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THE SURVIVAL PROBABILITY OF CRITICAL AND
SUBCRITICAL BRANCHING PROCESSES IN FINITE STATE
SPACE MARKOVIAN ENVIRONMENT

ION GRAMA, RONAN LAUVERGNAT, AND EMILE LE PAGE

ABSTRACT. . Let (Z,)n>0 be a branching process in a random environment
defined by a Markov chain (X,),>0 with values in a finite state space X.
Let P; be the probability generated by the trajectories of (X,,),, starting
at Xy =i € X. We study the asymptotic behaviour of the joint survival prob-
ability P; (Z,, >0, X,, =j), j € X as n — +oo in the critical and strongly,
intermediate and weakly subcritical cases.

1. INTRODUCTION AND MAIN RESULTS

The Galton-Watson branching process is one of the most used models in the
dynamic of populations with numerous applications in different areas such as
biology, medicine, physics, economics etc; for an introduction we refer to Harris
[17], Athreya and Ney [5] and to the references therein. The random environment
in the context of a branching process, say (Z,),,-,, has first been introduced in
Smith and Wilkinson [22] and Athreya and Karlin [4, 3]. In a remarkable series of
papers Afanasyev [1], Dekking [6], Kozlov [19], Liu [21], D’Souza and Hambly [7],
Geiger and Kersting [9], Guivarc’h and Liu [16] and Geiger, Kersting and Vatutin
[T0] have determined the asymptotic behaviour of the survival probability of a
branching process with random environment under various assumptions. Based
on the recent advances in the study of conditioned limit theorems for sums of
functions defined on Markov chains from [I1), 12, [13] [14], the goal of the present
paper is to prove exact asymptotic results for the survival probability when the
environment is a Markov chain.

Let (Xn)@[) be a homogeneous Markov chain defined on the probability space
(Q, .7 ,P) with values in the finite state space X. Let % be the set of functions
from X to C. Denote by P the transition operator of the chain (X,,),>0: Pg(i) =
E; (9(X4)), for any g € € and i € X. Set P(i,5) = P(0;)(i), where 9,(i) = 1 if
i = j and 9,(7) = 0 else. Note that P"g(i) = E, (¢9(X,)) . Let P; be the probability
on (2, .#) generated by the finite dimensional distributions of the Markov chain
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(Xn) s starting at Xo = i. Denote by E and E; the corresponding expectation
associated to P and P;.
Assume that (X,), -, is irreducible and aperiodic which is equivalent to:

Condition 1. The matriz P is primitive, which means that there exists ko > 1
such that, for any non-negative and non-identically zero function g € € andi € X
it holds P*og(i) > 0.

By the Perron-Frobenius theorem, under Condition [I], there exist positive con-
stants ¢; and co, a unique positive P-invariant probability v on X and an operator
@ on € such that for any g € € and n > 1,

Pg(i) =v(g9) +Q(g9)(i)) and  [[Q"(9)|l, <cre "9,

where v(g) = Yiex g(t)v(i), Q(1) = v(Q(g)) = 0, |9l = maxiex|g(i)]. In
particular, for any (i, ) € X2, we have

(L1) PG, ) — v(G)| < e e,

The branching process in the Markov environment (X,,),,. is defined with the
help of a collection of generating functions

(1.2) fi(s) =E (s&) , VieX, sel0,1],

where the random variable §; takes its values in N and means the total offspring
of one individual when the environment is ¢ € X. For any ¢ € X, let (§7);n>1
be independent and identically distributed random variables with the same gen-
erating function f; defined on the probability space (£2,.#,P). Assume that the

sequence (&), ,>1 is independent of the Markov chain (X,)

7 n=0 *

Condition 2. For any i € X, the random variable &; is non-identically zero and
has a finite second moment: E (&) > 0 and E(£?) < +oc.

Condition [2| implies that, 0 < f/(1) < +o0 and f/(1) < +o0, i € X.

Define the branching process (Z,), ., iteratively: for each n = 1,2,..., given
the environment X,, = i, the total offspring of each individual j € {1,... 7,1} is
given by the random variable " 7 so that the total population is

Zn-1
Zo=1 and Zy = Z {"’i, Vn > 1.
j=1

We shall consider branching processes (Z,),, in one of the following two
regimes: critical or subcritical (see below for the precise definition). In both
cases the probability that the population survives until the n-th generation tends
to zero, P; (Z, > 0) — 0, for any i € X as n — +00, see Smith and Wilkinson
[23]. The key point in determining the speed of this convergence is a close relation
between the branching process and the associated Markov walk (S,),,, defined
as follows. Let

p(i) =1In f{(1), Vi e X.
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Set Sy := 0 and
(1.3) Spi=n (i, (1) fi, (1)) = Y p(Xi), Yn>1.
k=1

Assume that the Markov walk (S,,),>0 is non-lattice:

Condition 3. For any (0,a) € R?, there exista a path xq,...,x, in X such that
P(20,21) - P20 1, 20)P(20, 70) > 0 and plxo) + -+ + p(wy) — (n+ 1)0 ¢ aZ.

It is shown in Section [2.4] that under Conditions [I] and [3| for any A € R and
any ¢ € X, the following limit exists and does not depend on the initial state of
the Markov chain Xy = ¢:

L . 1/n S,
KO) =l B ().
The function k, up to a logarithmic transform, is similar to the function A in [7].
It is related to the so-called transfer operator P:

(1.4) Pag(i) =P (M g) (i) = E; (X g(X1)), for ge¥,ieX

In particular, k() is an eigenvalue of the operator P corresponding to an eigen-
vector vy, and is equal to its spectral radius. Moreover, the function k() is analytic
on R, see Lemma [2.15] Note also that the transfer operator P, is not Markovian,
but it can be easily normalized so that the operator Pyg = i*(/(\!;x) is Markovian.
We shall denote by v, its unique invariant probability measure.
The branching process in Markovian environment is said to be subcritical if
k'(0) < 0, critical if k'(0) = 0 and supercritical if k'(0) > 0. To clarify the relation
to the classification in the case of branching processes with i.i.d. environment note

that, by Lemma
(1.5) K(0) = v(p) = By (p(X1) = By (In f4, (1)) = £/(0),

where E,, is the expectation generated by the finite dimensional distributions of the
Markov chain (Xy), -, in the stationary regime and ¢(\) = E, (exp{AIn f (1)}),
A € R. When the random variables (X,), ., are ii.d. with common law v, from
the two classifications coincide.

We proceed to formulate our main result in the critical case.

Theorem 1.1 (Critical case). Assume Conditions[]{5 and k'(0) = 0. Then, there
exists a positive function u on X such that for any (i, j) € X2,

. v(j)u(i)
The critical case has been considered in Le Page and Ye [20] in a more general
setting. Nevertheless, the conditions in their paper do not cover the present situ-
ation and the employed method is different from ours. For an i.i.d. environment,
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it has been established earlier in [9] that P(Z, > 0) ~ 7% as n — +00 under
weaker assumptions than the finiteness of the state space X.

Now we consider the subcritical case. We say that the branching process in
Markovian environment is strongly subcritical if k'(0) < 0,k'(1) < 0, intermedi-
ately subcritical if k'(0) < 0,k'(1) = 0 and weakly subcritical if k'(0) < 0,k'(1) > 0.
Again by Lemma [2.15]

(1.6) K'(1)/k(1) = &1(p) = Ez, (p(X1)) = Es, (111 f),(l(l)) ,
where [E;, is the expectation generated by the finite dimensional distributions
of the Markov chain with transition probabilities P, in the stationary regime.
When the environment (X,), ., is an i.i.d. sequence of common law v we have in
addition
(L.7) By, (In fi, (1) = By (f, () In fi, (1) = ¢/ (1).
This shows that for branching processes with i.i.d. environments both classifica-
tions (the one according to k() and the other according to ¢'(-)) are equivalent.
In general, is not fulfilled for a Markovian environment and therefore the
function ¢(-) is not the appropriate one for the classification. For a Markovian en-
vironment the classification equally can be done using the function K’()), where
K(\) =Ink(N), A e R.

Note that by Lemma the function A\ — K(A) is strictly convex. In the
strongly and intermediately subcritical cases, this implies that 0 < k(1) < 1.

Theorem 1.2 (Strongly subcritical case). Assume Conditions[1{5 and k'(0) < 0,
k(1) < 0. Then, there exists a positive function u on X such that for any (i,7) €
X2,

n—-+o0o

Recall that v; is the eigenfunction of the transfer operator P; (see also Section
eq. for details). Note also that we can drop the assumption £'(0) < 0,
since it is implied by the assumption £'(1) < 0, in view of the strict convexity of
K ()). For comparison, the corresponding result in the case when the environment
is i.i.d. has been established in [16]: P(Z,, > 0) ~ cp(1)", as n — +oo, where
0<p(l)=Efy (1) <1
Theorem 1.3 (Intermediate subcritical case). Assume Conditions[1{3 and k'(0) <
0, ¥'(1) = 0. Then, there exists a positive function u on X such that for any

. 2v1(0)u(y)
P;(Z,>0, X, =) Nete k(1) —

As in Theorem [1.2] /(1) = 0 implies the assumption &’(0) < 0.

In the weakly subcritical case, an easy consequence of the strict convexity of K
is the existence and the unicity of A € (0, 1) satisfying £'(A\) = 0and 0 < k(\) < 1
which is used the next result.
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Theorem 1.4 (Weakly subcritical case). Assume Conditions [1{3 and k'(0) < 0,
k(1) > 0. Then, there exist a unique A € (0,1) satisfying k'(A\) =0, 0 < k(\) < 1
and a positive function u on X? such that for any (i,j) € X2,

. 2 u(i, J)
Py (Zo >0, X =]) KOS

Recall the original results in [I0] which have been established for an i.i.d.
environment. In the intermediate and weakly subcritical cases, respectively:
P(Z, > 0) ~ en~2p(1)" and P(Z, > 0) ~ en=3/20(\)", where \ is the unique
critical point of ¢: ¢'(A) = 0 such that 0 < ¢(1) < 1.

For stationary and ergodic environments D’Souza and Hambly [7] have stud-
ied the large deviation principle for the survival probability. Theorems (1.1
improve on the results in [7] giving exact asymptotics. In addition, the random
environment in our model is not assumed to be stationary.

The proofs of the main results are based on the following relation between the
survival probability P;(Z, > 0) and the associated random walk (S,),., which
goes back to Agresti [2]: for any initial state Xy = i,

n—1
(1.8) Pi(Z, > 0) = Ei(g,), where ¢,'=e""+ Z e Ok Mi+1.m
k=0

and under the assumptions of the paper the random variables 71, are bounded.
To handle the expectation E;(g,) in the right-hand side of we make use of
three tools: conditioned limit and local limit theorems for Markov chains which
have been obtained recently in [I3] and [12], the exponential change of measure
which is defined with the help of the transfer operator P, see Guivarc’h and
Hardy [I5], and the duality for Markov chains which we develop in Section [2.2]

The outline of the paper is as follows. In Section 2] we introduce the associated
Markov chain and relate it to the survival probability. We also introduce the
dual Markov chain and state some useful assertions for walks on Markov chains
conditioned to stay positive and on the transfer operator. The proofs in the
critical, strongly subcritical, intermediate subcritical and weakly subcritical cases
are deferred to Sections and [}, respectively.

Let us end this section by fixing some notations. The symbol ¢, possibly enabled
with subscripts, will denote positive constants depending on all previously intro-
duced constants. All these constants are likely to change their values every occur-
rence. The indicator of an event A is denoted by 1 4. For any bounded measurable
function f on X, random variable X in some measurable space X and event A, the
integral [y f(2)P(X € dx, A) means the expectation E (f(X); A) =E (f(X)1a).

2. PRELIMINARY RESULTS ON THE ASSOCIATED MARKOV WALK

The aim of this section is to provide necessary assertions on the Markov chain
and on the associated Markov walk (|1.3]) and to relate them to the survival prob-
ability of the branching process.
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2.1. The link between the branching process and the associated Markov
walk. The proof of the following lemma being elementary is left to the reader.

Lemma 2.1 (Conditioned generating function). For any s € [0,1] and n > 1,

E; (sZ” Xi,... ,Xn> = fx, 00 fx,(5).
For any n > 1 and s € [0, 1] set
(2.1) qn(s) :=1— fx, 00 fx, (5) and In = ¢, (0).
Lemma [2.1] implies that
(2.2) Pi(Z,>0|Xy,....X,) = qn.

Taking the expectation in (2.2)), we obtain the well-known equality, which will be
the starting point for our study:

(2.3) P; (Z, > 0) =E;(q,) -

Under Condition [2] for any i € X and s € [0, 1), we have f;(s) € [0,1). Therefore
fx,0---0 fx,(s) €]0,1) and in particular

(2.4) e (0,1, VYn>1

Introduce some additional notations, which will be used all over the paper: for
anyn>1,ke{l,...,n}, i€ Xand s € [0,1),

(25) fkvn = ka -0 anv fn-‘rl,n = 1d7

1 1
(2.6) gi(s) = OBNAOED

(2.7) Mhn(8) = 9x;, (fea1n(8)) s e = 1h.n(0).

The following key point assertion relies the random variable ¢, (s) to the associ-
ated Markov walk. Its proof being similar to corresponding statements in [2] and
[9] is left to the reader.

Lemma 2.2. For any s € [0, 1) andn > 1,

—Sn
n(s )

+Ze nk—i—ln

Taking s = 0 in Lemma [2.2] we obtain the following identity which will play the
central role in the proofs:

(2.8) = —n 4 Z e~ nka, Vn > 1.

\%

Since f; is convex on [0, 1] for all i € X, the function g; is non-negative,

29) sy = HD0 =5 — (1= f(s)

- ) i—s 20 Vecbb
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which, in turn, implies that the random variables 71, are non-negative for any
n>1land ke {0,...,n—1}.

Lemma 2.3. Assume Condition [d For anyn > 2, (i1,...,i,) € X" and s €
[0,1), we have

. /(1)

< iy (flz * 0 fzn( )) xN= rneaXX f;(1>2 < +00.

Moreover, for any (in)ns1 € XN and any k > 1

(2.10) lim g, (fi,., 0 0 £i,(0)) €[0,7).

n——+oo

Proof. Fix (iy)n>1 € XV, For any i € X and s € [0, 1), we have f;(s) € [0,1). S
fiy0---0ofi (s)€0,1). In addition, by (2.9), g; is non-negative on [0, 1) for any
i € X, therefore g;, (fi, 0+ 0 f;.(s)) = 0. Moreover by the lemma 2.1 of [9], for
any 7 € X and any s € [0,1),
fi (1)
fi(1)>
By Condition [2] n < +00 and so g, (fi, 0+ 0 f;,(s)) € [0,7], for any s € [0,1).

Since f; is increasing on [0,1) for any i € X it follows that for any &£ > 1 and
any n > k+1,

0< fik+1 o---0f; (0) < fz’kﬂ o---0f; 0 fin+1(0) < 1
and the sequence (fi,m o---0 f; (0)) Ly COTVerges to a limit, say { € [0, 1]. For

(2.11) 9i(s) <

any 7 € X, the function g¢; is continuous on [0, 1) and we have

A = s) = (1= fi(s))
““< )= P G R -
L fils) =1-fi)(s=1) 1-s
D (s—1)2 1 — fi(s)
w1
[ 20 fid) 2f(1)?

Denoting g¢;(1) = foHi)g if | = 1, we conclude that g;, (fzk+1 -ofin(O)) con-

verges to g;, (1) as n — +oo. By (2.9) and (2.11)), we obtain that g;, (1) € [0,7]. O

(2.12)

< +00.

2.2. The dual Markov walk. We will introduce the dual Markov chain (X}),>0
and the associated dual Markov walk (S?),>0, and state some of their properties.
Since v is positive on X, the following dual Markov kernel P* is well defined:

(2.13) P@ﬁzng@ﬂ7v@ﬁeW.




O©CO~NOOOTA~AWNPE

8 ION GRAMA, RONAN LAUVERGNAT, AND EMILE LE PAGE

Without loss of generality we assume that the probability space (2, .%#,P) is rich
enough to define on it a Markov chain (X7) ., called dual, with values in X and
with transition probability P*. Clearly, it can be chosen to be independent of the
chain (X,,) We define the dual Markov walk by

n=0"

(2.14) Sg=0 and  Si=->p(X;), Vn>1.

k=1
For any z € R, let 7} be the associated exit time:
(2.15) mr=inf{k >1:2+ S, <0}.

For any 7 € X, denote by P} and E} the probability, respectively the expectation
generated by the finite dimensional distributions of the Markov chain (X}),>0
starting at X = ¢.

It is easy to see that v is also P*-invariant and for any n > 1, (4, ) € X2,

oo - v()
P =pP" —=.
(P)" (i,J) (J, 1) )
In particular, the last formula implies the following result.

Lemma 2.4. Assume Conditions[1] and[3 for the Markov kernel P. Then Con-
ditions[1] and[3 hold also for dual kernel P*.

Similarly to (1.1)), we have for any (i,7) € X2,
(216) (B (6 5) — v()] < co

Note that the operator P* is the adjoint of P in the space L*(v) : for any
functions f and g on X,

v(f(P)"g)=v(gP"f).

For any measure m on X, let E,, (respectively Ef ) be the expectation associated
to the probability generated by the finite dimensional distributions of the Markov
chain (X,),-, (respectively (X;),.,) with the initial law m.

n

Lemma 2.5 (Duality). For any probability measure m on X, any n > 1 and any
function g: X® — C,

m(Xr*zH)
En(g(X1,...,X0)) = E, Q(X;a-~-7Xf)W :

Moreover, for any n > 1 and any function g: X" — C,

N

()
v(i)

Ei(9(X1,. s X0) 5 X1 =j) =E (g(X;;,...,X;) : X;+1:¢)
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Proof. The first equality is proved in Lemma 3.2 of [I2]. The second can be

deduced from the first as follows. Taking m = §; and (i1, - ,in,ins1) =
g(i1, -+ ,in) L, =5}, from the first equality of the lemma, we see that
- * ~ * * . * s 1
Ei(g (X1, Xn) 5 X1 =) = E; (9 (Xn+1a---7X1) ; X = Z) v (i)
1
=E X X)Xy =9, X, =1) —.
(0 (Ko X5) X5 = X )

Since v is P*-invariant, we obtain
Ei (g(Xh M 7Xn) ) Xn+1 :j)

=Y B (g(X, XD s Xy =) — Ly (i)

11X

=B} (9(X5,- - X7) 5 Xy =)

2.3. Markov walks conditioned to stay positive. In this section we recall
the main results from [13] and [12] for Markov walks conditioned to stay positive.
We complement them by some new assertions which will be used in the proofs of
the main results of the paper.

For any y € R define the first time when the Markov walk (S,),., becomes
non-positive by setting

1, =inf{k > 1:y+ S5, <0}.

Under Conditions , and v(p) = 0 the stopping time 7, is well defined and finite
P;-almost surely for any i € X.

The following three assertions deal with the existence of the harmonic function,
the limit behaviour of the probability of the exit time and of the law of the random
walk y 4+ S,, conditioned to stay positive and are taken from [I3].

Proposition 2.6. Assume Conditions [1], [5 and v(p) = 0. There exists a non-
negative function V on X x R such that

1. For any (i,y) e X xR andn > 1,
E;, (V(X,,y+5S,) ;7 >n)=V(i,y).
2. For anyi € X, the function V (i,-) is non-decreasing and for any (i,y) € X xR,
V(i,y) < ¢(1 + max(y,0)).
3. ForanyieX, y>0andd € (0,1),
(1=0)y—cs <V(i,y) <(14+6)y+cs.
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We define
(2.17) o’ =v (p2) 242 Z [ (pP"p) (,0)2} :

It is known that under Conditions |1 ! and (3} E we have 02 > 0, see Lemma 10.3 in
[12].

Proposition 2.7. Assume Conditions 1, [§ and v(p) = 0.
1. For any (i,y) € X x R,

Y

lim +/nP; (1, >n) = 2Viiy)

where o is defined by (2.17)).
2. For any (i,y) e X xR andn > 1

1 + max(y, 0)
Voo
We denote by supp(V) = {(i,y) € XxR: V(i,y) > 0} the support of the
function V. Note that from property [3| of Proposition [2.6] for any fixed i € X, the

function y — V(i,y) is positive for large y. For more details on the properties of
supp(V') see [13].

P;(r,>n)<c

Proposition 2.8. Assume Conditions 1, [§ and v(p) = 0.
1. For any (i,y) € supp(V) and t > 0,
Y+ S
P;
(oo =
t2
where ®1(t) =1 — e~ 7 is the Rayleigh distribution function.

2. There ezists g > 0 such that, for any e € (0,e9), n > 1, to > 0, t € [0,to] and
(i,y) € X x R,

t| 7, > n) nd (1),

2V (i, y)
2mno

1 + max(y,0)?
Pi(y+5’n<t\/ﬁa,7y>n>_ ———"®" ()| < \Csto( n1/24(rzj ))

The next assertions are two local limit theorems for the associated Markov walk
y+ S, from [12].

Proposition 2.9. Assume Conditions[1], [] and v(p) = 0.
1. Foranyt € X, a >0,y € R, 2 > 0 and any non-negative function ¢p: X — R,
lim n*%E; ((X,); y+ Sn € [2, 24 a], Ty, > n)

n——+00
QVZy * * * *\ L % /
\/%03/ E; (O( X))V (XS, 2"+ 57) 5 1 > 1) dz



O©CO~NOOOTA~AWNPE

BRANCHING PROCESSES IN MARKOVIAN ENVIRONMENT 11

2. Moreover, for any a >0, y € R, 2 > 0, n > 1 and any non-negative function
v: X —= R,

supE; ((X,,); y+ Sy € [2,24+4a], 7y > n)
1€X
1
< S i (14 2) (L4 max(u. 0)).

Recall that the dual chain (X;;)@O has been constructed independently of the
chain (X, ),>0. For any (7,7) € X2, the probability generated by the finite dimen-
sional distributions of the two dimensional Markov chain (X, X¥),>o starting at
(Xo, X§) = (4,7) is given by P; ; = P; x P;. Let E,; ; be the corresponding expec-
tation. For any [ > 1 we define ¢+ (Xl X R+) the set of non-negative function g:
X! x Ry — R, satisfying the following properties:

e for any (iy,...,4) € X!, the function z + g(iy,...,%, 2) is continuous,
® max;, jexSUP,sq9(it, ..., u,2)(1+ 2)*" < +oo for some e > 0.

Proposition 2.10. Assume Conditions[1],[J and v(p) = 0. For anyi € X, y € R,
121, m>1andgeet (X xR,),

lim n’/°E, (9( X1y o, Xty Xt 1y - o s Xy ¥ + Sn) 5 7y > 1)

n—+00

Ei;(g(Xy,.... X, X2, ..., XT],
\/%03/ gg i ! : 12

XV (Xp,y+S) V(X524 5,) 57y > 1, 72 > m)v(j) dz.

We complete these results by determining the asymptotic behaviour of the law
of the Markov chain (X,,),>; jointly with {7, > n}.

Lemma 2.11. Assume Conditions[1],[§ and v(p) = 0. Then, for any (i,y) € XxR
and 7 € X, we have

lim /nP; (X, =j,7,>n)=

n—-4o0o

2V (i, y)v ()
210
Proof. Fix (i,y) € X x R and j € X. We will prove that
2
M hmmf\/_]P’( n=1J,Ty>n)

271'0' n—-+oo

< limsup\/ﬁ]P’i (Xn :j’ Ty > n) < M
n—+oo 2o

The upper bound. By the Markov property, for any n > 1 and k = {nl/‘lJ we
have

P(X,=j,7>n)<P(X,=J,7>n—k)
]E(P (Xn_k,]);7y>n—k:).
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Using (|1.1)), we obtain that
Pi(Xn=j,7>n) < (v(j) +ce ) Pi(r, >n—k).

Using the point |1{ of Proposition and the fact that k = {nl/ 4J,
(2.18) 1:1H—1>igop VP (X, =7, 7, >n) < QV(Z’;T);/U)
The lower bound. Again, let n > 1 and k = {nl/ﬁ‘J. We have
(219) Pi(X,=j,7y>n) 2P (X,=j,7,>n—k)—Pi(n—k<7,<n).
As for the upper bound, by the Markov property and ,
P, (X, =7,7>n—k)=E, (Pk(Xn_k,j) ; Ty>n—k‘>
> (V(j) - ce_Ck> P;(ry >n—k).
Using the point [1| of Proposition and the fact that k = {nl/‘lJ,

i
(2.20) lim inf v/AP, (X, = j, 7y > n— k) > 2 WG]

Furthermore, on the event {n — k < 7, < n}, we have

<

n—k<i<n
where ||p||, is the maximum of |p| on X. Consequently,

Pi(n—k<t<n) <P (y+ Sp—r <k, >n—k)

k
_:_k\/n—k;,ry>n—k:>.

Now, using the point [2| of Proposition with tp = max,>1 \/%, we obtain that,
for e > 0 small enough,

P;(n—k<1,<n)

N

- 2
M (1 — e_ 2(‘;k2k)> + CE%‘
2n(n — k)o (n — k)1/2te

Therefore, since k = {nl/ 4J,

(2.21) lim /nP;(n—k <7, <n)=0.

n—-+4o0o

Putting together (2.19)), (2.20) and (2.21)), we conclude that

(s .
lim inf /nP; (X,, = 7, T, > n) > M’
n—-+oo o

which together with (2.18)) concludes the proof of the lemma. O
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Now, with the help of the function V' from Proposition , for any (i,y) €
supp(V) we define a new probability P, on o (X,,,n > 1) and the corresponding
expectation E; 'y» which are characterlzed by the following property: for any n > 1
and any ¢g: X" — C,

(2.22)

1
E;fy (9(X1,..., X)) =

V(i,y)
The fact that P;fy is a probability measure and that it does not depend on n
follows easily from the point [1{of Proposition The probability P;fy is extended

obviously to the hole probability space (€2,.%#,P). The corresponding expectation
is again denoted by EJ,.

E; (9(X1,..., X))V (X, y+Sn) 5 7y >n).

Lemma 2.12. Assume Conditions[1] [J and v(p) = 0. Letm > 1. For anyn > 1,
bounded measurable function g: X™ — C, (i,y) € supp( ) and jexX,

hm Ei(g(X1,....Xm); Xn=7l7,>n)=E, (9(X1,..., X)) v(j).

n—> o0
Proof. For the sake of brevity, for any (i,7) € X%, y € R and n > 1, set
In(i, J,y) =P (X, =7, 7 >n).

Fix m > 1 and let g be a function X" — C. By the point [I] of Proposition
is clear that for any (7,y) € supp(V) and n large enough, P; (1, > n) > 0. By the
Markov property, for any 7 € X and n > m + 1 large enough,

Iy=Ei(g(X1,.... Xn) ; Xo=j|7 >n)
s .
n m(Xma]7y+Sm) >m
P; (1, > n)

Using Lemma and the point [I] of Proposition [2.7] by the Lebesgue dominated
convergence theorem,

=E; <Q(X17---,Xm)

V(X y+ Sm)
V(i,y)
— B, (g (X, X)) V().

lim [0 Ez <Q(X1,,Xm)

n——+o0o

;w>m>Wﬂ

O

Lemma 2.13. Assume Conditions[1, [ and v(p) = 0. For any (i,y) € supp(V),
we have, for any k > 1,
I ¢ (14 max(y,0))e¥
B () < vy

In particular,

= 1+ max(y,0))e?
E e_S’“> < el —
y@; V(i,y)
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Proof. By ([2.22), for any k > 1

_ _ V(Xk y+Sk)
+ S\ W, S ) .
E/, (e k) =E; (e k 7(i9) ; Ty >k

Using the point [2] of Proposition [2.6]
E; (e_s’“) < eVE; [ e~ WSk ¢(1 4 max (0,9 + Sk)) "
! V(i,y)

= 1+ max (0,y + Sk))
= oY E, e~ (W+5k) C( A
> VG0

;y+SkE(p,p+1],Ty>k:>

S +p)g
Y P 1 .
ez Vi) P;(y+ Sk €pp+1], 7, > k)

By the point [2] of Proposition [2.9]

+00 Y
L/ s c . ,e¥ (1 +max(0,y))
ES (¢ k><k3/2;§)e S

¢ (14 max(0,y))e¥
K32V (i, y)

This proves the first inequality of the lemma. Summing both sides in k£ and using
the Lebesgue monotone convergence theorem, it proves also the second inequality
of the lemma. OJ

2.4. The change of measure related to the Markov walk. In this section we
shall establish some useful properties of the Markov chain under the exponential
change of the probability measure, which will be crucial in the proofs of the results
of the paper.

For any A € R, let P, be the transfer operator defined on % by, for any g € €
and ¢ € X,

(2.23) Pag(i) =P (¥ g) (i) = E; (X g(X1)).
From the Markov property, it follows easily that, for any g € €, 7 € X and n > 0,
(2.24) 1g(i) = E; (X5 g(X,)).

For any non-negative function ¢ > 0, A € R, ¢ € X and n > 1, we have

(2.25) Ng(i) >  min _ eMe@)tte(e)) prgy

T1,...,Tp EXT

Therefore the matrix P is primitive i.e. satisfies the Condition[I] By the Perron-
Frobenius theorem, there exists a positive number k(\) > 0, a positive function
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: X — R%, a positive linear form vy: ¥ — C and a linear operator ), on ¢
such that for any g € ¢, and i € X,

(2.26) Pig(i) = k(A)va(g)oa(i) + Qx(g) (D),

(227) V) (12)\) =1 and QA (U)\) =V) (Q)\(g)) =0

where the spectral radius of @) is strictly less than k(\):
1939l exn

(2.28) O <ae gl

Note that, in particular, k() is equal to the spectral radius of Py, and, moreover,
k()) is an eigenvalue associated to the eigenvector vy:

From ({2.26)) and ({2.27), we have for any n > 1,
(2.30) Pg(i) = k(A)"va(g)oa(i) + @3(9)(2)-
By (2.28)), for any g € ¢ and i € X

. PLg(i) :
i k:?)\)" = va(g)ua(i)

and so for any non-negative and non-identically zero function g € ¥ and i € X

(2.31) EO) = lim (Phg(i)"" = lim BV (% g(X,)).

n——+oo
Note that when A = 0, we have k(0) = 1, vo(i) = 1 and v(i) = v(i), for any
i € X. However, in general case, the operator P, is no longer a Markov operator
and we define P for any A € R by

(233 Dygli) — Plewd _ P (M gu) (i) Ei (¥ g(X1)un(X0)

ENoa() — EN)ua@) k(A)va(i) ’
for any g € € and i € X. It is clear that P, is a Markov operator: by ,
Px(va)(2)
P,v = =1,
S TPV ING

where for any ¢ € X, vg(i) = 1. Iterating (2.32) and using (2.24)), we see that for
anyn>1, g€ % and i € X.

n - ((oASn (X,
(2.33) Plg(i) = P<>\(9U/\>(Z) _ E; ( 9(Xn)oa(X ))

kE(N)"vy () k(X)) (1)
In particular, as in (2.25)),
. - P"g(i)
no(i) > Mp(e1)+-+(an)) ,
PRgli) 2 = O UA(In)k(/\)nUA@)

The following lemma is an easy consequence of this last inequality.
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Lemma 2.14. Assume Conditions [1 and [3 for the Markov kernel P. Then for
any A € R, Conditions (1] and @ hold also for the operator Py.

Using (2-30) and (2.33), the spectral decomposition of Py is given by

BRo() = v (gen) ) + I = o 0)n) + G310) )

with, for any A € R, g € ¥ and i € X,
(2.34) Da(g) = va(gun) and Gx(g)(i) = W
By (227),

(A Qx(gvr) < Qa(va)(2)

5 (Qx(9)) = v < 2@; > =0 and Qy(v) = k&);(z) =0
Consequently, &7, is the positive invariant measure of P, and since by ,

1@ (903 [l

<G e " HgHoo ’

Q9|

oo k(A)" minjex vy
we can conclude that for any (i,7) € X2,
PR, J) — 2a)] < cne .

Fix A € R and let P; and E; be the probability, respectively the expectation,
generated by the finite dimensional distributions of the Markov chain (X,,),>0
with transition operator P, and starting at X, = 4. Forany n > 1, g: X» — C
and 1 € X,

) E; (¥ g(X1, ..., Xo)on(X,
(2.35) B (g(Xs,..., X)) = ( g(k(k)%@)) (X))

We now proceed to formulate some properties of the function A +— k(A) which
are important to distinguish between the critical and three different subcritical
cases.

Lemma 2.15. Assume Conditions [1] and[§ The function X\ — k(\) is analytic
on R. Moreover the function K: X+ In(k(X)) is strictly convex and satisfies for
any A € R,

(2.36) K0 =) = 55(0)
and
(237)  K"(\) = (p*) = &a(p)* +2 io 25 (0P5p) — 02 (p)?] = 53> 0,
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Proof. 1t is clear that A — P, is analytic on R and consequently, by the pertur-
bation theory for linear operators (see for example [I8] or [§]) A — k(N), A — vy
and \ — v, are also analytic on R. In particular we write for any h € R,

h2
P)\+h = P,\ + hPl)\ + ?P//{ —+ 0(]12),

2
Unyn = Uy + hv\ + ?U/)f + o(h?),

k(A +h) = k(\) + hE'(\) + }gk;”(A) + o(h?),

where for any h € R, o(h?) refers to an operator, a function or a real such
that o(h?)/h* — 0 as h — 0. Since vy, is an eigenvector of Py,;, we have
Py invain = k(A + h)vygp and its development gives

Pyvy = k(A)uy,
(2.38) Pyv) + Ploy = E(A\)vh + K (N)oy,
(2.39) ;Pw’; L P+ ;P;'UA _ ;k()\)v;’ RO, + ;k”(x)w.
Since v, is an invariant measure, v, (Pyg) = k(A)v,(g) and implies that
E(Nvy (v)) + vy (Pioy) = k(AN (v)) + K ().
In addition, by (2.23), Piuy = P, (pvy). Therefore,
E(Mva (pva) = K'(A),

which, with the definition of &, in ({2.34)), proves ([2.36).
From ([2.39)) and the fact that v (P,g) = k(A\)va(g), we have

1 " / / 1 "
= SR)wa (03) + K (Vv (v3) + 56" (V).
So,
EO) () 42 o~ £ )]
By (2-36)), we obtain that

IOV IOV
o= - (i)
(2.40) = vy (P0r) = 13 (pva) + 2 [wx (pvh) — va (poa) s (0))]
It remains to determine v}. By (2.38)), we have
, Py Pa(puy) /’f'()\)vA

TR T RN R
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and for any n > 0, using ([2.36]),

Py Pyl PYT (puy)
9 41 A Eaun By A
(2.41) kO k() (V) v (pox) va

Note that
P (pva) A (pva)
W — Uy (pv)\) U\ = W
By (22.28),
Pn+1
Hw — V) (pua) va N < ene D ooy || = e A
n+1_/
Consequently, by ([2.41] - the series >-,~¢ | 7 o3 1))* — :(f\)nfﬁ} converges absolutely and

we deduce that
Pn+1 PUA)

il o —uA(pUA)UA].

In particular,

VA (1) = S s (pua) — i (pu)] = 0,

n=0

and

1o vy Pn+1 (N 9
vy (pvy) = Z [ (pk(;)nflp )) — Vi (pvn) ] :

n=0

Therefore (2.40|) becomes

K//()\) =, <p2v/\> — I/i (p’l))\) + 2 ZO:O

n=0

[m (PP3* (1)

()t V) <PUA>2] :

To conclude the proof of the lemma, we establish that K”(\) > 0, from which the
strict convexity of K follows. By (2.34)),

(2.42) K"(\) =y (33) +2 f o3 (aP35s) ]

where for any A € R, gy = p—vx(p)vo. Moreover, Conditions |ljand [3jand Lemma
2.14] imply that the normalized transfer operator P, together with the function

px satisfies Conditions [I| and (3] In conjunction with (2.42)) and Lemma 10.3 of
[12], this proves that (2.42)) is positive and so (2.37)) holds. O
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3. PROOFS IN THE CRITICAL CASE

In this section we prove Theorem . By equations and , the survival
probability of the branching process is related to the study of the sum ¢! =
e 4 S0 ek i1, where (S,)ns0 is a Markov walk defined by . Very
roughly speaking, the sum ¢, ! converges mainly when the walk stays positive:
Sp > 0 for any k£ > 1 and we will see that (at least in the critical case) only
positive trajectories of the Markov walk (S),),>0 count for the survival of the
branching process.

Recall that the hypotheses of Theorem are Conditions and £'(0) =
v(p) = 0. Under these assumptions the conclusions of all the theorems of Section
hold for the probability P;, for any ¢ € X. Recall also that E;fy is the expec-
tation corresponding to the probability measure . We carry out the proof
through a series of lemmata.

Lemma 3.1. Assume conditions of Theorem . For any m > 1, (i,y) €
supp(V), and j € X, we have

lim P;(Z,>0; X, =j|7,>n)=E (¢a)v(j).

n—-+oo
Proof. Fix m > 1, (i,y) € supp(V), and j € X. By ([2.2)), for any n > m + 1,
Pi(Zn>0,X,=3,7y>n)=E P (Z,>0|Xq,....,X,) ; Xpy=7,7,>n)
=E; (E; (¢m | X1,....Xn) ; Xpn=13, 7 >n)
=E (¢gn; Xn=1J,17,>n).
Using Lemma [2.12] we conclude that
lim IP’i(Zm>O;Xn:j|7y>n):nl_i£100Ei(qm;Xn:j]Ty>n)

n—-+00
= E/, (gn) ().

By Lemma we have for any (i,y) € supp(V), k > 1land n > k+ 1,
[ (1)

< <n:i=
(3.1) O\Wm\ﬁ-lggﬁﬂy
By (2.9) and (2.11]), this equation holds also when n = k. Moreover, by Lemma

P

< 400 ]P’Zy—a.s.

(3.2) Moo := lim ey € [0,m]  Pf-as.

n—-+oo

Let ¢ be the following random variable:

+o0 -1
(3.3) (oo = [Z e 5k nkﬂ,oo] € [0, +o0].
k=0
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. -1 : +
The random variable ¢ is P/,

B2,

-integrable for any (i,y) € supp(V): indeed by

+oo
G < D€ %
k=0
Using Lemma [2.13] for any (i,y) € supp(V)
400 Y
4 [ 1 N _s ¢ (14 max(y,0))e
G4 B () <uE (z ‘ ) <otLmeln O o
Lemma 3.2. Assume conditions of Theorem[1.1. For any (i,y) € supp(V),
- + (-1 1\ _
and
(3.6) lim B (Jgn — gool) = 0.

m—+oo Y

Proof. Let (i,y) € supp(V) and fix [ > 1. By (2.8) and (3.3]), we have for all
m =1+ 2,

E;, (o' - 6x'|) = E, (

m—1 400
-8 -S -S
ey e, — Y€ ’“77k+1,oo|>
k=0 k=0

!
< EZZ/ (e—Sm) + E;,ry (; e ok Mkt 1,m — 77k+1,00|>
—0

k=l+1 k=m

By (1) and (2.

E;, (‘%1 - q;}D <E, (e—sm) +E, (21: ™% M 1m — 77i<:+1,oo|>
k=0

—+o0
—I—nEify ( > eS’“) .

k=l+1

m—1 +o0
+Ef, ( S e mhgam — 77k+1,oo!) + Ef, (Z oSk 77“1,00) .

Using Lemma [2.13 and the Lebesgue monotone convergence theorem,

C o an e maxo)er (1 = 1
Eiy (‘Qm Qoo ) S V(i,y) m3/2 +n > L3/2

k=I+1

l
+ E;,ry (Z e Mkt 1,m — 77k+1,oo|>
k=0
!

C (1 + max(y 0)) eY 1 n p
< ) n Bt ) - n
V(i y) m3/2 + Vi iy kgﬂe |Mk+1, Mhe+1,00|
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Using (B.1) and (3.2), we have 3 _ge ™ [Niy1m — Mkr100] < 7425 e 5 which
is P, -integrable by Lemma Consequently, by the Lebesgue dominated con-
vergence theorem and ([3.2)), when m — 400, we obtain that for any [ > 1,

1 0))e?
| V(i y)Vi

m——+00

Letting [ — +o0 it proves ({3.5).

Now, it, follows easily from ([2.4)) that g, < 1: for any £ > 0 and m > 1, we write
that P/, (¢ <1—¢) <P, (g5 —q,' < —¢). Since by (B.5)), ¢, converges in

P}, -probability to ¢, for any e > 0 we have P{, (¢)' <1 —¢) =0 and so
(3.7) 0o < 1 P} -a.s.

Consequently, |gm — Goo| = Gmleo 16, — 4| < 1a,," — ¢ | and by (3.5)) we obtain
9. .

Let U be a function defined on supp(V') by
U(i,y) = Ef, (g) -
Note that for any (i,y) € supp(V), by 8.4), g > 0 P;fy—a.s. and so
(3.8) Ul(i,y) > 0.
By (.7)), we have also U(i,y) < 1.

Lemma 3.3. Assume conditions of Theorem 1.1 For any (i,y) € supp(V') and
7 € X, we have

lim lim P;(Z,>0;X,=j|7 >n)=v()U(,y).

m—-+00 n—-+00

Proof. By Lemma 3.1}, for any (i,y) € supp(V), j € X and m > 1, we have
lim P (Z, >0; X, =j|7y,>n)=v()E], (¢n) -

n—+400
By (3.6]), we obtain the desired equality. O]
Lemma 3.4. Assume conditions of Theorem[I.1 For any (i,y) € supp(V) and
g€ (0,1),

lim limsupP; (Zn >0, Zgn) = 0|7, >n) =0.

M—+00 p_si0o

Proof. Fix (i,y) € supp(V) and 6 € (0,1). For any m > 1 and any n > 1 such
that [6n] = m + 1 we define 6,, = |In] and we write

Iy =P (Z, >0, 2y, =0,7,>n)
=P, (Z,>0,7,>n)—P;(Zy, >0, 7,>n)
=E (P (Zn>0|Xy,.... X)) ;7 >n)
—E;, (P;(Zy, >0|Xy,...,Xp,) ; 7y >n).
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By (2.2),
Iy =Ei (|gm — q0,] ; 7y > ).
We define J,(i,y) :=P; (1, > p) for any (i,y) € X x R and p > 0 and consider
I :]P)Z(Zm >O, Zgn :OlTy >n)
for any (i,y) € supp(V'). By the Markov property, for any (i,y) € supp(V),

IO ( Jn—@ (X9 7y+89 )
I = ——— = Ei { [¢m — g, — =Ty > 00|
Y TGy | | Tnli,y) !
By the point [2] of Proposition [2.7]
c
I < E; (Igm — qo.| (L +y + So,) 5 7y > 0n) .

Using also the point [3| of Proposition [2.6] we have

C
I < Ei (|gm — qo,| (1 +V (X, y+ Sp,)) ; 7y > 05) .
JA =0, (,y) ’

Using (2.4) and ([2.22)), we obtain that

s = e)cnjn@, ; (Bi (7 > 00) + Vi, 9)ET, (Igm — a5,]))
Using the point [1] of Proposition 2.7} for any (,y) € supp(V),
1 1 2ro
(L= 0ndu(iy) /(L= 0P, (7, > n) "+ 21—V (i,y)’
Moreover using again the point |1| of Proposition and using ,

Py (7, > 0) + VEWEL, (a0 — a0.]) — VEWEL, (a0 — asl).

Therefore, we obtain that, for any m > 1 and 6 € (0, 1),

limsup [; <

C
n——+00 \/m e (|q ¢ |)

Letting m go to +oo and using (3.6, we obtain lim,, , . limsup,_,,  [; = 0,
which proves the assertion of the lemma. (]

Lemma 3.5. Assume conditions of Theorem [1.1  For any (i,y) € supp(V),
jeX, and 0 € (0,1),

lim Py (Zign) >0, X, =j |7, >n) =v(i)U(,y).

n—-+0o0o

In particular,

(3.9) lim P; (Zjgn) > 0|7y >n) =Uli,y).

n—-+0o
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Proof. Fix (i,y) € supp(V) and j € X. Let 0, := |6n] for any 6 € (0,1) and
n > 1. For any m > 1 and n > 1 such that 6, >m+1 we write

P (Zy, >0, X, =j|7>n)

=P, (Z,>0,%Zy, >0, X,=j|1,>n)

=P (Z,>0,X,=j|ry>n)-P;(Z,>0,2y, =0, X,,=j|1,>n).
By Lemma [3.4]

lim limsupP; (Z, >0, %2y, =0, X, =j|7,>n)

Mm—=+00 py400

< lim limsupP; (Z,, >0, Zy, =0|7,>n)=0.

m—+00 p 100
Therefore, using Lemma [3.3] the first assertion of the lemma follows. O
Lemma 3.6. Assume conditions of Theorem[1.1. For any (i,y) € supp(V),
lim P; (Z,>0|7, >p)=U(i,vy).

p—+
Proof. Fix (i,y) € supp(V). For any p > 1 and 6 € (0,1), we have
Pi(Z,>0,7,>2+1)+P;(Z,>0,p<7,<t+1)

P (Z,>0]|1,>p) =

]Pi (Ty > p)
Let n = {%J + 1 and note that [6n] = p. So, by (3.9),
i . ]P)z (Ty > n)
Jm Pi(Z, > 0|7, >p) = U(%?J)pk{&)m
P, (Z,>0,p<T, <
+ lim (Zy>0,p<m n)
p—r+oo P; (1, > p)

By the point [I] of Proposition [2.7, we obtain that

P, (Z,>0,p<T1,<n)
Jim Py (Z, > 0|7, >p) = Uli,y)Vh+ lim P =) .

Moreover, using again the point (1| of Proposition [2.7 m for any 6 € (0, 1),
P;(Z,>0,p<m,<n) < P; (1, > p) — Pi (1, > n) L 1-VE
P; (1, > p) P; (7, > p) p—+00
Letting # — 1, we conclude that
lim P (Zpy>0|7, >p)=U(i,y).

p—+

O

Lemma 3.7. Assume conditions of Theorem[1.1 For any (i,y) € supp(V) and
0 e (0,1),
lim Py (Zign) >0, Zy = 0|7, >n) =0.

n—-+0o00
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Proof. For any (i,y) € supp(V), 6 € (0,1) and n > 1,
Pi (Zion) > 0, Zo = 0|7y > n) =P; (Zjgn) > 0|7, >n) = Pi(Z, > 0|7, > n).

From (3.9) and Lemma , the last difference converges to 0. [l
Lemma 3.8. Assume conditions of Theorem[1.1 For any (i,y) € supp(V) and
JjeX,

lim P;(Z,>0,X,=j|7,>n)=v()U(@,y).

n-r+oo
Proof. For any (i,y) € supp(V), j € X, 0 € (0,1) and n > 1,
Pi(Zy >0, Xp=j|7y>n) =P (Zjpn >0, X, =j|7, >n)
— i (Zign) > 0, Z, =0, X = j|7, > n).
Using Lemmas [3.5) and [3.7] the result follows. O
Proof of Theorem [1.1} Fix (i,j) € X?. For any y € R, we have
0<P;(Z,>0,X,=3j)—-P;(Z,>0,X,,=j,7,>n)
(3.10) <P (Z,>0,7,<n).

Using (2,
P (Z,>0,7,<n)=E;(¢,; 7 <n).
Moreover, by the definition of ¢, in (2.1)), for any k£ > 1,
@ < L (1) X+ % fle (1) = 5.
Since (qx)p>1 iS non-increasing, ¢, = Min;cpc, g < eMMi<k<n Sk Therefore

P, (Z,>0,1,<n)<E, (eminl@@ Sk T, < n)

+o0 )
— oY Z E; ( emln1<k<n{y+5k} :
p=0

—(p+1) < lr&lgn{y%—Sk} < —p, Ty <n>

+00
(3.11) <e > e PP (Typpr1 > n).
p=0
By the point [2] of Proposition [2.7]
—y +o0
P, (Z,>0,1,<n)= e > e (1+p+1+max(y,0))
\/ﬁ p=0
(3.12) o ce ¥ (1 +max(y,0))
: < NG :

Note that from the point [3] of Proposition [2.6] it is clear that there exits yo =
Yo(7) < +oo such that for any y > yo, we have V(i,y) > 0 i.e. (i,y) € supp(V)
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(for more information on supp(V') see [13]). Using Lemma (3.8 and the point |1] of
Proposition for any y > yo,
2w (j)UG y)V (i, y)

(3.13) VP (Zy >0, Xy =j, 7, >n) — .

Let

I(i, ) = lim inf /nP; (Z, > 0, X, = j)
and

J(i,7) = lim sup /nP; (Zn >0, X, = 7).

n——+o0o

Using (3.10)), (3.12) and (3.13)), we obtain that, for any y > (i),
2v()U (4, y)V (i,y)

< 1(i,7)
2mo
2v()U (3, y)V (2
(3.14) < J(i,7) < v(Jj) (2 YV (iy) +ce™ (1 4+ max(y,0)) < +o0.
o

From (3.13)), it is clear that y — W is non-decreasing and from ([3.14]) the
function is bounded by I(i,7)/v(j) < +oo. Therefore

u(i) :== lim 206, y)V (i, y)

y—+o0 2mo

exists. Moreover by (3.8)), for any y > yo(7),

uli) > 20(,9)V(iy) _

2ro

Taking the limit as y — +o0 in (3.14]), we conclude that
lim VB (Zy > 0, X, = §) = v(j)uli).

n—-+o0o

which finishes the proof of Theorem [I.1]

4. PROOFS IN THE STRONGLY SUBCRITICAL CASE

Assume the hypotheses of Theorem that is Conditions and k(1) < 0.
We fix A = 1 and define the probability P; and the corresponding expectation E;
by (2.35)), such that, for any n > 1 and any ¢g: X" — C,

~ E; (e g(X1, ..., X)) v1(X,
(11) B (g%, X)) = B Sl )
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By (2.2)), we have, for any (i,7) € X? and n > 1
Pi (Zni1 >0, X1 =J) = E;i (i1, Xnt1 =)
~ ~Snt1 . 1 .
=L, <)C]n+1; Xny1 = ]) kf(l)n+ vy (7)

(%1 (Xn+1
~ s . n+1 Ul(i) e_p(j)
Ei (e nqn (f](o)) ; Xn+1 :j> k(l) T(j)

where ¢,(s) is defined for any s € [0, 1] by (2.1). From Lemma [2.2, we write

e g, (£3(0)) = [1—2( =750 " Z,:esn et (50 ))]
) g e e )]

As in Section , we define the dual Markov chain (X) where the dual

Markov kernel is given, for any (i, j) € X2, by

n=0’

. Uy o er(®) vi(j
Bi(i.d) = Palii) o) = P<~“>k<1>yl(é>>-

Let (S} )n=0 be the associated Markov walk defined by (2.14]) and

(43) i) = [+ e )]

where

(44)  0i0) =gx; (P, 0o fx; 0 [5(0)  and () = gx; (5(0)).
Following the proof of Lemma [2.2] we obtain

(4.5) 65(j) = % (1= fxz 00 fx; 0 f5(0)).

We are going to apply duality Lemmal[2.5] The following correspondences designed
by the two-sided arrow <— are included for the ease of the reader:

Xp — X pg1,
St s S p— S,
() <= M—k+1,0 (5(0)),
G (7)< ¢ 5 4, (f(0)) .
Now Lemma implies,
Pi (Znt1 >0, Xpp1 =)

~ () (i e—PU)
(46) = B} (6.0): Xioa =) k()™ (éfufvhﬁ |
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where IE; is the expectation generated by the trajectories of the Markov chain
(X ) s starting at Xg = j.
Note that, under Condltlon 2] by Lemma[2.3 we have, for any j € X and k >

e _ fi(1) -
(4.7) 0<n(j) <n= max ) <+oo  Pj-as.
In particular, by (4.3),
(4.8) 0,(7) € (0,1), Vn=1.

For any 7 € X, consider the random variable

-1

(4.9 0) = Tyt e )| e
_ f;
Lemma 4.1. Assume that the conditions of Theorem [I.3 are satisfied. For any
JeX,
(4.10) Jim g (7) = a5 (7) € (0,1], Pj-as.
and
(4.11) im B (1620) — % ()]) = 0.

Proof. Fix j € X. By the law of large numbers for finite Markov chains,

Ok — 1(—p), Ip’j-—a.s.

This means that there exists a set /N of null probability ]f";‘-(N ) = 0, such that for
any w € Q\ N and any € > 0, there exists ky(w, ) such that for any k > ko(w, €),

e H W () (w) < ey,
where for the last inequality we used the bound (4.7)). By Lemma [2.15 we have
1(p) =K' (1)/k(1) < 0. Taking e = —1(p)/2 we obtain that, for any k > ky(w),

21(p)

0 < e 5@ i) (w) <2,

Consequently, the series (qn(j))_1 converges a.s. to (g% (j))”" € [1,400) which
proves . By 4.8 . (q: (5 n>1 is bounded a.s., so by the Lebesgue dominated
convergence theorem l1mn_>+oo EZ (lgn(7) — a5, (j )|) = 0. O

Lemma 4.2. Assume that the conditions of Theorem [I.3 are satisfied. For any
(i,7) € X%,

lim E*( w()s Xo = Z) = ’71(2)@; (75 (5)) -

n—-+0o0o
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Proof. Let m > 1. For any (i,7) € X2, and n > m,
E; (QZ@) » X = ")
(4.12) =5 (q5,(4) s Xy =) + B (q30) — 45.(5); Xipr =14).
By the Markov property,
& (0,000 X =1) = B3 (00 (P (500

Using (2.16) (which holds also for P¥ by Lemmas and [2.4) and ({.11)), we

>n—m+1

have
i lim B (q5,0); Xy = i)
(4.13) = lim E; (g, (7)) 21(0) = E] (g5 (7)) 21.(4).

m—+00
Moreover, again by (4.11]),
Jdim lim (B (40) - 45,0) s Xoa = )
< dim  lim EG (g, () — ¢, ()) = lim EF (jgs () — ¢, (7)]) = 0.

Together with (4.12]) and (4.13)), this concludes the lemma. O

Proof of Theorem m By (4.10)), the function
() e PV E (65 (5)
u(j) = :
v1(J)
is positive. The result of the theorem follows from Lemma and the identity

().

5. PROOFS IN THE INTERMEDIATE SUBCRITICAL CASE
We assume the conditions of Theorem [1.3] that is Conditions [I{3|and &'(1) = 0.

As in the critical case the proof is carried out through a series of lemmata.
The beginning of the reasoning is the same as in the strongly subcritical case.

Keeping the same notation as in Section 4| (see (4.1)-(4.6))), we have

i 1(5)vy (i) e=PW)
(5.1) P (Zny1 >0, Xppy =7) = E; (q’t(]) P Xnpr = Z) k(l)”“ (IQ(Z)(UI(J)

Under the hypotheses of Theorem [1.3] the Markov walk (S ), is centred under
the probability P} for any j € X: indeed &(—p) = —k'(1)/k(1) = 0 (see Lemma

2.15)) and by Lemma [2.14] Conditionsand hold for Py. In this case, by Lemma

2.4] Conditions [1] and ~hold also for Pf. Therefore all the results of Section

hold for the probability P*. Let 77 be the exit time of the Markov walk (24 5%),>0:
mr=inf{k >1:2+ S, <0}.
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Denote by f&* the harmonic function defined by Propgsition with respect to the
probability P*. As in (2.22), for any (j,z) € supp(V;*), define a new probability
IP’*+ and its associated expectation £} Tono(X:n>1)by

1 - .
—— (g (X, ..., XV (X, 2+ 8) ;75 >n),
Vi(j, 2) o ' )
for any n > 1 and any ¢g: X" — C.

Eif(9(XT, . X)) =

n

Lemma 5.1. Assume that the conditions of Theorem [I.3 are satisfied. For any
m > 1, (j,2) € supp(Vy*), and i € X, we have

lim B (q),(): Xopy = |7 > n+1) = E5t (g,0) 91(0).

n—-+00

Proof. The equation (4.5)) gives an expression for ¢ () in terms of (X7, ..., X}).
Therefore, the assertion of the lemma is a straightforward consequence of Lemma

2.12 ]
As in Section using Lemmaﬂwe have for any (4, z) € supp(V;*) and k > 1
"
(5.2) 0<ni(j) <n= max JJ:,(< >) <400 and  ¢.(jy) € (0,1], P;t-a.s

Counsider the random variable

5:3) 0= |y e i

-1

€ [0, 1].

Lemma 5.2. Assume that the conditions of Theorem [1.3 are satisfied. For any
(4, 2) € supp(V7y")

(5.4) Jim E5E(((4,0) " - (@) 7]) =0,
and
(5.5) Jlim E5E (1g5,() — 4% () = 0.

Proof. Fix (j,2) € supp(Vy*). By [@3), (5-3) and (5.2)), for any m >
Bt (|40 - <qzo<j>>—1\) < it ( S ) |

k=m-+1

From this bound, by Lemma and the dominated convergence theorem when
m — 400, We obtain ([5.4)).
Now by (5.2)) and (5.3)) we have for any m > 1,

Bt (1g5,() — a5 () = BE (s (Daz D (@, 6) ™ = (a5.06)) ')
<EZ (|(gnG) ™ - <qoo<y>>‘1\) ,
which proves . O
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Let U be the function defined on supp(V;*) by

U*(j.2) = E; L (a%(7) -
Using (5.2)) and Lemma [2.13] we have
-~ _ ]_ ~ = *
(5.6) Bt ((02() ") € = + 0k (Zesk) < +oo0.
1= f;(0) st

Therefore ¢i, > 0 P} -a.s. and so U*(j, z) > 0. In addition, by (5.3), U*(j, 2) < 1.
For any (j,z) € supp(Vy),
(5.7 U*(G,2) € (0,1,

Lemma 5.3. Assume that the conditions of Theorem [1.5 are satisfied. For any
(4,2) € SUpp(V*) and i € X, we have

lim lim E*( ) X =1

m——+00 n—-+00

>0+ 1) = U"(j,2)in ().

Proof. The assertion of the lemma is straightforward consequence of Lemmas
and 5.2l O

Lemma 5.4. Assume that the conditions of Theorem [1.5 are satisfied. For any
(4, 2) € supp(V;*) and 6 € (0,1), we have

7'2*>n+1):0.

lim lim sup [E (J) = don (])‘

m—+00 p_y oo (‘qm

Proof. Fix (j,2) € supp(V;") and 6 € (0,1). Let m > 1 and n > 1 be such that
On > m+ 1. Set 0, = [On]. Denote

Iy == E; (|a5,) — 45, 0)
Note that by the point [I] of Proposition 2.7, we have J,(j,2) > 0 for any n large
enough. By the Markov property and the point [2| of Proposition [2.7]

ME; ( m(d) — (J;n(j)‘ Jnt1-0, (X;n, z+ S;L) ;T > Hn)

c AR N
S Jni1(7, z)mEa‘( (7) %n(])‘ (1+z+59n) LT > en)_
Using the point |3| of Proposition and ,

¢
Iy <
Jni1(J, 2)/n(1 = 0)

x &5 (|a5.G) — a5, ()
< ¢ P (77 > 0,) + Vi(j, 2) B2
TG g 7 > e TG

T >n—|—1> and In(d, 2) == IP’;‘ (17 >n).

Iy =

( (Xe,z—i-Se ));T:>0n)
SOERON)E
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By the point 1] of Proposition and ([5.5]), we obtain that

evn+1 =, . . /-
lim sup /o < limsup ———=E; ( q.(7) — qen(j)‘)
n—+o00 n—+o0o n(l _ 6)
C k3 * (- * [ .
= ———E7 (|qn.(5) — a5.(4)]) -
(1—-16)
Taking the limit as m — 400 and using (5.5)), we conclude the proof. O

Lemma 5.5. Assume that the conditions of Theorem [1.3 are satisfied. For any
(4,2) € supp(V;), i € X and 6 € (0,1), we have

lim B} (qfg (7); Xp = 7|70 > n+1) = U'(j, 2)in(i).

n—-+o0o

Proof. For any (j,2) € supp(Vy"), i € X, 6 € (0,1), m > 1 and n > m + 1 such
that [On] > m, we have

Iy := E% (qrthJ (7); X:L+1 =

]E ( m( )7X;+1:i
+ B (o) ) — 4 () s Xy =i
:Ill

By Lemma , lim sup,,,_, ;o limsup,_, . [/1] = 0. Therefore, using Lemma
lim, 100 Lo = U*(j, 2)1(2) and the assertion of the lemma follows. O

i Tz*>n+1)

T:>TL+1)
7';">n+1>.

Lemma 5.6. Assume that the conditions of Theorem [1.5 are satisfied. For any
(4, 2) € supp(V;), we have

lim E*( “(4)

p——+o00

Proof. Fix (j,z) € supp(V;*). For any p > 1 and 6 € (0,1) set n = |p/f] +
Note that p = |On]. We write, for any p > 1,

E; (4,0)
CE (gU):i > n 1) 4B (¢)p 1 <7 <nt 1)
P (17 > p+1) '
By Lemma [5.5] and the point [T] of Proposition [2.7]
E;(q(): 7 >n+1)
Ps(r7 >p+1)

STES(qp(); Xy =i

1eX

TS >p+ 1) =U"(j,2).

T, >p+1)

>n+1
(:>nt1) — U*(j,2) V6.
(17 > p+1) p=too

D%
Tj>n—|—1) J
*
j
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Moreover, using ((5.2) and the point 1| of Proposition

E: (qi(); prl<7<n+1 Pt (17 >n+ 1
](qp(J)~p )gl_j(rz ntl) s
Ps(rr>p+1)

P (77 >p+1) potoo
Therefore, for any 6 € (0, 1),

lim E*( “(J) |72 >p+1> —U*(j,z)\/g‘ <1-06.
p—r+00
Taking the limit as # — 1 it concludes the proof. OJ

Lemma 5.7. Assume that the conditions of Theorem are satisfied. For any
(7, 2) € supp(V;*) and 0 € (0,1), we have

() — 4,(5)]

Proof. Using the fact that 7;(j) are non-negative and the definition of ¢’ (j) in
(4.3]), we see that (¢%(j))n>1 is non-increasing. Therefore, using Lemmas 5.5 and

b6l

Jim B (]

T:>n—|—1):0.

o= lim 5 (|alon () — a20)]| 72 > n+1)
:nl—lﬁfloozE* (q|_9n )i X1 = 10|72 >”+1>

— lm B (q) 7 >0+ 1) = UG, 2) — U"(j.2) = .

n—-+00

OJ

Lemma 5.8. Assume that the conditions of Theorem are satisfied. For any
(7, 2) € supp(Vy*) and i € X, we have

lim E*( ()Xo =

n——+oo

Proof. By Lemmas [5.5| m and for any (j,z) € supp(V;), i € X and 6 € (0, 1),

i| 7> n+1) = UG, 2)o(i).

IO :nl—l>I—PooE*( *( )7X;+1:i TZ*>TL+]_)
+ lim E5 (g ( ) = Gony () Xy =i |72 >+ 1) = U(j, 2)0(i).

O

Lemma 5.9. Assume that the conditions of Theorem are satisfied. There
exists U a positive function on X such that, for any (i,7) € X2, we have
B (g P u(j)p (i)
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Proof. Fix (i,7) € X% For any z € Rand n > 1
(620 Xppr =) =B (q3(5); Xy =i, 70 >n+1)
S (qp(j); 77 <n+1).

(5.9) E; (gn(7); 72 < n+1) SEj (q(7) s 72 <m) + B (7 =n+1).

By (4.5), it holds ¢*(j) < e°». Since (¢*(j))n>1 is non-increasing, we have ¢*(j) =
ming <<y, ¢ () < e™imsk<n i Consequently,

E* <Qn(]) 3 T : < n) <e” IE; (emimskgn 245} : ™ < n)

z

+o00 -
<ezzepp;(_(p+1)< min z + S} < p77-;<n>

1<k<n

’ZZe pP* ( Toiptl > n)

Using the point [2] of Proposition [2.7]
ce * (14 max(0, 2))
vn '
By the point [3] of Proposition [2.6] there exists 2o € R such that for any z > z,

Vi(j, 2) > 0, which means that (j, z) € supp(V;"). Therefore, using the point |1| of
Proposition @ for any z > z,

lim /nP; (77 =n+1)

N

(5.10) E: (q5(5); 72 <)

n—-+oo
(5.11) = lim VnP; (17 > n) — Jim VP, (17 >n41) = 0.
Putting together (5.9)), (5.10) and (5.11]), we obtain that, for any z > z,
(5.12) 1_131 \/EIE;‘ (gr(g); 72 <n+1)<ce®(1+max(0,z)).
Moreover, using Lemma and the point [1] of Proposition [2.7],
(5.13)  lim_/nE; (gh(); Xppy =i, 7 >n+1) = V_ol LU, 2) 0 (),

where 1 is defined in (2.37)). Denoting
I(i,j) = hIIllIlf\/_E* (qn( ) X = z)

TLA) o0
and
‘](Z .]) - hm Sup \/—E* (qn( )’ X;+1 = Z) )

n—-+o0o
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and using (5.8)), (5.12)) and (5.13)), we obtain that, for any z > 2,
2V (4, 2) e .
5.14 LR U, 2) (i) < I(1,
1) PLEEU ) < 16.)
2V, 2) e N
< J(@3,5) < =2 22U, 2) 04 (3) + ceF (1 + max(0, 2)) .
(.)€ 2L 2000 + e (14 max(0,2)
By (5.13), we observe that z W is non-decreasing and by (5.14)), this

function is bounded by I(i,7)/21(i). Consequently the limit
2V (4, 2)U*(j
ﬂ(]) -— lim 1 (],Z) . (]:Z)
z—+00 A/ 27T01
exists and for any z > zq, by (5.7)),

(5.15) a(j) > W16,V G2)

271'5'1

Taking the limit as z — +o0o in (5.14]), we conclude that
106, ) = J(i,3) = a(5)1(2).

Proof of Theorem [1.3] By (5.15)) the function
. () e Pl
u(j) =u(j)———=—
(7) = a(y) )

is positive on X. The assertion of Theorem is a consequence of (5.1)) and
Lemma [5.9

Y VJEX7

6. PROOFS IN THE WEAKLY SUBCRITICAL CASE

We assume the conditions of Theorem [1.4] that is Conditions and v(p) =
kE'(0) < 0, ¥'(1) > 0. By Lemma [2.15] the function A — K’()\) is increasing.
Consequently, there exists A € (0,1) such that
_ K

(6.1) KO =715

=wx(p) = 0.

For this A and any i € X, define the changed probability measure P; and the
corresponding expectation E; by (2.35)), such that for any n > 1 and any g:
X" — C,

) E; (X5 g(X1,. .. X,)ox(X,
(6.2) B, (g(Xy,..., X)) = ( g(k(A)%(i))( ).
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Our starting point is the following formula which is a consequence of ([2.1)): for
any (i,7) € X2 and n > 1,

E; (qn+1; Xn+1 = j7 Ty > 77,)

(6.3) =:* (ef’\S” ¢ (f;(0) s Xpy1 =7, 7 > n) k()\)"ﬂm e MU

The transition probabilities of (X,),., under the changed measure are given by
232):

- ey, (4 o
Py(i,j) = WP(ZJ)-

By (6.1]), the Markov walk (S,),>0 is centred under P,. Note that under the
hypotheses of Theorem , by Lemma |2.14] Conditions |1| and |3[ hold also for P,.
Therefore all the results of Section @ hold for the Markov walk (S,),-, under

P;

Let (X;),5o be the dual Markov chain independent of (X,), ., with transition
probabilities P% defined by (cp. ([2.13))

[

~—

Ay
A(2)

As in Section we define the dual Markov walk (S¥),>¢ by and its exit
time 77 for any z € R by (2.17). Let Pi,j be the probability on (2, .#) generated
by the finite dimensional distributions of (X,,, X¥),>¢ starting at (Xo, X§) = (¢, 7).
By (6.1), the Markov walk (S%),>; is centred under P ;:

(6.4) P36, J) = 3

Bj.i) PG,

R

and by Lemma , Conditions [1| and [3[ hold for P%. Let Vj and V5 be the
harmonic functions of the Markov walks (Sy),-, and (S;),,-,, respectively (see

Proposition [2.6)).

We start by some preliminary bounds. The following assertion is similar to

Lemma 2.131

Lemma 6.1. Assume that the conditions of Theorem 1.4 are satisfied. For any
1eX,yeR, k=1 andn > k+ 1, we have

cn3/2

2R, (e-sk e n) < e VY(1 4 max(y, 0))W'
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Proof. Fix1 € X,y € R, k > 1 and n > k + 1. By the Markov property,

Iy := n%/*E,; (e_Sk e M Ty > n)

—+o0 ~
< Zn?’/zekye_)‘pEi (e_sk; y+ S, €lpp+1], 7> n)

+00 B
= Z n3/2 N =P E; (e_S’C Jn—k (Xk, Y+ Sk) y Ty > k‘) ,
p=0
where for any i/ € X,y e Rand p > 1
Jnoi(i',y) =Py (y + Sui € [p,p+ 1], Ty >n—k).
By the point [2] of Proposition [2.9],

Jn-k(i,y') < 1+ p)(1 +max(y', 0)).

c
(n — k)3/2 (
Consequently,

3/2

Ay E.
Iy < eV o k)g/QEZ(

e (1+y+ Sk ;Ty>k)Ze (1+p)

3/2
o N

<e mf@l (G_Sk (1+y+5k) ;’Ty>k’)

3/2

n
< o1+ 3/226 2+p)Pi(y+Sk€p,p+1];7,>k).

(n —k)
Again by the point [2] of Proposition [2.9]

CnS/ 400

I, < e(1+>\)y(1 + max(y, O))(k)—?)/%?)/2 Z e P(2+p)(1+p).

This concludes the proof of the lemma.
Forany [ >1and n > [+ 1, set
G (f5(0)) =1 = fisrn (f5(0)) =1 = fx,y 0+ 0 fx, © f5(0),

In the same way as in Lemma [2.2] we obtain:

Sl —Sh n—1

(6.5) G (f5(0)7F + Z I s (£5(0)) 4
T 1= 50 £

where 7j.41,,(s) are defined by (2.7)). Moreover, similarly to (2.4), we have for any
n=>l+12>2,
(6.6) Qi (£;(0)) € (0,1]  Pi-as.
In addition, by Lemma [2.3] for any &k <n — 1,
(6.7) 0 < Mpsan (f(0) <y Pras.
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Lemma 6.2. Assume that the conditions of Theorem[1.4) are satisfied. For any
(i,7) € X* and y € R, we have

I G (£5(0)) 7
g (£5(0))7

Proof. Fix (i,j) € X and y € R. Forany [ > 1,m >1andn > 1+m+ 1, we
have

Iy := n’/’E, (‘e_s’“’" Tn—m.n (fj(O))*1 — e Qi (fj(o))il‘ e M Ty > n)

n—m—1
n3/2Ei< Z e nkr-i-ln f]( )) ASn; Ty >7’L> .

k=l

Using (6.7) and Lemma [6.1]

n—m—1 3/2

Ry cn
< Z Y(1+ max(y,()))—<n EyAEETETS

lim limsup n®?E; (
I;m—+00 pstoo

Let ny := |n/2]. We note that

nin: 1 cn3/2 < 3/ Z C?’L3/2 nzm:l 1
— 3/2k3/2 3/2 k3/2 1 Pt (TL _ k)3/2
400 1 400 1

\CZ k3/2 ZW

Consequently,

400 1 1
limsup Iy < ene™MY(1 4+ max(y, 0)) (Z L3/2 + Z k:3/2>

n——+o0o

Taking the limits as | — 400 and m — 400, proves the lemma. 0

Forany [ >1,m >1and n > [+ m+ 1, consider the random variables
rG) = 1= fua ([1= D) (0 = Faominn (50))] )
:1—fX1o.--ole<[1—f;(l+1(1) X ...
% F D) (1= Sy 20 f 0 £5(0) ),

where [t]T = max(t,0) for any ¢ € R. The random variable ™) () approximates
¢n (f;(0)) in the following sense:
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Lemma 6.3. Assume that the conditions of Theorem[1.4) are satisfied. For any
(i,7) € X2 and y € R,

(£(0)) =i ()| e ¥ 5 7y > ) = 0.

3/21%
i s s

Proof. Fix (i,j) € X? and y € R. Since for any ¢/ € X, fy is increasing
and convex, the function fi41,_m, is convex. So, for any [ > 1, m > 1 and
n=l+m+1,

flJrl,n (f] (0)) = flJrl,nfm (fnferl,n (f](o)))
> 1= floapm@) (U= Facmern (50)]
Since f1, is increasing,
¢n (£;(0)) = 1= fun (f5(0)) < ™ (),

or equivalently

0 < 7™ () = 4o (£(0)).
Moreover, by the convexity of fi,,
(1) = au (£(0)
= fu0 fusrn (5(0) =t ([1 = Hean ) (1= Facminn (5O))] )
< L) (Frrrn 50D = [L= Fyr D) (U= fornn (5OD)] )

< A0 (Bt (D (£5(0)) = i (£5(0))
= &5 Gy (f5(0)) = €% g (f5(0))
S0 G (£5(0)) € qup (fg( )
X (G_Sl Qi (£5(0)) M (fj(o))_l)‘

By (6.5)), we have ¢, (f;(0)) < e~ and so
H() = g0 (£(0)) < €5 (7 g (f5(0) ™ = &5 o (15(0) 7).

In addition, by the definition of r&m)(5) and g, (£;(0)), we have r&™) () —g, (£;(0)) <
1. Therefore, P;-a.s. it holds,

() = gu (£(0))
< min (1,2 (¢ i (£5(0)) ™ = €5 gy (£0) 7)) -

= e
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Using the previous bound, it follows that, for any integer N > 1,
Iy = 0By (|gn (/5(0)) = ri™ ()] e 1y > ) < V02
< By (|e™% qun (£(0) 7 = ™5 g (£5(0) 7 |75 7y > )
+ n’E, (e_’\s”; y+ S, >N, 1, > n) :
Moreover, using the point [2] of Proposition [2.9]

+o00
n3/?E, (e_’\S” Y+ S, >N, 1, > n) < Z N e /2
p=N

Pi(y+ S, €p.p+1], 7, >n) <ce(l+max(y,0 Z e (1 +p).
Consequently, using Lemma [6.2] we obtain that

lim limsup Iy < ce™ (1 + max(y,0 Z e "P(1+p).

Im—+00 pstoo
Taking the limit as N — 400, proves the lemma. O

We now introduce the following random variable: for any j € X, u € R, [ > 1
and m > 1

rm (G u) =1 — fx, 0--- 0 fx, ([1 —e e"q;(j)}Jr) € [0, 1],
where, as in (4.3)) and (4.5)), for any m > 1,
G () = &% (L= fxz 0o+ fx; 0 f5(0)) = [
and as in (4.4)), for any k& > 2

m) = gx; (fxp o -0 fxy o f5(0))  and  nf = gx; (£(0)).
For any (i,y) € supp(Vy) and (j,2) € supp(Vy), let Pf, .. and Ef .. be,

0,2 0Y.,%
respectively, the probability and its associated expectation defined for any n > 1

and any function g: X*™ — C by

1= fj<0) k=1

Ef (g (Xl,...,Xl,X;,...,X;‘)):Em»(g(xl,...,XI,X;,...,Xf)><

1,Y,J,2
Vi (X y+5) Vi (X5, 2+ S5)
V)\<Z7y) V)T(‘% Z)
For any j € X let 25(j) € R be the unique real such that (j, z) € supp (V;)

(6.8) ;Ty>l,TZ*>m>.

for any z > zy and (j, z) ¢ supp (‘7/\*) for any z < zy (see [13] for details on the
domain of positivity of the harmonic function). Set zy(j)" = max {2¢(j),0}.
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Lemma 6.4. Assume that the conditions of Theorem [I.4) are satisfied. For any
jeX, (i,y) € supp (V)\), [>1andm > 1,

lim 02 (r™ () €55 X = 4, 7y > )

n—-+oo

TS VI S v (Lm) [ - N o

- \/%0_3 e 20()* € ]Ei,y,j,z (Too (]7 Z = y)) V>\(7'7 y)vz\ (j7 Z) dZVA(j)
Proof. Fix (i,y) € supp (VA) € X, >1and m > 1 and let g be a function
XHm x R — R, defined by

Gty i ity -0y 2) = € e Loy Po(in, 5)

X [1 — fiyo--0f; ([1 — &7 Y=plin)==plin—mt1)=p(ir)=—p(i1)
+
x (1= fiy o0 fi, 0 £50)] )],
for all (i1,..., 00, 0n—mi1y---,in, 2) € X7 x R and note that on {7, > n},
g(Xh s 7Xl7 Xn—m+17 s 7me + Sn) = Tg’m)(j) e_)\STL P)\(Znuj)

Observe also that since 0 < g(i, ..., i, lnomits-- -1 0n,2) < e Logy, the
function g belongs to the set, say €+ (X”m X R+), of non-negative function g:
XHm x R, — R, satisfying the following properties:

o for any (i1, ...,414m) € X the function z — g(i1, ..., % 1m, 2) is contin-
uous,
e max;, su (i i14m, 2)(1 + 2)*T¢ < +oo for some € > 0
140 i14m €X SUP >0 G\ 215 - - -5 Utm, .

Therefore, by the Markov property and Proposition [2.10, we obtain that

[0 = ngﬁloo 713/ E (7’ l,m) ; XnJrl = .j7 Ty > TL)
= lim " (g (Xl, XL Xty Xy Sn) 5Ty > )
2 ~
_ s (z2—y) E ( ({1 m) 2 — P (X 5
T3 [Ty (.= = y)PA(XT. )

j'ex

x Vi (X, y+S) Vf (Xpz2+Sn) 1y >1, 10 > m)ﬂ,\(j’) dz.
Since v, is f”j\—invariant, we write

2 +o0 ~
— e A=) > P ( v E; (r( ™) (4, 2 —
’_27m3/0 = A(J1, 7)Pa () (j Y)

X Va (X, g+ 5) V;<X;,z+s;>;ry>z,T:>m\Xf:j1)dz.

Iy =



O©CO~NOOOTA~AWNPE

BRANCHING PROCESSES IN MARKOVIAN ENVIRONMENT

Using the definition of P% 5 in (6.4]), we have

Iy = 2 /+OO e M) ) (5)E; < Em (G2 —y)Va (X1, y + S))
V2ra3 Jo b % ’

X%HX%Z+SQ;@>le>m>®.

Now, note that when (7, z) ¢ supp (‘Z{*), using the point [1| of Proposition ,
Eij (r&™ Gz — p)VA (X y + SO VY (X 2+ 83) 57 > 1, 72 > m)
<E; (Vi Xy +8) 57, > D) By (Vi (X5, 24 S) 5 72 > m)
= V(i y)Vx (j,2) = 0.
Together with , it proves the lemma.
Consider for any [ > 1, j € X and u € R,

e
69) PG =1 fr oot ([1-e e gt ()] ) € 0.1)
where as in (4.9)),

() = L_f]( +Ze‘s i (j ]_1-

Lemma 6.5. Assume that the conditions of Theorem [I1.4) are satisfied. For any

u € R, (i,y) € supp (f/,\), (7, 2) € supp (V;) andl >1

lim Ei (‘ (lm)(j, u) — (loo)(j, )D 0.

m—+0o0 bY:0:%

Proof. Fix (i,y) € supp (f/)\) (j,2) € supp (‘7;), [ > 1and u € R. By the

convexity of fi,, for any m > 1, we have P . as.,

2,Y,7,%
rm (5, u) = 7% (5, u)

<<fx1o---ofo’uJ]h-—e—&e"q;(ﬁ}+ [1—e et g ()]

< eStleSiet g (j) — e euqzo(j)\
= " g5, (1)@ ()| (@)™ = (g ()] -
Moreover, for any m > 1,
1 o -
() = | ———= IR € (0,1
) L_fj(oﬁkgle )| e 0],
1 i -
* () = Sk e 0,1

41
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and by Lemma [2.3], for any k£ > 1

(6.10) 0 <m(J) <

Therefore,

+oo
) Gou) = rEGu)| < ety 3 e

k=m+1
Using Lemma and the Lebesgue dominated convergence theorem,

By ([P Gow) = 9 (Gou)]) < e Z Ef,,- (e7%).

k=m+1

By Lemma [2.13] we obtain the desired assertion. Il

Forany [ > 1, 7 € X and u € R, set
(6.11) si(u) = [1—e e g (5)] .

Note that, by Lemma [2.13, (¢*.(j))"" is integrable and so finite a.s. (see (5.6)).
Therefore s;(j,u) € [0,1). In addition, by the convexity of fx,,,, we have for any
jeXueRand !l > 1,

fxia (s141(dw)) fxlﬂ( ) (1= s111(d,w))

/X e St et g7 () = 1 — e e ¢ ()

—_ =

2
>

Since fx,,, is non-negative on [0, 1], we see that fx,,, (si+1(j,u)) = s(j, u) and so
for any k > 1, (frr1.(s1(j, v))),5), is non-decreasing and bounded by 1. Using the
continuity of gx, and (2.12)), we deduce that (m(si(j, 1)));s, converges and we
denote for any k > 1,

(6.12) Mooy ) := Hm ey (si(7, w))-
Moreover, by Lemma we have for any k> 1, [ > k and u € R,
(6.13) 0<ma(si(fu) <n and 0 < ool u) <.

For any 7 € X and u € R, set

—Uu

45 (7)

Lemma 6.6. Assume that the conditions of Theorem [I.4) are satisfied. For any
u € R, (i,y) € supp (VA) and (j,z) € supp (V/\*),

tim B, ([ Gow) —ra(Gow)]) = 0.

l—+o00

o) = [ +Ze Mool >] .
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Proof. Fix (i,y) € supp (‘N/A), (7, 2) € supp (V;) and u € R. By , Lemma

and (6.11)), we have
) !
(r& ) = 1_&%
So, for any p > 1 and [ > p, using

(s G.w) ™ = recliw) ‘<ZekaMM$D—mﬂdmm

-5

-5

+Ze M1, (51(J, u)).
k=0

4| ¢
() 1—si(j,u)
Therefore,
n N _1 . J—
[0 = Ej_y,jz ( (T&OO)(]7U)) - Too(jyu) ! )
Z El Whdhz ( o ‘nkﬂ,l(sl(ja u)) — 'ﬂk+1,oo(j7 U)D

e—u _ 400
+Ef, . ( , ce S > ) + 2nE; e k|,
e | ) 0 ap3

where IP’Jr is the marginal law of P}’ vz ono (X, n>1). Using Lemma and
the Lebesgue dominated convergence theorem,

I < (%+zaw(ﬂmwwMW—mew)

+2n ZO:O INEZy (e_s’“)

k=p+1
c(1+ max(y,0))e? [ 1 = 9
: =t 2 Em
V(i,y) l i1 K
+§ﬁ@wz(*ﬂmﬂﬂaUm»—nmmammD.

Since |Mr+10(81(J,w)) — Mer1.00(Jsw)| < 21, by the Lebesgue dominated conver-
gence theorem and (/6.12))

+2772e Sk,

k=p+1

—Uu

_Sl

— €

) c(1+max(y,0)) e’ X p
lim sup Iy < - E —.
I—+00 V(i,y) oy K312

Letting p — 400, we obtain that lim; .., Ip = 0. Moreover, by for any
[>1,r4®)(5,u) € [0,1]. In the same manner as we proved (3.7), we have also

Too(7,u) < 1.
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Consequently,
. o (1,00) [ ; _ . < T _
ZE-II—noo Ez,y%z (‘7’00 (j>u) roo(j,u)‘) = lg—rgloo fo =0.
O
We now consider the function
. . 2 on(i) au_pi
Uli,y,j) := My p(3))
)= ot )
+oo ~ ~ ~
<[ e B iz ) TG )R G 2) A2 ().
20(j

Using (6.10)), (6.13) and Lemma[2.13], for any (i, y) € supp (VA), (7, 2) € supp (‘7;)

and u € R,
Ef (T (j u)_l) <e™ o +nEF . SOO e 5k
,Y,],% e ) ~ 1 _ fj(o) 4,Y,],% =1

+ nEZ‘»fy’j’Z (Z e_S’“> < 4o00.

k=1

S0, T'eo(j,u) >0 ]f”;fw%—a.s. and therefore, for any (i,y) € supp (V,\), jeX,
(6.14) U(i,y, ) > 0.
Lemma 6.7. Assume that the conditions of Theorem [I.4) are satisfied. For any
(1,y) € supp (V,\) and j € X, we have

U(i,y, j)k(\)"*
n——+o0 (n -+ 1)3/2 ’

Proof. Fix (i,y) € supp (VA) and 7 € X. By (6.3), for any n > 1,

E; (¢nt1; Xpny1 =1, 7 >n)

(n+1)%2 :
Iy = WEZ (ns1; Xpp1 =1, 7y > n)
= A(U)A(j) (n+ 1)*E, (e M0 g1 X =, 7y > n) :
Using Lemmas [6.3] and [6.4]
) e~ 2e()
lim Iy = lim lim wm—i—l)gm
n——+oo (l,m)—>+oo n——+oo U (])
x E; (rg’m)(j) e X =7, Ty > n)
. 20, (i) Ay—pG)) [T aer :
- lim = p(J))/ e MRS (pm( L
(Lm)—=+o0 /21030, (§) 20(j)+ b ( =" y))

x Va(i, y)Vi (4, 2) dzioa (5).
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Since for any [ > 1, m > 1 and u € R, r4™(j,u) < 1, by the Lebesgue dominated
convergence theorem and Lemmas [6.5] and [6.6]

: 20, (4) Mooty [T ‘
lim [y = —22 p(a)>/ MRS (ro(f, 2 —
n—-+oo © 21030 () o)+ 1,Y,5,% (roc(J Y))

Denoting the right-hand side by U (i, y, j) ends the proof. 0J

Proof of Theorem [1.4. We use arguments similar to those of the proof of
Lemma . Fix (i,7) € X2. For any y € R and n > 1, let

(n 4 1)3/?2 .
Iy == WEZ (Qn+1 ; X1 = ])
and
n+ 1)3/2 .
(615) Il = I() — (k()\)n)—i'lEZ (Qn—i—l ; Xn+1 =17, 7—y > n)
(n 4 1)3/2

- WE‘ (g0 (£5(0) 3 Xpy1 =17, 7y < n).

Since f;(0) > 0, it is easy to see that g, (f;(0)) < ¢,(0). Using the fact that
(¢(0)),,, is non-increasing and Lemma , it holds

dn (fj(o)) < min qk(O) < eminlgkgn Sk )

1<k<n

Therefore, as in (3.11)),
3/2
P k)il
k(A)n—l—l
(n 4 1)3/2 ~+o00

E, (emmeen % X, =, 7, < n)

< W e—y;)e—p Pi (X1 =17, Tyspr1 > 1)
By (6.2)),
(n+D*20(0) i) X i (e
I; < ~ eV MUNT PR, (e M0 1 >n
! n32 uy(5) pz:% ( ytptl )
. +oo +o00o
< CU/\(Z.) 4] Z e P Z M ytptl) o —=Al
ux(J) p=0 1=0

x P (y+p+1+S, € [,14+1]; Tyipi1 > n).
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Using the point [2| of Proposition 2.9}

U/\(i) A

) +o0 00
I <c , e TN e AP N o (1 max(y 4+ p + 1,0)) (1 + 1)
'UA(]) p:O =0
NG e—n(d) Ay
—e 1 + max(y,0)).
) e 0)

Moreover, there exists yo(i) € R such that, for any y > yo(¢) it holds (i,y) €
supp <1~/)\> Using (6.15) and Lemma we obtain that, for any y > yo(7),

Uliyy,j) < liminf I < limsup Io

n—-+oo
vy (i) e W)
Ux (j )

This proves that limsup,,_,, Iy is a finite real which does not depend on y and
so y + U(i,y, ) is a bounded function. Moreover, by Lemma [6.7]

o (1)
Ui,y 5) —-J{g;“%zxjg;j*

and so y — U(i,y,j) is non-decreasing. Let u be its limit:

(6.16) < Uli,y,j) + ¢ e~ (1=VY(1 4 max(y, 0)).

Ei (¢nt+1; Xnp1 =7, 7y >n)

u(i,j) = lim Ui,y j) € K.

By (6.14), for any y > yo(i),
u(i, j) 2 U(i,y,j) > 0.
Taking the limit as y — 400 in (6.16)),
lim [y = u(i, ).

n—-+o00

Finally, by (2.2),

1 3/2
lim (n+1)

n—-+00 WPZ (Zn—‘rl >0, X1 = ])

13/2
= lim (n+1)

pmL WE’L (qny1s Xnpr =) = ul(i, j).
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