quasi-NC2 [17]. From the theorem
we can deduce that we can compute the Nemhauser–Trotter-based 2k-vertex kernel for p-
vertex-cover in RNC and quasi-NC; and we can deduce that we cannot compute this kernel
in NC without improving the parallel complexity of the maximum matching problem – which
is a longstanding open problem.

I Corollary 3.4. There is a dlogtime-uniform family of NC-circuits of polylogarithmic depth
that, on input of a graph G = (V,E) and an integer k, outputs a kernel of p-vertex-cover
with at most 2k vertices. The circuits of the family either use randomness and have size |V |c,
or are deterministic and of size |V |c log |V |.
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Note that other kernels that are based on the Nemhauser–Trotter Theorem, such as the one
by Soleimanfallah and Yeo [31], or the one by Lampis [27], also do not bypass Theorem 3.3.
A natural goal is, thus, to compute linear kernels for p-vertex-cover in NC – most likely
using an algorithm that does not rely on a LPVC relaxation. Table 1 summarizes the
complexity of computing kernels of certain size for p-vertex-cover.

Since p-matching turns out to be an obstruction for parallel kernelization, it is a natural
question in the light of this paper, whether or not we are able to compute polynomial kernels
for the matching problem in NC. Note that the problem is in para-AC0, and hence we can
compute a size-f(k) kernel in AC0; and since matching ∈ RNC we can compute a size-1
kernel in RNC.

I Lemma 3.5. There is a dlogtime-uniform family of TC0-circuits that, on input of a
tuple (G, k), outputs a p-matching kernel with at most O(k2) vertices.

The circuits of Lemma 3.5 need their threshold gates “only” to count up to k. We can thus
deduce the following corollary (the proof argument is the same as for Lemma 3.1):

I Corollary 3.6. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that,
on input of a tuple (G, k), outputs a p-matching kernel with at most O(2

δ√
k) vertices.

4 Parallel Kernels for the Feedback Vertex Set Problem

The input for p-feedback-vertex-set = p-fvs is an undirected multigraph G = (V,E)
and an integer k, the question is whether it is possible to delete k vertices such that the
remaining graph is a forest. The problem is well-known to be fixed-parameter tractable.
Concerning the parallel complexity, it is known that membership in FPT can be witnessed
by a machine that uses “FPT time and XL space” [16] and the problem was recently shown
to lie in para-NC2+ε ⊆ para-NC3 [3].

A lot of effort has been put into the design of sequential kernels for this problem, ultimately
resulting in a kernel with O(k2) vertices [8, 7, 33, 22]. Much less is known concerning parallel
kernels. Since the k = 0 slice of p-fvs is exactly the L-complete [13] problem whether a
given graph is a forest, we get as a lower bound that no kernel of any size can be computed
for p-fvs by any circuit class C unless L ⊆ C and the smallest AC-class for which this is
known is AC1. On the other hand, the mentioned membership in para-NC2+ε together with
Theorem 2.3 yield an NC2+ε kernel. In summary:

I Lemma 4.1. There is a dlogtime-uniform family of NC2+ε-circuits that, on input of a
tuple (G, k), outputs a p-fvs kernel with at most f(k) vertices. There is no such family of
AC1−ε-circuits, unless L ⊆ AC1−ε.

A natural first question arising from this lemma is: Can we improve the bounds? It turns
out that we can lower the upper bound from NC2+ε to AC1+ε by observing the reduction
rules used in sequential kernels for p-fvs can, in certain cases, be applied in parallel. In
detail, the known sequential kernels for p-fvs all repeatedly apply (at least) the below rules,
whose correctness is very easily seen. We will show that each of the first three rules can
individually be applied exhaustively in AC1. Based on this, we show p-fvs ∈ para-AC1↑.
Leaf Rule Delete a vertex v of degree 1.
Chain Rule Contract a vertex v of degree 2 to one of its neighbors.
Loop Rule Delete a vertex v with v ∈ N(v), reduce k by 1.
Flower Rule Delete a vertex v that appears in more then k cycles that only share the vertex v,

reduce k by 1.
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Figure 1 A graph that is fully reduced by the Chain Rule and the Loop Rule in k = 6 rounds.
In every round, the Chain Rule can only be applied after the Loop Rule was used exhaustively.

I Lemma 4.2. There is a dlogtime-uniform family of AC1-circuits that, on input of a
tuple (G, k), outputs a tuple (G′, k′) that results from repeatedly applying (only) the Leaf Rule
as long as possible. The same holds for the Chain Rule and for the Loop Rule.

I Theorem 4.3. p-fvs ∈ para-AC1↑.

Sketch of Proof. The circuit implements a search-tree of depth O(k) that, on any layer,
applies the reduction rules of Lemma 4.2 using an AC1-circuit. This either reduces k
immediately by one, or provides a small set of vertices on which the circuit can branch. J

I Corollary 4.4. There is a dlogtime-uniform family of AC1+ε-circuits that, on input of a
tuple (G, k), outputs a p-fvs kernel with at most f(k) vertices.

Proof. Follows by Theorem 2.3 and by the fact that para-ACi↑ ⊆ para-ACi+ε [2]. J

We now have rather tight bounds (an upper bound of AC1+ε and a conditional lower
bound of AC1−ε) on how quickly we can compute some kernel for p-fvs in parallel. However,
there is a natural second question arising from Lemma 4.1: Can we also compute a polynomial
kernel in parallel?

We claim that progress towards such a kernel cannot solely be based on the presented
reduction rules. In the proof of Theorem 4.3 we may need to branch after the exhaustive
application of one of the rules Leaf Rule, Chain Rule, or Loop Rule. If we seek to implement a
polynomial kernel for p-fvs in NC, we have to implement these rules without branching and
have to apply the rules exhaustively together while they may influence each other. Figure 1
provides an intuition why this interplay is “very sequential,” and Theorem 4.5 provides
evidence that it is in fact very unlikely that there exists a parallel algorithm that computes
the result of jointly applying all rules exhaustively.

I Theorem 4.5. The problem of deciding whether a specific vertex of a given graph will be
removed by an exhaustive application of the Leaf Rule, the Chain Rule, and the Loop Rule is
P-hard under NC1-reduction.

Sketch of Proof. We encode the monotone circuit value problem into a graph similar to the
one of Figure 1. The reduction rules then simulate the propagation of truth values through
the circuit. J

I Remark 4.6. The proof of Theorem 4.5 shows that the problem remains P-hard restricted
to the Chain Rule and the Loop Rule, even if they are alternatingly executed exhaustively.

We close this section with the observation that also the last rule, the Flower Rule, is unlikely
to yield a parallel algorithm.

I Theorem 4.7. Unless matching ∈ NC, there is no dlogtime-uniform family of NCi-
circuits for any i that determines, give a graph G = (V,E), an integer k, and a vertex v,
whether the Flower Rule can be applied to v.
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5 Parallel Kernels for Structural Parameterizations

It is known that NP-hard graph parameters that are closed under taking disjoint union do not
allow a polynomial kernel unless NP ⊆ coNP/poly [14]. Famous problems that suffer from
this result are the decision versions of tree width, path width, and tree depth, which has led to
a growing body of research that considers structural parameters for these problems [6, 5, 24].
A commonly used parameter in this line of research is the vertex cover number of the input
graph and in this section we extend the cited results by proving that the corresponding
kernels can be computed in small circuit classes.

We use the following standard definitions: A tree decomposition of a graph G = (V,E)
is a tuple (T, ι) where T is a tree and ι a mapping from the nodes of T to subsets of V
(which we call bags) such that for every u ∈ V and every {v, w} ∈ E there is (1) a node n
with u ∈ ι(n), (2) a node m with {v, w} ⊆ ι(m), and (3) the set {n | u ∈ ι(n) } is connected
in T . The width of a tree decomposition is the maximum size of the bags minus one. For
a graph G, its tree width tw(G) is the minimum width of all tree decompositions of G, its
path width pw(G) is the minimum width of all tree decompositions of G that are paths, and
its tree depth td(G) is the minimum width of all tree decompositions (T, ι) of G that can be
rooted in such a way that for all n,m ∈ V (T ) we have ι(n) ( ι(m) if m is an descendant of n.
The following two facts will be useful, where N(v) = {u | {u, v} ∈ E } is the neighborhood
of v, N [v] = N(v) ∪ {v}, and where we call a vertex v simplicial if N(v) is a clique:

I Fact 5.1 ([6, 5, 24]). Let G = (V,E) be a graph with tree width, path width, or tree depth
at most k and with u, v ∈ V , {u, v} 6∈ E, and |N(u) ∩ N(v)| > k. Then adding the edge
{u, v} to G will not increase the tree width, path width, or tree depth of G, respectively.

I Fact 5.2 ([4]). Let G = (V,E) be a graph and v ∈ V be a simplicial vertex, then we have
tw(G) ≥ |N(v)|.

Computing a Kernel for Tree Width. For the problem pvc-tree-width we are given a
graph G = (V,E), an integer k, and a vertex cover S ⊆ V of G; the parameter is |S| and the
question is whether tw(G) ≤ k holds.

I Theorem 5.3. There is a dlogtime-uniform family of TC0-circuits that, on inputs of a
triple (G, k, S), outputs a pvc-tree-width kernel with at most O(|S|3) vertices.

Sketch of Proof. We check in parallel for every pair u, v ∈ S with {u, v} 6∈ E if they have
more than k common neighbors in V \ S and, if so, add the edge {u, v} by Fact 5.1. By
Fact 5.2 simplicial vertices in V \S can not have high degree and we may safely remove them
by standard arguments. A counting argument then provides the claimed kernel size. J

I Corollary 5.4. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that,
on input of a triple (G, k, S), outputs a pvc-tree-width kernel with at most 2 δ

√
|S| vertices.

Computing a Kernel for Path Width. We define pvc-path-width analogously to pvc-
tree-width and the aim of this section is to reformulate Theorem 5.3 in terms of path
width. The main difference is that we cannot simply delete simplicial vertices as this would,
for instance, eliminate trees completely. We can, however, use the following weaker result:

I Fact 5.5 ([5]). Let G = (V,E) be a graph, k ∈ N, and v ∈ V be a simplicial vertex. If the
degree |N(v)| of v is 1 and the neighbor of v has another degree-1 neighbor, or if we have
2 ≤ |N(v)| ≤ k and for each pair x, y ∈ N(v) there is a simplicial vertex w ∈ N(x) ∩N(y)
with w 6∈ N [v], then pw(G) ≤ k if, and only if, pw(G[V \ {v}]) ≤ k.
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I Theorem 5.6. There is a dlogtime-uniform family of TC0-circuits that, on input of a
triple (G, k, S), outputs a pvc-path-width kernel with at most O(|S|3) vertices.

Sketch of Proof. In difference to the proof of Theorem 5.3, we must now identify the vertices
for which Fact 5.5 applies in constant time. This is not trivial because of dependencies
between them, but a circuit can use a two-stage marking process to find them. J

I Corollary 5.7. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that,
on input of a triple (G, k, S), outputs a pvc-path-width kernel with at most 2 δ

√
|S| vertices.

Computing a Kernel for Tree Depth. The last problem we consider is tree depth, and, as
for path width, we prove a version of Theorem 5.3 for it. The main problem is once more that
we cannot simply remove simplicial vertices. However, by the following fact of Kobayashi
and Tamaki there are still enough simplicial vertices that are safe to remove:

I Fact 5.8 ([24]). Let G = (V,E) be a graph, k ∈ N, and let v ∈ V be a simplicial vertex
with 1 ≤ |N(v)| ≤ k. If every neighbor of v has degree at least k+ 1, then we have td(G) ≤ k
if, and only if, td(G[V \ {v}]) ≤ k.

I Theorem 5.9. There is a dlogtime-uniform family of TC0-circuits that, on input of a
triple (G, k, S), outputs a pvc-tree-depth kernel with at most O(|S|3) vertices.

Sketch of Proof. Similar to the proofs of the Theorems 5.3 and 5.6, we identify vertices for
which Fact 5.8 holds in parallel constant time. This time, we mark for every vertex v ∈ S
with |N(v)| > k the k + 1 lexicographically smallest neighbors of v, then the circuit marks
every simplicial vertex v ∈ V \ S that has at least one neighbor of degree less than k. J

I Corollary 5.10. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that,
on inputs of a triple (G, k, S), outputs a pvc-tree-depth kernel with at most 2 δ

√
|S| vertices.

6 A Parallel Kernel for Point Line Cover

In this section we study a natural, well-known problem for which we can prove (uncon-
ditionally) that we cannot compute a kernel using AC0-circuits while we can compute
polynomially-sized kernels in TC0. In the p-point-line-cover problem we are given dis-
tinct points p1, . . . , pn ∈ Zd for some dimension d ≥ 2 and a natural number k ∈ N, the
question is whether we can cover all points by at most k lines. This problem is NP-hard in
general (even for d = 2) and in FPT parameterized by k [26]. There is a simple k2 kernel,
which is essentially optimal [26]: If any line covers at least k + 1 points, remove all points on
this line and reduce k by one. This is safe since we would require at least k + 1 different
lines if we would not use this line. Because no set of k + 1 points lies on the same line after
the reduction, we have at most k2 points left or we deal with a no-instance.

I Lemma 6.1. There is a dlogtime-uniform family of TC0-circuits that, on input of
a dimension d, a set of distinct points p1, . . . , pn ∈ Zd, and an integer k, outputs a p-
point-line-cover kernel with at most k2 points.

The lemma shows that the optimal kernel for p-point-line-cover can be computed in TC0

and it is natural to ask if we can do the same using a AC0-circuit or, failing that, to at
least compute some kernel using a AC0-circuit (as we could for the problems in the previous
sections). We answer this question in the negative, settling the complexity of the problem to
para-TC0:



M. Bannach and T. Tantau 13:11

I Lemma 6.2. For every fixed k, the kth slice of p-point-line-cover is TC0-complete
under AC0-reduction.

I Corollary 6.3. p-point-line-cover is para-TC0-complete under AC0-reduction.

Now assume there would be a uniform family of AC0-circuits computing a kernel of arbitrary
size for p-point-line-cover. Then by Theorem 2.3 the problem is in para-AC0, which on
the other hand implies that for every fixed k the problem must be in AC0. This contradicts
Lemma 6.2 as it is known that AC0 ( TC0 [19]. Therefore, no family of AC0-circuits can
compute such a kernel.

7 Problems for Which Computing Kernels is Inherently Sequential

As surprisingly many problems have NC-computable, in fact often even AC0-computable,
kernelizations, we may ask which problems do not have this property. We would like to find
problems for which the computation of any kernel is P-complete or, equivalently, which are
FPT-complete under AC0- or NC1-reductions. While it is easy to find artificial problems with
this property – such as any P-complete problem (like cvp) with the trivial parametrization
(κ(x) ≡ 1) –, no natural problems that are FPT-complete for sensible parametrizations can
be found in the literature. We remedy this situation in the following; but must caution
the reader that in all our results the hardness of the parameterized problem for FPT stems
from the fact that some slice of the problem is (essentially) a known P-complete problem.
Unfortunately, it is known [18] that this “cannot be helped” since all FPT-complete problems
have this property. Our main contribution here lies, thus, in the assembly of a diverse body
of relevant, non-trivial FPT-problems that will serve as starting points for further studies of
the limits of parameterized parallelization.

Strong Backdoors to Satisfiability. A strong backdoor set of a propositional formula φ is
a set of variables such that under any assignment of these variables the resulting formula φ′
belongs to a certain class of formulas [20]. In the p-strong-backdoor-{horn,2cnf}-sat
problems, we are given a formula φ and an integer k, the question is whether φ is satisfiable
and has a strong backdoor set of size k to Horn- or 2cnf-formulas, respectively. Solving such
problems is usually done in two phases: first detect the backdoor set and, second, solve the
satisfiability problem of the formula for every assignment of the backdoor set. While the first
part might seem harder in general, it is not from a parameterized point of view: (1) A strong
backdoor set to Horn formulas is exactly a vertex cover of size k in the positive primal graph
of φ, that is, the graph that has a vertex for each variable and an edge between any two
variables appearing together positively in a clause; (2) strong backdoor sets to 2cnf-formulas
are exactly the hitting sets of the hypergraph that has the variables of φ as vertices and
that connects three vertices by a hyperedge if they appear together in a clause. Since p-
vertex-cover ∈ para-AC0 and also p-3-hitting-set ∈ para-AC0 [2, 12], we can conclude:

I Corollary 7.1. There is a dlogtime-uniform family of para-AC0-circuits that, on input
of a propositional formula φ and an integer k, either outputs a size-k strong backdoor set to
{Horn, 2cnf}-formulas, or concludes that no such set exists.

The second step of solving p-strong-backdoor-{horn,2cnf}-sat is to solve the sat-
isfiability problem for φ on every assignment to the variables of the backdoor set. While
we can nicely handle all assigments in parallel, checking if the formulas are satisfiable in
parallel is difficult. Indeed, it is known that, under AC0-reductions, the satisfiability problem
is NL-complete for 2cnf-formulas, and is even P-complete for Horn formulas [1].

IPEC 2018
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I Corollary 7.2. p-strong-backdoor-2cnf-sat is para-NL-complete under AC0-reduction.

I Corollary 7.3. p-strong-backdoor-horn-sat is FPT-complete under AC0-reduction.

The last corollary implies that there is no parallel polylogarithmic time kernelization for
p-strong-backdoor-horn-sat that produces a kernel of any size, unless NC = P.

Mixed Integer Linear Programming. The FPT-complete problem above is an intermediate
problem between a P-complete problem (horn-sat) and a NP-complete problem (sat); the
transition between the problems is caused by the backdoor variables. A similar intermediate
problem is known for linear-programming (another classical P-complete problem) and its
integer variant (which is NP-complete). The intermediate version of these problems is called
p-mixed-integer-programming, which asks, given a matrix A ∈ Zn×n, vectors b ∈ Zn,
c ∈ Zn, and integers k and w, if there is a vector x ∈ Rn such that Ax ≤ b, cTx ≥ w, and
such that x[i] ∈ Z for 0 ≤ i < k. A celebrated result by Lenstra states that an instance I of
this problem can be solved in time 2O(k3) · |I|c for a suitable constant c, that is, the problem
is in FPT. Therefore, every slice of the problem is in P and, as linear-programming
trivially reduced to it, we get that k-mixed-integer-programming is P-complete for every
k (under NC1-reductions [34]).

I Corollary 7.4. p-mixed-integer-programming is FPT-complete under NC1-reductions.

Maximum Flow with Minimum Quantities. The last problem we review in this section is
the maximum flow problem with minimum quantities: Inputs are directed graphs G = (V,E)
with s, t ∈ V , two weight functions u, l : E → N, an integer w ∈ N, and a set of edges
B ⊆ E; the question is whether there is a set A ⊆ B such that in G′ = (V,E \ A) there
is a valid s-t-flow f of value at least w that fulfills the flow conservation constraints and
l(e) ≤ f(e) ≤ u(e) for all e ∈ E \A. For B = ∅ the problem boils down to classical maximum
flow with lower bounds on the edges, which can be solved in polynomial time [23] and
which is known to be P-hard under NC1-reduction [34]. On the other hand, for B = E the
problem becomes NP-complete even on serial-parallel graphs [21] and it is also NP-hard to
approximate the problem within any positive factor [32]. The intermediate problem between
this two cases is the parameterized problem p-max-flow-quantities, defined as above,
where the cardinality of B is the parameter.

I Lemma 7.5. p-max-flow-quantities is FPT-complete under NC1-reduction.

8 Conclusion and Outlook

Kernelization is a fundamental concept of parameterized complexity and we have studied
its parallelization. Since traditional descriptions of kernelization algorithms are inherently
sequential, we found it surprising how many parameterized problems lie in para-AC0 – the
smallest robust class in parallel parameterized complexity theory. We found, furthermore,
that for many problems the equation “smaller circuit class = larger kernel” holds, see Table 1
for a summary of our results.

Apart from classifying more parameterized problems in the spirit of this paper, namely
according to how well small kernels can be computed by small circuits, an interesting open
problem is to improve any of the AC0-kernelizations presented in the present paper so that
they produce a polynomially sized kernel (which we, at best, can currently do only in TC0).
Perhaps even more challenging seems to be the design of a framework for proving that
polynomially sized kernels for these problems cannot be computed in AC0.
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Abstract
A generalization of classical cycle hitting problems, called conflict version of the problem, is
defined as follows. An input is undirected graphs G and H on the same vertex set, and a positive
integer k, and the objective is to decide whether there exists a vertex subset X ⊆ V (G) such
that it intersects all desired “cycles” (all cycles or all odd cycles or all even cycles) and X is an
independent set in H. In this paper we study the conflict version of classical Feedback Vertex
Set, and Odd Cycle Transversal problems, from the view point of kernelization complexity.
In particular, we obtain the following results, when the conflict graph H belongs to the family
of d-degenerate graphs.
1. CF-FVS admits a O(kO(d)) kernel.
2. CF-OCT does not admit polynomial kernel (even whenH is 1-degenerate), unless NP ⊆ coNP

poly .
For our kernelization algorithm we exploit ideas developed for designing polynomial kernels for
the classical Feedback Vertex Set problem, as well as, devise new reduction rules that exploit
degeneracy crucially. Our main conceptual contribution here is the notion of “k-independence
preserver”. Informally, it is a set of “important” vertices for a given subset X ⊆ V (H), that
is enough to capture the independent set property in H. We show that for d-degenerate graph
independence preserver of size kO(d) exists, and can be used in designing polynomial kernel.
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1 Introduction

Reducing the input data, in polynomial time, without altering the answer is one of the
popular ways in dealing with intractable problems in practice. While such polynomial
time heuristics can not solve NP-hard problems exactly, they work well on input instances
arising in real-life. It is a challenging task to assess the effectiveness of such heuristics
theoretically. Parameterized complexity, via kernelization, provides a natural way to quantify
the performance of such algorithms. In parameterized complexity each problem instance
comes with a parameter k and the parameterized problem is said to admit a polynomial
kernel if there is a polynomial time algorithm, called a kernelization algorithm, that reduces
the input instance down to an instance with size bounded by a polynomial p(k) in k, while
preserving the answer. The reduced instance is called a p(k) kernel for the problem.

The quest for designing polynomial kernels for “hitting cycles” in undirected graphs has
played significant role in advancing the field of polynomial time pre-processing – kernelization.
Hitting all cycles, odd cycles and even cycles correspond to well studied problems of Feedback
Vertex Set (FVS), Odd Cycle Transversal (OCT) and Even Cycle Transversal
(ECT), respectively. Alternatively, FVS, OCT and ECT correspond to deleting vertices such
that the resulting graph is a forest, a bipartite graph and an odd cactus graph, respectively.
All these problems, FVS, OCT, and ECT, have been extensively studied in parameterized
algorithms and kernelization. The earliest known FPT algorithms for FVS go back to the
late 80’s and the early 90’s [4, 11] and used the seminal Graph Minor Theory of Robertson
and Seymour. On the other hand the parameterized complexity of OCT was open for long
time. Only, in 2003, Reed et al. [24] gave a 3knO(1) time algorithm for OCT. This is also
the paper which introduced the method of iterative compression to the field of parameterized
complexity. However, the existence of polynomial kernel, for FVS and OCT were open
questions for long time. For FVS, Burrage et al. [7] resolved the question in the affirmative
by designing a kernel of size O(k11). Later, Bodlaender [5] reduced the kernel size to O(k3),
and finally Thomassé [25] designed a kernel of size O(k2). The kernel of Thomassé [25] is
best possible under a well known complexity theory hypothesis. It is important to emphasize
that [25] popularized the method of expansion lemma, one of the most prominent approach
in designing polynomial kernels. While, the kernelization complexity of FVS was settled
in 2006, it took another 6 years and a completely new methodology to design polynomial
kernel for OCT. Kratsch and Wahlström [16] resolved the question of existence of polynomial
kernel for OCT by designing a randomized kernel of size O(k4.5) using matroid theory.1 As
a counterpart to OCT, Misra et al. [20] studied ECT and designed an O(k3) kernel.

Fruitful and productive research on FVS and OCT have led to the study of several
variants and generalizations of FVS and OCT. Some of these admit polynomial kernels
and for some one can show that none can exist, unless some unlikely collapse happens in
complexity theory. In this paper we study the following generalization of FVS, and OCT,
from the view-point of kernelization complexity.

Conflict Free Feedback Vertex Set (CF-FVS) Parameter: k

Input: An undirected graph G, a conflict graph H on vertex set V (G) and a non-negative
integer k.
Question: Does there exist S ⊆ V (G), such that |S| ≤ k, G− S is a forest and H[S] is
edgeless?

1 This foundational paper has been awarded the Nerode Prize for 2018.
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One can similarly define Conflict Free Odd Cycle Transversal (CF-OCT).

Motivation. On the outset, a natural thought is “why does one care” about such an esoteric
(or obscure) problem. We thought exactly the same in the beginning, till we realized the
modeling power the problem provides and the rich set of questions one can ask. In the
course of this paragraph we will try to explain this. First observe that, if one wants to model
“independent” version of these problems (where the solution is suppose to be an independent
set), then one takes conflict graph to be same as the input graph. An astute reader will figure
out that the problem as stated above is W[1]-hard – a simple reduction from Multicolor
Independent Set with each color class being modeled as cycle and the conflict graph
being the input graph. Thus, a natural question is: when does the problem become FPT? To
state the question formally, let F and G be two families of graphs. Then, (G,F)-CF-FVS is
same problem as CF-FVS, but the input graph G and the conflict graph H are restricted
to belong to G and H, respectively. It immediately brings several questions: (a) for which
pairs of families the problem is FPT; (b) can we obtain some kind of dichotomy results; and
(c) what could we say about the kernelization complexity of the problem. We believe that
answering these questions for basic problems such as FVS, OCT, and Dominating Set
will extend both the tractability as well as intractability tools in parameterized complexity
and led to some fruitful and rewarding research. It is worth to note that initially we were
inspired to define these problems by similar problems in computational geometry. See related
results for more on this.

Our Results and Methods. A graph G is called d-degenerate if every subgraph of G has a
vertex of degree at most d. For a fixed positive integer d, let Dd denote the set of graphs of
degeneracy at most d. In this paper we study the (?,Dd)-CF-FVS (Dd-CF-FVS) problem.
The symbol ? denotes that the input graph G is arbitrary. One can similarly define Dd-CF-
OCT. In fact, we study, CF-OCT for a very restricted family of conflict graphs, a family
of disjoint union of paths of length at most three and at most two star graphs. We denote
this family as P??

≤3 and this variant of CF-OCT as P??
≤3-CF-OCT. Starting point of our

research is the recent study of Jain et al. [14], who studied conflict-free graph modification
problems in the realm of parameterized complexity. As a part of their study they gave
FPT algorithms for Dd-CF-FVS, Dd-CF-OCT and Dd-CF-ECT using the independence
covering families [17]. Their results also imply similar FPT algorithm when the conflict graph
belongs to nowhere dense graphs. In this paper we focus on the kernelization complexity of
Dd-CF-FVS, and P??

≤3-CF-OCT obtain the following results.

1. Dd-CF-FVS admits a O(kO(d)) kernel.
2. P??

≤3-CF-OCT does not admit polynomial kernel, unless NP ⊆ coNP
poly .

Note that D0 denotes edgeless graphs and hence D0-CF-FVS, and D0-CF-OCT are
essentially FVS, and OCT, respectively. Thus, any polynomial kernel for Dd-CF-FVS, and
P??
≤3-CF-OCT, must generalize the known kernels for these problems. We remark that the

above result imply that CF-FVS admits polynomial kernels, when the conflict graph belong
to several well studied graph families, such as planar graphs, graphs of bounded degree, graphs
of bounded treewidth, graphs excluding some fixed graph as a minor, a topological minor
and graphs of bounded expansion etc. (all these graphs classes have bounded degeneracy).

Strategy for CF-FVS. Our kernelization algorithm for CF-FVS consists of the following
two steps. The first step of our kernelization algorithm is a structural decomposition of the

IPEC 2018
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input graph G. This does not depend on the conflict graph H. In this phase of the algorithm,
given an instance (G,H, k) of CF-FVS we obtain an equivalent instance (G′, H ′, k′) of
CF-FVS such that:

The minimum degree of G′ is at least 2.
The number of vertices of degree at least 3 in G′ is upper bounded by O(k3). Let V≥3
denote the set of vertices of degree at least 3 in G′.
The number of maximal degree 2 paths in G′ is upper bounded by O(k3). That is,
G′ − V≥3 consists of O(k3) connected components where each component is a path.

We obtain this structural decomposition using reduction rules inspired by the quadratic
kernel for FVS [25]. As stated earlier, this step can be performed for any graph H. Thus the
problem reduces to designing reduction rules that bound the number of vertices of degree 2
in the reduced graph. Note that we can not do this for any arbitrary graph H as the problem
is W[1]-hard. Once the decomposition is obtained we can not use the known reduction rules
for FVS. This is for a simple reason that in G′ the only vertices that are not bounded have
degree exactly 2 in G′. On the other hand for FVS we can do simple “short-circuit” of degree
2 vertices (remove the vertex and add an edge between its two neighbors) and assume that
there is no vertices of degree two in the graph. So our actual contributions start here.

The second step of our kernelization algorithm bounds the degree two vertices in the
graph G′. Here we must use the properties of the graph H. We propose new reduction
rules for bounding degree two vertices, when H belongs to the family of d-degenerate graphs.
Towards this we use the notion of d-degeneracy sequence, which is an ordering of the vertices
in H such that any vertex can have at most d forward neighbors. This is used in designing a
marking scheme for the degree two vertices. Broadly speaking our marking scheme associates
a set with every vertex v. Here, set consists of “ paths and cycles of G′ on which the forward
neighbors of v are”. Two vertices are called similar if their associated sets are same. We
show that if some vertex is not marked then we can safely contract this vertex to one of its
neighbors. We then upper bound the degree two vertices by O(kO(d)dO(d)), and thus obtain
a kernel of this size for Dd-CF-FVS.

At the heart of our kernelization algorithm is a combinatorial tool of “k-independence
preserver”. Informally, it is a set of “important” vertices for a given subset X ⊆ V (H), that
is enough to capture the independent set property in H. We show that for d-degenerate
graph independence preserver of size kO(d) exists, and can be used in designing polynomial
kernel. This is our main conceptual contribution.

Strategy for CF-OCT. The kernelization lower bound is obtained by the method of cross-
composition [6]. We first define a conflict version of the s-t-Cut problem, where H belongs
to P??

≤3. Then, we show that the problem is NP-hard and cross composes to itself. Finally,
we give a parameter preserving reduction from the problem to P??

≤3-CF-OCT, and obtain
the desired kernel lower bound.

Related Work. In the past, the conflict free versions of some classical problems have been
studied, e.g. for Shortest Path [15], Maximum Flow [21, 22], Knapsack [23], Bin
Packing [12], Scheduling [13], Maximum Matching and Minimum Weight Spanning
Tree [10, 9]. It is interesting to note that some of these problems are NP-hard even when
their non-conflicting version is polynomial time solvable. The study of conflict free problems
has also been recently initiated in computational geometry motivated by various applications
(see [1, 2, 3]).
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2 Preliminaries

Throughout the paper, we follow the following notions. Let G be a graph, V (G) and E(G)
denote the vertex set and the edge set of graph G, respectively. Let n and m denote the
number of vertices and the number of edges of G, respectively. Let G be a graph and
X ⊆ V (G), then G[X] is the graph induced on X and G−X is graph G induced on V (G)\X.
Let ∆ denotes the maximum degree of graph G. We use NG(v) to denote the neighborhood
of v in G and NG[v] to denote NG(v) ∪ {v}. Let E′ be subset of edges of graph G, by G[E′]
we mean the graph with the vertex set V (G) and the edge set E′. Let X ⊆ E(G), then
G−X is a graph with the vertex set V (G) and the edge set E(G) \X. Let Y be a set of
edges on vertex set V (G), then G ∪ Y is graph with the vertex set V (G) and the edge set
E(G) ∪ Y . Degree of a vertex v in graph G is denoted by degG(v). For an integer `, we
denote the set {1, 2, . . . , `} by [`]. A path P = {v1, . . . , vn} is an ordered collection of vertices
such that there is an edge between every consecutive vertices in P and v1, vn are endpoints of
P . For a path P by V (P ) we denote set of vertices in P and by E(P ) we denote set of edges
in P . A cycle C = {v1, . . . , vn} is a path with an edge v1vn. We define a maximal degree two
induced path in G as an induced path of maximal length such that all vertices in path are of
degree exactly two in G. An isolated cycle in graph G is defined as an induced cycle whose
all the vertices are of degree exactly two in G. Let G′ and G be graphs, V (G′) ⊆ V (G) and
E(G′) ⊆ E(G), then we say that G′ is a subgraph of G. The subscript in the notations will
be omitted if it is clear from the context.

A graph G has degeneracy d if every subgraph of G has a vertex of degree at most d. An
ordering of vertices σ : V (G)→ {1, · · · , n} is is called a d-degeneracy sequence of graph G, if
every vertex v has at most d neighbors u with σ(u) > σ(v). A graph G is d-degenerate if and
only if it has a d-degeneracy sequence. For a vertex v in d-degenerate graph G, the neighbors
of v which comes after (before) v in d-degeneracy sequence are called forward (backward)
neighbors of v in the graph G. Given a d-degenerate graph, we can find d-degeneracy sequence
in linear time [18].

3 A Tool for Our Kernelization Algorithm

In this section, we give a tool, which we believe might be useful in obtaining kernelization
algorithm for “conflict free” versions of various parameterized problems (admitting kernels),
when the conflict graph belongs to the family of d-degenerate graphs. We particularly use
this tool to obtain kernel for Dd-CF-FVS (Section 4). For a parameterized problem Π,
consider an instance (G,H, k) of its conflict free variant, Conflict Free Π. Then in the
kernelization step where we want to bound the number of vertices, it is seemingly useful to
be able to obtain a set of “important” vertices for a given subset X ⊆ V (H) that will be
enough to capture the independent set property in H. The above intuition becomes clear
when we describe the kernelization algorithm for Dd-CF-FVS.

To formalize the notion of “important” set of vertices, we give the following definition.

I Definition 1. For a d-degenerate graph H and a set X ⊆ V (H), a k-independence preserver
for (H,X) is a set X ′ ⊆ X, such that for any independent set S in H of size at most k, if
there is v ∈ (S∩X)\X ′, then there is v′ ∈ X ′ \S, such that (S \{v})∪{v′} is an independent
set in H.

Throughout this section, we work with a (fixed) d, which is the degeneracy of the input
graph. The goal of this section will be to obtain an algorithm for computing a k-independence
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preserver for (H,X) of “small” size. To quantify the “small” size, we need the following
definition.

I Definition 2. For each q ∈ [d], we define an integer nq as follows.
1. If q = 1, then nq = kd+ k + 1, and
2. nq = knq−1 + kd+ k + 1, otherwise.

Next, we formally define the problem for which we want to design a polynomial time
algorithm. We call this problem d-Bounded Independence Preserver (d-BIP, for short).

d-Bounded Independence Preserver (d-BIP)
Input: A d-degenerate graph H, a set X ⊆ V (H), and an integer k.
Output: A set X ′ ⊆ X of size at most nd+1, such that X ′ is a k independence preserver
for (H,X).

In the following, let (H,X, k) be an instance of d-BIP. We work with a (fixed) d-degeneracy
sequence, σ of H. We recall that such a sequence can be computed in polynomial time [18].
Forward and backward neighbors of a vertex v are also defined with respect to the ordering
σ. If σ(u) < σ(v), then u is a backward neighbor of v and v is a forward neighbor of u. By
Nf

H(v) (N b
H(v)) we denote the set of forward (backward) neighbors of the vertex v in H.

To design our polynomial time algorithm for d-BIP, we need the notion of q-reducible
sets, which is formally defined below.

I Definition 3. A set Y ⊆ V (H) is q-reducible, if for every set U ⊆ Y , for which there is a
set Z ⊆ V (H), such that: (i) Z is of size exactly d− q + 1 and (ii) for each u ∈ U , we have
Z ⊆ Nf

H(u), it holds that |U | ≤ nq.

Now, we give our polynomial time algorithm for d-BIP in Algorithm 1.

Algorithm 1 Algo1(H,X).
Require: d-degenerate graph H, X ⊆ V (H), and an integer k.
Ensure: X ′ ⊆ X of size at most nd+1, which is a k-independence preserver of (H,X).

1: For q ∈ [d], set nq = kd+ 1, when q = 1, and nq = knq−1 + kd+ k + 1, otherwise.
2: q = 1.
3: while q ≤ d do
4: while X is not q-reducible do
5: Find U ⊆ X of size nq + 1, for which there is Z ⊆ V (H) of size exactly d− q + 1,

such that for each u ∈ U , we have Z ⊆ Nf
H(u).

6: Let v be an arbitrary vertex in U .
7: X = X \ {v}.
8: end while
9: q = q + 1.

10: end while
11: while |X| > nd+1 do
12: Let v be an arbitrary vertex in X.
13: X = X \ {v}.
14: end while
15: Set X ′ = X.
16: return X ′

To prove the correctness of our algorithm, we state an observation, the proof of which
follows from the fact that any vertex can have at most d forward neighbors in H.
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I Observation 4. Let H be a d-degenerate graph and S be an independent set of H of size
at most k. Then, for any set U ⊆ V (H), such that for each vertex u ∈ U , N b

H(u) ∩ S 6= ∅,
we have that |U | ≤ kd.

Now we are ready to prove the correctness of our algorithm (Algorithm 1) for d-BIP.

I Lemma 5. Algorithm 1 is correct.

Proof. Let (H,X, k) be an instance of d-BIP, and X ′ be the output returned by Algorithm 1
with it as the input. Clearly, X ′ ⊆ X as we do not add any new vertex to obtain the set X ′,
and size of X ′ is bounded by nd+1, since at Step 10-13 of the algorithm we reduce its size
to (at most) nd+1. Therefore, it remains to show that X ′ is a k-independence preserver of
(H,X). To this end, we consider the following cases.

Case 1: X is q-reducible, for each q ∈ [d]. In this case, the algorithm arbitrarily deletes
vertices (if required) from X to obtain X ′. If X = X ′, then the claim trivially holds.
Therefore, we assume that X ′ is a strict subset of X. To show that X ′ is a k-independence
preserver for (H,X), consider an independent set S in H of size at most k. Furthermore,
consider a vertex v ∈ (S ∩ X) \ X ′ (again, if such a vertex does not exists, the claim
follows). To prove the desired result, we want to find a replacement vertex for v in X ′
which can be added to S (after removing v) to obtain an independent set in H. To this
end, we mark some vertices in X ′. Firstly, mark all the forward neighbors of each s ∈ S
in the set X ′. That is, we let X ′M to be the set (∪s∈SN

f
H(s)) ∩ X ′. Also, we add all

vertices in S ∩X ′ to the set X ′M . By the property of d-degeneracy sequence, we have
that |X ′M | ≤ kd+ k (see Observation 4). Next, we will mark some more vertices in X ′M
with the hope to find a replacement vertex for v in X ′ \X ′M to add to S. Recall that
by our assumption X is q-reducible, for each q ∈ [d], and in particular, it is d-reducible.
Thus, for each s ∈ S, the set Xs = {x ∈ X | s ∈ Nf

H(x)} ⊆ X has size at most nd. Based
on the above observation, we describe our second level of marking of vertices in X ′. For
each s ∈ S, we add each vertex in Xs to X ′M . From the discussions above, we have that
|X ′M | ≤ kd+ k+ knd. Since |X ′| = nd+1, and by definition, nd+1 = knd + kd+ k+ 1, we
have X ′ \X ′M 6= ∅. Moreover, no vertex in X ′ has a neighbor in S \ {v}. Therefore, for
v′ ∈ X ′ \X ′M , we have that S′ = (S \ {v}) ∪ {v′} is an independent set in H.

Case 2: X is not q-reducible, for some q ∈ [d]. Let q′ be the smallest integer for which X
is not q′-reducible. Since X is not q′-reducible, there is a set U ⊆ X of size at least
nq + 1, for which there is a set Z ⊆ V (H) of size exactly d− q + 1, such that for each
u ∈ U , we have Z ⊆ Nf

H(u). Consider (first) such pair of sets U,Z considered by the
algorithm in Step 4. Furthermore, let v ∈ U be the vertex deleted by the algorithm in
Step 6. Let Û = U \{v}. To prove the claim, it is enough to show that for an independent
set S of size at most k containing v in H, there is v′ ∈ Û such that (S \ {v}) ∪ {v′} is
an independent set in H. Here, we will use the fact that deleting a vertex from a set
does not change a set from being q̃-reducible to a set which is not q̃-reducible, where
q̃ ∈ [d]. In the following, consider an independent set S of size at most k containing v
in H. We construct a marked set ÛM , of vertices in Û . Firstly, we add all the vertices
in (∪s∈S\{v}N

f
H(s)) ∩ Û to ÛM . Also, we add all vertices in S ∩ Û to ÛM . Notice that

at the end of above marking scheme, we have |X̂M | ≤ kd+ k. We will mark some more
vertices in Û . Before stating the second level of marking, we remark that S ∩ Z = ∅. For
each s ∈ S \ {v}, let Zs = Z ∪ {s}. Since S ∩ Z = ∅, we have that |Zs| = d− (q − 1) + 1.
For s ∈ S \ {v}, let Ûs = {u ∈ Û | Zs ⊆ Nf

H(u)}. Since X is q∗-reducible for each q∗ < q′,
we have |Ûs| ≤ nq−1, for each s ∈ S \ {v}. Now we are ready to describe our second
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level of marking. For each s ∈ S \ {v}, add all vertices in Us to the set ÛM . Notice that
|ÛM | ≤ kd+ k+ knq−1. Moreover, |Û | ≥ nq and nq = knq−1 + kd+ k+ 1. Thus, there is
a vertex v′ ∈ Û \ ÛM , such that (S \ {v}) ∪ {v′} is an independent set in H. J

I Lemma 6. (?)2 Algorithm 1 runs in time nO(d).

Using Lemma 5 and Lemma 6 we obtain the following theorem.

I Theorem 7. d-Bounded Independence Preserver admits an algorithm running in
time nO(d).

4 A Polynomial Kernel for Dd-CF-FVS

In this section, we design a kernelization algorithm for Dd-CF-FVS.
To design a kernelization algorithm for Dd-CF-FVS, we define another problem called Dd-

Disjoint-CF-FVS (Dd-DCF-FVS, for short). We first define the problem Dd-DCF-FVS
formally, and then explain its uses in our kernelization algorithm.

Dd-Disjoint-CF-FVS (Dd-DCF-FVS) Parameter: k

Input: An undirected graph G, a graph H ∈ Dd such that V (G) = V (H), a subset
R ⊆ V (G), and a non-negative integer k.
Question: Is there a set S ⊆ V (G) \R of size at most k, such that G− S does not have
any cycle and S is an independent set in H?
Notice that Dd-CF-FVS is a special case of Dd-DCF-FVS, where R = ∅. Given an

instance of Dd-CF-FVS, the kernelization algorithm creates an instance of Dd-DCF-FVS
by setting R = ∅. Then it applies a kernelization algorithm for Dd-DCF-FVS. Finally, the
algorithm takes the instance returned by the kernelization algorithm for Dd-DCF-FVS and
generates an instance of Dd-CF-FVS. Before moving forward, we note that the purpose
of having set R is to be able to prohibit certain vertices to belong to a solution. This is
particularly useful in maintaining the independent set property of the solution, when applying
reduction rules which remove vertices from the graph (with an intention of it being in a
solution).

We first focus on designing a kernelization algorithm for Dd-DCF-FVS, and then give
a polynomial time linear parameter preserving reduction from Dd-DCF-FVS to Dd-CF-
FVS. If the kernelization algorithm for Dd-DCF-FVS returns that (G,H,R, k) is a YES
(NO) instance of Dd-DCF-FVS, then conclude that (G,H, k) is a YES (NO) instance of
Dd-CF-FVS. In the following, we describe a kernelization algorithm for Dd-DCF-FVS. Let
(G,H,R, k) be an instance of Dd-DCF-FVS. The algorithm starts by applying the following
simple reduction rules.

I Reduction Rule 1.
(a) If k ≥ 0 and G is acyclic, then return that (G,H,R, k) is a YES instance of Dd-DCF-

FVS.
(b) Return that (G,H,R, k) is a NO instance of Dd-DCF-FVS, if one of the following

conditions is satisfied:
(i) k ≤ 0 and G is not acyclic,
(ii) G is not acyclic and V (G) ⊆ R, or

2 Due to space constraints, the proofs of results marked with ? have been omitted from this extended
abstract.
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(iii) There are more than k isolated cycles in G.

I Reduction Rule 2.
(a) Let v be a vertex of degree at most 1 in G. Then delete v from the graphs G,H and the

set R.
(b) If there is an edge in G (H) with multiplicity more than 2 (more than 1), then reduce its

multiplicity to 2 (1).
(c) If there is a vertex v with self loop in G. If v /∈ R, delete v from the graphs G and H,

and decrease k by one. Furthermore, add all the vertices in NH(v) to the set R, otherwise
return that (G,H,R, k) is a NO instance of Dd-DCF-FVS.

(d) If there are parallel edges between (distinct) vertices u, v ∈ V (G) in G:
(i) If u, v ∈ R, then return that (G,H,R, k) is a NO instance of Dd-DCF-FVS.
(ii) If u ∈ R (v ∈ R), delete v (u) from the graphs G and H, and decrease k by one.

Furthermore, add all the vertices in NH(v) (NH(u)) to the set R.

It is easy to see that the above reduction rules are correct, and can be applied in
polynomial time. In the following, we define some notion and state some known results,
which will be helpful in designing our next reduction rules.

I Definition 8. For a graph G, a vertex v ∈ V (G), and an integer t ∈ N, a t-flower at v is a
set of t vertex disjoint cycles whose pairwise intersection is exactly {v}.

I Proposition 9. [8, 19, 25] For a graph G, a vertex v ∈ V (G) without a self-loop in G, and
an integer k, the following conditions hold.
(i) There is a polynomial time algorithm, which either outputs a (k + 1)-flower at v, or

it correctly concludes that no such (k + 1)-flower exists. Moreover, if there is no
(k + 1)-flower at v, it outputs a set Xv ⊆ V (G) \ {v} of size at most 2k, such that Xv

intersects every cycle passing through v in G.
(ii) If there is no (k + 1)-flower at v in G and the degree of v is at least 4k + (k + 2)2k.

Then using a polynomial time algorithm we can obtain a set Xv ⊆ V (G) \ {v} and a set
Cv of components of G[V (G) \ (Xv ∪ {v})], such that each component in Cv is a tree,
v has exactly one neighbor in C ∈ Cv, and there exist at least k + 2 components in Cv

corresponding to each vertex x ∈ Xv such that these components are pairwise disjoint
and vertices in Xv have an edge to each of their associated components.

I Reduction Rule 3. Consider v ∈ V (G), such that there is a (k + 1)-flower at v in G. If
v ∈ R, then return that (G,H,R, k) is a NO instance of Dd-DCF-FVS. Otherwise, delete v
from G,H and decrease k by one. Furthermore, add all the vertices in NH(v) to R.

The correctness of the above reduction rule follows from the fact that such a vertex must
be part of every solution of size at most k. Moreover, the applicability of it in polynomial
time follows from Proposition 9 (item (i)).

I Reduction Rule 4. Let v ∈ V (G), Xv ⊆ V (G) \ {v}, and Cv be the set of components
which satisfy the conditions in Proposition 9(ii) (in G), then delete edges between v and the
components of the set Cv, and add parallel edges between v and every vertex x ∈ Xv in G.

The polynomial time applicability of Reduction Rule 4 follows from Proposition 9. And,
in the following lemma, we prove the safeness of this reduction rule.

I Lemma 10. (?) Reduction Rule 4 is safe.
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In the following, we state an easy observation, which follows from non-applicability of
Reduction Rule 1 to 4.

IObservation 11. Let (G,H,R, k) be an instance of Dd-DCF-FVS, where none of Reduction
Rule 1 to 4 apply. Then the degree of each vertex in G is bounded by O(k2).

Proof. As Reduction Rule 3 is not applicable, then there is no k + 1-flower in G. Now, if
there is v ∈ V (G) with degree at least 4k + (k + 2)2k, then Reduction Rule 4 would be
applicable. J

To design our next reduction rule, we construct an auxiliary graph G?. Intuitively
speaking, G? is obtained from G by shortcutting all degree two vertices. That is, vertex
set of G? comprises of all the vertices of degree at least three in 3. From now on, vertices
of degree at least 3 (in G) will be referred to as high degree vertices. For each uv ∈ E(G),
where u, v are high degree vertices, we add the edge uv in G?. Furthermore, for an induced
maximal path Puv, between u and v where all the internal vertices of Puv are degree two
vertices in G, we add the (multi) edge uv to E(G?). Next, we will use the following result to
bound the number of vertices and edges in G?.

I Proposition 12. [8] A graph G with minimum degree at least 3, maximum degree ∆, and
a feedback vertex set of size at most k has at most (∆ + 1)k vertices and 2∆k edges.

The above result (together with the construction of G?) gives us the following (safe)
reduction rule.

I Reduction Rule 5. If |V (G?)| ≥ 4k2 + 2k2(k + 2) or |E(G?)| ≥ 8k2 + 4k2(k + 2), then
return NO.

I Lemma 13. Let (G,H,R, k) be an instance of Dd-DCF-FVS, where none of the Reduction
Rules 1 to 5 are applicable. Then we obtain the following bounds:

The number of vertices of degree at least 3 in G is bounded by O(k3).
The number of maximal degree two induced paths in G is bounded by O(k3).

Having shown the above bounds, it remains to bound the number of degree two vertices
in G. We start by applying the following simple reduction rule to eliminate vertices of degree
two in G, which are also in R.

I Reduction Rule 6. Let v ∈ R, dG(v) = 2, and x, y be the neighbors of v in G. Delete v
from the graphs G,H and the set R. Furthermore, add the edge xy in G.

The correctness of this reduction rule follows from the fact that vertices in R can not be part
of any solution and all the cycles passing through v also passes through its neighbors.

In the polynomial kernel for the Feedback Vertex Set problem (with no conflict
constraints), we can short-circuit degree two vertices. But in our case, we cannot perform
this operation, since we also need the solution to be an independent set in the conflict
graph. Thus to reduce the number of degree two vertices in G, we exploit the properties
of a d-degenerate graph. To this end, we use the tool that we developed in Section 3. This
immediately gives us the following reduction rule.

I Reduction Rule 7. Let P be a maximal degree two induced path in G. If |V (P )| ≥ nd+1 +1,
apply Algorithm 1 with input (H,V (P ) \R). Let V̂ (P ) be the set returned by Algorithm 1.
Let v ∈ (V (P ) \ R) \ V̂ (P ), and x, y be the neighbors of v in G. Delete v from the graphs
G,H. Furthermore, add edge xy in G.
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I Lemma 14. Reduction Rule 7 is safe.

Proof. Let (G,H,R, k) be an instance of Dd-DCF-FVS and v be a vertex in a maximal
degree two path P with neighbors x and y, with respect to which Reduction Rule 14 is
applied. Furthermore, let (G′, H ′, R, k) be the resulting instance after application of the
reduction rule. We will show that (G,H,R, k) is a YES instance of Dd-DCF-FVS if and
only if (G′, H ′, R, k) is a YES instance of Dd-DCF-FVS.

In the forward direction, let (G,H,R, k) be a YES instance of Dd-DCF-FVS and S be
one of its minimal solution. Consider the case when v /∈ S. In this case, we claim that S
is also a solution of Dd-DCF-FVS for (G′, H ′, R, k). Suppose not then either S is not an
independent set in H ′ or G′ − S contains a cycle. Since, H ′ is an induced subgraph of H, we
have that S′ is also an independent set in H ′. So we assume that G′ − S has a cycle, say C.
If C does not contain the edge xy, then C is also a cycle in G− S. Therefore, we assume
that C contains the edge xy. But then (C \ {xy}) ∪ {xv, vy} is a cycle in G− S. Next, we
consider the case when v ∈ S. By Lemma 5 we have a vertex v′ ∈ V (P ) \ {v} such that
(S \ {v}) ∪ {v′} is an independent set in H ′. By using the fact that any cycle that passes
through v also contains all vertices in P (together with the discussions above) imply that
(S \ {v}) ∪ {v′} is a solution of Dd-DCF-FVS for (G′, H ′, R, k).

In the reverse direction, let (G′, H ′, R, k) be a YES instance of Dd-DCF-FVS and S′
be one of its minimal solution. We claim that S′ is also a solution of Dd-DCF-FVS for
(G,H,R, k). Suppose not, then either S is not an independent set in H or G− S contains a
cycle. Since, H ′ is an induced subgraph of H, we have that S′ is also an independent set in H.
Next, assume that there is a cycle C in G− S. The cycle C must contain v, otherwise, C is
also a cycle in G′ − S′. Since v is a degree two vertex in G, therefore any cycle that contains
v, must also contain x and y. As observed before, G − {xv, vy} is identical to G′ − {xy}.
But then, (C \ {xv, vy})∪ {xy} is a cycle in G′ − S′, a contradiction. This concludes that S′
is a solution of Dd-DCF-FVS for (G,H,R, k). J

I Lemma 15. (?) Let (G,H,R, k) be an instance of Dd-DCF-FVS, where none of the
Reduction Rules 1 to 7 are applicable. Then the number of vertices in a degree two induced
path in G is bounded by O(kO(d)).

I Theorem 16. Dd-DCF-FVS admits a kernel with O(kO(d)) vertices.

I Lemma 17. (?) There is a polynomial time parameter preserving reduction from Dd-DCF-
FVS to Dd-CF-FVS.

By Theorem 16 and Lemma 17, we obtain the following result.

I Theorem 18. Dd-CF-FVS admits a kernel with O(kO(d)) vertices.

5 Kernelization Complexity of P??
≤3-CF-OCT

In this section, we show that CF-OCT does not admit a polynomial kernel when the conflict
graph belongs to the family P??

≤3. Let P≤3 denotes the family of disjoint union of paths of
length at most three, and P?

≤3 denotes the family of disjoint union of paths of length at most
three and a star graph. We give parameter preserving reduction from P?

≤3-Conflict Free
s-t Cut (P?

≤3-CF-s-t Cut) to P??
≤3-CF-OCT.

We first prove that P?
≤3-CF-s-t Cut is NP-hard. Then, we prove that P?

≤3-CF-s-t
Cut does not admit a polynomial compression, unless NP ⊆ coNP

poly using the method of
cross-composition.
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Figure 1 An illustration of construction of graph G′ and H ′ in reduction from P?
≤3-CF-s-t Cut

to P??
≤3-CF-OCT.

I Theorem 19 (?). P?
≤3-CF-s-t Cut does not admit a polynomial compression unless

NP ⊆ coNP
poly .

Lower Bound for Kernel of P??
≤3-CF-OCT. In this subsection, we prove the main result of

this section. We show that there does not exist a polynomial kernel of P??
≤3-CF-OCT. Towards

this we give a parameter preserving reduction from P?
≤3-CF-s-t Cut to P??

≤3-CF-OCT. Given
an instance (G,H, s, t, k) of P?

≤3-CF-s-t Cut, we construct an instance (G′, H ′, k + 1) of
P??
≤3-CF-OCT as follows. Initially, we have V (G′) = V (H ′) = V (G) ∪ {z, a, b}. Now, for

each edge ei ∈ E(G), add a vertex wi to V (G′) and V (H ′). Now, we define the edge set of
G′. Let xi, yi be end points of ei ∈ E(G). For each ei ∈ E(G), add edges xiwi and yiwi to
E(G′). Also, add a self loop on z in G′ and edges sa, ab and bt to E(G′). To construct the
edge set of H ′, we set E(H ′) = E(H − {s, t}). Additionally, we add zs, zt, za, zt, and zwi

for each wi ∈ V (H ′) to E(H ′). Figure 1 describes the construction of G′ and H ′.
Clearly, H ′ belongs to P??

3 and this construction can be carried out in the polynomial
time. Now, we prove the equivalence between the instances (G,H, s, t, k) of P?

≤3-CF-s-t Cut
and (G′, H ′, k + 1) of P??

≤3-CF-OCT in the following lemma.

I Lemma 20. (G,H, s, t, k) is a yes-instance of P?
≤3-CF-s-t Cut if and only if (G′, H ′, k+1)

is a yes-instance of P??
≤3-CF-OCT.

Proof. In the forward direction, let (G,H, s, t, k) be a yes-instance of P?
≤3-CF-s-t Cut and S

be one of its solution. We claim that S ∪{z} is a solution to P??
≤3-CF-OCT in (G′, H ′, k+ 1).

In the graph G′, since we subdivide each edge, all the paths from s− t are of even length.
Since, we subdivide each edge of G, G′ − {a, b, z} is a bipartite graph. Hence, an odd cycle
in G′ − z consists of an s − t path in G′ − {a, b} and edges sa, ab and bt. Clearly, by the
construction of G′, (G′ − {a, b}) \ S does not contain an s− t path and hence G′ − z does
not contain an odd cycle. Since, H[S] is edgeless, S ∪ {z} is an independent set in H ′. This
completes the proof in the forward direction.

In the reverse direction, let S be a solution to P??
≤3-CF-OCT in (G′, H ′, k+1). Since, z ∈ S,

therefore, s, t, a, b, wi /∈ S for any wi ∈ V (H ′). We claim that S′ = S\{z} is a solution to P?
≤3-

CF-s-t Cut in (G,H, s, t, k). Suppose not, then there exists a s−t path (s, x1, x2, · · · , xl, t) in
G\S′. Correspondingly, there exists a s−t path (s, w1, x1, w2, x2, · · · , xl, wl+1, t) in G′ of even
length which results into an odd cycle
(s, w1, x1, w2, x2, · · · , xl, wl+1, t, b, a) in G′ \S, a contradiction. This completes the proof. J

Now, we present the main result of this section in the following theorem.

I Theorem 21. P??
≤3-CF-OCT does not admit a polynomial kernel. unless NP ⊆ coNP

poly .
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6 Conclusion

In this paper we studied kernelization complexity of Dd-CF-FVS and Dd-CF-OCT. We
showed that the former admits a polynomial kernel of size kO(d), while Dd-CF-OCT does not
admit any polynomial kernel unless NP ⊆ coNP

poly . In fact, the later does not admit polynomial
kernel even for much more specialized problem, namely P??

≤3-CF-OCT. Using much more
involved marking scheme we can show that Dd-CF-ECT admits polynomial kernel of size
kO(d). Similarly, we can extend the known polynomial kernel for OCT to CF-OCT when
the conflict graph H has maximum degree at most one. Two most interesting questions that
still remain open form our work are following: (a) does CF-FVS admit uniform polynomial
kernel on graphs of bounded expansion; and (b) does CF-OCT admit a polynomial kernel
when H is disjoint union of paths of length at most 2.
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Abstract
We continue the investigation of polynomial-time sparsification for NP-complete Boolean Con-
straint Satisfaction Problems (CSPs). The goal in sparsification is to reduce the number of
constraints in a problem instance without changing the answer, such that a bound on the num-
ber of resulting constraints can be given in terms of the number of variables n. We investigate
how the worst-case sparsification size depends on the types of constraints allowed in the problem
formulation (the constraint language). Two algorithmic results are presented. The first result
essentially shows that for any arity k, the only constraint type for which no nontrivial sparsifi-
cation is possible has exactly one falsifying assignment, and corresponds to logical OR (up to
negations). Our second result concerns linear sparsification, that is, a reduction to an equivalent
instance with O(n) constraints. Using linear algebra over rings of integers modulo prime powers,
we give an elegant necessary and sufficient condition for a constraint type to be captured by a
degree-1 polynomial over such a ring, which yields linear sparsifications. The combination of
these algorithmic results allows us to prove two characterizations that capture the optimal spar-
sification sizes for a range of Boolean CSPs. For NP-complete Boolean CSPs whose constraints
are symmetric (the satisfaction depends only on the number of 1 values in the assignment, not
on their positions), we give a complete characterization of which constraint languages allow for
a linear sparsification. For Boolean CSPs in which every constraint has arity at most three, we
characterize the optimal size of sparsifications in terms of the largest OR that can be expressed
by the constraint language.
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1 Introduction

Background

The framework of constraint satisfaction problems (CSPs) provides a unified way to study
the computational complexity of a wide variety of combinatorial problems such as CNF-
Satisfiability, Graph Coloring, and Not-All-Equal SAT. The framework uncovers
algorithmic approaches that simultaneously apply to several problems, and also identifies
common sources of intractability. For the purposes of this discussion, a CSP is specified using
a (finite) constraint language, which is a set of (finite) relations; the problem is to decide the
satisfiability of a set of constraints, where each constraint has a relation coming from the
constraint language. The fact that many problems can be viewed as CSPs motivates the
following investigation: how does the complexity of a CSP depend its constraint language?
A key result in this area is Schaefer’s dichotomy theorem [18], which classifies each CSP over
the Boolean domain as polynomial-time solvable or NP-complete.

Continuing a recent line of investigation [10, 12, 15], we aim to understand for which
NP-complete CSPs an instance can be sparsified in polynomial time, without changing the
answer. In particular, we investigate the following questions. Can the number of constraints
be reduced to a small function of the number of variables n? How does the sparsifiability of a
CSP depend on its constraint language? We utilize the framework of kernelization [5, 8, 16],
originating in parameterized complexity theory, to answer such questions.

The first results concerning polynomial-time sparsification in terms of the number n
of variables or vertices were mainly negative. Under the assumption that NP 6⊆ coNP/poly
(which we tacitly assume throughout this introduction), Dell and van Melkebeek [7] proved a
strong lower bound: For any integer d ≥ 3 and positive real ε, there cannot be a polynomial-
time algorithm that compresses any instance ϕ of d-CNF-SAT on n variables, into an
equivalent SAT instance ϕ′ of bitsize O(nd−ε). In fact, there cannot even be an algorithm
that transforms such ϕ into small equivalent instances ψ of an arbitrary decision problem.
Since an instance of d-CNF-SAT has at most 2dnd ∈ O(nd) distinct clauses, it can trivially
be sparsified to O(nd) clauses by removing duplicates, and can be compressed to size O(nd)
by storing it as a bitstring indicating for each possible clause whether or not it is present.
The cited lower bound therefore shows that the trivial sparsification for d-CNF-SAT cannot
be significantly improved; we say that the problem does not admit nontrivial (polynomial-
time) sparsification. Following these lower bounds for SAT, a number of other results were
published [6, 9, 14] proving other problems do not admit nontrivial sparsification either.

This pessimistic state of affairs concerning nontrivial sparsification algorithms changed
several years ago, when a subset of the authors [12] showed that the d-Not-All-Equal SAT
problem does have a nontrivial sparsification. In this problem, clauses have size at most d
and are satisfied if the literals do not all evaluate to the same value. While there can be Ω(nd)
different clauses in an instance, there is an efficient algorithm that finds a subset of O(nd−1)
clauses that preserves the answer, resulting in a compression of bitsize O(nd−1 logn). The
first proof of this result was based on an ad-hoc application of a theorem of Lovász [17]. Later,
the underlying proof technique was extracted and applied to a wider range of problems [10].
This led to the following understanding: if each relation in the constraint language can be
represented by a polynomial of degree at most d, in a certain technical sense, then this
allows the number of constraints in an n-variable instance of such a CSP to be reduced
to O(nd). The sparsification for d-Not-All-Equal SAT is then explained by noting that
such constraints can be captured by polynomials of degree d− 1. It is therefore apparent
that finding a low-degree polynomial to capture the constraints of a CSP is a powerful tool
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to obtain sparsification algorithms for it. Finding such polynomials of a certain degree d, or
determining that they do not exist, proved a challenging and time-intensive task (cf. [11]).

The polynomial-based framework [10] also resulted in some linear sparsifications. Since
“1-in-d” constraints (to satisfy a clause, exactly one out of its ≤ d literals should evaluate to
true) can be captured by linear polynomials, the 1-in-d-SAT problem has a sparsification
with O(n) constraints for each constant d. This prompted a detailed investigation into
linear sparsifications for CSPs by Lagerkvist and Wahlström [15], who used the toolkit of
universal algebra in an attempt to obtain a characterization of the Boolean CSPs with a
linear sparsification. Their results give a necessary and sufficient condition on the constraint
language of a CSP for having a so-called Maltsev embedding over an infinite domain. They
also show that when a CSP has a Maltsev embedding over a finite domain, then this
can be used to obtain a linear sparsification. Alas, it remains unclear whether Maltsev
embeddings over infinite domains can be exploited algorithmically, and a characterization of
the linearly-sparsifiable CSPs is currently not known.

Our contributions

We analyze and demonstrate the power of the polynomial-based framework for sparsifying
CSPs using universal algebra, linear algebra over rings, and relational analysis. We present
two new algorithmic results. These allow us to characterize the sparsifiability of Boolean
CSPs in two settings, wherein we show that the polynomial-based framework yields optimal
sparsifications. In comparison to previous work [10], our results are much more fine-grained
and based on a deeper understanding of the reasons why a certain CSP cannot be captured
by low-degree polynomials.

Algorithmic results. Our first result (Section 3) shows that, contrary to the pessimistic
picture that arose during the initial investigation of sparsifiability, the phenomenon of
nontrivial sparsification is widespread and occurs for almost all Boolean CSPs! We prove
that if Γ is a constraint language whose largest constraint has arity k, then the only reason
that CSP(Γ) does not have a nontrivial sparsification, is that it contains an arity-k relation
that is essentially the k-ary OR (up to negating variables). When R ⊆ {0, 1}k is a relation
with |{0, 1}k \R| 6= 1 (the number of assignments that fail to satisfy the constraint is not
equal to 1), then it can be captured by a polynomial of degree k− 1. This yields a nontrivial
sparsification compared to the Ω(nk) distinct applications of this constraint that can be in
such an instance.

Our second algorithmic result (Section 4) concerns the power of the polynomial-based
framework for obtaining linear sparsifications. We give a necessary and sufficient condition
for a relation to be captured by a degree-1 polynomial. Say that a Boolean relation R ⊆
{0, 1}k is balanced if there is no sequence of vectors s1, . . . , s2n, s2n+1 ∈ R for n ≥ 1 such
that s1 − s2 + s3 . . . − s2n + s2n+1 = u ∈ {0, 1}k \ R. (The same vector may appear
multiple times in this sum.) In other words: R is balanced if one cannot find an odd-length
sequence of vectors in R for which alternating between adding and subtracting these vectors
component-wise results in a 0/1-bitvector u that is outside R. For example, the binary OR
relation 2-or = {0, 1}2 \ {(0, 0)} is not balanced, since (0, 1)− (1, 1) + (1, 0) = (0, 0) /∈ 2-or,
but the 1-in-3 relation R=1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is. We prove that if a Boolean
relation R is balanced, then it can efficiently be captured by a degree-1 polynomial and
the number of constraints that are applications of this relation can be reduced to O(n).
Hence when all relations in a constraint language Γ are balanced—we call such a constraint
language balanced—then CSP(Γ) has a sparsification with O(n) constraints. We also show
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that, on the other hand, if a Boolean relation R is not balanced, then there does not exist a
degree-1 polynomial over any ring that captures R in the sense required for application of the
polynomial framework. The property of being balanced is (as defined) a universal-algebraic
property; these results thus tightly bridge universal algebra and the polynomial framework.

Characterizations. The property of being balanced gives an easy way to prove that certain
Boolean CSPs admit linear sparsifications. But perhaps more importantly, this character-
ization constructively exhibits a certain witness when a relation can not be captured by
a degree-1 polynomial, in the form of the alternating sum of satisfying assignments that
yield an unsatisfying assignment. In several scenarios, we can turn this witness structure
against degree-1 polynomials into a lower bound proving that the problem does not have a
linear sparsification. As a consequence, we can prove two fine-grained characterizations of
sparsification complexity.

Characterization of symmetric CSPs with a linear sparsification (Section 5)
We say that a Boolean relation is symmetric if the satisfaction of a constraint only depends
on the number of 1-values taken by the variables (the weight of the assignment), but does
not depend on the positions where these values appear. For example, “1-in-k”-constraints are
symmetric, just as “not-all-equal”-constraints, but the relation Ra→b = {(0, 0), (0, 1), (1, 1)}
corresponding to the truth value of a → b is not. We prove that if a symmetric Boolean
relation R is not balanced, then it can implement (Definition 2.7) a binary OR using constants
and negations but without having to introduce fresh variables. Building on this, we prove
that if such an unbalanced symmetric relation R occurs in a constraint language Γ for which
CSP(Γ) is NP-complete, then CSP(Γ) does not admit a sparsification of size O(n2−ε) for
any ε > 0. Consequently, we obtain a characterization of the sparsification complexity of
NP-complete Boolean CSPs whose constraint language consists of symmetric relations: there
is a linear sparsification if and only if the constraint language is balanced. This yields linear
sparsifications in several new scenarios that were not known before.

Characterization of sparsification complexity for CSPs of low arity (Section 6)
By combining the linear sparsifications guaranteed by balanced constraint languages with the
nontrivial sparsification when the largest-arity relations do not have exactly one falsifying
assignment, we obtain an exact characterization of the optimal sparsification size for all
Boolean CSPs where each relation has arity at most three. For a Boolean constraint language Γ
consisting of relations of arity at most three, we characterize the sparsification complexity
of Γ as an integer k ∈ {1, 2, 3} that represents the largest OR that Γ can implement using
constants and negations, but without introducing fresh variables. Then we prove that CSP(Γ)
has a sparsification of size O(nk), but no sparsification of size O(nk−ε) for any ε > 0, giving
matching upper and lower bounds. Hence for all Boolean CSPs with constraints of arity at
most three, the polynomial-based framework gives provably optimal sparsifications.

2 Preliminaries

For a positive integer n, define [n] := {1, 2, . . . , n}. For an integer q, we let Z/qZ denote
the integers modulo q. These form a field if q is prime, and a ring otherwise. We will use
x ≡q y to denote that x and y are congruent modulo q, and x 6≡q y to denote that they are
incongruent modulo q. For statements marked with a star (F), the (full) proof can be found
in the full version [4].
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Parameterized complexity. A parameterized problem Q is a subset of Σ∗ × N, where Σ is
a finite alphabet. Let Q,Q′ ⊆ Σ∗ × N be parameterized problems and let h : N → N be a
computable function. A generalized kernel for Q into Q′ of size h(k) is an algorithm that,
on input (x, k) ∈ Σ∗ × N, takes time polynomial in |x|+ k and outputs an instance (x′, k′)
such that: (i) |x′| and k′ are bounded by h(k), and (ii) (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.
The algorithm is a kernel for Q if Q′ = Q.

Since a polynomial-time reduction to an equivalent sparse instance yields a generalized
kernel, lower bounds against generalized kernels can be used to prove the non-existence of
such sparsification algorithms. To relate the sparsifiability of different problems to each
other, the following notion is useful.

I Definition 2.1. Let P,Q ⊆ Σ∗ × N be two parameterized problems. A linear-parameter
transformation from P to Q is a polynomial-time algorithm that, given an instance (x, k) ∈
Σ∗ × N of P, outputs an instance (x′, k′) ∈ Σ∗ × N of Q such that the following holds:
1. (x, k) ∈ Q if and only if (x′, k′) ∈ P, and
2. k′ ∈ O(k).
It is well-known [1, 2] that the existence of a linear-parameter transformation from problem P
to Q implies that any generalized kernelization lower bound for P, also holds for Q.

Operations, relations, and preservation. A Boolean operation is a mapping from {0, 1}k

to {0, 1}, where k, a natural number, is said to be the arity of the operation; we assume
throughout that operations have positive arity. From here, we define a partial Boolean
operation in the usual way, that is, it is a mapping from a subset of {0, 1}k to {0, 1}. We
say that a partial Boolean operation f of arity k is idempotent if f(0, . . . , 0) = 0 and
f(1, . . . , 1) = 1; and, self-dual if for all (a1, . . . , ak) ∈ {0, 1}k, when f(a1, . . . , ak) is defined,
it holds that f(¬a1, . . . ,¬ak) is defined and f(a1, . . . , ak) = ¬f(¬a1, . . . ,¬ak).

I Definition 2.2. A partial Boolean operation f : {0, 1}k → {0, 1} is balanced if there exist
integer values α1, . . . , αk, called the coefficients of f , such that∑

i∈[k] αi = 1,
(x1, . . . , xk) is in the domain of f if and only if

∑
i∈[k] αixi ∈ {0, 1}, and

f(x1, . . . , xk) =
∑

i∈[k] αixi for all tuples in its domain.

A relation over the set D is a subset of Dk; here, k is a natural number called the arity
of the relation. Throughout, we assume that each relation is over a finite set D. A Boolean
relation is a relation over {0, 1}.

I Definition 2.3. For each k ≥ 1, we use k-or to denote the relation {0, 1}k \ {(0, . . . , 0)}.

A constraint language over D is a finite set of relations over D; a Boolean constraint
language is a constraint language over {0, 1}. For a Boolean constraint language Γ, we define
CSP(Γ) as follows.

CSP(Γ) Parameter: The number of variables |V |.
Input: A tuple (C, V ), where C is a finite set of constraints, V is a finite set of variables,
and each constraint is a pair R(x1, . . . , xk) for R ∈ Γ and x1, . . . , xk ∈ V .
Question: Does there exist a satisfying assignment, that is, an assignment f : V → {0, 1}
such that for each constraint R(x1, . . . , xk) ∈ C it holds that (f(x1), . . . , f(xk)) ∈ R?

Let f : {0, 1}k → {0, 1} be a partial Boolean operation, and let T ⊆ {0, 1}n be a Boolean
relation. We say that T is preserved by f when, for any tuples t1 = (t11, . . . , t1n), . . . , tk =
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(tk1 , . . . , tkn) ∈ T , if all entries of the tuple (f(t11, . . . , tk1), . . . , f(t1n, . . . , tkn)) are defined, then
this tuple is in T . We say that a Boolean constraint language Γ is preserved by f if each
relation in Γ is preserved by f . We say that a Boolean relation is balanced if it is preserved by
all balanced operations, and that a Boolean constraint language is balanced if each relation
therein is balanced.

Define an alternating operation to be a balanced operation f : {0, 1}k → {0, 1} such that
k is odd and the coefficients alternate between +1 and −1, so that α1 = +1, α2 = −1,
α3 = +1, . . ., αk = +1. We have the following.

I Proposition 2.4 (F). A Boolean relation R is balanced if and only if for all odd k ≥ 1,
the relation R is preserved by the alternating operation of arity k.

We will use the following straightforwardly verified fact tacitly, throughout.

I Observation 2.5. Each balanced operation is idempotent and self-dual.

For b ∈ {0, 1}, let ub : {0, 1} → {0, 1} be the unary operation defined by ub(0) = ub(1) = b;
let major : {0, 1}3 → {0, 1} to be the operation defined by major(x, y, z) = (x∧y)∨(x∧z)∨(y∧
z); and, let minor : {0, 1}3 → {0, 1} to be the operation defined by minor(x, y, z) = x⊕ y ⊕ z,
where ⊕ denotes exclusive OR. We say that a Boolean constraint language Γ is tractable if it
is preserved by one of the six following operations: u0, u1, ∧, ∨, minor, major; we say that
Γ is intractable otherwise. It is known that, in terms of classical complexity, the problem
CSP(Γ) is polynomial-time decidable when Γ is tractable, and that the problem CSP(Γ) is
NP-complete when Γ is intractable (see [3] for a proof; in particular, refer there to the proof
of Theorem 3.21).

Constraint Satisfaction and Definability.

I Assumption 2.6. By default, we assume in the sequel that the operations, relations, and
constraint languages under discussion are Boolean, and that said operations and relations are
of positive arity. We nonetheless sometimes describe them as being Boolean, for emphasis.

I Definition 2.7. Let us say that a Boolean relation T of arity m is cone-definable from a
Boolean relation U of arity n if there exists a tuple (y1, . . . , yn) where:

for each j ∈ [n], it holds that yj is an element of {0, 1} ∪ {x1, . . . , xm} ∪ {¬x1, . . . ,¬xm};
for each i ∈ [m], there exists j ∈ [n] such that yj ∈ {xi,¬xi}; and,
for each f : {x1, . . . , xm} → {0, 1}, it holds that (f(x1), . . . , f(xm)) ∈ T if and only if
(f̂(y1), . . . , f̂(yn)) ∈ U . Here, f̂ denotes the natural extension of f where f̂(0) = 0,
f̂(1) = 1, and f̂(¬xi) = ¬f(xi).

(The prefix cone indicates the allowing of constants and negation.)

I Example 2.8. Let R = {(0, 0), (0, 1)} and let S = {(0, 1), (1, 1)}. We have that R is
cone-definable from S via the tuple (¬x2,¬x1); also, S is cone-definable from R via the same
tuple.

When Γ is a constraint language over D, we use Γ∗ to denote the expansion of Γ where
each element of D appears as a relation, that is, we define Γ∗ as Γ ∪ {{(d)} | d ∈ D}.

The following is a key property of cone-definability; it states that relations that are
cone-definable from a constraint language Γ may be simulated by the constraint language,
and thus used to prove hardness results for CSP(Γ).

I Proposition 2.9 (F). Suppose that Γ is an intractable constraint language, and that ∆
is a constraint language such that each relation in ∆ is cone-definable from a relation in Γ.
Then, there exists a linear-parameter transformation from CSP(Γ∗ ∪∆) to CSP(Γ).
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3 Trivial versus non-trivial sparsification

It is well known that k-CNF-SAT allows no non-trivial sparsification, for each k ≥ 3 [7]. This
means that we cannot efficiently reduce the number of clauses in such a formula to O(nk−ε).
The k-or relation is special, in the sense that there is exactly one k-tuple that is not contained
in the relation. We show in this section that when considering k-ary relations for which there
is more than one k-tuple not contained in the relation, a non-trivial sparsification is always
possible. In particular, the number of constraints of any input can efficiently be reduced to
O(nk−1). Using Lemmas 3.4 and 3.6, we will completely classify the constraint languages
that allow a non-trivial sparsification as follows.

I Theorem 3.1 (F). Let Γ be an intractable (Boolean) constraint language. Let k be the
maximum arity of any relation R ∈ Γ. The following dichotomy holds.

If for all R ∈ Γ it holds that |R| 6= 2k − 1, then CSP(Γ) has a kernel with O(nk−1)
constraints that can be stored in O(nk−1 logn) bits.
If there exists R ∈ Γ with |R| = 2k − 1, then CSP(Γ) has no generalized kernel of bitsize
O(nk−ε) for any ε > 0, unless NP ⊆ coNP/poly.

To obtain the kernels given in this section, we will heavily rely on the following notion
for representing constraints by polynomials.

I Definition 3.2. Let R be a k-ary Boolean relation. We say that a polynomial pu over a
ring Eu captures an unsatisfying assignment u ∈ {0, 1}k \R with respect to R, if the following
two conditions hold over Eu.

pu(x1, . . . , xk) = 0 for all (x1, . . . , xk) ∈ R, and (1)
pu(u1, . . . , uk) 6= 0. (2)

The following Theorem is a generalization of Theorem 16 in [13]. The main improvement
is that we now allow the usage of different polynomials, over different rings, for each u /∈ R.
Previously, all polynomials had to be given over the same ring, and each constraint was
captured by a single polynomial.

I Theorem 3.3 (F). Let R ⊆ {0, 1}k be a fixed k-ary relation, such that for every u ∈
{0, 1}k \R there exists a ring Eu ∈ {Q} ∪ {Z/quZ | qu is a prime power} and polynomial pu

over Eu of degree at most d that captures u with respect to R. Then there exists a polynomial-
time algorithm that, given a set of constraints C over {R} over n variables, outputs C′ ⊆ C
with |C′| = O(nd), such that any Boolean assignment satisfies all constraints in C if and only
if it satisfies all constraints in C′.

The next lemma states that any k-ary Boolean relation R with |R| < 2k − 1 admits a
non-trivial sparsification. To prove the lemma, we show that such relations can be represented
by polynomials of degree at most k − 1, such that the sparsification can be obtained using
Theorem 3.3. Since relations with |R| = 2k have a sparsification of size O(1), as constraints
over such relations are satisfied by any assignment, it will follow that k-ary relations with
|{0, 1}k \R| 6= 1 always allow a non-trivial sparsification.

I Lemma 3.4 (F). Let R be a k-ary Boolean relation with |R| < 2k − 1. Let C be a set of
constraints over {R}, using n variables. Then there exists a polynomial-time algorithm that
outputs C′ ⊆ C with |C′| = O(nk−1), such that a Boolean assignment satisfies all constraints
in C′ if and only if it satisfies all constraints in C.
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Proof sketch. We will show that for every u ∈ {0, 1}k \ R, there exists a degree-(k − 1)
polynomial pu over Q that captures u, such that the result follows from Theorem 3.3. We will
prove the existence of such a polynomial by induction on k. For k = 1, the lemma statement
implies that R = ∅. Thereby, for any u /∈ R, we simply choose pu(x1) := 1. This polynomial
satisfies the requirements, and has degree 0. Let k > 1 and let u = (u1, . . . , uk) ∈ {0, 1}k \R.
Since |R| < 2k − 1, we can choose w = (w1, . . . , wk) such that w ∈ {0, 1}k \ R and w 6= u.
We distinguish two cases, depending on whether u and w agree on some position.

Suppose ui 6= wi for all i, and assume for concreteness that u = (0, . . . , 0) and w =
(1, . . . , 1). Then the polynomial pu(x1, . . . , xk) :=

∏k−1
i=1 (i−

∑k
j=1 xj) suffices: pu(0, . . . , 0) =∏k−1

j=1 j 6= 0, while for any (x1, . . . , xk) ∈ R, it holds that
∑k

i=1 xi ∈ [k − 1] and thereby
pu(x1, . . . , xk) = 0; the product has a 0-term. Other values of u and w are handled similarly.

Now suppose ui = wi for some i ∈ [k], and assume for concreteness that u1 = w1 = 1.
Define R′ := {(x2, . . . , xk) | (1, x2, . . . , xk) ∈ R} and let u′ := (u2, . . . , uk). Since (u2, . . . , uk)
and (w2, . . . , wk) are distinct tuples not in R′, by induction there is a polynomial pu′ of
degree k − 2 that captures u′ with respect to R′. Then the polynomial pu(x1, . . . , xk) :=
x1 · pu′(x2, . . . , xk) has degree k − 1 and captures u with respect to R. J

To show the other part of the dichotomy, we will need the following theorem.

I Theorem 3.5 (F). Let Γ be an intractable (Boolean) constraint language, and let k ≥ 1.
If there exists R ∈ Γ such that R cone-defines k-or, then CSP(Γ) does not have a generalized
kernel of size O(nk−ε), unless NP ⊆ coNP/poly.

The next lemma formalizes the idea that any k-ary relation with |{0, 1}k \ R| = 1 is
equivalent to k-or, up to negation of variables. The proof of the dichotomy given in Theorem
3.1 will follow from Lemma 3.4, together with the next lemma and Theorem 3.5.

I Lemma 3.6 (F). Let R be a k-ary relation with |R| = 2k − 1. Then R cone-defines k-or.

4 From balanced operations to linear sparsification

The main result of this section is the following theorem, which we prove below.

I Theorem 4.1. Let Γ be a balanced (Boolean) constraint language. Then CSP(Γ) has a
kernel with O(n) constraints that are a subset of the original constraints. The kernel can be
stored using O(n logn) bits.

To prove the theorem, we will use two additional technical lemmas. To state them, we
introduce some notions from linear algebra. Given a set S = {s1, . . . , sn} of k-ary vectors in
Zk, we define spanZ(S) as the set of all vectors y in Zk for which there exist α1, . . . , αn ∈ Z
such that y =

∑
i∈[n] αisi. Similarly, we define spanq(S) as the set of all k-ary vectors y over

Z/qZ, such that there exist α1, . . . , αn such that y ≡q

∑
i∈[n] αisi. For an m× n matrix S,

we use si for i ∈ [m] to denote the i’th row of S.

I Lemma 4.2 (F). Let S be an m × n integer matrix. Let u ∈ Zn be a row vector. If
u ∈ spanq({s1, . . . , sm}) for all prime powers q, then u ∈ spanZ({s1, . . . , sm}).

I Lemma 4.3 (F). Let q be a prime power. Let A be an m × n matrix over Z/qZ.
Suppose there exists no constant c 6≡q 0 for which the system Ax ≡q b has a solution, where
b := (0, . . . , 0, c)T is the vector with c on the last position and zeros in all other positions.

Then am ∈ spanq({a1, . . . , am−1}).
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Using these tools from linear algebra, we now prove the main sparsification result.

Proof of Theorem 4.1. We show that for all relations R in the balanced constraint lan-
guage Γ, for all u /∈ R, there exists a linear polynomial pu over a ring Eu ∈ {Z/quZ |
qu is a prime power} that captures u with respect to R. By applying Theorem 3.3 once for
each relation R ∈ Γ, to reduce the number of constraints involving R to O(n), we then reduce
any n-variable instance of CSP(Γ) to an equivalent one on |Γ| · O(n) ∈ O(n) constraints.

Suppose for a contradiction that there exists R ∈ Γ and u /∈ R, such that no prime
power q and polynomial p over Z/qZ exist that satisfy conditions (1) and (2). We can
view the process of finding such a linear polynomial, as solving a set of linear equations
whose unknowns are the coefficients of the polynomial. We have a linear equation for each
evaluation of the polynomial for which we want to enforce a certain value.

Let R = {r1, . . . , r`}. By the non-existence of p and q, the system
1 r1,1 r1,2 . . . r1,k

1 r2,1 r2,2 . . . r2,k

...
...

...
. . .

...
1 r`,1 r`,2 . . . r`,k

1 u1 u2 . . . uk




α0
α1
α2
...
αk

 ≡q


0
0
...
0
c


has no solution for any prime power q and c 6≡q 0. Otherwise, it is easy to verify that q is
the desired prime power and p(x1, . . . , xk) := α0 +

∑k
i=1 αixi is the desired polynomial.

The fact that no solution exists, implies that (1, u1, . . . , uk) is in the span of the remaining
rows of the matrix, by Lemma 4.3. But this implies that for any prime power q, there exist
coefficients β1, . . . , β` over Z/qZ such that u ≡q

∑
βiri. Furthermore, since the first column

of the matrix is the all-ones column, we obtain that
∑
βi ≡q 1. By Lemma 4.2, it follows

that there exist integer coefficients γ1, . . . , γ` such that
∑
γi = 1 and furthermore u =

∑
γiri.

But it immediately follows that R ∈ Γ is not preserved by the balanced operation given by
f(x1, . . . , x`) :=

∑
γixi, which contradicts the assumption that Γ is balanced. J

The kernelization result above is obtained by using the fact that when Γ is balanced, the
constraints in CSP(Γ) can be replaced by linear polynomials. We show in the next theorem
that this approach fails when Γ is not balanced.

I Theorem 4.4 (F). Let R be a k-ary relation that is not balanced. Then there exists
u ∈ {0, 1}k \R for which there exists no polynomial pu over any ring E that captures u with
respect to R.

5 Characterization of symmetric CSPs with linear sparsification

In this section, we characterize the symmetric constraint languages Γ for which CSP(Γ) has
a linear sparsification.

I Definition 5.1. We say a k-ary Boolean relation R is symmetric, if there exists S ⊆
{0, 1, . . . , k} such that a tuple x = (x1, . . . , xk) is in R if and only if weight(x) ∈ S. We call
S the set of satisfying weights for R.

We will say that a constraint language Γ is symmetric, if it only contains symmetric relations.
We will prove the following theorem at the end of this section.

I Theorem 5.2. Let Γ be a finite Boolean symmetric intractable constraint language.
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If Γ is balanced, then CSP(Γ) has a kernel with O(n) constraints that can be stored in
O(n logn) bits.
If Γ is not balanced, then CSP(Γ) does not have a generalized kernel of size O(n2−ε) for
any ε > 0, unless NP ⊆ coNP/poly.

To show this, we use the following lemma.

I Lemma 5.3 (F). Let R be a k-ary symmetric relation with satisfying weights S ⊆
{0, 1, . . . , k}. Let U := {0, 1, . . . , k} \ S. If there exist a, b, c ∈ S and d ∈ U such that
a− b+ c = d, then R cone-defines 2-or.

Proof sketch. We will demonstrate the result in the case that b ≤ a, b ≤ c, and b ≤ d; the
other cases are similar. We use the following tuple to express x1 ∨ x2.

(¬x1, . . . ,¬x1︸ ︷︷ ︸
(a−b) copies

,¬x2, . . . ,¬x2︸ ︷︷ ︸
(c−b) copies

, 1, . . . , 1︸ ︷︷ ︸
b copies

, 0, . . . , 0︸ ︷︷ ︸
(k−d) copies

).

Let f : {x1, x2} → {0, 1}, then (¬f(x1), . . . ,¬f(x1),¬f(x2), . . . ,¬f(x2), 1, . . . , 1, 0, . . . , 0)
has weight d /∈ S when f(x1) = f(x2) = 0. It is easy to verify that in all other cases, the
weight is one of a, b, c ∈ S and hence the tuple belongs to R. The other cases are similar. J

We now give the main lemma that is needed to prove Theorem 5.2. It shows that if a
relation is symmetric and not balanced, it must cone-define 2-or.

I Lemma 5.4. Let R be a symmetric (Boolean) relation of arity k. If R is not balanced,
then R cone-defines 2-or.

Proof. Let f be a balanced operation that does not preserve R. Since f has integer
coefficients, it follows that there exist (not necessarily distinct) r1, . . . , rm ∈ R, such that
r1− r2 + r3− r4 · · ·+ rm = u for some u ∈ {0, 1}k \R and odd m ≥ 3. Thereby, weight(r1)−
weight(r2) + weight(r3) − weight(r4) · · · + weight(rm) = weight(u). Let S be the set of
satisfying weights for R and let U := {0, . . . , k} \ S. Define si := weight(ri) for i ∈ [m], and
t = weight(u), such that s1 − s2 + s3 − s4 . . .+ sm = t, and furthermore si ∈ S for all i, and
t ∈ U . We show that there exist a, b, c ∈ S and d ∈ U such that a− b+ c = d, such that the
result follows from Lemma 5.3. We do this by induction on the length of the alternating sum.

If m = 3, we have that s1 − s2 + s3 = t and define a := s1, b := s2, c := s3, and d := t.
If m > 3, we will use the following claim.

I Claim 5.5 (F). Let s1, . . . , sm ∈ S and t ∈ U such that s1 − s2 + s3 − s4 · · · + sm = t.
There exist distinct i, j, ` ∈ [m] with i, j odd and ` even, such that si − s` + sj ∈ {0, . . . , k}.

Use Claim 5.5 to find i, j, ` such that si − s` + sj ∈ {0, . . . , k}. We consider two options.
If si − s` + sj ∈ U , then define d := si − s` + sj , a := si, b := s`, and c := sj and we
are done. The other option is that si − s` + sj = s ∈ S. Replacing si − s` + sj by s in
s1 − s2 + s3 − s4 · · ·+ sm gives a shorter alternating sum with result t. We obtain a, b, c, and
d by the induction hypothesis.

Thereby, we have obtained a, b, c ∈ S, d ∈ U such that a− b+ c = d. It now follows from
Lemma 5.3 that R cone-defines 2-or. J

Using the lemma above, we can now prove Theorem 5.2.
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Proof of Theorem 5.2. If Γ is balanced, it follows from Theorem 4.1 that CSP(Γ) has a
kernel with O(n) constraints that can be stored in O(n logn) bits. Note that the assumption
that Γ is symmetric is not needed in this case.

If the symmetric constraint language Γ is not balanced, then Γ contains a symmetric
relation R that is not balanced. It follows from Lemma 5.4 that R cone-defines the 2-or
relation. Thereby, we obtain from Theorem 3.5 that CSP(Γ) has no generalized kernel of size
O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. J

6 Low-arity classification

In this section, we will give a full classification of the sparsifiability for constraint languages
that consist only of low-arity relations. The next results will show that in this case, if the
constraint language is not balanced, it can cone-define the 2-or relation.

I Observation 6.1. Each relation of arity 1 is balanced.

I Theorem 6.2 (F). A relation of arity 2 is balanced if and only if it is not cone-interdefinable
with the 2-or relation.

I Theorem 6.3 (F). Suppose that U ⊆ {0, 1}3 is an arity 3 Boolean relation that is not
balanced. Then, the 2-or relation is cone-definable from U .

Combining the results in this section with the results in previous sections, allows us
to give a full classification of the sparsifiability of constraint languages that only contain
relations of arity at most three. Observe that any k-ary relation R such that R 6= ∅ and
{0, 1}k \R 6= ∅ cone-defines the 1-or relation. Since we assume that Γ is intractable in the
next theorem, it follows that k is always defined and k ∈ {1, 2, 3}.

I Theorem 6.4. Let Γ be an intractable Boolean constraint language such that each relation
therein has arity ≤ 3. Let k ∈ N be the largest value for which k-or can be cone-defined from
a relation in Γ. Then CSP(Γ) has a kernel with O(nk) constraints that can be encoded in
O(nk log k) bits, but for any ε > 0 there is no kernel of size O(nk−ε), unless NP ⊆ coNP/poly.

Proof. To show that there is a kernel with O(nk) constraints, we do a case distinction on k.
(k = 1) If k = 1, there is no relation in Γ that cone-defines the 2-or relation. It follows
from Observation 6.1 and Theorems 6.2 and 6.3 that thereby, Γ is balanced. It now
follows from Theorem 4.1 that CSP(Γ) has a kernel with O(n) constraints that can be
stored in O(n logn) bits.
(k = 2) If k = 2, there is no relation R ∈ Γ with |R| = 23− 1 = 7, as otherwise by Lemma
3.6 such a relation R would cone-define 3-or which is a contradiction. Thereby, it follows
from Theorem 3.1 that CSP(Γ) has a sparsification with O(n3−1) = O(n2) constraints
that can be encoded in O(n2 logn) bits.
(k = 3) Given an instance (C, V ), it is easy to obtain a kernel of with O(n3) constraints by
simply removing duplicate constraints. This kernel can be stored in O(n3) bits, by storing
for each relation R ∈ Γ and for each tuple (x1, x2, x3) ∈ V 3 whether R(x1, x2, x3) ∈ C.
Since |Γ| is constant and there are O(n3) such tuples, this results in using O(n3) bits.

It remains to prove the lower bound. By definition, there exists R ∈ Γ such that R
cone-defines the k-or relation. Thereby, the result follows immediately from Theorem 3.5.
Thus, CSP(Γ) has no kernel of size O(nk−ε) for any ε > 0, unless NP ⊆ coNP/poly. J
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7 Conclusion

In this paper we analyzed the best-case and worst-case sparsifiability of CSP(Γ) for intractable
finite Boolean constraint languages Γ. First of all, we characterized those Boolean CSPs for
which a nontrivial sparsification is possible, based on the number of non-satisfying assignments.
Then we presented our key structural contribution: the notion of balanced constraint
languages. We have shown that CSP(Γ) allows a sparsification with O(n) constraints
whenever Γ is balanced. The constructive proof of this statement can be transformed into
an effective algorithm to find a series of low-degree polynomials to capture the constraints,
which earlier had to be done by hand. By combining the resulting upper and lower bound
framework, we fully classified the symmetric constraint languages for which CSP(Γ) allows
a linear sparsification. Furthermore, we fully classified the sparsifiability of CSP(Γ) when
Γ contains relations of arity at most three, based on the arity of the largest or that can
be cone-defined from Γ. It follows from results of Lagerkvist and Wahlström [15] that for
constraint languages of arbitrary arity, the exponent of the best sparsification size does not
always match the arity of the largest or cone-definable from Γ. (This will be described in
more detail in the upcoming journal version of this work.) Hence the type of characterization
we presented is inherently limited to low-arity constraint languages. It may be possible to
extend our characterization to languages of arity at most four, however.

The ultimate goal of this line of research is to fully classify the sparsifiability of CSP(Γ),
depending on Γ. In particular, we would like to classify those Γ for which O(n) sparsifiability
is possible. In this paper, we have shown that Γ being balanced is a sufficient condition to
obtain a linear sparsification; it is tempting to conjecture that this condition is also necessary.

We conclude with a brief discussion on the relation between our polynomial-based
framework for linear compression and the framework of Lagerkvist and Wahlström [15].
They used a different method for sparsification, based on embedding a Boolean constraint
language Γ into a constraint language Γ′ defined over a larger domain D, such that Γ′ is
preserved by a Maltsev operation. This latter condition ensures that CSP(Γ′) is polynomial-
time solvable, which allows CSP(Γ) to be sparsified to O(n) constraints when D is finite. It
turns out that the Maltsev-based linear sparsification is more general than the polynomial-
based linear sparsification presented here: all finite Boolean constraint languages Γ that are
balanced, admit a Maltsev embedding over a finite domain (the direct sum of the rings Z/quZ
over which the capturing polynomials are defined) and can therefore be linearly sparsified
using the algorithm of Lagerkvist and Wahlström. Despite the fact that our polynomial-
based framework is not more general than the Maltsev-based approach, it has two distinct
advantages. First of all, there is a straight-forward decision procedure to determine whether
a constraint can be captured by degree-1 polynomials, which follows from the proof of
Theorem 4.1. To the best of our knowledge, no decision procedure is known to determine
whether a Boolean constraint language admits a Maltsev embedding over a finite domain.
The second advantage of our method is that when the polynomial framework for linear
compression does not apply, this is witnessed by a relation in Γ that is violated by a balanced
operation. As we have shown, in several scenarios this violation can be used to construct a
sparsification lower bound to give provably optimal bounds.

It would be interesting to determine whether the Maltsev-based framework for sparsifica-
tion is strictly more general than the polynomial-based framework. We are not aware of any
concrete Boolean constraint language Γ for which CSP(Γ) admits a Maltsev embedding over
a finite domain, yet is not balanced.
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Abstract
The k-leaf power graph G of a tree T is a graph whose vertices are the leaves of T and whose edges
connect pairs of leaves at unweighted distance at most k in T . Recognition of the k-leaf power
graphs for k ≥ 6 is still an open problem. In this paper, we provide an algorithm for this problem
for sparse leaf power graphs. Our result shows that the problem of recognizing these graphs
is fixed-parameter tractable when parameterized both by k and by the degeneracy of the given
graph. To prove this, we describe how to embed the leaf root of a leaf power graph into a product
of the graph with a cycle graph. We bound the treewidth of the resulting product in terms of k

and the degeneracy of G. As a result, we can use methods based on monadic second-order logic
(MSO2) to recognize the existence of a leaf power as a subgraph of the product graph.
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1 Introduction

Leaf powers are a class of graphs that were introduced in 2002 by Nishimura, Ragde and
Thilikos [29], extending the notion of graph powers. For a graph G, the kth power graph
Gk has the same set of vertices as G but a different notion of adjacency: two vertices are
adjacent in Gk if there is a path of at most k edges between them in G. The leaf powers are
defined in the same way from trees, but only including the leaves of the trees as vertices.
The kth leaf power of a tree T has the leaves of T as its vertices, with two vertices adjacent
in the leaf power if there is a path of at most k edges between them in T . A given graph G

is a k-leaf-power graph when there exists a tree T for which G is the kth leaf power. In this
case, T is called the k-leaf root of G. For example, Figure 1 shows a 3-leaf power alongside
its 3-leaf root. Nishimura et al., further, derived the first polynomial-time algorithms to
recognize k-leaf powers for k = 3 and k = 4 [29].

The problem of recognizing leaf powers arises as a formalization of a problem in com-
putational biology, the reconstruction of evolutionary history and evolutionary trees from
information about the similarity between species [12, 21]. In this problem, the common
ancestry of different species can be represented by an evolutionary or phylogenetic tree, in
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Figure 1 A 3-leaf power graph G and its 3-leaf root T.

which each vertex represents a species and each edge represents a direct ancestry relation
between two species. We only have full access to living species, the species at the leaves of
the tree; the other species in the tree are typically long-extinct, and may be represented
physically only through fossils or not at all. If we suppose that we can infer, from observations
of living species, which ones are close together (within some number k of steps in this tree)
and which others are not, then we could use an algorithm for leaf power recognition to infer
a phylogenetic tree consistent with this data.

1.1 New Results
In this paper, we prove that the k-leaf powers of degeneracy d can be recognized in time
that is fixed-parameter tractable when parameterized by k and d. Here, the degeneracy of a
graph is the maximum, over its subgraphs, of the minimum degree of any subgraph. Our
result provides an algorithm whose running time is polynomial (in fact linear) in the size of
its input graph, multiplied by a factor that depends non-polynomially on k and d.

It is known that the k-leaf powers have bounded clique-width for bounded k [24]. A
wide class of graph problems (those expressible in a version of monadic second order logic
quantifying over only vertex sets, MSO1) can be solved in fixed-parameter time for graphs of
bounded clique-width, via Courcelle’s theorem [16]. However we have been unable to express
the recognition of leaf powers in MSO1. Instead, our algorithm uses a more powerful version
of monadic second order logic allowing quantification over edge sets, MSO2. The graphs of
bounded clique-width and bounded degeneracy have bounded treewidth, allowing us to apply
a form of Courcelle’s theorem for MSO2 and for graphs of bounded treewidth.

However, there is an additional complication that makes it tricky to apply these methods
to leaf power recognition. The tree that we wish to find, for which our given input graph is
a leaf power, will in general include vertices and edges that are not part of the input, but
MSO2 can only quantify over subsets of the existing vertices and edges of a graph, not over
sets of vertices and edges that are not subsets of the input. To work around this problem,
we apply Courcelle’s theorem not to the given graph G itself, but to a product graph G� Ck

where Ck is a k-vertex cycle graph. We prove that the leaf root (the tree for which G is a leaf
power, if it is one) can be embedded as a subgraph of this product, that it can be recognized
by an MSO2 formula applied to this product, and that this product has bounded treewidth
whenever G is a k-leaf power of bounded degeneracy. In this way we can recognize G as
a leaf power, not by applying Courcelle’s theorem to G, but by applying it to the product
graph.
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Figure 2 A graph is a 4-leaf power if and only if it is chordal and does not contain any of the
graphs above as a subgraph.

Thus, our algorithm combines the following ingredients:
Our embedding of the k-leaf root as a subgraph of the product graph G� Ck.
Our logical representation of k-leaf roots as subgraphs of product graphs.
Courcelle’s theorem, which provides general-purpose algorithms for testing MSO2 formulas
on graphs of bounded treewidth.
The fact that the k-leaf powers, for bounded values of k, have bounded clique-width.
The fact that graphs of bounded clique-width and bounded degeneracy also have bounded
treewidth.
The fact that, by taking a product with a graph of bounded size, we preserve the bounded
treewidth of the product.

Our algorithm runs in fixed-parameter tractable time when parameterized by k and the
degeneracy d of the given input graph. In particular, it runs in linear-time when k and d are
both constant.

Our result provides the first known efficient algorithm for recognizing k-leaf powers for
k ≥ 6, for graphs of bounded degeneracy. More generally, our method of embedding into
graph products appears likely to apply to other graph problems involving network design (the
addition of edges to an existing graph, rather than the identification of a special subgraph of
the input). In the case we apply this method to leaf power recognition, we expect that it
should be possible to translate our MSO2 formula over the product graph into a significantly
more complicated MSO2 formula over the input graph, but the method of embedding into
graph products considerably simplifies our task of designing a logical formula for our problem.

1.2 Related Work
Polynomial-time algorithms are known for recognizing k-leaf powers for k ≥ 5.

A graph is a 2-leaf power if it is a disjoint union of cliques, so this class of graphs is trivial
to recognize.
There exist various ways to characterize 3-leaf powers [29, 7, 18, 30], some of which lead
to efficient algorithms. For instance, one way to determine if a graph is a 3-leaf power
is to check whether it is bull-, dart- and gem-free and chordal [18]. The chordal graphs
have a known recognition algorithm, and testing for the existence of any of the other
forbidden induced subgraphs is polynomial, because they all have bounded size.
Similarly, there are various known ways to characterize 4-leaf powers [29, 30, 19, 9]. One
is that graph is a 4-leaf power if and only if it is chordal and does not contain any
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Figure 3 The graph on the right is the strong product of a four-vertex path graph (top left) and
a four-vertex cycle graph (bottom left). The colors indicate the partition of the edges into vertical,
horizontal, and diagonal subsets.

of the graphs depicted in Figure 2 as induced subgraphs [30]. Again, this leads to a
polynomial-time recognition algorithm, because all of these graphs have bounded size.
k-leaf powers can be recognized in polynomial time if the (k−2)- Steiner root problem can
be solved in polynomial time. Chang and Ko in 2007, provided a linear-time algorithm
recognition for 3-Steiner root problem [11]. This implies that 5-leaf powers can be
recognized in linear time.

Polynomial-time structural characterization of k-leaf powers for k ≥ 6 is still an open problem.
Nonetheless, Brandstädt et al. provided a characterization for the distance-hereditary 5-leaf
powers [8].

Throughout the literature, there exist many structural characterizations of leaf powers
which provide potentially useful insight into this class of graphs. It is known, for instance,
that all leaf powers are strongly chordal, but the converse is not always true. Further,
Kennedy et al. showed that strictly chordal graphs are always k-leaf powers for k ≥ 4;
these are the chordal graphs that are also, dart- and gem-free. They provided a linear-time
algorithm to construct k-leaf roots of strictly chordal graphs [27].

For all k ≥ 2, every k-leaf power is also a (k + 2)-leaf power. A (k + 2)-leaf root of any
k-leaf-power can be obtained from its k-leaf root, by subdividing all edges incident to leaves.
However, the problems of recognizing k-leaf powers for different values of k do not collapse:
for all k ≥ 4, there exists a k-leaf power which is not a (k + 1)-leaf power [10].

2 Preliminaries

2.1 Definitions
Throughout this paper, we let G(V, E) denote a simple undirected graph (typically, the input
to the leaf power recognition problem). If u and v are two vertices in V that are adjacent in
G, we let e(u, v) denote the edge connecting them.

The strong product of graphs G1 and G2, denoted as G1 �G2, is a graph whose vertices
are ordered pairs of a vertex from G1 and a vertex from G2. In it, two distinct vertices
(u1, u2) and (v1, v2) are adjacent if and only if for all i ∈ {1, 2}, ui = vi or ui and vi are
adjacent in Gi. Figure 3 shows an example, the strong product of a four-vertex path graph
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with a four-vertex cycle graph. When we construct a strong product, we will classify the
edges of the product into three subsets:

We call an edge from (u1, u2) to (v1, v2) a vertical edge if u2 = v2. The edges of this type
form |V (G2)| disjoint copies of G1 as subgraphs of the product.
We call an edge from (u1, u2) to (v1, v2) a horizontal edge if u1 = v1. The edges of this
type form |V (G1)| disjoint copies of G2 as subgraphs of the product.
We call the remaining edges, for which u1 6= v1 and u2 6= v2, diagonal edges. The
subgraph composed of the diagonal edges forms a different kind of graph product, the
tensor product G1 ×G2.

We may think of these three edge sets as forming an (improper) edge coloring of the product
graph. In Figure 3 these edge sets are colored blue, red and green, respectively.

2.2 Graph Parameters
One of the simplest ways of parameterizing sparse graphs is by their degeneracy. The
degeneracy d(G) of a graph G is the smallest number such that every nonempty subgraph of
G contains at least one vertex of degree at most d(G). It may be computed in linear-time
by a greedy algorithm that repeatedly removes the minimum-degree vertex and records the
largest degree seen among the vertices at the time they are removed [28].

The notion of treewidth, a more complicated graph sparsity parameter, was first introduced
by Bertelé and Brioschi [3] and Halin [25] and later rediscovered by Robertson and Seymour
[31]. One way to define treewidth is to use the concept of tree decomposition. A tree
decomposition of graph G consists of a tree T where each vertex Xi ∈ T (called a bag) is a
subset of vertices of G . This tree and its bags are required to satisfy the following properties:

For each edge e(u, v) in G, there exists a bag in T containing both u and v; and
For each vertex v in G, the bags containing v form a nonempty connected subtree of T .

The width of a tree decomposition is the size of its largest bag, minus one. The treewidth
of a graph is defined as the minimum width achieved over all tree decompositions of the
graph. Bounded treewidth graphs are especially interesting from an algorithmic point of
view. Many well-known NP-complete problems have linear-time algorithms on graphs of
bounded treewidth [4].

Another related graph parameter, clique-width, was introduced by Courcelle et al. to
characterize the structural complexity of graphs [16]. The clique-width of a graph G is the
minimum number of labels necessary to construct G by means of four graph operations:
creation of a new vertex with a label, vertex disjoint union of labeled graphs, insertion of an
edge between two vertices with specified labels and relabeling of vertices. Relevantly for us,
Courcelle et al. showed that unit interval graphs are of unbounded clique-width. A graph is
an interval graph if and only if all its vertices can be mapped into intervals on a straight line
such that two vertices are adjacent when the corresponding intervals intersect each other. In
the unit interval graphs, each interval has a unit length. As shown by Brandstädt et al., unit
interval graphs belong to the class of leaf powers, which implies that leaf powers also have
unbounded clique-width [5, 6]. However, Gurski and Wanke proved that for a fixed k, k-leaf
powers have a clique-width of at most k + max(bk

2 c − 2, 0) [24]. Therefore, when seeking the
complexity of recognizing leaf powers, parameterized by k, we may restrict our attention to
graphs of bounded clique-width.

These three properties are defined differently to each other, and may have significantly
different values. For instance, the complete bipartite graph Kn,n has clique-width two but
treewidth and degeneracy n, and the n× n grid graph has degeneracy two but clique-width
and treewidth Ω(n). Nevertheless, there is an important relation between them: in the
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graphs of bounded degeneracy and bounded clique-width, the treewidth is also bounded.
More specifically, if a graph has clique-width k and contains no complete bipartite subgraph
Kt,t, then it has treewidth at most 3k(t − 1) − 1. Since such a subgraph would force the
degeneracy to be at least t, it follows that the graphs of degeneracy d and clique-width k

have treewidth at most 3kd− 1 [23].

2.3 Courcelle’s Theorem
By considering graphs as logical structures, their properties can be expressed in first-order
and second-order logic. In first-order logic, graph properties are expressed as logical formulas
wherein the variables range over vertices and the predicates include equality and adjacency
relations. Second-order logic is an extension of first-order logic with the power to quantify
over relations. Particularly, many natural graph properties can be described in monadic
second-order logic, which is a restriction of second-order logic in which only unary relations
(sets of vertices or edges) are allowed [15].

There exist two variations of monadic second-order logic: MSO1 and MSO2. In MSO1,
quantification is allowed only over sets of vertices, while MSO2 allows quantification over
both sets of vertices and sets of edges. MSO2 is strictly more expressive; there are some
properties, such as Hamiltonicity [14], which are expressible in MSO2 but not in MSO1. A
graph property is MSO2-expressible if there exists an MSO2 formula to express it, in which
case the corresponding class of graphs becomes MSO2-definable.

The connection between treewidth and monadic second-order logic is given by Courcelle’s
theorem, according to which every property definable in monadic second-order logic can be
tested in linear time on graphs of bounded treewidth [13]. Later, Courcelle et al. extended
this theorem to the class of graphs with bounded clique-width when the underlying property
is MSO1-definable [17]. In our application of Courcelle’s theorem, we will use an MSO2
formula with a free variable horizontal, an edge set, which we will use to pass to the
formula certain information about the structural decomposition of the graph it is operating
on. This extension of Courcelle’s theorem to formulas with a constant number of additional
free variables, whose values are assigned through some extra-logical process prior to applying
the theorem, is non-problematic and standard.

However, even in MSO2, it is only possible to quantify over subsets of vertices and edges
that belong to the graph to which the logical formula is applied. Much of the difficulty of the
leaf power problem rests in this restriction. If we could quantify over edges and vertices that
were not already present, we could construct a formula that asserts the existence of sets of
vertices and edges forming a leaf root of a given graph, and then add clauses to the formula
that ensure that the quantified sets describe a valid leaf root. However, we are not allowed
such quantification, because in general the leaf root has vertices and edges that do not belong
to our input graph. To apply Courcelle’s theorem to leaf power recognition, we must instead
find a way to express the property of being a leaf power using only quantification over subsets
of vertices and edges of the graph to which we apply the theorem. For this reason, the
problem of leaf power recognition forms an important test case for the ability to express
graph problems in MSO logic.

A problem is fixed-parameter tractable with respect to a parameter x of the input if the
problem can be solved in time f(x)nO(1) where n is the size of the input, f is a computable
function of x (independent of n), and the exponent of n in the O(1) term is independent
of x. Courcelle’s theorem is the foundation of many fixed-parameter tractable algorithms
[2, 22, 20, 26], as it proves that properties expressible in MSO1 or MSO2 are fixed-parameter
tractable with respect to the clique-width or treewidth (respectively) of the input graph.
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Figure 4 A 4-leaf power graph G (left), and its leaf root T (right). Each leaf of T is labeled by
the vertex of G that it represents, and each internal node of T is labeled by its closest leaf node.
When there are ties at a node (as for instance at the root of T ) the choice of label is made arbitrarily
among the closest leaf nodes whose labels appear among the children of the node.

3 Embedding Leaf Roots Into Graph Products

Let G be a k-leaf power graph, and T be a k-leaf root of G. If G is not connected, we can
handle each of its connected components independently; in this way, we can assume from
now on, without loss of generality that G is a connected graph with at least three vertices,
and that T is a leaf root chosen arbitrarily among the possible k-leaf roots of T . It follows
from these assumptions that T is a tree, because every edge in G must be represented by a
path in T . Because T has at least three leaves, it has at least one interior node; we choose
one of these nodes arbitrarily to be the root of T . Additionally, every vertex or edge of T

participates in a path of length at most k between two leaves, representing an edge of G. For,
if some vertices and edge do not participate in these paths, removing all non-participating
vertices and edges from T would produce a smaller leaf root, without creating any new leaves.
But this removal would disconnect pairs of leaves on the opposite sides of any removed edge,
contradicting the assumption that G is connected.

As the first step of the embedding, we label the vertices of T with the names of vertices
in G. Each vertex of T will get a label in this way; some labels will be used more than once.
In particular, we label each leaf of T by the vertex of G represented by that leaf. Then, as
shown in Figure 4, we give each non-leaf node of T the same label as its closest leaf. If there
are two or more closest leaves, we choose which one to use as the label arbitrarily among the
labels already applied to the child of the given interior node. In this way, when the same
label appears more than once, the tree nodes having that label form a connected path in T .

As we now show, these labels, together with the depths of the nodes modulo k, can be
used to embed the k-leaf root T into the strong product G�Ck, where Ck denotes a k-vertex
cycle graph.

I Lemma 1. If G is a connected k-leaf power graph on three or more vertices, and T is
any k-leaf root of G, then T can be embedded as a subgraph of the strong product G� Ck.
Additionally, the embedding can be chosen in such a way that each horizontal cycle in the
strong product (the product of a vertex v of G with Ck) contains exactly one leaf of the
embedded copy of T , the leaf representing v.

Proof. We map a vertex u of T to the pair (v, i) where v is the label assigned to u (the name
of a vertex in G) and i is the depth of u (its distance from the root of T ), taken modulo k.
This pair is one of the vertices of the strong product, so we have mapped vertices of T

into vertices of the strong product. An example of such embedding can be seen in Figure
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Figure 5 The graph on the bottom left is a 4-leaf root T of graph G (top left). T can be embedded
in the strong product G�C4 (right), by mapping each vertex u of T to the pair (v, i) where v is the
label of u and i is the depth of u (modulo k).

Figure 5. Because G is assumed to be connected, each node of T participates in at least
one path of length at most k between two leaves of T , representing an adjacency of G; it
follows that the label for each node of T is at most k− 1 steps away from the node, and that
each path of same-labeled nodes in T has length at most k − 1. As a consequence, when we
take depths modulo k, none of these paths can wrap around the cycle and cover the same
vertex of the product graph more than once. That is, our mapping from T to G � Ck is
one-to-one. Because each leaf of T is labeled with the vertex of G that it represents, this
mapping has the property described in the lemma, that each horizontal cycle in the strong
product contains exactly one leaf of the embedded copy of T , the leaf representing the vertex
whose product with Ck forms that particular horizontal cycle.

We must also show that this mapping from T to G� Ck maps each pair of vertices that
are adjacent in T into a pair of vertices that are adjacent in G� Ck. Recall that adjacency
in G� Ck is the conjunction of two conditions: two vertices in the product are adjacent if
their first coordinates are equal or adjacent in G and their second coordinates are equal or
adjacent in Ck. Because every two adjacent vertices in T have depths that differ by one, the
second coordinates of their images in the product will always be adjacent in Ck. It remains
to show that, when two vertices are adjacent in T , their images in the product have first
coordinates that are equal or adjacent in G. That is, the labels of the two adjacent vertices
in T should be equal or adjacent.

Rephrasing what we still need to show, it is the following: whenever two adjacent vertices
in T have different labels, those labels represent adjacent vertices in G.

To see that this is true, consider two adjacent vertices u1 and its parent u2 in T , labeled
by two different vertices v1 and v2 in G. As we already stated at the start of this section,
the assumption of the lemma that G is connected implies that edge u1u2 in T participates in
at least one path P of length at most k between two leaves, corresponding to an adjacency
in G. But because v1 and v2 are represented by the closest leaves to u1 and u2 (respectively)
the length of the path in T between the leaves representing v1 and v2 must be at most
equal to the length of P . Therefore, there is a path of length at most k between the leaves
representing v1 and v2, so v1 and v2 are adjacent in the k-leaf power G, as required. J
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Based on this embedding, we can prove the following characterization of leaf powers,
which we will use in our application of Courcelle’s theorem to the problem. It is important,
for this characterization, that we express everything intrinsically in terms of the properties
of the product graph G� Ck, its edge coloring, and its subgraphs, without reference to the
given graph G.

I Lemma 2. A given connected graph G on three or more vertices is a k-leaf power if and
only if the product G� Ck has a subgraph T with the following properties:
1. T is 1-degenerate (i.e., a forest).
2. Every vertex of G�Ck is connected by horizontal edges of the product to exactly one leaf

of T .
3. Two vertices of G� Ck are the endpoints of a non-horizontal edge of the product if and

only if the corresponding leaves of T (given according to Property 2) are the distinct
endpoints of a path of length at most k in T .

Proof. A subgraph obeying these properties is a forest (Property 1), whose leaves can be
placed into one-to-one correspondence with the vertices of G (Property 2, using the fact that
the horizontal cycles of the product correspond one-for-one with vertices of G). It has a path
of length at most k between two leaves if and only if the corresponding vertices of G are
adjacent (Property 3). So if it exists, it is a k-leaf root of G and G is a k-leaf power.

In the other direction, if G is a connected k-leaf power, let T be a k-leaf root of G,
embedded according to Lemma 1. Then T is a subtree of the product graph (Property 1),
with exactly one leaf for each horizontal cycle (Property 2), that forms a k-leaf root of G

(Property 3). So when G is a k-leaf power, a subgraph T obeying the properties of the lemma
exists. J

4 Logical Expression

In this section, we describe how to express the components of Lemma 2, our characterization
of the products G� Ck that contain a k-leaf root of G, in monadic second-order logic. Our
logical formula will involve a free variable horizontal, the subset of edges of the given
graph (assumed to be of the form G� Ck) that are horizontal in the product (that is, edges
that connect two copies of the same vertex in G). We will also assume that V and E refer to
the vertices and edges of the graph G�Ck. In our logical formulas, we will express the type
of each quantified variable (whether it is a vertex, edge, set of vertices, or set of edges) by
annotating its quantifier with a membership or subset relation. For instance, “∀x ∈ V : . . . ”
quantifies x as a vertex variable. We will express the incidence predicate between an edge
e and a vertex v (true if v is an endpoint of e, false otherwise) by e ( v. Because our
formulas will also use equality as a predicate, we will express the equality between names of
formulas and their explicit logical formulation using a different symbol, ≡. In our formulas,
predicates (equality, incidence, and adjacence) will be considered to bind more tightly than
logical connectives, allowing us to omit parentheses in many cases.

A subgraph of the given graph may be represented by its set S of edges. In this
representation, adjacency between two vertices a and b may be expressed by the formula

adjacent(a, b, S) ≡ ∃e ∈ S : (e( a ∧ e( b).

The following formula expresses the property that the neighbors of vertex ` in subgraph S

include at most one vertex from a set X:

leaf(`, X, S) ≡ ∀c, d ∈ X :
((

adjacent(`, c, S) ∧ adjacent(`, d, S)
)
→ c = d

)
.

IPEC 2018



16:10 Parameterized Leaf Power Recognition

This allows us to express the acyclicity of a subgraph S in terms of 1-degeneracy: every
nonempty subset Y of vertices contains a leaf.

acyclic(S) ≡ ∀X ⊂ V : (∃x ∈ X)→ ∃` ∈ X : leaf(`, X, S).

This already allows us to express the first condition of Lemma 2.
We will also use a predicate for whether two vertices p and q are connected by horizontal

edges. This is true if there is no cut (C, V \ C) that separates them.

aligned(p, q) ≡ ∀C ⊂ V :
(
p ∈ C ∧ ¬(q ∈ C)

)
→

∃h ∈ horizontal : ∃y, z ∈ V :
(
y ∈ C ∧ ¬(z ∈ C) ∧ h( y ∧ h( z

)
.

This allows us to express a predicate for the property that vertex ` is a leaf of subgraph S

on the same horizontal level as another vertex v (that is, ` is the representative leaf for v’s
level):

representative(v, `, S) ≡ leaf(`, V, S) ∧ aligned(v, `).

The second part of Lemma 2 is that every level has exactly one representative leaf:

represented(S) ≡
(
∀v ∈ V : ∃` ∈ V : representative(v, `, S)

)
∧(

∀v, `1, `2 ∈ V :
(
representative(v, `1, S) ∧ representative(v, `2, S)

)
→ `1 = `2

)
Unlike for the previous formulas, there is no way of expressing the existence of a path of

length k from u to v in subgraph S, for a variable k, in MSO2. We need a different formula
pathk for each k. We do not require these paths to be simple, as this would only complicate
the formula without simplifying our use of it. However it is essential for our application to
the third condition of Lemma 2 that we require our paths to have distinct endpoints.

pathk(u, v, S) ≡ ∃w1, w2, . . . wk−1 ∈ V : ∃e1, e2, . . . ek ∈ S :
¬(u = v) ∧ e1 ( u ∧ e1 ( w1 ∧ e2 ( w1 ∧ · · · ∧ ek ( wk−1 ∧ ek ( v.

Other than the inequality of the two endpoints, this formula allows repetitions of vertices
and edges within each path. In particular, it allows wi and wi+1 to be equal to each other,
repeating one endpoint of an edge twice and omitting the other endpoint. Because we allow
repetitions in this way, this formulation of the path predicate has the following convenient
property:

I Lemma 3. For all k ≥ 1 and all u, v, and S, we have that

pathk(u, v, S)→ pathk+1(u, v, S).

Proof. Let w1, . . . wk−1 and e1, . . . ek be the vertices and edges witnessing the truth of
pathk(u, v, S), let wk = v, and let ek+1 = ek. Then w1, . . . , wk and e1, . . . , ek+1 witness the
truth of pathk+1(u, v, S). J

I Corollary 4. Two vertices u and v of a subgraph S of a given graph obey the predicate
pathk(u, v, S) if and only if they are distinct and their distance in S is at most k.

This allows us to express the final part of Lemma 2, the requirement that each two vertices
are connected by a non-horizontal edge if and only if their representatives are connected by
a short path:

rootk(S) ≡ ∀u, v ∈ V :
((
∃e ∈ E : e( u ∧ e( v ∧ ¬(e ∈ horizontal)

)
←→

∃x, y ∈ V :
(
representative(u, x, S) ∧ representative(v, y, S) ∧ pathk(x, y, S)

))
.
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I Lemma 5. There exists an MSO2 formula that is modeled by a graph G� Ck and its set
horizontal of horizontal edges exactly when G� Ck meets the conditions of Lemma 2.

Proof. The formula is

∃S :
(
acyclic(S) ∧ represented(S) ∧ rootk(S)

)
.

A subgraph defined by a set S of its edges meets the first condition of the lemma if acyclic(S)
is true, it meets the second condition of the lemma if represented(S) is true, and it meets
the third condition of the lemma if rootk(S) is true. J

I Corollary 6. The property of a graph G being k-leaf power can be expressed as an MSO2
formula of G� Ck and of the set horizontal of horizontal edges of this product graph.

5 Fixed-Parameter Tractability of Leaf Powers

In order to apply Courcelle’s theorem to the product graph G� Ck we need to bound its
treewidth.

I Lemma 7. If G has treewidth t and H has a bounded number of vertices s then G �H

has treewidth at most s(t + 1)− 1.

Proof. Given any tree-decomposition of G with width t, we can form a decomposition of
G�H by using the same tree, and placing each vertex (v, w) of G�H (where v and w are
vertices of G and H respectively) into the same bag as vertex v of G. The size of the largest
bag of the tree-decomposition of G is t + 1, so the size of the largest bag of the resulting
tree-decomposition of the product graph is s(t + 1). The treewidth is one less than the size
of the largest bag. J

I Corollary 8. If G has a bounded treewidth and k is bounded, then G�Ck also has bounded
treewidth.

This gives us our main theorem:

I Theorem 9. For fixed constants k and d, it is possible to recognize in linear time (with
fixed-parameter tractable dependence on k and d) whether a graph of degeneracy at most d is
a k-leaf power.

Proof. If we consider the class of graphs with bounded degeneracy d, trivially these graphs
do not contain the complete bipartite graph Kd+1,d+1 as a subgraph. Gurski and Wanke
proved that k-leaf powers with fixed k have bounded clique-width [24]. In separate work, they
also proved that every class of graphs with bounded clique-width and no Ka,a subgraph has
bounded treewidth [23]. These results immediately imply that k-leaf powers with bounded
degeneracy have bounded treewidth, and it follows from Corollary 8 that G� Ck also has
bounded treewidth. Therefore, by applying Courcelle’s theorem to the MSO2 formula of
Corollary 6 we obtain the result. J

6 Conclusion

We have provided a fixed-parameter algorithm to recognize k-leaf powers for graphs of
bounded degeneracy. Our method embeds a k-leaf root of a k-leaf power graph in the product
graph of the input graph and a k-vertex cycle Ck, finds a logical characterization of the
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leaf roots that are embedded in this way, and applies Courcelle’s theorem to determine the
existence of a subgraph of the product graph that meets our characterization.

It is perhaps of interest to observe that, although acyclic and aligned involve quantifi-
cation over vertex sets, the only quantification over edge sets that we use is in the formula
of Lemma 5. If we could eliminate all edge sets from our formula (including horizontal),
and obtain an MSO1 formula for k-leaf powers in place of the MSO2 formula that we use,
it might be possible to eliminate the dependence on degeneracy from our parameterized
analysis.

Our methods of using low-treewidth supergraphs to represent vertices and edges that are
not part of the input graph, and of using graph products to find these supergraphs, may
be useful in other graph problems. For instance, this method would have greatly simplified
the application of Courcelle’s theorem in our recent work on planar split thickness [20]: a
graph G has planar split thickness k if and only if G �Kk has a planar subgraph S such
that, for each non-horizontal edge of the product, the endpoints of the edge are aligned with
the endpoints of an edge in S. In reducing the logical complexity of problems such as these,
our method also makes it more likely that faster model checkers for restricted fragments
of MSO logic [1] can be applied to our problem. Additionally, and more speculatively, the
reduced logical complexity of our method may help guide future efforts to solve the problem
directly using dynamic programming rather than by applying Courcelle’s theorem.
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In this paper, we investigate the complexity of Maximum Independent Set (MIS) in the class
of H-free graphs, that is, graphs excluding a fixed graph as an induced subgraph. Given that
the problem remains NP -hard for most graphs H, we study its fixed-parameter tractability and
make progress towards a dichotomy between FPT and W [1]-hard cases. We first show that MIS
remains W [1]-hard in graphs forbidding simultaneously K1,4, any finite set of cycles of length at
least 4, and any finite set of trees with at least two branching vertices. In particular, this answers
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generalization of the concept of iterative expansion accompanied by the extraction of a particular
structure using Ramsey’s theorem. Iterative expansion is a maximization version of the so-called
iterative compression. We believe that our framework can be of independent interest for solving
other similar graph problems. Finally, we present positive and negative results on the existence
of polynomial (Turing) kernels for several graphs H.
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1 Introduction

Given a simple graph G, a set of vertices S ⊆ V (G) is an independent set if the vertices of
this set are all pairwise non-adjacent. Finding an independent set with maximum cardinality
is a fundamental problem in algorithmic graph theory, and is known as the MIS problem
(MIS, for short) [12]. In general graphs, it is not only NP -hard, but also not approximable
within O(n1−ε) for any ε > 0 unless P = NP [20], and W [1]-hard [10] (unless otherwise
stated, n always denotes the number of vertices of the input graph). Thus, it seems natural
to study the complexity of MIS in restricted graph classes. One natural way to obtain such
a restricted graph class is to forbid some given pattern to appear in the input. For a fixed
graph H, we say that a graph is H-free if it does not contain H as an induced subgraph.
Unfortunately, it turns out that for most graphs H, MIS in H-free graphs remains NP -hard,
as shown by a very simple reduction first observed by Alekseev:

I Theorem 1 ([1]). Let H be a connected graph which is neither a path nor a subdivision of
the claw. Then MIS is NP-hard in H-free graphs.

On the positive side, the case of Pt-free graphs has attracted a lot of attention during the
last decade. While it is still open whether there exists t ∈ N for which MIS is NP -hard in Pt-
free graphs, quite involved polynomial-time algorithms were discovered for P5-free graphs [17],
and very recently for P6-free graphs [13]. In addition, we can also mention the recent following
result: MIS admits a subexponential algorithm running in time 2O(

√
tn logn) in Pt-free graphs

for every t ∈ N [3]. The second open question concerns the subdivision of the claw. Let Si,j,j
be a tree with exactly three vertices of degree one, being at distance i, j and k from the
unique vertex of degree three. The complexity of MIS is still open in S1,2,2-free graphs and
S1,1,3-free graphs. In this direction, the only positive results concern some subcases: it is
polynomial-time solvable in (S1,2,2, S1,1,3, dart)-free graphs [15], (S1,1,3, banner)-free graphs
and (S1,1,3, bull)-free graphs [16], where dart, banner and bull are particular graphs on five
vertices. Given the large number of graphs H for which the problem remains NP -hard, it
seems natural to investigate the existence of parameterized algorithms1, that is, determining
the existence of an independent set of size k in a graph with n vertices in time O(f(k)nc) for
some computable function f and constant c. A very simple case concerns Kr-free graphs,
that is, graphs excluding a clique of size r. In that case, Ramsey’s theorem implies that
every such graph G admits an independent set of size Ω(n

1
r−1 ), where n = |V (G)|. In the

FPT vocabulary, it implies that MIS in Kr-free graphs has a kernel with O(kr−1) vertices.
To the best of our knowledge, the first step towards an extension of this observation

within the FPT framework is the work of Dabrowski et al. [8] (see also Dabrowski’s PhD
manuscript [7]) who showed, among others, that for any positive integer r, Max Weighted
Independent Set is FPT in H-free graphs when H is a clique of size r minus an edge. In
the same paper, they settle the parameterized complexity of MIS on almost all the remaining
cases of H-free graphs when H has at most four vertices. The conclusion is that the problem
is FPT on those classes, except for H = C4 which is left open. We answer this question by
showing that MIS remains W [1]-hard in a subclass of C4-free graphs. On the negative side,
it was proved that MIS remains W [1]-hard in K1,4-free graphs [14].

Finally, we can also mention the case where H is the bull graph, which is a triangle with
a pending vertex attached to two different vertices. For that case, a polynomial Turing kernel
was obtained [19] then improved [11].

1 For the sake of simplicity, “MIS” will denote the optimisation, decision and parameterized version of
the problem (in the latter case, the parameter is the size of the solution), the correct use being clear
from the context.



É. Bonnet, N. Bousquet, P. Charbit, S. Thomassé, and R. Watrigant 17:3

1.1 Our results
In Section 2, we present three reductions proving W [1]-hardness of MIS in graph excluding
several graphs as induced subgraphs, such as K1,4, any fixed cycle of length at least four,
and any fixed tree with two branching vertices. In Section 3, we extend the polynomial
algorithm of Alekseev when H is a disjoint union of edges to an FPT algorithm when H
is a disjoint union of cliques. In Section 4, we present a general framework extending the
technique of iterative expansion, which itself is the maximization version of the well-known
iterative compression technique. We apply this framework to provide FPT algorithms when
H is a clique minus a complete bipartite graph, or when H is a clique minus a triangle.
Finally, in Section 5, we focus on the existence of polynomial (Turing) kernels. We first
strenghten some results of the previous section by providing polynomial (Turing) kernels in
the case where H is a clique minus a claw. Then, we prove that for many H, MIS on H-free
graphs does not admit a polynomial kernel, unless NP ⊆ coNP/poly. Our results allows to
obtain the complete dichotomy polynomial/polynomial kernel (PK)/no PK but polynomial
Turing kernel/W [1]-hard for all possible graphs on four vertices, while only five graphs on
five vertices remain open for the FPT/W [1]-hard dichotomy.

Due to space restrictions, proofs marked with a (?) were omitted, and can be found in
the long version of the paper [4]. This long version also contains additional figures, and two
variants of the reduction presented in the next section, together with a discussion.

1.2 Notation
For classical notation related to graph theory or fixed-parameter tractable algorithms, we
refer the reader to the monographs [9] and [10], respectively. For an integer r ≥ 2 and a
graph H with vertex set V (H) = {v1, . . . , vnH

} with nH ≤ r, we denote by Kr \ H the
graph with vertex set {1, . . . , r} and edge set {ab : 1 ≤ a, b ≤ r such that vavb /∈ E(H)}. For
X ⊆ V (G), we write G \X to denote G[V (G) \X]. For two graphs G and H, we denote by
G]H the disjoint union operation, that is, the graph with vertex set V (G)∪V (H) and edge
set E(G) ∪ E(H). We denote by G+H the join operation of G and H, that is, the graph
with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}. For
two integers r, k, we denote by Ram(r, k) the Ramsey number of r and k, i.e. the minimum
order of a graph to contain either a clique of size r or an independent set of size k. We write
for short Ram(k) = Ram(k, k). Finally, for `, k > 0, we denote by Ram`(k) the minimum
order of a complete graph whose edges are colored with ` colors to contain a monochromatic
clique of size k.

2 W [1]-hardness

I Theorem 2. For any p1 ≥ 4 and p2 ≥ 1, MIS remains W [1]-hard in graphs excluding
simultaneously the following graphs as induced subgraphs: K1,4, C4, . . . , Cp1 and any tree T
with two branching vertices2 at distance at most p2.

Proof. Let p = max{p1, p2}. We reduce from Grid Tiling, where the input is composed of
k2 sets Si,j ⊆ [m]× [m] (0 ≤ i, j ≤ k − 1), called tiles, each composed of n elements. The
objective of Grid Tiling is to find an element s∗i,j ∈ Si,j for each 0 ≤ i, j ≤ k− 1, such that
s∗i,j agrees in the first coordinate with s∗i,j+1, and agrees in the second coordinate with s∗i+1,j ,

2 A branching vertex in a tree is a vertex of degree at least 3.
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Ti,j

Ri,jLi,j

Bi,j

Gadget TGi,j

Li,j+1Ri,j−1

Figure 1 Gadget T Gi,j representing a tile and its adjacencies with T Gi,j−1 and T Gi,j+1, for
p = 1. Each circle is a clique on n vertices (dashed cliques are the cycle cliques). Black, blue and
red arrows represent respectively type Th, Tr and Tc edges (bold arrows are between two gadgets).

for every 0 ≤ i, j ≤ k − 1 (incrementations of i and j are done modulo k). In such case, we
say that {s∗i,j , 0 ≤ i, j ≤ k − 1} is a feasible solution of the instance. It is known that Grid
Tiling is W [1]-hard parameterized by k [6].

Before describing formally the reduction, let us give some definitions and ideas. Given
s = (a, b) and s′ = (a′, b′), we say that s is row-compatible (resp. column-compatible) with
s′ if a ≥ a′ (resp. b ≥ b′)3. Observe that a solution {s∗i,j , 0 ≤ i, j ≤ k − 1} is feasible if
and only if s∗i,j is row-compatible with s∗i,j+1 and column-compatible with s∗i+1,j for every
0 ≤ i, j ≤ k − 1 (incrementations of i and j are done modulo k). Informally, the main
idea of the reduction is that, when representing a tile by a clique, the row-compatibility
(resp. column-compatibility) relation (as well at its complement) forms a C4-free graph when
considering two consecutive tiles, and a claw-free graph when considering three consecutive
tiles. The main difficulty is to forbid the desired graphs to appear in the “branchings” of
tiles. We now describe the reduction.

For every tile Si,j = {si,j1 , . . . , si,jn }, we construct a tile gadget TGi,j , depicted in Figure 1.
Notice that this gadget shares some ideas with the W [1]-hardness of the problem in K1,4-free
graphs by Hermelin et al. [14]. To define this gadget, we first describe an oriented graph
with three types of arcs (type Th, Tr and Tc, which respectively stands for half graph, row
and column, this meaning will become clearer later), and then explain how to represent the
vertices and arcs of this graph to get the concrete gadget. Consider first a directed cycle on
4p+ 4 vertices c1, . . . , c4p+4 with arcs of type Th. Then consider four oriented paths on p+ 1
vertices: P1, P2, P3 and P4. P1 and P3 are composed of arcs of type Tc, while P2 and P4 are
composed of arcs of type Tr. Put an arc of type Tc between the last vertex of P1 and c1, an
arc of type Tc between c2p+3 and the first vertex of P3, an arc of type Tr between cp+2 and
the first vertex of P2, and an arc of type Tr between the last vertex of P4 and c3p+4.

3 Notice that the row-compatibility (resp. column-compatibility) relation is not symmetrical.
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Now, replace every vertex of this oriented graph by a clique on n vertices, and fix an
arbitrary ordering on the vertices of each clique. For each arc of type Th between c and c′,
add a half graph4 between the corresponding cliques: connect the ath vertex of the clique
representing c with the bth vertex of the clique representing c′ iff a > b. For every arc of
type Tr from a vertex c to a vertex c′, connect the ath vertex of the clique representing
c with the bth vertex of the clique representing c′ iff si,ja is not row-compatible with si,jb .
Similarly, for every arc of type Tc from a vertex c to a vertex c′, connect the ath vertex
of the clique representing C with the bth vertex of the clique representing c′ iff si,ja is not
column-compatible with si,jb . The cliques corresponding to vertices of this gadget are called
the main cliques of TGi,j , and the cliques corresponding to the central cycle on 4p+4 vertices
are called the cycle cliques. The main cliques which are not cycle cliques are called path
cliques. The cycle cliques adjacent to one path clique are called branching cliques. Finally,
the clique corresponding to the vertex of degree one in the path attached to c1 (resp. cp+2,
c2p+3, c3p+4) is called the top (resp. right, bottom, left) clique of TGi,j , denoted by Ti,j (resp.
Ri,j , Bi,j , Li,j). Let Ti,j = {ti,j1 , . . . , ti,jn }, Ri,j = {ri,j1 , . . . , ri,jn }, Bi,j = {bi,j1 , . . . , bi,jn }, and
Li,j = {`i,j1 , . . . , `i,jn }. For the sake of readability, we might omit the superscripts i, j when it
is clear from the context.

I Lemma 3. (?) Let K be an independent set of size 8(p+ 1) in TGi,j. Then:
(a) K intersects all the cycle cliques on the same index x;
(b) if K ∩ Ti,j = {txt}, K ∩Ri,j = {rxr}, K ∩Bi,j = {bxb

}, and K ∩ Li,j = {`x`
}. Then:

si,jx`
is row-compatible with si,jx which is row-compatible with si,jxr

, and
si,jxt

is column-compatible with si,jx which is column-compatible with si,jxb
.

For i, j ∈ {0, . . . , k − 1}, we connect the right clique of TGi,j with the left clique of
TGi,j+1 in a “type Tr spirit”: for every x, y ∈ [n], connect ri,jx ∈ Ri,j with `i,j+1

y ∈ Li,j+1 iff
si,jx is not row-compatible with si,j+1

y . Similarly, we connect the bottom clique of TGi,j with
the top clique of TGi+1,j in a “type Tc spirit”: for every x, y ∈ [n], connect bi,jx ∈ Bi,j with
ti+1,j
y ∈ Ti+1,j iff si,jx is not column-compatible with si+1,j

y (all incrementations of i and j
are done modulo k). This terminates the construction of the graph G.

I Lemma 4. (?) The input instance of Grid Tiling is positive if and only if G has an
independent set of size k′ = 8(p+ 1)k2.

Let us now prove that G does not contain the graphs mentionned in the statement as an
induced subgraph:
(i) K1,4: we first prove that for every 0 ≤ i, j ≤ k − 1, the graph induced by the cycle

cliques of TGi,j is claw-free. For the sake of contradiction, suppose that there exist
three consecutive cycle cliques A, B and C containing a claw. W.l.o.g. we may assume
that bx ∈ B is the center of the claw, and aα ∈ A, bβ ∈ B and cγ ∈ C are the three
endpoints. By construction of the gadgets (there is a half graph between A and B and
between B and C), we must have α < x < γ. Now, observe that if x < β then aα
must be adjacent to bβ , and if β < x, then bβ must be adjacent to cγ , but both case
are impossible since {aα, bβ , cγ} is supposed to be an independent set. Similarly, we
can prove that the graph induced by each path of size 2(p+ 1) linking two consecutive
gadgets is claw-free. Hence, the only way for K1,4 to appear in G would be that

4 Notice that our definition of half graph slighly differs from the usual one, in the sense that we do not
put edges relying two vertices of the same index. Hence, our construction can actually be seen as the
complement of a half graph (which is consistent with the fact that usually, both parts of a half graph
are independent sets, while they are cliques in our gadgets).
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the center appears in the cycle clique attached to a path, for instance in the clique
represented by the vertex c1 in the cycle. However, it can easily be seen that in this
case, a claw must lie either in the graph induced by the cycle cliques of the gadget, or
in the path linking TGi,j with TGi−1,j , which is impossible.

(ii) C4, . . . , Cp1 . The main argument is that the graph induced by any two main cliques
does not contain any of these cycles. Then, we show that such a cycle cannot lie entirely
in the cycle cliques of a single gadget TGi,j . Indeed, if this cycle uses at most one
vertex per main clique, then it must be of length at least 4p+ 4. If it intersects a clique
C on two vertices, then either it also intersect all the cycle cliques of the gadget, in
which case it is of length 4p+ 5, or it intersects an adjacent clique of C on two vertices,
in which case these two cliques induce a C4, which is impossible. Similarly, such a cycle
cannot lie entirely in a path between the main cliques of two gadgets. Finally, the main
cliques of two gadgets are at distance 2(p+ 1), hence such a cycle cannot intersect the
main cliques of two gadgets.

(iii) any tree T with two branching vertices at distance at most p2. Using the same argument
as for the K1,4 case, observe that the claws contained in G can only appear in the
cycle cliques where the paths are attached. However, observe that these cliques are at
distance 2(p+ 1) > p2, thus, such a tree T cannot appear in G. J

3 Positive results I: disjoint union of cliques

For r, q ≥ 1, let Kq
r be the disjoint union of q copies of Kr. The following proof is inspired

by the case r = 2 by Alekseev [2].

I Theorem 5. Maximum Independent Set is FPT in Kq
r -free graphs.

Proof. We will prove by induction on q that a Kq
r -free graph has an independent set of

size k or has at most (Ram(r, k) + 1)qknqr independent sets. This will give the desired
FPT-algorithm, as the proof shows how to construct this collection of independent sets. Note
that the case q = 1 is trivial by Ramsey’s theorem.

Let G be a Kq
r -free graph and let < be any fixed total ordering of V (G) such that the

largest vertex in this ordering belongs to a clique of size r (the case where G is Kr-free is
trivial by Ramsey’s theorem). For any vertex x, define x+ = {y, x < y} and x− = V (G) \ x+

(hence, x ∈ x−).
Let C be a fixed clique of size r in G and let c be the largest vertex of C with respect to

<. Let V1 be the set of vertices of c+ which have no neighbor in C. Note that V1 induces a
Kq−1
r -free graph, so by induction either it contains an independent set of size k, and so does

G, or it has at most (Ram(r, k) + 1)(q−1)kn(q−1)r independent sets. In the latter case, let S1
be the set of all independent sets of G[V1].

Now in a second phase we define an initially empty set SC and do the following. For each
independent set S1 in S1 (including the empty set), we denote by V2 the set of vertices in c−
that have no neighbor in S1 (notice that c ∈ V2). For every choice of a vertex x amongst
the largest (Ram(r, k) + 1) vertices of V2 in the order, we add x to S1 and modify V2 in
order to keep only vertices that are smaller than x (with respect to <) and not adjacent to
x. We repeat this operation k times (or less if V2 becomes empty) and, at the end, we either
find an independent set of size k or add S1 to SC . By doing so we construct a family of
at most (Ram(r, k) + 1)k independent sets for each S1, so in total we get indeed at most
(Ram(r, k) + 1)kqn(q−1)r independent sets for each clique C. Finally we define S as the union
over all r-cliques C of the sets SC , so that S has size at most the desired number.
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We claim that if G does not contain an independent set of size k, then S contains all
independent sets of G. It suffices to prove that for every independent set S, there exists a
clique C for which S ∈ SC . Let S be an independent set, and define C to be a clique of size
r such that its largest vertex c (with respect to <) satisfies the conditions:

no vertex of C is adjacent to a vertex of S ∩ c+, and
c is the smallest vertex such that a clique C satisfying the first item exists.

First remark that such a clique always exist, since we assumed that the largest vertex clast
of < is contained in a clique of size r, which means that S ∩ c+

last is empty and thus the
first item is vacuously satisfied. Secondly, note that several cliques C might satisfy the two
previous conditions. In that case, pick one such clique arbitrarily. This definition of C and c
ensures that S ∩ c+ is an independent set in the set V1 defined in the construction above
(it might be empty, but we also consider this case). Thus, it will be picked in the second
phase as some S1 in S1 and for this choice, each time V2 is considered, the fact that C is
chosen to minimize its largest element c guarantees that there must be a vertex of S in the
(Ram(r, k) + 1) largest vertices in V2: either c ∈ S and we are done, or S must intersect
one of the Ram(r, k) largest elements of V2 \ {c}, otherwise there would be an an r-clique
contradicting the choice of C. This shows that S ∈ SC , which concludes our proof. J

4 Positive results II

4.1 Key ingredient: Iterative expansion and Ramsey extraction
In this section, we present the main idea of our algorithms. It is a generalization of iterative
expansion, which itself is the maximization version of the well-known iterative compression
technique. Iterative compression is a useful tool for designing parameterized algorithms for
subset problems (i.e. problems where a solution is a subset of some set of elements: vertices
of a graph, variables of a logic formula...etc.) [6, 18]. Although it has been mainly used for
minimization problems, iterative compression has been successfully applied for maximization
problems as well, under the name iterative expansion [5]. Roughly speaking, when the
problem consists in finding a solution of size at least k, the iterative expansion technique
consists in solving the problem where a solution S of size k − 1 is given in the input, in
the hope that this solution will imply some structure in the instance. In the following, we
consider an extension of this approach where, instead of a single smaller solution, one is given
a set of f(k) smaller solutions S1, . . . , Sf(k). As we will see later, we can further add more
constraints on the sets S1, . . . , Sf(k). Notice that all the results presented in this sub-section
(Lemmas 7 and 10 in particular) hold for any hereditary graph class (including the class of
all graphs). The use of properties inherited from particular graphs (namely, H-free graphs in
our case) will only appear in Sections 4.2 and 4.3.

I Definition 6. For a function f : N → N, the f-Iterative Expansion MIS takes as
input a graph G, an integer k, and a set of f(k) independent sets S1, . . . , Sf(k), each of size
k − 1. The objective is to find an independent set of size k in G, or to decide that such an
independent set does not exist.

I Lemma 7. (?) Let G be a hereditary graph class. MIS is FPT in G iff f-Iterative
Expansion MIS is FPT in G for some computable function f : N→ N.

We will actually prove a stronger version of this result, by adding more constraints on
the input sets S1, . . . , Sf(k), and show that solving the expansion version on this particular
kind of input is enough to obtain the result for MIS.
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I Definition 8. Given a graph G and a set of k − 1 vertex-disjoint cliques of G, C =
{C1, . . . , Ck−1}, each of size q, we say that C is a set of Ramsey-extracted cliques of size q if
the conditions below hold. Let Cr = {crj : j ∈ {1, . . . , q}} for every r ∈ {1, . . . , k − 1}.

For every j ∈ [q], the set {crj : r ∈ {1, . . . , k− 1}} is an independent set of G of size k− 1.
For any r 6= r′ ∈ {1, . . . , k − 1}, one of the four following case can happen:

(i) for every j, j′ ∈ [q], crjcr
′

j′ /∈ E(G)
(ii) for every j, j′ ∈ [q], crjcr

′

j′ ∈ E(G) iff j 6= j′

(iii) for every j, j′ ∈ [q], crjcr
′

j′ ∈ E(G) iff j < j′

(iv) for every j, j′ ∈ [q], crjcr
′

j′ ∈ E(G) iff j > j′

In the case (i) (resp. (ii)), we say that the relation between Cr and Cr′ is empty (resp.
full5). In case (iii) or (iv), we say the relation is semi-full.

Observe, in particular, that a set C of k − 1 Ramsey-extracted cliques of size q can
be partitionned into q independent sets of size k − 1. As we will see later, these cliques
will allow us to obtain more structure with the remaining vertices if the graph is H-free.
Roughly speaking, if q is large, we will be able to extract from C another set C′ of k − 1
Ramsey-extracted cliques of size q′ < q, such that every clique is a module6 with respect to
the solution x∗1, . . . , x∗k we are looking for. Then, by guessing the structure of the adjacencies
between C′ and the solution, we will be able to identify from the remaining vertices k sets
X1, . . . , Xk, where each Xi has the same neighborhood as x∗i w.r.t. C′, and plays the role of
“candidates” for this vertex. For a function f : N→ N, we define the following problem:

I Definition 9. The f-Ramsey-extracted Iterative Expansion MIS problem takes
as input an integer k and a graph G whose vertices are partitionned into non-empty sets
X1 ∪ · · · ∪Xk ∪ C1 ∪ · · · ∪ Ck−1, where:
{C1, . . . , Ck−1} is a set of k − 1 Ramsey-extracted cliques of size f(k)
any independent set of size k in G is contained in X1 ∪ · · · ∪Xk

∀i ∈ {1, . . . , k}, ∀v, w ∈ Xi and ∀j ∈ {1, . . . , k − 1}, N(v) ∩ Cj = N(w) ∩ Cj = ∅ or
N(v) ∩ Cj = N(w) ∩ Cj = Cj
the following bipartite graph B is connected: V (B) = B1 ∪ B2, B1 = {b1

1, . . . , b
1
k},

B2 = {b2
1, . . . , b

2
k−1} and b1

jb
2
r ∈ E(B) iff Xj and Cr are adjacent.

The objective is to find an independent set S in G of size at least k, or to decide that G does
not contain an independent set S such that S ∩Xi 6= ∅ for all i ∈ {1, . . . , k}.

I Lemma 10. Let G be a hereditary graph class. If there exists a computable function
f : N → N such that f-Ramsey-extracted Iterative Expansion MIS is FPT in G,
then g-Iterative Expansion MIS is FPT in G, where g(x) = Ram`(f(x)2x(x−1)) ∀x ∈ N,
with `x = 2(x−1)2 .

Proof. Let f : N→ N be such a function, and let G, k and S = {S1, . . . , Sg(k)} be an input
of g-Iterative Expansion MIS. Recall that the objective is to find an independent set
of size k in G, or to decide that such an independent set does not exist. If G contains
an independent set of size k, then either there is one intersecting some set of S, or every
independent set of size k avoids the sets in S. In order to capture the first case, we branch
on every vertex v of the sets in S, and make a recursive call with parameter G \N [v], k − 1.

5 Remark that in this case, the graph induced by Cr ∪ Cr′ is the complement of a perfect matching.
6 A set of vertices M is a module if every vertex v /∈ M is adjacent to either all vertices of M , or none.
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In the remainder of the algorithm, we thus assume that any independent set of size k in G
avoids every set of S.

We choose an arbitrary ordering of the vertices of each Sj . Let us denote by srj the rth
vertex of Sj . Notice that given an ordered pair of sets of k − 1 vertices (A,B), there are
`k = 2(k−1)2 possible sets of edges between these two sets. Let us denote by c1, . . . , c2(k−1)2

the possible sets of edges, called types. We define an auxiliary edge-colored graph H whose
vertices are in one-to-one correspondence with S1, . . . , Sg(k), and, for i < j, there is an
edge between Si and Sj of color γ iff the type of (Si, Sj) is γ. By Ramsey’s theorem, since
H has Ram`k

(f(k)2k(k−1)) vertices, it must admit a monochromatic clique of size at least
h(k) = f(k)2k(k−1). W.l.o.g., the vertex set of this clique corresponds to S1, . . . , Sh(k). For
p ∈ {1, . . . , k − 1}, let Cp = {spj , . . . , s

p
h(k)}. Observe that the Ramsey extraction ensures

that each Cp is either a clique or an independent set. If Cp is an independent set for some r,
then we can immediately conclude, since h(k) ≥ k. Hence, we suppose that Cp is a clique for
every p ∈ {1, . . . , k − 1}. We now prove that C1, . . . , Ck−1 are Ramsey-extracted cliques of
size h(k). First, by construction, for every j ∈ {1, . . . , h(k)}, the set {spj : p = 1, . . . , k− 1} is
an independent set. Then, let c be the type of the clique obtained previously, represented by
the adjacencies between two sets (A,B), each of size k − 1. For every p ∈ {1, . . . , k − 1}, let
ap (resp. bp) be the ath vertex of A (resp. B). Let p, q ∈ {1, . . . , t}, p 6= q. If any of apbq and
aqbp are edges in type c, then there is no edge between Cp and Cq, and their relation is thus
empty. If both edges apbq and aqbp exist in c, then the relation between Cp and Cq is full.
Finally if exactly one edge among apbq and aqbp exists in c, then the relation between Cp
and Cq is semi-full. This concludes the fact that C = {C1, . . . , Ck−1} are Ramsey-extracted
cliques of size h(k).

Suppose that G has an independent set X∗ = {x∗1, . . . , x∗k}. Recall that we assumed
previously that X∗ is contained in V (G) \ (C1 ∪ · · · ∪ Ck−1). The next step of the algorithm
consists in branching on every subset of f(k) indices J ⊆ {1, . . . , h(k)}, and restrict every set
Cp to {spj : j ∈ J}. For the sake of readability, we keep the notation Cp to denote {spj : j ∈ J}
(the non-selected vertices are put back in the set of remaining vertices of the graph, i.e.
we do not delete them). Since h(k) = f(k)2k(k−1), there must exist a branching where the
chosen indices are such that for every i ∈ {1, . . . , k} and every p ∈ {1, . . . , k− 1}, x∗i is either
adjacent to all vertices of Cp or none of them. In the remainder, we may thus assume that
such a branching has been made, with respect to the considered solution X∗ = {x∗1, . . . , x∗k}.
Now, for every v ∈ V (G) \ (C1, . . . , Ck−1), if there exists p ∈ {1, . . . , k − 1} such that
N(v) ∩ Cp 6= ∅ and N(v) ∩ Cp 6= Cp , then we can remove this vertex, as we know that it
cannot correspond to any x∗i . Thus, we know that all the remaining vertices v are such that
for every p ∈ {1, . . . , k − 1}, v is either adjacent to all vertices of Cp, or none of them.

In the following, we perform a color coding-based step on the remaining vertices. Inform-
ally, this color coding will allow us to identify, for every vertex x∗i of the optimal solution, a
set Xi of candidates, with the property that all vertices in Xi have the same neighborhood
with respect to sets C1, . . . , Ck−1. We thus color uniformly at random the remaining vertices
V (G) \ (C1, . . . , Ck−1) using k colors. The probability that the elements of X∗ are colored
with pairwise distinct colors is at least e−k. We are thus reduced to the case of finding
a colorful7 independent set of size k. For every i ∈ {1, . . . , k}, let Xi be the vertices of
V (G) \ (C1, . . . , Ck−1) colored with color i. We now partition every set Xi into at most
2k−1 subsets X1

i , . . . , X2k−1

i , such that for every j ∈ {1, . . . , 2k−1}, all vertices of Xj
i have

the same neighborhood with respect to the sets C1, . . . , Ck−1 (recall that every vertex of

7 A set of vertices is called colorful if it is colored with pairwise distinct colors.
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V (G) \ (C1, . . . , Ck−1) is adjacent to all vertices of Cp or none, for each p ∈ {1, . . . , k − 1}).
We branch on every tuple (j1, . . . , jk) ∈ {1, . . . , 2k−1}. Clearly the number of branchings
is bounded by a function of k only and, moreover, one branching (j1, . . . , jk) is such that
x∗i has the same neighborhood in C1 ∪ · · · ∪ Ck−1 as vertices of Xji

i for every i ∈ {1, . . . , k}.
We assume in the following that such a branching has been made. For every i ∈ {1, . . . , k},
we can thus remove vertices of Xj

i for every j 6= ji. For the sake of readability, we rename
Xji

i as Xi. Let B be the bipartite graph with vertex bipartition (B1, B2), B1 = {b1
1, . . . , b

1
k},

B2 = {b2
1, . . . , b

2
k−1}, and b1

i b
2
p ∈ E(B) iff x∗i is adjacent to Cp. Since every x∗i has the same

neighborhood as Xi with respect to C1, . . . , Ck−1, this bipartite graph actually corresponds
to the one described in Definition 9 representing the adjacencies between Xi’s and Cp’s. We
now prove that it is connected. Suppose it is not. Then, since |B1| = k and |B2| = k − 1,
there must be a component with as many vertices from B1 as vertices from B2. However,
in this case, using the fixed solution X∗ on one side and an independent set of size k − 1
in C1 ∪ · · · ∪ Ck−1 on the other side, it implies that there is an independent set of size k
intersecting ∪k−1

p=1Cp, a contradiction.
Hence, all conditions of Definition 9 are now fulfilled. It now remains to find an independent

set of size k disjoint from the sets C, and having a non-empty intersection with Xi, for
every i ∈ {1, . . . , k}. We thus run an algorithm solving f-Ramsey-extracted Iterative
Expansion MIS on this input, which concludes the algorithm. J

The proof of the following result is immediate, by using successively Lemmas 7 and 10.

I Theorem 11. Let G be a hereditary graph class. If f-Ramsey-extracted Iterative
Expansion MIS is FPT in G for some computable function f , then MIS is FPT in G.

We now apply this framework to two families of graphs H.

4.2 Clique minus a smaller clique
I Theorem 12. (?) For any r ≥ 2 and s < r, MIS in (Kr \Ks)-free graphs is FPT if s ≤ 3,
and W [1]-hard otherwise.

4.3 Clique minus a complete bipartite graph
For every three positive integers r, s1, s2 with s1 + s2 < r, we consider the graph Kr \Ks1,s2 .
Another way to see Kr \Ks1,s2 is as a P3 of cliques of size s1, r − s1 − s2, and s2. More
formally, every graph Kr \Ks1,s2 can be obtained from a P3 by adding s1 − 1 false twins of
the first vertex, r − s1 − s2 − 1, for the second, and s2 − 1, for the third.

I Theorem 13. ∀r ≥ 2 and s1 ≤ s2 s.t. s1 + s2 < r, MIS in Kr \Ks1,s2-free graphs is FPT.

Proof. It is more convenient to prove the result for K3r \Kr,r-free graphs, for any positive
integer r. It implies the theorem by choosing this new r to be larger than s1, s2, and
r − s1 − s2. We will show that for f(x) := 3r for every x ∈ N, f-Ramsey-extracted
Iterative Expansion MIS in K3r \Kr,r-free graphs is FPT. By Theorem 11, this implies
that MIS is FPT in this class. Let C1, . . . , Ck−1 (whose union is denoted by C) be the
Ramsey-extracted cliques of size 3r, which can be partitionned, as in Definition 9, into 3r
independent sets S1, . . . , S3r, each of size k− 1. Let X =

⋃k
i=1 Xi be the set in which we are

looking for an independent set of size k. We recall that between any Xi and any Cj there are
either all the edges or none. Hence, the whole interaction between X and C can be described
by the bipartite graph B described in Definition 9. Firstly, we can assume that each Xi is of
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size at least Ram(r, k), otherwise we can branch on Ram(r, k) choices to find one vertex in
an optimum solution. By Ramsey’s theorem, we can assume that each Xi contains a clique
of size r (if it contains an independent set of size k, we are done). Our general strategy is
to leverage the fact that the input graph is (K3r \Kr,r)-free to describe the structure of X .
Hopefully, this structure will be sufficient to solve our problem in FPT time.

We define an auxiliary graph Y with k − 1 vertices. The vertices y1, . . . , yk−1 of Y
represent the Ramsey-extracted cliques of C and two vertices yi and yj are adjacent iff the
relation between Ci and Cj is not empty (equivalently the relation is full or semi-full). It
might seem peculiar that we concentrate the structure of C, when we will eventually discard
it from the graph. It is an indirect move: the simple structure of C will imply that the
interaction between X and C is simple, which in turn, will severely restrict the subgraph
induced by X . More concretely, in the rest of the proof, we will (1) show that Y is a clique,
(2) deduce that B is a complete bipartite graph, (3) conclude that X cannot contain an
induced K2

r = Kr ]Kr and run the algorithm of Theorem 5.
Suppose that there is yi1yi2yi3 an induced P3 in Y , and consider Ci1 , Ci2 , Ci3 the

corresponding Ramsey-extracted cliques. For s < t ∈ [3r], let Cs→ti := Ci ∩
⋃
s6j6t Sj .

In other words, Cs→ti contains the elements of Ci having indices between s and t. Since
|Ci| = 3r, each Ci can be partitionned into three sets, of r elements each: C1→r

i , Cr+1→2r
i

and C2r+1→3r
i . Recall that the relation between Ci1 and Ci2 (resp. Ci2 and Ci3) is either

full or semi-full, while the relation between Ci1 and Ci3 is empty. This implies that at least
one of the four following sets induces a graph isomorphic to K3r \Kr,r:

C1→r
i1
∪ Cr+1→2r

i2
∪ C1→r

i3

C1→r
i1
∪ Cr+1→2r

i2
∪ C2r+1→3r

i3

C2r+1→3r
i1

∪ Cr+1→2r
i2

∪ C1→r
i3

C2r+1→3r
i1

∪ Cr+1→2r
i2

∪ C2r+1→3r
i3

Hence, Y is a disjoint union of cliques. Let us assume that Y is the union of at least two
(maximal) cliques.

Recall that the bipartite graph B is connected. Thus there is b1
h ∈ B1 (corresponding to

Xh) adjacent to b2
i ∈ B2 and b2

j ∈ B2 (corresponding to Ci and Cj , respectively), such that
yi and yj lie in two different connected components of Y (in particular, the relation between
Ci and Cj is empty). Recall that Xh contains a clique of size at least r. This clique induces,
together with any r vertices in Ci and any r vertices in Cj , a graph isomorphic to K3r \Kr,r;
a contradiction. Hence, Y is a clique.

Now, we can show that B is a complete bipartite graph. Each Xh has to be adjacent to
at least one Ci (otherwise this trivially contradicts the connectedness of B). If Xh is not
linked to Cj for some j ∈ {1, . . . , k − 1}, then a clique of size r in Xh (which always exists)
induces, together with C1→r

i ∪ C2r+1→3r
j or with C2r+1→3r

i ∪ C1→r
j , a graph isomorphic to

K3r \Kr,r.
Since B is a complete bipartite graph, every vertex of C1 dominates all vertices of X In

particular, X is in the intersection of the neighborhood of the vertices of some clique of size
r. This implies that the subgraph induced by X is (Kr ]Kr)-free. Hence, we can run the
FPT algorithm of Theorem 5 on this graph. J

5 Polynomial (Turing) kernels

In this section we investigate some special cases of Section 4.3, in particular when H is a
clique of size r minus a claw with s branches, for s < r. Although Theorem 13 proves that
MIS is FPT for every possible values of r and s, we show that when s ≥ r − 2, the problem
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admits a polynomial Turing kernel, while for s ≤ 2, it admits a polynomial kernel. Notice
that the latter result is somehow tight, as Corollary 18 shows that MIS cannot admit a
polynomial kernel in (Kr \K1,s)-free graphs whenever s ≥ 3.

I Theorem 14. (?) ∀r ≥ 2, MIS in (Kr \ K1,r−2)-free graphs has a polynomial Turing
kernel.

I Theorem 15. (?) ∀r ≥ 3, MIS in (Kr \ K1,2)-free graphs has a kernel with O(kr−1)
vertices.

Observe that a (Kr \K2)-free graph is (Kr+1 \K1,2)-free, hence, thus the previous result
also applies to (Kr \K2)-free graphs, which answers a question of [8].

We now focus on kernel lower bounds.

I Definition 16. Given the graphs H, H1, . . . , Hp, we say that (H1, . . . ,Hp) is a multipartite
decomposition of H if H is isomorphic to H1 + · · ·+Hp. We say that (H1, . . . ,Hp) is maximal
if, for every multipartite decomposition (H ′1, . . . ,H ′q) of H, we have p > q.

It can easily be seen that for every graph H, a maximal multipartite decomposition of H
is unique. We have the following:

I Theorem 17. (?) Let H be any fixed graph, and let H = H1 + · · ·+Hp be the maximal
multipartite decomposition of H. If, for some i ∈ [p], MIS is NP-hard in Hi-free graphs,
then MIS does not admit a polynomial kernel in H-free graphs unless NP ⊆ coNP/poly.

The next results shows that the polynomial kernel obtained in the previous section for
(Kr \K1,s)-free graphs, s ≤ 2, is somehow tight.

I Corollary 18. (?) For r ≥ 4, and every 3 ≤ s ≤ r − 1, MIS in (Kr \K1,s)-free graphs
does not admit a polynomial kernel unless NP ⊆ coNP/poly.

6 Conclusion and open problems

We started to unravel the FPT/W [1]-hard dichotomy for MIS in H-free graphs, for a fixed
graph H. At the cost of one reduction, we showed that it is W [1]-hard as soon as H is not
chordal, even if we simultaneously forbid induced K1,4 and trees with at least two branching
vertices. Tuning this construction, it is also possible to show that if a connected H is not
roughly a "path of cliques" or a "subdivided claw of cliques", then MIS is W [1]-hard.

An interesting open problem is the case when H is the cricket, that is a triangle with
two pending vertices, each attached to a different vertex

For disconnected graphs H, we obtained an FPT algorithm when H is a cluster (i.e., a
disjoint union of cliques). We conjecture that, more generally, the disjoint union of two easy
cases is an easy case; formally, if MIS is FPT in G-free graphs and in H-free graphs, then it
is FPT in G]H-free graphs. A more anecdotal conclusion is the fact that the parameterized
complexity of the problem on H-free graphs is now complete for every graph H on four
vertices, including concerning the polynomial kernel question, whereas the FPT/W [1]-hard
question remains open for only five graphs H on five vertices.
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Abstract
In this paper, we study multi-budgeted variants of the classic minimum cut problem and graph
separation problems that turned out to be important in parameterized complexity: Skew Mul-
ticut and Directed Feedback Arc Set. In our generalization, we assign colors 1, 2, ..., ` to
some edges and give separate budgets k1, k2, ..., k` for colors 1, 2, ..., `. For every color i ∈ {1, ..., `},
let Ei be the set of edges of color i. The solution C for the multi-budgeted variant of a graph sep-
aration problem not only needs to satisfy the usual separation requirements (i.e., be a cut, a skew
multicut, or a directed feedback arc set, respectively), but also needs to satisfy that |C ∩Ei| ≤ ki
for every i ∈ {1, ..., `}.

Contrary to the classic minimum cut problem, the multi-budgeted variant turns out to be
NP-hard even for ` = 2. We propose FPT algorithms parameterized by k = k1 + ... + k` for all
three problems. To this end, we develop a branching procedure for the multi-budgeted minimum
cut problem that measures the progress of the algorithm not by reducing k as usual, by but
elevating the capacity of some edges and thus increasing the size of maximum source-to-sink
flow. Using the fact that a similar strategy is used to enumerate all important separators of a
given size, we merge this process with the flow-guided branching and show an FPT bound on
the number of (appropriately defined) important multi-budgeted separators. This allows us to
extend our algorithm to the Skew Multicut and Directed Feedback Arc Set problems.

Furthermore, we show connections of the multi-budgeted variants with weighted variants
of the directed cut problems and the Chain `-SAT problem, whose parameterized complexity
remains an open problem. We show that these problems admit a bounded-in-parameter number of
“maximally pushed” solutions (in a similar spirit as important separators are maximally pushed),
giving somewhat weak evidence towards their tractability.
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1 Introduction

Graph separation problems are important topics in both theoretical area and applications.
Although the famous minimum cut problem is known to be polynomial-time solvable, many
well-known variants are NP-hard, which are intensively studied from the point of view of
approximation [1, 2, 11, 13, 14, 18] and, what is more relevant for this work, parameterized
complexity.

The notion of important separators, introduced by Marx [22], turned out to be funda-
mental for a number of graph separation problems such as Multiway Cut [22], Directed
Feedback Vertex Set [4], or Almost 2-CNF SAT [27]. Further work, concerning mostly
undirected graphs, resulted in a wide range of involved algorithmic techniques: applications of
matroid techniques [19, 20], shadow removal [8, 25], randomized contractions [5], LP-guided
branching [10, 15, 16, 17], and treewidth reduction [24], among others.

From the above techniques, only the notion of important separators and the related
technique of shadow removal generalizes to directed graphs, giving FPT algorithms for
Directed Feedback Arc Set [4], Directed Multiway Cut [8], and Directed Subset
Feedback Vertex Set [7]. As a result, the parameterized complexity of a number of
important graph separation problems in directed graphs remains open, and the quest to
investigate them has been put on by the third author in a survey from 2012 [23]. Since the
publication of this survey, two negative answers have been obtained. Two authors of this
work showed that Directed Multicut is W[1]-hard even for four terminal pairs (leaving
the case of three terminal pairs open) [26], while Lokshtanov et al. [21] showed intractability
of Directed Odd Cycle Transversal.

During an open problem session at Recent Advancements in Parameterized Complexity
school (December 2017) [12], Saurabh posed the question of parameterized complexity of a
weighted variant of Directed Feedback Arc Set, where given a directed edge-weighted
graph G, an integer k, and a target weight w, the goal is to find a set X ⊆ E(G) such that
G−X is acyclic and X is of cardinality at most k and weight at most w. Consider a similar
problem Weighted st-cut: given a directed graph G with positive edge weights and two
distinguished vertices s, t ∈ V (G), an integer k, and a target weight w, decide if G admits
an st-cut of cardinality at most k and weight at most w. The parameterized complexity of
this problem parameterized by k is open even if G is restricted to be acyclic, while with this
restriction the problem can easily be reduced to Directed Feedback Arc Set (add an
arc (t, s) of prohibitively large weight).

The Weighted st-cut problem becomes similar to another directed graph cut problem,
identified in [6], namely Chain `-SAT. While this problem is originally formulated in CSP
language, the graph formulation is as follows: given a directed graph G with a partition of
edge set E(G) = P1 ] P2 ] . . . ] Pm such that each Pi is an edge set of a simple path of
length at most ` (the input paths could have common nodes), an integer k, and two vertices
s, t ∈ V (G), find an st-cut C ⊆ E(G) such that |{i|C ∩Pi 6= ∅}| ≤ k. This problem can easily
be seen to be equivalent to minimum st-cut problem (and thus polynomial-time solvable) for
` ≤ 2, but is NP-hard for ` ≥ 3 and its parameterized complexity (with k as a parameter)
remains an open problem.

https://arxiv.org/abs/1810.06848
https://arxiv.org/abs/1810.06848
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In this paper we make progress towards resolving the question of parameterized complexity
of the two aforementioned problems: weighted st-cut problem (in general digraphs, not
necessary acyclic ones) and Chain `-SAT. Our contribution is twofold.

Multi-budgeted variant

We define a multi-budgeted variant of a number of cut problems (including the minimum
cut problem) and show its fixed-parameter tractability. In this variant, the edges of the
graph are colored with ` colors, and the input specifies separate budgets for each color. More
formally, we primarily consider the following problem.

Multi-budgeted cut
Input: A directed graph G, two disjoint sets of vertices X,Y ⊆ V (G), an integer `,
and for every i ∈ {1, 2, . . . , `} a set Ei ⊆ E(G) and an integer ki ≥ 1.
Question: Is there a set of arcs C ⊆

⋃`
i=1 Ei such that there is no directed X − Y

path in G \ C and for every i ∈ [`], |C ∩ Ei| ≤ ki.

Similarly we can define multi-budgeted variants of Directed Feedback Arc Set and
Skew Multicut.

We observe that Multi-budgeted cut for ` = 2 reduces to Weighted st-cut as
follows. Let (G,X, Y,E1, E2, k1, k2) be a Multi-budgeted cut instance for ` = 2. First,
observe that we may assume that E1∩E2 = ∅, as we can replace every edge e ∈ E1∩E2 with
two copies e1 ∈ E1 \E2 and e2 ∈ E2 \E1. Second, construct an equivalent Weighted st-cut
instance (G′, s, t, k, w) as follows. To construct G′, first add two vertices s, t to G and edges
{(s, x)|x ∈ X} and {(y, t)|y ∈ Y } of prohibitively large weight. Assign also prohibitively
large weight to every edge e ∈ E(G) \ (E1 ∪E2). Assign weight (k1 + 1)k2 + 1 to every edge
e ∈ E1. For every edge e ∈ E2, add k1 + 1 copies of e to G′ of weight 1 each. Finally, set
k := (k1 + 1) · k2 + k1 as the cardinality bound and w := k1((k1 + 1)k2 + 1) + (k1 + 1)k2 as
the target weight. The equivalence of the instances follows from the fact that the cardinality
bound allows to pick in the solution at most k2 bundles of k1 + 1 copies of an edge of E2,
while the weight bound allows to pick only k1 edges of E1.

Thus, Multi-budgeted cut for ` = 2 corresponds to the case of Weighted st-cut
where the weights are integral and both target cardinality and weight are bounded in
parameter.2 This connection was our primary motivation to study the multi-budgeted
variants of the cut problems.

Contrary to the classic minimum cut problem, we note that Multi-budgeted Cut
becomes NP-hard for ` ≥ 2 by a simple reduction from constrained minimum vertex cover
problem on bipartite graphs [3].3 We show that Multi-budgeted Cut is FPT when
parameterized by k = k1 + ...+ k`. For this problem, our branching strategy is as follows.
First, note that in the problem definition we assume that each ki is positive, and thus ` ≤ k.
A standard application of the Ford-Fulkerson algorithm gives a minimum XY -cut C of size
λ and λ edge-disjoint X − Y paths P1, P2, . . . , Pλ. If C is a solution, then we are done.
Similarly, if λ > k, then there is no solution. Otherwise, we branch which colors of the sought

2 For a reduction in the other direction, replace every arc e of weight ω(e) with one copy of color 1 and
ω(e) copies of color 2, and set budgets k1 = k and k2 = w.

3 We believe this problem must have been formulated already before and proven to be NP-hard. However,
we were not able to find it in the literature. Our own reduction will be available in the full version of
the paper.
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solution should appear on each paths Pj ; that is, for every i ∈ [`] and j ∈ [λ], we guess if
Pj ∩Ei contains an edge of the sought solution, and in each guess assign infinite capacities
to the edges of wrong color. If this change increased the size of a maximum flow from X

to Y , then we can charge the branching step to this increase, as the size of the flow cannot
exceed k. The critical insight is that if the size of the minimum flow does not increase (i.e.,
P1, . . . , Pλ remains a maximum flow), then a corresponding minimum cut is necessarily a
solution. As a result, we obtain the following.

I Theorem 1. Multi-budgeted Cut admits an FPT algorithm with running time bound
O(2k2` · k · (|V (G)|+ |E(G)|)) where k =

∑`
i=1 ki.

The charging of the branching step to a flow increase appears also in the classic argument
for bound of the number of important separators [4] (see also [9, Chapter 8]). We observe
that our branching algorithm can be merged with this procedure, yielding a bound (as a
function of k) and enumeration procedure of naturally defined multi-budgeted important
separators. This in turn allows us to generalize our FPT algorithm to Multi-budgeted
Skew Multicut and Multi-budgeted Directed Feedback Arc Set.

I Theorem 2. Multi-budgeted Skew Multicut and Multi-budgeted Directed
Feedback Arc Set admit FPT algorithms with running time bound 2O(k3 log k)(|V (G)|+
|E(G)|) where k =

∑`
i=1 ki.

Bound on the number of pushed solutions

While we are not able to establish fixed-parameter tractability of the weighted variant of the
minimum cut problem (even in acyclic graphs) nor of Chain `-SAT, we show the following
graph-theoretic statement. Consider a directed graph G with two distinguished vertices
s, t ∈ V (G). For two (inclusion-wise) minimal st-cuts C1, C2 we say that C1 is closer to
t than C2 if every vertex reachable from s in G − C2 is also reachable from s in G − C1.
A classic submodularity argument implies that there is exactly one closest to t minimum
st-cut, while the essence of the notion of important separators is the observation that there
is bounded-in-k number of minimal separators of cardinality at most k that are closest to t.
In Section 5 we show a similar existential statement for the two discussed problems.

I Theorem 3. For every integer k there exists an integer g such that the following holds. Let
G be a directed graph with positive edge weights and two distinguished vertices s, t ∈ V (G).
Let F be a family of all st-cuts that are of minimum weight among all (inclusion-wise)
minimal st-cuts of cardinality at most k. Let G ⊆ F be the family of those cuts C such that
no other cut of F is closer to t. Then |G| ≤ g.

I Theorem 4. For every integers k, ` there exists an integer g′ such that the following
holds. Let I := (G, s, t, (Pi)mi=1, k) be a Chain `-SAT instance that is a yes-instance but
(G, s, t, (Pi)mi=1, k − 1) is a no-instance. Let F be a family of all (inclusion-wise) minimal
solutions to I and let G ⊆ F be the family of those cuts C such that no other cut of F is
closer to t. Then |G| ≤ g′.

Unfortunately, our proof is purely existential, and does not yield an enumeration procedure
of the “closest to t” solutions.

Organization

In this extended abstract, we prove Theorem 1 in Section 3, present the multi-budgeted
extension of the notion of important separators (needed for Theorem 2) in Section 4, and
sketch the proofs of Theorems 3 and 4 in Section 5.
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2 Preliminaries

For an integer n, we denote [n] = {1, 2, . . . , n}. For a directed graph G, we use V (G) to
represent the set of vertices of G and E(G) to represent the set of directed edges of G. In
all multi-budgeted problems, the directed graph G comes with sets Ei ⊆ E(G) for i ∈ [`]
which we refer as colors. That is, an edge e is of color i if e ∈ Ei, and of no color if
e ∈ E(G) \

⋃`
i=1 Ei. Note that an edge may have many colors, as we do not insist on the

sets Ei being pairwise disjoint.
Let X and Y be two disjoint vertex sets in a directed graph G, an XY -cut of G is a set

of edges C such that every directed path from a vertex in X to a vertex in Y contains an
edge of C. A cut C is minimal if no proper subset of C is an XY -cut, and minimum if C
is of minimum possible cardinality. Let C be an XY -cut and let R be the set of vertices
reachable from X in G \ C. We define δ+(R) = {(u, v) ∈ E(G)|u ∈ R and v /∈ R} and note
that if C is minimal, then δ+(R) = C.

Let (G,X, Y, `, (Ei, ki)`i=1) be a Multi-budgeted cut instance and let C be an XY -cut.
We say that C is budget-respecting if C ⊆

⋃`
i=1 Ei and |C ∩ Ei| ≤ ki for every i ∈ [`]. For a

set Z ⊆ E(G) we say that C is Z-respecting if C ⊆ Z. In such contexts, we often call Z the
set of deletable edges. An XY -cut C is a minimum Z-respecting cut if it is a Z-respecting
XY -cut of minimum possible cardinality among all Z-respecting XY -cuts.

Our FPT algorithms start with Z =
⋃`
i=1 Ei and in branching steps shrink the set Z to

reduce the search space. We encapsulate our use of the classic Ford-Fulkerson algorithm in
the following statement.

I Theorem 5. Given a directed graph G, two disjoint sets X,Y ⊆ V (G), a set Z ⊆ E(G),
and an integer k, one can in O(k(|V (G)|+ |E(G)|)) time either find the following objects:

λ paths P1, P2, . . . , Pλ such that every Pi starts in X and ends in Y , and every edge
e ∈ Z appears on at most one path Pi;
a set B ⊆ Z consisting of all edges of G that participate in some minimum Z-respecting
XY -cut;
a minimum Z-respecting XY -cut C of size λ that is closest to Y among all minimum
Z-respecting XY -cuts;

or correctly conclude that there is no Z-respecting XY -cut of cardinality at most k.

3 Multi-budgeted cut

We now give an FPT algorithm parameterized by k = Σ`i=1ki for the Multi-budgeted cut
problem. We follow a branching strategy that recursively reduces a set Z of deletable edges.
That is, we start with Z =

⋃`
i=1 Ei (so that every solution is initially Z-respecting) and in

each recursive step, we look for a Z-respecting solution and reduce the set Z in a branching
step.

Consider a recursive call where we look for a Z-respecting solution to the input Multi-
budgeted cut instance (G,X, Y, `, (Ei, ki)`i=1). That is, we look for a Z-respecting budget-
respecting cut. We apply Theorem 5 to it. If it returns that there is no Z-respecting XY -cut
of size at most k, we terminate the current branch, as there is no solution. Otherwise, we
obtain the paths P1, P2, . . . , Pλ, the set B (which we will not use in this section), and the
cut C.

If C is budget-respecting, then it is a solution and we can return it. Otherwise, we
perform the following branching step. We iterate over all tuples (A1, ..., A`) such that for
every i ∈ [`], Ai ⊆ [λ] and |Ai| ≤ ki. Ai represents the subset of paths P1, ..., Pλ on which at
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MultiBudgetedCut(G,X, Y, `, (Ei, ki)`i=1)
Input: A directed graph G, two disjoint set of vertices X,Y ⊆ V (G), an integer `, for every i ∈ [`]
a set Ei ⊆ E(G) and an integer k.
Output: an XY cut C ⊆

⋃`

i=1 Ei such that for every i ∈ [`], |C ∩ Ei| ≤ ki if it exists, otherwise
return NO.

1. Z :=
⋃`

i=1 Ei;
2. return Solve(Z);

Solve(Z)
a. apply Theorem 5 to (G,X, Y, k, Z) where k =

∑`

i=1 ki, obtaining objects (Pi)λi=1, B, and C,
or an answer NO;
b. if the answer NO is obtained, then return NO;
c. if C is budget-respecting, then return C;
d. for each (A1, ..., A`) such that for every i in [`], Ai ⊆ [λ] and |Ai| ≤ ki do
d.1 Ẑ := Z;
d.2 for each i ∈ [`] do

for each j ∈ [λ] \Ai do
Ẑ := Ẑ \ (Ei ∩ E(Pj));

d.3 D = Solve(Ẑ);
d.4 if D 6=NO then return D;
e. return NO;

Figure 1 FPT algorithm for Multi-budgeted cut.

least one edge of color i is in the solution for each i ∈ [`]. For those edges of color i which
are on the paths not indicated by Ai, they are not in the solution. Thus we can safely delete
them from Z. More formally, for every i ∈ [`] and j ∈ [λ] \Ai, we remove from Z all edges
of E(Pj) ∩ Ei. We recurse on the reduced set Z. A pseudocode is available in Figure 1.

I Theorem 6. The algorithm in Figure 1 for Multi-budgeted cut is correct and runs in
time O(2`k2 · k · (|V (G)|+ |E(G)|)) where k = Σ`i=1ki.

Proof. We prove the correctness of the algorithm by showing that it returns a solution if
and only if the input instance is a yes-instance. The "only if" direction is obvious, as the
algorithm returns only Z-respecting budget-respecting XY -cuts and Z ⊆

⋃`
i=1 Ei in each

recursive call.
We prove the correctness for the "if" direction. Let C0 be a solution, that is, a budget-

respecting XY -cut. In the initial call to Solve, C0 is Z-respecting. It suffices to inductively
show that in each call to Solve such that C0 is Z-respecting, either the call returns a
solution, or C0 is Ẑ-respecting for at least one of the subcalls. Since C0 is Z-respecting, the
application of Theorem 5 returns objects (Pi)λi=1, B, and C. If C is budget-respecting, then
the algorithm returns it and we are done. Otherwise, consider the branch (A1, A2, . . . , A`)
where Ai = {j|E(Pj) ∩ C0 6= ∅}. Since C0 is budget-respecting, C0 ⊆ Z, and no edge of Z
appears on more than one path Pj , we have |Ai| ≤ ki for every i ∈ [`]. Thus, (A1, A2, . . . , A`)
is a branch considered by the algorithm. In this branch, the algorithm refines the set Z to
Ẑ. By the definition of Ai, for every i ∈ [`] and j ∈ [λ] \ Ai, we have C0 ∩ Ei ∩ E(Pj) = ∅.
Consequently, C0 is Ẑ-respecting and we are done.

For the time bound, the following observation is crucial.

I Claim 7. Consider one recursive call Solve(Z) where the application of Theorem 5 in
line (a) returned objects (Pi)λi=1, B and C. Assume that in some recursive subcall Solve(Ẑ)
invoked in line (d.3) (Figure 1), the subsequent application of Theorem 5 in line (a) of the
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subcall returned a cut of the same size, that is, the algorithm of Theorem 5 returned a cut Ĉ
of size λ̂ = λ. Then the cut Ĉ is budget-respecting and, consequently, is returned in line (c)
of the subcall.

Proof. Since |Ĉ| = λ is a Ẑ-respecting XY -cut, Ẑ ⊆ Z, and every edge e ∈ Z appears on at
most one path Pi, we have that Ĉ consists of exactly one edge of Ẑ on every path Pi, that is,
Ĉ = {e1, e2, . . . , eλ} and ej ∈ E(Pj) ∩ Ẑ for every j ∈ [λ]. In other words, the paths (Pj)λj=1

still correspond to a maximum flow from X to Y with edges of Ẑ being of unit capacity and
edges outside Ẑ of infinite capacity because (Pj)λj=1 are paths satisfying that any two of
them are disjoint on Ẑ ⊆ Z and λ is still equal to the size of the maximum flow. If ej ∈ Ei
for some j ∈ [λ] and i ∈ [`], then by the construction of set Ẑ, we have j ∈ Ai. Consequently,
|{j|ej ∈ Ei}| ≤ |Ai| ≤ ki for every i ∈ [`], and thus Ĉ is budget-respecting. y

Claim 7 implies that the depth of the search tree is bounded by k, as the algorithm terminates
when λ exceeds k. At every step, there are at most (2λ)` ≤ (2k)` different tuples (A1, ..., A`)
to consider. Consequently, there are O(2(k−1)k`) nodes of the search tree that enter the
loop in line (d) and O(2k2`) nodes that invoke the algorithm of Theorem 5. As a result, the
running time of the algorithm is O(2`k2 · k · (|V (G)|+ |E(G)|)). J

4 Multi-budgeted important separators with applications

Similar to the concept of important separators proposed by Marx [22] (see also [9, Chapter
8]), we define multi-budgeted important separators as follows.

I Definition 8. Let (G,X, Y, `, (Ei, ki)`i=1) be a Multi-budgeted cut instance and let
Z ⊆

⋃`
i=1 Ei be a set of deletable edges. Let C1, C2 be two minimal Z-respecting budget-

respecting XY -cuts. We say that C1 dominates C2 if
1. every vertex reachable from X in G− C2 is also reachable from X in G− C1;
2. for every i ∈ [`], |C1 ∩ Ei| ≤ |C2 ∩ Ei|.
We say that Ĉ is an important Z-respecting budget-respecting XY -cut if Ĉ is a minimal
Z-respecting budget-respecting XY -cut and no other minimal Z-respecting budget-respecting
XY -cut dominates Ĉ. Ĉ is an important budget-respecting XY -cut if it is an important
Z-respecting budget-respecting XY -cut for Z =

⋃`
i=1 Ei.

Chen et al. [4] showed an enumeration procedure for (classic) important separators using
similar charging scheme as the one of the previous section. Our main result in this section
is a merge of the arguments from the previous section with the arguments of Chen et al.
Theorem 2 follows from Theorem 9 via an analogous arguments as in [4].

I Theorem 9. Let (G,X, Y, `, (Ei, ki)`i=1) be a Multi-budgeted cut instance, let Z ⊆⋃`
i=1 Ei be a set of deletable edges, and denote k =

∑`
i=1 ki. Then one can in

2O(k2 log k)(|V (G)|+|E(G)|) time enumerate a family of minimal Z-respecting budget-respecting
XY -cuts of size 2O(k2 log k) that contains all important ones.

Proof. Consider the recursive algorithm presented in Figure 2. The recursive procedure Im-
portantCut takes as an input a Multi-budgeted Cut instance I = (G,X, Y, `, (Ei, ki)`i=1)
and a set Z ⊆

⋃`
i=1 Ei, with the goal to enumerate all important Z-respecting budget-

respecting XY -cuts. Note that the procedure may output some more Z-respecting budget-
respecting XY -cuts; we need only to ensure that
1. it outputs all important ones,
2. it outputs 2O(k2` log k) cuts, and
3. it runs within the desired time.

IPEC 2018



18:8 Multi-Budgeted Directed Cuts

The procedure first invokes the algorithm of Theorem 5 on (G,X, Y, k, Z), where k =
∑`
i=1 ki.

If the call returned that there is no Z-respecting XY -cut of size at most k, we can return
an empty set. Otherwise, let (Pj)λj=1, B, and C be the computed objects. We perform a
branching step, with each branch labeled with a tuple (A1, A2, . . . , A`) where Ai ⊆ [λ] and
|Ai| ≤ ki for every i ∈ [`]. A branch (A1, A2, . . . , A`) is supposed to capture important cuts
C0 with {j|C0 ∩ B ∩ E(Pj) ∩ Ei 6= ∅} ⊆ Ai for every i ∈ [`]; that is, for every i ∈ [`] and
j ∈ [λ] we guess if C0 contains a bottleneck edge of color i on path Pj . All this information
(i.e., paths Pj , the set B, the cut C, and the sets Ai) are passed to an auxiliary procedure
Enum.

The procedure Enum shrinks the set Z according to sets Ai. More formally, for every
i ∈ [`] and j ∈ [λ] \ Ai we delete from Z all edges from B ∩ Ei ∩ E(Pj), obtaining a set
Ẑ ⊆ Z. At this point, we check if the reduction of the set Z to Ẑ increased the size of
minimum Z-respecting XY -cut by invoking Theorem 5 on (G,X, Y, k, Ẑ) and obtaining
objects (P̂j)λ̂j=1, B̂, Ĉ or a negative answer. If the size of the minimum cut increased, that
is, λ̂ > λ, we recurse with the original procedure ImportantCut. Otherwise, we add one
cut to S, namely Ĉ. Furthermore, we try to shrink one of the sets Ai by one and recurse;
that is, for every i ∈ [`] and every j ∈ Ai, we recurse with the procedure Enum on sets A′i′
where A′i = Ai \ {j} and A′i′ = Ai′ for every i′ ∈ [`] \ {i}.

Let us first analyze the size of the search tree. A call to ImportantCut invokes at most(
λ`
≤k
)
≤ (k` + 1)k calls to Enum. Each call to Enum either falls back to ImportantCut

if λ̂ > λ or branches into
∑`
i=1 |Ai| ≤ k` recursive calls to itself. In each recursive call, the

sum
∑`
i=1 |Ai| decreases by one. Consequently, the initial call to Enum results in at most

(k`)k recursive calls, each potentially falling back to ImportantCut. Since each recursive
call to ImportantCut uses strictly larger value of λ, which cannot grow larger than k, and
` ≤ k, the total size of the recursion tree is 2O(k2 log k). Each recursive call to Enum adds
at most one set to S, while each recursive call to ImportantCut and Enum runs in time
O(2k` · k · (|V (G)| + |E(G)|)). The promised size of the family S and the running time
bound follows. It remains to show correctness, that is, that every important Z-respecting
budget-respecting XY -cut is contained in S returned by a call to ImportantCut(I, Z).

We prove by induction on the size of the recursion tree that (1) every call to Im-
portantCut(I, Z) enumerates all important Z-respecting budget-respecting XY -cuts, and
(2) every call to Enum(I, Z, (Pj)λj=1, B,C, (Ai)`i=1) enumerates all important Z-respecting
budget-respecting XY -cuts C0 with the property that {j|Ei ∩E(Pj)∩B ∩C0 6= ∅} ⊆ Ai for
every i ∈ [`].

The inductive step for a call ImportantCut(I, Z) is straightforward. Let us fix an ar-
bitrary important Z-respecting budget-respecting XY -cut C0. Since C0 is budget-respecting,
C0 is a Z-respecting cut of size at most k, and thus the initial call to Theorem 5 cannot return
NO. Consider the tuple (A1, A2, . . . , A`) where for every i ∈ [`], {j|E(Pj)∩Ei∩B∩C0} = Ai.
Since C0 is budget-respecting and the paths Pj do not share an edge of Z, we have that
|Ai| ≤ ki for every i ∈ [`] and the algorithm considers this tuple in one of the branches. Then,
from the inductive hypothesis, the corresponding call to Enum returns a set containing C0.

Consider now a call to Enum(I, Z, (Pj)λj=1, B,C, (Ai)`i=1) and an important Z-respecting
budget-respecting XY -cuts C0 with the property that {j|Ei ∩ E(Pj) ∩ B ∩ C0 6= ∅} ⊆ Ai
for every i ∈ [`]. By the construction of Ẑ and the above assumption, C0 is Ẑ-respecting.
In particular, the call to the algorithm of Theorem 5 cannot return NO. Hence, in the case
when λ̂ > λ, C0 is enumerated by the recursive call to ImportantCut and we are done.
Assume then λ̂ = λ.
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ImportantCut(I, Z)
Input: A Multi-budgeted cut instance I = (G,X, Y, `, (Ei, ki)`i=1) and a set Z ⊆

⋃`

i=1 Ei.
Output: a family S of minimal Z-respecting budget-respecting XY -cuts that contains all important
ones.
1. S := ∅;
2. apply the algorithm of Theorem 5 to (G,X, Y, k, Z) with k =

∑`

i=1 ki, obtaining either objects
(Pi)λi=1, B, and C, or an answer NO;
3. if an answer NO is obtained, then return S;
4. for each (A1, ..., A`) such that for every i in [`], Ai ⊆ [λ] and |Ai| ≤ ki do
4.1 S := S ∪Enum(I, Z, (Pj)λj=1, B,C, (Ai)`i=1)
5. return S

Enum(I, Z, (Pj)λj=1, B,C, (Ai)`i=1)
Input: A Multi-budgeted cut instance I = (G,X, Y, `, (Ei, ki)`i=1), a set Z ⊆

⋃`

i=1 Ei, a family
(Pj)λj=1 of paths from X to Y such that every edge of Z appears on at most one path Pj , a set
B consisting of all edges that participate in some minimum Z-respecting XY -cut, a minimum
Z-respecting XY -cut C closest to Y , and sets Ai ⊆ [λ] of size at most ki for every i ∈ [`]
Output: a family S of minimal Z-respecting budget-respecting XY -cuts that contains all cuts C0
that are important Z-respecting budget respecting XY -cuts and satisfy {j|E(Pj)∩B ∩C0 ∩Ei 6=
∅} ⊆ Ai for every i ∈ [`].
a. Ẑ := Z;
b. for each i ∈ [`] do

for each j ∈ [λ] \Ai do
Ẑ := Ẑ \ (B ∩ Ei ∩ E(Pj));

c. apply the algorithm of Theorem 5 to (G,X, Y, k, Ẑ), obtaining either objects (P̂i )̂λi=1, B̂, and Ĉ
or an answer NO;
d. if λ̂ exists and λ̂ > λ, then
d.1 S := S∪ ImportantCut(I, Ẑ);
e. else if λ̂ exists and equals λ, then
e.1 S := S ∪ {Ĉ};
e.2 for each i ∈ [`] do

for each j ∈ Ai do
A′
i := Ai \ {j} and A′

i′ := Ai′ for every i′ ∈ [`] \ {i}
S := S ∪Enum(I, Ẑ, (Pj)λj=1, B̂, Ĉ, (A′

i)`i=1).
f. return S

Figure 2 FPT algorithm for enumerating important multi-budgeted Z-respecting XY -cuts.

For i ∈ [`], let Âi = {j|Ei ∩E(Pj)∩ B̂ ∩C0 6= ∅}. Since Ẑ ⊆ Z but the sizes of minimum
Z-respecting and Ẑ-respecting XY -cuts are the same, we have B̂ ⊆ B. Consequently,
Âi ⊆ Ai for every i ∈ [`].

Assume there exists i ∈ [`] such that Âi ( Ai and let j ∈ Ai \ Âi. Consider then the
branch (i, j) of the Enum procedure, that is, the recursive call with A′i = Ai \ {j} and
A′i′ = Ai′ for i′ ∈ [`] \ {i}. Observe that we have {j|Ei′ ∩ E(Pj) ∩ B̂ ∩ C0 6= ∅} ⊆ A′i′ for
every i′ ∈ [`] and, by the inductive hypothesis, the corresponding call to Enum enumerates
C0. Hence, we are left only with the case Âi = Ai, that is, Ai = {j|Ei ∩E(Pj)∩ B̂ ∩C0 6= ∅}
for every i ∈ [`].

We claim that in this case C0 = Ĉ. Assume otherwise. Since |Ĉ| = λ̂ = λ and Ẑ ⊆ Z,
Ĉ contains exactly one edge on every path Pj . Also, Ĉ ⊆ B̂ by the definition of the set
B̂. Since Ĉ is the minimum Ẑ-respecting XY -cut that is closest to Y , Ĉ = {e1, e2, . . . , eλ}
where ej is the last (closest to Y ) edge of B̂ on the path Pj for every j ∈ [λ].

Let R0 and R̂ be the set of vertices reachable from X in G−C0 and G− Ĉ, respectively.
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s t

C1 C2 C3 C4

A1 A2 A3 A4

B4 B3 B2 B1

Figure 3 A schematic picture of a 4-bowtie.

Let D be a minimal XY -cut contained in δ+(R0 ∪ R̂). (Note that δ+(R0 ∪ R̂) is an XY -cut
because X ⊆ R0 ∪ R̂ and Y ∩ (R0 ∪ R̂) = ∅.) Then since D ⊆ C0 ∪ Ĉ ⊆ Z, D is Z-respecting.
By definition, every vertex reachable from X in G−R0 is also reachable from X in G−D.

We claim that D is budget-respecting and, furthermore, dominates C0. Fix a color i ∈ [`];
our goal is to prove that |D ∩Ei| ≤ |C0 ∩Ei|. To this end, we charge every edge of color i in
D \ C0 to a distinct edge of color i in C0 \D. Since D ⊆ C0 ∪ Ĉ, we have that D \ C0 ⊆ Ĉ,
that is, an edge of D\C0 of color i is an edge ej for some j ∈ [λ] with ej ∈ Ei and ej ∈ D\C0.

Recall that we are working in the case Ai = {j|Ei∩E(Pj)∩B̂∩C0 6= ∅}. Since ej ∈ Ĉ ⊆ Ẑ,
we have that j ∈ Ai. Hence, there exists e′j ∈ Ei ∩E(Pj)∩ B̂ ∩C0. By the definition of Ĉ, ej
is the last (closest to Y ) edge of B̂ on Pj . Since ej /∈ C0, e′j 6= ej and e′j lies on the subpath
of Pj between X and the tail of ej . This entire subpath is contained in R̂ and, hence, e′j /∈ D.

We charge ej to e′j . Since e′j ∈ E(Pj) ∩Ei ∩ B̂ ∩ (C0 \D), for distinct j, the edges e′j are
distinct as the paths Pj do not share an edge belonging to Z and B̂ ⊆ Ẑ ⊆ Z. Consequently,
|D ∩ Ei| ≤ |C0 ∩ Ei|. This finishes the proof that D dominates C0.

Since C0 is important, we have D = C0. In particular, R̂ ⊆ R0. On the other hand, for
every j ∈ [λ] we have that ej ∈ Ĉ ⊆ Ẑ ⊆ Z ⊆

⋃`
i=1 Ei. In particular, there exists i ∈ [`]

such that ej ∈ Ei and j ∈ Ai. Hence, we also have Ei ∩ E(Pj) ∩ B̂ ∩ C0 6= ∅. But the entire
subpath of Pj from X to the tail of ej lies in R̂ ⊆ R0, while ej is the last edge of B̂ on Pj .
Hence, ej ∈ C0. Since the choice of j is arbitrary, Ĉ ⊆ C0. Since Ĉ is an XY -cut and C0 is
minimal, Ĉ = C0 as claimed.

This finishes the proof of Theorem 9. J

5 Bound on the number of solutions closest to t

In this section we sketch the proofs of Theorems 3 and 4. The central definition of this
section is the following (see also Figure 3).

I Definition 10. Let G be a directed graph with distinguished vertices s and t and let k
be an integer. An a-bowtie is a sequence C1, C2, . . . , Ca of pairwise disjoint minimal st-cuts
of size k each such that each cut Ci can be partitioned Ci = Ai ] Bi such that for every
1 ≤ i < j ≤ a, the set Ai is exactly the set of edges of Ci reachable from s in G−Cj and Bj
is exactly the set of edges of Cj reachable from s in G− Ci.

Our main graph-theoretic result is the following. The proof is deferred to the full version
of the paper.
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I Theorem 11. For every integers a, k ≥ 1 there exists an integer g such that for every
directed graph G with distinguished s, t ∈ V (G), and a family U of pairwise disjoint minimal
st-cuts of size k each, if |U| ≥ g, then U contains an a-bowtie.

The next two lemmata are key observations to prove Theorems 3 and 4, respectively,
with the help of Theorem 11.

I Lemma 12. Let k, g, G, s, t, F , and G be as in the statement of Theorem 3. Then G
does not contain an a-bowtie for a >

(
k+2

2
)
.

Proof. Assume the contrary, let (Ci, Ai, Bi)ai=1 be such a bowtie. Since a >
(
k+2

2
)
, there

exists i < j with |Ai| = |Aj | and |Bi| = |Bj | (there are
(
k+2

2
)
choices for (|Ai|, |Bi|)). However,

then Ai ∪Bj and Aj ∪Bi have also cardinality k, are st-cuts, and have together twice the
minimum weight. Furthermore, the set of vertices reachable from s in G − (Aj ∪ Bi) is a
strict superset of the set of vertices reachable from s in G−Ci and G−Cj . This contradicts
the fact that Ci, Cj ∈ G. J

I Lemma 13. Let k, `, I = (G, s, t, (Pi)mi=1, k), F , and G be as in the statement of Theorem 4.
Then G does not contain a 4-bowtie (Ci, Ai, Bi)4

i=1 in which the edge set of every path Pj
intersects at most one cut Ci.

Proof. Assume the contrary Let (Ci, Ai, Bi)4
i=1 be such a 4-bowtie. Consider i ∈ {2, 3}

and two edges e ∈ Ai and f ∈ Bi. In G − C4, the edge e is reachable from s while f is
not; consequently, e and f cannot appear on the same input path with e being earlier (by
assumption, C4 is disjoint from the input path in question). A similar reasoning for G− C1
shows that e and f cannot appear on the same input path with f being earlier than e.

Hence, e and f cannot appear together on a single path Pj . For a set of edges D, by the
cost of D we denote |{j|D ∩ Pj 6= ∅}|. Since the choice of e and f was arbitrary, we infer
that the sum of costs of A2 ∪ B3 and of A3 ∪ B2 equals the sum of costs of C2 and of C3.
Hence, both these st-cuts have minimum cost. However, A2 ∪B3 is closer to t than C2, a
contradiction. J

Proof of Theorem 3. Assume |G| > g for some sufficiently large g to be fixed later. For
i ∈ [k], let Gi be the set of u ∈ G of cardinality i. We apply the Sunflower Lemma to the
largest set Gi: If g > k · k!gk1 for some integer g1 to be chosen later, there exists G1 ⊆ G with
|G1| > g1, every element of G1 being of the same size k′, and a set c such that u ∩ v = c for
every distinct u, v ∈ G1.

Let k̂ = k′ − |c|, û = u \ c for every u ∈ G1, Ĝ1 = {û | u ∈ G1} and Ĝ = G − c. Since
every u ∈ U is a minimal st-cut of size k′ in G, every û ∈ Ĝ1 is a minimal st-cut of size k̂
in Ĝ. Furthermore, every û ∈ Ĝ1 is a minimal st-cut of size at most k̂ in Ĝ of minimum
possible weight: if there existed an st-cut x̂ of smaller weight and cardinality at most k̂,
then x = x̂ ∪ c would be an st-cut in G of cardinality at most k and weight smaller than
every element of G1. Similarly, if there were a minimal st-cut x̂ in Ĝ of minimum weight
and cardinality at most k̂ that is closer to t than û for some û ∈ Ĝ1, then x̂ ∪ c would be
an st-cut in G of cardinality at most k and minimum weight that is closer to t than u, a
contradiction. By construction, the elements of Ĝ1 are pairwise disjoint.

Lemma 12 bounds the maximum possible size of a bowtie in Ĝ1. Hence, Theorem 11
asserts that Ĝ1 has size bounded by a function of k. This finishes the proof of the theorem. J

Proof of Theorem 4. We proceed similarly as in the proof of Theorem 3, but we need to be
a bit more careful with the paths Pj . Assume |G| > g for some sufficiently large integer g.
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As before, we partition G according to the sizes of elements: for every i ∈ [k`], let
Gi = {u ∈ G | |u| = i}. Let i ∈ [k`] be such that |Gi| > g/(k`). For u ∈ Gi, let
J(u) = {j | u ∩ Pj 6= ∅}. By the assumptions of the theorem, every set J(u) is of cardinality
exactly k. We apply the Sunflower Lemma to {J(u) | u ∈ Gi}: If g > (k`) · k! · gk1 for
some integer g1 to be fixed later, then there exists G1 ⊆ Gi of size larger than g1 and a set
I ⊆ [m] such that for every distinct u, v ∈ G1 we have J(u) ∩ J(v) = I. For every u ∈ G1, let
uI = u ∩

⋃
j∈I Pj . Since |I| ≤ k, there are at most 2k` choices for uI among elements u ∈ G1.

Consequently, there exists G2 ⊆ G1 of cardinality larger than g2 := g1/2k` such that uI = vI
for every u, v ∈ G2. Denote c = uI for any u ∈ G2.

Let û := u− c for every u ∈ G2. Let Ĝ2 = {û | u ∈ G2}.
Define now Ĝ = G− c and define a partition P̂ of E(Ĝ) into paths of length at most ` as

follows: we take all paths Pi for i /∈ I and, for every i ∈ I, each edge of Pi \ c as a length-1
path. Furthermore, denote k̂ = k − |I|. Note that (Ĝ, s, t, P̂, k̂) is a Chain `-SAT instance
for which every û ∈ Ĝ2 is a solution. Furthermore, (Ĝ, s, t, P̂, k̂ − 1) is a no-instance, as if x̂
were its solution, then x̂ ∪ c would be a solution to (G, s, t, (Pi)mi=1, k − 1), a contradiction.
Similarly, if there were a solution x̂ to (Ĝ, s, t, P̂, k̂) that is closer to t than û for some û ∈ Ĝ2,
then x̂∪ c would be a solution to (G, s, t, (Pi)mi=1, k) that is closer to t than u, a contradiction.
Furthermore, by construction, the elements of Ĝ2 are pairwise disjoint and no path of P̂
intersects more than one element of Ĝ2.

Lemma 13 bounds the maximum possible size of a bowtie in Ĝ2. Hence, Theorem 11
asserts that Ĝ2 has size bounded by a function of k and `. This finishes the proof of the
theorem. J

6 Conclusion

We would like to conclude with a discussion on future research directions. First, our upper
bound of 2O(k2 log k) on the number of multi-budgeted important separators (Theorem 9) is
far from the 4k bound for the classic important separators. As pointed out by an anonymous
reviewer at IPEC 2018, there is an easy lower bound of k! for the number of multi-budgeted
important separators: Let ` = k, ki = 1 for every i ∈ [`], and let G consist of k paths from s

to t, each path consisting of ` edges of different colors. Then there are exactly k! distinct
multi-budgeted important separators, as we can freely choose a different color i ∈ [`] to cut
on each path. We are not aware of any better lower bound, leaving a significant gap between
the lower and upper bounds.

Second, our existential statement of Theorems 3 and 4 can be treated as a weak sup-
port of tractability of Chain `-SAT and Weighted st-cut. Are they really FPT when
parameterized by the cardinality of the cut?
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Abstract
In a graph, a matching cut is an edge cut that is a matching. Matching Cut, which is known to
be NP-complete, is the problem of deciding whether or not a given graph G has a matching cut.
In this paper we show that Matching Cut admits a quadratic-vertex kernel for the parameter
distance to cluster and a linear-vertex kernel for the parameter distance to clique. We further
provide an O∗(2dc(G)) time and an O∗(2dc(G)) time FPT algorithm for Matching Cut, where
dc(G) and dc(G) are the distance to cluster and distance to co-cluster, respectively. We also
improve the running time of the best known branching algorithm to solve Matching Cut from
O∗(1.4143n) to O∗(1.3803n). Moreover, we point out that, unless NP ⊆ coNP/poly, Matching
Cut does not admit a polynomial kernel when parameterized by treewidth.

2012 ACM Subject Classification Mathematics of computing → Graph theory, Theory of com-
putation→ Graph algorithms analysis, Theory of computation→ Parameterized complexity and
exact algorithms

Keywords and phrases matching cut, decomposable graph, graph algorithm

Digital Object Identifier 10.4230/LIPIcs.IPEC.2018.19

1 Introduction

In a graph G = (V,E), a cut is a partition V = A ∪̇B of the vertex set into disjoint, nonempty
sets A and B, written (A,B). The set of all edges in G having an endvertex in A and the
other endvertex in B, also written (A,B), is called the edge cut of the cut (A,B). A matching
cut is an (possibly empty) edge cut that is a matching. Note that, by our definition, a
matching whose removal disconnects the graph need not be a matching cut.

Another way to define matching cuts is as follows ([13, 7]). A partition V = A ∪̇B of the
vertex set of the graph G = (V,E) into disjoint, nonempty sets A and B, is a matching cut
if and only if each vertex in A has at most one neighbor in B and each vertex in B has at
most one neighbor in A. Not every graph has a matching cut; the Matching Cut problem
is the problem of deciding whether or not a given graph has a matching cut:

Matching Cut
Instance: A graph G = (V, E).
Question: Does G have a matching cut?
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Farley and Proskurowski [11] studied matching cuts in graphs in the context of network
applications. Patrignani and Pizzonia [18] pointed out an application of matching cuts in
graph drawing. Graphs having no matching cut were first discussed by Graham in [13] under
the name indecomposable graphs, and have been recently used by Araújo et al. [1] in the
context of WDM (Wavelength Division Multiplexing) networks.

Previous results. Chvátal [7] showed that Matching Cut is NP-complete, even when
restricted to graphs of maximum degree four, and polynomially solvable for graphs of
maximum degree three. These results triggered a lot of research on the computational
complexity of Matching Cut in graphs with additional structural assumptions [4, 6, 14, 16,
15, 17, 18]. In particular, the NP-hardness of Matching Cut has been further strengthened
to planar graphs of maximum degree four [4] and bipartite graphs of maximum degree
four [16]. As noted previously [14], the NP-hardness reduction by Chvátal [7] also shows that
Matching Cut cannot be solved in 2o(n) time, where n is the number of vertices of the
input graph, if the Exponential Time Hypothesis (ETH) is true.

Exact exponential algorithms for Matching Cut on graphs without any restriction have
been recently considered by Kratsch and Le [14] who provided the first exact branching
algorithm for Matching Cut running in time O∗(1.4143n)1, and a single-exponential
algorithm of running time 2τ(G)O(n2), where τ(G) is the vertex cover number. We note that
Matching Cut can be expressed in MSOL, see for example [4]; hence Matching Cut is
fixed-parameter tractable when parameterized by tw(G), the treewidth of G. Very recently,
Aravind et al. [2] presented a tree-decomposition-based dynamic programming algorithm
that solves Matching Cut in O∗(12tw(G)) time and fixed-parameter algorithms for further
parameters describing the structure of the input graph. For example, Matching Cut can
be solved in O∗(2tc(G)) time where tc(G) ≤ τ(G) is the size of a smallest twin cover of G [2].

Our contributions. We give the first polynomial kernels for Matching Cut by showing
that Matching Cut admits a quadratic-vertex kernel for the parameter distance to cluster
and a linear-vertex kernel for the parameter distance to clique. Second, we show that
Matching Cut can be solved by single-exponential algorithms running in time 2dc(G)O(n2)
and 2dc(G)O(nm), respectively, where dc(G) is the distance to cluster and dc(G) is the
distance to co-cluster. This improves upon the FPT algorithms for Matching Cut with
running time 2τ(G)O(n2) [14], where τ(G) ≥ max{dc(G),dc(G)} is the vertex cover number
of G which can be much larger than dc(G) and dc(G). Similarly, this improves upon the FPT
algorithm with O∗(2tc(G)) [2] since tc(G) ≥ dc(G). Third, we provide an exact branching
algorithm for Matching Cut that has time complexity O∗(1.3803n). This result improves
upon the first exact branching algorithm for Matching Cut that has time complexity
O∗(1.4143n) [14].

Notation and terminology. Let G = (V,E) be a graph with vertex set V (G) := V and
edge set E(G) := E. We assume that a (input) graph has n vertices and m edges. A stable
set (a clique) in G is a set of pairwise non-adjacent (adjacent) vertices. The neighborhood
of a vertex v in G, denoted by NG(v), is the set of all vertices in G adjacent to v; if the
context is clear, we simply write N(v). Set deg(v) := |N(v)|, the degree of the vertex v. For
a subset W ⊆ V , G[W ] is the subgraph of G induced by W , and G−W stands for G[V \W ].

1 Throughout the paper we use the O∗ notation which suppresses polynomial factors.
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We write NW (v) for N(v) ∩W and call the vertices in N(v) ∩W the W -neighbors of v.
A graph is a cluster graph if it is a vertex disjoint union of cliques. The maximal cliques of a
cluster graph are called clusters. A graph is a co-cluster graph if it is a complete multipartite
graph or, equivalently, the complement graph of a cluster graph. Observe that a clique is a
cluster graph and a co-cluster graph.

A vertex cover of G is a subset C ⊆ V such that every edge of G has at least one endvertex
in C, i.e., V \ C is a stable set in G. The vertex cover number of G, denoted by τ(G), is the
smallest size of a vertex cover of G. More generally, given a graph property P , a distance to
P set of a graph G is a subset U ⊆ V such that G− U has the property P. The distance
to P is the smallest size of a distance to P set. This number is called distance to cluster,
denoted by dc(G), in case P is the set of cluster graphs, it is called distance to co-cluster,
denoted by dc(G), in case P is the set of co-cluster graphs, and it is called distance to clique,
denoted by dq(G), in case P is the set of cliques. By the definition of cluster graphs and
co-cluster graphs, we have τ(G) ≥ max{dc(G), dc(G)} and dq(G) ≥ max{dc(G), dc(G)} for
any graph G.

Throughout the paper we use the concept of monochromatic vertex subsets and induced
subgraphs. Let G = (V,E) be a graph and U ⊆ V . Then we call U monochromatic in G if
for every matching cut (A,B) of G, either U ⊆ A or U ⊆ B; slightly abusing notation we
shall sometimes also call G[U ] monochromatic in G. Being monochromatic is hereditary:
if G[U ] is monochromatic, then so is G[U ′] for every U ′ ⊆ U . Note that a complete subgraph
Kn is monochromatic if n = 1 or n ≥ 3, and that a complete bipartite subgraph Kn,m is
monochromatic if n ≥ 3 and m ≥ 2 or vice versa. Moreover, disconnected graphs and graphs
having a vertex of degree at most one admit a matching cut. Hence, we may assume that all
graphs considered are connected and have minimum degree at least two.

When an algorithm branches on the current instance of size n into r subproblems of sizes
at most n− t1, n− t2, . . . , n− tr, then (t1, t2, . . . , tr) is called the branching vector of this
branching, and the unique positive root of xn − xn−t1 − xn−t2 − · · · − xn−tr = 0, denoted by
τ(t1, t2, . . . , tr), is called its branching number. The running time of a branching algorithm
is O∗(αn), where α = maxi αi and αi is the branching number of branching rule i, and
the maximum is taken over all branching rules. We refer to [12] for more details on exact
branching algorithms. For the basic notions of parameterized complexity we refer to [8].

2 A Polynomial Kernel for the Distance to Cluster

In this section we present a polynomial kernel for the parameter dc(G), the distance of G to
a cluster graph. First, however, we motivate the study of the parameter dc(G) by a negative
result. Recall that there is an FPT algorithm for Matching Cut when parameterized by
treewidth [2, 4]. Hence, a natural question is whether Matching Cut admits a polynomial
kernel for this parameter. A further candidate parameter for a polynomial kernel is the
minimum number k of edges crossing any matching cut; this could be considered the standard
solution size parameter for Matching Cut. Finally, a common parameter in kernelizations
is the maximum degree of the input graph. We rule out polynomial kernels for all three
parameters.

I Proposition 1. Matching Cut does not admit polynomial kernel with respect to the sum
of the treewidth of G, the minimum number of edges crossing any matching cut of G, and
the maximum degree in G unless NP ⊆ coNP/poly.

The proof of Proposition 1 uses cross-composition and is deferred to the full version of this
work.
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Figure 1 An example for the definition of N2(Ui) with Ui = {u, v}. We have {x, a} ⊆ N2(Ui)
since x and a have two neighbors in Ui. Moreover, {y, z} ⊆ N2(Ui) since y and z are in a cluster
of size at least three with x. Alternatively, {x, y, z} ⊆ N2(Ui) since u ∈ Ui is adjacent to x and y.
Finally, b /∈ N2(Ui) even though a ∈ N2(Ui), since the cluster {a, b} has only size two.

This excludes many natural candidate parameters for kernelization and motivates our
study of kernelization for dc(G), the distance of G to a cluster graph. Let U = {u1, . . . , u|U |}
denote a vertex set such that G−U is a cluster graph. We may assume that |U | ≤ 3dc(G) since
a 3-approximation of Cluster Vertex Deletion can be computed in time O(dc(G)(n+m))
based on the observation that a graph is a cluster graph if and only if it does not contain
an induced path on three vertices. During the kernelization, we maintain a partition of U
into U1, . . . , U` such that each Ui is monochromatic. The initial partition contains one set
for each vertex of U , that is, Ui := {ui}, 1 ≤ i ≤ |U |. We call the sets of the partition the
monochromatic parts of U .

During the kernelization, we may merge two sets Ui and Uj , i 6= j, which is to remove Ui
and Uj from the partition and to add Ui ∪ Uj . We say that merging Ui and Uj is safe
if Ui ∪ Uj is monochromatic in G.

The main idea of the kernelization is to find opportunities to merge monochromatic parts
of U or to transform distinct clusters into a single cluster because we infer that they form
a larger monochromatic set. Intuitively, an opportunity for merging arises when there are
many vertices in V \U with at least two neighbors in U . The first step handles some clusters
that have no such vertex.

I Reduction Rule 1. If V \U contains a degree-one vertex or a cluster C such that (V \C,C)
is a matching cut, then output “yes”.

The correctness of the rule is obvious. After its application, every cluster C contains either a
vertex v with two neighbors in U or there is a vertex in u ∈ U with two neighbors in C.

To identify clusters that form monochromatic sets together with some monochromatic
parts of U , we introduce the following notation. For each monochromatic part Ui of U , we
let N2(Ui) denote the set of vertices v ∈ V \ U such that at least one of the following holds:

v has two neighbors in Ui,
v is in a cluster of size at least three in G − U that contains a vertex that has two
neighbors in Ui, or
v is in a cluster C in G− U and some vertex in Ui has two neighbors in C.

I Proposition 1. Ui ∪N2(Ui) is monochromatic.

Proof. In the first case, v has two neighbors in the monochromatic set Ui and thus Ui ∪ {v}
is monochromatic. In the second case, the cluster C containing v is monochromatic and
contains a vertex w such that Ui ∪ {w} is monochromatic. Hence, Ui ∪ C is monochromatic.
In the third case, the cluster C contains two vertices x and y that form a triangle with some
vertex from Ui and thus Ui ∪ {x, y} is monochromatic. If |C| = 2, then x = v or y = v,
if |C| > 3, then C is monochromatic and thus Ui ∪ C is monochromatic. J
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The next two rules identify monochromatic parts that can be merged because they belong to
overlapping monochromatic sets.

I Reduction Rule 2. If there is a vertex v that is contained in N2(Ui) and N2(Uj) for i 6= j,
then merge Ui and Uj.

Proof of safeness. By Proposition 1, {v} ∪ Ui and {v} ∪ Uj are monochromatic in G.
Thus, Ui ∪ Uj ∪ {v} is monochromatic. J

I Reduction Rule 3. If there are three vertices v1, v2, v3 in V that have two common
neighbors u ∈ Ui and u′ ∈ Uj, i 6= j, then merge Ui and Uj.

Proof of safeness. The proof is based on the fact that a Kn,m is monochromatic for n ≥ 3
and m ≥ 2: Assume that u and u′ are not in the same part of a matching cut (A,B). Then,
at most one vertex of {v1, v2, v3} is in A and at most one is in B. This is absurd and,
thus, {u, u′} is monochromatic which makes Ui ∪ Uj monochromatic. J

In the following, a cluster consisting of two vertices is an edge cluster, all other clusters are
nonedge clusters. As we will show, after application of the above rules, we have essentially
reached a situation in which there is a bounded number of nonedge clusters that are not
contained in some N2(Ui), we call these clusters ambiguous. More precisely, we say that
a vertex in V \ U is ambiguous if it has neighbors in Ui and Uj where i 6= j. A cluster is
ambiguous if it contains at least one ambiguous vertex. In contrast, we call a cluster fixed if
it is contained in N2(Ui) for some Ui.

I Proposition 2. If G is reduced with respect to Reduction Rule 1, then every nonedge cluster
in G is ambiguous or fixed.

Proof. Since G is reduced with respect to Reduction Rule 1, every cluster C contains at least
one vertex v that has two neighbors in U or there is a vertex u from some monochromatic
part Ui that has two neighbors in C. In the latter case, C is contained in N2(Ui) and thus
fixed. In the first case, if v has two neighbors in the same part Ui, then C ⊆ N2(Ui) and C
is fixed. Otherwise, v is ambiguous which means that C is ambiguous. J

Observe that according to this definition, a nonedge cluster may be ambiguous and fixed at
the same time. We will decrease the number of fixed clusters with the following rule.

I Reduction Rule 4. If there are two clusters C1 and C2 that are contained in N2(Ui), then
add all edges between these clusters.

Proof of safeness. Let G denote the graph to which the rule is applied and let G′ denote
the resulting graph. If G′ has a matching cut, then so does G, because G is a subgraph of G′
on the same vertex set.

For the converse, consider the following: C1 ∪ C2 is monochromatic since C1 and C2 are
contained in N2(Ui). Thus, if G has a matching cut, then so does G′ because adding edges
between vertices of a monochromatic set does not destroy the matching cut property. J

The following is obvious by the pigeonhole principle and the fact that the number of
monochromatic parts is at most |U |.

I Lemma 1. Let G be an instance of Matching Cut with cluster vertex deletion set U
that is reduced with respect to Reduction Rule 4. Then G has O(|U |) fixed clusters.

The next rules will help in bounding the number of vertices in the clusters.
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I Reduction Rule 5. If there is a cluster C with more than three vertices that contains a
vertex v with no neighbors in U , then remove v.

Proof of safeness. Let G denote the original graph and let G′ be the graph obtained from
the application of the reduction rule. Since |C| ≥ 4, C is monochromatic in G and C − v is
monochromatic in G′. This and the fact that v has only neighbors in C immediately implies
that G and G′ are equivalent. J

After application of Rule 5, every vertex in a cluster of size at least three has a neighbor in
U . The next rule removes unnecessary edges between monochromatic parts and clusters.

I Reduction Rule 6. If there is a cluster C with at least three vertices and a monochromatic
set Ui such that C ⊆ N2(Ui), then remove all edges between C and Ui from G, choose an
arbitrary vertex u ∈ Ui and two vertices v1, v2 ∈ C, and add two edges {u, v1} and {u, v2}.
If |Ui| = 2, then add an edge between u′ ∈ Ui \ {u} and v3 ∈ C \ {v1, v2}. If |Ui| > 2, then
make Ui a clique.

Proof of safeness. Let G denote the original graph and let G′ be the graph obtained from the
application of the reduction rule. Since C ⊆ N2(Ui), we have, by Proposition 1, that Ui ∪ C
is monochromatic. Thus, if G has a matching cut (A,B), then without loss of generality
we have Ui ∪ C ⊆ A. This implies that (A,B) is a matching cut of G′ since G′ is obtained
from G by removing and adding certain edges between vertices in Ui ∪ C ⊆ A.

Conversely, assume that G′ has a matching cut. In G′, Ui is monochromatic and thus
the cluster C is contained in N2(Ui). By Proposition 1, Ui ∪ C is monochromatic in G′.
As above, since G can be obtained from G′ by removing and adding certain edges between
vertices in Ui ∪ C, G also has a matching cut. J

After application of these rules, the size of the instance is, with exception of the edge
clusters, already bounded by a polynomial function of |U | as we show in the following.

I Lemma 2. Let G be an instance of Matching Cut with cluster vertex deletion set U
that is reduced with respect to Reduction Rules 1–6. Then G has

O(|U |2) ambiguous vertices, and
O(|U |2) nonedge clusters, each containing O(|U |) vertices.

The proof of Lemma 2 is deferred to the full version of this work.
To obtain a first bound on the instance size, it remains to reduce the overall number of

edge clusters. To this end, we consider for each edge cluster {u, v} the neighborhoods of u
and v in U . First, observe that, assuming G is reduced with respect to Reduction Rule 1, u
and v have neighbors in U . Now we call an edge cluster {u, v} simple if u has only neighbors
in Ui and v has only neighbors in Uj (possibly i = j). Observe that the number of non-simple
edge clusters is already bounded: Each such cluster is ambiguous because at least one of
its vertices is ambiguous. By Lemma 2, there are O(|U |2) such vertices and thus O(|U |2)
clusters containing them. To obtain a bound on the overall number of edge clusters, we show
that all simple edge clusters can be removed.

I Reduction Rule 7. If there is a simple edge cluster {u, v}, then remove u and v from G.

The proof of the safeness of this rule is deferred to the full version of this work.
Thus, with the above rules we obtain a kernel with O(dc(G)3) vertices: a reduced instance

has O(|U |2) = O(dc(G)2) clusters, each containing O(|U |) = O(dc(G)) vertices. To obtain a
kernel with an overall quadratic number of vertices, we observe first that after applications
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of Reduction Rule 6, every vertex in cluster C, where |C| ≥ 3 and C ⊆ N2(Ui) for some i,
has at most one neighbor in Ui.

It remains to bound the number of vertices in V \ U with only one neighbor in U . First,
we find monochromatic parts of U that can be merged not because they have many common
neighbors but, instead, because they have common neighbors in several nonedge clusters.

I Reduction Rule 8. If there are two vertices u ∈ Ui and u′ ∈ Uj, i 6= j, and three distinct
nonedge clusters C1, C2, C3 such that u and u′ have at least one neighbor in each of them,
then merge Ui and Uj.

Proof of safeness. We show that Ui ∪ Uj is monochromatic; by definition this implies that
merging Ui and Uj is safe. Let (A,B) be any matching cut of G. Each of the three clusters
is monochromatic because they are nonedge clusters. Hence, we can assume without loss of
generality, that A contains C1 and C2. Since u has neighbors in C1 and in C2, it has two
neighbors in A and thus Ui ⊆ A. Similarly, Uj ⊆ A. Hence, Ui ∪ Uj is in the same part of
the cut. This holds for all cuts, making Ui ∪ Uj monochromatic. J

I Lemma 3. After exhaustive application of Reduction Rules 1–8, there are O(|U2|) vertices
in V \ U that are in nonedge clusters and have only one neighbor in U .

Proof. First, by Lemma 1, there are O(|U |) fixed nonedge clusters. By Lemma 2, these
clusters contain O(|U |) vertices each. Thus, the number of vertices in fixed nonedge clusters
that have only one neighbor in U is O(|U |2).

Hence, it remains to bound the number of vertices that have only one neighbor in U

and are contained in a nonfixed cluster C. By Proposition 2, these clusters are ambiguous.
Each ambiguous cluster C contains an ambiguous vertex with neighbors in Ui and Uj ,
where i 6= j. Thus, for each vertex of C with only one neighbor u ∈ U , there is at least
one other vertex u′ ∈ U such that u′ has at least one neighbor in C, and u and u′ are not
from the same monochromatic part U` (because u is in at most one of Ui and Uj). Now, for
each u ∈ U and u′ ∈ U that are in distinct monochromatic parts of U , let N(u, u′) denote
the number of vertex pairs {v, v′} such that there is an ambiguous cluster C containing v
and v′, one of v and v′ is adjacent to u, and the other is adjacent to u′. By the above
discussion, any vertex in an ambiguous cluster C with exactly one neighbor in U increases the
number N(u, u′) for at least one pair of vertices u and u′. By pigeonhole principle, if there
are more than 3 ·

(|U |
2
)
vertices in ambiguous nonedge clusters that have only one neighbor

in U , then there is some pair of vertices u and u′ such that N(u, u′) ≥ 3. Since u and u′
each have at most one neighbor in every ambiguous cluster, this means that there are three
distinct clusters C1, C2, C3 which contain neighbors of u and u′. Because u and u′ are from
distinct monochromatic parts, Reduction Rule 8 applies, which contradicts the fact that G
is reduced with respect to this rule. Consequently, the number of vertices in ambiguous
nonedge clusters that have only one neighbor in U is O(|U |2). J

I Theorem 4. Matching Cut admits a problem kernel with O(dc(G)2) vertices that can
be computed in O(dc(G)3 · (n2 + nm)) time.

Proof. Note that every instance contains O(dc(G)) vertices in U because we may assume
that |U | ≤ 3dc(G). Furthermore, the number of special vertices is also O(dc(G)) since
there is a constant number of them for every monochromatic part. To obtain the kernel,
we need to reduce the size of V \ U . To this end, we first apply exhaustively Rules 1–8.
Afterwards, V \ U has O(dc(G)2) vertices: By Lemma 2, V \ U has O(dc(G)2) ambiguous
vertices. Moreover, since G is reduced with respect to Rule 7, we have that every edge cluster
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contains an ambiguous vertex. Hence, the number of edge clusters, and therefore the number
of vertices in edge clusters, is O(dc(G)2). It remains to bound the number of vertices in
nonedge clusters that are not ambiguous. Each of these vertices has only one neighbor in U
because G is reduced with respect to Reduction Rule 6. By Lemma 3, V \ U has O(dc(G)2)
vertices that are in nonedge clusters and have only one neighbor in U .

Finally, the number of vertices that have no neighbors in any set Ui is O(1) for each
cluster because G is reduced with respect to Rule 5 and thus O(dc(G)2) overall.

It remains to bound the running time for the application of the rules. Rule 1 can be
applied in time O(n+m) and applies only once. For the remaining rules, we need to maintain
the set N2(Ui) for each Ui. These sets can be computed in O(dc(G)(n+m)) time. Afterwards,
the applicability of each rule can be tested in O(dc(G)2(n+m)) with the bottleneck being
Rule 8. Moreover, each rule can be applied in O(n) time, with the exception of Rule 4 which
may take Θ(n2) time, because it may add Θ(n2) many edges. To make this rule more efficient,
we can however store the edges in each cluster only implicitly, giving a running time bound
of O(n) also for this rule; we omit the details. Thus, to obtain the claimed bound on the
running time it is sufficient to bound the number of applications of the rules by O(dc(G) · n):
All rules that merge monochromatic parts can be performed O(dc(G)) times overall. For the
remaining rules, we have that Rule 4 can be performed O(n) times, because it decreases the
number of clusters in G− U by one, Rules 5 and 7 can be performed O(n) times, because
they remove at least one vertex from G. J

It is worth noting that if G − U consists of only one cluster, i.e., G − U is a clique C,
Lemma 2 shows that C can be reduced to contain O(|U |) many vertices.

I Corollary 5. Matching Cut admits a linear kernel when parameterized by dq(G), the
distance to clique.

3 Single-exponential FPT Algorithms

In this section, we consider Matching Cut parameterized by the distance to cluster and
by the distance to co-cluster. Recall that co-cluster graphs are precisely the complete
multipartite graphs. We show that Matching Cut can be solved in time 2dc(G)O(n2) and
in time 2dc(G)O(nm). Recall that we may assume that all graphs considered are connected,
have minimum degree at least two and that a clique Q is monochromatic if |Q| 6= 2. Finally,
observe that minimum distance to cluster sets and minimum distance to co-cluster sets can
be computed in O(1.92dc(G) · n2) time and O(1.92dc(G) · n2) time, respectively [5].

Distance to Cluster. Next, we provide an FPT algorithm solving Matching Cut running
in single-exponential time 2dc(G)O(n2).

I Lemma 6. Let U ⊂ V (G) such that F = V (G) \ U induces a cluster graph. Given a
partition (A,B) of G[U ], it can be decided in time O(n2) if G has a matching cut (X,Y )
such that A ⊆ X and B ⊆ Y .

Proof. We first consider the case A or B is empty, say B = ∅. Thus, A = U and we
are searching for a matching cut (X,Y ) such that U ⊆ X. If G[F ] has some connected
component Q such that (Q,V (G) \ Q) is a matching cut, then we are done. Otherwise,
consider some matching cut (X,Y ) such that U ⊆ X. For each connected component Q of
G[F ] we have Q ⊆ X or Q ⊆ Y : This is obviously true for the connected components of
size at least three and for those of size one because they are monochromatic in G. For each
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connected component {u, v} of size two observe the following. Since (V (G) \ {u, v}, {u, v})
is not a matching cut, either

u and v have a common neighbor in U , or
|N(u) ∩ U | ≥ 2 or |N(v) ∩ U | ≥ 2.

In the first case, {u, v} is monochromatic, in the second case u and v are in the same
part of the cut as U , and thus we have {u, v} ⊆ X. Summarizing, U ⊆ X and for each
connected component Q of G[F ] we have Q ⊆ X or Q ⊆ Y . Since there is no matching cut
between U and a connected component Q of G[F ], this implies Q ⊆ X. Hence, F ∪ U ⊆ X
and thus Y = ∅. Therefore, G has no matching cut (X,Y ) such that U ⊆ X.

Now assume that A and B are nonempty. Then the algorithm first applies Reduction
Rules (R1) – (R4) given in [14]; the correctness of these rules is easy to see.

(R1) If an A-vertex has two B-neighbors, or a B-vertex has two A-neighbors then STOP:
“G has no matching cut separating A, B”.

(R2) If v ∈ F , |N(v) ∩ A| ≥ 2 and |N(v) ∩ B| ≥ 2 then STOP: “G has no matching cut
separating A, B”.
If v ∈ F and |N(v) ∩A| ≥ 2 then A := A ∪ {v}.
If v ∈ F and |N(v) ∩B| ≥ 2 then B := B ∪ {v}.

(R3) If v ∈ A has two adjacent F -neighbors w1, w2 then A := A ∪ {w1, w2}.
If v ∈ B has two adjacent F -neighbors w3, w4 then B := B ∪ {w3, w4}.

(R4) If there is an edge xy in G such that x ∈ A and y ∈ B and N(x) ∩N(y) ∩ F 6= ∅ then
STOP: “G has no matching cut separating A, B”.
If there is an edge xy in G such that x ∈ A and y ∈ B then add N(x) ∩ F to A, and add
N(y) ∩ F to B.

If none of these reduction rules can be applied then
the A,B-edges of G form a matching cut in G[A ∪B] = G− F due to (R1),
every F -vertex is adjacent to at most one A- and at most one B-vertex due to (R2),
the F -neighbors of any A-vertex and the F -neighbors of any B-vertex form an independent
set due to (R3), and
every A-vertex adjacent to a B-vertex has no F -neighbor and every B-vertex adjacent to
an A-vertex has no F -neighbor.

Clearly these properties hold for the instance (G,A,B) if none of the Rules (R1) – (R4)
can be applied. Note that G[F ] is a cluster graph. Let Q be the set of all monochromatic
connected components in G[F ] and let R := F \

⋃
Q∈Q V (Q). That is, each member in Q is

a trivial clique or a clique with at least three vertices, and each vertex in R belongs to a
2-vertex connected component in G[F ]. Now, create a boolean formula φ as follows:

For each Q ∈ Q we have two boolean variables QA and QB (indicating all vertices of Q
should be added to A, respectively, to B).
For each vertex u ∈ R we have two boolean variables uA, uB (indicating u should be
added to A, respectively, to B).

The clauses of φ are as follows:
(c1) For each Q ∈ Q: (QA∨QB), (¬QA∨¬QB). These clauses ensure that Q will be moved

to A or else to B.
(c2) For each vertex u ∈ R: (uA ∨ uB), (¬uA ∨ ¬uB). These clauses ensure that u will be

moved to A or else to B.
(c3) For each two adjacent vertices u, v ∈ R:
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(c3.1) If u has neighbors in A and B, if v has neighbors in A and B, if u and v have
neighbors in A, or if u and v have neighbors in B: (uA ↔ vA), (uB ↔ vB). These
clauses ensure that either both u and v must be moved to A, or both must be moved
to B.

(c3.2) If |N(u) ∩ A| = |N(v) ∩ B| = 1 and N(u) ∩ B = N(v) ∩ A = ∅: (¬uB ∨ ¬vA).
This clause ensures that in case u goes to B, v must also go to B, and in case v goes
to A, u must also go to A.

(c3.3) If |N(u) ∩ B| = |N(v) ∩ A| = 1 and N(u) ∩ A = N(v) ∩ B = ∅: (¬uA ∨ ¬vB).
This clause ensures that in case u goes to A, v must also go to A, and in case v goes
to B, u must also go to B.

(c4) For z, z′ ∈ Q ∪R:
(c4.1) If z, z′ have a common neighbor in A: (¬zB ∨ ¬z′B). This clause ensures that in

this case, z or z′ must go to A.
(c4.2) If z, z′ have a common neighbor in B: (¬zA ∨ ¬z′A). This clause ensures that in

this case, z or z′ must go to B.
Then φ is the conjunction of all these clauses over all Q ∈ Q and all u ∈ R.

I Proposition 3. G has a matching cut (X,Y ) with A ⊆ X and B ⊆ Y if and only if φ is
satisfiable.

The proof of Proposition 3 is deferred to the full version of this work.
Obviously, the length of the formula φ is O(n2). Since 2-Sat can be solved in linear time

(cf. [3, 9, 10]), the above discussion yields an O(n2)-time algorithm for deciding if G has a
matching cut (X,Y ) such that A ⊆ X and B ⊆ Y . J

Running the algorithm of Lemma 6 for all partitions (A,B) of G[U ], where U is a minimum
distance to cluster set of the input graph G, one obtains

I Theorem 7. Matching Cut can be solved in time 2dc(G)O(n2).

Distance to Co-cluster. We now provide an FPT algorithm solving Matching Cut
running in single-exponential time 2dc(G)O(nm).

I Lemma 8. Let U ⊂ V (G) such that F = V (G) \ U induces a co-cluster graph. Given a
partition (A,B) of G[U ], it can be decided in time O(nm) if G has a matching cut (X,Y )
such that A ⊆ X and B ⊆ Y .

The proof of Lemma 8 is deferred to the full version of this work.
Running the algorithm of Lemma 8 for all partitions (A,B) of G[U ], where U is a

minimum distance to co-cluster set of the input graph G, one obtains

I Theorem 9. Matching Cut can be solved in time 2dc(G)O(nm).

4 An Improved Exact Exponential Algorithm

Our algorithm takes as input a graph G = (V,E) and decides whether or not there is an
edge set M ⊆ E such that M is a matching cut of G. As above, we may assume that G is
connected and has minimum degree at least two. The idea is to compute a partition of the
vertex set into subsets A and B such that A and B are nonempty unions of components of
G−M and all M -edges have one endvertex in A and the other in B. Our algorithm consists
of reduction rules and branching rules that label the vertices of the input graph by either A
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or B but never change the graph G. Finally we provide a termination lemma stating that if
neither a reduction rule nor a branching rule can be applied then there is a matching cut in
the graph G, respecting the current partial partition into A and B.

The branching algorithm below will be executed for all possible pairs a, b ∈ V , hence
O(n2) times. To do this set A := {a}, B := {b}, and F := V \ {a, b} and call the branching
algorithm. At each stage of the algorithm, A and/or B will be extended or it will be
determined that there is no matching cut that separates A from B.

We describe our algorithm by a list of reduction and branching rules given in preference
order, i.e., in an execution of the algorithm on any instance of a subproblem one always
applies the first rule applicable to the instance, which could be a reduction or a branching
rule. A reduction rule produces one instance/subproblem while a branching rule results
in at least two instances/subproblems, with different extensions of A and B. Note that G
has a matching cut that separates A from B if and only if in at least one recursive branch,
extensions A′ of A and B′ of B are obtained such that G has a matching cut that separates
A′ from B′. Typically a rule assigns one or more free vertices, vertices of F , either to A or
to B and removes them from F , that is, we always have F := V \ (A ∪B).

First our algorithm applies Reduction Rules (R1) – (R4) mentioned in Section 3 to the
current instance (in the order of the rules). In addition, we need two new reduction rules.

(R5) If there are vertices u, v ∈ F such that N(u) = N(v) = {x, y} with x ∈ A, y ∈ B, then
A := A ∪ {u}, B := B ∪ {v}.

I Proposition 4. Reduction Rule (R5) is safe: G has a matching cut separating A and B if
and only if G has a matching cut separating A ∪ {u} and B ∪ {v}.
The proof of Proposition 4 is deferred to the full version of this work.
(R6) If there are vertices u, v ∈ F such that N(u) = N(v) = {x, y} with x ∈ A, y ∈ F then

A := A ∪ {u}.
If there are vertices u, v ∈ F such that N(u) = N(v) = {x, y} with x ∈ F, y ∈ B then
B := B ∪ {v}.

I Proposition 5. Reduction Rule (R6) is safe:
(i) Let x ∈ A and y ∈ F . Then G has a matching cut separating A and B if and only if G

has a matching cut separating A ∪ {u} and B.
(ii) Let x ∈ F and y ∈ B. Then G has a matching cut separating A and B if and only if G

has a matching cut separating A and B ∪ {v}.
The proof of Proposition 5 is deferred to the full version of this work.

Our algorithm consists of six branching rules dealing with small configurations (connected
subgraphs with at most eight vertices some of them may already belong to A or B.) See
Fig. 2. The Branching Rules (B1) and (B2) are new, the last four have been used in [14].
Moreover, compared to [14] we do a better branching on configuration (B5).

To determine the branching vectors which correspond to our branching rules, we set the
size of an instance (G,A,B) as its number of free vertices, i.e., |V (G)| − |A| − |B|.

(B1) We branch into two subproblems. First, add v1 to B. Then v2 has to be added to B
and v3 has to be added to A. Second, add v1 to A. Then v2 has to be added to A too.
Hence the branching vector is (3, 2).

(B2) We branch into two subproblems. First, add v2 to B. Then v1 has to be added to A
and v3 has to be added to B. Second, add v2 to A. Then v3 has to be added to A too.
Hence the branching vector is (3, 2).
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Figure 2 Branching configurations: Vertices with label A and B belong to A, respectively, to B;
vertices with labels vi are in F .

(B3) First, add v2 to B. This implies that v1 has to be added to A, and that v3 and v4
have to be added to B. Second, add v2 to A. Hence the branching vector is (4, 1).

(B4) On this configuration we branch into two subproblems, similar to (B3). First, add v3
to A. This implies that v4 has to be added to B, and that v1 and v2 have to be added to
A. Second, add v3 to B. Hence the branching vector is (4, 1).

(B5) We branch into two subproblems. First, add v2 to A. This implies that v3 has to be
added to B and then v4 has to be added to A. Second, add v2 to B. Then v1 must be
added to A. Hence the branching vector is (3, 2).

(B6) We branch into four subproblems. First, add v5 to A. This implies that v2 and v3
have to be added to A. Next, add v5 to B. There are three choices to label v2 and v3:
AB,BA,BB. In the first two choices, v6 has to be added to B and v1 or v4 has to be
added to A. In the last choice, v1 and v4 have to be added to A. Hence the branching
vector is (3, 5, 5, 5).

The branching numbers of the branching vectors of our algorithm are 1.3803 (B3, B4),
1.3734 (B6) and 1.3248 (B1, B2, B5). Consequently, the running time of our algorithm is
O∗(1.3803n).

It remains to show that if none of the reduction and branching rules is applicable to
(G,A,B) then G has a matching cut (X,Y ) with A ⊆ X and B ⊆ Y . The proof of this fact
is deferred to the full version of this work. In summary, we obtain the following result.

I Theorem 10. Matching Cut can be solved in time O∗(1.3803n).

5 Conclusions

We provided three algorithms for Matching Cut: an exact exponential algorithm of running
time O∗(1.3803n), a fixed-parameter algorithm of running time 2dc(G)O(n2) where dc(G) is
the distance to cluster number, and a fixed-parameter algorithm of running time 2dc(G)O(nm)
where dc(G) is the distance to co-cluster number. Our results improved the O∗(1.4143n)
time exact algorithm and the 2τ(G)O(n2) time algorithm previously given in [14], where
τ(G) ≥ max{dc(G), dc(G)} is the vertex cover number. Moreover, we found a quadratic
vertex-kernel for Matching Cut for the distance to cluster, and a linear vertex-kernel for
the distance to clique.

There are many possible directions for future research. Does Matching Cut admit a
linear vertex-kernel for the distance to cluster? Even a linear vertex-kernel for the parameter
vertex cover number τ(G) is open. Moreover, it is open whether the problem admits a
polynomial kernel for the feedback vertex set number of G. Finally, it is natural to ask
whether the running time of our O∗(1.3803n) branching algorithm can be improved.
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Abstract

The (Weighted) Subset Feedback Vertex Set problem is a generalization of the classical
Feedback Vertex Set problem and asks for a vertex set of minimum (weight) size that inter-
sects all cycles containing a vertex of a predescribed set of vertices. Although the two problems
exhibit different computational complexity on split graphs, no similar characterization is known
on other classes of graphs. Towards the understanding of the complexity difference between
the two problems, it is natural to study the importance of a structural graph parameter. Here
we consider graphs of bounded independent set number for which it is known that Weighted
Feedback Vertex Set can be solved in polynomial time. We provide a dichotomy result with
respect to the size of a maximum independent set. In particular we show that Weighted Subset
Feedback Vertex Set can be solved in polynomial time for graphs of independent set number
at most three, whereas we prove that the problem remains NP-hard for graphs of independent
set number four. Moreover, we show that the (unweighted) Subset Feedback Vertex Set
problem can be solved in polynomial time on graphs of bounded independent set number by
giving an algorithm with running time nO(d), where d is the size of a maximum independent set
of the input graph. To complement our results, we demonstrate how our ideas can be extended
to other terminal set problems on graphs of bounded independent set size. Based on our findings
for Subset Feedback Vertex Set, we settle the complexity of Node Multiway Cut, a ter-
minal set problem that asks for a vertex set of minimum size that intersects all paths connecting
any two terminals, as well as its variants where nodes are weighted and/or the terminals are
deletable, for every value of the given independent set number.
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1 Introduction

Given a (vertex-weighted) graph G = (V,E) and a set S ⊆ V , the (Weighted) Subset
Feedback Vertex Set problem, introduced by Even et al. [13], asks for a vertex set
of minimum (weight) size that intersects all cycles containing a vertex of S. Cygan et al.
[10] and Kawarabayashi and Kobayashi [25] independently showed that Subset Feedback
Vertex Set is fixed-parameter tractable (FPT) parameterized by the solution size, while
Hols and Kratsch provided a randomized polynomial kernel for the problem [21]. There has
been a considerable amount of work to obtain faster, still exponential-time, algorithms even
when restricted to particular graph classes [5, 16, 15, 19]. As a generalization of the classical
Feedback Vertex Set for which S = V , the problem remains NP-hard on bipartite
graphs [36] and planar graphs [17]. On the positive side, Weighted Subset Feedback
Vertex Set can be solved in polynomial time on interval graphs, permutation graphs, and
cobipartite graphs [31], the latter being a subclass of graphs of independent set size at most
two. However a notable difference between the two problems regarding their complexity
status is the class of split graphs: Feedback Vertex Set is known to be polynomial-time
solvable on split graphs [7, 34], whereas Subset Feedback Vertex Set remains NP-hard
on split graphs [16].

In order to obtain further (in)tractability results for Subset Feedback Vertex Set,
it is reasonable to consider structural parameters of graphs that may lend themselves to
provide a unified approach. In terms of parameterized complexity Feedback Vertex Set
is known to be FPT, when parameterized by tree-width [8] and clique-width [2] which implies
that Feedback Vertex Set can be solved in polynomial time on graphs of bounded such
parameters. Although Feedback Vertex Set is W[1]-hard parameterized by the size of
the independent set, it can be solved in polynomial time on graphs of bounded maximum
induced matching (i.e., Feedback Vertex Set belongs in XP parameterized by the size of
a maximum induced matching) [24]. Only very recently, Jaffke et al. proposed an algorithm
that solves Weighted Feedback Vertex Set in time nO(w) where w is the maximum
induced matching width of the given graph [23]. Despite their relevant name, graphs of
bounded maximum induced matching (or graphs of bounded independent set number) are
not related to graphs of bounded maximum induced matching width as indicated in [35].

The approach of [23] provides a powerful mechanism, as it unifies polynomial-time
algorithms for Weighted Feedback Vertex Set on several graph classes such as interval
graphs, permutation graphs, circular-arc graphs, and Dilworth-k graphs for fixed k, among
others. Such a mechanism raises the question of whether the algorithm given in [23] can
be extended to the more general setting of Weighted Subset Feedback Vertex Set.
However the proposed algorithm is based on the crucial fact that the forest of a solution has
bounded number of internal nodes which is not necessarily true for the S-forest of Weighted
Subset Feedback Vertex Set. Thus it seems difficult to control the size of the solution
whenever S ⊂ V . As this observation does not rule out any positive answer, here we develop
the first step towards such an approach by considering graphs of bounded independent set
number which form candidate relevant graphs. Although Weighted Feedback Vertex
Set can be solved in time nO(p) on graphs of maximum induced matching at most p [24],
Subset Feedback Vertex Set is already NP-complete on graphs of maximum induced
matching equal to one (i.e., split graphs) [16].

In this work we show that the complexity behaviour of the weighted version of the problem
is completely different from the behaviour of the unweighted variant on graphs with bounded
α(G), where α(G) is the size of a maximum independent set in a graph G.
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We show that Weighted Subset Feedback Vertex Set can be solved in polynomial
time on graphs with α(G) ≤ 3.

Such graphs consist of the complements of triangle-free graphs; recall that for triangle-free
graphs Feedback Vertex Set remains NP-hard [36]. We solve Weighted Subset
Feedback Vertex Set on such graphs, by exploiting a structural characterization of the
solution with respect to the vertices that are close to S.

We further provide a dichotomy result showing that Weighted Subset Feedback
Vertex Set remains NP-complete on graphs with α(G) = 4.

Thus we enlarge our knowledge on the complexity difference of the two problems with respect
to a structural graph parameter.

In order to complement our results we show that Subset Feedback Vertex Set can
be solved in time nO(d), where α(G) ≤ d.

Our findings concerning Subset Feedback Vertex Set are summarized in Table 1.
Moreover, we demonstrate how our ideas can be extended to other terminal set problems

on graphs of bounded independent set size. In the (unweighted) Node Multiway Cut
problem, we are given a graph G = (V,E), a terminal set T ⊆ V , and a nonnegative integer
k and the goal is to find a set X ⊆ V \ T of size at most k such that any path between two
different terminals intersects X. Node Multiway Cut is known to be in FPT parameterized
by the solution size [4, 29] and even above guaranteed value [9]. For further results on variants
of Node Multiway Cut we refer to [3, 18, 27]. We completely characterize the complexity
of Node Multiway Cut with respect to the size of the maximum independent set.

In particular, we show that for α(G) ≤ 2 Node Multiway Cut can be solved in
polynomial time, whereas for α(G) = 3 it remains NP-complete by adopting the reduction
for Weighted Subset Feedback Vertex Set with α(G) = 4.

We further consider a relaxed variation of Node Multiway Cut in which we are allowed to
remove terminal vertices, called Node Multiway Cut with Deletable Terminals (also
known as Unrestricted Node Multiway Cut).

We show that the (unweighted) Node Multiway Cut with Deletable Terminals
problem can be solved in polynomial time on graphs of bounded independent set number,
using an idea similar to the polynomial-time algorithm for the Subset Feedback
Vertex Set problem.
Regarding its node-weighted variation, we provide a complexity dichotomy result showing
that Weighted Node Multiway Cut with Deletable Terminals can be solved in
polynomial time on graphs with α(G) ≤ 2, whereas it becomes NP-complete on graphs
with α(G) = 3.

We note that the polynomial-time algorithm for the weighted variation is obtained by invoking
our algorithm for Weighted Subset Feedback Vertex Set on graphs with α(G) ≤ 3.

2 Preliminaries

We refer to [1, 11, 20] for our standard graph terminology. For X ⊆ V , NG(X) =⋃
v∈X NG(v) \ X and NG[X] = NG(X) ∪ X. A weighted graph G = (V,E) is a graph,

where each vertex v ∈ V is assigned a weight that is a positive integer number. We denote
by w(v) the weight of each vertex v ∈ V . For a vertex set A ⊂ V , the weight of A, denoted
by w(A), is

∑
v∈A w(v).

Given a graph G, the independent set number, denoted by α(G), is the size of the
maximum independent set in G. In terms of forbidden subgraph characterization, note that
α(G) ≤ d if and only if G does not contain (d+ 1)K1 as an induced subgraph. We say that
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Table 1 Computational complexity results for Feedback Vertex Set (FVS) and Subset
Feedback Vertex Set (SFVS) on graphs of bounded independent set number and graphs of
bounded maximum induced matching. Note that every graph of independent set number d has
maximum induced matching of size at most d, while the converse is not necessarily true.

Bounded Structural Parameter

Max. Independent Set (d) Max. Induced Matching (p)

Weighted FVS nO(p) [24]

Weighted SFVS d ≤ 3 nO(1) Theorem 6

d = 4 NP-complete Theorem 7

Unweighted SFVS nO(d) Theorem 8 NP-complete [16]

a graph G has bounded independent set size if there exists a positive integer d such that
α(G) ≤ d. The clique cover number of G, denoted by κ(G), is the smallest number of cliques
needed to partition V (G) into S1, . . . , Sk such that G[Si] is a clique. A vertex cover is a set
of vertices such that every edge of G is incident to at least one vertex of the set. A matching
is a set of edges having no common endpoint. An induced matching, denoted by pK2, is a
matching M of p edges such that G[V (M)] is isomorphic to pK2. The maximum induced
matching number, denoted by p(G), is the largest number of edges in any induced matching
of G. It is not difficult to see that for any graph G, κ(G) ≥ α(G) ≥ p(G) holds.

The (Weighted) Subset Feedback Vertex Set (SFVS) problem asks for a given
(vertex-weighted) graph G = (V,E), a set S ⊆ V , and an integer k, whether there exists a
set X with |X| ≤ k (w(X) ≤ k) such that no cycle in G − X contains a vertex of S. As
remarked, we distinguish between the weighted and the unweighted version of the problem.
In the unweighted version of the problem note that all weights are equal and positive. The
classical Feedback Vertex Set (FVS) problem is a special case of Subset Feedback
Vertex Set with S = V . A vertex of S is simply called S-vertex. An induced cycle of G is
called S-cycle if an S-vertex is contained in the cycle. We define an S-forest F = (VF , EF )
to be the subgraph of G induced by the vertex set VF ⊆ V for which no cycle in G[VF ] is an
S-cycle. It is not difficult to see that the problem of computing a minimum weighted subset
feedback vertex set is equivalent to the problem of computing a maximum weighted S-forest.

Let us give a couple of observations on the nature of Subset Feedback Vertex Set on
graphs of bounded independent set size. Let G be a graph and let d be a positive integer such
that every independent set of G has at most d vertices. Firstly note that the bounded-size
independent set is a hereditary property, meaning that for every induced subgraph H of G,
we have α(H) ≤ d. Moreover for any clique C of G, any S-forest of G contains at most two
vertices of S ∩ C.

I Observation 1. Let G be a graph with α(G) ≤ d and let S ⊆ V .

(1) For any set X of 2d+ 1 vertices, there is a cycle in G[X].

(2) Any S-forest of G has at most 2d vertices from S.

We note that Observation 1 directly implies that any 2d+ 1 vertices of G[S] induce an
S-cycle, which allows us to construct by brute force all possible subsets of S belonging to
any S-forest in time nO(d).
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v1 v2 v3 v4

s1 s2 s3

F≤1

F>1

A1 = {v1, v2}
A2 = {v2, v3}
A3 = {v4}

C1 C2 C3

Figure 1 Illustrating an S-distance partition (F≤1, F>1) of an S-forest F with S = {s1, s2, s3}
that shows the connected components C1, C2, C3 of F>1. The edges inside F>1 are not drawn in
order to highlight that the cut satisfies the given tuple (A1, A2, A3).

3 Weighted SFVS on Graphs of Bounded Independent Set

Here we consider the Weighted Subset Feedback Vertex Set and we show a dichotomy
result with respect to the size of the maximum independent set. We first provide a polynomial-
time algorithm on graphs of independent set size at most three and then we show that
Weighted Subset Feedback Vertex Set is NP-complete on graphs of independent set
size equal to four.

Let (G,S, k) be an instance of Weighted Subset Feedback Vertex Set for which
G is a graph of independent set size at most d. In the forthcoming arguments, instead of
directly computing a solution for Weighted Subset Feedback Vertex Set, we consider
the equivalent problem of computing an S-forest of G having weight at least w(V )− k.

Let F = (VF , EF ) be an induced subgraph of G. Recall that an S-forest is an induced
subgraph of G. We partition the graph F into two induced subgraphs F≤1 and F>1 as
follows:

F≤1 is the subgraph of F induced by the vertices of N [S ∩ VF ]; the vertices of F≤1 are at
distance at most one from S ∩ VF and are denoted by S≤1.
F>1 is the graph F − S≤1 and contains vertices that are at distance at least two from
S ∩ VF .

Such a partition is called the S-distance partition of F , denoted by (F≤1, F>1). The set of
edges of F having one endpoint in F≤1 and the other in F>1 are called the cut with respect
to F≤1 and F>1. Notice that a vertex of F≤1 that is adjacent to a vertex of F>1 belongs to
S≤1 \ S.

Let {C1, . . . , Cd′} be the partition of the vertices of F>1 such that each Ci, 1 ≤ i ≤ d′,
induces a connected component in F>1. Because F>1 is an induced subgraph of G, it is clear
that d′ ≤ d. Let (A1, . . . , Ad′) be a tuple of d′ subsets of S≤1 \ S, i.e., each Ai ⊆ (S≤1 \ S)
holds. We say that the cut satisfies the tuple (A1, . . . , Ad′) if for any vertex v ∈ Ci, we have
(NG(v) ∩ S≤1) ⊆ Ai. The notion of an S-distance partition of F with the corresponding cut
is illustrated in Figure 1.

We now utilize the S-distance partition of F in order to construct an algorithm that
solves Weighted Subset Feedback Vertex Set on graphs of independent set size at
most d and subsequently show that this algorithm is efficient for d ≤ 3. Our general approach
relies on the following facts:

By Observation 1 (2) we try all subsets S′ of S with at most 2d vertices and keep those
sets that induce a forest. This step is used in constructing the graph F≤1. In particular,
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for each such set S′, we construct all F≤1 such that S ∩ V (F≤1) = S′. We will show that
the number of such subsets produced is bounded by nO(d).
For each of the potential subsets S′ constructed in the previous step, and for each d′ ≤ d,
we determine all possible tuples (A1, . . . , Ad′) in F≤1 with Ai ⊆ (N [S′] \ S) that are
satisfied by cuts of S-distance partitions. We show why considering only these tuples is
sufficient in Lemma 2.
Up to that point we can show that all steps can be executed in polynomial time regardless
of d ≤ 3. However for the next and final step we can only achieve polynomial running
time if we restrict ourselves to d ≤ 3 due to the number of connected components of F>1.
For each tuple computed in the previous step, we find connected components C1, . . . , Cd′

of maximum weight such that the cut of (G[S′], G[C1 ∪ · · · ∪Cd′ ]) satisfies the tuple. For
doing so, we take advantage of the small number of connected components (d′ < 3) and
an efficient way of computing a vertex-cut between such components.

We begin by showing that the S-distance partition of F provides a useful tool towards
computing a maximum S-forest. Given a set of vertices X ⊆ N [S] and d′ subsets Ai of X \S,
we construct the graph Ĝ that is obtained from G[X] by adding d′ vertices w1, . . . , wd′ such
that every vertex wi is adjacent to all the vertices of Ai. In what follows, we always assume
that G is a graph having independent set size at most d.

I Lemma 2. Let F be an S-forest of G with S-distance partition (F≤1, F>1) such that
S≤1 ∩ S 6= ∅. Then for d′ ≤ d, there is a tuple (A1, . . . , Ad′) with Ai ⊆ (S≤1 \ S) such that
(i) the cut of (F≤1, F>1) satisfies (A1, . . . , Ad′) and
(ii) every induced subgraph H of G with S-distance partition (H[S≤1], H−S≤1) that satisfies

(A1, . . . , Ad′) is an S-forest.

Proof. Let {C1, . . . , Cd′} be the partition of the vertices of F>1 such that every Ci induces
a connected component in F>1. We define a tuple (A1, . . . , Ad′) in which every Ai =
N(Ci) ∩ S≤1, for 1 ≤ i ≤ d′. Clearly Ai ⊆ (S≤1 \ S) since every vertex F>1 is at distance
at least two from S≤1 ∩ S. Thus, by construction, the cut of (F≤1, F>1) satisfies the tuple
(A1, . . . , Ad′).

For the next claim, we first show that Ĝ with respect to S≤1 and the tuple (A1, . . . , Ad′)
is an S-forest. Assume for contradiction that there is an S-cycle Ĉ in Ĝ. Since F≤1 does
not contain any S-cycle, Ĉ contains a vertex wi and at least two vertices ui, vi from Ai,
1 ≤ i ≤ d′. By the fact that Ai = N(Ci) ∩ S≤1, there is a vertex x in Ci of F>1 that is
adjacent to ui and there is a vertex y in Ci of F>1 that is adjacent to vi. Together with
a path between x and y in the connected component Ci, we construct a path in G with
endvertices ui and vi that is completely contained in Ci. This means that if we replace every
vertex wi of Ĉ by a path with internal vertices of Ci then we obtain an S-cycle in F , leading
to a contradiction. Thus, Ĝ is an S-forest.

Let H be an induced subgraph of G with S-distance partition (H[S≤1], H − S≤1) that
satisfies (A1, . . . , Ad′). Observe that H[S≤1] = F≤1 as they are induced subgraphs of the
same vertex set of G. Thus H[S≤1] does not contain any S-cycle, because F is an S-forest.
Since the cut of (H[S≤1], H−S≤1) satisfies (A1, . . . , Ad′), there is a partition {T1, . . . , Td′} in
H − S≤1 such that Ti is a connected component of H − S≤1 and N(Ti) ⊆ Ai, for 1 ≤ i ≤ d′.
We show that H is indeed an S-forest. For contradiction, assume an S-cycle C in H. There
are no S-cycles in H[S≤1] which implies that C ∩ Ti 6= ∅ for some 1 ≤ i ≤ d′. For every such
set we replace the part C ∩ Ti by a vertex w′i. Denote by H ′ the resulting graph. Notice that
H ′[C] is a subgraph of Ĝ[C] because NH′(w′i) ⊆ NĜ

(wi). This, however, implies an S-cycle
in Ĝ which gives the desired contradiction. Therefore, H is an S-forest. J
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Notice that G− S is trivially an S-forest of G. Thus, if F is an S-forest of G such that
S≤1 ∩ S = ∅ then F does not contain any vertex of S and F = G − S. Next, we assume
that S≤1 ∩ S 6= ∅ and show how to bound the vertex set S≤1 of F≤1.

I Lemma 3. Let F be an S-forest of G with S-distance partition (F≤1, F>1) such that
S≤1 ∩ S 6= ∅.
1. If |S≤1 ∩ S| ≤ 2d− 2 then |S≤1| ≤ 4d− 2.
2. If |S≤1 ∩ S| ≥ 2d− 1 then |S≤1| ≤ 2d.

Proof. Let F be such an S-forest of G with |S≤1 ∩ S| ≥ 1. By Observation 1 (2), we know
that |S≤1 ∩ S| ≤ 2d. To ease the presentation, we let S′ = S≤1 \ S. We consider separately
the two cases of the claim.

Case 1. Let 1 ≤ |S≤1∩S| ≤ 2d−2. Assume for contradiction that |S′| > 4d−|S≤1∩S|−2. We
show that F [S′] contains a matching with at least d edges. Observe that |S′|+ |S≤1∩S| >
4d − 2. Applying Observation 1 (1) shows that there is a cycle C in F [S≤1]. Since F
is an S-forest, this is not an S-cycle, so all vertices contained in C are vertices of S′.
Iteratively removing the two endpoints of an edge from C, as long as |S′|+ |S≤1∩S| > 2d,
constructs d edges of S′ having no common endpoints by Observation 1 (1). Thus, F [S′]
contains a matching M with at least d edges.
Let C1, . . . , Cd′ be the connected components of F [S≤1 ∩ S]. Notice that d′ ≤ d because
F [S≤1 ∩ S] is an induced subgraph of a graph with maximum independent set size at
most d. By construction, every vertex of S′ is adjacent to at least one vertex of S≤1 ∩ S.
If the endpoints of an edge of M in S′ are adjacent to vertices of the same component
Ci, 1 ≤ i ≤ d′, then there is an S-cycle in F since every vertex of Ci belongs to S. Thus
the endpoints of every edge of M are adjacent to different connected components of
F [S≤1∩S]. Now obtain a bipartite graph by contracting every component Ci into a single
vertex and every edge of M into a single vertex and keep only the adjacencies between the
components and the edges of M . Let (A,B) be the bipartition of the resulting bipartite
graph such that A contains the components of F [S≤1 ∩ S] and B contains the edges of
M . Since |A| ≤ |B| and every vertex of B is adjacent to at least two vertices of A, there
is a cycle in the bipartite graph. Then, it is not difficult to see that the cycle of the
contracted vertices corresponds to an S-cycle in F . Therefore there is an S-cycle in an
S-forest, leading to a contradiction.

Case 2. Let 2d− 1 ≤ |S≤1 ∩ S| ≤ 2d. Assume for contradiction that |S′| > 2d− |S≤1 ∩ S|.
This means that S′ contains at least one vertex. We pick a nonempty subset W of
S′ as follows. If |S≤1 ∩ S| = 2d − 1 then W consists of any two vertices of S′. If
|S≤1 ∩ S| = 2d then W consists of an arbitrary vertex of S′. In both cases, notice that
|S≤1 ∩S|+ |W | > 2d by the fact 2d− 1 ≤ |S≤1 ∩S|. Then Observation 1 (1) implies that
there is a cycle in F [(S≤1 ∩ S)∪W ]. Since W has at most two vertices, we conclude that
the induced cycle of F [(S≤1∩S)∪W ] has at least one vertex from S, hence it is an S-cycle
in F . Therefore we reach a contradiction which implies that |S′| ≤ 2d− |S≤1 ∩ S|. J

Lemma 3 shows that we can compute all possible candidates for S≤1 in polynomial time
as follows.

We first try, by brute force, all subsets S′ of S having at most 2d vertices, according to
Observation 1 (2).
Then, for each such subset S′, we incorporate a set X ′ ⊆ N(S′) for which either
|X ′|+ |S′| ≤ 4d− 2, or |X ′|+ |S′| ≤ 2d, according to Lemma 3.
Given the described sets S′ and X ′, we check if G[S′ ∪X ′] induces an S-forest and, if so,
we include them into a list L1 containing all candidates for S≤1.
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The correctness follows from Observation 1 and Lemma 3. Regarding the running time,
notice that we create at most nO(d) subsets for each of S′ and X ′ ⊆ N(S′). Thus, in time
nO(d) we can compute a list L1 that contains all possible subsets of the vertices corresponding
to S≤1. Notice that such vertices are enough to build the part F≤1.

Let S≤1 be a set of L1. We now focus on the graph G′ = G− (S≤1 ∪ S) that contains
the vertices that are at distance of at least two from S≤1 ∩ S. Observe that for any S-forest
F , the set of all vertices in F which are at distance of at most one from the vertices of
S ∩ V (F ), are present as an element of L1. Let d′ be the number of connected components
of G′. It is clear that d′ ≤ d. In fact, if S≤1 ∩ S contains at least one vertex then d′ < d,
since the vertices of G′ are at distance of at least two from S≤1 ∩ S. Moreover, observe that
if S≤1 ∩ S = ∅ then G− S is a trivial solution, since we try all subsets of S, having at most
2d vertices, for the set S≤1. From now on, we assume that |S≤1 ∩ S| ≥ 1 so that d′ < d.

By brute force, we find all tuples (A1, . . . , Ad′) such that the following hold:
(i) Ai ⊆ (S≤1 \ S), for every 1 ≤ i ≤ d′, and
(ii) the graph Ĝ with respect to S≤1 and (A1, . . . , Ad′) is an S-forest.
Notice that by Lemma 2 (ii) it is sufficient to consider only such tuples. Since Ai ⊆ S≤1,
d′ < d, and |S≤1| ≤ 4d, the number of tuples is dO(d), so that we can obtain the desired set
of tuples that satisfy both conditions in polynomial time.

In what follows, we consider the case for d ≤ 3. By the previous arguments, we are given
a set S≤1 ⊆ N [S] and tuples of the form A1 or (A1, A2) which are subsets of S≤1 \ S. Our
task is to compute a subset V ′ of the vertices of G′ such that the vertices of S≤1 ∪ V ′ induce
a maximum S-forest and the cut (G[S≤1], G[V ′]) satisfies A1 or (A1, A2), respectively. We
distinguish the two cases with the following two lemmas.

I Lemma 4. Let X ⊆ N [S] and let A1 be a subset of X \ S such that both F≤1 = G[X]
and Ĝ with respect to X and A1 are S-forests. There exists a polynomial-time algorithm
that computes a maximum S-forest F with an S-distance partition (F≤1, F>1) having a cut
satisfying A1.

Proof. Since F≤1 is a fixed S-forest of F , we need to determine the vertices of V \ (X ∪ S)
that are included in F>1. By the desired cut of (F≤1, F>1), we are restricted to the vertices
of V \ (X ∪ S) that have neighbors in F≤1 only to A1. Those vertices can be described as
follows:

B1 = (V \ (X ∪ S)) \ {w ∈ V : N(w) ∩ (X \ (S ∪A1)) 6= ∅} .

Notice that B1 contains vertices that are at distance at least two from the S-vertices of
X ∩ S. Since the cut satisfies a single subset A1, we have at most one connected component
of G[B1] in F>1. In order to choose the correct connected component of G[B1], we try to
include each of them in F>1 and select the one having the maximum total weight. Notice
that adding any component of G[B1] into F>1 cannot create any S-cycle, because Ĝ with
respect to X and A1 is an S-forest. Thus, by Lemma 2, we correctly compute a maximum
S-forest with the desired properties. Clearly the set B1 can be constructed in polynomial
time. Since the number of connected components G[B1] is at most two, all steps can be
executed in polynomial time. J

I Lemma 5. Let X ⊆ N [S] and let A1, A2 be subsets of X \ S such that both F≤1 = G[X]
and Ĝ with respect to X and (A1, A2) are S-forests. There exists a polynomial-time algorithm
that computes a maximum S-forest F with an S-distance partition (F≤1, F>1) having a cut
satisfying (A1, A2).
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Proof. Similar to the proof of Lemma 4, we first construct the sets B1, B2 that contain
vertices of V \ (X ∪ S) and satisfy the cut obtained from X:

B1 = (V \ (X ∪ S)) \ {w ∈ V : N(w) ∩ (X \ (S ∪A1)) 6= ∅} and
B2 = (V \ (X ∪ S)) \ {w ∈ V : N(w) ∩ (X \ (S ∪A2)) 6= ∅} .

As the desired cut of (F≤1, F>1) satisfies (A1, A2), there are two connected components of F>1
which are subsets of the two sets B1 and B2, respectively. Let C1 and C2 be the connected
components of F>1 such that C1 ⊆ B1 and C2 ⊆ B2. Now observe that there should be
two non-adjacent vertices w1 ∈ B1 and w2 ∈ B2 that belong to C1 and C2, respectively. We
iterate over all possible pairs of non-adjacent vertices w1 ∈ B1 ∩ C1 and w2 ∈ B2 ∩ C2 in
O(n2) time. Assuming a given choice for w1 and w2, observe the following:

Since w1 and w2 are vertices of different connected components of F>1, the components
themselves are further restricted to be subsets of B1 \N [w2] and B2 \N [w1], respectively.
That is, C1 ⊆ (B1 \N [w2]) and C2 ⊆ B2 \N [w1].
Since F has at least one vertex of S, w1, w2 ∈ V \ (X ∪ S) are non-adjacent, and by
the fact d ≤ 3, we have that B1 \ N [w2] and B2 \ N [w1] induce cliques in G. Thus
B1 \N [w2] ⊆ N [w1] and B2 \N [w1] ⊆ N [w2], respectively.

Then by the second statement it is not difficult to see that B1 \N [w2] and B2 \N [w1] are
disjoint. Let B′1 = (B1 \N [w2]) \ {w1} and B′2 = (B2 \N [w1]) \ {w2}. Now in order to find
the maximum induced S-forest under the stated conditions and our assumption that w1 and
w2 belong to the two connected components of F>1, it suffices to find the maximum subset
C1 ∪ C2 of B′1 ∪ B′2 such that there are no edges between the vertices of C1 ∩ B′1 and the
vertices of C2 ∩B′2. This boils down to compute a minimum weighted vertex cover on the
bipartite graph G′ obtained from G[B′1∪B′2] and removing the edges inside G[B′1] and G[B′2].
By maximum flow standard techniques, we compute a minimum weighted vertex cover U on
G′ in polynomial time [30]. Therefore, G[B′1 ∪B′2]− U contains the connected components
C1 \ {w1} and C1 \ {w2}, as required. J

Now we are equipped with our necessary tools in order to obtain our main result, namely
a polynomial-time algorithm that solves Weighted Subset Feedback Vertex Set on
graphs of independent set of size at most 3.

I Theorem 6. Weighted Subset Feedback Vertex Set on graphs of independent set
of size at most 3 can be solved on time nO(1).

Proof. Let us briefly explain such an algorithm for computing a maximum S-forest F of a
graph G having independent set size at most three. Let d = 3. Initially we set F ∗ = G− S.
Then, for every set X ⊆ N [S] with |X| ≤ 4d such that G[X] is an S-forest, we try by brute
force all subsets A1 and (A1, A2) with Ai ⊆ (X \ S) such that Ĝ with respect to X and A1
or (A1, A2) is an S-forest. For each of such subsets, we find a maximum S-forest F with
an S-distance partition (G[X], F>1) having a cut satisfying A1 or (A1, A2), respectively, by
applying the algorithms described in Lemma 4 and Lemma 5. At each step, we maintain the
maximum weighted S-forest F ∗ by comparing F with F ∗. Finally we provide the vertices
V \ V (F ∗) as the set with the minimum total weight that are removed from G.

By Lemma 3, it is sufficient to consider the described subsets X. Since every induced
subgraph of G − X contains at most two connected components, Lemma 2 implies that
all possible subsets A1 or (A1, A2) with the described properties are enough to consider.
Thus, the correctness follows from Lemmata 3–5. Regarding the running time, notice that
whether a graph contains an S-cycle can be tested in linear time. Thus we can construct all
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described and valid subsets in nO(1) time. Therefore the total running time of the algorithm
is nO(1), since each of the algorithms given in Lemma 4 and Lemma 5, respectively, requires
polynomial time. J

Let us now show that extending Theorem 6 to graphs of larger independent sets is
not possible. More precisely, with the following result we show that Weighted Subset
Feedback Vertex Set is para-NP-complete parameterized by α(G).

I Theorem 7. Weighted Subset Feedback Vertex Set is NP-complete on graphs of
independent set of size at most 4.

Proof. We will provide a polynomial reduction from the Vertex Cover problem on
tripartite graphs which is NP-complete [17] and asks whether a tripartite graph G contains
a vertex cover of weight at most k. Let G = (A,B,C,E) be a tripartite graph on n vertices,
where (A,B,C) is the partition of V (G). We construct a weighted graph G′ from G in
polynomial time as follows.

We turn the three independent sets A, B and C into cliques by adding all necessary edges
and we give all vertices unary weight.
We add a vertex rA that is adjacent to all of the vertices of A and we assign weight n to
rA. In a completely symmetric way, we add vertices rB and rC with respect to the sets
B and C, respectively.
We add a vertex s that is adjacent to all three vertices rA, rB , rC having weight n.

This completes the construction of G′. Observe that all vertices of V (G′) \ {s, rA, rB , rC}
have weight equal to one. It is not difficult to verify that the constructed graph G′ is a graph
having an independent set at most 4, since the vertex set of G′ − {s} can be partitioned into
three cliques.

Next we claim that G has a vertex cover U of weight at most k < n if and only if G′ with
S = {s} has a subset feedback vertex set of weight at most k. Assume a vertex cover U of G.
By definition, U covers all edges of G, so that G[(A∪B ∪C) \U ] is an independent set. This
means that G′[(A ∪B ∪ C) \ U ] is a vertex-disjoint union of cliques. Since s is non-adjacent
to any vertex of G and G′[rA, rB , rC ] is an independent set, every cycle of G′ − U contains
a vertex of rA, rB and rC with at least two vertices from A,B and C, respectively. Thus,
G′ − U is a connected S-forest. Therefore, U is a subset feedback vertex set of (G′, {s}) of
size at most k.

For the opposite direction, assume a subset feedback vertex set F of (G′, {s}). If F is
not a subset of A ∪B ∪ C, then its sum of weights is greater or equal to n. Then F is not a
minimum subset feedback vertex set of (G′, {s}), since A ∪B ∪ C minus a single vertex is
trivially a subset feedback vertex set of (G′, {s}) of total weight n− 1. Thus F is indeed a
subset of A ∪B ∪ C. Assume that F is not a vertex cover of G. By definition, there is an
edge of G that remains uncovered. Without loss of generality, assume that this edge has its
endpoints on the vertices x ∈ A and y ∈ B. Then 〈s, rA, x, y, rB〉 is an induced cycle of G′,
which contradicts the fact that F is a subset feedback vertex set of (G′, {s}). Therefore F is
a vertex cover of G. J

We stress that Theorem 7 further implies that the NP-completeness result carries along
to graphs of clique cover number at most four, since the constructed graph given in the proof
can be partitioned into four disjoint cliques.
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4 SFVS on Graphs of Bounded Independent Set

Here we show that despite the complexity dichotomy result for the Weighted Subset
Feedback Vertex Set, whenever the weights of the vertices are equal Subset Feedback
Vertex Set can be solved in polynomial time on graphs of bounded independent set number.

I Theorem 8. Subset Feedback Vertex Set on graphs of independent set of size at
most d can be solved in time nO(d).

Proof. Let G = (V,E) be a graph with α(G) ≤ d and let S ⊆ V . Denote by X ⊆ V a
minimum subset feedback vertex set of G. Let F = G −X be a maximum S-forest of G.
By Observation 1 (2), the vertices of S that belong to F are at most 2d. Thus for every
optimum solution X, the set S \X has at most 2d vertices.

Now we claim that it is enough to try guessing all subsets X ′ of X for which |X ′| ≤ 2d.
To see this, observe that if X \ S has order more than 2d, then G − S has more vertices
than G−X, leading to a contradiction to the optimality of X. Hence, X \ S has at most
2d vertices. In order to find an optimal solution, it suffices to consider all such candidates
S′ for S \ X and X ′ for X \ S. To check whether an induced subgraph of G consists an
S-forest takes O(n + m) time. Since the number of such sets S′ is at most n2d and the
number of the considered sets X ′ is at most n2d, the total running time is bounded by nO(d).
Therefore in time nO(d) we compute a minimum subset feedback vertex set showing the
claimed result. J

Regarding the dependence of the exponent in the running time of the algorithm given
in Theorem 8, note that we can hardly avoid this fact, since Feedback Vertex Set is
W[1]-hard parameterized by the independent set number as explicitly given in [24]. At the
same time such an observation follows from the W[1]-hardness result from the construction
given in [22] with respect to the maximum induced matching width. In the full version of this
extended abstract [32], we provide a different and simpler reduction from the Multicolored
Independent Set problem [14, 33] which shows an interesting connection with graphs of
bounded independent set size.

5 Extending to other Terminal Set Problems

Let us now consider further terminal set problems that are related to Subset Feedback
Vertex Set. In these type of problems we are given a graph G = (V,E), a terminal set
T ⊆ V , and a nonnegative integer k and the goal is to find a set X ⊆ V with |X| ≤ k which
intersects all “structures” (such as cycles or paths) passing through the vertices in T [6]. In
this setting, Subset Feedback Vertex Set is a particular terminal set problem when
the objective structure is a cycle. We show that the ideas that we developed for Subset
Feedback Vertex Set on graphs of bounded independent set size, can be extended to
further terminal set problems when the objective structure is a path instead of a cycle.

The (unweighted) Node Multiway Cut problem is concerned with finding a set
X ⊆ V \ T of size at most k such that any path between two different terminals intersects
X. Notice that in this problem we are not allowed to remove any terminal. For graphs
having bounded independent set size, we completely characterize the complexity of Node
Multiway Cut. In particular, for α(G) = 3 we can adopt the reduction given in Theorem 7.

I Theorem 9. Let G be a graph of independent set of size at most d. If d ≤ 2 then
Node Multiway Cut can be solved on time nO(1). Otherwise, Node Multiway Cut is
NP-complete on graphs of independent set of size at most 3.
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Due to the difficulty of Node Multiway Cut even for the unweighted version and
with small independent set number, we consider a relaxed variation in which we are allowed
to remove terminal vertices. The Node Multiway Cut with Deletable Terminals
problem seeks for a solution X with X ⊆ V (instead of X ⊆ V \ T ). Next we show that the
(unweighted) Node Multiway Cut with Deletable Terminals problem can be solved
in polynomial time on graphs of bounded independent set number, using an idea similar to
the one given in Theorem 8.

I Theorem 10. Node Multiway Cut with Deletable Terminals on graphs of inde-
pendent set of size at most d can be solved in time nO(d).

Proof. Let (G,T, k) be an instance of Node Multiway Cut with Deletable Terminals
where G is a graph having independent set size at most d. Observe that every solution X
has size at most |T |. Assume first that |T | ≤ d. Then we can enumerate all subsets having
at most |T | vertices in time nO(|T |) and pick the smallest subset that separates all terminals.
Thus in time nO(d) we output a valid solution X, if it exists.

Next assume that d < |T |. We consider the graph G[T ]. As an induced subgraph of G,
G[T ] has independent set size at most d. Thus, G[T ] contains at least one edge. If both
endpoints of an edge in G[T ] do not belong to solution X, then there is a path between
terminal vertices. This means that there is a vertex cover U of G[T ] such that U ⊆ X. To
compute such a set U , we enumerate all independent sets T ′ ⊆ T of size at most d in time
|T |O(d) and construct U = T \T ′. For each constructed U , we consider the graph G′ = G−U
with terminals T ′. Since T ′ is an independent set in G′, we know that |T ′| ≤ d. Thus in
time nO(|T ′|) we can compute a set X ′ of minimum size such that all terminals of G′ −X ′
are separated. Therefore, the total running time is bounded by |T |O(d) · nO(|T ′|) which is
bounded by nO(d), because |T | ≤ n and |T ′| ≤ d. J

Let us also stress that we can hardly avoid the dependence of the exponent in the running
time given in Theorem 10. This comes from the fact that Node Multiway Cut with
Deletable Terminals with T = V (G) is equivalent to asking whether the graph contains
an independent set of size at least k. That is, we have to solve the Independent Set which
is known to be W[1]-hard parameterized by the size of the independent set [12].

Regarding the node-weighted variant of Node Multiway Cut with Deletable
Terminals, we provide a dichotomy result with respect to α(G). In fact, for α(G) ≤ 2
we can invoke the algorithm for the Weighted Subset Feedback Vertex Set given in
Theorem 6, by adding a new vertex with a large weight that is adjacent to all terminals.
Moreover, due to its close connection to the Node Multiway Cut, for α(G) > 2 we can
assign appropriate weights to the terminals in a way that they become undeletable.

I Theorem 11. Let G be a graph of independent set of size at most d. If d ≤ 2 then
Weighted Node Multiway Cut with Deletable Terminals can be solved in time
nO(1). Otherwise, Weighted Node Multiway Cut with Deletable Terminals is
NP-complete on graphs of independent set of size at most 3.

6 Concluding Remarks

Despite the fact that the Weighted Subset Feedback Vertex Set is NP-complete on
graphs with bounded independent set number, it is still interesting to settle the complexity
of Subset Feedback Vertex Set on graphs of maximum induced matching width by
extending the approach given in [23]. Moreover, Feedback Vertex Set is known to be
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polynomially-time solvable on cocomparability graphs [28], and, more generally, on AT-free
graphs [26]. To our knowledge, Subset Feedback Vertex Set has not been studied on
such graphs, besides the existence of a fast exponential-time algorithm for the unweighted
variant of the problem [6]. Furthermore, Theorem 9 shows that Node Multiway Cut
remains NP-complete on graphs having maximum induced matching three. However, on
graphs of bounded maximum induced matching the complexity of Node Multiway Cut
with Deletable Terminals is still unknown.
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Abstract
Powerful results from the theory of integer programming have recently led to substantial advances
in parameterized complexity. However, our perception is that, except for Lenstra’s algorithm for
solving integer linear programming in fixed dimension, there is still little understanding in the
parameterized complexity community of the strengths and limitations of the available tools. This
is understandable: it is often difficult to infer exact runtimes or even the distinction between FPT
and XP algorithms, and some knowledge is simply unwritten folklore in a different community.
We wish to make a step in remedying this situation.

To that end, we first provide an easy to navigate quick reference guide of integer programming
algorithms from the perspective of parameterized complexity. Then, we show their applications
in three case studies, obtaining FPT algorithms with runtime f(k) poly(n). We focus on:

Modeling: since the algorithmic results follow by applying existing algorithms to new models,
we shift the focus from the complexity result to the modeling result, highlighting common
patterns and tricks which are used.
Optimality program: after giving an FPT algorithm, we are interested in reducing the depen-
dence on the parameter; we show which algorithms and tricks are often useful for speed-ups.
Minding the poly(n): reducing f(k) often has the unintended consequence of increasing
poly(n); so we highlight the common trade-offs and show how to get the best of both worlds.

Specifically, we consider graphs of bounded neighborhood diversity which are in a sense the
simplest of dense graphs, and we show several FPT algorithms for Capacitated Dominating
Set, Sum Coloring, and Max-q-Cut by modeling them as convex programs in fixed dimension,
n-fold integer programs, bounded dual treewidth programs, and indefinite quadratic programs
in fixed dimension.
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Related Version A full version of the paper is available at https://arxiv.org/abs/1711.
02032.

1 Introduction

Our focus is on modeling various problems as integer programming (IP), and then
obtaining FPT algorithms by applying known algorithms for IP. IP is the problem

min{f(x) | x ∈ S ∩ Zn, S ⊆ Rn is convex} . (IP)

We give special attention to two restrictions of IP. First, when S is a polyhedron, we get

min{f(x) | Ax ≤ b, x ∈ Zn}, (LinIP)

where A ∈ Zm×n and b ∈ Zm; we call this problem linearly-constrained IP, or LinIP. Further
restricting f to be a linear function gives Integer Linear Programming (ILP):

min{wx | Ax ≤ b, x ∈ Zn}, (ILP)

where w ∈ Zn. The function f : Zn → Z is called the objective function, S is the feasible set
(defined by constraints or various oracles), and x is a vector of (decision) variables. By 〈·〉
we denote the binary encoding length of numbers, vectors and matrices.

In 1983 Lenstra showed that ILP is polynomial in fixed dimension and solvable in
time nO(n)〈A,b,w〉 (including later improvements [22, 36, 45]). Two decades later this
algorithm’s potential for applications in parameterized complexity was recognized, e.g. by
Niedermeier [52]:

[...] It remains to investigate further examples besides Closest String where
the described ILP approach turns out to be applicable. More generally, it would
be interesting to discover more connections between fixed-parameter algorithms and
(integer) linear programming.

This call has been answered in the following years, for example in the context of graph
algorithms [19, 20, 24, 44], scheduling [30, 35, 38, 51] or computational social choice [8].

In the meantime, many other powerful algorithms for IP have been devised; however
it seemed unclear exactly how could these tools be used, as Lokshtanov states in his PhD
thesis [46], referring to FPT algorithms for convex IP in fixed dimension:

It would be interesting to see if these even more general results can be useful for
showing problems fixed parameter tractable.

Similarly, Downey and Fellows [14] highlight the FPT algorithm for so called n-fold IP:

Conceivably, [Minimum Linear Arrangement] might also be approached by the
recent (and deep) FPT results of Hemmecke, Onn and Romanchuk [28] concerning
nonlinear optimization.

Interestingly, Minimum Linear Arrangement was shown to be FPT by yet another new
algorithm for IP due to Lokshtanov [47].

In the last 3 years we have seen a surge of interest in, and an increased understanding
of, these IP techniques beyond Lenstra’s algorithm, allowing significant advances in fields
such as parameterized scheduling [9, 30, 33, 38, 51], computational social choice [39, 40, 42],
multichoice optimization [23], and stringology [39]. This has increased our understanding of
the strengths and limitations of each tool as well as the modeling patterns and tricks which
are typically applicable and used.

https://arxiv.org/abs/1711.02032
https://arxiv.org/abs/1711.02032
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1.1 Our Results

We start by giving a quick overview of existing techniques in Section 2, which we hope to
be an accessible reference guide for parameterized complexity researchers. Then, we resolve
the parameterized complexity of three problems when parameterized by the neighborhood
diversity of a graph (we defer the definitions to the relevant sections). However, since our
complexity results follow by applying an appropriate algorithm for IP, we also highlight our
modeling results. Moreover, in the spirit of the optimality program (introduced by Marx [49]),
we are not content with obtaining some FPT algorithm, but we attempt to decrease the
dependence on the parameter k as much as possible. This sometimes has the unintended
consequence of increasing the polynomial dependence on the graph size |G|. We note this
and, by combining several ideas, get the “best of both worlds”. Driving down the poly(|G|)
factor is in the spirit of “minding the poly(n)” of Lokshtanov et al. [48].

We denote by |G| the number of vertices of the graph G and by k its neighborhood
diversity; graphs of neighborhood diversity k have a succinct representation (constructible in
linear time) with O(k2 log |G|) bits and we assume to have such a representation on input.

I Theorem 1. Capacitated Dominating Set
(a) Has a convex IP model in O(k2) variables and can be solved in time and space

kO(k2) log |G|.
(b) Has an ILP model in O(k2) variables and O(|G|) constraints, and can be solved in time

kO(k2) poly(|G|) and space poly(k, |G|).
(c) Can be solved in time kO(k) poly(|G|) using model a and a proximity argument.
(d) Has a polynomial OPT + k2 approximation algorithm by rounding a relaxation of a.

I Theorem 2. Sum Coloring
(a) Has an n-fold IP model in O(k|G|) variables and O(k2|G|) constraints, and can be solved

in time kO(k3)|G|2 log2 |G|.
(b) Has a LinIP model in O(2k) variables and k constraints with a non-separable convex

objective, and can be solved in time 22kO(1)

log |G|.
(c) Has a LinIP model in O(2k) variables and O(2k) constraints whose constraint matrix

has dual treewidth k + 2 and whose objective is separable convex, and can be solved in
time kO(k2) log |G|.

I Theorem 3. Max-q-Cut has a LinIP model with an indefinite quadratic objective and
can be solved in time g(q, k) log |G| for some computable function g.

1.2 Related Work

Graphs of neighborhood diversity constitute an important stepping stone in the design of
algorithms for dense graphs, because they are in a sense the simplest of dense graphs [2, 3,
6, 20, 24, 25, 50]. Studying the complexity of Capacitated Dominating Set on graphs
of bounded neighborhood diversity is especially interesting because it was shown to be
W[1]-hard parameterized by treewidth by Dom et al. [13]. Sum Coloring was shown to be
FPT parameterized by treewidth [32]; its complexity parameterized by clique-width is open
as far as we know. Max-q-Cut is FPT parameterized by q and treewidth (by reduction to
CSP), but W[1]-hard parameterized by clique-width [21].

IPEC 2018
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1.3 Preliminaries
For positive integers m,n with m ≤ n we set [m,n] = {m, . . . , n} and [n] = [1, n]. We write
vectors in boldface (e.g., x,y) and their entries in normal font (e.g., the i-th entry of x is xi).
For a graph G we denote by V (G) its set of vertices, by E(G) the set of its edges, and by
NG(v) = {u ∈ V (G) | uv ∈ E(G)} the (open) neighborhood of a vertex v ∈ V (G). For a
matrix A we define

the primal graph GP (A), which has a vertex for each column and two vertices are
connected if there exists a row such that both columns are non-zero, and,
the dual graph GD(A) = GP (Aᵀ), which is the above with rows and columns swapped.

We call the treedepth and treewidth of GP (A) the primal treedepth tdP (A) and primal
treewidth twP (A), and analogously for the dual treedepth tdD(A) and dual treewidth twD(A).

We define a partial order v on Rn as follows: for x,y ∈ Rn we write x v y and say that
x is conformal to y if xiyi ≥ 0 (that is, x and y lie in the same orthant) and |xi| ≤ |yi| for
all i ∈ [n]. It is well known that every subset of Zn has finitely many v-minimal elements.

I Definition 4 (Graver basis). The Graver basis of A ∈ Zm×n is the finite set G(A) ⊂ Zn of
v-minimal elements in {x ∈ Zn | Ax = 0, x 6= 0}.

Neighborhood Diversity. Two vertices u, v are called twins if N(u) \ {v} = N(v) \ {u}.
The twin equivalence is the relation on vertices of a graph where two vertices are equivalent
if and only if they are twins.

I Definition 5 (Lampis [44]). The neighborhood diversity of a graph G, denoted by nd(G),
is the minimum number k of classes (called types) of the twin equivalence of G.

We denote by Vi the classes of twin equivalence on G for i ∈ [k]. A graph G with
nd(G) = k can be described in a compressed way using only O

(
log |G| · k2) space by its type

graph, which is computable in linear time [44]:

I Definition 6. The type graph T (G) of a graph G is a graph on k = nd(G) vertices [k],
where each i is assigned weight |Vi|, and where i, j is an edge or a loop in T (G) if and only if
two distinct vertices of Vi and Vj are adjacent.

Modeling. Loosely speaking, by modeling an optimization problem Π as a different problem
Λ we mean encoding the features of Π by the features of Λ, such that the optima of Λ encode
at least some optima of Π. Modeling differs from reduction by highlighting which features of
Π are captured by which features of Λ.

In particular, when modeling Π as an integer program, the same feature of Π can often
be encoded in several ways by the variables, constraints or the objective. For example, an
objective of Π may be encoded as a convex objective of the IP, or as a linear objective which
is lower bounded by a convex constraint; similarly a constraint of Π may be modeled as a
linear constraint of IP or as minimizing a penalty objective function expressing how much is
the constraint violated. Such choices greatly influence which algorithms are applicable to
solve the resulting model. Specifically, in our models we focus on the parameters #variables
(dimension), #constraints, the largest coefficient in the constraints ‖A‖∞ (abusing the
notation slightly when the constraints are not linear), the largest right hand side ‖b‖∞,
the largest domain ‖u − l‖∞, and the largest coefficient of the objective function ‖w‖∞
(linear objectives), ‖Q‖∞ (quadratic objectives) or fmax = maxx:l≤x≤u |f(x)| (in general),
and noting other relevant features.
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Solution structure. We concur with Downey and Fellows that FPT and structure are
essentially one [14]. Here, it typically means restricting our attention to certain structured
solutions and showing that nevertheless such structured solutions contain optima of the
problem at hand. We always discuss these structural properties before formulating a model.

2 Integer Programming Toolbox

We give a list of the most relevant algorithms solving IP, highlighting their fastest known
runtimes (marked >), typical use cases and strengths (+), limitations (−), and a list
of references to the algorithms (♥) and their most illustrative applications (.), both in
chronological order.

2.1 Small Dimension
The following tools generally rely on results from discrete geometry.

ILP in small dimension. Problem (ILP) with small n.
> n2.5n〈A,b,w〉 [36, 22]
+ Can use large coefficients, which allows encoding logical connectives using Big-M coeffi-

cients [5]. Runs in polynomial space. Most people familiar with ILP.
− Small dimension can be an obstacle in modeling polynomially many “types” of objects [7,

Challenge #2]. Models often use exponentially many variables in the parameter, leading to
double-exponential runtimes (applies to all small dimension techniques below). Encoding a
convex objective or constraint requires many constraints (cf. Model 9). Big-M coefficients
are impractical.

♥ [45, 36, 22]
. [52, 19, 35, 20, 18]

Convex IP in small dimension. Problem (IP) with f a convex function; S can be represented
by polynomial inequalities, a first-order oracle, a separation oracle, or as a semialgebraic set.
> n

4
3n〈B〉, where S is contained in a ball of radius B [12].

+ Strictly stronger than ILP. Representing constraints implicitely by an oracle allows better
dependence on instance size (cf. Model 8).

− Exponential space. Algorithms usually impractical. Proving convexity can be difficult.
♥ [26, Theorem 6.7.10] (weak separation oracle), [37] (semialgebraic sets), [27, 31] (polyno-

mials), [11] randomized / [12] deterministic (strong separation oracle), [53] reduction to
Mixed ILP subproblems (first-order oracle).

. [30, 8, 51, 38, 41], Model 8

Indefinite quadratic IP in small dimension. Problem (LinIP) with f(x) = xᵀQx indefinite
(non-convex) quadratic.
> g(n, ‖A‖∞, ‖Q‖∞)〈b〉 [55]
+ Currently the only tractable indefinite objective.
− Limiting parameterization.
♥ [47, 55]
. [47], Model 10
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Parametric ILP in small dimension. Given a Q = {b ∈ Rm | Bb ≤ d}, decide

∀b ∈ Q ∩ Zm ∃x ∈ Zn : Ax ≤ b .

> g(n,m) poly(‖A,B,d‖∞) [16]
+ Models one quantifier alternation. Useful in expressing game-like constraints (e.g., “∀

moves ∃ a counter-move”). Allows unary big-M coefficients to model logic [42, Theorem
4.5].

− Input has to be given in unary (vs. e.g. Lenstra’s algorithm).
♥ [16, Theorem 4.2], [10, Corollary 1]
. [10, 42]

2.2 Variable Dimension
In this section it will be more natural to consider the following standard form of (LinIP)

min{f(x) | Ax = b, l ≤ x ≤ u, x ∈ Zn}, (SLinIP)

where b ∈ Zm and l,u ∈ Zn. Let L = 〈fmax,b, l,u〉. In contrast with the previous section,
the following algorithms typically rely on algebraic arguments and dynamic programming.

ILP with few rows. Problem (SLinIP) with small m and a linear objective wx for w ∈ Zn.
> O((m‖A‖∞)2m)〈b〉 if l ≡ 0 and u ≡ +∞, and n · (m‖A‖∞)O(m2)〈b, l,u〉 in general [34]
+ Useful for configuration IPs with small coefficients, leading to exponential speed-ups. Best

runtime in the case without upper bounds. Linear dependence on n.
− Limited modeling power. Requires small coefficients.
♥ [54, 17, 34]
. [34]

Anfold =


A1 A1 · · · A1
A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A2

 Astoch =


B1 B2 0 · · · 0
B1 0 B2 · · · 0
...

...
...

. . .
...

B1 0 0 · · · B2



n-fold IP, tree-fold IP, and dual treedepth. n-fold IP is problem (SLinIP) in dimension
nt, with A = Anfold for some two blocks A1 ∈ Zr×t and A2 ∈ Zs×t, l,u ∈ Znt, b ∈ Zr+ns,
and with f a separable convex function, i.e., f(x) =

∑n
i=1
∑t
j=1 f

i
j(xij) with each f ij : Z→ Z

convex. Tree-fold IP is a generalization of n-fold IP where the block A2 is itself replaced by
an n-fold matrix, and so on, recursively, τ times. Tree-fold IP has bounded tdD(A).

> (‖A‖∞rs)O(r2s+rs2)(nt)2 log(nt)〈L〉 n-fold IP [1, 15]; (‖A‖∞ + 1)2tdD(A)(nt)2 log(nt)〈L〉
for (SLinIP) [43].

+ Variable dimension useful in modeling many “types” of objects [40, 42]. Useful for
obtaining exponential speed-ups (not only configuration IPs). Seemingly rigid format is
in fact not problematic (blocks can be different provided coefficients and dimensions are
small).

− Requires small coefficients.
♥ [28, 39, 9, 15, 1, 43]
. [38, 40, 39, 9, 33], Model 11
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2-stage and multi-stage stochastic IP, and primal treedepth. 2-stage stochastic IP is
problem (SLinIP) with A = Astoch and f a separable convex function; multi-stage stochastic
IP is problem (SLinIP) with a multi-stage stochastic matrix, which is the transpose of a
tree-fold matrix; multi-stage stochastic IP is in turn generalized by IP with small primal
treedepth tdP (A).
> g(tdP (A), ‖A‖∞)n2 logn〈L〉, g computable [43]
+ Similar to Parametric ILP in fixed dimension, but quantification ∀b ∈ Q∩Zn is now over

a polynomial sized but possibly non-convex set of explicitely given right hand sides.
− Not clear which problems are captured. Requires small coefficients. Parameter dependence

g is possibly non-elementary; no upper bounds on g are known, only computability.
♥ [29, 4, 43]
. N/A

Small treewidth and Graver norms. Let g∞(A) = maxg∈G(A) ‖g‖∞ and g1(A) =
maxg∈G(A) ‖g‖1 be maximum norms of elements of G(A).
> min{g∞(A)O(twP (A)), g1(A)O(twD(A))}n2 logn〈L〉 [43]
+ Captures IPs beyond the classes defined above (cf. Section 5.3).
− Bounding g1(A) and g∞(A) is often hard or impossible.
♥ [43]
. Model 14

3 Convex Constraints: Capacitated Dominating Set

Capacitated Dominating Set
Input: A graph G = (V,E) and a capacity function c : V → N.
Task: Find a smallest possible set D ⊆ V and a mapping δ : V \D → D such that for each

v ∈ D, |δ−1(v)| ≤ c(v).

Solution Structure. Let <c be a linear extension of ordering of V by vertex capacities, i.e.,
u <c v if c(u) ≤ c(v). For i ∈ T (G) and ` ∈ [|Vi|] let Vi[1 : `] be the set of the first ` vertices
of Vi in the ordering <c and let fi(`) =

∑
v∈Vi[2:`] c(v); for ` > |Vi| let fi(`) = fi(|Vi|). Let

D be a solution and Di = D∩Vi. We call the functions fi the domination capacity functions.
Intuitively, fi(`) is the maximum number of vertices dominated by Vi[1 : `]. Observe that
since fi(`) is a partial sum of a non-increasing sequence of numbers, it is a piece-wise linear
concave function. We say that D is capacity-ordered if, for each i ∈ T (G), Di = Vi[1 : |Di|].
The following observation allows us to restrict our attention to such solutions; the proof goes
by a simple exchange argument.

I Lemma 7 (?). There is a capacity-ordered optimal solution.

Observe that a capacity-ordered solution is fully determined by the sizes |Di| and <c rather
than the actual sets Di, which allows modeling CDS in small dimension.

I Model 8 (Capacitated Dominating Set as convex IP in fixed dimension).
Variables & notation:

xi = |Di|
yij = |δ−1(Di) ∩Dj |
fi(xi) = maximum #vertices dominated by Di if |Di| = xi

IPEC 2018
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Objective & Constraints:

min
∑

i∈T (G)

xi min |D| =
∑

i∈T (G)

|Di| (cds:cds-obj)

∑
j∈NT (G)(i)

yij ≤ fi(xi) ∀i ∈ T (G) respect capacities (cds:cap)

∑
i∈NT (G)(j)

yij ≥ |Vj | − xj ∀j ∈ T (G) every v ∈ Vj \Dj dominated (cds:dom)

0 ≤ xi ≤ |Vi| ∀i ∈ T (G) (cds:bounds)

Parameters & Notes:
#vars #constraints ‖A‖∞ ‖b‖∞ ‖l,u‖∞ ‖w‖∞
O(k2) O(k) 1 |G| |G| 1

constraint (cds:cap) is convex, since it bounds the area under a concave function, and is
piece-wise linear.

Then, applying for example Dadush’s algorithm [11] to Model 8 yields Theorem 1a. We
can trade the non-linearity of the previous model for an increase in the number of constraints
and the largest coefficient. That, combined with Lenstra’s algorithm, yields Theorem 1b,
where we get a larger dependence on |G|, but require only poly(k, |G|) space.

I Model 9 (Capacitated Dominating Set as ILP in fixed dimension).
Exactly as Model 8 but replace constraints (cds:cap) with the following equivalent set of |G|
linear constraints:∑

ij∈E(T (G))

yij ≤ fi(`− 1) + c(v`)(xi − `+ 1) ∀i ∈ T (G)∀` ∈ [|Vi|] (cds:cap-lin)

The parameters then become: #vars #constraints ‖A‖∞ ‖b‖∞ ‖l,u‖∞ ‖w‖∞
O(k2) O(k + |G|) |G| |G| |G| 1

[Additive approximation] Proof of Theorem 1d. Let (x,y) ∈ Rk+k2 be an optimal solution
to the continuous relaxation of Model 8, i.e., we relax the requirement that (x,y) are integral;
note that such (x,y) can be computed in polynomial time using the ellipsoid method [26], or
by applying a polynomial LP algorithm to Model 9. We would like to round (x,y) up to an
integral (x̂, ŷ) to obtain a feasible integer solution which would be an approximation of an
integer optimum. Ideally, we would take ŷ = dye and compute x̂ accordingly, i.e., set x̂i to
be smallest possible such that

∑
j∈NT (G)(i) ŷij ≥ fi(x̂i); note that x̂i ≤ xi + k, since we add

at most k neighbors (to be dominated) in neighborhood of Vi. However, this might result in
a non-feasible solution if, for some i, x̂i > |Vi|. In such a case, we solve the relaxation again
with an additional constraint xi = |Vi| and try rounding again, repeating this aforementioned
fixing procedure if rounding fails, and so on. After at most k repetitions this rounding
results in a feasible integer solution (x̂, ŷ), in which case we have ‖x̂−x‖1 ≤ k2 and thus the
solution represented by (x̂, ŷ) has value at most OPT + k2; the relaxation must eventually
become feasible as setting xi = |Vi| for all i ∈ T (G) yields a feasible solution. J
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[Speed trade-offs] Proof of Theorem 1c. Notice that on our way to proving Theorem 1d
we have shown that Model 8 has integrality gap at most k2, i.e., the value of the continuous
optimum is at most k2 less than the value of the integer optimum. This implies that an integer
optimum (x∗,y∗) satisfies, for each i ∈ [k], max{0, bxi − k2c} ≤ x∗i ≤ min{|Vi|, xi + dk2e}.

We can exploit this to improve Theorem 1a in terms of the parameter dependence at
the cost of the dependence on |G|. Let us assume that we have a way to test, for a given
integer vector x̂, whether it models a capacity-ordered solution, that is, whether there exists
a capacitated dominating set with Di = Vi[1 : x̂i] for each i. Then we can simply go over all
possible (2k2 + 2)k choices of x̂ and choose the best. So we are left with the task of, given a
vector x̂, deciding if it models a capacity-ordered solution.

But this is easy. Let <c be the assumed order and define D as above. Now, we construct
an auxiliary bipartite matching problem, where we put c(v) copies of each vertex from D

on one side of the graph, and all vertices of V \D on the other side, and connect a copy of
v ∈ D to u ∈ V \D if uv ∈ E(G). Then, D is a capacitated dominating set if and only if all
vertices in V \D can be matched. The algorithm is then simply to compute the continuous
optimum x, and go over all integer vectors x̂ with ‖x − x̂‖1 ≤ k2, verifying whether they
model a solution and choosing the smallest (best) one. J

4 Indefinite Quadratics: Max q-Cut

Max-q-Cut
Input: A graph G = (V,E).
Task: A partition W1∪̇ · · · ∪̇Wq = V maximizing the number of edges between distinct Wα

and Wβ , i.e., |{uv ∈ E(G) | u ∈Wα, v ∈Wβ , α 6= β}|.

Solution structure. As before, it is enough to describe how many vertices from type i ∈ T (G)
belong to Wα for α ∈ [q], and their specific choice does not matter; this gives us a small
dimensional encoding of the solutions.

I Model 10 (Max-q-Cut as LinIP with indefinite quadratic objective).
Variables & Notation:

xiα = |Vi ∩Wα|
xiα · xjβ = #edges between Vi ∩Wα and Vj ∩Wβ if ij ∈ E(T (G)).

Objective & Constraints:

min
∑

α,β∈[q]:
α6=β

∑
ij∈E(T (G))

xiα · xjβ min#edges across partites (mc:obj)

∑
α∈[q]

xiα = |Vi| ∀i ∈ T (G) (Vi ∩Wα)α∈[q] partitions Vi (mc:part)

Parameters & Notes:
#vars #constraints ‖A‖∞ ‖b‖∞ ‖l,u‖∞ ‖Q‖∞
kq k 1 |G| |G| 1

objective (mc:obj) is indefinite quadratic.

Applying Lokshtanov’s [47] or Zemmer’s [55] algorithm to Model 10 yields Theorem 3. Note
that since we do not know anything about the objective except that it is quadratic, we have
to make sure that ‖Q‖∞ and ‖A‖∞ are small.

IPEC 2018
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5 Convex Objective: Sum Coloring

Sum Coloring
Input: A graph G = (V,E).
Task: A proper coloring c : V → N minimizing

∑
v∈V c(v).

In the following we first give a single-exponential algorithm for Sum Coloring with
a polynomial dependence on |G|, then a double-exponential algorithm with a logarithmic
dependence on |G|, and finally show how to combine the two ideas together to obtain a
single-exponential algorithm with a logarithmic dependence on |G|.

5.1 Sum Coloring via n-fold IP
Structure of Solution. The following observation was made by Lampis [44] for the Col-
oring problem, and it holds also for the Sum Coloring problem: every color C ⊆ V (G)
intersects each clique type in at most one vertex, and each independent type in either none
or all of its vertices. The first follows simply by the fact that it is a clique; the second by the
fact that if both colors α, β with α < β are used for an independent type, then recoloring all
vertices of color β to be of color α remains a valid coloring and decreases its cost. We call a
coloring with this structure an essential coloring.

I Model 11 (Sum Coloring as n-fold IP).
Variables & Notation:

xαi = 1 if color α intersects Vi
α · xαi = cost of color α at a clique type i
α|Vi| · xαi = cost of color α at an independent type Vi
Snfold(x) =

∑|G|
α=1

(
(
∑

clique i∈T (G) αx
α
i ) + (

∑
indep. i∈T (G) α|Vi|xαi )

)
= total cost of x

Objective & Constraints:

min Snfold(x) (sc:nf:obj)
|G|∑
α=1

xαi = |Vi| ∀i ∈ T (G), Vi is clique Vi is colored (sc:nf:cliques)

|G|∑
α=1

xαi = 1 ∀i ∈ T (G), Vi is independent Vi is colored (sc:nf:indeps)

xαi + xαj ≤ 1 ∀α ∈ [|G|] ∀ij ∈ E(T (G)) xα is independent set (sc:nf:xi-indep)

Parameters & Notes:
#vars #constraints ‖A‖∞ ‖b‖∞ ‖l,u‖∞ ‖w‖∞ r s t

k|G| k + k2|G| 1 |G| 1 |G| k k2 k

Constraints have an n-fold format: (sc:nf:cliques) and (sc:nf:indeps) form the (A1 · · ·A1)
block and (sc:nf:xi-indep) form the A2 blocks; see parameters r, s, t above.

Applying the algorithm of Altmanová et al. [1] to Model 11 yields Theorem 2a. Model 11 is
a typical use case of n-fold IP: we have a vector of multiplicities b (modeling (|V1|, . . . , |Vk|))
and we optimize over its decompositions into independent sets of T (G). A clever objective
function models the objective of Sum Coloring.
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Figure 1 An illustration of the cost decomposition to the individual classes. Note that i-th row
(color i) has cost i per vertex.

5.2 Sum Coloring via Convex Minimization in Fixed Dimension

Structure of Solution. The previous observations also allow us to encode a solution in
a different way. Let I = {I1, . . . , IK} be the set of all independent sets of T (G); note
that K < 2k. Then we can encode an essential coloring of G by a vector of multiplicities
x = (xI1 , . . . , xIK

) of elements of I such that there are xIj
colors which color exactly the

types contained in Ij . The difficulty with Sum Coloring lies in the formulation of its
objective function. Observe that given an I ∈ I, the number of vertices every color class of
this type will contain is independent of the actual multiplicity xI . Define the size of a color
class σ : I → N as σ(I) =

∑
clique i∈I 1 +

∑
indep. i∈I |Vi|.

I Lemma 12 (?). Let G = (V,E) be a graph and let c : V → N be a proper coloring of G
minimizing

∑
v∈V c(v). Let µ(p) denote the quantity |{v ∈ V | c(v) = p}|. Then µ(p) ≥ µ(q)

for every p ≤ q.

Our goal now is to show that the objective function can be expressed as a convex function
in terms of the variables x. We will get help from auxiliary variables y1, . . . , y|G| which are a
linear projection of variables x; note that we do not actually introduce these variables into
the model and only use them for the sake of proving convexity. Namely, yj indicates how
many color classes contain at least j vertices: yj =

∑
σ(I)≥j xI . Then, the objective function

can be expressed as Sconvex(x) =
∑p
i=1 |iσ(Ii)| =

∑|G|
j=1

(
yj

2
)
, where i = 1, . . . , p is the order

of the color classes given by Lemma 12, every class of type I is present xI times, where we
enumerate only those I with xI ≥ 1. The equivalence of the two is straightforward to check.

Finally, Sconvex is convex with respect to x because,
1) all xI are linear (thus affine) functions,
2) yi =

∑
I:σ(I)≥i xI is a sum of affine functions, thus affine,

3) yi(yi − 1)/2 is convex: it is a basic fact that h(x) = g(f(x)) is convex if f is affine and g
is convex. Here f = yi is affine by the previous point and g = f(f − 1)/2 is convex.

4) Sconvex is the sum of yi(yi − 1)/2, which are convex by the previous point.

IPEC 2018
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I Model 13 (Sum Coloring as LinIP in fixed dimension with convex objective).
Variables & Notation:

xI = #of color class I
yi = #of color classes I with σ(I) ≤ i(
yi

2
)
cost of column yi (Figure 1)

Sconvex =
∑|G|
i=1
(
yi

2
)

= cost of all columns
Objective & Constraints:

min Sconvex(x) (sc:convex:obj)∑
Ij :i∈Ij

xIj = |Vi| ∀clique i ∈ T (G) clique Vi gets |Vi| colors (sc:convex:cliques)

∑
Ij :i∈Ij

xIj
= 1 ∀indep. i ∈ T (G) indep. Vi gets 1 color (sc:convex:indeps)

Parameters & Notes:
#vars #constraints ‖A‖∞ ‖b‖∞ ‖l,u‖∞ fmax

2k k 1 |G| |G| |G|2

Objective Sconvex is non-separable convex, and can be computed in time 2k log |G| by
noticing that there are at most 2k different yi’s (see below).

Applying the algorithm of Dadush [11] to Model 13 yields Theorem 2b. Notice that we could
not apply Lokshtanov’s algorithm because the objective has large coefficients. Also notice
that we do not need separability of Sconvex or any structure of A.

5.3 Sum Coloring and Graver Bases
Consider Model 13. The fact that the number of rows and the largest coefficient ‖A‖∞ is
small, and that we can formulate Sconvex as a separable convex objective in terms of the yi
variables gives us some hope that Graver basis techniques would be applicable.

Since |I| ≤ 2k, we can replace the yi’s by a smaller set of variables zi for a set of “critical
sizes” Γ = {i ∈ [|G|] | ∃I ∈ I : σ(I) = i}. For each i ∈ Γ let succ(i) = min{j ∈ Γ | j > i}
(and let succ(max Γ) = max Γ), define zi =

∑
I∈I:σ(I)≥i xI , and let ζi = (succ(i)− i) be the

size difference between a color class of size i and the smallest larger color class. Then,

Sconvex(x) =
|G|∑
i=1

(
yi
2

)
=
∑
i∈Γ

ζi

(
zi
2

)
= Ssepconvex(z) .

Now we want to construct a system of inequalities of bounded dual treewidth twD(A);
however, adding the zi variables as we have defined them amounts to adding many inequalities
containing the z1 variable, thus increasing the dual treewidth to k + 2k. To avoid this, let us
define zi equivalently as zi = zsucc(i) +

∑
I∈I:

succ(i)>σ(I)≥i
xI = zsucc(i) +

∑
I∈I:
σ(I)=i

xI .

I Model 14 (Sum Coloring as LinIP with small twD(A) and small g1(A)).
Variables & Notation:

xI = #of color class I
zi = #of color classes I with σ(I) ≥ i
ζi = size difference between I ∈ I with σ(I) = i and closest larger J ∈ I
ζi
(
zi

2
)
cost of all columns between yi and ysucc(i) (Figure 1)



T. Gavenčiak, D. Knop, and M. Koutecký 21:13

Γ = set of critical sizes
Ssepconvex(z) =

∑
i∈Γ ζi

(
zi

2
)

= total cost
Objective & Constraints: constraints (sc:convex:cliques) and (sc:convex:indeps), and:

min Ssepconvex(z) (sc:graver:obj)

zi = zsucc(i) +
∑

I∈I:σ(I)=i

xI ∀i ∈ Γ (sc:graver:sep)

Parameters & Notes:
#vars #constraints ‖A‖∞ ‖b‖∞ ‖l,u‖∞ fmax g1(A) twD(A)
O
(
2k
)

O
(
2k
)

1 |G| |G| |G|2 O
(
kk
)

k + 2
Bounds on g1(A) and twD(A) by Lemmas 16 and 15, respectively.
Objective Ssepconvex is separable convex. J

Applying the algorithm of Koutecký et al. [43] to Model 14 yields Theorem 2c.
Let us denote the matrix encoding the constraints (sc:convex:cliques) and

(sc:convex:indeps) as F ∈ Zk×2·2k (notice that we also add the empty columns for the
zi variables), and the matrix encoding the constraints (sc:graver:sep) by L ∈ Z2k×2·2k ; thus
A = ( FL ).

I Lemma 15 (?). In Model 14 it holds that twD(A) ≤ k + 1.

Proof Idea. GD(F ) is a k-clique Kk, and GD(L) is a 2k-path P2k . Thus, GD(A) are these
two graphs connected by all possible edges, and we construct a path decomposition, whose
consecutive nodes contain GD(F ) and consecutive vertices of GD(L). J

I Lemma 16 (?). In Model 14 it holds that g1(A) ≤ kO(k).

Proof Idea. We first simplify the structure of L by deleting duplicitous columns, and then
explicitely construct a decomposition of any h s.t. Lh = 0 into conformal vectors g of small
`1-norm. Combining with known bounds on matrices with few rows (F ) and stacked matrices
(A) yields the bound. J
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Abstract
In this paper we consider the Target Set Selection problem. The problem naturally arises
in many fields like economy, sociology, medicine. In the Target Set Selection problem one
is given a graph G with a function thr : V (G) → N ∪ {0} and integers k, `. The goal of the
problem is to activate at most k vertices initially so that at the end of the activation process
there is at least ` activated vertices. The activation process occurs in the following way: (i) once
activated, a vertex stays activated forever; (ii) vertex v becomes activated if at least thr(v) of its
neighbours are activated. The problem and its different special cases were extensively studied
from approximation and parameterized points of view. For example, parameterizations by the
following parameters were studied: treewidth, feedback vertex set, diameter, size of target set,
vertex cover, cluster editing number and others.

Despite the extensive study of the problem it is still unknown whether the problem can be
solved in O∗ ((2− ε)n) time for some ε > 0. We partially answer this question by presenting
several faster-than-trivial algorithms that work in cases of constant thresholds, constant dual
thresholds or when the threshold value of each vertex is bounded by one-third of its degree. Also,
we show that the problem parameterized by ` is W[1]-hard even when all thresholds are constant.
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1 Introduction

In this paper we consider the Target Set Selection problem. In the problem one is given
a graph G with a function thr : V (G)→ N∪ {0} (a threshold function), and two integers k, `.
The question of the problem is to find a vertex subset S ⊆ V (G) (a target set) such that
|S| ≤ k and if we initially activate S then eventually at least ` vertices of G become activated.
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22:2 Solving Target Set Selection Faster than 2n

The activation process is defined by the following two rules: (i) if a vertex becomes activated
it stays activated forever; (ii) vertex v becomes activated if either it was activated initially
or at some moment there is at least thr(v) activated vertices in the set of its neighbours
N(v). Often in the literature by Target Set Selection people refer to the special case of
Target Set Selection where ` = |V (G)|, i.e. where we need to activate all vertices of the
graph. We refer to this special case as Perfect Target Set Selection.

Target Set Selection problem naturally arises in such areas as economy, sociology,
medicine. Let us give an example of a scenario [24, 6] under which Target Set Selection
may arise in the marketing area. Often people start using some product when they find out
that some number of their friends are already using it. Keeping this in mind, it is reasonable
to start the following advertisement campaign of a product: give out the product for free to
some people; these people start using the product, and then some friends of these people
start using the product, then some friends of these friends and so on. For a given limited
budget for the campaign we would like to give out the product in a way that eventually we
get the most users of the product. Or we may be given the desired number of users of the
product and we would like to find out what initial budget is sufficient. It is easy to see that
this situation is finely modelled by the Target Set Selection problem.

The fact that Target Set Selection naturally arises in many different fields leads
to a situation that the problem and its different special cases were studied under different
names: Irreversible k-Conversion Set [10, 16], P3-Hull Number [3], r-Neighbour
Bootstrap Percolation [4], (k, `)-Influence [5], monotone dynamic monopolies [27], a
generalization of Perfect Target Set Selection on the case of oriented graphs is known
as Chain Reaction Closure and t-Threshold Starting Set [1]. In [10], Centeno et al.
showed that Perfect Target Set Selection is NP-hard even when all threshold values
are equal to two.

There is an extensive list of results on Target Set Selection from parameterized and
approximation point of view. Many different parameterizations were studied in the literature
such as size of the target set, treewidth, feedback vertex set, diameter, vertex cover, cluster
editing number and others (for more details, see Table 1). Most of these studies consider
the Perfect Target Set Selection problem, i.e. the case where ` = |V (G)|. However,
FPT membership results for parameters treewidth [6] and cliquewidth [23] were given for the
general case of Target Set Selection. From approximation point of view, it is known
that the minimization version (minimize the number of vertices in a target set for a fixed
`) of the problem is very hard and cannot be approximated within O(2log1−ε n) factor for
any ε > 0, unless NP ⊆ DTIME(npolylog(n)). This inappoximability result holds even for
graphs of constant degree with all thresholds being at most two [11]. Also, the maximization
version of the problem (maximize the number of activated vertices for a fixed k) is NP-hard
to approximate within a factor of n1−ε for any ε > 0 [24].

Taking into account many intractability results for the problem, it is natural to ask
whether we can beat a trivial brute-force algorithm for this problem or its important subcase
Perfect Target Set Selection. In other words, can we construct an algorithm with
running time O∗ ((2− ε)n) for some ε > 0. Surprisingly, the answer to this question is
still unknown. Note that the questions whether we can beat brute-force naturally arise in
computer science and have significant theoretic importance. Probably, the most important
such question is SETH hypothesis which informally can be stated as:

I Hypothesis 1 (SETH). There is no algorithm for SAT with running time O∗ ((2− ε)n)
for any ε > 0.

Another example of such question is the following hypothesis:



I. Bliznets and D. Sagunov 22:3

Table 1 Some known results on different parameterizations of Perfect Target Set Selection.
In the Thresholds column we indicate restrictions on the threshold function under which the results
were obtained. Here t denotes the maximum threshold value.

Parameter Thresholds Result Reference
Bandwidth b general O∗

(
bO(b log b)) Chopin et al. [12]

Clique Cover Number c general NP-hard for c = 2 Chopin et al. [12]
Cliquewidth cw constant O∗

(
(cw · t)O(cw·t)) Hartmann [23]

Cluster Editing Number ζ general O∗
(
16ζ
)

Nichterlein et al. [26]
Diameter d general NP-hard for d = 2 Nichterlein et al. [26]

Feedback Edge Set Number f general O∗
(
4f
)

Nichterlein et al. [26]
Feedback Vertex Set Number general W[1]-hard Ben-Zwi et al. [6]
Neighborhood Diversity nd majority O∗

(
ndO(nd)) Dvořák et al. [17]

general W[1]-hard Dvořák et al. [17]

Target Set Size k constant W[P]-complete Abrahamson et al. [1],
Bazgan et al. [5]

Treewidth w constant O∗
(
tO(w logw)) Ben-Zwi et al. [6]

majority W[1]-hard Chopin et al. [12]
Vertex Cover Number τ general O∗

(
2(2τ+1)·τ) Nichterlein et al. [26]

I Hypothesis 2. [29] For every hereditary graph class Π that can be recognized in polynomial
time, the Maximum Induced Π-Subgraph problem can be solved in O∗ ((2− ε)n) time for
some ε > 0.

There is a significant number of papers [9, 28, 19, 18, 14, 30, 22, 13, 15, 7, 20] with the
main motivation to present an algorithm faster than the trivial one.

As in the stated hypotheses and mentioned papers, our goal is to come up with an
algorithm that works faster than brute-force. We partially answer this question by presenting
several O∗ ((2− ε)n) running time algorithms for Target Set Selection when thresholds,
i.e. the values of thr(v), are bounded by some fixed constant and in case when the values
of thr(v)− deg(v), so-called dual thresholds, are bounded by some fixed constant for every
v ∈ V (G). We think that this result may be interesting mainly because of the following two
reasons. Firstly, the result is established for a well-studied problem with many applications
and hence can reveal some important combinatorial or algorithmic structure of the problem.
Secondly, maybe by resolving the asked question we could make progress in resolving
hypotheses 1, 2.

Our results. In this paper, we establish the following algorithmic results.
Perfect Target Set Selection can be solved in
O∗ (1.90345n) if for every v ∈ V (G) we have thr(v) ≤ 2;
O∗ (1.98577n) if for every v ∈ V (G) we have thr(v) ≤ 3;
O∗ ((2− εd)n) randomized time if for every v ∈ V (G) we have thr(v) ≥ deg(v)− d.

Target Set Selection can be solved in
O∗ (1.99001n) if for every v ∈ V (G) we have thr(v) ≤ ddeg(v)

3 e;
O∗ ((2− εt)n) if for every v ∈ V (G) we have thr(v) ≤ t.

We also prove the following lower bound.
Target Set Selection parameterized by ` is W[1]-hard even if
thr(v) = 2 for every v ∈ V (G).
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2 Preliminaries

2.1 Notation and problem definition

We use standard graph notation. We consider only simple graphs, i.e. undirected graphs
without loops and multiple edges. By V (G) we denote the set of vertices of G and by E(G)
we denote the set of its edges. We let n = |V (G)|. N(v) denotes the set of neighbours of
vertex v ∈ V (G), and N [v] = N(v) ∪ {v}. ∆(G) = maxv∈V (G) deg(v) denotes the maximum
degree of G. By G[F ] we denote the subgraph of G induced by a set F of its vertices. Define
by degF (v) the degree of v in the subgraph G[F ].

By X1 tX2 t . . . tXm we denote the disjoint union of sets X1, X2, . . . , Xm, i.e. X1 t
X2 t . . . tXm = X1 ∪X2 ∪ . . . ∪Xm with the additional restriction that Xi ∩Xj = ∅ for
any distinct i, j.

For a graph G, threshold function thr and X ⊆ V (G) we put S0(X) = X and for every
i > 0 we define Si(X) = Si−1(X) ∪ {v ∈ V (G) : |N(v) ∩ Si−1(X)| ≥ thr(v)}. We say that
v becomes activated in the ith round, if v ∈ Si(X) \ Si−1(X), i.e. v is not activated in the
(i − 1)th round and is activated in the ith round. By activation process yielded by X we
mean the sequence S0(X),S1(X), . . . ,Si(X), . . . ,Sn(X). Note that Sn(X) = Sn+1(X) as
Si(X) ⊆ Si+1(X) and n rounds is always enough for the activation process to converge. By
S(X) we denote the set of vertices that eventually become activated, and we say that X
activates S(X) in (G, thr). Thus, S(X) = Sn(X).

We recall the definition of Target Set Selection.

Target Set Selection
Input: A graph G with thresholds thr : V (G)→ N ∪ {0}, integers

k, `.
Question: Is there a set X ⊆ V (G) such that |X| ≤ k and |S(X)| ≥ `?

We call a solution X of Target Set Selection a target set of (G, thr).
By Perfect Target Set Selection we understand a special case of Target Set

Selection with ` = n. We call X a perfect target set of (G, thr), if it activates all vertices
of G, i.e. S(X) = V (G).

Most of the algorithms described in this paper are recursive algorithms that use branching
technique. Such algorithms are described by reduction rules, that are used to simplify a
problem instance, and branching rules, that are used to solve an instance by recursively
solving smaller instances. If a branching rule branches an instance of size n into r instances
of size n− t1, n− t2, . . . , n− tr, we call (t1, t2, . . . , tr) a branching vector of this branching
rule. By a branching factor of a branching rule we understand a constant c that is a solution
of a linear reccurence corresponding to some branching vector of this rule; such constants
are used to bound the running time of an algorithm following the rule with cn. Note that a
branching rule may have multiple corresponding branching vectors and multiple corresponding
branching factors. By the worst branching factor of a branching rule (or multiple branching
rules, if they are applied within the same algorithm) we understand the largest among its
branching factors. We refer to [21] for a more detailed explanation of these aspects.

In our work we also use the following folklore result.

I Lemma 1. For any positive integer n and any α such that 0 < α ≤ 1
2 , we have

bαnc∑
i=0

(
n
i

)
≤

2H(α)n, where H(α) = −α log2(α)− (1− α) log2(1− α).
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Algorithm: minimal_pvcs(G,F,A,Z)
Input: Graph G with ∆(G) < t, vertex subsets F,A,Z such that F tAtZ = V (G).
Output: All minimal partial vertex covers S of G such that S ∩ (A t Z) = A.

if ∃v : N [v] ⊆ F then
foreach R ( N [v] do

minimal_pvcs(G,F \N [v], A tR,Z t (N [v] \R))

else
foreach R ⊆ F do

if A tR is a minimal partial vertex cover of G then
output A tR

Figure 1 Algorithm enumerating all minimal partial vertex covers of a graph.

2.2 Minimal partial vertex covers
I Definition 2. Let G be a graph. We call a subset S ⊆ V (G) of its vertices a T -partial
vertex cover of G for some T ⊆ E(G), if the set of edges covered by vertices in S is exactly
T , i.e. T = {uv : {u, v} ∩ S 6= ∅, uv ∈ E(G)}.

We call a T -partial vertex cover S of G a minimal partial vertex cover of G if there is no
T -partial vertex cover S′ of G with S′ ( S. Equivalently, there is no vertex v ∈ S so that
S \ {v} is a T -partial vertex cover of G.

The following theorem bounds the number of minimal partial vertex covers in graphs of
bounded degree. We note that somewhat similar results were proven by Björklund et al. [8].

I Theorem 3. For any positive integer t, there is a constant ωt < 1 and an algorithm that,
given an n-vertex graph G with ∆(G) < t as input, outputs all minimal partial vertex covers
of G in O∗ (2ωtn) time.

Proof. We present a recursive branching algorithm that lists all minimal partial vertex covers
of G. Pseudocode of the algorithm is presented in Figure 1. As input, the algorithm takes
three sets F,A,Z such that F tAtZ = V (G). The purpose of the algorithm is to enumerate
all minimal partial vertex covers that contain A as a subset and do not intersect with Z. So
the algorithm outputs all minimal partial vertex covers S of G satisfying S ∩ (A t Z) = A.
It easy to see that then minimal_pvcs(G,V (G), ∅, ∅) enumerates all minimal partial vertex
covers of G.

The algorithm uses only the following branching rule. If there is a vertex v ∈ F such
that N(v) ⊆ F then consider 2|N [v]| − 1 branches. In each branch, take some R ( N [v] and
run minimal_pvcs(G,F \N [v], A tR,Z t (N [v] \R)). In other words, we branch on which
vertices in N [v] belong to minimal partial vertex cover and which do not. Note that if S
is a minimal partial vertex cover then it cannot contain N [v], since otherwise S \ {v} is its
proper subset and covers the same edges. Hence, above branching consider all possible cases.
Since ∆(G) < t, the worst branching factor is (2t − 1) 1

t .
If the branching rule cannot be applied then we apply brute-force on all possible variants

of the intersection of the minimal partial vertex cover S and the set F . So we consider all
2|F | variants of S ∩ F , and filter out variants that do not correspond to a minimal partial
vertex cover. Minimality of a partial vertex cover can be checked in polynomial time, so
filtering out adds only a polynomial factor.

IPEC 2018



22:6 Solving Target Set Selection Faster than 2n

Note that we run brute-force only if every vertex in F has at least one neighbour in AtZ,
in other words, A t Z is a dominating set of G. Since ∆(G) < t, any dominating set of G
consists of at least n

t vertices. Hence, |F | ≤ (t−1)n
t . This leads to the following upper bound

on the running time of the algorithm:((
2t − 1

) 1
t

)n
t

· 2
(t−1)n

t · nO(1).

Hence, we can put ωt = 1
t2 log (2t − 1) + t−1

t < 1. J

3 Algorithms for bounded thresholds

3.1 Algorithm for thresholds bounded by fixed constant
In this subsection we prove the following theorem.

I Theorem 4. Let t be a fixed constant. For Target Set Selection with all thresholds
bounded by t there is a O∗ ((2− εt)n)-time algorithm, where εt is a positive constant that
depends only on t.

Our algorithm consists of three main stages. In the first stage we apply some simple
reduction and branching rules. If the instance becomes small enough we then apply brute-
force and solve the problem. Otherwise, we move to the second stage of the algorithm. In
the second stage we perform branching rules that help us describe the activation process.
After that we move to the third stage in which we run special dynamic program that finally
solves the problem for each branch. Let us start the description of the algorithm.

3.1.1 Stage I
In the first stage our algorithm applies some branching rules. In each branch we maintain the
following partition of V (G) into three parts A,Z, F . These parts have the following meaning:
A is the set of vertices that are known to be in our target set, Z — the set of vertices that
are known to be not in the target set, F — the set of all other vertices (i.e. vertices about
that we do not know any information so far). At the beginning, we have A = Z = ∅ and
F = V (G).

We start the first stage with exhaustive application of reduction rule 1 and branching
rule 1.

I Reduction rule 1. If there is any vertex v ∈ S(A), but v /∈ A t Z, then assign v to Z.

Reduction rule 1 is correct as there is no need to put a vertex in a target set if it will
become activated eventually by the influence of its neighbours.

I Branching rule 1. If there is a vertex v ∈ F such that degF (v) ≥ thr(v) then arbitrarily
choose a subset T ⊆ N(v) ∩ F such that |T | = thr(v) and branch on the following branches:
1. For each subset of vertices S ⊆ T ∪{v} of size less than thr(v) consider a branch in which

we put S into A and we put other vertices T ∪ {v} \ S into Z;
2. Additionally consider the branch in which we assign all vertices from T to A and v is

assigned to Z.

It is enough to consider only above-mentioned branches. All other possible branches
assign at least thr(v) vertices from T ∪ {v} to A, and we always can replace such branch
with the branch assigning T to A, since it leads to the activation of all vertices in T ∪ {v}
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and adds at most the same number of vertices into a target set. Branching rule 1 considers
2thr(v)+1− thr(v)− 1 options for thr(v) + 1 vertices, thus it gives the biggest branching factor
of (2t+1 − t− 1)

1
t+1 (here and below t = maxv∈V (G) thr(v)).

I Branching rule 2. If |F | ≤ γn, where γ is a constant to be chosen later, then simply apply
brute-force on how vertices in F should be assigned to A and Z.

If branching rule 2 is applied in all branches then the running time of the whole algorithm
is at most 2γn(2t+1− t− 1)

(1−γ)n
t+1 and we do not need to use stages II and III, as the problem

is already solved in this case.

3.1.2 Stage II
After exhaustive application of reduction rule 1 and branching rules 1 and 2, in each branch
we either know the answer or we have the following properties:
1. ∆(G[F ]) < t;
2. |F | > γn;
3. S(A) ⊆ A t Z.

Now, in order to solve the problem it is left to identify the vertices of a target set that
belong to F . It is too expensive to consider all 2|F | subsets of F as F is too big. Instead of
this direct approach (brute-force on all subsets of F ) we consider several subbranches. In
each such branch we almost completely describe the activation process of the graph. For
each branch, knowing this information about the activation process, we find an appropriate
target set by solving a special dynamic program in stage III.

Let X be an answer (a target set). X can be expressed as X = AtB where B ⊆ F . At the
beginning of the activation process only vertices in S0(X) = X = AtB are activated, after the
first round vertices in S1(AtB) are activated, and so on. It is clear that S(AtB) = Sn(AtB).
Unfortunately, we cannot compute the sequence of Si(A tB) as we do not know B. Instead
we compute the sequence P0, P1, . . . , Pn = P such that Pi \ B = Si(X) \ B and Pi ⊆ Pi+1
for any i.

First of all, using Theorem 3 we list all minimal partial vertex covers of the graph G[F ].
For each minimal partial vertex cover C we create a branch that indicates that C ⊆ B and,
moreover, C covers exactly the same edges in G[F ] as B does. In other words, any edge in
G[F ] has at least one endpoint in B if and only if it has at least one endpoint in C. Note
that such C exists for any B. One can obtain C by removing vertices from B one by one
while it covers the same edges as B. When no vertex can be removed, then, by definition,
the remaining vertices form a minimal partial vertex cover.

Put P0 = A t C. It is correct since S0(X) \B = A = P0 \B. We now show how to find
Pi+1 having Pi. Recall that to do such transition from Si(X) to Si+1(X) it is enough to find
vertices with the number of neighbours in Si(X) being at least the threshold value of that
vertex. As for Pi and Pi+1, it is sufficient to check that the number of activated neighbours
has reached the threshold only for vertices that are not in B. Thus any transition from Pi to
Pi+1 can be done by using a procedure that, given Pi and any vertex v /∈ Pi, checks whether
v becomes activated in the (i+ 1)th round or not, under the assumption that v /∈ B.

Given Pi it is not always possible to find a unique Pi+1 as we do not know B. That is
why in such cases we create several subbranches that indicate potential values of Pi+1.

Let us now show how to, for each vertex v /∈ Pi, figure out whether v is in Pi+1 (see
pseudocode in Figure 2). Since we know Pi and Pi ⊆ Pi+1, we assume that v /∈ Pi.

If |N(v) ∩ Pi| ≥ thr(v) then we simply include v in Pi+1. We claim that this check is
enough for v ∈ F .

IPEC 2018



22:8 Solving Target Set Selection Faster than 2n

I Claim 1. If v ∈ F \B, then v becomes activated in the ith round if and only if |N(v)∩Pi| ≥
thr(v).

Proof. We show that by proving that Si(X) ∩N(v) = Pi ∩N(v) for every v ∈ F \B. Note
that Si(X)\B = Pi \B by definition of Pi. So it is enough to prove that Si(X)∩N(v)∩B =
Pi ∩N(v)∩B, which is equivalent to N(v)∩B = Pi ∩N(v)∩B, as B ⊆ Si(X). Since v /∈ B,
then any uv ∈ E(G[F ]) is covered by B if and only if u ∈ B. C covers the same edges in
G[F ] as B does, and also v /∈ C, hence C ∩N(v) = B ∩N(v). Thus, since C ⊆ P0 ⊆ Pi, we
get Pi ∩B ∩N(v) = Pi ∩ C ∩N(v) = C ∩N(v) = B ∩N(v). J

If v ∈ B, the decision for v does not matter. Thus if v ∈ F and |N(v) ∩ Pi| < thr(v), we
may simply not include v in Pi+1.

If v ∈ Z, at this point, we cannot compute the number of activated neighbours of v
exactly as we do not know what neighbours of v are in B. Note that we do not need the
exact number of such neighbours if we know that this value is at least thr(v). Thus we
branch into thr(v) + 1 subbranches corresponding to the value of min{|N(v) ∩B|, thr(v)},
from now on we denote this value as dg(v).

On the other hand, we know all activated neighbours of v that are in V (G) \ F since
Si(X)∩ (V (G) \F ) = Pi ∩ (V (G) \F ), as B ⊆ F . Let this number be m = |N(v)∩ (Pi \F )|.
So the number of activated neighbours of v is at least m+ dg(v). Also there may be some
activated neighbours of v in N(v) ∩ Pi ∩ F . However, we cannot simply add |N(v) ∩ Pi ∩ F |
to m+ dg(v) since vertices in Pi ∩B will be computed twice. So we are actually interested
in the value of |(N(v) ∩ Pi ∩ F ) \B|. That is why for vertices from N(v) ∩ Pi ∩ F we simply
branch whether they are in B or not. After that we compare m+dg(v)+ |(N(v)∩Pi∩F )\B|
with thr(v) and figure out whether v becomes activated in the current round or not.

Note that once we branch on the value of min{|N(v) ∩B|, thr(v)}, or on whether v ∈ B
or not for some v, we will not branch on the same value or make a decision for the same
vertex again as it makes no sense. Once fixed, the decision should not change along the whole
branch and all of its subbranches, otherwise the information about B would just become
inconsistent.

Let us now bound the number of branches created. There are three types of branchings
in the second stage:
1. Branching on the value of the minimal partial vertex cover C. By Theorem 3, there is at

most O∗
(
2ωt|F |

)
such branches.

2. Branching on the value of dg(v) = min{|N(v) ∩B|, thr(v)} with v ∈ Z. There is at most
(t+ 1)|Z| such possibilities since t ≥ min{|N(v) ∩B|, thr(v)} ≥ 0.

3. Branching on whether vertex u is in B or not. We perform this branching only for vertices
in the set N(v) ∩ Pi ∩ F with v ∈ Z only when its size is strictly smaller than thr(v) ≤ t.
Hence we perform a branching of this type on at most (t− 1)|Z| vertices.

Hence, the total number of the branches created in stage II is at most

2ωt|F | · (t+ 1)|Z| · 2(t−1)|Z| · nO(1).

3.1.3 Stage III
Now, for each branch our goal is to find the smallest set X which activates at least ` vertices
and agrees with all information obtained during branching in a particular branch. That is,

A ⊆ X,Z ∩X = ∅ (branchings made in stage I);
C ⊆ X (branching of the first type in stage II);
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Algorithm: is_activated(G, thr, A, Z, F, Pi, v)
Input: G, thr, A, Z, F as usual, Pi such that Pi \B = Si(AtB) \B for some B, and

a vertex v /∈ Pi.
Output: True, if v /∈ B and v ∈ Si+1(A tB);

False, if v /∈ B and v /∈ Si+1(A tB);
any answer, otherwise.

if |N(v) ∩ Pi| ≥ thr(v) then
return True

else if v ∈ F then
return False

m←− |N(v) ∩ (Pi \ F )|
branch on the value of dg(v) = min {|N(v) ∩B|, thr(v)}
m←− m+ dg(v)
foreach u ∈ Pi ∩N(v) ∩ F do

branch on whether u ∈ B
if u /∈ B then

m←− m+ 1

return m ≥ thr(v)

Figure 2 Procedure determining whether a vertex becomes activated in the current round.

information about min{|N(v) ∩B|, thr(v)} (second type branchings in stage II);

additional information whether certain vertices belong to X or not (third type branchings
in stage II).

From now on we assume that we are considering some particular branching leaf. Let A′
be the set of vertices that are known to be in X for a given branch and Z ′ be the set of
vertices known to be not in X (note that A ⊆ A′ and Z ⊆ Z ′). Let Z = {v1, v2, . . . , vz}
and F ′ = V (G) \A′ \ Z ′ = {u1, u2, . . . , uf ′}. So actually it is left to find B′ ⊆ F ′ (in these
new terms, B = (A′ \ A) t B′) such that |A′ t B′| ≤ k, |P ∪ A′ ∪ B′| ≥ ` and for each
i ∈ {1, 2, . . . , z} the value min{thr(vi), |N(vi) ∩ B|} equals dg(vi). This is true since the
information obtained during branching completely determines the value of P .

In order to solve the obtained problem we employ dynamic programming. We create
a table TS of size f ′ × ` × (t + 1)z. For all B′1 such that |(B′1 ∪ P ) ∩ {u1, u2, . . . , ui}| = p

and min{thr(vj), |N(vj) ∩ ((A′ \ A) t B′1)|} = dj , in the field TS(i, p, d1, d2, . . . , dz) we
store any set B′2 of minimum size such that A′ t B′1 t B′2 is a potential solution, i.e.
|S(A′ tB′1 tB′2)| = |(P ∪B′1 ∪B′2)| = |P ∩ (V (G) \ F ′)|+ p+ |B′2| ≥ ` and for every j we
have min{thr(vj), |N(vj)∩ ((A′ \A)tB′1 tB′2)|} = min{thr(vj), |N(vj)∩B′2|+dj} = dg(vj).
Note that the choice of B′2 depends only on values i, p, d1, d2, . . . , dz, but not on the value
of B′1 directly. In other words, TS(i, p, d1, d2, . . . , dz) stores one of optimal ways of how the
remaining f ′− i vertices in F ′ should be chosen into B′ if the first i vertices in F ′ was chosen
correspondingly to the values of p and dj .

Note that for some fields in the TS table there may be no appropriate value of B′2 (there
is no appropriate solution). In such cases, we put the corresponding element to be equal to
V (G). It is a legitimate operation since we are solving a minimization problem. Note that

IPEC 2018



22:10 Solving Target Set Selection Faster than 2n

the desired value of B′ will be stored as

TS(0, 0,min{|N(v1) ∩ (A′ \A)|, thr(v1)}, . . . ,min{|N(vz) ∩ (A′ \A)|, thr(vz)}).

We assign TS(f ′, p, dg(v1), dg(v2), . . . dg(vz)) = ∅ for every p such that p+ |P ∩ (V (G) \
F ′)| ≥ `. We do this since values p, dg(v1), dg(v2), . . . dg(vz) indicate that A′ tB′1 is already
a solution. In all other fields of type TS(f ′, ·, · · · , ·) we put the value of V (G). We now show
how to evaluate values TS(i, p, d1, d2, . . . , dz) for any i ≥ 0 smaller than f ′. We can evaluate
any TS(i, ·, ·, . . . , ·) in polynomial time if we have all values TS(i+1, ·, ·, . . . , ·) evaluated. For
each j ∈ {1, 2, . . . , z}, let di+1

j = min {thr(vj), dj + |N(vj) ∩ {ui+1}|}. In order to compute
TS(i, p, d1, d2, . . . , dz), we need to decide whether ui+1 is in a target set or not. If ui+1 is taken
into B′ then dj becomes equal to di+1

j for each j, if it is not, none of dj should change. Hence,
TS(i, p, 〈dj〉) = min

[
TS(i+ 1, p+ 1, 〈di+1

j 〉) ∪ {ui+1}, TS(i+ 1, p+ |P ∩ {ui+1}|, 〈dj〉)] .
Since 0 ≤ dj ≤ dg(vj) for any j, the TS table has O∗

(
(t+ 1)|Z|

)
fields. Each field of

the table is evaluated in polynomial time. So the desired B′ is found (hence, the solution is
found) in O∗

(
(t+ 1)|Z|

)
time for any branch fixed in stage II. Stages II and III together run

in 2ωt|F | · (t+ 1)|Z| · 2(t−1)|Z| · (t+ 1)|Z| · nO(1) time for any fixed subbranch of stage I.
Actually, the (t+ 1)2|Z| multiplier in the upper bound can be improved. Recall that it

corresponds to the number of possible variants of dg(vj) and the number of possible variants
of dj . However, note that dj ≤ dg(vj). So after each of dg(vj) is fixed in stage II, for dj
there is only dg(vj) + 1 options in stage III. Hence, each of the pairs (dj , dg(vj)) can be
presented only in

(
t+2

2
)
variants. This gives an improvement of the (t+ 1)2|Z| multiplier to a(

t+2
2
)|Z| multiplier. So, the upper bound on the running time in stages II and III becomes

O∗
(

2ωt|F | ·
(
t+2

2
)|Z| · 2(t−1)|Z|

)
.

We rewrite this upper bound in terms of n and |F |. Since |Z| ≤ n− |F |, the upper bound
is

2ωt|F | ·
(
t+ 2

2

)n−|F |
· 2(t−1)(n−|F |) · nO(1).

Now we are ready to choose γ. We set the value of γ so that computation in each branch
created at the end of stage I takes at most O∗ (2γn) time. Note that the upper bound on
the running time required for stages II and III increases while the value of |F | decreases.
So we can find γ as the solution of equation 2γn = 2ωtγn ·

(
t+2

2
)(1−γ)n · 2(t−1)(1−γ)n. Hence,

γ = (t−1)+log2 (t+2
2 )

(t−ωt)+log2 (t+2
2 ) < 1, as ωt < 1. So the overall running time is

2γn(2t+1 − t− 1)
(1−γ)n
t+1 · nO(1),

which is O∗ ((2− εt)n) for some εt > 0 since γ < 1.

3.2 Two algorithms for constant thresholds in the perfect case
Here, we present two algorithms for special cases of Perfect Target Set Selection with
thresholds being at most two or three. These algorithms use the idea that cannot be used in
the general case of Target Set Selection, so the running times of these algorithms are
significantly faster than the running time of the algorithm from the previous subsection. We
provide their full descriptions in the full version of our paper.

I Theorem 5. Perfect Target Set Selection with thresholds being at most two can be
solved in O∗ (1.90345n) time.
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I Theorem 6. Perfect Target Set Selection with thresholds being at most three can
be solved in O∗ (1.98577n) time.

3.3 Algorithm for thresholds bounded by one-third of degrees
Here, we prove the following.

I Theorem 7. Let G be a connected graph with at least three vertices. Assume that thr(v) ≤
ddeg(v)

3 e for every v ∈ V (G). Then there is a perfect target set of (G, thr) of size at most
0.45|V (G)|.

I Corollary 8. Target Set Selection with thresholds bounded by one-third of degree
rounded up can be solved in O∗ (1.99001n) time.

In our proofs we use a combinatorial model proposed by Ackerman et al. in [2]. We
provide these proofs in the full version of our paper.

4 Algorithm for bounded dual thresholds

Let (G, thr) be a graph with thresholds. By dual threshold of vertex v ∈ V (G) we understand
the value thr(v) = deg(v)− thr(v). In terms of dual thresholds, v becomes activated if it has
at most thr(v) not activated neighbours. For bounded dual thresholds we prove the following
theorem.

I Theorem 9. For any non-negative integer d, Perfect Target Set Selection with dual
thresholds bounded by d can be solved in O∗ ((2− εd)n) randomized time for some εd > 0.

This result follows from the result of Pilipczuk and Pilipczuk in [28], where they presented
an algorithm for the Maximum d-Degenerate Induced Subgraph problem with the
same running time. One may find the detailed proof in the full version of our paper.

5 Lower bounds

5.1 ETH lower bound
First of all, we show a 2o(n+m) lower bound for Perfect Target Set Selection, where
m denotes the number of edges in the input graph. We have not found any source that
claims this result. Thus, for completeness, we state it here. The result follows from the
reduction given by Centeno et al. in [10]. They showed a linear reduction from a special
case of 3-SAT, where each variable appears at most three times, to Perfect Target Set
Selection where thresholds are equal to two and maximum degree of the graph is constant.
Note that in their work they refer to the problem as IRR2-Conversion Set.

I Theorem 10. Perfect Target Set Selection cannot be solved in 2o(n+m) time unless
ETH fails, even when thresolds are equal to two and maximum degree of the graph is constant.

One can find the detailed proof in the full version of our paper.

5.2 Parameterization by `

We now look at Target Set Selection from parameterized point of view. In [5], Bazgan
et al. proved that Target Set Selection ` is W[1]-hard with respect to parameter `, when
all dual thresholds are equal to 0. This result also follows from the proof of W[1]-hardness

IPEC 2018
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of Cutting ` Vertices given by Marx in [25], with a somewhat different construction.
Inspired by his proof, we show that this result holds even when all thresholds are constant.

I Theorem 11. Target Set Selection parameterized by ` is W[1]-hard even when all
thresholds are equal to two.

Proof. Let (G, k) be an instance of the Clique problem. In order to provide the reduction,
we construct a graph G′ in which each vertex corresponds to a vertex or an edge of graph G
i.e. V (G′) = V (G) t E(G). We add edges in G′ between vertices corresponding to v ∈ V (G)
and e ∈ E(G) if and only if v and e are incident in G.

We will refer to the vertex in G′ corresponding to an edge e ∈ E(G) as ve ∈ V (G′). If a
vertex from G′ corresponds to a vertex u ∈ G we refer to it as vu. Slightly abusing notation
we will refer to the set of vertices in G′ corresponding to the vertices V (G) as V and to the
set of vertices corresponding to the edges E(G) as E, V t E = V (G′). Consider now an
instance of Target Set Selection for G′, with the same k, ` = k +

(
k
2
)
and all thresholds

equal to t = 2.
If G has a clique of size k, then selecting corresponding vertices as a target set of G′ leads

to activation of the vertices corresponding to the edges of the clique. Hence, k +
(
k
2
)
vertices

will be activated in total.
Let us now prove that if G′ has a target set of size at most k activating at least ` = k+

(
k
2
)

vertices, then G has a clique on k vertices. Let S be such target set of G′. Denote
by kv = |S ∩ V | the number of vertices in S corresponding to the vertices of G and by
ke = |S ∩ E| the number of vertices in S corresponding to the edges of G, kv + ke ≤ k.

Now, we show how to convert any target set S of size at most k activating at least k+
(
k
2
)

vertices into a target set S′ such that |S′| ≤ k, S′ ⊆ V and S′ activates at least k +
(
k
2
)

vertices.
Observe that if there is an edge u1u2 = e ∈ E(G) such that ve ∈ S and vu1 ∈ S then

S′ = S \ {ve} ∪ {vu2} also activates at least k +
(
k
2
)
vertices and the size of S′ is at most k.

Thus we can assume that if vu1u2 ∈ S, then vu1 , vu2 6∈ S.
Observe that any initially not activated vertex in E becomes activated only if all two of

its neighbours are activated. It means that any such vertex does not influence the activation
process in future. Hence, since G′ is bipartite, the activation process always finishes within
two rounds, and no vertex in V becomes activated in the second round.

Let V1 be the set of vertices of V that become activated by S in the first round, i.e.
V1 = S1(S) \ S0(S) ∩ V . Note that these vertices are activated directly by ke vertices in
S ∩ E. Let SE,i be the set of vertices in S ∩ E that have exactly i endpoints in V1. Denote
by ke,i the size of SE,i. Then we have ke,0 + ke,1 + ke,2 = ke. Note that if there is a vertex
in S ∩ E with no endpoints in V1 then one can replace it with any neighbour and size of S
will not change and it will activate at least the same number of vertices in G′. Thus we can
assume that ke,0 = 0.

We show that |V1| ≤ ke,1
2 + ke,2. Indeed, in order to be activated, any vertex from V1

requires at least two vertices from E to be in the target set. Each vertex from SE,i contributes
to exactly i vertices from V1, and the total number of contributions is ke,1 + 2ke,2. This
number should be at least 2|V1|. Hence, |V1| ≤ ke,1

2 + ke,2.
Consider S′ = S \ E ∪ V1 i.e. we replace all ke vertices from E with all vertices from V1.

Note that |S′| ≤ |S| − ke,1
2 . Vertices from SE,2 become activated in the first round since

all of them have two endpoints in S′. Thus S′ is now a target set of size not greater than
k − ke,1

2 activating at least `− ke,1 vertices in G′.
Note that any vertex from SE,1 can be activated by adding one more vertex to S′.

Consider set H = N(SE,1) \ V1. If |H| ≤ ke,1
2 then consider S1 = H ∪ S′. S1 compared to S′



I. Bliznets and D. Sagunov 22:13

will additionally activate all vertices in SE,1. Note that S1 is a target set S of size at most k
activating at least ` vertices.

If |H| > ke,1
2 then construct S1 from S′ by simply adding ke,1

2 arbitrary vertices from H.
Each of these vertices will additionally activate at least one vertex corresponding to edge,
thus S1 is a target set of size at most k activating at least ` vertices.

We have shown how to transform any target set S activating at least k +
(
k
2
)
vertices

in G′ into a target set S1 such that S1 ⊆ V and S1 activates at least the same number of
vertices in G′. As we have shown earlier, no vertex in E \ S1 influence the activation process
after becoming activated. Then, since S1 ∩E = ∅, S1 activates only vertices in E in the first
round and the process finishes. Hence, if the instance for G′ has a solution, then G has a
clique of size k. J
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Abstract
This paper considers the effect of non-metric distances for lower-bounded clustering, i.e., the
problem of computing a partition for a given set of objects with pairwise distance, such that each
set has a certain minimum cardinality (as required for anonymisation or balanced facility location
problems). We discuss lower-bounded clustering with the objective to minimise the maximum
radius or diameter of the clusters. For these problems there exists a 2-approximation but only
if the pairwise distance on the objects satisfies the triangle inequality, without this property no
polynomial-time constant factor approximation is possible, unless P = NP. We try to resolve
or at least soften this effect of non-metric distances by devising particular strategies to deal
with violations of the triangle inequality (conflicts). With parameterised algorithmics, we find
that if the number of such conflicts is not too large, constant factor approximations can still be
computed efficiently.

In particular, we introduce parameterised approximations with respect to not just the number
of conflicts but also for the vertex cover number of the conflict graph (graph induced by conflicts).
Interestingly, we salvage the approximation ratio of 2 for diameter while for radius it is only
possible to show a ratio of 3. For the parameter vertex cover number of the conflict graph
this worsening in ratio is shown to be unavoidable, unless FPT = W[2]. We further discuss
improvements for diameter by choosing the (induced) P3-cover number of the conflict graph as
parameter and complement these by showing that, unless FPT = W[1], there exists no constant
factor parameterised approximation with respect to the parameter split vertex deletion set.
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1 Introduction

For most clustering problems, the quality of a solution is usually assessed with respect
to a given pairwise distance on the input objects. Approximate solutions for such tasks
often rely on this distance to be a metric. But what happens if this property does not
hold? Many clustering problems are much more difficult to solve or even approximate if the
pairwise distance violates the triangle inequality. The problem Uncapacitated Facility
Location, for example, can be approximated with ratio 1.488 if restricted to metric instances,
see [20]. For general, possibly non-metric, distances, it is only possible to compute a log(n)-
approximation; see [18] for one of many algorithms with this performance. The relation to the
Set Cover problem does not just provide the basis for this positive approximation result,
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but also transfers non-approximability. In particular, is known that that log(n) is the best
approximation ratio for Set Cover by [10], assuming P 6= NP, and this hardness transfers to
Uncapacitated Facility Location by a very simple approximation-preserving reduction
identifying sets with facilities and the universe with the set of customers.

Such helpful consequences of a restriction to triangle inequality have lead to many
approaches which assume that this property holds. Another example of this kind is given
in [13], where the properties that come with a restriction to distances which satisfy the
triangle inequality are used to speed up the famous heuristic algorithm k-means, named after
the clustering problem it is designed to approximate efficiently.

For many applications, the requirement that the associated distance is a metric seems to
be pretty natural and is not really considered a restriction. For lower-bounded clustering, the
problem of computing a partition for a given set of objects with pairwise distance such that
each set has a certain minimum cardinality, we also made this assumption in order to enable
approximation algorithms with a provable performance ratio, see [1]. In particular, with the
objective to minimise the maximum radius or diameter of the clusters, it turned out that,
unless P = NP, there exists no polynomial-time constant factor approximation if the pairwise
distance on the objects violates the triangle inequality while a ratio of 2 can be achieved
without such violations. With an attempt to use this problem to model a clustering which
can be used for recommender systems, we however found that the pairwise distance does not
in general satisfy the triangle inequality. The so-called Pearson distance, which is usually
used for recommendations, does not have this useful property and, as also observed in [23],
practical instances actually show this non-metric behaviour. Such unfortunate situations
seem to be unavoidable when it comes to human preferences which raises the question of
how the resulting negative effects can be avoided, or at least controlled.

One option that comes to mind concerning non-metric instances in general is editing, i.e.,
a pre-processing step which tries to transform a given instance, with preferably few changes,
such that triangle inequality holds and known algorithms for such well-behaved instances
can then be applied. This idea however has several drawbacks. Changes to a given instance
always come at the price of distortion; altering distances or even deleting objects results in
perturbation of the original input. This effect hence raises the task to find alterations which
bring as little change to the original instance as possible. Such editing problems are then
usually already difficult to solve themselves. In our specific case of lower-bounded clustering,
the task to find a minimum number of vertices such that their removal from a given instance
deletes all violations of the triangle inequality is closely related to the 3-hitting set problem.
But much more troublesome than the complexity of computing such minimal alterations
for these types of problems is the danger of accidentally worsening the optimum value with
vertex deletion. Observe that by requiring a lower bound on the cardinality of the clusters,
the optimum value is not necessarily monotone, in the sense that a larger set of input objects
might enable a better solution.

Here, we therefore seek a different approach which employs extra treatment for violations
of the triangle inequality within the approximations designed for metric instances. The basic
idea is to investigate the consequences of violations and devise strategies to deal with those
within moderate exponential time depending on, roughly speaking, how much the given
pairwise distance differs from a metric. More precisely, we will, for a pairwise distance d,
look at the set of pairs {u, v} which directly violate the triangle inequality, i.e., there exists
another object x such that d(u, v) > d(u, x) + d(v, x). We call such pairs conflicts. If the
set of conflicts for a given instance is empty, the associated distance obviously satisfies the
triangle inequality, which makes the cardinality of the set of conflicts a reasonable measure
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for our purposes. Our strategy then is to alter the algorithms for metric instances in such a
way that they also yield constant-factor approximations for non-metric instances while only
spending exponential effort with respect to the conflicts. Formally, this gives a parameterised
approximation with structural parameterisation by the number of conflicts.

This kind of parameterisation by conflicts to improve approximabilty can be seen as a
generalisation of the distance from triviality approach introduced in [17]. The idea there is to
define some distance which specifies how much a given instance differs from some structural
property which makes it easy to solve, and use this measure as parameter. The term triviality
there already refers to the broader case of polynomial time solvable instances, not just trivial
inputs as one might think, and in our case we go one step further and see the number of
conflicts as the distance to an instance which can be approximated efficiently.

We discuss conflicts for the problems of minimising the maximum radius or diameter for
lower-bounded clustering. We first develop parameterised approximations with respect to
conflicts and then improve those to only require exponential time with respect to the vertex
cover number of the conflict graph Gc (the graph induced by conflicts interpreted as edges).
For diameter, we then consider even smaller parameters given by the size of an (induced)
P3-cover of Gc, but conversely show that the even smaller size of a split vertex deletion set
for Gc is not a suitable parameter. Curiously, we find that while the ratio of 2 remains for
diameter, it is only possible to prove a ratio of 3 for radius. For the parameter vertex cover
of Gc, we prove that this worsening is unavoidable under the assumption that FPT 6= W[2].

2 Preliminaries

We mostly use standard notation and refer to textbooks such as [6] for graph theory, [3] for
approximation algorithms and [12] for parameterised complexity terminology.

When estimating running times we use O∗-notation which, compared to O-notation, also
suppresses factors which are polynomial in the input size. We use Bn to denote the nth Bell
number which is the number of partitions of a set of size n.

The algorithms discussed here combine parameterisation and approximation and fall into
the category of fpt-approximation algorithms with parameter κ, as discussed for example
in [22], i.e., approximation algorithms with provable ratio and running time in O(g(κ) · f(n)),
for computable function g and polynomial f , so O∗(g(κ)) in O∗-notation. For lower bounds
in this context, there does not seem to exist a unified notation, so for these kinds of results, we
will not use hardness notions but link the existence of certain parameterised approximations
to the (unlikely) equivalence of certain complexity classes.

2.1 Problem Definition
As formal model for lower-bounded clustering we use the abstract problem (‖·‖, f)-k-cluster
from [1]. An instance of this problem is an undirected graph G = (V,E) with edge-weights
wE : E → R+ and a lower bound k ∈ N. A feasible solution is any partition P1, . . . , Ps of V
such that |Pi| ≥ k for all i ∈ {1, . . . , s}, we refer to such a partition as k-cluster.

For two vertices u, v ∈ V with u 6= v we define d(u, v) := wE({u, v}) if {u, v} ∈ E, and
if {u, v} /∈ E, the distance d(u, v) is defined by the shortest path from u to v in G. For
simplicity we always extend d to a function on the whole set V × V by defining d(v, v) = 0
for all v ∈ V . This definition of the induced distance d derived from weights only known
for a set E of given edges models missing information about pairwise distances.

For the objectives to minimise maximum radius or diameter we formally define rad(P ) :=
min{max{d(x, y) : y ∈ P} : x ∈ P} and diam(P ) := max{max{d(x, y) : y ∈ P} : x ∈ P}. The
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Figure 1 In the graph on the left, {c, d} has a weight larger than the shortest path from c to d

but is not in C. Lowering the weights on {a, d} and {b, c} to 2 to remove these conflicts turns {c, d}
into a conflict. The graph on the right has a 2-cluster of maximum radius and diameter 1. Removing
a to delete conflicts results in a graph for which only a trivial 2-cluster of radius ∆ is possible.

resulting problems (‖·‖∞ , rad)-k-cluster and (‖·‖∞ , diam)-k-cluster ask for a k-cluster
P1, . . . , Ps minimising max{rad(Pi) : 1 ≤ i ≤ s} and max{diam(Pi) : 1 ≤ i ≤ s}, respectively.
A vertex x ∈ V with max{d(x, y) : y ∈ P} = rad(P ) is called central for P .

2.2 Conflicts
A function d : V × V → R+ satisfies the triangle inequality if d(u, v) ≤ d(u,w) + d(w, v)
for all u, v, w ∈ V . We will call an instance of (‖·‖, f)-k-cluster metric if the induced
distance satisfies the triangle inequality although this does not necessarily make d a metric
in the classical definition of this word, as we allow the existence of u 6= v with d(u, v) = 0
(violation of the so-called identity of indiscernibles property of metrics); recall that by the
formal definition, d derived from edge-weights is just non-negative, symmetric and reflexive.

Observe that our definition allows non-metric instances, see Figure 1. We define the set
of conflicts for an instance (G, k) with G = (V,E) and induced distance d as the collection C
of vertex pairs {u, v} such that the triangle inequality is violated for u and v, formally:

C = {{u, v} ∈ V × V : ∃ x ∈ V : d(u, v) > d(u, x) + d(v, x)} .

One curious property is that the set of conflicts is not necessarily the whole set of edges with a
weight larger than the cheapest path in the graph (for a counterexample see Figure 1), it
however is always a subset of E. Considering the option of weight reduction to achieve triangle
inequality, C might be smaller than the set of edge-weights which have to be adjusted in order
to arrive at a graph without conflicts. Figure 1 also gives a small example which illustrates
why vertex removal can be a dangerous editing step for problems with non-monotone objective
function such as lower bounded clustering. Observe how the optimum value may increase
arbitrarily from the original graph to a graph created by deleting vertices to avoid conflicts.
This effect is another reason to favour parameterisation over editing.

Actually, we will mostly consider parameterisation by the cardinality of the set P of
conflict vertices, which simply are the vertices involved in a conflict, formally defined by:

P =
⋃

{u,v}∈C

{u, v} .

In the following we will use c and p for the parameters number of conflicts and number of
conflict vertices, respectively. Parameterisation by p yields the same general tractability as
parameterisation by p as the parameters are related by the inequalities p ≤ 2c ≤ (p(p−1)) .
For the concrete running times, it is however still relevant to distinguish between p and c as
the bounds given by this inequality are sharp.

We further refer to the graph Gc = (P,C) as conflict graph; observe that Gc is always a
subgraph of the input graph. The structure of the conflict graph reflects the entanglement
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of conflicts in a given instance. When designing algorithms which devise specific strategies
to resolve conflicts, it is not surprising that the relations between these can be exploited
for improvement. The structure of the conflict graph hence yields further possibilities for a
parameterisation which measures the distance to a metric instance.

3 Parameterisation by Conflict Vertices

Without restriction to metric instances, there exists no constant factor approximation in poly-
nomial time for (‖·‖∞ , rad)- or (‖·‖∞ , diam)-k-cluster, unless P = NP (see Proposition 6
from [1]). The 2-approximation presented for these problems in [1], Theorem 9 hence highly
relies on the assumption that the input instance is metric. In short, on input ((V,E), wE , k)
with induced distance d, the approximation algorithm with the performance ratio of 2 for
both (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster simply performs a binary search for the
smallest value D for which the following 2-step greedy procedure is successful:
step (1) While V is not empty, pick some c ∈ V , build the set P (c) := {w ∈ V : d(c, w) ≤ D}

and set V = V \ P (c).
step (2) Let P (c1), . . . , P (cs) be the partition built in step (1). Try to create from this a

k-cluster P ′(c1), . . . , P ′(cs) such that ci ∈ P ′(ci) and d(v, ci) ≤ D for all v ∈ P ′(ci),
i ∈ {1, . . . , s}. (Such a partition can be efficiently computed with the help of a network
flow formulation over vertices V ∪ {s, t}. With arcs of capacity 1 from s to every v ∈ V ,
arcs of capacity k from ci to t and arcs of capacity 1 from v ∈ V to ci if d(v, ci) ≤ D for
each i ∈ {1, . . . , s}. A flow of value sk in this network interpreted as moving a vertex
v ∈ P (ci) into the set P (cj) if and only if the flow uses the arc from v to cj , gives a
polynomial procedure to create a k-cluster.)

The ratio of 2 for (‖·‖∞ , rad)- and (‖·‖∞ ,diam)-k-cluster can be shown by proving that
the greedy procedure is successful if D is fixed to be twice the optimum radius or the optimum
diameter, respectively, which is due to the following two properties for this choice of D:
(i) By the choice of the vertices ci in step (1), it follows that d(ci, cj) > D for all i 6= j,

which means that ci and cj belong to different sets in an optimum solution. So, for each i
there exist enough vertices at distance at most D from ci to be put into P ′(ci) in step (2).

(ii) If the greedy procedure is successful, the construction immediately yields d(v, ci) ≤ D
for each v ∈ P ′(ci), so the resulting k-cluster P ′(c1), . . . , P ′(cs) has maximum radius D
and maximum diameter 2D.

The above properties however do not hold in case the input instance is not metric. More
precisely, for each objective function (radius, diameter), one of them is no longer true. For
radius, property (i) fails, as without triangle inequality, vertices at distance more than twice
the optimum can still be contained in the same cluster in an optimum solution. For diameter,
property (ii) fails, as a radius of D does no longer guarantee a diameter of 2D.

We will now try to salvage these properties for non-metric instances by adding exponential
effort with respect to conflicts to the above approximation procedure. Given that different
properties are lost for the two objective functions, it is not surprising that this approach
yields two different parameterised approximations, the basic algorithmic idea of fixing a
maximum radius D, building a preliminary clustering with clusters of radius D and then
balancing the cardinalities with a network however always remains and we will only sketch
the crucial points which have to be adjusted in each case.

At first, we observe that starting from the approximation algorithm for metric instances,
it is not too hard to see that a constant number of conflicts does not yield too much trouble.
More precisely, we simply guess a suitable central vertex for each conflict vertex and fix the
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resulting partition of P and centres for step (1). This optimal guessing for the problematic
vertices resolves the problems for both objective functions, as the fixed centres are optimal
by choice and the greedy algorithm is only responsible for partitioning remaining vertices in
V \ P for which the triangle inequality holds. This kind of guessing yields:

I Theorem 1. A 2-approximation for (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster can be
computed with a running time in O∗(np).

This result raises the question whether an improvement to a more efficient running time is
possible, i.e., some constant factor parameterised approximation. To this end, we want to
mention that an improvement of the approximation ratio of 2 is unlikely, as this is already
shown to imply P = NP for metric instances in [1], Corollaries 1 and 3.

For diameter, we have to only be careful with property (ii) which means that in the above
guessing, we did not really require the knowledge of centres but only the partition they imply
on the vertices in P . In fact, it can be shown that knowing this partition is enough, and
simply enforcing it in the metric approximation algorithm still yields a 2-approximation for
(‖·‖∞ , diam)-k-cluster. The cost of trying all partitions of P can be estimated with the
Bell number (which can be bounded by Bn <

(
0.792n

log(n+1)

)n

, see [5]) and yields:

I Theorem 2. A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a
running time in O∗(Bp).

For radius, the fixed centres are important, but by compromising a little on the approximation
ratio it is still possible to design a parameterised approximation with parameter p. This
algorithm only requires guessing which vertices in P are central in an optimal solution and
accordingly forcing step (1) to build clusters around those first; observe that this knowledge
salvages property (i). Picking a suitable cluster for the vertices in P which are not chosen to
be central however blows up the approximation ratio to 3 (an effect which is explained later
in connection to the lower bounds), which yields:

I Theorem 3. A 3-approximation for (‖·‖∞ , rad)-k-cluster can be computed with a running
time in O∗(2p).

4 Structural Parameters of the Conflict Graph

One possibility to speed up the parameterised approximation algorithms presented so far,
is to choose a smaller parameter. In this section, we want to focus on strategies to only
spend exponential time for vertices in a subset of P . More precisely, as advertised in the
section-title, we will consider parameterisation by structural parameters of the conflict graph.

4.1 Vertex Cover
Looking closer at the problems caused by the conflicts in C, it is not necessary to consider
all vertices in P but it appears to be sufficient to pick a subset which covers all conflicts.
Formally, this idea translates into parameterisation by a vertex cover for the conflict graph
Gc = (P,C). In the following, we will use pc to denote the size of a minimum vertex cover
for Gc and discuss parameterised approximation with respect to this parameter.

Again, a first easy observation is that, at least for (‖·‖∞ , rad)-k-cluster, instances for
which pc is a constant can be approximated efficiently. In fact, we can simply switch from
the set P to a minimum vertex cover for Gc in the procedure discussed for Theorem 1, as
property (i) can only be violated if the algorithm can choose two vertices of a conflict as
centres. The additionally required computing of a constant size vertex cover for Gc is not an
expensive task, so this idea immediately yields:
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I Theorem 4. A 2-approximation for (‖·‖∞ , rad)-k-cluster can be computed with a running
time in O∗(npc).

The parameterised approximation for (‖·‖∞ , diam)-k-cluster from Section 3 requires little
algorithmic adjustment to switch from parameter p to parameter pc. Proving correctness of
the given procedure, i.e., guaranteeing a performance ratio, is however more complicated.

Consider only guessing a partition of a vertex cover V of the conflict graph and fixing
this partition for step (1). The only further change required to make sure that property (ii)
remains true, is to adjust the algorithm when building clusters including the guessed sets
V1, . . . , Vt in the partition of V . Now, both when building the preliminary clusters including
some Vi in step (1) and moving vertices in step (2) into such a cluster, we not just require a
distance of at most D to one chosen centre but to all vertices in Vi. Then all distances in
a set of the resulting k-cluster involving vertices in the cover V are bounded by D. As V
is a vertex cover of Gc, distances not involving a vertex in V are not a conflict which means
triangle inequality can be used for all remaining cases to prove that property (ii) still holds.

This approach requires computing a vertex cover for the conflict graph, a problem which
can be solved by [9] with a running time in O∗(1.2738pc). As this single-exponential effort is
only performed once in the beginning and dominated by the Bell number, we can conclude:

I Theorem 5. A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a
running time in O∗(Bpc

).

For (‖·‖∞ , rad)-k-cluster, it is not obvious how to reduce p in Theorem 3 to pc. While
knowing which vertices in a vertex cover are central is sufficient to avoid picking centres from
the same cluster in step (1), the problem is finding a suitable cluster for the vertices from
the vertex cover which are not central. In particular, this is a problem when two vertices
from the vertex cover which are not central are wrongfully put in the same cluster; more
precisely, if two vertices u, v ∈ V are not central in any optimal solution but belong to two
different clusters, with centres cu, cv /∈ V, while these two correct centres are put into P (c)
with {u, c}, {v, c} ∈ C in step (1) of our algorithm. In such a case there is no general clean
way to identify how to split up P (c) into sets of cardinality at least k and such that u and v
can be assigned at a radius which can in any way be bounded by the optimum.

With a more involved algorithm which additionally guesses a partition, like for the diameter
measure, it is possible to find an approximation for (‖·‖∞ , rad)-k-cluster parameterised
by pc. After guessing a partition and a set of centres for the vertex cover, this approach further
requires computing a suitable centre for each set in the partition before running steps (1)
and (2), which are altered to respect the fixed partition and central vertices. This just means
finding for each set Vi in the partition of the vertex cover V for which no vertex in Vi is fixed
as center, a vertex v ∈ V \ V such that d(v, w) ≤ D

2 for all w ∈ Vi (where D
2 relates to the

optimum radius). As two sets Vi and Vj might compete over such candidates for centres, we
use maximum matching to enable finding, in case our fixed guesses are correct, a centre for
each set Vi. These adjustments are sufficient to salvage property (i). Although now there is no
longer the problem of finding a suitable cluster for vertices which are not allowed to be central,
the performance ratio is still only 3, as for this procedure the worst-case now comes from
choosing a wrong center c′ ∈ V \ V for some Vi: If P ⊆ V is the cluster containing Vi in an
optimum solution and c is its correct center, it follows that the distance of v ∈ P to the wrong
center c′ can only be bounded by d(v, c′) ≤ d(v, c) + d(c, c′) ≤ D

2 + d(c, vi) + d(c′, vi) ≤ 3 D
2

(using some vi ∈ Vi for this equation). The asymptotic running time of this approach is
dominated by guessing the partition and centre-choice for a minimum vertex cover of Gc, so:
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I Theorem 6. A 3-approximation for (‖·‖∞ , rad)-k-cluster can be computed with a running
time in O∗(2pc ·Bpc

).

4.2 P3-Covers
With more changes to the algorithms discussed for (‖·‖∞ , diam)-k-cluster, it is possible
to further reduce the size of the subset of P which requires the expensive guessing of the
partition. When building the first partition in step (1), it is always possible to correctly
assign conflict vertices to a set, by branching on the conflicts to decide which vertex has to
be excluded. This way it is possible to find a correct choice of central vertices. The network
used to model the reassignment of vertices according to the fixed centres can be altered to
prevent two conflict vertices to move into the same cluster, by routing their flow through an
additional network-vertex with a capacity of only 1 to move into a cluster. If the conflicts
are isolated, an additional network-vertex for each conflict can be used to correctly model all
conflict-free reassignments.

We can of course not assume that conflicts are pairwise disjoint, but we can fix the partition
of a subset of conflict vertices, as we did for the vertex cover of the conflict graph, and
use the above ideas for the remaining vertices which induce a graph with isolated conflicts.
The set of vertices which have to be removed in order to arrive at a graph with isolated
edges, or equivalently a graph which does not contain any path of length 2 usually denoted
P3, is smaller than the vertex cover of the conflict graph (unless the instance is initially
metric). Formally, such a set is called a P3-cover. In the following, we use p3c to denote the
cardinality of a smallest P3-cover for Gc and with the parameterised algorithm from [24],
such a set can be computed with a running time in O∗(1.7485p3c). Using the more expensive
strategy of guessing the correct partition only for a minimum P3-cover of the conflict graph
computed with the algorithm in [24], branching on the remaining isolated conflicts for the
pre-clustering and modifying the network to avoid conflicts as described above gives the
following result; observe that the number of remaining conflicts is bounded by p

2 :

I Theorem 7. A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a
running time in O∗(

√
2p ·Bp3c

).

As already mentioned, branching on conflicts in step (1) works for any set of conflicts, not just
for the restriction to isolated ones. The reassignment restriction for conflict vertices modelled
with the capacities in the network however requires a situation where, in case of conflict,
at most one vertex can be moved into a cluster. Capacities on arcs from some additional
network-vertices which handle conflicts, can not model a scenario where out of three vertices
u, v, w, a cluster is restricted to either only contain u or any subset of {v, w}; this situation
occurs if u is in conflict with v and w but {u,w} is not a conflict. This structure means that
the vertices u, v, w induce a P3 in the conflict graph. If the conflict graph, or any graph for
that matter, does not contain an induced P3, its connected components are cliques. For this
structure, the network can be adjusted to correctly model conflict-free vertex-reassignments.
The problem to find, for a given graph, a smallest vertex set whose removal yields a P3-free
graph is called Induced P3-Cover or Cluster Vertex Deletion.

It is possible to, in a sense, generalise the algorithm for Theorem 7 to consider a cluster
vertex deletion set instead of a P3-cover to reduce the cost for guessing the partition. We
denote the corresponding parameter, size of a cluster vertex deletion set for the conflict graph,
by p3d. While the relation p3d ≤ p3c obviously makes this generalisation an improvement, we
have to pay for this in the branching for the pre-clustering, as the remaining conflicts are no
longer bounded by 1

2 |P |. A minimum cluster vertex deletion set for Gc can be computed in
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Table 1 Summary of the running time of the parameterised 2-approximation for (‖·‖∞ , diam)-k-
cluster, where pc, p3c and p3d denote the size of a minimum vertex, P3 and induced P3-cover for
the conflict graph, respectively.

pc p3c p3d

O∗(Bpc )
(Theorem 5)

O∗(
√

2p
Bp3c )

(Theorem 7 )
O∗(2cBp3d )
(Theorem 8 )

time O∗(1.9102p3d) with the help of the parameterised algorithm in [7], so again a negligible
effort compared to checking all partitions, and this idea hence yields the following result:

I Theorem 8. A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a
running time in O∗(2c ·Bp3d

).

The results to improve the parameterised approximation from Theorem 5 are presented here
in a way which suggest a stepwise improvement of the running time. In principle, reducing
the number of vertices which require partitioning appears to be the best option. But the
reductions of this set used for Theorems 7 and 8 require additional branching costs on conflict
vertices and conflicts, respectively. Depending on the structure of the conflict graph, any
one of the three algorithms can have the best worst-case running time. An overview of the
parameterised 2-approximations for (‖·‖∞ , diam)-k-cluster with respect to the structural
parameters of the conflict graph discussed in this section is given in Table 1.

5 Lower Bounds

In this section, we investigate the limitations of parameterised approximation for lower
bounded clustering with structural parameters of the conflict graph. Especially the increase
from ratio 2 for metric instances to ratio 3 for non-metric instances for (‖·‖∞ , rad)-k-
cluster appears strange. We will however see that ratio 3 is, under certain complexity
theoretic assumptions, optimal for parameter pc and that the approach we use to design
parameterised approximations is generally limited to the performance ratio of 3 for radius.
Further, we will discuss the limits of choosing structural parameters for (‖·‖∞ , diam)-k-
cluster. More precisely, we will see that while the previous section gave approaches to
move from p to pc, p3c and p3d, a next step towards a parameterisation by a split vertex
deletion set does not seem to allow for a constant factor parameterised approximation.

For the negative results of this section, we use a kind of reduction which links the
existence of a parameterised approximation with certain ratio to a parameterised algorithm
for a problem which is believed not to be in FPT. Such an algorithm can be seen as
fpt gap-reduction as introduced in [4]. As the problem to reduce from for (‖·‖∞ , rad)-k-
cluster, we use Multicoloured Dominating Set, which asks for input graph G = (V,E)
with vertex partition V = V1, . . . , V` for the existence of a subset D ⊆ V such that N [D] = V

(D is a dominating set for G) and |D ∩ Vi| = 1 for all i ∈ {1, . . . , `}. The colour-coding
technique from [2] shows that the W[2]-hardness of classical Minimum Dominating Set,
which is shown in [11], transfers to this restricted version we called multicoloured in reference
to Multicoloured Clique and the corresponding reduction technique introduced in [15].

We will in the following sketch a reduction from Multicoloured Dominating Set to
(‖·‖∞ , rad)-k-cluster which shows that a parameterised approximation with parameter pc

for the clustering problem could be used to show fixed parameter tractability of the W[2]-
hard domination problem. This kind of reduction yields a lower bound for parameterised
approximation of (‖·‖∞ , rad)-k-cluster under the assumption FPT 6= W[2].

IPEC 2018



23:10 Resolving Conflicts for Lower-Bounded Clustering

X
ur uR

V1u1 V2u2

v w

. . . V`u`

V̄q

p

Figure 2 Illustration of the reduction used for Theorem 9, vertices in the vertex cover for the
conflict graph drawn with thick border.

For an instance G = (V,E) with V = V1, . . . , V` and |V | = n of Multicoloured
Dominating Set, we construct an instance ((V ′, E′), wE′ , n+ 2) of (‖·‖∞ , rad)-k-cluster
with vertex set V ′ containing V , a copy of V , denoted V̄ = {v̄ : v ∈ V }, `+ 2 vertices (which
will become the vertex cover of the conflict graph) denoted u1, . . . , u` and ur, uR and an
additional set X of (` − 1)n + ` vertices. These vertices are connected with the following
edges of weight 1 (see also the illustrated in Figure 9):
{v, w̄}, {w̄, v} ∈ E′ iff {v, w} ∈ E (these model the structure of the original graph),
{ui, v} ∈ E′ for all v ∈ Vi, i ∈ {1, . . . , `} (these force to pick one center from each Vi),
{v, x} ∈ E′ for all x ∈ X, v ∈ V ∪ {ur} (enables balancing cardinalities with the set X),
{ur, v} ∈ E′ for all v ∈ V and {ur, uR} ∈ E′ (forces ur to be central and allows to assign
v ∈ V not picked for the dominating set at radius 1 to the corresponding cluster).

Further E′ contains all other edges involving the vertices u1, . . . , u` and ur, uR with weight 3
which clearly makes this set of ` + 2 vertices a vertex cover of the conflict graph for the
resulting (‖·‖∞ , rad)-k-cluster instance ((V ′, E′), wE′ , n+ 2).

Assuming the existence of a parameterised approximation with parameter pc and ratio
better than 3 for (‖·‖∞ , rad)-k-cluster, this algorithm would be able to build clusters with
maximum radius less than 3 for ((V ′, E′), wE′ , n+2) if and only if there exists a multicoloured
dominating set for G = (V,E); more precisely, the centres of the clusters containing the
vertices u1, . . . , u` in a k-cluster of maximum radius less than 3 for ((V ′, E′), wE′ , n + 2)
correspond to a multicoloured dominating set for G = (V,E). To understand why this is
true, observe that the lower bound n+ 2 only allows to build at most `+ 1 clusters, while a
maximum radius of less than 3 requires at least one cluster with ur and one cluster with a
vertex from Vi∪{ui} for each i ∈ {1, . . . , `} as centre. A vertex V̄ can then only be at distance
less than 3 from a centre if the corresponding vertex in the original graph G is adjacent to
this centre. As this parameterised approximation has a running-time in O∗(g(pc)) for some
computable function g, and pc is bounded by ` + 2, the given polynomial construction of
((V ′, E′), wE′ , n + 2) combined with this assumed parameterised approximation could be
used to solve Multicoloured Dominating Set in O∗(g(`)), which formally yields:

I Theorem 9. There exists no (3 − ε)-approximation for (‖·‖∞ , rad)-k-cluster with a
running time in O∗(g(pc)) for any ε > 0 and computable function g, unless FPT = W[2].
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Figure 3 Illustration of the reduction used for Theorem 10, bold lines represent conflict edges
with weight r + 1, all other edges in the complete graph have weight 1. Vertices u, v ∈ V are such
that {u, v} ∈ E, 1 ∈ L(u), 1 /∈ L(v), 2 ∈ L(u) ∩ L(v) and ` /∈ L(u) ∪ L(v).

The reduction used to prove Theorem 9 also illustrates why our parameterised approximation
for (‖·‖∞ , rad)-k-cluster with parameter p does not have a performance ratio better than 3.
The situation illustrated in Figure 2 is also a case where our algorithmic strategy fails; if
the algorithm chooses w instead of v as central vertex in step (1) (observe that these two
are both not in the set P ), then q is one of the vertices in P \ P ′ (in fact P ′ = ∅ is the only
correct choice) which has to be put into a suitable cluster without choosing it as centre,
which places it at the worst possible distance (3 times the optimum) from the central vertex.

For diameter, we want to investigate the limits of choosing smaller sets of vertices which
require partitioning in our parameterised approximations. A graph G = (V,E) is called a
split graph, if its vertex set can be partitioned into two disjoint sets A and B such that A is
an independent set in G and G[B] is the complete graph on vertex set B. Especially for the
application to ratings to build recommendation systems, it appears that the conflict graph
almost has the structure of a split graph: with a small set of users which give unusual ratings
and are hence in conflict among each other (set B) and with a larger set of more average
users (set A). This observation raises the question whether it is helpful to turn the conflict
graph into a split graph, as this transformation appears to require very little change.

Formally, a split vertex deletion set of a graph G = (V,E) is a subset V ′ of V such
that G[V \ V ′] is a split graph. Looking at the previous strategies to lower the parameter
from vertex cover to P3-cover to cluster vertex deletion, the size of a minimum split vertex
deletion set appears to be a promising next smaller parameter-choice. Unfortunately, it seems
that this parameterisation can not be used for (‖·‖∞ , diam)-k-cluster as the following
result will show. We will use a similar kind of fpt gap-reduction between (‖·‖∞ , diam)-k-
cluster parameterised by split deletion set from the problem List Colouring, which for
a given graph G = (V,E), colours {1, . . . , `} and a set of possible colours for each vertex
v ∈ V , given by a list L(v) ⊆ {1, . . . , `} for each v ∈ V asks if there exists a colouring
f : V → {1, . . . , r} such that f(v) ∈ L(v) for all v ∈ V and f(v) 6= f(w) for all {v, w} ∈ E.
List Colouring with parameter τ(G) (vertex cover number of G) is W[1]-hard, see [14, 16].

Our reduction from List Colouring to (‖·‖∞ , diam)-k-cluster constructs a clustering
instance ((V ′, E′), wE′ , n+ 2) as sketched in Figure 3, where G is the input graph for List
Colouring and each Li, is a set of n+ 2 new vertices. Observe that a vertex cover for G
is a split vertex deletion set of the conflict graph for this instance. It can be shown that a
“yes”-instance for List Colouring corresponds to a k-cluster of maximum diameter 1 while
a “no”-instance yields a diameter of at least r + 1.
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This would enable solving List Colouring in O∗(g(τ)) if there existed a parameterised
approximation with ratio r and cluster vertex deletion set as parameter for (‖·‖∞ , diam)-k-
cluster, hence:

I Theorem 10. There exists no constant factor approximation for (‖·‖∞ , diam)-k-cluster
with a running time in O∗(f(ps)), for any computable function f , unless FPT = W[1].

6 Conclusions

As the exponential time hypothesis implies FPT 6= W[1] by [8], the negative results in
this paper especially hold assuming the exponential time hypothesis [19]. Both reductions
used to show these create instances of (‖·‖, f)-k-cluster with large values for k. In most
applications however, k is a fixed, not too large integer, which raises the question whether an
additional parameterisation by k (additional to the number of conflicts) would help overcome
the negative results. For the greedy strategies used for the parameterised approximations in
this paper, it is not clear how k could be included in a useful way. An improvement with
parameterisation by both conflicts and k probably means using a very different algorithmic
approach. The gap between our positive results and the presented lower bounds further
suggests room for improvement. Stronger lower bounds seem to require new techniques for
reductions which consider both parameterisation and approximation.

We would like to mention that a relaxation of the cardinality constraint, i.e., asking for
an approximate solution in the sense that this partition is allowed to contain clusters with
only αk vertices, for some factor 0 < α ≤ 1, does not help with the problems caused by
conflicts. In fact, the inapproximability for general non-metric instances from [1] holds for
fixed values of k with k ≥ 3, which means that this kind of additional cardinality relaxation
either yields a polynomial time solvable problem, in case αk ≤ 2, or a problem with the same
approximation hardness.

One other aspect we did not consider here is the optimality of the asymptotic running
times of our positive results. Techniques for such more fine-grained considerations need
a more careful analysis. A concrete question in this regard is whether it is possible to
improve the parameterised approximations for (‖·‖∞ ,diam)-k-cluster to only require single-
exponential time. In this regard it would be very interesting to see if slightly superexponential
lower bounds as shown in [21] can be proven for a 2-approximation of (‖·‖∞ , diam)-k-
cluster with parameter p. For improvement on the running time on the other hand, it
might be interesting to analyse the algorithms with a closer look at the enumerations of the
partitions of P . We always estimated this with the Bell number although we only consider
partitions with specific properties (those which are possible in a clustering of maximum
diameter D) which in a sense relate to colourings of the conflict graph. It might be possible to
enumerate the relevant partitions of P more efficiently with the help of colouring strategies.

Aside from the problems discussed here, there are many other related clustering-type
problems which exhibit similar difficulties with violations of the triangle inequality. The
parameterisation by conflicts and related parameters might provide a useful way to approach
these problems as well.
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Abstract
We investigate the problem #IndSub(Φ) of counting all induced subgraphs of size k in a graph G
that satisfy a given property Φ. This continues the work of Jerrum and Meeks who proved
the problem to be #W[1]-hard for some families of properties which include, among others,
(dis)connectedness [JCSS 15] and even- or oddness of the number of edges [Combinatorica 17].
Using the recent framework of graph motif parameters due to Curticapean, Dell and Marx
[STOC 17], we discover that for monotone properties Φ, the problem #IndSub(Φ) is hard for
#W[1] if the reduced Euler characteristic of the associated simplicial (graph) complex of Φ is
non-zero. This observation links #IndSub(Φ) to Karp’s famous Evasiveness Conjecture, as every
graph complex with non-vanishing reduced Euler characteristic is known to be evasive. Applying
tools from the “topological approach to evasiveness” which was introduced in the seminal paper
of Khan, Saks and Sturtevant [FOCS 83], we prove that #IndSub(Φ) is #W[1]-hard for every
monotone property Φ that does not hold on the Hamilton cycle as well as for some monotone
properties that hold on the Hamilton cycle such as being triangle-free or not k-edge-connected
for k > 2. Moreover, we show that for those properties #IndSub(Φ) can not be solved in time
f(k) · no(k) for any computable function f unless the Exponential Time Hypothesis (ETH) fails.
In the final part of the paper, we investigate non-monotone properties and prove that #IndSub(Φ)
is #W[1]-hard if Φ is any non-trivial modularity constraint on the number of edges with respect
to some prime q or if Φ enforces the presence of a fixed isolated subgraph.
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1 Introduction

In their work about the parameterized complexity of counting problems [11] Flum and Grohe
introduced the parameterized analogue of the theory of computational counting as layed
out by Valiant in his seminal paper about the complexity of computing the permanent [28].
Since then parameterized counting has evolved into a well-studied subfield of parameterized
complexity theory. In particular, there has been remarkable progress in the classification of
problems that require to count small structures in large graphs. It turned out that many
families of such counting problems allow so-called dichotomy results, that is, every problem
in the family is either fixed-parameter tractable or hard for the class #W[1] — the counting
equivalent of W[1]. One result of that kind is the dichotomy for counting homomorphisms
[10, 13]. Here one is given a graph H from a class of graphs H and an arbitrary graph G and
the task is to compute the number of homomorphisms from H to G. When parameterized
by |H| this problem is fixed-parameter tractable if there exists a constant upper bound on
the treewidth of graphs in H and #W[1]-hard otherwise. Similar results have been shown
for the problems of counting subgraph embeddings [9], induced subgraphs [7] and locally
injective homomorphisms [26]. As results like Ladner’s theorem (see e.g. [19, 2]) rule out
such dichotomies in the general case one might ask why all of the above problems indeed do
allow such complexity classifications. The answer to that question was given very recently
by Curticapean, Dell and Marx [8] who proved that, in some sense, all of those problems
are the same. To this end, they defined the problem of computing linear combinations of
homomorphisms which they called graph motif parameters. Here one is given a graph G

and a function a of finite support that maps graphs to rational numbers and the task is to
compute∑

H

a(H) ·#Hom(H,G) , (1)

where the sum is over all (unlabeled) simple graphs and #Hom(H,G) denotes the number of
homomorphisms from H to G. A result of Lovász (see e.g. Chapt. 5 in [20]) implies that the
number of subgraph embeddings #Emb(H,G) as well as the number of induced subgraphs
#IndSub(H,G) can be expressed as a linear combination of homomorphisms. In case of
embeddings the result states that

#Emb(H,G) =
∑
ρ≥∅

µ(∅, ρ) ·#Hom(H/ρ,G) , (2)

where the sum is over the partition lattice of the vertices of H, µ is the Möbius function over
that lattice and H/ρ is obtained from H by identifying vertices along ρ. Now, intuitively,
the main result of Curticapean, Dell and Marx states that computing a linear combination of
homomorphisms is precisely as hard as computing the hardest term in the linear combination.
Together with the dichotomy for counting homomorphisms this implies that every problem
expressible as a linear combination of homomorphisms is either fixed-parameter tractable
or #W[1]-hard. The purpose of this work is a thorough investigation of the problem of
counting induced subgraphs through the lense of the framework of graph motif parameters.
Chen, Thurley and Weyer [7] proved that the problem #IndSub(H) of, given a graph H ∈ H
and an arbitrary graph G, computing #IndSub(H,G), is fixed-parameter tractable when
parameterized by |H| if and only if H is finite and #W[1]-hard otherwise. While this result
resolves the parameterized complexity of problems such as computing the number of induced
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cycles of length k,2 it is not applicable to problems such as computing the number of connected
induced subgraphs of size k. For this reason, Jerrum and Meeks [15, 14, 22, 16] introduced
and studied the following problem: Let Φ be a (computable) graph property, then the problem
#IndSub(Φ) asks, given a graph G and a natural number k, to count all induced subgraphs
of size k in G that satisfy Φ.3 In other words, the goal is to compute

∑
H∈Φk

#IndSub(H,G),
where Φk is the set of all (unlabeled) graphs with k vertices that satisfy Φ. The generality
of #IndSub(Φ) allows to count almost arbitrary substructures in graphs, subsuming lots of
parameterized counting problems that have been studied before, and hence the problem
deserves a thorough complexity analysis with respect to the property Φ. Jerrum and Meeks
proved it to be #W[1]-hard for the property of connectivity [15], for the property of having
an even (or odd) number of edges [16] as well as for some other properties (see Section 1.2).
As noted in [8], the theory of graph motif parameters immediately implies that for every
property Φ, the problem #IndSub(Φ) is either fixed-parameter tractable or #W[1]-hard.
However, for a concrete Φ it might be highly non-trivial to prove for which graphs H the
term #Hom(H,G) is contained with a non-zero coefficient in the equivalent expression as
linear combination of homomorphisms. Unfortunately, this is precisely what needs to be
done to find out whether #IndSub(Φ) is fixed-parameter tractable or #W[1]-hard. In our
investigation we will focus on the coefficient of #Hom(Kk, G), where Kk is the complete
graph on k vertices. We will see that for monotone properties, non-zeroness of this coefficient
is sufficient for the property to be evasive.

1.1 Results and techniques
The framework of graph motif parameters [8] implies that for every property Φ and natural
number k, there exists a function a from graphs to rationals such that for all graphs G it holds
that

∑
H∈Φk

#IndSub(H,G) =
∑
H a(H) ·#Hom(H,G). Our most important observation is

concerned with the coefficient of the complete graph.

I Theorem 1 (Intuitive version). Let Φ, k and a be as above. Then it holds that a(Kk) = 0
if and only if

∑
A∈EΦ

k
(−1)#A = 0, where EΦ

k is the set of all edge-subsets A of the labeled
complete graph with k vertices such that Φ holds for the graph induced by A.

We will provide an introduction to the theory of graph motif parameters as well as the
proof of Theorem 1 in Section 3. In Section 4 we turn towards monotone properties, i.e.,
properties that are closed under the removal of edges, and observe that in this case the
term

∑
A∈EΦ

k
(−1)#A is equal to the reduced Euler characteristic χ̂ of the simplicial graph

complex ∆(Φk) of Φk. Recall that a simplicial complex is a set of sets that is closed under
taking non-empty subsets and a simplicial graph complex is a simplicial complex whose
elements are subsets of the edges of the labeled complete graph. We will make this formal
in Section 2. As computing the number of cliques of size k is #W[1]-complete [11] and
computing a linear combination of homomorphisms is precisely as hard as computing its
hardest term [8], the complexity of #IndSub(Φ) is resolved whenever Φ is monotone and the
reduced Euler characteristic of ∆(Φk) is known to be non-zero for infinitely many k.

2 This problem can be equivalently expressed as #IndSub(C), where C is the class of all cycles.
3 Strictly speaking, #IndSub(Φ) is the unlabeled version of p-#INDUCED SUBGRAPH WITH

PROPERTY(Φ), both of which have been introduced in [15]. However, as Jerrum and Meeks point out,
those problems are equivalent for graph properties that are invariant under relabeling of vertices (see
Section 1.3.1 in [15]), which is true for all properties we are concerned with in this work.
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I Corollary 2. Let Φ be a monotone graph property such that χ̂(∆(Φk)) 6= 0 for infinitely
many k. Then the problem #IndSub(Φ) is #W[1]-hard.

We will also obtain a matching lower bound under the Exponential Time Hypothesis (ETH)
if the set of all k for which χ̂(∆(Φk)) 6= 0 satisfies a certain density condition (see Section 2).

The (reduced) Euler characteristic is well-understood for many graph complexes. For
example, Chapt. 10.5 in the book of Jonsson [17] provides a large list of graph properties,
each of whose reduced Euler characteristics are non-zero infinitely often. For those properties
Corollary 2 is hence applicable. The study of the (reduced) Euler characteristic is, among
others, motivated by Karp’s famous evasiveness conjecture, stating that every non-trivial
monotone graph property is evasive. A property Φk on graphs with k vertices is evasive if
every decision-tree algorithm that branches on the presence or absence of edges of a given
graph G needs to perform

(
k
2
)
branches in the worst case to correctly decide whether Φk

holds on G. We refer the reader to Miller’s survey [23] for a detailed introduction. While
the conjecture is still unresolved, there has been a major breakthrough due to Khan, Saks
and Sturtevant [18] who proved the conjecture to be true whenever k is a prime power.
Their paper “A Topological Approach to Evasiveness” was, as the name suggests, the first
one to use topological tools such as fixed-point complexes under group operations to prove
evasiveness of a given graph complex. One of their results reads as follows:

I Theorem 3 ([18]4). Let Φk be a non-trivial monotone graph property. If χ̂(∆(Φk)) 6= 0
then Φk is evasive.

Unfortunately, the converse of this theorem does not hold. A counterexample is given
in Chapt. 10.6 in Jonsson’s book [17]. Nevertheless it turns out that some tools of the
topological approach to evasiveness suit as well for a topological approach to #W[1]-hardness
of #IndSub(Φ). The most important ingredient in our proofs is a theorem that goes back
to Smith [27] (see also [24] and Chapt. 3 in [3]), intuitively stating that, given a simplicial
complex ∆ and a p-power group Γ for some prime p that operates on the ground set of ∆ in
a way that leaves the complex stable, it holds that χ̂(∆) ≡ χ̂(∆Γ) mod p, where ∆Γ is the
fixed-point complex of ∆ with respect to Γ. Again, this will be made formal in Section 2.
Applying this theorem to a rather simple group, we will be able to prove our main result
which reads as follows:

I Theorem 4. Let Φ be a non-trivial monotone graph property. Then #IndSub(Φ) is #W[1]-
hard and, assuming ETH, can not be solved in time f(k) ·no(k) for any computable function f
if at least one of the following conditions is true
1. Φ is false for odd cycles.
2. Φ is true for odd anti-holes.
3. There exists c ∈ N such that for all H it holds that Φ(H) = 1 if and only if H is not

c-edge-connected.
4. There exists a graph F such that for all H it holds that Φ(H) = 1 if and only if there is

no homomorphism from F to H.

We remark that Rivest and Vuillemin [25] implicitly proved that the reduced Euler
characteristic of a graph complex does not vanish if the first condition is true. Furthermore

4 In fact, Khan, Saks and Sturtevant show that any non-evasive complex is collapsible. However, every
collapsible complex has a reduced Euler characteristic of zero (see e.g. [21]). Hence the contraposition
implies the theorem as stated.
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we note that (non-)triviality of a monotone property needs to be defined with some care
to exclude properties that depend only on the number of vertices of a graph. Details are
given in Section 4. Examples of properties that satisfy the first condition are the ones of
being bipartite, cycle-free, disconnected and non-hamiltonian. One example for the second
condition is the property of having a chromatic number smaller or equal than half of the size
of the graph (rounded up) and the third condition includes the properties of exclusion of a
fixed complete graph as a subgraph.

In Section 5 we turn to non-monotone properties and illustrate that Theorem 1 itself is a
useful criterion when it comes to establishing #W[1]-hardness of #IndSub(Φ). In particular,
we will prove hardness whenever Φ is a non-trivial modularity constraint on the number of
edges with respect to some prime or if Φ enforces the presence of a fixed isolated subgraph.

1.2 Related work

Jerrum and Meeks introduced and studied the problem #IndSub(Φ) for the following proper-
ties. In [15] they prove the problem to be #W[1]-hard if Φ is the property of being connected,
which immediately follows from Theorem 4 as #IndSub(Φ) and #IndSub(¬Φ) are equivalent5
and the property of being disconnected is monotone and false for every cycle. In [16] hardness
is established for the property of having an even (or odd) number of edges, which follows from
Theorem 1 as every term in the sum

∑
A∈EΦ

k
(−1)#A will have the same sign. In [14] Jerrum

and Meeks prove the problem to be #W[1]-hard whenever the edge-density of graphs in Φk
grows asymptotically slower than k2 and in [22] Meeks shows that whenever Φ is co-monotone,
i.e., ¬Φ is monotone, and the set of (edge-)minimal elements of Φ has unbounded treewidth,
the problem is hard as well. Those latter results are independent from ours in the sense that
ours do not imply theirs and vice versa. One example of a property whose hardness does not
follow from the results of Jerrum and Meeks is bipartiteness: The edge-densities of both,
the properties of being bipartite and not bipartite grow asymptotically as fast as k2 and
the edge-minimal non-bipartite graphs are odd cycles, hence having treewidth 2. However
hardness for the property of being bipartite follows from the first condition of Theorem 4 as
odd cycles are not bipartite. Moreover, we point out that Meeks’ reduction in [22] uses the
Excluded Grid Theorem and hence does not imply a tight lower bound under ETH. Finally
we remark that due to space constraints some proofs are only sketched or omitted and we
refer the interested reader to the related version of this paper.

2 Preliminaries

First we will introduce some basic notions. Given a finite set S, we write #S for the
cardinality of S. We say that a set K of natural numbers is dense if there exists a constant
c > 0 such that for all but finitely many k ∈ N there exists k′ ∈ K such that k ≤ k′ ≤ c · k.
Given a function a from a (not necessarily finite) set S to rational numbers, the support of a
is the set of elements s ∈ S such that a(s) 6= 0. We write supp(a) for the support of a. Given
a natural number k, we write [k] for the set {0, . . . , k − 1}. Given a finite group Γ of order
ps for some prime p and natural number s, we say that Γ is a p-power group.

5 We just need to substract one from
(

n
k

)
to get the other.
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Graph theory

In this work all graphs are considered to be undirected, simple and to not contain self-loops.
Given a graph G we write V (G) for the vertices and E(G) for the edges of G. We denote the
complete graph on ` vertices as K`. A labeled graph is a graph G with a bijective labeling
` : V (G)→ [#V (G)] of the vertices and we will sloppily identify vertices with their labels.
A subgraph of G is a graph obtained from G by deleting vertices (including incident edges)
and/or edges. Given a subset S ⊆ V (G), the induced subgraph G[S] is the graph with vertices
S and edges E(G) ∩ S2. A homomorphism from a graph H to a graph G is a function
ϕ : V (H) → V (G) that is edge-preserving, i.e. for every edge {u, v} ∈ E(H) it holds that
{ϕ(u), ϕ(v)} ∈ E(G). We write Hom(H,G) for the set of all homomorphisms from H to G.
A homomorphism ϕ is called an embedding if ϕ is injective. We write Emb(H,G) for the
set of all embeddings from H to G. An isomorphism from a graph H to a graph G is a
bijective homomorphism. We say that H and G are isomorphic, denoted by H ∼= G, if such
an isomorphism exists and we denote G as the set of all (isomorphism types of) graphs. An
automorphism of a graph H is an isomorphism from H to H. We write Aut(H) for the set
of all automorphisms of H. An embedding ϕ from H to G is called a strong embedding if
for all vertices u, v ∈ V (H) it holds that {u, v} ∈ E(H)⇔ {ϕ(u), ϕ(v)} ∈ E(G). We write
StrEmb(H,G) for the set of all strong embeddings from H to G. Given graphs H and G, we
write Sub(H,G) for the set of all subgraphs of G that are isomorphic to H and IndSub(H,G)
for the set of all induced subgraphs of G that are isomorphic to H.

I Fact 5. For all graphs H and G it holds that #Emb(H,G) = #Sub(H,G) ·#Aut(H) and
that #StrEmb(H,G) = #IndSub(H,G) ·#Aut(H).

A graph property Φ is a function from graphs to {0, 1} such that Φ(G) = Φ(G′) whenever
G and G′ are isomorphic. We say that Φ holds on G if Φ(G) = 1 and we are not going not
distinguish between Φ and the set of graphs for which Φ holds as this will be clear from
the context. We write Φk for the set of all (isomorphism types of) graphs with k vertices
on which Φ holds. For technical reasons we define EΦ

k to be the set of all edge-subsets A of
the labeled complete graph with k vertices such that Φ holds on the graph with the same
vertices and edges A. A graph property is called monotone if it is closed under the removal
of edges, that is, if G′ is obtained from G by removing edges and Φ holds for G, then Φ holds
for G′ as well. A property is called co-monotone if its complement is monotone6.

Transformation groups and simplical (graph) complexes

Let Ω be a finite set. A simplicial complex over the ground set Ω is a set ∆ of non-empty
subsets of Ω such that whenever a set A is contained in ∆ and A′ is a non-empty subset of A,
then A′ is contained in ∆ as well. An element A of ∆ is called a simplex and the dimension
of A, denoted as dim(A), is defined to be #A− 1. The Euler characteristic χ of a simplical
complex ∆ is defined to be χ(∆) :=

∑
i≥0(−1)i ·#{A ∈ ∆ | dim(A) = i} and the reduced

Euler characteristic of ∆ is defined to be χ̂(∆) := 1− χ(∆).

I Fact 6. χ̂(∆) =
∑
i≥0(−1)i ·#{A ∈ ∆ ∪ {∅} | #A = i}.

Given a simplicial complex ∆ and a finite group Γ that operates on the ground set Ω of
∆, we say that ∆ is a Γ-simplicial complex if the induced action of Γ on subsets of Ω

6 We remark that in some literature, e.g. [22, 25], the notions of monotonicity and co-monotonicity are
reversed.
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preserves ∆. More precisely, if A ∈ ∆ and g ∈ Γ then the set g . A := {g . a | a ∈ A} is
contained in ∆ as well. If this is the case we can define the fixed-point complex ∆Γ as follows.
Let O1, . . . ,Ok be the orbits of Ω with respect to Γ. Then

∆Γ :=
{
S ⊆ {1, . . . , k}

∣∣∣∣∣ S 6= ∅ ∧ ⋃
i∈S
Oi ∈ ∆

}

The following theorem, which is due to Smith [27] (see also [24] and Chapt. 3 in [3]), will
be of crucial importance in Section 4.

I Theorem 7. Let Γ a group of order ps for some prime p and natural number s and let ∆
be a Γ-simplicial complex. Then χ(∆) ≡ χ(∆Γ) mod p and hence χ̂(∆) ≡ χ̂(∆Γ) mod p.

Now let Φ be a monotone graph property. Then EΦ
k \{∅} is a simplicial complex, called the

graph complex of Φk. The ground set is the set of all edges of the complete labeled graph Kk

on k vertices and we emphasize EΦ
k \ {∅} being a simplicial complex for monotone properties

by denoting it as ∆(Φk). If Γ is any permutation group on the set [k] then Γ induces a group
operation on the ground set of Φk, i.e. the edges of the labeled complete graph of size k, by
relabeling the vertices according to the group element. In particular, ∆(Φk) is a Γ-simplicial
complex as Φk is invariant under relabeling of vertices. We write ∆Γ(Φk) for the fixed-point
complex ∆(Φk)Γ under this operation.

Parameterized (counting) complexity

We will follow the definitions of Chapt. 14 of the textbook of Flum and Grohe [12]. A
parameterized counting problem is a function F : {0, 1}∗ → N together with a computable
parameterization κ : {0, 1}∗ → N. (F, κ) is called fixed-parameter tractable (FPT) if there
exists a deterministic algorithm A and a computable function f such that A computes F
in time f(κ(x)) · |x|O(1) for any input x. Given two parameterized counting problems (F, κ)
and (F ′, κ′), a parameterized Turing reduction from (F, κ) to (F ′, κ′) is an FPT algorithm
w.r.t. κ that has oracle access to F ′ and that on input x computes F (x) with the additional
restriction that there exists a computable function g such that for any oracle query y it holds
that κ′(y) ≤ g(κ(x)). We write (F, κ) ≤TP (F ′, κ′).

The parameterized counting problem #Clique aks, given a graphG and a natural number k,
to compute the number of complete subgraphs of size k in G and the problem is parameterized
by k. The class #W[1] contains all problems (F, κ) such that (F, κ) ≤TP #Clique holds.
Given a recursively enumerable class of graphs H the problems #Hom(H), #Emb(H),
#Sub(H), #StrEmb(H) and #IndSub(H) ask, given a graph H ∈ H and an arbitrary
(unlabeled) graph G, to compute #Hom(H,G), #Emb(H,G), #Sub(H,G), #StrEmb(H,G)
and #IndSub(H,G), respectively. All problems are parameterized by |H|. As stated in the
introduction, there are dichotomy results for each of the aforementioned problems [10, 13, 9, 7].
We emphasize on the following, which is crucial for the framework of graph motif parameters.

I Theorem 8 ([10, 13]). The problem #Hom(H) is fixed-parameter tractable if there exists
b ∈ N such that the treewidth7 of every graph in H is bounded by b. Otherwise, the problem
is #W[1]-hard.

7 We remark that the graph parameter of treewidth is not used explicitely in this work. Hence we refer
the reader e.g. to Chapt. 11 in [12].
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In this work we deal with a generalization of #IndSub(H). Let Φ be a computable graph
property. The problem #IndSub(Φ) asks, given a graph G and a number k ∈ N to compute∑
H∈Φk

#IndSub(H,G). The parameter is k.

3 Graph motif parameters

In [8] Curticapean, Dell and Marx generalized the problem #Hom(H) to linear combinations,
called graph motif parameters. To this end, let A be a recursively enumerable set of functions
a : G → Q such that supp(a) is finite. Then the problem #Hom(A) asks, given a ∈ A
and a graph G, to compute

∑
H∈G a(H) ·#Hom(H,G). The parameter is the description

length of a, denoted by |a|. Their main result states that computing a linear combination of
homomorphisms is as hard as computing all terms with non-zero coefficients:

I Theorem 9 ([8]). There exists a deterministic algorithm that, on input a function
a : G → Q with finite support, a graph F ∈ supp(a) and a graph G and given oracle
access to the function G 7→

∑
H∈G a(H) · #Hom(H,G), computes #Hom(F,G) in time

g(|a|) ·#V (G)O(1) and additionally satisfies that the number of vertices of every graph G′
for which the oracle is queried is of size bounded by maxH∈supp(a) #V (H) ·#V (G).

Using this result, Curticapean, Dell and Marx proved that the problem #Hom(A) is
fixed-parameter tractable if there is a constant upper bound on the treewidth of all graphs
that occur in the support of a function a ∈ A, and #W[1]-hard otherwise. After that
they showed that all of the problems #Emb(H), #StrEmb(H), ... are expressible as linear
combinations of homomorphisms, immediately implying the existence of dichotomy results
for those problems. However, establishing a concrete criterion for fixed-parameter tractability
requires to find out which graphs are contained in the support of a function a when the
problem is translated to a linear combination of homomorphisms, and this can be highly
non-trivial.

In what follows, we will establish a concrete criterion for properties Φ such that the
coefficient of Kk is non-zero when the function G 7→

∑
H∈Φk

#IndSub(H,G) is translated to
a linear combination of homomorphisms. This is motivated by the fact that, in this case,
Theorem 9 allows us to compute the number #Hom(Kk, G) which is equal to k! times the
number of cliques of size k in G. As #Clique can not be solved in time f(k) ·#V (G)o(k)

for any computable function f under the Exponential Time Hypothesis [5, 6], we will not
only obtain #W[1]-hardness but also a tight lower bound under the lense of fine-grained
complexity theory.

I Theorem 10 (Theorem 1 restated). Let Φ be a graph property, let k be a non-zero natural
number and let a : G → Q be the function such that for all graphs G the following is true∑

H∈Φk

#IndSub(H,G) =
∑
H

a(H) ·#Hom(H,G) .

Then |k! · a(Kk)| = |
∑
A∈EΦ

k
(−1)#A|.

Proof. Using the principle of inclusion-exclusion we can express the number of strong
embeddings in terms of the number of embeddings (see e.g. Chapt. 5.2.3 in [20]):

#StrEmb(H,G) =
∑
H′⊇H

V (H)=V (H′)

(−1)#E(H′)−#E(H) ·#Emb(H ′, G) , (3)
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where H ′ ranges over all graphs obtained from H by adding edges. Next we collect terms in
(3) that correspond to isomorphic graphs. To this end we let #{H ′ ⊇ H} denote the number
of possibilities to add edges to H such that the resulting graph is isomorphic to H ′. Note
that #{Kk ⊇ H} = 1 if H has k vertices. We obtain

#StrEmb(H,G) =
∑
H′∈G

(−1)#E(H′)−#E(H) ·#{H ′ ⊇ H} ·#Emb(H ′, G) . (4)

Next we translate the number of embeddings to a linear combination of homomorphisms.
This can be done using Möbius inversion8 (see [8] or Chapt. 5.2.3 in [20]):

#Emb(H ′, G) =
∑
ρ≥∅

µ(∅, ρ) ·#Hom(H ′/ρ,G) , (5)

where the sum and the Möbius function µ are over the partition lattice of V (H ′) and H ′/ρ
is obtained from H ′ by contracting every pair of vertices that is contained in the same block
in ρ. We observe that the coefficient of #Hom(Kk, G) in the above sum is µ(∅, ∅) = 1 if H ′
is isomorphic to Kk and zero otherwise as every vertex contraction of a graph with k vertices
that is not the complete graph can not result in the complete graph with k vertices. Hence
the coefficient of #Hom(Kk, G) in Equation (4) is precisely (−1)#E(Kk)−#E(H). Next we use
Fact 5 and obtain that∑

H∈Φk

#IndSub(H,G) =
∑
H∈Φk

#StrEmb(H,G) ·#Aut(H)−1 . (6)

It follows that the coefficient a(Kk) of #Hom(Kk, G) in Equation (6) satisfies

a(Kk) =
∑
H∈Φk

(−1)#E(Kk)−#E(H) ·#Aut(H)−1 . (7)

We now multiply this equation by k!, which we interpret as the number #Symk of elements
of the symmetric group of the k vertices. Taking also the absolute value on both sides allows
us to drop the constant factor (−1)#E(Kk) and we obtain

|k! · a(Kk)| =

∣∣∣∣∣ ∑
H∈Φk

(−1)#E(H) · #Symk

#Aut(H)

∣∣∣∣∣ . (8)

For any graph H in the above sum choose a set A0 of edges of the labeled complete graph Kk

on k vertices such that the corresponding subgraph G(A0) is isomorphic to H. The group
Symk acts on the vertices and thus on the edges of Kk and by the definition of a graph
automorphism, the stabilizer of the set A0 has exactly #Aut(H) elements. On the other hand
the orbit of A0 under Symk is the collection of all sets A such that G(A) ∼= H. By the Orbit
Stabilizer theorem we have #Symk

#Aut(H) = #{A ⊆ E(Kk) | G(A) ∼= H}. Inserting in equation (8)
we obtain |k! · a(Kk)| = |

∑
H∈Φk

∑
A⊆E(Kk)
G(A)∼=H

(−1)#E(H)| = |
∑
A∈EΦ

k
(−1)#A|. J

Theorem 10 implies the following sufficient criterion for hardness of #IndSub(Φ) which we
will use in the remainder of the paper.

8 We omit the formal introduction to Möbius inversion as we will only need that µ(∅, ∅) = 1. We refer
the interested reader to [20], where the concept is introduced and Equation (5) is proved.
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I Corollary 11. Let Φ be a graph property and let K = {k ∈ N |
∑
A∈EΦ

k
(−1)#A 6= 0}. If K

is infinite, then #IndSub(Φ) is #W[1]-hard. If additionally K is dense, #IndSub(Φ) can not
be solved in time f(k) ·#V (G)o(k) for any computable function f , unless ETH fails.

Due to space constraints the proof is deferred to the related version of the paper. However,
let us give the rough idea: By Theorem 9 and Theorem 10 there exists a (tight) reduction
from the problem #Clique(K) of counting cliques of size k where k ∈ K is promised.

As K is infinite we can apply a standard technique using colors and the inclusion-
exclusion principle to reduce #Clique to #Clique(K), the former of which is #W[1]-complete
and, assuming ETH, cannot be solved in time f(k) · no(k) for any computable function f
[5, 6]. This immediately yields #W[1]-hardness of #Clique(K) and hence #IndSub(Φ). If
additionally K is dense, the reduction is tight and the lower bound under ETH transfers as
well.

4 Monotone properties

Recall that monotone graph properties are closed under the removal of edges. In what follows
we assume every monotone graph property to hold on the independent set, i.e., the graph
containing no edges, because otherwise the property would be trivially false. For technical
reasons we say that a property is non-trivial if it is false on Kk for all but finitely many
k ∈ N.9 Due to space constraints we might omit or only sketch proofs and defer the details to
the related version of the paper. We start by refining Theorem 10 for monotone properties.

I Lemma 12. Let Φ be a monotone graph property and let k be a non-zero natural number.
Then it holds that

∑
A∈EΦ

k
(−1)#A = χ̂(∆(Φk)).

I Corollary 13 (Corollary 2 restated). Let Φ be a monotone graph property and let

K = {k ∈ N | χ̂(∆(Φk)) 6= 0} .

If K is infinite, then #IndSub(Φ) is #W[1]-hard. If additionally K is dense, #IndSub(Φ) can
not be solved in time f(k) ·#V (G)o(k) for any computable function f , unless ETH fails.

Proof. Follows immediately from Lemma 12 and Corollary 11. J

The above criterion yields hardness of #IndSub(Φ) for every monotone graph property Φ
whose graph complex is well-understood with respect to the (reduced) Euler characteristic.
The thesis of Jonsson (see Chapt. 10.5 in [17]) provides a large list of graph complexes
including e.g. disconnectivity, colorability and coverability, only to name a few, whose
reduced Euler characteristics are non-zero infinitely often and to which Corollary 13 is hence
applicable. We would also like to point out the work of Chakrabarti, Khot and Shi [4] who
proved the reduced Euler characteristic of a large family of graph complexes to be odd. Their
result will be used to prove the fourth condition of Theorem 4 and reads as follows — we
state it in terms of homomorphisms.

I Lemma 14 ([4]). Let F be a graph and let Φ[F ] be the graph property that holds true
on a graph G if and only if Hom(F,G) = ∅, i.e., there is no homomorphism from F to G.
Furthermore let TF := min{22t − 1 | 22t ≥ #V (F )} and let k ∈ N such that k ≡ 1 mod TF .
Then it holds that χ(Φ[F ]

k ) ≡ 0 mod 2 and hence χ̂(Φ[F ]
k ) ≡ 1 mod 2.

9 This is required to exlude properties like Φ(G) = 0⇔ #V (G) ≡ 1 mod 2 which indeed is monotone as
it is closed under the removal of edges.
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Figure 1 Non-empty unions of orbits on the operation of Z7 on the edge set of the labeled
graph with 7 vertices. If Φ is trivially true then ∆Z7(Φ7) contains all of the above subsets of
orbits. If Φ holds only for bipartite graphs then none of the above subsets is contained in ∆Z7(Φ7).
If Φ is planarity then ∆Z7(Φ7) = {O1,O2,O3}. More exotically, if Φ is the property of not being
5-edge-connected then ∆Z7(Φ7) contains every subset of orbits except for O1 ∪ O2 ∪ O3.

Unfortunately, as the proof of the above lemma shows, it is often quite tedious to argue
about the (reduced) Euler characteristic of the graph complex induced by a more complicated
property Φ and hence proving hardness of #IndSub(Φ). In the remainder of this section
we will therefore demonstrate that Corollary 13 together with Theorem 7 yields a fruitful
topological approach to prove #W[1]-hardness and conditional lower bounds for #IndSub(Φ),
given that Φ is a monotone graph property. We outline the approach in the following lemma.

I Lemma 15. Let Φ be a monotone graph property, let K be an infinite subset of N and let
Γ = {Γk | k ∈ K} be a set of permutation groups such that for every k ∈ K the group Γk
is a pk-power group for some prime pk. If χ̂(∆Γ(Φk)) 6≡ 0 mod pk holds for every k ∈ K
then #IndSub(Φ) is #W[1]-hard. If additionally K is dense, #IndSub(Φ) can not be solved
in time f(k) ·#V (G)o(k) for any computable function f , unless ETH fails.

Proof. Follows immediately from Corollary 13 and Theorem 7. J

Intuitively, Lemma 15 states that instead of analyzing χ̂(∆(Φk)) which might be tedious,
it suffices to prove that the reduced Euler characteristic of the fixed-point complex of ∆(Φk)
with respect to a p-power group is not 0 modulo p. For our purposes it will suffice to use the
groups Zp for prime numbers p, explained as follows. Recall that the ground set of ∆(Φp) is
the set of all edges of the labeled complete graph on p vertices. Now b ∈ Zp is interpreted as
a relabeling x 7→ x+ b of the vertices10, which induces an operation on the edges by mapping
the edge {x, y} to the edge {x+ b, y + b}. We remark that this group was also used in an
intermediate step in [18]. It can easily be verified that this mapping is a group operation.
Furthermore ∆(Φp) is a Zp-simplicial complex with respect to this operation as Φ is invariant
under relabeling of vertices. Hence the fixed-point complex ∆Zp(Φp) is defined. Furthermore
observe that every orbit of the group operation is an Hamilton cycle. We illustrate ∆Z7(Φ7)
for some properties Φ in Figure 1.

Note that, given a prime p > 2, the ground set of ∆Zp(Φp) consists of exactly 1
2 (p− 1)

elements. In particular those are the Hamiltonian cycles H1 = (0, 1, 2, . . . ), H2 = (0, 2, 4, . . . ),
H3 = (0, 3, 6, . . . ), . . . , H 1

2 (p−1) = (0, 1
2 (p − 1), p − 1, . . . ). Equivalently, Hi is the orbit

of the (labeled) edge {0, i} under the operation of Zp for i ∈ {1, . . . , 1
2 (p − 1)} and it can

easily be verified that those are all orbits of the group operation. In what follows, given a
non-empty set P ⊆ {1, . . . , 1

2 (p− 1)}, we write HP for the graph with vertices (labeled with)
{0, . . . , p− 1} and edges

⋃
i∈P Hi.

I Fact 16. Let P be non-empty subset of {1, . . . , 1
2 (p− 1)}. Then P ∈ ∆Zp(Φp)⇔ HP ∈ Φp.

10 Here + is addition modulo p.
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Now we have everything we need to prove our main result. We start with monotone
properties that are false on odd cycles or true on odd antiholes.

I Lemma 17. Let Φ be a non-trivial monotone graph property. If Φ does not hold on
odd cycles or if Φ holds on odd anti-holes then there exists a constant N ∈ N such that
χ̂(∆Zp(Φp)) 6≡ 0 mod p for every prime p > N .

Proof sketch. If Φ does not hold on odd cycles then ∆Zp(Φp) = ∅ and hence we have
that χ̂(∆Zp(Φp)) = 1 − χ(∆Zp(Φp)) = 1 − 0 = 1 6≡ 0 mod p. As Φ is non-trivial there
exists N ∈ N such that Φ(Kk) = 0 for all k > N . Now if Φ holds on odd anti-holes then
∆Zp(Φp) = {P | ∅ ( P ( {1, . . . , 1

2 (p− 1)}} for all p > N since Φ is monotone and HP is an
anti-hole if and only if #P = p−1

2 − 1. Furthermore, Φ does not hold on H{1,..., 12 (p−1)}
∼= Kp

as p > N . Now it can be easily verified that χ̂(∆Zp(Φp)) = (−1) 1
2 (p−1)+1 6≡ 0 mod p. J

We continue with one more exotic property which illustrates the utility of the topological
approach by exploiting the simple structure of ∆Zp(Φp).

I Lemma 18. Let c ∈ N be an arbitrary constant and let Φ be the graph property of being
not (c+ 1)-edge-connected. Then χ̂(∆Zp(Φp)) 6≡ 0 mod p for every prime p > c+ 3.

Proof sketch. We rely on the observation that the graph HP is (c + 1)-edge-connected if
and only if #P > b c2c. Hence ∆Zp(Φp) = {P ⊆ {1, . . . , 1

2 (p− 1) | P 6= ∅ ∧#P ≤ b c2c}. Now
it can be easily verified that χ̂(∆Zp(Φp)) = (−1)b c

2 c ·
( 1

2 (p−1)−1
b c

2 c

)
6≡ 0 mod p. J

Finally, Theorem 4 follows from Lemma 15, 14, 17 and 18. Details are given in the related
version of the paper.

5 Non-monotone properties

In this section, we present #W[1]-hardness results for two non-monotone properties. For the
first one, we generalize [16] where hardness was established for counting induced subgraphs
with an even (or odd) number of edges. It turns out that any non-trivial modularity constraint
with respect to a prime induces #W[1]-hardness. To this end let q be a prime and Q be
a subset of {0, . . . , q − 1}. Then the property Mod[q,Q] holds on a graph H if and only
if (#E(H) mod q) ∈ Q. For the second property, let F be a connected graph. Then the
property Iso[F ] holds on a graph H if and only if H contains an isolated subgraph that is
isomorphic to F . Due to space constraints the proof of the following theorem is deferred to
the related version of the paper.

I Theorem 19. For all primes q, non-trivial subsets Q of {0, . . . , q − 1} and connected
graphs F , the problems #IndSub(Mod[q,Q]) and #IndSub(Iso[F ]) are #W[1]-hard and can
not be solved in time f(k) · no(k) for any computable function f , unless ETH fails.

6 Conclusion and future work

We used the framework of graph motif parameters to provide a sufficient criterion for #W[1]-
hardness of #IndSub(Φ). For monotone properties Φ this amounts to the reduced Euler
characteristic of the associated graph complex to be non-zero infinitely often. In particular,
our results provide a fine-grained reduction from the problem of counting cliques of size k
to counting induced subgraphs of size k with property Φ whenever Φ is monotone and
χ̂(∆(Φk)) 6= 0. Using a topological approach, we established hardness for a large class of
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non-trivial monotone graph properties. The obvious next question, whose answer would
settle the parameterized complexity of #IndSub(Φ) for monotone properties completely, is
whether for every non-trivial monotone property Φ the set of k such that χ̂(∆(Φk)) 6= 0 is
infinite.
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Abstract

In the embedded planar diameter improvement problem (EPDI) we are given a graph G
embedded in the plane and a positive integer d. The goal is to determine whether one can add
edges to the planar embedding of G in such a way that planarity is preserved and in such a way
that the resulting graph has diameter at most d. Using non-constructive techniques derived from
Robertson and Seymour’s graph minor theory, together with the effectivization by self-reduction
technique introduced by Fellows and Langston, one can show that EPDI can be solved in time
f(d) · |V (G)|O(1) for some function f(d). The caveat is that this algorithm is not strongly uniform
in the sense that the function f(d) is not known to be computable. On the other hand, even the
problem of determining whether EPDI can be solved in time f1(d) · |V (G)|f2(d) for computable
functions f1 and f2 has been open for more than two decades [Cohen at. al. Journal of Computer
and System Sciences, 2017]. In this work we settle this later problem by showing that EPDI can
be solved in time f(d) · |V (G)|O(d) for some computable function f . Our techniques can also
be used to show that the embedded k-outerplanar diameter improvement problem (k-
EOPDI), a variant of EPDI where the resulting graph is required to be k-outerplanar instead
of planar, can be solved in time f(d) · |V (G)|O(k) for some computable function f . This shows
that for each fixed k, the problem k-EOPDI is strongly uniformly fixed parameter tractable with
respect to the diameter parameter d.
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1 Introduction

In this work, a plane graph is a pair Gg = (G, g) consisting of a planar graph G together
with a planar embedding g of G 4. In the embedded planar diameter improvement
problem (EPDI), we are given a plane graph Gg and a positive integer d, and the goal is to
determine whether Gg has a plane supergraph Hh of diameter at most d. The set of yes
instances of EPDI is closed under minors. In other words, if Gg has a plane supergraph
of diameter at most d, then any minor of Gg also has such a supergraph. Therefore, using
non-constructive arguments from Robertson and Seymour’s graph minor theory [14, 15] in
conjunction with the fact that planar graphs of constant diameter have constant treewidth,
one can show that for each fixed d, there exists an algorithm Ad which determines in linear
time whether a given plane graph Gg has a plane supergraph of diameter at most d. The
caveat is that the non-constructive techniques mentioned above provide us with no clue about
what the algorithm Ad actually is. This problem can be partially remedied using a technique
called effectivization by self-reduction introduced by Fellows and Langston [10, 8]. Using this
technique one can show that for some function f : N→ N, there exists a single algorithm
A which takes a plane graph Gg and a positive integer d as input, and determines in time
f(d) · |V (G)|O(1) whether Gg has a plane supergraph of diameter at most d. Nevertheless,
the function f : N→ N bounding the influence of the parameter d in the running time of the
algorithm mentioned above is not known to be computable. The problem of determining
whether EPDI admits an algorithm running in time f(d) · |V (G)|O(1) for some computable
function f is a notorious and long-standing open problem in parameterized complexity theory
[8, 9, 5]. Interestingly even the problem of determining whether EPDI can be solved in
time f1(d) · |V (G)|f2(d) for computable functions f1 and f2 has remained open until now
[4]. In this work we settle this latter problem by showing that EPDI can be solved in
time 2dO(d) · |V (G)|O(d). The problem of determining whether EPDI can be solved in time
f(d) · |V (G)|O(1) for some computable function f : N→ N remains widely open.

I Theorem 1. There is an algorithm A that takes as input, a positive integer d, and a plane
graph Gg, and determines in time 2dO(d) · |V (G)|O(d) whether Gg has a plane supergraph Hh

of diameter at most d.

A graph is 1-outerplanar if it can be embedded in the plane in such a way that every
vertex lies in the outer face of the embedding. A graph is k-outerplanar if it can be embedded
in the plane in such a way that after deleting all vertices in the outer face, the remaining
graph is (k − 1)-outerplanar. In [4] Cohen et al. have considered the k-outerplanar
diameter improvement problem (k-OPDI), a variant of the PDI problem in which the
target supergraph is required to be k-outerplanar instead of planar. In particular, they
have shown that the 1-OPDI problem can be solved in polynomial time. The complexity
of the k-OPDI problem with respect to explicit algorithms was left as an open problem for
k ≥ 2. By adapting our algorithm for the EPDI problem we are able to show that when the
input graph is given together with an embedding that must be preserved, then the resulting
problem, the k-EOPDI problem, can be solved in time 2dO(d) · |V (G)|O(k) for each fixed k.
In other words, this problem is strongly uniformly fixed parameter tractable with respect to
the diameter parameter for each fixed value of outerplanarity.

4 See Section 2 for formal definitions.
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I Theorem 2. There is an algorithm A that takes as input, positive integers d, k, and a
plane graph Gg, and determines in time 2dO(d) · |V (G)|O(k) whether Gg has a k-outerplanar
plane supergraph Hh of diameter at most d.

Related Work. In the planar diameter improvement problem (PDI), the input consists of
a planar graph G and a positive integer d and the goal is to determine whether one can
add edges to G in such a way that the resulting graph is planar and has diameter at most
d. Note that the difference between EPDI and PDI is that in the former we are given an
embedding that must be preserved, while in the latter no embedding is given at the input.
Recently, using automata theoretic techniques, the second author was able to provide strongly
uniform FPT and XP algorithms for many graph completion problems where the parameter
to be improved is definable in counting monadic second order logic [6]. In particular, when
specialized to the PDI problem, the techniques in [6] yield a strongly uniform algorithm that
solves PDI in time f(d) · 2O(∆·d) · |V (G)|O(d), where f is a computable function and ∆ is the
maximum degree of the input graph G. Nevertheless, the problem of determining whether
PDI admits a strongly uniform algorithm running in time f1(d) · |V (G)|f2(d) for computable
functions f1 and f2 is still open if no bound is imposed on the degree of the input graph.
We note that currently it is not known either whether PDI is reducible to EPDI or whether
EPDI is reducible to PDI in XP time. Therefore it is not clear if our algorithm for EPDI
can be used to provide a strongly uniform XP algorithm for PDI. It is worth noting that no
hardness results for either PDI or EPDI are known. Indeed, determining whether either of
these problems is NP-hard is also a long-standing open problem.

While the techniques employed in [6] to tackle the PDI problem on graphs of bounded
degree are automata theoretic, the techniques employed in the present work to tackle the
EPDI problem on general graphs are based on dynamic programming. In particular, our main
algorithm carefully exploits the view of separators in plane graphs as nooses - simple closed
curves in the plane that touch the graph only in the vertices (see e.g. [2]). The terminology
noose for such curves comes from the graph minors project of Robertson and Seymour [13].
Our algorithm processes nooses in a way reminiscent of the dynamic programming algorithm
of Bouchitte and Todinca over potential maximal cliques [3]. Although this method has
found numerous applications in the field of graph algorithms [7, 12, 11], this work is the first
which apply these techniques in the context of completion problems.

For each fixed d, let Gd be the subgraph-closure5 of the class of planar graphs of diameter
at most d. Then clearly a graph G is a yes instance of PDI if and only if G ∈ Gd. When
considering the task of constructing strongly uniform algorithms for PDI, two general
approaches come to mind. The first follows by observing that graphs in Gd have treewidth at
most O(d), and that for each fixed d ∈ N, Gd is MSO definable. Therefore, one could try to
devise an algorithm A that takes an integer d as input and constructs an MSO formula ϕd
defining Gd. With such a formula ϕd in hands, one could apply Courcelle’s model checking
theorem to determine whether a given graph G is a yes instance of PDI. The existence of
such an algorithm A is however an open problem. We note that one can easily define by
induction on d an MSO sentence φd which is true on a graph G if and only if G is planar
and has diameter at most d. Nevertheless, it is not clear how to use φd to construct ϕd.
It is worth noting that there is no algorithm that takes an MSO sentence ϕ as input and
constructs a sentence ϕ′ defining the subgraph closure of the models of ϕ. For instance, let

5 Note that the class of planar graphs of diameter at most d is closed under contractions but not under
subgraphs, since removing edges may increase the diameter.
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L = {Ln}n∈N be the family of ladder graphs, where Ln is the ladder with n steps. It is easy
to see that L is MSO definable and every graph in L has treewidth at most 2. Nevertheless,
the subgraph closure of L does not have finite index. Therefore, such subgraph closure is not
MSO definable, since Courcelle’s theorem implies that MSO-definable families of graphs of
bounded treewidth have finite index.

The second approach is based on the fact that for each fixed d ∈ N, the set of graphs
Gd is minor closed. In particular, this implies that the class Gd can be characterized by a
finite setMd of forbidden minors. Therefore, one could try to devise an effective algorithm
that takes an integer d ∈ N as input and gives as output the list of all forbidden minors in
Md. By using the fact that minor-freeness can be tested in time FPT in the size of the
minors, such an algorithm A would solve PDI in time FPT in d. We observe however that
the problem of listing the elements of Md may be much more difficult than the problem
of solving PDI in time FPT in d. It is worth noting that Adler, Kreutzer and Grohe have
shown that if a minor-free graph property P is MSO definable and has constant treewidth,
then one can effectively enumerate the set of forbidden minors for P [1]. Nevertheless, the
problem with this approach is that, as discussed in the previous paragraph, it is not clear
how to construct an MSO sentence ϕd defining Gd.

2 Preliminaries

Graphs. For each n ∈ N we let [n] = {1, ..., n}. For each finite set S we let P(S, 2) =
{{u, v} ⊆ S | u 6= v} be the set of unordered pairs of elements from S. In this work, a graph
is a pair G = (V (G), E(G)) where V (G) is a finite set of vertices and E(G) ⊆ P([n], 2) is a set
of undirected edges. A path of length m in G is a sequence p = v0v1...vm of distinct vertices
where for each i ∈ {0, ...,m−1}, {vi, vi+1} ∈ E(G). We say that v0 and vm are the endpoints
of p. The distance dist(u, v) between vertices u and v is defined as the length of the shortest
path with endpoints u and v. The diameter of G, is defined as d(G) = maxu,v dist(u, v).

Embeddings. A simple arc in R2 is a subset α ⊆ R2 that is a homeomorphic image of the
closed real interval [0, 1]. We let endpts(α) be the endpoints of α, and Int(α) = α\endpts(α)
be the interior of α. We let A be the set of simple arcs in R2. A planar embedding of G is a
map g : V (G) ∪E(G)→ R2 ∪A that assigns a point g(v) ∈ R2 to each vertex v ∈ V (G) and
a simple arc g({u, v}) ∈ A with each edge {u, v} in such a way that the following conditions
are satisfied.
1. For each u, v ∈ V (G), g(u) 6= g(v).
2. For each {u, v} ∈ E(G), {g(u), g(v)} are the endpoints of the simple arc g({u, v}).
3. For each {u, v} ∈ E(G), and each w ∈ V (G) such that w 6= u and w 6= v, g(w) /∈ g({u, v}).
4. For each {u, v}, {u′, v′} ∈ E(G), Int(g({u, v})) ∩ Int(g({u′, v′})) = ∅.

Intuitively, a planar embedding of a graph G is a drawing of G on the plane where each
vertex v is represented by a point and each edge e is represented by a non self-intersecting
curve that connects the points corresponding to the endpoints of e, and no crossings are
allowed. A plane graph is a pair Gg = (G, g) where G is a graph and g is a planar embedding
of G. For technical reasons, in this work we assume that the origin (0, 0) ∈ R2 is distinct
from g(v) for each v ∈ V (G) and does not belong to g(e) for each edge e ∈ E(G).

Plane Completion. Let G and H be graphs. We say that G is a subgraph of H if V (G) ⊆
V (H) and E(G) ⊆ E(H). If Gg and Hh are plane graphs, then we say that Gg is a plane



D. Lokshtanov, M. de O. Oliveira, and S. Saurabh 25:5

Figure 1 Left: a plane graph G of diameter 3. Right: a plane completion of G of diameter 2.

subgraph of Hh if G is a subgraph of H, g|V (G) = h|V (G) and gE(G) = h|E(G)
6. Alternatively,

we say that Hh is a plane completion of Gg (Figure 1). We say that such a completion Hh is
triangulated if each face of Hh has three vertices.

Combinatorial face. Let Gg be a plane graph. We say that a point p ∈ R2 is independent
of Gg if p 6= g(v) for every v ∈ V (G) and p /∈ g(e) for every e ∈ E(G). We say that an
independent point p reaches a point p′ ∈ R2 if there is a simple arc α with endpoints p
and p′ that does not contain any vertex in g(V )\{p, p′} and does not intersect the interior
of any arc in g(E). If p is an independent point then we let F(Gg, p) be the subgraph of
G whose vertex set is V (F(Gg, p)) = {v ∈ V (G) | p reaches g(v)} and whose edge set is
E(F(Gg, p)) = {e ∈ E(G) | p reaches each point in g(e)}.

We let b(p) be a boolean value that is 0 if the origin (0, 0) is reachable from p, and 1
otherwise. We say that a pair F = (X, b), where X is a subgraph of G and b ∈ {0, 1}, is
a combinatorial face if there exists a p ∈ R2 such that X = F(Gg, p) and b = b(p). For
instance, if Gg is a plane graph where G is a tree, then the unique combinatorial face of Gg
is the pair F = (G, 1). On the other hand, if G is a cycle, then Gg has two faces: F1 = (G, 0)
and F2 = (G, 1). We write F (Gg) to denote the set of all faces of Gg. We note that F (Gg)
has O(|V (G)|) faces. If F = (X, b) is a combinatorial face, then we define V (F ) = V (X) and
E(F ) = E(X).

We say that two embedded versions Gg and Gg′ of a graph G are equivalent if F (Gg) =
F (Gg′). We write Gg ≡ Gg′ to denote that Gg and Gg′ are equivalent.

3 Nooses

I Definition 3. Let Gg be a plane graph. A Gg-noose is a subset η ⊆ R2 homeomorphic to
the unit circle S1 such that η ∩ Int(g(uv)) = ∅ for every edge uv ∈ E(G).

We note that if η is a Gg-noose, the intersection η ∩ g(V (G)) may be non-empty. We let
V (η) = {v ∈ V (G) | g(v) ∈ η} be the set of vertices of G whose image lies in the noose η.
The size of η is defined as |η| = |V (η)|.

Figure 2 Left: a plane graph G and one of its nooses η. Right: the graph Ggηη that lies in the
interior of η.

6 Where g|V (G) and g|E(G) denote the restrictions of g to V (G) and to E(G) respectively.
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Combinatorial cycle. Let Σ be a finite set. We let Σk be the set of sequences of length k
over Σ. If a0a1...ak−1 is a sequence in Σk, then we let

[a0a1...ak−1] = {aj0aj1 ...ajk−1 | ∃l ∈ {0, ..., k − 1}∀i ∈ {0, ..., k − 1}, ji = i+ l mod k}.

be the set of all cyclic shifts of the string a0a1...ak−1. We say that the set [a0a1...ak−1] is a
combinatorial cycle over Σ.

Noose Type. Let Gg be a plane graph and Σ(G) = V (G)∪F (G). A Gg-noose type is a cycle
τ = [v0F0v1F1...vr−1Fr−1] over Σ(G) where {v0, ..., vr−1} ⊆ V (G), {F0, ..., Fr−1} ⊆ F (Gg),
and {vi, vi+1 mod r} ⊆ V (Fi) for each i ∈ {0, 1, ..., r − 1}. We say that a Gg noose η is
compatible with τ if there exist simple arcs `0, ..., `r−1 satisfying the following properties.
1. η =

⋃
i∈{0,...,r−1} `i.

2. For each i ∈ {0, ..., r − 1}, endpts(`i) = {g(vi), g(vi+1 mod r)}.
3. For each i ∈ {0, ..., r − 1}, `i ∩ `i+1 mod r = vi+1 mod r.

We say that two Gg-nooses η1 and η2 are equivalent if there exists a Gg-noose type τ
such that both η1 and η2 are compatible with τ . We note that uncountably many Gg-nooses
may be compatible with a given Gg-noose type τ .

Figure 3 The type of the noose type η is the cycle [v1F2v3F1v6F1v4F3]. Note that the segment
of η between v1 and v3 lies in the area delimited by the face F2, the segment between v3 and v6 lies
in the area delimited by face F1 and so on.

Let γ be a subset of R2 homeomorphic to the unit circle S1. We say that a point
p ∈ R2 belongs to the closed interior of γ if α ∩ γ 6= ∅ for every simple arc α with
endpts(α) = {(0, 0), p}. We let γ̂ be the set of points in the closed interior of γ. If Gg = (G, g)
is a plane graph and η is a Gg-noose, then we let Ggηη = (Gη, gη) be the plane graph where
1. V (Gη) = {v ∈ V (G) | g(v) ∈ η̂},
2. E(Gη) = {uv ∈ E(G) | g(uv) ⊂ η̂},
3. gη : V (Gη) ∪ E(Gη)→ R2 ∪ A with gη|V (Gη) = g|V (Gη) and gη|E(Gη) = g|E(Gη).

Intuitively, the graph Ggηη is the plane subgraph of Gg that lies in the closed interior of η.

I Observation 1. Let Gg be a plane graph and η1 and η2 be equivalent Gg-nooses. Then
G
gη1
η1 = G

gη2
η2 .

I Definition 4. Let Gg be a plane graph and τ be a Gg-noose type. We say that a plane
completion Hh of Ggτ is τ -respecting if there is a Gg-noose η of type τ which is also a
Hh-noose.

We note that in Definition 4, although the Gg-noose type of η is τ , the Hh-noose type of
η is not necessarily τ since Hh may have more faces than Gg.



D. Lokshtanov, M. de O. Oliveira, and S. Saurabh 25:7

4 Representative Sets

Let Gg be a plane graph and η be a Gg-noose. We say that a plane completion Hh of Gg is
η-respecting if η is also an Hh-noose. We say that a plane graph Xx is a (Gg, η)-completion
if the following conditions are satisfied.
1. η is a Xx-noose.
2. Xx = X

xη
η .

3. Xx is a plane completion of Ggηη .

Intuitively, a (Gh, η)-completion is a plane completion Xx of Ghηη where all vertices and
edges are drawn inside η.

I Proposition 1. If Hh is an η-respecting plane completion of Gg, then H
gη
η is a (Gg, η)-

completion.

If Gg is a plane graph and Hh is a plane subgraph of Gg then we let Gg −Hh be the
plane graph Y y where V (Y ) = V (G), E(Y ) = E(G)\E(H) and y = g|V (Y ). In other words,
Gg−Hh is the graph obtained by deleting from G the edges which are shared with H. On the
other hand, let Gg and Hh be plane graphs such that V (H) ⊆ V (G), Int(h(e)) ∩ g(e′) = ∅
for every e ∈ E(H)\E(G) and every e′ ∈ E(G), and such that h(e) = g(e) for every
e ∈ E(G) ∩ E(H). We let Gg +Hh be the plane graph Y y with vertex set V (Y ) = V (G),
edge set E(Y ) = E(G)∪E(H), and embedding y such that y|V (G) = g|V (G), y|E(G) = g|E(G)
and y|E(H)\E(G) = h|E(H)\E(G). In other words, Gg +Hh is the graph obtained by adding
all edges in E(H)\E(G) to G and by drawing these edges in the plane according to h.

We say that Hh is a η-respecting diameter-d plane completion of Gg if Hh is a η-respecting
plane completion of Gg of diameter at most d.

I Definition 5. Let Gg be a plane graph and η be a Gg-noose. Let A and B be sets
of (Gg, η)-completions. We say that A represents B if for every diameter-d η-respecting
plane completion Hh of Gg, such that Hhη

η ∈ B, there exists some Xx ∈ A such that
(Hh −Hhη

η ) +Xx is also a diameter-d plane completion of Gg.

Let Gg be a plane graph and η be a Gg-noose. We let V (η) = {v ∈ V (G) | g(v) ∈ η} be
the set of vertices of G whose image under g lies on η, and V̂ (η) be the set of vertices of G
that lie in the closed interior of η.

Let Xx be a (Gg, η)-completion. The truncated distance between any two vertices
v, v′ of V̂ (η), denoted by d(Xx, v, v′) is defined as the distance between v and v′ in Xx if
this distance is at most d, and ∞ otherwise. We let D(Xx) = [d(Xx, v, v′)]v,v′∈V (η), be
the matrix of truncated distances between any two vertices in V (η). For any vertex v in
V̂ (η), we let D(Xx, v) = [d(Xx, v, v′)]v′∈V (η) be the vector of distances between v and the
vertices whose image lie in the noose η. We say that two vertices u and u′ in V̂ (η) are
unresolved if their distance in Xx is greater than d. For each pair of unresolved vertices we
let D(Xx, u, u′) = (D(Xx, u), D(Xx, u′)) be the pair of distance vectors from u to V (η) and
from u′ to V (η) respectively. We let

D(Xx) = {D(Xx, u, u′) | (u, u′) is an unresolved pair}.

The signature of Xx is defined as follows.

S(Xx) = (D(Xx),D(Xx)). (1)

I Proposition 2. Let |V (η)| ≤ 8d. Then there exist at most 2dO(d) distinct signatures.
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I Lemma 6. Let Hh be a plane completion of Gg of diameter at most d and let Xx be a
(Gg, η)-completion such that S(Hhη

η , η) = S(Xx, η). Then if Hg has diameter at most d,
(Hh −Hhη

η ) +Xx has diameter at most d.

I Lemma 7. Let Gg be a plane graph, η be a Gg-noose and B be a set of (Gg, τ)-completions.
Then one can construct in time 2dO(d) · |B| a set Trunc(B) of (Gg, h)-completions such that
|Trunc(B)| ≤ dO(d) and Trunc(B) represents B.

Proof. Let B be a set of (Gg, η) completions. For each signature S, let B(S) be the set of all
graphs Hh in B with S(Hh, η) = S. Finally, let Trunc(B) be the set obtained by selecting a
unique graph Hh

S from set B(S) whenever B(S) is non-empty. Then by Lemma 6, Trunc(B)
represents B. J

5 Algorithm for Embedded Planar Diameter Improvement

In this section we will devise an algorithm that takes a plane graph Gg and a positive integer
d as input and determines in time |V (G)|O(d) whether Gg has a diameter-d plane completion
Hh. In the reminder of this section we assume that the input plane graph Gg and the input
positive integer d are fixed.

I Definition 8. Let η be a Gg-noose . We define the following set.

Fη = {Hhη
η | Hh is a diameter-d plane completion of Gg}.

Intuitively, Fη is the set of all plane completions of the graph Ggηη that can be extended
to some diameter-d plane completion of the graph Gg. For each Gg-noose η we will define a
family F̃η ⊆ Fη of (Gg, η)-completions such that F̃η represents Fη and |F̃η| ≤ 2dO(d) .

We will define a partial order on nooses as follows. First, for each noose η, we consider
the following triple.

φ(η) = [|V (Ggηη )|, |E(Ggηη )|,−|η|].

We set η < η′ if and only if φ(η) < φ(η′). In other words, a noose η is smaller than a noose
η′ if the closed interior of η has less vertices than the closed interior of η′, or if these interiors
have the same number of vertices, but the first has less edges, or if both interiors have the
same number of edges and vertices and the first noose has more vertices than the latter nose.
Note that there is an inversion in the third coordinate, since the larger the noose-size, the
lesser is the order.

We will compute F̃η under the assumption that F̃η′ has been computed for every η′ such
that φ(η′) < φ(η). There are three cases to be considered. In all cases the size of the involved
nooses will be at most 8d. In the first case, assuming that the size of η is at most 8d, we will
show how to compute F̃η under the assumption that F̃η′ has been computed for every noose
η′ whose closed interior has fewer edges than the one of η. The second case concerns nooses
of size strictly less than 8d. In this case, we will show how to compute F̃η assuming that we
have computed F̃η′ for every noose η′ of size |η|+ 1 whose closed interior is identical to the
one of η. Note that due to the negative sign in the definition of φ(η), if two nooses η and η′
have identical closed interior and |η′| > |η|, then φ(η′) < φ(η). Finally, the most important
case is the third, in which nooses have size exactly 8d. In this case we show how to compute
F̃η assuming we have computed F̃η′ for every noose of size 8d whose closed interior is strictly
contained in the closed interior of η. We note that we only need to consider one noose ητ for
each noose-type τ . Therefore, the number of nooses to be considered will be upper bounded
by nO(d).
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Case One. Let Gg be a plane graph and η be a Gg-noose with |η| < 8d. We say that an
edge uv ∈ E(G) is parallel to η if there exists a simple arc ` ∈ A such that the following
conditions are satisfied.
1. ` ⊆ η.
2. endpts(`) = {g(u), g(v)}.
3. Let α = ` ∪ g(uv) and let α̂ be the closed interior of α.

a. α̂ ∩ g(V (G)) = {g(u), g(v)}.
b. α̂ ∩ g(u′v′) ⊆ {g(u), g(v)} for each u′v′ ∈ E(G).

In other words, uv is parallel to η if there is a simple arc ` ⊂ η with endpoints {g(u), g(v)}
such that the closed interior of the curve ` ∪ g(uv) only intersects the drawing of G in the
points of g(u, v) (Figure 4).

We say that an edge uv ∈ E(G) is internally (resp. externally) parallel to η if uv is
parallel to η and g(uv) ⊂ η̂ (resp. g(uv) ∩ η̂ = {g(u), g(v)}). We note that if an edge uv is
parallel to η, then uv is either internally or externally parallel to η. Let Gg be a plane graph
and uv ∈ E(G). We let Gg − uv be the plane graph which is obtained by deleting the edge
uv from E(G) and by restricting the mapping g to the remaining edges.

I Proposition 3. Let η be a Gg-noose, and let uv be an edge in E(G) such that uv is
internally parallel to η. Then there exists a Gg-noose η′ such that V (η) = V (η′), uv is
externally parallel to η′ and Ggη′η′ = G

gη
η − uv. (See Figure 4).

Figure 4 The edge uv is internally parallel to η and externally parallel to η′. Note that the graph
G
gη′

η′ is equal to the graph Ggηη minus the edge uv. Intuitively, the noose η′ is obtained from η by
deleting the arc ` and by gluing the arc `′ in its place.

I Lemma 9. Let uv be an edge in E(G), and let η be a Gg-noose such that uv is internally
parallel to η. Let η′ be a Gg-noose such that V (η) = V (η′), Ggη′η′ = G

gη
η − uv and uv is

externally parallel to η′. Note that such a noose η′ exists by Proposition 3. Suppose that
Xx ∈ Fη. Then there exists Y y ∈ Fη′ such that Y y = Xx − uv.

Let Y y be a (Gg, η)-completion and uv be an edge in E(G)\E(Y ) such that u, v ∈ V (η).
We let Y y+uv be the plane graph Xx where V (X) = V (Y ), E(X) = E(Y ), x|V (G)∪E(G) = y

and x(uv) = g(uv).

I Lemma 10. Let uv be an edge in E(G), and let η and η′ be Gg-nooses such that V (η) =
V (η′) and Ggη = Ggη′ + uv. Assume that F̃η′ represents Fη′ . Then F̃η = F̃η′ + uv represents
Fη.

Case Two. Let k < 8d and let η be a Gg-noose of type τ = [v0F0v1F1...vk−1Fk−1]. A
trivial extension of η is a noose Gg-noose η′ of type

τ = [v0F0v1F1...vjFjuFjvj+1...vk−1Fk−1]
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Figure 5 The nooses η′ and η′′ are trivial extensions of η. The red dashed region indicates where
a new vertex was added. Note that Ggη = Gg

η′ = Gg
η′′ .

for some j ∈ {0, ..., k − 1} and some u which belongs to face Fj and to the closed interior of
η. Note that if η′ is a trivial extension of η, then η and η′ have identical closed interiors. In
Figure 5 we depict two trivial extensions η′ and η′′ of a noose η.

We say that a noose η is extensible if |V (η)| < 8d and if η has at least one trivial extension.
We let Ext(η) be the set of (equivalence classes of) trivial extensions of η. It is immediate that
for each extensible noose η, Fη =

⋃
η′∈Ext(η) Fη′ . Based on this equality, for each extensible

noose η, we define the set F̂η =
⋃
η′∈Ext(η) F̃η′ .

I Lemma 11. Let η be an extensible noose. Suppose that F̃η′ represents Fη′ for every
η′ ∈ Ext(η). Then F̂η represents Fη.

Note that the number of extensions of a noose η may be linear in |V (G)|. Therefore, the
number of plane graphs in F̂η may be linear in |V (G)|. To decrease the size of this family,
we apply the Trunc operator introduced in Section 4.

I Lemma 12. Let η be an extensible noose and let F̃η = Trunc(F̂η). Then F̃η represents
Fη.

Case Three. In this section we will deal with the case in which |η| = 8d. Let Gg be
a plane graph. A face-vertex sequence is a sequence X = F1v1F2...vr−1Fr where r ≥ 1,
{v1, ..., vr−1} ⊆ V (G), {F1, ..., Fr} ⊆ F (G), and for each i ∈ {1, ..., r − 2}, vi and vi+1 are
in Fi. We note that any noose type τ = [v0F0v1...vmFm] where m ≥ 1 can be written as
τ = [v0XvrY ] where X = F1v1F2...vr−1Fr−1 and Y = Frvr+1Fr+1...vmFm are face-vertex
sequences.

The reverse of a face-vertex sequence X = F1v1F2...vr−1Fr is the face-vertex sequence
XR = Frvr−1...F2v1F1. Let τ1 and τ2 be noose types. We say that τ1 and τ2 are summable
if there is a unique maximal7 face-vertex sequence X = X(τ1, τ2) with the property that
there exist vertices v, v′ and face-vertex sequences Y and Z such that τ1 = [vY v′X] and
τ2 = [v′ZvXR]. If this is the case, the sum of τ1 with τ2 is defined as τ1 ⊕ τ2 = [vY v′Z]. We
let V (X(τ1, τ2)) denote the vertices which lie in the face vertex sequence X(τ1, τ2).

We note that a noose η has type τ1 ⊕ τ2 if and only if there exist vertices v, v′ and simple
arcs `1, `′1, `2, `′2 with endpoints {v, v′} satisfying the following properties.
1. `1 ∩ `′1 = `2 ∩ `′2 = `1 ∩ `2 = {v, v′}.
2. g(V (X(τ1, τ2))) ⊆ `′1 ∩ `′2.
3. η = `1 ∪ `2.
4. η1 = `1 ∪ `′1 is a noose of type τ1.
5. η2 = `2 ∪ `′2 is a noose of type τ2.

Intuitively, η is obtained from η1 and η2 by the following process. First, we delete the
interior of `′1 from η1 to obtain the segment `1, and we delete the interior of `′2 from η2 to

7 Maximal with respect to length.
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obtain the segment `2. Subsequently, we glue `1 with `2 along their common endpoints in
order to obtain the noose η. We note that if η = η1 ⊕ η2 then Ggηη = G

gη1
η1 ∪G

gη1
η2 .

Let η be a Gg-noose with |η| = 8d and let Hh be a triangulated η-respecting diameter-d
plane completion ofGg. Let V1∪̇V2∪̇V3∪̇V4 be a partition of V (η) where for each i ∈ {1, 2, 3, 4},
Vi has d consecutive vertices. Let V̂1∪̇V̂2∪̇V̂3∪̇V̂4 be a partition of the vertex set of Hhη

η

where for each v ∈ V (Hhη
η ),

v ∈ V̂i ⇔
[
dist(v, Vi) < min

j<i
dist(v, Vj) ∧ dist(v, Vi) ≤ min

j>i
dist(v, Vj)

]
.

Intuitively, the set of vertices incident with the noose η is partitioned into four consecutive
sections of size d: north (V1), east (V2), south (V3) and west (V4). Subsequently, each vertex
v ∈ V (Ggη) is classified as being north (V̂1), east (V̂2), south (V̂3) or west (V̂4) according to
whether v is closer to a northern, eastern, southern or western vertex from the noose. In the
case in which a vertex v is as close to Vi as it is to Vj , for some i 6= j, ties are broken by
considering that north is smaller than east, which is smaller than south, which is smaller than
west. We note that the way in which we have decided to break ties is completely arbitrary.

I Lemma 13. There is an edge uv ∈ E(Hhη
η ) such that either u ∈ V̂1 and v ∈ V̂3, or u ∈ V̂2

and v ∈ V̂4.

I Lemma 14. At least one of the following statements must be satisfied.
1. There is a path of length at most 2d+ 1 between a vertex in V1 to a vertex in V3.
2. There is a path of length at most 2d+ 1 between a vertex in v2 and a vertex in v4.

Figure 6 Left: A noose η with 8d vertices, and the sets Vi and V̂i. Either there is an edge from a
maximal element of V̂1 to a maximal element of V̂3, or an edge between a maximal element of V̂2

and a maximal element of V̂4. Middle: A path from V1 to V3 is depicted. Right: the path from V1 to
V3 can be used to show that η = η1 ⊕ η2 for nooses η1 and η2 where can be split into nooses η1 ⊕ η2.

I Lemma 15. Let Hh be a η-respecting diameter-d plane triangulated completion of Gg.
Then there exist Gg-nooses η1 and η2 satisfying the following properties.
1. |V (η1)| ≤ 8d and |V (η2)| ≤ 8d.
2. η = η1 ⊕ η2.
3. Hh is both η1-respecting and η2-respecting.
4. Hhη

η = H
hη1
η1 ∪H

hη2
η2 .

Let η, η1 and η2 be Gg nooses such that η = η1 ⊕ η2. Then we define the following set:
Fη1 ⊕ Fη2 = {Xx ∪ Y y | Xx ∈ Fη1 , Y

y ∈ Fη2}. Then, Lemma 15 implies that whenever
|η| = 8d, Fη =

⋃
η=η1⊕η2

Fη1 ⊕Fη2 .
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I Lemma 16. Let η be a Gg-noose with |η| = 8d, and assume that for every two Gg-nooses
η1 and η2 such that η = η1 ⊕ η2 we have that F̃η1 represents Fη1 and F̃η2 represents Fη2 .
Then Fη is represented by the following set.

F̃η = Trunc

( ⋃
η=η1⊕η2

F̃η1 ⊕ F̃η2

)
= Trunc

( ⋃
η=η1⊕η2

{Xx ∪ Y y | Xx ∈ F̃η1 , Y
y ∈ F̃η2}

)
(2)

Algorithm. Now we summarize our algorithm for determining whether a given plane graph
Gg admits a plane completion of diameter at most d. We assume that the graph has at
least d vertices, since otherwise the graph has trivially a completion of diameter at most
d. As a first step we enumerate all combinatorial faces of Gg, constructing in this way the
set F (Gg). We note that there exists at most O(|V (G)|) such faces, and the set F (Gg) can
clearly be constructed in time |V (G)|O(1). As a second step, we enumerate all noose types
containing at most 8d vertices. In other words, we enumerate all cycles τ = [v0F1v1...vr−1Fr]
where r − 1 ≤ 8d, and verify if τ is a valid noose type. Since there are at most O(|V (G)|)
combinatorial faces, there are at most |V (G)|O(d) possible noose types with at most 8d
vertices. Let T be the set of all such noose types. Now, for each noose type τ ∈ T , we select
an arbitrary noose ητ of type τ . We say that ητ is a representative for τ . Let N = {ητ}τ∈T
be the set of all such nooses.

For each noose η ∈ N , we will compute a set F̃η containing at most 2dO(d) triangulated
plane completions of the graph Ggηη . In particular the set F̃η represents the set Fη. The sets
F̃η are computed by dynamic programming.

In the base case, let N 0 ⊆ N be the minimal elements of N with respect to the noose
ordering defined in the beginning of Section 5. For each such minimal noose η0, we have
that |V (η0)| = 3, and the graph Ggηη has no edges. Therefore the set F̃η can be constructed
in constant time in this case.

Now assume that we are dealing with a non-minimal noose η ∈ N and that F̃η′ has been
constructed for every η′ < η. We will show how to construct F̃η. There are three cases to be
considered.
1. If there is some edge uv ∈ E(G) which is externally parallel to η, then we consider a

noose η′ such that Ggη′η′ = G
gη
η − uv. Then we set F̃η = F̃η′ + uv.

2. If η is trivially extensible, then we let F̃η = Trunc
(⋃

η′∈Ext(η) F̃(η′)
)
.

3. If |η| = 8d, then we let F̃η = Trunc
(⋃

η=η1⊕η2
F̃η1 ⊕ F̃η2

)
Now let η be a maximal noose in N . Then we have that |η| = 3 and that the graph

G
gη
η = Gg. Therefore, we have that Gg admits a diameter-d plane completion if and only if

the set F̃η is non-empty. Additionally, if this is the case, then any graph in F̃η is a diameter-d
plane completion of Gg.

Note that in any of the three cases above the time necessary to construct the set F̃η from
previously computed F̃η′ is at most 2dO(d) · |V (G)|O(d), since there are at most |V (G)|O(d)

nooses in N and each F̃η′ has at most 2dO(d) elements. This implies that the computation of
F̃η for every η ∈ N also takes time at most 2dO(d) · |V (G)|O(d), as stated in Theorem 1.

k-Outerplanar Plane Diameter Improvement. The algorithm for solving the embedded
k-outerplanar diameter improvement problem is almost identical to the one to solve the
embedded planar diameter improvement problem. The only difference is that, since the input
graph is k-outerplanar, we only need to consider nooses of size at most 8k, instead of 8d as
in the previous algorithm.
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In particular, the proof of Lemma 14 may be adapted in such a way that if we split the
set V (η) into sets V1, V2, V3, V4 as done previously, then there is either a path of length at
most 2k between some vertex in V1 and some vertex in V3, or a path of length at most 2k
between some vertex in V3 and some vertex in V4. As a consequence, the value 8d in Lemma
15 may be replaced with 8k when considering k-outerplanar graphs. With these adaptations
our algorithm for the embedded k-outerplanar diameter improvement problem is guaranteed
to run in time 2dO(d) · |V (G)|O(k) as stated in Theorem 2.
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1 Introduction

The Parameterized Algorithms and Computational Experiments Challenge (PACE) was
conceived in Fall 2015 to deepen the relationship between parameterized algorithms and
practice. It aims to:
1. Bridge the divide between the theory of algorithm design and analysis, and the practice

of algorithm engineering.
2. Inspire new theoretical developments.
3. Investigate in how far theoretical algorithms from parameterized complexity and related

fields are competitive in practice.
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4. Produce universally accessible libraries of implementations and repositories of benchmark
instances.

5. Encourage the dissemination of these findings in scientific papers.
The first iteration of PACE was held at IPEC 2016 [13]. Since then, PACE has been mentioned
as an inspiration in many papers [1, 3, 21, 22, 25, 31, 33, 41, 42]. Hisao Tamaki’s companion
theory paper to his winning implementations of PACE 2017 [14] won the best paper award
at ESA 2017 [40]. Very recent works acknowledging PACE or inspired by the challenge
include the following papers [5, 7, 32, 20, 4, 17]. At this year’s ESA, it was shown that
parallelized dynamic programming (DP) on tree decompositions is a competitive approach to
SAT solving [23]. According to the paper, this was made possible by the excellent programs
developed for the treewidth tracks of PACE 2016 and 2017. At the same conference, Bannach
and Brendt provided an efficient and simple interface to DP on tree decompositions [2].

In this article, we report on the third iteration of PACE. The PACE 2018 challenge was
announced on November 14, 2017. The final version of the submissions was due on May 12,
2018. We informed the participants of the result on May 14, and announced them to the
public on August 22nd, during the award ceremony at the International Symposium on
Parameterized and Exact Computation (IPEC 2018) in Helsinki.

2 The Steiner Tree Problem: Theory and Practice

There are many different variants of the Steiner Tree problem. They all involve the task to
interconnect objects called terminals by using minimum-length wires. Here, we focus on the
main variant in graphs. For a subset of edges F of an undirected graph, let V (F ) denote the
set of vertices that are endpoints of those edges. A formal definition of the Steiner Tree
problem can be stated as follows.
Input: An undirected graph G with a non-negative weight function on its edges

w : E(G)→ R+, and a set of terminals T ⊆ V (G).
Output: A subset of edges F ⊆ E(G) minimizing

∑
e∈F w(e) such that:

T ⊆ V (F ) holds and (V (F ), F ) is a connected graph.
We will interchangeably regard F and (V (F ), F ) as the solution. In words, given an edge-
weighted graph and a subset of its vertices (the terminals) the task is to find a minimum-weight
subgraph that spans all terminals. As the weights are non-negative, any edge of a cycle in a
feasible solution can be removed to obtain a solution that is still feasible but has a smaller
or equal total weight. Hence, there is always a tree among the optimum solutions, which
explains the second word, Tree, in the problem name. The first word, Steiner, refers to the
19th-century geometer Jakob Steiner.

We chose Steiner Tree to be the problem of PACE 2018 since it has a wide spectrum
of real-life applications, including the design of VLSI, optical or wireless communication
systems, and transportation networks [30]. Furthermore, as a result of the 11th DIMACS
implementation challenge, there are established benchmarks for Steiner Tree and its
variants. Finally, as we will see in the next section, this problem has interesting FPT
algorithms.

2.1 Parameterized algorithms
In what follows, we denote the number of edges of an input graph G by n, its number of
edges by m, its number of terminals by t, and its treewidth by w. Steiner vertices are the
non-terminal vertices touched by a solution F ⊆ E(G), and we denote their number by s,
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that is, we have s = |V (F ) \ T |. As we will see, there are FPT algorithms for Steiner
Tree with t as a parameter and with w as a parameter, that is, algorithms running in time
f(t)nO(1) and g(w)nO(1) for some computable functions f and g.

The Dreyfus-Wagner algorithm

There is a classical algorithm from the 70s designed by Dreyfus and Wagner [16] (henceforth
DW) with running time O(3tn + 2tn2 + n(n log n + m)). This was later improved to
O(3tn + 2t(n log n + m)) by Erickson, Monma, and Veinott [19] (henceforth EMV). It works
by dynamic programming on pairs of disjoint subsets of the set of terminals T . To keep
it simple, in a solution (V (F ), F ), there is a vertex with degree at least 3 whose removal
would disconnect two disjoint sets of terminals T1, T2 ⊂ T . One can store a lightest way of
connecting T1 and T2 for all the pairs T1, T2 in a bottom-up manner. The number of pairs of
disjoint sets in a universe of t elements is 3t, which explains part of the running time of DM
and EMV.

One can wonder if the exponential basis of 3 can be decreased. There has been quite a bit
of work done in that direction, leading to a series of improvements going from 3 to 2. However,
no submission to this year’s PACE challenge have made use of these improvements, for good
reason: They tend to come with a nasty blow-up in the polynomial factors. For instance,
there are O(2.5tn15) and O(2.1tn58) time algorithms [24]. If the weights are bounded by
some constant (and in the variant where the vertices, not the edges, are weighted), there is
an algorithm with running time roughly O(2tn2 + nm), based on the so-called fast subset
convolution [6].

Treewidth-based algorithms

Given a tree-decomposition (T , {Vu}u∈V (T )) of width w of the input graph G (with T , a
rooted tree and {Vu}, a family of subsets of V (G) indexed by the nodes of T ), one can
solve Steiner Tree in time O∗(ww) by bottom-up dynamic programming on the nodes
of T . Indeed, once the subtree of T at u ∈ V (T ) is processed, the information to remember,
besides the invested budget, is the subset of vertices of Vu touched by a partial solution and
how these vertices are connected in the partial solution. This information can be represented
by a partition of a subset of Vu. The number of such objects is bounded by O(ww) since
|Vu| 6 w + 1, hence the size of the DP table and the running time.

For some time it was an open question if Steiner Tree and similar problems with a
connectivity constraint can be solved in time 2O(w)nO(1) instead of 2O(w log w)nO(1). This was
finally resolved in 2011 with the Cut&Count technique of Cygan et al. [12]. In a nutshell, the
Cut&Count technique starts by addressing the parity version of the problem: how many sets
of ` connected edges span T , modulo 2? For this, one counts the number p of pairs (D, C)
where D is a set of at most ` edges spanning T (and D is not required to be connected) and
C is a cut such that every connected component of D is fully contained in one side of C. If
we restrict a designated terminal to always be on the left side of C, the number of possible C
for a given D is 2cc(D)−1, where cc(D) is the number of connected components of D. This
number is 1 if D is connected and even otherwise. So, the parity of p is the answer to our
question. Since computing p does not exhibit a (global) connectivity constraint, it can be
done in time 2O(w)nO(1) by standard dynamic programming. Finally, one can distinguish the
case zero solutions from the case non-zero even number of solutions by using the Isolation
Lemma. This lemma implies that by giving uniformly random integer weights between 1 and
100`m to edges, there will be, with high probability, exactly one solution of minimum total
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weight (provided, of course, that there was a solution to begin with). For this total weight,
we will therefore find an odd number of solutions, and may confidently report it.

One might then ask for a deterministic 2O(w)nO(1) time algorithm, which could handle
weighted instances. The rank-based approach of Bodlaender et al. [8] does exactly that. The
main idea is that when performing the standard O∗(ww) DP, one does not need to keep
every partition of a bag. Instead, one can prune the partitions in the following way. If S is
the set of partitions of a bag achievable by partial solutions of a certain cost, then one can
safely restrict attention to a subset S ′ ⊆ S, such that: if there is a Π1 ∈ S compatible with
a partition Π∗ generated by a partial solution in the rest of the graph, then there should
be at least one Π2 ∈ S ′ also compatible with Π∗. By compatible, we mean that the two
partitions would fully connect the common subset of the bag touched by the partial solutions.
If one represents compatibility by a square matrix in F2 whose rows and columns are indexed
by the partitions (with a 1 in the entries corresponding to compatible partitions, and a
0 otherwise), then it can be observed that any single row/column of a linearly dependent
family of rows/columns can be safely removed. Indeed, for every index of the deleted vector
containing a 1, there has to be another vector of the family also containing a 1 at this
position. Then it is proved that the rank of the matrix with all the partitions is 2O(w), and
that Gaussian elimination can be done in the same time without having to explicitly store or
compute all O∗(ww) permutations. This three-act story is told with the exact balance of
details and conciseness in the book on parameterized complexity by Cygan et al. [11].

Known theoretical obstacles

The Steiner Tree problem parameterized by the number s of Steiner vertices is W [2]-
hard [34]. Furthermore it is unlikely that there is an algorithm running in time O(ns−ε), for
any ε > 0. Such an algorithm would indeed give, by a simple reduction, an algorithm in
nk−ε for k-Dominating Set, contradicting the Strong Exponential Time Hypothesis [39].
Theory also says that one cannot expect very efficient preprocessing: there is no polynomial
kernel in s + t (the total number of vertices in V (F )) unless the polynomial-time hierarchy
collapes [15]. Although, in practice, there are dozens of listed reductions rules which can
sometimes completely solve large real-world instances.

Approximations

We hastily touch the approximability status of Steiner Tree as it might be relevant
to heuristics. A minimum spanning tree in the subgraph induced by the terminals of
the metric closure yields an approximation ratio of 2 [27]. There is a 1.39-approximation
based on a scheme called iterative randomized rounding of an LP-formulation [9], and a
combinatorial 1.55-approximation [38]. However, Steiner Tree is APX-hard: there is no
1.01-approximation unless P=NP [10].

2.2 DIMACS challenge
In 2014, the 11th (and latest) DIMACS implementation challenge was also dedicated to
solving Steiner Tree problems, and extensive libraries of instances existed prior to our
challenge. As we will detail later, we mainly selected our instances from the Steinlib sets.
Furthermore, there were already very efficient programs solving Steiner Tree and its variants.
One successful program during the DIMACS competition, SCIP-Jack, also participated in
our challenge. SCIP-Jack is a branch-and-cut algorithm based on the free MIP-solver SCIP.
As such, it provides a natural baseline and comparison for the FPT approaches.
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Figure 1 The distribution (#edges,#terminals) of the public (left) and private (right) instances
of Track A in log-log plot.

3 Selection of the instances and rules

Before we selected the instances, we first defined the precise goals of each track. In light of the
efficient parameterized algorithms described in the previous paragraphs and the objectives of
PACE, it will not come as a surprise that we decided that Track A would have instances
where the number t of terminals is relatively small, while in Track B the treewidth w of the
graphs would be relatively small.

Generating artificial instances for which a careful optimization of the Dreyfus-Wagner
algorithm (for Track A) or of the rank-based approach for dynamic programming on tree
decompositions (for Track B) would get a decisive advantage compared to a generic solver
(ILP, SAT) was not our goal. So, we selected our instances among established benchmarks
(mainly Steinlib, PUC, GAP, Vienna), which were also used four years ago in the DIMACS
challenge on Steiner Tree.

3.1 Track A

For this track, we picked quite a lot of instances with a VLSI application. They are grid
graphs with rectangular holes and Manhattan distance weights (in the ALUE, ALUT, DIW,
DMXA, GAP, MSM, TAQ, and LIN sets). We used randomly generated sparse instances
meant to be resistant to preprocessing (in the E, I160, I640, PUC sets). We also included
industrial instances stemming from wire routing problems (in the WRP3 and WRP4 sets),
and real geographical networks in the form of complete graphs with Euclidean distances (X
set).

Among these instance sets, we selected 200 instances: 100 public (given to the contestants)
and 100 private (used for the evaluation), with 4 to 136 terminals. The median number
of terminals is 16 and its mean is 19.4, while 1480 is the mean number of vertices, and
8515, the mean number of edges (see Figure 1). On more than 20 of those instances, top
implementations of the DIMACS challenge, such as Staynerd, take tens of minutes. We
sorted the instances by increasing (t, m) in the lexicographic order.

The main rule for Track A and B was that the algorithm (deterministic or randomized)
should be exact. A sub-optimal output (in the public or private instances) would therefore
mean disqualification. The final score is the number of private instances solved on the
optil.io platform with 30 minutes per instance.
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Figure 2 The distribution (#edges,treewidth) of the public (left) and private (right) instances of
Track B in lin-log plot.

3.2 Track B

For this track, we used a lot of rectilinear instances with a low treewidth but a high number
of terminals (in the ES100FST, ES500FST, ES1000FST sets, where the number between
ES and FST corresponds to the number of terminals). We also used many instances from
WRP3 and WRP4 with an intermediate number of terminals (≈50). A tree decomposition of
almost always minimum width was given with the input. We computed these decompositions
using the winning implementations of the treewidth track of PACE 2017 by Strasser and by
Tamaki and his team [14].

On the 200 instances that we picked, the average number of vertices is 1490, the average
number of edges is 2847, the average number of terminals is 606, and its median is 100.
Furthermore the width of the given tree decompositions range from 6 to 47 with a median of
19.5 (see Figure 2). We sorted the instances by increasing (w, m). The rules were the same
as in Track A.

3.3 Track C

Finally in Track C, dedicated to heuristics, we chose large and difficult instances with many
terminals and high treewidth. To this end, we used the hardest instances of Steinlib. We
also added a lot of instances from the Vienna set. These instances were generated from
real-world telecommunication networks by Ivana Ljubic’s group at the University of Vienna.
A majority of the selected instances cannot be solved within one hour by the state-of-the-art
program. In several cases, the actual optimum is unknown.

The average number of vertices is 27K, the average number of edges is 48K, and the
average number of terminals is 1114, with a median at 360.5 (see Figure 3). Finally the best
treewidth upper bound (obtained with the heuristics of previous PACE) on these instances
is almost always above 40. We sorted the instances by increasing (t, m).

In track C, the final score to maximize is the sum over all the private instances of the ratio
opt/sol where opt is the optimum (if known) or the best known upper bound (otherwise)
and sol is the value of the proposed output. Outputting a non-feasible solution would not
disqualify the submission, but would give a score of 0 on that particular instance.
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Figure 3 The distribution (#edges,#terminals) of the public (left) and private (right) instances
of Track C in log-log plot.

Table 1 Participation per country (based on the initial registration form; more teams and
participants uploaded their code on optil.io afterwards).

Country Teams Participants

Austria 2 4
Brazil 1 3
Canada 1 1
Czechia 2 4
Denmark 1 1
England 1 1
Finland 1 1
France 4 7

Germany 4 5
India 6 12
Japan 4 8
Mexico 1 4

Netherlands 2 6
Norway 2 4
Poland 2 11
Romania 1 3

Total 35 75

4 Participation and results

This year, we had over 40 teams and 80 participants coming from 16 countries and four
continents: including Austria, Brazil, Canada, Czechia, Denmark, England, Finland, France,
Germany, India, Japan, Mexico, the Netherlands, Norway, Poland, and Romania.

The number of teams and participants both doubled compared to PACE 2017. To
be precise, the above numbers correspond to teams and participants who sent a final
implementation to at least one track. If we also count people who uploaded some code on
the optil.io platform but dropped out of the competition, the number of teams exceeds 50
and the number of participants exceeds 100. If we count the teams with their multiplicity
(that is, the number of tracks in which they participated), this number exceeds 75.

IPEC 2018
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4.1 Track A
Yoichi Iwata and Takuto Shigemura won this track by solving 95 private instances. Their
algorithm builds upon the dynamic programming of Erickson-Monma-Veinott (EMV). A
technical lemma permitted them to prune a lot of entries in the DP table. This happens to
also solve instances with small treewidth even when the number of terminals is relatively
large.

Krzysztof Maziarz and Adam Polak got the second place by preprocessing and improving
Dreyfus-Wagner (DW) with the heuristic ideas presented by Hougardy et al. [29]. The latter
consists of running a shortest path algorithm (Dijkstra, A∗, etc.) in the partial solutions in
order to prune the search space.

Koch and Rehfeldt took the third place with their program SCIP-Jack which has three
main components. First, known and new reduction methods simplify the instance. Secondly,
a set of heuristics provides upper and lower bounds. Finally, a reduction (of many variants)
to the directed Steiner tree problem is performed and the core of the algorithm is a branch-
and-cut approach using the MIP-solver SCIP (developed by a superset of this team).

At the fourth place, albeit still very close to the first place, solving 92 instances, Andre
Schidler, Johannes Fichte, and Markus Hecher used reduction rules presented by Rehfeldt [37],
including the so-called dual ascent and the improved DW by Hougardy et al. [29].

All the other teams implemented some refinements of DW or EMV.
1st place, 450e: Yoichi Iwata and Takuto Shigemura (team wata&sigma from Japanese
National Institute of Informatics and University of Tokyo) solved 95 out of 100 instances
github.com/wata-orz/steiner_tree
2nd place, 350e: Krzysztof Maziarz and Adam Polak (team Jagiellonian from Jagiel-
lonian University) solved 94 out of 100 instances
https://bitbucket.org/krismaz/pace2018
3rd place, 300e: Thorsten Koch and Daniel Rehfeldt (team reko from Zuse Institute
Berlin and TU Berlin) solved 93 out of 100 instances
github.com/dRehfeldt/scipjack/
4th place, 225e: Andre Schidler, Johannes Fichte, and Markus Hecher (team TUW
from TU Vienna) solved 92 out of 100 instances
github.com/ASchidler/pace17/
5th place: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin
Pilipczuk, Mateusz Radecki, and Michał Ziobro (team UWarsaw from University of
Warsaw and Jagiellonian University) solved 67 out of 100 instances
https://bitbucket.org/marcin_pilipczuk/pace2018-steiner-tree
6th place: Suhas Thejaswi (team Noname from Aalto University) solved 66 out of 100
instances
github.com/suhastheju/pace-2018-exact
6th place: Peter Mitura and Ondřej Suchý (team FIT CTU in Prague from the Czech
Technical University) solved 66 out of 100 instances
github.com/PMitura/pace2018
6th place: Johannes Varga (team johannes from TU Vienna) solved 66 out of 100
instances
github.com/josshy/st-tree
9th place: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale (team SSPSPT from
the Institute Of Mathematical Sciences, HBNI, Chennai and the International Institute
of Information Technology, Bangalore) solved 48 out of 100 instances
github.com/pptale/PACE18

https://github.com/wata-orz/steiner_tree
https://bitbucket.org/krismaz/pace2018
https://github.com/dRehfeldt/scipjack/
https://github.com/ASchidler/pace17/
https://bitbucket.org/marcin_pilipczuk/pace2018-steiner-tree
https://github.com/suhastheju/pace-2018-exact
https://github.com/PMitura/pace2018
https://github.com/josshy/st-tree
https://github.com/pptale/PACE18
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10th place: Sharat Ibrahimpur (team the65thbit from University of Waterloo) solved
69 out of 100 instances but was incorrect on 1 instance
github.com/sharat1105/PACE2018

11th place: S. Vaishali and Rathna Subramanian (team PCCoders from PSG College
of Technology, Coimbatore) solved 14 out of 100 instances but was incorrect on several
instances
github.com/ammuv/PACE-2018-
12th place: R. Vijayaragunathan, N. S. Narayanaswamy, and Rajesh Pandian M. (team
Resilience from TCS Lab, Indian Institute of Technology, Madras) solved 9 instances but
was incorrect on several instances
github.com/mrprajesh/pace2018

One can see two well-defined clusters (90-95 and 65-70). The implementation at 10th
place would have led the second cluster, if not for a small bug that showed only on one
private instance.

4.2 Track B
In this track with low treewidth, the developers of SCIP-Jack, Thorsten Koch and Daniel
Rehfeldt, took the first place by solving 92 of the 100 instances in the private set. They
do not directly exploit the tree-decomposition given in input, but it is likely that the low
treewidth indirectly translates into higher efficiency of their preprocessing, heuristics, and/or
branch-and-cut. Otherwise, it is hard to explain how the same program, discarding the
tree-decomposition, won Track B by solving 15 more instances than the winner of Track A
(where they finished third).

At the second place, Yoichi Iwata and Takuto Shigemura implemented the standard
O∗(ww) dynamic programming on the tree-decomposition. When the treewidth becomes too
large, they switch to their improved EMV algorithm. They observe that their algorithm
for Track A performs well when the treewidth is low since the existence of small separators
prunes a lot of entries in the DP table.

Completing the podium, Tom van der Zanden added to the rank-based approach a handful
of nice observations, crediting some of them to Luuk van der Graaff’s master thesis [28].
This results in the only program of the competition solving all the instances with treewidth
at most 15. In particular, this implementation is the only one to solve instance 39 of the
private set, which has 5K+ vertices, 20K+ edges, 2.4K+ terminals, and treewidth 11.

1st place, 450e: Thorsten Koch and Daniel Rehfeldt (team reko from Zuse Institute
Berlin and TU Berlin) solved 92 out of 100 instances
github.com/dRehfeldt/scipjack/
2nd place, 350e: Yoichi Iwata and Takuto Shigemura (team wata&sigma from the
Japanese National Institute of Informatics and the University of Tokyo) solved 77 out of
100 instances
github.com/wata-orz/steiner_tree
3rd place, 300e: Tom van der Zanden (team Tom from Utrecht University) solved 58
out of 100 instances
github.com/TomvdZanden/SteinerTreeTW
4th place: Peter Mitura and Ondřej Suchý (team FIT CTU in Prague from the Czech
Technical University) solved 52 out of 100 instances
github.com/PMitura/pace2018
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Table 2 For each team: score is the number of private instances solved, treewidth approach, the
treewidth-based algorithm used, if any, first unsolved, the number of the first unsolved private instance
(we recall that the instances of Track B were sorted lexicographically by increasing (w, e)) and the
corresponding value of the treewidth, switching to DW-like, if the treewidth approach is substituted
to a terminal-based algorithm (DW = Dreyfus-Wagner algorithm, EMV = Erickson-Monma-Veinott
algorithm), and criterion to switch what is the test to switch to such an algorithm.

Team score treewidth approach first unsolved switching to DW-like criterion to switch

reko 92 no 26, w = 9 no –
wata_sigma 77 ww DP 26, w = 9 EMV w > 10 or (w > 8 and t < 300)
Tom 58 2O(w) rank-based 54, w = 16 EMV 3t < 5w

FIT CTU in Prague 52 2O(w) rank-based 39, w = 11 no –
yasu 52 2O(w) rank-based 13, w = 7 DW w > 15
fujiyoshi 49 2O(w) rank-based 39, w = 11 no –
UWarsaw 33 2O(w) rank-based 32, w = 10 no –
lapo 33 2O(w) rank-based 13, w = 7 no –

4th place: Yasuaki Kobayashi (team Yasu from Kyoto University) solved 52 out of 100
instances
https://bitbucket.org/yasu0207/steiner_tree
6th place: Akio Fujiyoshi (team CBGfinder from Ibaraki University) solved 49 out of
100 instances
github.com/akio-fujiyoshi/CBGfinder_for_steiner_tree_problem
7th place: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin
Pilipczuk, Mateusz Radecki, and Michał Ziobro (team UWarsaw from University of
Warsaw and Jagiellonian University) solved 33 out of 100 instances
https://bitbucket.org/marcin_pilipczuk/pace2018-steiner-tree
7th place: Dilson Guimarães, Guilherme Gomes, João Gonçalves, and Vinícius dos
Santos (team lapo from LAPO-UFMG) solved 33 out of 100 instances
github.com/dilsonguim/pace2018

The rest of the teams implemented the rank-based approach of Bodlaender et al. [8] as
the main or secondary component. At the shared fourth place, Peter Mitura and Ondřej
Suchý (FIT CTU in Prague)’s implementation is the fastest of the competition on average,
while Yasuaki Kobayashi’s program also switches to a terminal-based approach when the
treewidth becomes too large. Table 2 summarizes the approach used by all the teams.

Since the instances were edge-weighted, no submission tried to use the Cut&Count
technique. It would be interesting to compare the speed of the rank-based and the Cut&Count
techniques on unweighted instances of relatively low treewidth. Another direction would be
to make Cut&Count work on edge-weighted instances, in practice and/or in theory.

4.3 Track C

This track attracted the most participants. Regarding the instance sizes, it should be observed
that a naive implementation (without preprocessing) of the 2-approximation algorithm does
not finish within the time limit. The contributions use either meta-heuristics (an evolutionary
algorithm for the winning team, iterated local-search with noising for the third team, simulated
annealing, etc.), or start from some solution (a spanning tree, an arbitrary feasible solution,
or a 2-approximation) and then improve it with local search. Radek Hušek and teammates
(Team Tarken) used a parameterized approximation approach [18].

https://bitbucket.org/yasu0207/steiner_tree
https://github.com/akio-fujiyoshi/CBGfinder_for_steiner_tree_problem
https://bitbucket.org/marcin_pilipczuk/pace2018-steiner-tree
https://github.com/dilsonguim/pace2018
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1st place, 450e: Emmanuel Romero Ruiz, Emmanuel Antonio Cuevas, Irwin Enrique
Villalobos López, and Carlos Segura González (CIMAT Team from the Center for Research
in Mathematics, Guanajuato) got an average ratio of 99.93/100
github.com/HeathcliffAC/SteinerTreeProblem
2nd place, 350e: Thorsten Koch and Daniel Rehfeldt (team reko from Zuse Institute
Berlin and TU Berlin) got an average ratio of 99.85/100
github.com/dRehfeldt/scipjack/
3rd place, 300e: Martin Josef Geiger (team MJG from HSU Hamburg) [26] got an
average ratio of 99.80/100
https://data.mendeley.com/datasets/yf9vpkgwdr/1
4th place, 225e: Radek Hušek, Tomáš Toufar, Dušan Knop, Tomáš Masařík, and
Eduard Eiben (team CUiB from Charles University, Prague and University of Bergen)
got an average ratio of 99.72/100
github.com/goderik01/PACE2018
5th place: Emmanuel Arrighi and Mateus de Oliveira Oliveira (team Gardeners from
ENS Cachan and University of Bergen) got an average ratio of 98.93/100
github.com/SteinerGardeners/TrackC-Version1
6th place: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin
Pilipczuk, Mateusz Radecki, and Michał Ziobro (team UWarsaw from University of
Warsaw and Jagiellonian University) got an average ratio of 98.27/100
https://bitbucket.org/marcin_pilipczuk/pace2018-steiner-tree
7th place: Stéphane Grandcolas (team SGLS from LIS Marseille) got an average ratio
of 97.54/100
http://www.dil.univ-mrs.fr/~gcolas/sgls.c
8th place: Max Hort, Marciano Geijselaers, Joshua Scheidt, Pit Schneider, and Tahmina
Begum (team JMMPT from the Department of Data Science and Knowledge Engineering,
Maastricht University) got an average ratio of 97.15/100
github.com/maxhort/Pacechallenge-TrackC/
9th place: Dimitri Watel and Marc-Antoine Weisser (team DoubleDoubleU from
SAMOVAR-ENSIIE and LRI-Centrale-Supelec) got an average ratio of 96.92/100
github.com/mouton5000/PACE2018/
10th place: R. Vijayaragunathan, N. S. Narayanaswamy, and Rajesh Pandian M. (team
Resilience from TCS Lab and the Indian Institute of Technology Madras) got an average
ratio of 94.57/100
github.com/mrprajesh/pace2018
11th place: Sharat Ibrahimpur (team the65thbit from University of Waterloo) got an
average ratio of 94.37/100
github.com/sharat1105/PACE2018
12th place: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale (team SSPSPT from
the Institute Of Mathematical Sciences, HBNI, Chennai and the International Institute
of Information Technology, Bangalore) got an average ratio of 82.61/100
github.com/pptale/PACE18
13th place: Harumi Haraguchi, Hiroshi Arai, Shiyougo Akiyama, and Masaki Kubonoya
(team Haraguchi laboratory from Ibaraki University) got an average ratio of 80.73/100
github.com/Harulabo/pace2018

Eleven more teams participated in this track but did not finalize their submission by
sharing a link to their code. Table 3 shows that the second team (reko) was more often the
one reporting a best solution. However, the first team (CIMAT Team) was more consistently
very close to those best solutions.
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Table 3 For the first four teams: their final score, how many times they computed the best
solution, and how many times their solution is x% close to the best solution, on the private set.

Team name Cumul. ratio # Best # 6 0.1% # 6 0.5% # 6 1% # 6 2% # 6 3%
CIMAT Team 99.93 34 49 95 100 100 100

reko 99.85 78 81 88 93 99 100
MJG 99.80 24 58 87 95 98 100
CUiB 99.72 19 48 82 89 97 100

5 PACE organization

In September 2018, the PACE 2018 Program Committee transferred to the Steering Com-
mittee. The Steering Committee and the PACE 2018 Program Committee are as follows.

Steering
committee:

Édouard Bonnet ENS Lyon
Holger Dell Saarland Informatics Campus
Thore Husfeldt ITU Copenhagen & Lund University
Bart M. P. Jansen (chair) Eindhoven University of Technology
Petteri Kaski Aalto University
Christian Komusiewicz Philipps-Universität Marburg
Frances A. Rosamond University of Bergen
Florian Sikora Paris-Dauphine University

Track A, B, C: Édouard Bonnet ENS Lyon
Florian Sikora Paris-Dauphine University

The Program Committee of PACE 2019 will be chaired by Johannes Fichte (TU Dresden)
and Markus Hecher (TU Vienna).

6 Conclusion

We thank all the participants for their enthusiasm and look forward to the next PACE. We
are particularly happy that this edition attracted many people outside the parameterized
complexity community, and wish that this will continue for the future editions.

We welcome anyone who is interested to add their name to the mailing list on the
website [36] to receive PACE updates and join the discussion. In particular, plans for
PACE 2019 will be posted there.
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