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Let (Z n ) n 0 be a branching process in a random environment defined by a Markov chain (X n ) n 0 with values in a finite state space X. Let P i be the probability generated by the trajectories of (X n ) n 0 starting at X 0 = i ∈ X. We study the asymptotic behaviour of the joint survival probability P i (Z n > 0 , X n = j), j ∈ X as n → +∞ in the critical and strongly, intermediate and weakly subcritical cases.

Introduction and main results

The Galton-Watson branching process is one of the most used models in the dynamic of populations with numerous applications in different areas such as biology, medicine, physics, economics etc; for an introduction we refer to Harris [START_REF] Harris | The theory of branching processes[END_REF], Athreya and Ney [START_REF] Athreya | Branching Processes[END_REF] and to the references therein. The random environment in the context of a branching process, say (Z n ) n 0 , has first been introduced in Smith and Wilkinson [START_REF] Smith | On Branching Processes in Random Environments[END_REF] and Athreya and Karlin [START_REF] Athreya | On branching processes with random environments I: Extinction probabilities[END_REF][START_REF] Athreya | Branching processes with random environments II: Limit theorems[END_REF]. In a remarkable series of papers Afanasyev [START_REF] Afanasyev | Limit theorems for a moderately subcritical branching process in a random environment[END_REF], Dekking [START_REF] Dekking | On the survival probability of a branching process in a finite state i.i.d. environment[END_REF], Kozlov [START_REF] Kozlov | On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment[END_REF], Liu [START_REF] Liu | On the survival probability of a branching process in a random environment[END_REF], D'Souza and Hambly [START_REF] Hambly | On the survival probability of a branching process in a random environment[END_REF], Geiger and Kersting [START_REF] Geiger | The survival probability of a critical branching process in a random environment[END_REF], Guivarc'h and Liu [START_REF] Guivarc | Propriétés asymptotiques des processus de branchement en environnement aléatoire[END_REF] and Geiger, Kersting and Vatutin [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF] have determined the asymptotic behaviour of the survival probability of a branching process with random environment under various assumptions. Based on the recent advances in the study of conditioned limit theorems for sums of functions defined on Markov chains from [START_REF] Grama | Limit theorems for affine Markov walks conditioned to stay positive[END_REF][START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF][START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF][START_REF] Grama | Conditioned limit theorems for products of random matrices[END_REF], the goal of the present paper is to prove exact asymptotic results for the survival probability when the environment is a Markov chain.

Let (X n ) n 0 be a homogeneous Markov chain defined on the probability space (Ω, F , P) with values in the finite state space X. Let C be the set of functions from X to C. Denote by P the transition operator of the chain (X n ) n 0 : Pg(i) = E i (g(X 1 )) , for any g ∈ C and i ∈ X. Set P(i, j) = P(δ j )(i), where δ j (i) = 1 if i = j and δ j (i) = 0 else. Note that P n g(i) = E i (g(X n )) . Let P i be the probability on (Ω, F ) generated by the finite dimensional distributions of the Markov chain (X n ) n 0 starting at X 0 = i. Denote by E and E i the corresponding expectation associated to P and P i .

Assume that (X n ) n 0 is irreducible and aperiodic which is equivalent to: Condition 1. The matrix P is primitive, which means that there exists k 0 1 such that, for any non-negative and non-identically zero function g ∈ C and i ∈ X it holds P k 0 g(i) > 0.

By the Perron-Frobenius theorem, under Condition 1, there exist positive constants c 1 and c 2 , a unique positive P-invariant probability ν on X and an operator Q on C such that for any g ∈ C and n 1,

Pg(i) = ν(g) + Q(g)(i) and Q n (g) ∞ c 1 e -c 2 n g ∞ ,
where ν(g) := i∈X g(i)ν(i), Q (1) = ν (Q(g)) = 0, g ∞ = max i∈X |g(i)|. In particular, for any (i, j) ∈ X 2 , we have

(1.1) |P n (i, j) -ν(j)| c 1 e -c 2 n .
The branching process in the Markov environment (X n ) n 0 is defined with the help of a collection of generating functions

(1.2) f i (s) := E s ξ i , ∀i ∈ X, s ∈ [0, 1],
where the random variable ξ i takes its values in N and means the total offspring of one individual when the environment is i ∈ X. For any i ∈ X, let (ξ n,j i ) j,n 1 be independent and identically distributed random variables with the same generating function f i defined on the probability space (Ω, F , P). Assume that the sequence (ξ n,j i ) j,n 1 is independent of the Markov chain (X n ) n 0 . Condition 2. For any i ∈ X, the random variable ξ i is non-identically zero and has a finite second moment: E (ξ i ) > 0 and E(ξ 2 i ) < +∞. Condition 2 implies that, 0 < f i (1) < +∞ and f i (1) < +∞, i ∈ X. Define the branching process (Z n ) n 0 iteratively: for each n = 1, 2, . . . , given the environment X n = i, the total offspring of each individual j ∈ {1, . . . Z n-1 } is given by the random variable ξ n,j i , so that the total population is

Z 0 = 1 and Z n = Z n-1 j=1
ξ n,j Xn , ∀n 1.

We shall consider branching processes (Z n ) n 0 in one of the following two regimes: critical or subcritical (see below for the precise definition). In both cases the probability that the population survives until the n-th generation tends to zero, P i (Z n > 0) → 0, for any i ∈ X as n → +∞, see Smith and Wilkinson [START_REF] Smith | Branching processes in Markovian environments[END_REF]. The key point in determining the speed of this convergence is a close relation between the branching process and the associated Markov walk (S n ) n 0 defined as follows. Let ρ(i) = ln f i (1), ∀i ∈ X.

Set S 0 := 0 and

(1.3)

S n := ln f X 1 (1) • • • f Xn (1) = n k=1 ρ (X k ) , ∀n 1.
Assume that the Markov walk (S n ) n 0 is non-lattice:

Condition 3. For any (θ, a) ∈ R 2 , there exista a path x 0 , . . . , x n in X such that P(x 0 , x 1 ) • • • P(x n-1 , x n )P(x n , x 0 ) > 0 and ρ(x

0 ) + • • • + ρ(x n ) -(n + 1)θ / ∈ aZ.
It is shown in Section 2.4 that under Conditions 1 and 3, for any λ ∈ R and any i ∈ X, the following limit exists and does not depend on the initial state of the Markov chain X 0 = i:

k(λ) := lim n→+∞ E 1/n i e λSn .
The function k, up to a logarithmic transform, is similar to the function Λ in [START_REF] Hambly | On the survival probability of a branching process in a random environment[END_REF]. It is related to the so-called transfer operator P λ :

(1.4) P λ g(i) := P e λρ g (i) = E i e λS 1 g(X 1 ) , for g ∈ C , i ∈ X.

In particular, k(λ) is an eigenvalue of the operator P λ corresponding to an eigenvector v λ and is equal to its spectral radius. Moreover, the function k(λ) is analytic on R, see Lemma 2.15. Note also that the transfer operator P λ is not Markovian, but it can be easily normalized so that the operator Pλ g = P λ (gv λ ) k(λ)v λ is Markovian. We shall denote by νλ its unique invariant probability measure.

The branching process in Markovian environment is said to be subcritical if k (0) < 0, critical if k (0) = 0 and supercritical if k (0) > 0. To clarify the relation to the classification in the case of branching processes with i.i.d. environment note that, by Lemma 2.15, (1.5)

k (0) = ν(ρ) = E ν (ρ(X 1 )) = E ν ln f X 1 (1) = ϕ (0),
where E ν is the expectation generated by the finite dimensional distributions of the Markov chain (X n ) n 0 in the stationary regime and ϕ(λ) = E ν (exp{λ ln f X 1 (1)}), λ ∈ R. When the random variables (X n ) n 1 are i.i.d. with common law ν, from (1.5) the two classifications coincide. We proceed to formulate our main result in the critical case.

Theorem 1.1 (Critical case). Assume Conditions 1-3 and k (0) = 0. Then, there exists a positive function u on X such that for any (i, j) ∈ X 2 ,

P i (Z n > 0 , X n = j) ∼ n→+∞ ν(j)u(i) √ n .
The critical case has been considered in Le Page and Ye [START_REF] Page | The survival probability of a critical branching process in a Markovian random environment[END_REF] in a more general setting. Nevertheless, the conditions in their paper do not cover the present situation and the employed method is different from ours. For an i.i.d. environment, it has been established earlier in [START_REF] Geiger | The survival probability of a critical branching process in a random environment[END_REF] that P(Z n > 0) ∼ c √ n as n → +∞ under weaker assumptions than the finiteness of the state space X. Now we consider the subcritical case. We say that the branching process in Markovian environment is strongly subcritical if k (0) < 0, k (1) < 0, intermediately subcritical if k (0) < 0, k (1) = 0 and weakly subcritical if k (0) < 0, k (1) > 0. Again by Lemma 2.15,

(1.6) k (1)/k(1) = ν1 (ρ) = E ν1 (ρ(X 1 )) = E ν1 ln f X 1 (1)
,

where E νλ is the expectation generated by the finite dimensional distributions of the Markov chain with transition probabilities Pλ in the stationary regime.

When the environment (X n ) n 0 is an i.i.d. sequence of common law ν we have in addition

(1.7) E ν1 ln f X 1 (1) = E ν f X 1 (1) ln f X 1 (1) = ϕ (1)
. This shows that for branching processes with i.i.d. environments both classifications (the one according to k (•) and the other according to ϕ (•)) are equivalent. In general, (1.7) is not fulfilled for a Markovian environment and therefore the function ϕ(•) is not the appropriate one for the classification. For a Markovian environment the classification equally can be done using the function K (λ), where

K(λ) = ln k(λ), λ ∈ R.
Note that by Lemma 2.15 the function λ → K(λ) is strictly convex. In the strongly and intermediately subcritical cases, this implies that 0 < k(1) < 1.

Theorem 1.2 (Strongly subcritical case).

Assume Conditions 1-3 and k (0) < 0, k (1) < 0. Then, there exists a positive function u on X such that for any (i, j) ∈ X 2 ,

P i (Z n > 0 , X n = j) ∼ n→+∞ k(1) n v 1 (i)u(j).
Recall that v 1 is the eigenfunction of the transfer operator P 1 (see also Section 2.4 eq. (2.29) for details). Note also that we can drop the assumption k (0) < 0, since it is implied by the assumption k (1) < 0, in view of the strict convexity of K(λ). For comparison, the corresponding result in the case when the environment is i.i.d. has been established in [START_REF] Guivarc | Propriétés asymptotiques des processus de branchement en environnement aléatoire[END_REF]:

P(Z n > 0) ∼ cϕ(1) n , as n → +∞, where 0 < ϕ(1) = Ef X 1 (1) < 1.
Theorem 1.3 (Intermediate subcritical case). Assume Conditions 1-3 and k (0) < 0, k (1) = 0. Then, there exists a positive function u on X such that for any (i, j) ∈ X 2 ,

P i (Z n > 0 , X n = j) ∼ n→+∞ k(1) n v 1 (i)u(j) √ n .
As in Theorem 1.2, k (1) = 0 implies the assumption k (0) < 0.

In the weakly subcritical case, an easy consequence of the strict convexity of K is the existence and the unicity of λ ∈ (0, 1) satisfying k (λ) = 0 and 0 < k(λ) < 1 which is used the next result. Theorem 1.4 (Weakly subcritical case). Assume Conditions 1-3 and k (0) < 0, k (1) > 0. Then, there exist a unique λ ∈ (0, 1) satisfying k (λ) = 0, 0 < k(λ) < 1 and a positive function u on X 2 such that for any (i, j) ∈ X 2 ,

P i (Z n > 0 , X n = j) ∼ n→+∞ k(λ) n u(i, j) n 3/2 .
Recall the original results in [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF] which have been established for an i.i.d. environment. In the intermediate and weakly subcritical cases, respectively:

P(Z n > 0) ∼ cn -1/2 ϕ(1) n and P(Z n > 0) ∼ cn -3/2 ϕ(λ) n , where λ is the unique critical point of ϕ: ϕ (λ) = 0 such that 0 < ϕ(1) < 1.
For stationary and ergodic environments D'Souza and Hambly [START_REF] Hambly | On the survival probability of a branching process in a random environment[END_REF] have studied the large deviation principle for the survival probability. Theorems 1.1-1.4 improve on the results in [START_REF] Hambly | On the survival probability of a branching process in a random environment[END_REF] giving exact asymptotics. In addition, the random environment in our model is not assumed to be stationary.

The proofs of the main results are based on the following relation between the survival probability P i (Z n > 0) and the associated random walk (S n ) n 0 which goes back to Agresti [START_REF] Agresti | Bounds on the extinction time distribution of a branching process[END_REF]: for any initial state X 0 = i,

(1.8) P i (Z n > 0) = E i (q n ), where q -1 n = e -Sn + n-1 k=0 e -S k η k+1,n
and under the assumptions of the paper the random variables η k+1,n are bounded. To handle the expectation E i (q n ) in the right-hand side of (1.8) we make use of three tools: conditioned limit and local limit theorems for Markov chains which have been obtained recently in [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF] and [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF], the exponential change of measure which is defined with the help of the transfer operator P λ , see Guivarc'h and Hardy [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF], and the duality for Markov chains which we develop in Section 2.2. The outline of the paper is as follows. In Section 2 we introduce the associated Markov chain and relate it to the survival probability. We also introduce the dual Markov chain and state some useful assertions for walks on Markov chains conditioned to stay positive and on the transfer operator. The proofs in the critical, strongly subcritical, intermediate subcritical and weakly subcritical cases are deferred to Sections 3, 4, 5 and 6, respectively.

Let us end this section by fixing some notations. The symbol c, possibly enabled with subscripts, will denote positive constants depending on all previously introduced constants. All these constants are likely to change their values every occurrence. The indicator of an event A is denoted by 1 A . For any bounded measurable function f on X, random variable X in some measurable space X and event A, the integral X f (x)P(X ∈ dx, A) means the expectation E (f (X); A) = E (f (X)1 A ).

Preliminary results on the associated Markov walk

The aim of this section is to provide necessary assertions on the Markov chain and on the associated Markov walk (1.3) and to relate them to the survival probability of the branching process.

2.1.

The link between the branching process and the associated Markov walk. The proof of the following lemma being elementary is left to the reader. Lemma 2.1 (Conditioned generating function). For any s ∈ [0, 1] and n 1,

E i s Zn X 1 , . . . , X n = f X 1 • • • • • f Xn (s).
For any n 1 and s ∈ [0, 1] set (2.1)

q n (s) := 1 -f X 1 • • • • • f Xn (s) and q n := q n (0). Lemma 2.1 implies that (2.2) P i (Z n > 0 | X 1 , . . . , X n ) = q n .
Taking the expectation in (2.2), we obtain the well-known equality, which will be the starting point for our study:

(2.3) P i (Z n > 0) = E i (q n ) . Under Condition 2, for any i ∈ X and s ∈ [0, 1), we have f i (s) ∈ [0, 1). Therefore f X 1 • • • • • f Xn (s) ∈ [0, 1) and in particular (2.4) q n ∈ (0, 1], ∀n 1. 
Introduce some additional notations, which will be used all over the paper: for any n 1, k ∈ {1, . . . , n}, i ∈ X and s ∈ [0, 1),

f k,n := f X k • • • • • f Xn , f n+1,n := id, (2.5) g i (s) := 1 1 -f i (s) - 1 f i (1)(1 -s) , (2.6) η k,n (s) := g X k (f k+1,n (s)) , η k,n := η k,n (0). (2.7)
The following key point assertion relies the random variable q n (s) to the associated Markov walk. Its proof being similar to corresponding statements in [START_REF] Agresti | Bounds on the extinction time distribution of a branching process[END_REF] and [START_REF] Geiger | The survival probability of a critical branching process in a random environment[END_REF] is left to the reader. Lemma 2.2. For any s ∈ [0, 1) and n 1,

q n (s) -1 = e -Sn 1 -s + n-1 k=0 e -S k η k+1,n (s).
Taking s = 0 in Lemma 2.2 we obtain the following identity which will play the central role in the proofs:

(2.8) q -1 n = e -Sn + n-1 k=0 e -S k η k+1,n , ∀n 1.
Since f i is convex on [0, 1] for all i ∈ X, the function g i is non-negative, (2.9)

g i (s) = f i (1)(1 -s) -(1 -f i (s)) (1 -f i (s)) f i (1)(1 -s) 0, ∀s ∈ [0, 1),
which, in turn, implies that the random variables η k+1,n are non-negative for any n 1 and k ∈ {0, . . . , n -1}.

Lemma 2.3. Assume Condition 2. For any n 2, (i 1 , . . . , i n ) ∈ X n and s ∈ [0, 1), we have

0 g i 1 (f i 2 • • • • • f in (s)) η := max i∈X f i (1) f i (1) 2 < +∞.

Moreover, for any

(i n ) n 1 ∈ X N * and any k 1, (2.10) lim n→+∞ g i k f i k+1 • • • • • f in (0) ∈ [0, η]. Proof. Fix (i n ) n 1 ∈ X N * . For any i ∈ X and s ∈ [0, 1), we have f i (s) ∈ [0, 1). So f i 2 • • • • • f in (s) ∈ [0, 1
). In addition, by (2.9), g i is non-negative on [0, 1) for any i ∈ X, therefore

g i 1 (f i 2 • • • • • f in (s)) 0.
Moreover by the lemma 2.1 of [START_REF] Geiger | The survival probability of a critical branching process in a random environment[END_REF], for any i ∈ X and any s ∈ [0, 1),

(2.11)

g i (s) f i (1) f i (1) 2 .
By Condition 2, η < +∞ and so

g i 1 (f i 2 • • • • • f in (s)) ∈ [0, η], for any s ∈ [0, 1).
Since f i is increasing on [0, 1) for any i ∈ X, it follows that for any k 1 and any n k + 1,

0 f i k+1 • • • • • f in (0) f i k+1 • • • • • f in • f i n+1 (0) 1,
and the sequence

f i k+1 • • • • • f in (0) n k+1
converges to a limit, say l ∈ [0, 1]. For any i ∈ X, the function g i is continuous on [0, 1) and we have lim

s→1 s<1 g i (s) = lim s→1 s<1 f i (1)(1 -s) -(1 -f i (s)) f (1) (1 -f i (s)) (1 -s) = lim s→1 s<1 1 f i (1) f i (s) -1 -f i (1)(s -1) (s -1) 2 1 -s 1 -f i (s) = 1 f i (1) f i (1) 2 
1 f i (1) = f i (1) 2f i (1) 2 < +∞. (2.12) Denoting g i (l) = f i (1) 2f i (1) 2 if l = 1, we conclude that g i k f i k+1 • • • • • f in (0) con- verges to g i k (l)
as n → +∞. By (2.9) and (2.11), we obtain that

g i k (l) ∈ [0, η].
2.2. The dual Markov walk. We will introduce the dual Markov chain (X * n ) n 0 and the associated dual Markov walk (S * n ) n 0 , and state some of their properties. Since ν is positive on X, the following dual Markov kernel P * is well defined:

(2.13)

P * (i, j) = ν (j) ν(i) P (j, i) , ∀(i, j) ∈ X 2 .
Without loss of generality we assume that the probability space (Ω, F , P) is rich enough to define on it a Markov chain (X * n ) n 0 , called dual, with values in X and with transition probability P * . Clearly, it can be chosen to be independent of the chain (X n ) n 0 . We define the dual Markov walk by (2.14)

S * 0 = 0 and S * n = - n k=1 ρ (X * k ) , ∀n 1.
For any z ∈ R, let τ * z be the associated exit time:

(2.15) τ * z := inf {k 1 : z + S * k 0} .
For any i ∈ X, denote by P * i and E * i the probability, respectively the expectation generated by the finite dimensional distributions of the Markov chain (X * n ) n 0 starting at X * 0 = i. It is easy to see that ν is also P * -invariant and for any n 1, (i, j) ∈ X 2 , (P * ) n (i, j) = P n (j, i) ν(j) ν(i) .

In particular, the last formula implies the following result.

Lemma 2.4. Assume Conditions 1 and 3 for the Markov kernel P. Then Conditions 1 and 3 hold also for dual kernel P * .

Similarly to (1.1), we have for any (i, j) ∈ X 2 , (2. [START_REF] Guivarc | Propriétés asymptotiques des processus de branchement en environnement aléatoire[END_REF])

|(P * ) n (i, j) -ν(j)| c e -cn .
Note that the operator P * is the adjoint of P in the space L 2 (ν) : for any functions f and g on X,

ν (f (P * ) n g) = ν (gP n f ) .
For any measure m on X, let E m (respectively E * m ) be the expectation associated to the probability generated by the finite dimensional distributions of the Markov chain (X n ) n 0 (respectively (X * n ) n 0 ) with the initial law m. Lemma 2.5 (Duality). For any probability measure m on X, any n 1 and any function g:

X n → C, E m (g (X 1 , . . . , X n )) = E * ν   g (X * n , . . . , X * 1 ) m X * n+1 ν (X * n+1 )   .
Moreover, for any n 1 and any function g:

X n → C, E i (g (X 1 , . . . , X n ) ; X n+1 = j) = E * j g (X * n , . . . , X * 1 ) ; X * n+1 = i ν(j) ν(i) .
Proof. The first equality is proved in Lemma 3.2 of [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF]. The second can be deduced from the first as follows. Taking m = δ i and g(i

1 , • • • , i n , i n+1 ) = g(i 1 , • • • , i n )1 {i n+1 =j}
, from the first equality of the lemma, we see that

E i (g (X 1 , . . . , X n ) ; X n+1 = j) = E * ν g X * n+1 , . . . , X * 1 ; X * n+2 = i 1 ν(i) = E * ν g X * n+1 , . . . , X * 2 ; X * 1 = j , X * n+2 = i 1 ν(i)
.

Since ν is P * -invariant, we obtain

E i (g (X 1 , . . . , X n ) ; X n+1 = j) = i 1 ∈X E * i 1 g (X * n , . . . , X * 1 ) ; X * n+1 = i 1 ν(i) 1 {i 1 =j} ν(i 1 ) = E * j g (X * n , . . . , X * 1 ) ; X * n+1 = i ν(j) ν(i) .
2.3. Markov walks conditioned to stay positive. In this section we recall the main results from [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF] and [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF] for Markov walks conditioned to stay positive. We complement them by some new assertions which will be used in the proofs of the main results of the paper. For any y ∈ R define the first time when the Markov walk (S n ) n 0 becomes non-positive by setting τ y := inf {k 1 : y + S k 0} .

Under Conditions 1, 3 and ν(ρ) = 0 the stopping time τ y is well defined and finite P i -almost surely for any i ∈ X.

The following three assertions deal with the existence of the harmonic function, the limit behaviour of the probability of the exit time and of the law of the random walk y + S n , conditioned to stay positive and are taken from [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF].

Proposition 2.6. Assume Conditions 1, 3 and ν(ρ) = 0. There exists a nonnegative function V on X × R such that 1. For any (i, y) ∈ X × R and n 1,

E i (V (X n , y + S n ) ; τ y > n) = V (i, y).
2. For any i ∈ X, the function V (i, •) is non-decreasing and for any (i, y) ∈ X×R, V (i, y) c (1 + max(y, 0)) .

3. For any i ∈ X, y > 0 and δ ∈ (0, 1),

(1 -δ) y -c δ V (i, y) (1 + δ) y + c δ .
We define (2.17)

σ 2 := ν ρ 2 -ν (ρ) 2 + 2 +∞ n=1 ν (ρP n ρ) -ν (ρ) 2 .
It is known that under Conditions 1 and 3 we have σ 2 > 0, see Lemma 10.3 in [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF].

Proposition 2.7. Assume Conditions 1, 3 and ν(ρ) = 0. 1. For any (i, y) ∈ X × R,

lim n→+∞ √ nP i (τ y > n) = 2V (i, y) √ 2πσ ,
where σ is defined by (2.17). 2. For any (i, y) ∈ X × R and n 1,

P i (τ y > n) c 1 + max(y, 0) √ n .
We denote by supp(V ) = {(i, y) ∈ X × R : V (i, y) > 0} the support of the function V . Note that from property 3 of Proposition 2.6, for any fixed i ∈ X, the function y → V (i, y) is positive for large y. For more details on the properties of supp(V ) see [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF].

Proposition 2.8. Assume Conditions 1, 3 and ν(ρ) = 0. 1. For any (i, y) ∈ supp(V ) and t 0,

P i y + S n σ √ n t τ y > n -→ n→+∞ Φ + (t),
where

Φ + (t) = 1 -e -t 2 2 is the Rayleigh distribution function. 2. There exists ε 0 > 0 such that, for any ε ∈ (0, ε 0 ), n 1, t 0 > 0, t ∈ [0, t 0 ] and (i, y) ∈ X × R, P i y + S n t √ nσ , τ y > n - 2V (i, y) √ 2πnσ Φ + (t) c ε,t 0 (1 + max(y, 0) 2 ) n 1/2+ε .
The next assertions are two local limit theorems for the associated Markov walk y + S n from [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF]. Proposition 2.9. Assume Conditions 1, 3 and ν(ρ) = 0. 1. For any i ∈ X, a > 0, y ∈ R, z 0 and any non-negative function ψ:

X → R + , lim n→+∞ n 3/2 E i (ψ(X n ) ; y + S n ∈ [z, z + a] , τ y > n) = 2V (i, y) √ 2πσ 3 z+a z E * ν (ψ(X * 1 )V * (X * 1 , z + S * 1 ) ; τ * z > 1) dz .
2. Moreover, for any a > 0, y ∈ R, z 0, n 1 and any non-negative function ψ:

X → R + , sup i∈X E i (ψ(X n ) ; y + S n ∈ [z, z + a] , τ y > n) c (1 + a 3 ) n 3/2 ψ ∞ (1 + z) (1 + max(y, 0)) .
Recall that the dual chain (X * n ) n 0 has been constructed independently of the chain (X n ) n 0 . For any (i, j) ∈ X 2 , the probability generated by the finite dimensional distributions of the two dimensional Markov chain (X n , X * n ) n 0 starting at (X 0 , X * 0 ) = (i, j) is given by P i,j = P i × P j . Let E i,j be the corresponding expectation. For any l 1 we define C + X l × R + the set of non-negative function g:

X l × R + → R + satisfying the following properties: • for any (i 1 , . . . , i l ) ∈ X l , the function z → g(i 1 , . . . , i l , z) is continuous, • max i 1 ,...i l ∈X sup z 0 g(i 1 , . . . , i l , z)(1 + z) 2+ε < +∞ for some ε > 0.
Proposition 2.10. Assume Conditions 1, 3 and ν(ρ

) = 0. For any i ∈ X, y ∈ R, l 1, m 1 and g ∈ C + X l+m × R + , lim n→+∞ n 3/2 E i (g (X 1 , . . . , X l , X n-m+1 , . . . , X n , y + S n ) ; τ y > n) = 2 √ 2πσ 3 +∞ 0 j∈X E i,j (g (X 1 , . . . , X l , X * m , . . . , X * 1 , z) ×V (X l , y + S l ) V * (X * m , z + S * m ) ; τ y > l , τ * z > m) ν(j) dz.
We complete these results by determining the asymptotic behaviour of the law of the Markov chain (X n ) n 1 jointly with {τ y > n}.

Lemma 2.11. Assume Conditions 1, 3 and ν(ρ) = 0. Then, for any (i, y) ∈ X×R and j ∈ X, we have

lim n→+∞ √ nP i (X n = j , τ y > n) = 2V (i, y)ν(j) √ 2πσ . Proof. Fix (i, y) ∈ X × R and j ∈ X. We will prove that 2V (i, y)ν(j) √ 2πσ lim inf n→+∞ √ nP i (X n = j , τ y > n) lim sup n→+∞ √ nP i (X n = j , τ y > n) 2V (i, y)ν(j) √ 2πσ .
The upper bound. By the Markov property, for any n 1 and k = n 1/4 we have

P i (X n = j , τ y > n) P i (X n = j , τ y > n -k) = E i P k (X n-k , j) ; τ y > n -k .
Using (1.1), we obtain that

P i (X n = j , τ y > n) ν(j) + c e -ck P i (τ y > n -k) .
Using the point 1 of Proposition 2.7 and the fact that

k = n 1/4 , (2.18) lim sup n→+∞ √ nP i (X n = j , τ y > n) 2V (i, y)ν(j) √ 2πσ .
The lower bound. Again, let n 1 and k = n 1/4 . We have

(2.19) P i (X n = j , τ y > n) P i (X n = j , τ y > n -k) -P i (n -k < τ y n) .
As for the upper bound, by the Markov property and (1.1),

P i (X n = j , τ y > n -k) = E i P k (X n-k , j) ; τ y > n -k ν(j) -c e -ck P i (τ y > n -k) .
Using the point 1 of Proposition 2.7 and the fact that

k = n 1/4 , (2.20) lim inf n→+∞ √ nP i (X n = j , τ y > n -k) 2V (i, y)ν(j) √ 2πσ .
Furthermore, on the event {n -k < τ y n}, we have 0 min

n-k<i n y + S i y + S n-k -k ρ ∞ ,
where ρ ∞ is the maximum of |ρ| on X. Consequently,

P i (n -k < τ y n) P i (y + S n-k ck , τ y > n -k) = P i y + S n-k ck √ n -k √ n -k , τ y > n -k .
Now, using the point 2 of Proposition 2.8 with t 0 = max n 1 ck √ n-k , we obtain that, for ε > 0 small enough,

P i (n -k < τ y n) 2V (i, y) 2π(n -k)σ 1 -e -ck 2 2(n-k) + c ε (1 + y 2 ) (n -k) 1/2+ε . Therefore, since k = n 1/4 , (2.21) lim n→+∞ √ nP i (n -k < τ y n) = 0.
Putting together (2.19), (2.20) and (2.21), we conclude that

lim inf n→+∞ √ nP i (X n = j , τ y > n) 2V (i, y)ν(j) √ 2πσ ,
which together with (2.18) concludes the proof of the lemma. Now, with the help of the function V from Proposition 2.6, for any (i, y) ∈ supp(V ), we define a new probability P + i,y on σ (X n , n 1) and the corresponding expectation E + i,y , which are characterized by the following property: for any n 1 and any g:

X n → C, (2.22) E + i,y (g (X 1 , . . . , X n )) := 1 V (i, y) E i (g (X 1 , . . . , X n ) V (X n , y + S n ) ; τ y > n) .
The fact that P + i,y is a probability measure and that it does not depend on n follows easily from the point 1 of Proposition 2.6. The probability P + i,y is extended obviously to the hole probability space (Ω, F , P). The corresponding expectation is again denoted by E + i,y . Lemma 2.12. Assume Conditions 1, 3 and ν(ρ) = 0. Let m 1. For any n 1, bounded measurable function g:

X m → C, (i, y) ∈ supp(V ) and j ∈ X, lim n→+∞ E i (g (X 1 , . . . , X m ) ; X n = j | τ y > n) = E + i,y (g (X 1 , . . . , X m )) ν(j).
Proof. For the sake of brevity, for any (i, j) ∈ X 2 , y ∈ R and n 1, set

J n (i, j, y) := P i (X n = j , τ y > n) .
Fix m 1 and let g be a function X m → C. By the point 1 of Proposition 2.7, it is clear that for any (i, y) ∈ supp(V ) and n large enough, P i (τ y > n) > 0. By the Markov property, for any j ∈ X and n m + 1 large enough,

I 0 := E i (g (X 1 , . . . , X m ) ; X n = j | τ y > n) = E i g (X 1 , . . . , X m ) J n-m (X m , j, y + S m ) P i (τ y > n) ; τ y > m .
Using Lemma 2.11 and the point 1 of Proposition 2.7, by the Lebesgue dominated convergence theorem,

lim n→+∞ I 0 = E i g (X 1 , . . . , X m ) V (X m , y + S m ) V (i, y) ; τ y > m ν(j) = E + i,y (g (X 1 , . . . , X m )) ν(j).
Lemma 2.13. Assume Conditions 1, 3 and ν(ρ) = 0. For any (i, y) ∈ supp(V ), we have, for any k 1,

E + i,y e -S k c (1 + max(y, 0)) e y k 3/2 V (i, y) .
In particular, 

E + i,y +∞ k=0 e -S k c (1 + max(y, 0)) e y V (i,
E + i,y e -S k = E i e -S k V (X k , y + S k ) V (i, y) ; τ y > k .
Using the point 2 of Proposition 2.6,

E + i,y e -S k e y E i e -(y+S k ) c (1 + max (0, y + S k )) V (i, y) ; τ y > k = e y +∞ p=0 E i e -(y+S k ) c (1 + max (0, y + S k )) V (i, y) ; y + S k ∈ (p, p + 1] , τ y > k e y +∞ p=0 e -p c(1 + p) V (i, y) P i (y + S k ∈ [p, p + 1] , τ y > k) .
By the point 2 of Proposition 2.9,

E + i,y e -S k c k 3/2 +∞ p=0 e -p (1 + p) 2 e y (1 + max(0, y)) V (i, y) = c (1 + max(0, y)) e y k 3/2 V (i, y) .
This proves the first inequality of the lemma. Summing both sides in k and using the Lebesgue monotone convergence theorem, it proves also the second inequality of the lemma.

2.4.

The change of measure related to the Markov walk. In this section we shall establish some useful properties of the Markov chain under the exponential change of the probability measure, which will be crucial in the proofs of the results of the paper. For any λ ∈ R, let P λ be the transfer operator defined on C by, for any g ∈ C and i ∈ X, (2.23)

P λ g(i) := P e λρ g (i) = E i e λS 1 g(X 1 ) .
From the Markov property, it follows easily that, for any g ∈ C , i ∈ X and n 0, (2.24)

P n λ g(i) = E i e λSn g(X n ) .
For any non-negative function g 0, λ ∈ R, i ∈ X and n 1, we have (2.25)

P n λ g(i) min x 1 ,...,xn∈X n e λ(ρ(x 1 )+•••+ρ(xn)) P n g(i).
Therefore the matrix P λ is primitive i.e. satisfies the Condition 1. By the Perron-Frobenius theorem, there exists a positive number k(λ) > 0, a positive function v λ : X → R * + , a positive linear form ν λ : C → C and a linear operator Q λ on C such that for any g ∈ C , and i ∈ X,

P λ g(i) = k(λ)ν λ (g)v λ (i) + Q λ (g)(i), (2.26) ν λ (v λ ) = 1 and Q λ (v λ ) = ν λ (Q λ (g)) = 0, (2.27)
where the spectral radius of Q λ is strictly less than k(λ):

(2.28) Q n λ (g) ∞ k(λ) n c λ e -c λ n g ∞ .
Note that, in particular, k(λ) is equal to the spectral radius of P λ , and, moreover, k(λ) is an eigenvalue associated to the eigenvector v λ :

(2.29)

P λ v λ (i) = k(λ)v λ (i).
From (2.26) and (2.27), we have for any n 1, (2.30)

P n λ g(i) = k(λ) n ν λ (g)v λ (i) + Q n λ (g)(i)
. By (2.28), for any g ∈ C and i ∈ X,

lim n→+∞ P n λ g(i) k(λ) n = ν λ (g)v λ (i)
and so for any non-negative and non-identically zero function g ∈ C and i ∈ X,

(2.31) k(λ) = lim n→+∞ (P n λ g(i)) 1/n = lim n→+∞ E 1/n i e λSn g(X n ) .
Note that when λ = 0, we have k(0) = 1, v 0 (i) = 1 and ν 0 (i) = ν(i), for any i ∈ X. However, in general case, the operator P λ is no longer a Markov operator and we define Pλ for any λ ∈ R by

(2.32) Pλ g(i) = P λ (gv λ )(i) k(λ)v λ (i) = P e λρ gv λ (i) k(λ)v λ (i) = E i e λS 1 g(X 1 )v λ (X 1 ) k(λ)v λ (i) ,
for any g ∈ C and i ∈ X. It is clear that Pλ is a Markov operator: by (2.29),

Pλ v 0 (i) = P λ (v λ )(i) k(λ)v λ (i) = 1,
where for any i ∈ X, v 0 (i) = 1. Iterating (2.32) and using (2.24), we see that for any n 1, g ∈ C and i ∈ X.

(2.33) Pn λ g(i) = P n λ (gv λ )(i) k(λ) n v λ (i) = E i e λSn g(X n )v λ (X n ) k(λ) n v λ (i) .
In particular, as in (2.25),

Pn λ g(i) min x 1 ,...,xn∈X n e λ(ρ(x 1 )+•••+ρ(xn)) v λ (x n ) P n g(i) k(λ) n v λ (i)
.

The following lemma is an easy consequence of this last inequality.

Lemma 2.14. Assume Conditions 1 and 3 for the Markov kernel P. Then for any λ ∈ R, Conditions 1 and 3 hold also for the operator Pλ .

Using (2.30) and (2.33), the spectral decomposition of Pλ is given by

Pn λ g(i) = ν λ (gv λ ) v 0 (i) + Q n λ (gv λ )(i) k(λ) n v λ (i) = νλ (g)v 0 (i) + Qn λ (g)(i),
with, for any λ ∈ R, g ∈ C and i ∈ X,

(2.34) νλ (g) := ν λ (gv λ ) and Qλ (g

)(i) := Q λ (gv λ )(i) k(λ)v λ (i)
.

By (2.27), νλ Qλ (g) = ν λ Q λ (gv λ ) k(λ) = 0 and Qλ (v 0 ) = Q λ (v λ )(i) k(λ)v λ (i) = 0.
Consequently, νλ is the positive invariant measure of Pλ and since by (2.28),

Qn λ (g) ∞ Q n λ (gv λ ) ∞ k(λ) n min i∈X v λ c λ e -c λ n g ∞ ,
we can conclude that for any (i,

j) ∈ X 2 , Pn λ (i, j) -νλ (j) c λ e -c λ n .
Fix λ ∈ R and let Pi and Ẽi be the probability, respectively the expectation, generated by the finite dimensional distributions of the Markov chain (X n ) n 0 with transition operator Pλ and starting at X 0 = i. For any n 1, g:

X n → C and i ∈ X, (2.35) Ẽi (g(X 1 , . . . , X n )) := E i e λSn g(X 1 , . . . , X n )v λ (X n ) k(λ) n v λ (i) .
We now proceed to formulate some properties of the function λ → k(λ) which are important to distinguish between the critical and three different subcritical cases.

Lemma 2.15. Assume Conditions 1 and 3. The function

λ → k(λ) is analytic on R. Moreover the function K: λ → ln (k(λ)) is strictly convex and satisfies for any λ ∈ R, (2.36) K (λ) = k (λ) k(λ) = νλ (ρ)

and

(2.37)

K (λ) = νλ ρ 2 -νλ (ρ) 2 + 2 +∞ n=1 νλ ρ Pn λ ρ -νλ (ρ) 2 =: σ2 λ > 0.
Proof. It is clear that λ → P λ is analytic on R and consequently, by the perturbation theory for linear operators (see for example [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] or [START_REF] Dunford | Linear operators[END_REF]) λ → k(λ), λ → v λ and λ → ν λ are also analytic on R. In particular we write for any h ∈ R,

P λ+h = P λ + hP λ + h 2 2 P λ + o(h 2 ), v λ+h = v λ + hv λ + h 2 2 v λ + o(h 2 ), k(λ + h) = k(λ) + hk (λ) + h 2 2 k (λ) + o(h 2 ),
where for any h ∈ R, o(h 2 ) refers to an operator, a function or a real such that o(h 2 )/h 2 → 0 as h → 0. Since v λ+h is an eigenvector of P λ+h we have P λ+h v λ+h = k(λ + h)v λ+h and its development gives

P λ v λ = k(λ)v λ , P λ v λ + P λ v λ = k(λ)v λ + k (λ)v λ , (2.38) 1 2 P λ v λ + P λ v λ + 1 2 P λ v λ = 1 2 k(λ)v λ + k (λ)v λ + 1 2 k (λ)v λ . (2.39) Since ν λ is an invariant measure, ν λ (P λ g) = k(λ)ν λ (g) and (2.38) implies that k(λ)ν λ (v λ ) + ν λ (P λ v λ ) = k(λ)ν λ (v λ ) + k (λ).
In addition, by (2.23), P λ v λ = P λ (ρv λ ). Therefore,

k(λ)ν λ (ρv λ ) = k (λ),
which, with the definition of νλ in (2.34), proves (2.36).

From (2.39) and the fact that ν λ (P λ g) = k(λ)ν λ (g), we have

k(λ) 2 ν λ (v λ ) + k(λ)ν λ (ρv λ ) + k(λ) 2 ν λ ρ 2 v λ = 1 2 k(λ)ν λ (v λ ) + k (λ)ν λ (v λ ) + 1 2 k (λ). So, k (λ) k(λ) = ν λ ρ 2 v λ + 2 ν λ (ρv λ ) - k (λ) k(λ) ν λ (v λ ) .
By (2.36), we obtain that

K (λ) = k (λ) k(λ) - k (λ) k(λ) 2 = ν λ ρ 2 v λ -ν 2 λ (ρv λ ) + 2 [ν λ (ρv λ ) -ν λ (ρv λ ) ν λ (v λ )] . (2.40)
It remains to determine v λ . By (2.38), we have

v λ - P λ v λ k(λ) = P λ (ρv λ ) k(λ) - k (λ) k(λ) v λ
and for any n 0, using (2.36),

(2.41)

P n λ v λ k(λ) n - P n+1 λ v λ k(λ) n+1 = P n+1 λ (ρv λ ) k(λ) n+1 -ν λ (ρv λ ) v λ .
Note that

P n+1 λ (ρv λ ) k(λ) n+1 -ν λ (ρv λ ) v λ = Q n+1 λ (ρv λ ) k(λ) n+1 .
By (2.28),

P n+1 λ (ρv λ ) k(λ) n+1 -ν λ (ρv λ ) v λ ∞ c λ e -c λ (n+1) ρv λ ∞ = c λ e -c λ (n+1) .
Consequently, by (2.41), the series n 0

P n λ v λ k(λ) n - P n+1 λ v λ k(λ) n+1
converges absolutely and we deduce that

v λ = +∞ n=0 P n+1 λ (ρv λ ) k(λ) n+1 -ν λ (ρv λ ) v λ .
In particular,

ν λ (v λ ) = +∞ n=0 [ν λ (ρv λ ) -ν λ (ρv λ )] = 0,
and

ν λ (ρv λ ) = +∞ n=0   ν λ ρP n+1 λ (ρv λ ) k(λ) n+1 -ν λ (ρv λ ) 2   .
Therefore (2.40) becomes

K (λ) = ν λ ρ 2 v λ -ν 2 λ (ρv λ ) + 2 +∞ n=0   ν λ ρP n+1 λ (ρv λ ) k(λ) n+1 -ν λ (ρv λ ) 2   .
To conclude the proof of the lemma, we establish that K (λ) > 0, from which the strict convexity of K follows. By (2.34),

(2.42)

K (λ) = νλ ρ2 λ + 2 +∞ n=1 νλ ρλ Pn λ ρλ ,
where for any λ ∈ R, ρλ = ρ -νλ (ρ)v 0 . Moreover, Conditions 1 and 3 and Lemma 2.14 imply that the normalized transfer operator Pλ together with the function ρλ satisfies Conditions 1 and 3. In conjunction with (2.42) and Lemma 10.3 of [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF], this proves that (2.42) is positive and so (2.37) holds.

Proofs in the critical case

In this section we prove Theorem 1.1. By equations (2.3) and (2.8), the survival probability of the branching process is related to the study of the sum q -1 n = e -Sn + n-1 k=0 e -S k η k+1,n where (S n ) n 0 is a Markov walk defined by (1.3). Very roughly speaking, the sum q -1 n converges mainly when the walk stays positive: S k > 0 for any k 1 and we will see that (at least in the critical case) only positive trajectories of the Markov walk (S n ) n 0 count for the survival of the branching process.

Recall that the hypotheses of Theorem 1.1 are Conditions 1-3 and k (0) = ν(ρ) = 0. Under these assumptions the conclusions of all the theorems of Section 2.3 hold for the probability P i , for any i ∈ X. Recall also that E + i,y is the expectation corresponding to the probability measure (2.22). We carry out the proof through a series of lemmata. Lemma 3.1. Assume conditions of Theorem 1.1. For any m 1, (i, y) ∈ supp(V ), and j ∈ X, we have

lim n→+∞ P i (Z m > 0 ; X n = j | τ y > n) = E + i,y (q m ) ν(j).
Proof. Fix m 1, (i, y) ∈ supp(V ), and j ∈ X. By (2.2), for any n m + 1,

P i (Z m > 0 , X n = j , τ y > n) = E i (P i (Z m > 0 | X 1 , . . . , X n ) ; X n = j , τ y > n) = E i (E i (q m | X 1 , . . . , X n ) ; X n = j , τ y > n) = E i (q m ; X n = j , τ y > n) .
Using Lemma 2.12, we conclude that

lim n→+∞ P i (Z m > 0 ; X n = j | τ y > n) = lim n→+∞ E i (q m ; X n = j | τ y > n) = E + i,y (q m ) ν(j).
By Lemma 2.3, we have for any (i, y) ∈ supp(V ), k 1 and n k + 1,

(3.1) 0 η k,n η := max x∈X f x (1) f x (1) 2 < +∞ P + i,y -a.s.
By (2.9) and (2.11), this equation holds also when n = k. Moreover, by Lemma 2.3,

(3.2) η k,∞ := lim n→+∞ η k,n ∈ [0, η] P + i,y -a.s.
Let q ∞ be the following random variable:

(3.3) q ∞ := +∞ k=0 e -S k η k+1,∞ -1 ∈ [0, +∞].
The random variable q -1 ∞ is P + i,y -integrable for any (i, y) ∈ supp(V ): indeed by (3.2),

q -1 ∞ +∞ k=0 e -S k η.
Using Lemma 2.13, for any (i, y) ∈ supp(V )

(3.4) E + i,y q -1 ∞ ηE + i,y +∞ k=0 e -S k η c (1 + max(y, 0)) e y V (i, y) < +∞.
Lemma 3.2. Assume conditions of Theorem 1.1. For any (i, y) ∈ supp(V ),

(3.5) lim m→+∞ E + i,y q -1 m -q -1 ∞ = 0, and 
(3.6) lim m→+∞ E + i,y (|q m -q ∞ |) = 0.
Proof. Let (i, y) ∈ supp(V ) and fix l 1. By (2.8) and (3.3), we have for all m l + 2,

E + i,y q -1 m -q -1 ∞ = E + i,y e -Sm + m-1 k=0 e -S k η k+1,m - +∞ k=0 e -S k η k+1,∞ E + i,y e -Sm + E + i,y l k=0 e -S k |η k+1,m -η k+1,∞ | + E + i,y   m-1 k=l+1 e -S k |η k+1,m -η k+1,∞ |   + E + i,y +∞ k=m e -S k η k+1,∞ .
By (3.1) and (3.2),

E + i,y q -1 m -q -1 ∞ E + i,y e -Sm + E + i,y l k=0 e -S k |η k+1,m -η k+1,∞ | + ηE + i,y   +∞ k=l+1 e -S k   .
Using Lemma 2.13 and the Lebesgue monotone convergence theorem,

E + i,y q -1 m -q -1 ∞ c (1 + max(y, 0)) e y V (i, y)   1 m 3/2 + η +∞ k=l+1 1 k 3/2   + E + i,y l k=0 e -S k |η k+1,m -η k+1,∞ | c (1 + max(y, 0)) e y V (i, y) 1 m 3/2 + η √ l + E + i,y l k=0 e -S k |η k+1,m -η k+1,∞ | .
Using (3.1) and (3.2), we have l k=0 e -S k |η k+1,m -η k+1,∞ | η +∞ k=0 e -S k which is P + i,y -integrable by Lemma 2.13. Consequently, by the Lebesgue dominated convergence theorem and (3.2), when m → +∞, we obtain that for any l 1,

lim sup m→+∞ E + i,y q -1 m -q -1 ∞ cη (1 + max(y, 0)) e y V (i, y) √ l .
Letting l → +∞ it proves (3.5). Now, it follows easily from (2.4) that q ∞ 1: for any ε > 0 and m 1, we write that

P + i,y (q -1 ∞ < 1 -ε) P + i,y (q -1 ∞ -q -1 m < -ε).
Since by (3.5), q -1 m converges in P + i,y -probability to q -1 ∞ , for any ε > 0 we have

P + i,y (q -1 ∞ < 1 -ε) = 0 and so (3.7) q ∞ 1 P + i,y -a.s. Consequently, |q m -q ∞ | = q m q ∞ |q -1 m -q -1 ∞ | |q -1 m -q -1
∞ | and by (3.5) we obtain (3.6).

Let U be a function defined on supp(V ) by

U (i, y) = E + i,y (q ∞
) . Note that for any (i, y) ∈ supp(V ), by (3.4), q ∞ > 0 P + i,y -a.s. and so (3.8) U (i, y) > 0.

By (3.7), we have also U (i, y) 1.

Lemma 3.3. Assume conditions of Theorem 1.1. For any (i, y) ∈ supp(V ) and j ∈ X, we have

lim m→+∞ lim n→+∞ P i (Z m > 0 ; X n = j | τ y > n) = ν(j)U (i, y).
Proof. By Lemma 3.1, for any (i, y) ∈ supp(V ), j ∈ X and m 1, we have

lim n→+∞ P i (Z m > 0 ; X n = j | τ y > n) = ν(j)E + i,y (q m ) .
By (3.6), we obtain the desired equality.

Lemma 3.4. Assume conditions of Theorem 1.1. For any (i, y) ∈ supp(V ) and θ ∈ (0, 1), lim

m→+∞ lim sup n→+∞ P i Z m > 0 , Z θn = 0 τ y > n = 0.
Proof. Fix (i, y) ∈ supp(V ) and θ ∈ (0, 1). For any m 1 and any n 1 such that θn m + 1 we define θ n = θn and we write

I 0 := P i (Z m > 0 , Z θn = 0 , τ y > n) = P i (Z m > 0 , τ y > n) -P i (Z θn > 0 , τ y > n) = E i (P i (Z m > 0 | X 1 , . . . , X m ) ; τ y > n) -E i (P i (Z θn > 0 | X 1 , . . . , X θn ) ; τ y > n) .
By (2.2), I 0 = E i (|q m -q θn | ; τ y > n) . We define J p (i, y) := P i (τ y > p) for any (i, y) ∈ X × R and p 0 and consider

I 1 := P i (Z m > 0 , Z θn = 0 | τ y > n)
for any (i, y) ∈ supp(V ). By the Markov property, for any (i, y) ∈ supp(V ),

I 1 = I 0 J n (i, y) = E i |q m -q θn | J n-θn (X θn , y + S θn ) J n (i, y) ; τ y > θ n .
By the point 2 of Proposition 2.7,

I 1 c (1 -θ)nJ n (i, y) E i (|q m -q θn | (1 + y + S θn ) ; τ y > θ n ) .
Using also the point 3 of Proposition 2.6, we have

I 1 c (1 -θ)nJ n (i, y) E i (|q m -q θn | (1 + V (X θn , y + S θn )) ; τ y > θ n ) .
Using (2.4) and (2.22), we obtain that

I 1 c (1 -θ)nJ n (i, y) P i (τ y > θ n ) + V (i, y)E + i,y (|q m -q θn |) .
Using the point 1 of Proposition 2.7, for any (i, y) ∈ supp(V ),

1 (1 -θ)nJ n (i, y) = 1 (1 -θ)nP i (τ y > n) ∼ n→+∞ √ 2πσ 2 √
1 -θV (i, y) .

Moreover using again the point 1 of Proposition 2.7 and using (3.6),

P i (τ y > θ n ) + V (i, y)E + i,y (|q m -q θn |) -→ n→+∞ V (i, y)E + i,y (|q m -q ∞ |) .
Therefore, we obtain that, for any m 1 and θ ∈ (0, 1),

lim sup n→+∞ I 1 c √ 1 -θ E + i,y (|q m -q ∞ |) .
Letting m go to +∞ and using (3.6), we obtain lim m→+∞ lim sup n→+∞ I 1 = 0, which proves the assertion of the lemma.

Lemma 3.5. Assume conditions of Theorem 1.1. For any (i, y) ∈ supp(V ), j ∈ X, and θ ∈ (0, 1),

lim n→+∞ P i Z θn > 0 , X n = j τ y > n = ν(j)U (i, y).
In particular, (3.9) lim

n→+∞ P i Z θn > 0 τ y > n = U (i, y).
Proof. Fix (i, y) ∈ supp(V ) and j ∈ X. Let θ n := θn for any θ ∈ (0, 1) and n 1. For any m 1 and n 1 such that θ n m + 1, we write

P i (Z θn > 0 , X n = j | τ y > n) = P i (Z m > 0 , Z θn > 0 , X n = j | τ y > n) = P i (Z m > 0 , X n = j | τ y > n) -P i (Z m > 0 , Z θn = 0 , X n = j | τ y > n) .
By Lemma 3.4, lim m→+∞ lim sup

n→+∞ P i (Z m > 0 , Z θn = 0 , X n = j | τ y > n) lim m→+∞ lim sup n→+∞ P i (Z m > 0 , Z θn = 0 | τ y > n) = 0.
Therefore, using Lemma 3.3, the first assertion of the lemma follows.

Lemma 3.6. Assume conditions of Theorem 1.1. For any (i, y) ∈ supp(V ),

lim p→+∞ P i (Z p > 0 | τ y > p) = U (i, y).
Proof. Fix (i, y) ∈ supp(V ). For any p 1 and θ ∈ (0, 1), we have

P i (Z p > 0 | τ y > p) = P i Z p > 0 , τ y > p θ + 1 + P i Z p > 0 , p < τ y p θ + 1 P i (τ y > p) .
Let n = p θ + 1 and note that θn = p. So, by (3.9),

lim p→+∞ P i (Z p > 0 | τ y > p) = U (i, y) lim p→+∞ P i (τ y > n) P i (τ y > p) + lim p→+∞ P i (Z p > 0 , p < τ y n) P i (τ y > p)
.

By the point 1 of Proposition 2.7, we obtain that

lim p→+∞ P i (Z p > 0 | τ y > p) = U (i, y) √ θ + lim p→+∞ P i (Z p > 0 , p < τ y n) P i (τ y > p)
.

Moreover, using again the point 1 of Proposition 2.7, for any θ ∈ (0, 1),

P i (Z p > 0 , p < τ y n) P i (τ y > p) P i (τ y > p) -P i (τ y > n) P i (τ y > p) -→ p→+∞ 1 - √ θ.
Letting θ → 1, we conclude that

lim p→+∞ P i (Z p > 0 | τ y > p) = U (i, y).
Lemma 3.7. Assume conditions of Theorem 1.1. For any (i, y) ∈ supp(V ) and θ ∈ (0, 1), lim

n→+∞ P i Z θn > 0 , Z n = 0 τ y > n = 0. ION GRAMA,
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Proof. For any (i, y) ∈ supp(V ), θ ∈ (0, 1) and n 1,

P i Z θn > 0 , Z n = 0 τ y > n = P i Z θn > 0 τ y > n -P i (Z n > 0 | τ y > n) .
From (3.9) and Lemma 3.6, the last difference converges to 0.

Lemma 3.8. Assume conditions of Theorem 1.1. For any (i, y) ∈ supp(V ) and j ∈ X,

lim n→+∞ P i (Z n > 0 , X n = j | τ y > n) = ν(j)U (i, y).
Proof. For any (i, y) ∈ supp(V ), j ∈ X, θ ∈ (0, 1) and n 1,

P i (Z n > 0 , X n = j | τ y > n) = P i Z θn > 0 , X n = j τ y > n -P i Z θn > 0 , Z n = 0 , X n = j τ y > n .
Using Lemmas 3.5 and 3.7, the result follows.

Proof of Theorem 1.1. Fix (i, j) ∈ X 2 . For any y ∈ R, we have

0 P i (Z n > 0 , X n = j) -P i (Z n > 0 , X n = j , τ y > n) P i (Z n > 0 , τ y n) . (3.10) Using (2.2), P i (Z n > 0 , τ y n) = E i (q n ; τ y n) .
Moreover, by the definition of q n in (2.1), for any k 1,

q k f X k (1) × • • • × f X 1 (1) = e S k .
Since (q k ) k 1 is non-increasing, q n = min 1 k n q k e min 1 k n S k . Therefore

P i (Z n > 0 , τ y n) E i e min 1 k n S k ; τ y n = e -y +∞ p=0 E i e min 1 k n {y+S k } ; -(p + 1) < min 1 k n {y + S k } -p , τ y n e -y +∞ p=0 e -p P i (τ y+p+1 > n) . (3.11)
By the point 2 of Proposition 2.7,

P i (Z n > 0 , τ y n) = c e -y √ n +∞ p=0 e -p (1 + p + 1 + max(y, 0)) c e -y (1 + max(y, 0)) √ n . (3.12)
Note that from the point 3 of Proposition 2.6, it is clear that there exits y 0 = y 0 (i) < +∞ such that for any y y 0 , we have V (i, y) > 0 i.e. (i, y) ∈ supp(V ) (for more information on supp(V ) see [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF]). Using Lemma 3.8 and the point 1 of Proposition 2.7, for any y y 0 , (3.13)

√ nP i (Z n > 0 , X n = j , τ y > n) -→ n→+∞ 2ν(j)U (i, y)V (i, y) √ 2πσ .
Let

I(i, j) = lim inf n→+∞ √ nP i (Z n > 0 , X n = j)
and

J(i, j) = lim sup n→+∞ √ nP i (Z n > 0 , X n = j) .
Using (3.10), (3.12) and (3.13), we obtain that, for any y y 0 (i),

2ν(j)U (i, y)V (i, y) √ 2πσ I(i, j) J(i, j) 2ν(j)U (i, y)V (i, y) √ 2πσ + c e -y (1 + max(y, 0)) < +∞. (3.14) From (3.13), it is clear that y → 2U (i,y)V (i,y) √ 2πσ
is non-decreasing and from (3.14) the function is bounded by I(i, j)/ν(j) < +∞. Therefore

u(i) := lim y→+∞ 2U (i, y)V (i, y) √ 2πσ
exists. Moreover by (3.8), for any y y 0 (i),

u(i) 2U (i, y)V (i, y) √ 2πσ > 0.
Taking the limit as y → +∞ in (3.14), we conclude that

lim n→+∞ √ nP i (Z n > 0 , X n = j) = ν(j)u(i),
which finishes the proof of Theorem 1.1.

Proofs in the strongly subcritical case

Assume the hypotheses of Theorem 1.2 that is Conditions 1-3 and k (1) < 0. We fix λ = 1 and define the probability Pi and the corresponding expectation Ẽi by (2.35), such that, for any n 1 and any g:

X n → C, (4.1) Ẽi (g(X 1 , . . . , X n )) = E i e Sn g(X 1 , . . . , X n )v 1 (X n ) k(1) n v 1 (i) .
By (2.2), we have, for any (i, j) ∈ X 2 and n 1,

P i (Z n+1 > 0 , X n+1 = j) = E i (q n+1 , X n+1 = j) = Ẽi e -S n+1 v 1 (X n+1 ) q n+1 ; X n+1 = j k(1) n+1 v 1 (i)
= Ẽi e -Sn q n (f j (0)) ;

X n+1 = j k(1) n+1 v 1 (i) e -ρ(j) v 1 (j) ,
where q n (s) is defined for any s ∈ [0, 1] by (2.1). From Lemma 2.2, we write

e -Sn q n (f j (0)) = 1 1 -f j (0) + n-1 k=0 e Sn-S k η k+1,n (f j (0)) -1 = 1 1 -f j (0) + n k=1 e Sn-S n-k η n-k+1,n (f j (0)) -1 . (4.2)
As in Section 2.2, we define the dual Markov chain (X * n ) n 0 , where the dual Markov kernel is given, for any (i, j) ∈ X 2 , by

P * 1 (i, j) = P1 (j, i) ν1 (j) ν1 (i) = P(j, i) e ρ(i) ν 1 (j) k(1)ν 1 (i) .
Let (S * n ) n 0 be the associated Markov walk defined by (2.14) and

(4.3) q * n (j) := 1 1 -f j (0) + n k=1 e -S * k η * k (j) -1
, where

η * k (j) := g X * k f X * k-1 • • • • • f X * 1 • f j (0) and η * 1 (j) := g X * 1 (f j (0)) . (4.4)
Following the proof of Lemma 2.2, we obtain (4.5)

q * n (j) = e S * n 1 -f X * n • • • • • f X * 1 • f j (0)
. We are going to apply duality Lemma 2.5. The following correspondences designed by the two-sided arrow ←→ are included for the ease of the reader:

X * k ←→ X n-k+1 , S * k ←→ S n-k -S n , η * k (j) ←→ η n-k+1,n (f j (0)) , q *
n (j) ←→ e -Sn q n (f j (0)) . Now Lemma 2.5 implies,

P i (Z n+1 > 0 , X n+1 = j) = Ẽ * j q * n (j) ; X * n+1 = i k(1) n+1 ν1 (j)v 1 (i) e -ρ(j) ν1 (i)v 1 (j) , (4.6)
where Ẽ * j is the expectation generated by the trajectories of the Markov chain (X * n ) n 0 starting at X * 0 = j. Note that, under Condition 2, by Lemma 2.3 we have, for any j ∈ X and k 1,

(4.7) 0 η * k (j) η = max i∈X f i (1) f i (1) 2 < +∞ P * j -a.s.
In particular, by (4.3), (4.8) q * n (j) ∈ (0, 1], ∀n 1. For any j ∈ X, consider the random variable (4.9)

q * ∞ (j) := 1 1 -f j (0) + ∞ k=1 e -S * k η * k (j) -1 ∈ [0, 1].
Lemma 4.1. Assume that the conditions of Theorem 1.2 are satisfied. For any j ∈ X,

(4.10) lim n→+∞ q * n (j) = q * ∞ (j) ∈ (0, 1], P * j -a.s. and (4.11) lim n→+∞ Ẽ * j (|q * n (j) -q * ∞ (j)|) = 0.
Proof. Fix j ∈ X. By the law of large numbers for finite Markov chains,

S * k k -→ k→+∞ ν1 (-ρ), P * j -a.s.
This means that there exists a set N of null probability P * j (N ) = 0, such that for any ω ∈ Ω \ N and any ε > 0, there exists k 0 (ω, ε) such that for any k k 0 (ω, ε), e -S * k (ω) η * k (j)(ω) e kν 1 (ρ)+kε η, where for the last inequality we used the bound (4.7). By Lemma 2.15, we have ν1 (ρ) = k (1)/k(1) < 0. Taking ε = -ν 1 (ρ)/2 we obtain that, for any k k 0 (ω),

0 e -S * k (ω) η * k (j)(ω) e k ν1 (ρ) 2 η.
Consequently, the series (q * n (j)) -1 converges a.s. to (q * ∞ (j)) -1 ∈ [1, +∞) which proves (4.10). By (4.8), (q * n (j)) n 1 is bounded a.s., so by the Lebesgue dominated convergence theorem, lim n→+∞ Ẽ * j (|q * n (j) -q * ∞ (j)|) = 0. Lemma 4.2. Assume that the conditions of Theorem 1.2 are satisfied. For any

(i, j) ∈ X 2 , lim n→+∞ Ẽ * j q * n (j) ; X * n+1 = i = ν1 (i) Ẽ * j (q * ∞ (j
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Proof. Let m 1. For any (i, j) ∈ X 2 , and n m,

Ẽ * j q * n (j) ; X * n+1 = i = Ẽ * j q * m (j) ; X * n+1 = i + Ẽ * j q * n (j) -q * m (j) ; X * n+1 = i . (4.12)
By the Markov property,

Ẽ * j q * m (j) ; X * n+1 = i = Ẽ * j q * m (j) P * 1 n-m+1 (X * m , i) .
Using (2.16) (which holds also for P * 1 by Lemmas 2.14 and 2.4) and (4.11), we have

lim m→+∞ lim n→+∞ Ẽ * j q * m (j) ; X * n+1 = i = lim m→+∞ Ẽ * j (q * m (j)) ν1 (i) = Ẽ * j (q * ∞ (j)) ν1 (i). (4.13)
Moreover, again by (4.11),

lim m→+∞ lim n→+∞ Ẽ * j q * n (j) -q * m (j) ; X * n+1 = i lim m→+∞ lim n→+∞ Ẽ * j (|q * n (j) -q * m (j)|) = lim m→+∞ Ẽ * j (|q * ∞ (j) -q * m (j)|) = 0.
Together with (4.12) and (4.13), this concludes the lemma.

Proof of Theorem 1.2. By (4.10), the function

u(j) = ν1 (j) e -ρ(j) Ẽ * j (q * ∞ (j)) v 1 (j)
is positive. The result of the theorem follows from Lemma 4.2 and the identity (4.6).

Proofs in the intermediate subcritical case

We assume the conditions of Theorem 1.3, that is Conditions 1-3 and k (1) = 0. As in the critical case the proof is carried out through a series of lemmata.

The beginning of the reasoning is the same as in the strongly subcritical case. Keeping the same notation as in Section 4 (see (4.1)-(4.6)), we have

(5.1) P i (Z n+1 > 0 , X n+1 = j) = Ẽ * j q * n (j) ; X * n+1 = i k(1) n+1 ν1 (j)v 1 (i) e -ρ(j) ν1 (i)v 1 (j) .
Under the hypotheses of Theorem 1.3, the Markov walk (S * n ) n 0 is centred under the probability P * j for any j ∈ X: indeed ν1 (-ρ) = -k (1)/k(1) = 0 (see Lemma 2.15) and by Lemma 2.14, Conditions 1 and 3 hold for P1 . In this case, by Lemma 2.4, Conditions 1 and 3 hold also for P *

1 . Therefore all the results of Section 2.3 hold for the probability P * . Let τ * z be the exit time of the Markov walk (z +S * n ) n 0 :

τ * z := inf {k 1 : z + S * k 0} .
Denote by Ṽ * 1 the harmonic function defined by Proposition 2.6 with respect to the probability P * . As in (2.22), for any (j, z) ∈ supp( Ṽ * 1 ), define a new probability P * + j,z and its associated expectation

E * + j,z on σ (X * n , n 1) by Ẽ * + j,z (g (X * 1 , . . . , X * n )) := 1 Ṽ * 1 (j, z) Ẽ * j g (X * 1 , . . . , X * n ) Ṽ * 1 (X * n , z + S * n ) ; τ * z > n ,
for any n 1 and any g: X n → C.

Lemma 5.1. Assume that the conditions of Theorem 1.3 are satisfied. For any m 1, (j, z) ∈ supp( Ṽ * 1 ), and i ∈ X, we have

lim n→+∞ Ẽ * j q * m (j) ; X * n+1 = i τ * z > n + 1 = Ẽ * + j,z (q * m (j)) ν1 (i).
Proof. The equation (4.5) gives an expression for q * m (j) in terms of (X * 1 , . . . , X * m ). Therefore, the assertion of the lemma is a straightforward consequence of Lemma 2.12.

As in Section 4, using Lemma 2.3 we have for any (j, z) ∈ supp( Ṽ * 1 ) and k 1,

(5.2) 0 η * k (j) η = max i∈X f i (1) f i (1) 2 < +∞ and q * n (j) ∈ (0, 1], P * + j,z -a.s.
Consider the random variable (q * m (j)) -1 -(q * ∞ (j)) -1 = 0, and

(5.3) q * ∞ (j) := 1 1 -f j (0) + +∞ k=1 e -S * k η * k (j) -1 ∈ [0, 1].
(5.5) lim m→+∞ Ẽ * + j,z (|q * m (j) -q * ∞ (j)|) = 0. Proof. Fix (j, z) ∈ supp( Ṽ * 1 )
. By (4.3), (5.3) and (5.2), for any m 1,

Ẽ * + j,z (q * m (j)) -1 -(q * ∞ (j)) -1 η Ẽ * + j,z   +∞ k=m+1 e -S * k   .
From this bound, by Lemma 2.13 and the dominated convergence theorem when m → +∞, we obtain (5.4). Now by (5.2) and ( 5.3) we have for any m 1,

Ẽ * + j,z (|q * m (j) -q * ∞ (j)|) = Ẽ * + j,z |q * m (j)q * ∞ (j)| (q * m (j)) -1 -(q * ∞ (j)) -1 Ẽ * + j,z (q * m (j)) -1 -(q * ∞ (j)) -1
, which proves (5.5).

Let U be the function defined on supp( Ṽ * 1 ) by U * (j, z) = Ẽ * + j,z (q * ∞ (j)) . Using (5.2) and Lemma 2.13, we have

(5.6) Ẽ * + j,z (q * ∞ (j)) -1 1 1 -f j (0) + η Ẽ * + j,z +∞ k=1 e -S * k < +∞.
Therefore q * ∞ > 0 P + i,y -a.s. and so U * (j, z) > 0. In addition, by (5.3), U * (j, z) 1. For any (j, z) ∈ supp( Ṽ * 1 ), (5.7)

U * (j, z) ∈ (0, 1].

Lemma 5.3. Assume that the conditions of Theorem 1.3 are satisfied. For any (j, z) ∈ supp( Ṽ * 1 ) and i ∈ X, we have lim

m→+∞ lim n→+∞ Ẽ * j q * m (j) ; X * n+1 = i τ * z > n + 1 = U * (j, z)ν 1 (i).
Proof. The assertion of the lemma is straightforward consequence of Lemmas 5.1 and 5.2.

Lemma 5.4. Assume that the conditions of Theorem 1.3 are satisfied. For any (j, z) ∈ supp( Ṽ * 1 ) and θ ∈ (0, 1), we have lim

m→+∞ lim sup n→+∞ Ẽ * j q * m (j) -q * θn (j) τ * z > n + 1 = 0.
Proof. Fix (j, z) ∈ supp( Ṽ * 1 ) and θ ∈ (0, 1). Let m 1 and n 1 be such that θn m + 1. Set θ n = θn . Denote

I 0 := Ẽ * j q * m (j) -q * θn (j) τ * z > n + 1 and J n (j, z) := P * j (τ * z > n) .
Note that by the point 1 of Proposition 2.7, we have J n (j, z) > 0 for any n large enough. By the Markov property and the point 2 of Proposition 2.7,

I 0 = 1 J n+1 (j, z) Ẽ * j q * m (j) -q * θn (j) J n+1-θn X * θn , z + S * θn ; τ * z > θ n c J n+1 (j, z) √ n + 1 -θ n Ẽ * j q * m (j) -q * θn (j) 1 + z + S * θn ; τ * z > θ n .
Using the point 3 of Proposition 2.6 and (5.2),

I 0 c J n+1 (j, z) n(1 -θ) × Ẽ * j q * m (j) -q * θn (j) 1 + Ṽ * 1 X * θn , z + S * θn ; τ * z > θ n c J n+1 (j, z) n(1 -θ) P * j (τ * z > θ n ) + Ṽ1 (j, z) Ẽ * + j,z q * m (j) -q * θn (j) .
By the point 1 of Proposition 2.7 and (5.5), we obtain that lim sup

n→+∞ I 0 lim sup n→+∞ c √ n + 1 n(1 -θ) Ẽ * + j,z q * m (j) -q * θn (j) = c (1 -θ) Ẽ * + j,z (|q * m (j) -q * ∞ (j)|) .
Taking the limit as m → +∞ and using (5.5), we conclude the proof.

Lemma 5.5. Assume that the conditions of Theorem 1.3 are satisfied. For any (j, z) ∈ supp( Ṽ * 1 ), i ∈ X and θ ∈ (0, 1), we have

lim n→+∞ Ẽ * j q * θn (j) ; X * n+1 = i τ * z > n + 1 = U * (j, z)ν 1 (i).
Proof. For any (j, z) ∈ supp( Ṽ * 1 ), i ∈ X, θ ∈ (0, 1), m 1 and n m + 1 such that θn m, we have

I 0 := Ẽ * j q * θn (j) ; X * n+1 = i τ * z > n + 1 = Ẽ * j q * m (j) ; X * n+1 = i τ * z > n + 1 + Ẽ * j q * θn (j) -q * m (j) ; X * n+1 = i τ * z > n + 1 =:I 1 .
By Lemma 5.4, lim sup m→+∞ lim sup n→+∞ |I 1 | = 0. Therefore, using Lemma 5.3, lim n→+∞ I 0 = U * (j, z)ν 1 (i) and the assertion of the lemma follows.

Lemma 5.6. Assume that the conditions of Theorem 1.3 are satisfied. For any (j, z) ∈ supp( Ṽ * 1 ), we have

lim p→+∞ Ẽ * j q * p (j) τ * z > p + 1 = U * (j, z).
Proof. Fix (j, z) ∈ supp( Ṽ * 1 ). For any p 1 and θ ∈ (0, 1) set n = p/θ + 1. Note that p = θn . We write, for any p 1,

Ẽ * j q * p (j) τ * z > p + 1 = Ẽ * j q * p (j) ; τ * z > n + 1 + Ẽ * j q * p (j) ; p + 1 < τ * z n + 1 P * j (τ * z > p + 1)
. By Lemma 5.5 and the point 1 of Proposition 2.7,

Ẽ * j q * p (j) ; τ * z > n + 1 P * j (τ * z > p + 1) = i∈X Ẽ * j q * p (j) ; X * n+1 = i τ * z > n + 1 P * j (τ * z > n + 1) P * j (τ * z > p + 1) -→ p→+∞ U * (j, z) √ θ.
Moreover, using (5.2) and the point 1 of Proposition 2.7,

Ẽ * j q * p (j) ; p + 1 < τ * z n + 1 P * j (τ * z > p + 1) 1 - P * j (τ * z > n + 1) P * j (τ * z > p + 1) -→ p→+∞ 1 - √ θ.
Therefore, for any θ ∈ (0, 1),

lim p→+∞ Ẽ * j q * p (j) τ * z > p + 1 -U * (j, z) √ θ 1 - √ θ.
Taking the limit as θ → 1 it concludes the proof.

Lemma 5.7. Assume that the conditions of Theorem 1.3 are satisfied. For any (j, z) ∈ supp( Ṽ * 1 ) and θ ∈ (0, 1), we have

lim n→+∞ Ẽ * j q * θn (j) -q * n (j) τ * z > n + 1 = 0.
Proof. Using the fact that η * k (j) are non-negative and the definition of q * n (j) in (4.3), we see that (q * n (j)) n 1 is non-increasing. Therefore, using Lemmas 5.5 and 5.6,

I 0 := lim n→+∞ Ẽ * j q * θn (j) -q * n (j) τ * z > n + 1 = lim n→+∞ i∈X Ẽ * j q * θn (j) ; X * n+1 = i τ * z > n + 1 -lim n→+∞ Ẽ * j (q * n (j) | τ * z > n + 1) = U * (j, z) -U * (j, z) = 0.
Lemma 5.8. Assume that the conditions of Theorem 1.3 are satisfied. For any (j, z) ∈ supp( Ṽ * 1 ) and i ∈ X, we have

lim n→+∞ Ẽ * j q * n (j) ; X * n+1 = i τ * z > n + 1 = U * (j, z)ν 1 (i).
Proof. By Lemmas 5.5 and 5.7, for any (j, z) ∈ supp( Ṽ * 1 ), i ∈ X and θ ∈ (0, 1),

I 0 := lim n→+∞ Ẽ * j q * n (j) ; X * n+1 = i τ * z > n + 1 = lim n→+∞ Ẽ * j q * θn (j) ; X * n+1 = i τ * z > n + 1 + lim n→+∞ Ẽ * j q * n (j) -q * θn (j) ; X * n+1 = i τ * z > n + 1 = U * (j, z)ν 1 (i).
Lemma 5.9. Assume that the conditions of Theorem 1.3 are satisfied. There exists ũ a positive function on X such that, for any (i, j) ∈ X 2 , we have

Ẽ * j q * n (j) ; X * n+1 = i ∼ n→+∞ ũ(j)ν 1 (i) √ n .
Proof. Fix (i, j) ∈ X 2 . For any z ∈ R and n 1,

0 Ẽ * j q * n (j) ; X * n+1 = i -Ẽ * j q * n (j) ; X * n+1 = i , τ * z > n + 1 Ẽ * j (q * n (j) ; τ * z n + 1) . (5.8)
Since q * n (j) 1 (see (5.2)), we have (5.9) Ẽ * j (q * n (j) ;

τ * z n + 1) Ẽ * j (q * n (j) ; τ * z n) + Pj (τ * z = n + 1) . By (4.5), it holds q * n (j) e S * n . Since (q * n (j)) n 1 is non-increasing, we have q * n (j) = min 1 k n q * k (j) e min 1 k n S * k . Consequently, Ẽ * j (q * n (j) ; τ * z n) e -z Ẽ * j e min 1 k n z+S * k ; τ * z n e -z +∞ p=0 e -p P * j -(p + 1) < min 1 k n z + S * k -p , τ * z n e -z +∞ p=0 e -p P * j τ * z+p+1 > n .
Using the point 2 of Proposition 2.

Ẽ * j (q * n (j) ; τ * z n) c e -z (1 + max(0, z)) √ n . 7, (5.10) 
By the point 3 of Proposition 2.6, there exists z 0 ∈ R such that for any z z 0 , Ṽ * 1 (j, z) > 0, which means that (j, z) ∈ supp( Ṽ * 1 ). Therefore, using the point 1 of Proposition 2.7, for any z z 0 ,

lim n→+∞ √ n Pj (τ * z = n + 1) = lim n→+∞ √ n Pj (τ * z > n) -lim n→+∞ √ n Pj (τ * z > n + 1) = 0. (5.11)
Putting together (5.9), (5.10) and (5.11), we obtain that, for any z z 0 , (5.12)

lim n→+∞ √ n Ẽ * j (q * n (j) ; τ * z n + 1) c e -z (1 + max(0, z)) .
Moreover, using Lemma 5.8 and the point 1 of Proposition 2.7,

(5.13) lim n→+∞ √ n Ẽ * j q * n (j) ; X * n+1 = i , τ * z > n + 1 = 2 Ṽ * 1 (j, z) √ 2πσ 1 U * (j, z)ν 1 (i),
where σ1 is defined in (2.37). Denoting

I(i, j) = lim inf n→+∞ √ n Ẽ * j q * n (j) ; X * n+1 = i and J(i, j) = lim sup n→+∞ √ n Ẽ * j q * n (j) ; X * n+1 = i ,
and using (5.8), (5.12) and (5.13), we obtain that, for any z z 0 ,

2 Ṽ * 1 (j, z) √ 2πσ 1 U * (j, z)ν 1 (i) I(i, j) (5.14) J(i, j) 2 Ṽ * 1 (j, z) √ 2πσ 1 U * (j, z)ν 1 (i) + c e -z (1 + max(0, z)) .
By (5.13), we observe that z →

2 Ṽ * 1 (j,z)U * (j,z) √ 2πσ 1
is non-decreasing and by (5.14), this function is bounded by I(i, j)/ν 1 (i). Consequently the limit ũ(j) := lim

z→+∞ 2 Ṽ * 1 (j, z)U * (j, z) √ 2πσ 1
exists and for any z z 0 , by (5.7),

(5.15) ũ(j) 2 Ṽ * 1 (j, z)U * (j, z) √ 2πσ 1 > 0.

Taking the limit as z → +∞ in (5.14), we conclude that

I(i, j) = J(i, j) = ũ(j)ν 1 (i).
Proof of Theorem 1.3. By (5.15) the function u(j) = ũ(j) ν1 (j) e -ρ(j) v 1 (j) , ∀j ∈ X, is positive on X. The assertion of Theorem 1.3 is a consequence of (5.1) and Lemma 5.9.

Proofs in the weakly subcritical case

We assume the conditions of Theorem 1.4, that is Conditions 1-3 and ν(ρ) = k (0) < 0, k (1) > 0. By Lemma 2.15, the function λ → K (λ) is increasing. Consequently, there exists λ ∈ (0, 1) such that (6.1)

K (λ) = k (λ) k(λ) = νλ (ρ) = 0.
For this λ and any i ∈ X, define the changed probability measure Pi and the corresponding expectation Ẽi by (2.35), such that for any n 1 and any g:

X n → C, (6.2) Ẽi (g(X 1 , . . . , X n )) = E i e λSn g(X 1 , . . . , X n )v λ (X n ) k(λ) n v λ (i) .
Our starting point is the following formula which is a consequence of (2.1): for any (i, j) ∈ X 2 and n 1,

E i (q n+1 ; X n+1 = j , τ y > n)
= Ẽi e -λSn q n (f j (0)) ; X n+1 = j , τ y > n k(λ) n+1 v λ (i) v λ (j) e -λρ(j) . (6.3)

The transition probabilities of (X n ) n 0 under the changed measure are given by (2.32):

Pλ (i, j) = e λρ(j) v λ (j) k(λ)v λ (i) P(i, j).
By (6.1), the Markov walk (S n ) n 0 is centred under Pi . Note that under the hypotheses of Theorem 1.4, by Lemma 2.14, Conditions 1 and 3 hold also for Pλ . Therefore all the results of Section 2.3 hold for the Markov walk (S n ) n 0 under Pi . Let (X * n ) n 0 be the dual Markov chain independent of (X n ) n 0 , with transition probabilities P * λ defined by (cp. (2.13)) (6.4) P * λ (i, j) = νλ (j) νλ (i) P(j, i) = ν λ (j) ν λ (i) e ρ(i) k(λ) P(j, i).

As in Section 2.2, we define the dual Markov walk (S * n ) n 0 by (2.14) and its exit time τ * z for any z ∈ R by (2.15). Let Pi,j be the probability on (Ω, F ) generated by the finite dimensional distributions of (X n , X * n ) n 0 starting at (X 0 , X * 0 ) = (i, j). By (6.1), the Markov walk (S * n ) n 1 is centred under Pi,j : νλ (ρ) = νλ (-ρ) = 0 and by Lemma 2.4, Conditions 1 and 3 hold for P * λ . Let Ṽλ and Ṽ * λ be the harmonic functions of the Markov walks (S n ) n 0 and (S * n ) n 0 , respectively (see Proposition 2.6).

We start by some preliminary bounds. The following assertion is similar to Lemma 2.13. Lemma 6.1. Assume that the conditions of Theorem 1.4 are satisfied. For any i ∈ X, y ∈ R, k 1 and n k + 1, we have

n 3/2
Ẽi e -S k e -λSn ; τ y > n e (1+λ)y (1 + max(y, 0)) where for any i ∈ X, y ∈ R and p 1

cn 3/2 (n -k) 3/2 k 3/2 . ION GRAMA,
J n-k (i , y ) = Pi (y + S n-k ∈ [p, p + 1] , τ y > n -k) .
By the point 2 of Proposition 2.9,

J n-k (i , y ) c (n -k) 3/2 (1 + p)(1 + max(y , 0)).

Consequently,

I 0 e λy cn 3/2 (n -k) Again by the point 2 of Proposition 2.9, I 0 e (1+λ)y (1 + max(y, 0))

cn 3/2 (n -k) 3/2 k 3/2 +∞ p=0 e -p (2 + p)(1 + p).
This concludes the proof of the lemma.

For any l 1 and n l + 1, set

q l,n (f j (0)) := 1 -f l+1,n (f j (0)) = 1 -f X l+1 • • • • • f Xn • f j (0),
In the same way as in Lemma 2.2, we obtain:

(6.5) q l,n (f j (0)) -1 = e S l -Sn 1 -f j (0) + n-1 k=l e S l -S k η k+1,n (f j (0)) ,
where η k+1,n (s) are defined by (2.7). Moreover, similarly to (2.4), we have for any n l + 1 2, (6.6) q l,n (f j (0)) ∈ (0, 1] Pi -a.s.

In addition, by Lemma 2. Ẽi e -S n-m q n-m,n (f j (0)) -1 -e -S l q l,n (f j (0)) -1 e -λSn ; τ y > n = 0.

Proof. Fix (i, j) ∈ X 2 and y ∈ R. For any l 1, m 1 and n l + m + 1, we have

I 0 := n 3/2
Ẽi e -S n-m q n-m,n (f j (0)) -1 -e -S l q l,n (f j (0)) -1 e -λSn ; τ y > n

= n 3/2 Ẽi n-m-1 k=l e -S k η k+1,n (f j (0)) e -λSn ; τ y > n .
Using (6.7) and Lemma 6.1,

I 0 η n-m-1 k=l e (1+λ)y (1 + max(y, 0)) cn 3/2 (n -k) 3/2 k 3/2 .
Let n 1 := n/2 . We note that

n-m-1 k=l cn 3/2 (n -k) 3/2 k 3/2 cn 3/2 (n -n 1 ) 3/2 n 1 k=l 1 k 3/2 + cn 3/2 n 3/2 1 n-m-1 k=n 1 +1 1 (n -k) 3/2 c +∞ k=l 1 k 3/2 + c +∞ k=m 1 k 3/2 .
Consequently, lim sup n→+∞ I 0 cη e (1+λ)y (1 + max(y, 0))

+∞ k=l 1 k 3/2 + +∞ k=m 1 k 3/2 .
Taking the limits as l → +∞ and m → +∞, proves the lemma.

For any l 1, m 1 and n l + m + 1, consider the random variables

r (l,m) n (j) := 1 -f 1,l 1 -f l+1,n-m (1) (1 -f n-m+1,n (f j (0))) + = 1 -f X 1 • • • • • f X l 1 -f X l+1 (1) × . . . × f X n-m (1) 1 -f X n-m+1 • • • • • f Xn • f j (0) + ,
where [t] + = max(t, 0) for any t ∈ R. The random variable r (l,m) n (j) approximates q n (f j (0)) in the following sense: Ẽi q n (f j (0)) -r (l,m) n (j) e -λSn ; τ y > n = 0.

Proof. Fix (i, j) ∈ X 2 and y ∈ R. Since for any i ∈ X, f i is increasing and convex, the function f l+1,n-m is convex. So, for any l 1, m 1 and

n l + m + 1, f l+1,n (f j (0)) = f l+1,n-m (f n-m+1,n (f j (0))) 1 -f l+1,n-m (1) (1 -f n-m+1,n (f j (0))) + . Since f 1,l is increasing, q n (f j (0)) = 1 -f 1,n (f j (0)) r (l,m) n (j), or equivalently 0 r (l,m) n (j) -q n (f j (0)) . Moreover, by the convexity of f 1,l , r (l,m) n (j) -q n (f j (0)) = f 1,l • f l+1,n (f j (0)) -f 1,l 1 -f l+1,n-m (1) (1 -f n-m+1,n (f j (0))) + f 1,l (1) f l+1,n (f j (0)) -1 -f l+1,n-m (1) (1 -f n-m+1,n (f j (0))) + f 1,l (1) f l+1,n-m (1)q n-m,n (f j (0)) -q l,n (f j (0)) = e S n-m q n-m,n (f j (0)) -e S l q l,n (f j (0)) = e S n-m q n-m,n (f j (0)) e S l q l,n (f j (0)) × e -S l q l,n (f j (0)) -1 -e -S n-m q n-m,n (f j (0)) -1 .
By (6.5), we have q l,n (f j (0)) e Sn-S l and so

r (l,m) n (j) -q n (f j (0)) e 2Sn e -S l q l,n (f j (0)) -1 -e -S n-m q n-m,n (f j (0)) -1 .
In addition, by the definition of r (l,m) n (j) and q n (f j (0)), we have r (l,m) n (j)-q n (f j (0)) 1. Therefore, Pi -a.s. it holds, r (l,m) n (j) -q n (f j (0)) min 1, e 2Sn e -S l q l,n (f j (0)) -1 -e -S n-m q n-m,n (f j (0)) -1 .

Using the previous bound, it follows that, for any integer N 1,

I 0 := n 3/2
Ẽi q n (f j (0)) -r (l,m) n (j) e -λSn ; τ y > n e 2(N -y) n 3/2

× Ẽi e -S l q l,n (f j (0)) -1 -e -S n-m q n-m,n (f j (0)) -1 e -λSn ; τ y > n + n 3/2 Ẽi e -λSn ; y + S n > N , τ y > n .

Moreover, using the point 2 of Proposition 2.9, +∞ p=N e -λp (1 + p).

n 3/2
Taking the limit as N → +∞, proves the lemma.

We now introduce the following random variable: for any j ∈ X, u ∈ R, l 1 and m 1

r (l,m) ∞ (j, u) := 1 -f X 1 • • • • • f X l 1 -e -S l e u q * m (j) + ∈ [0, 1],
where, as in (4.3) and (4.5), for any m 1,

q * m (j) := e S * m 1 -f X * m • • • • • f X * 1 • f j (0) = 1 1 -f j (0) + n k=1 e -S * k η * k (j) -1
and as in (4.4), for any k 2,

η * k (j) := g X * k f X * k-1 • • • • • f X * 1 • f j (0) and η * 1 := g X * 1 (f j (0)) .
For any (i, y) ∈ supp( Ṽλ ) and (j, z) ∈ supp( Ṽ * λ ), let P+ i,y,j,z and Ẽ+ i,y,j,z be, respectively, the probability and its associated expectation defined for any n 1 and any function g:

X l,m → C by Ẽ+ i,y,j,z (g (X 1 , . . . , X l , X * m , . . . , X * 1 )) = Ẽi,j g (X 1 , . . . , X l , X * m , . . . , X * 1 ) × Ṽλ (X l , y + S l ) Ṽλ (i, y) Ṽ * λ (X * m , z + S * m ) Ṽ * λ (j, z) ; τ y > l , τ * z > m . (6.8)
For any j ∈ X let z 0 (j) ∈ R be the unique real such that (j, z) ∈ supp Ṽ * λ for any z > z 0 and (j, z) / ∈ supp Ṽ * λ for any z < z 0 (see [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF] for details on the domain of positivity of the harmonic function). Set z 0 (j) + = max {z 0 (j), 0}. Lemma 6.4. Assume that the conditions of Theorem 1.4 are satisfied. For any j ∈ X, (i, y) ∈ supp Ṽλ , l 1 and m 1,

lim n→+∞ n 3/2 Ẽi r (l,m) n (j) e -λSn ; X n+1 = j , τ y > n = 2 √
2πσ 3 e λy +∞ z 0 (j) + e -λz Ẽ+ i,y,j,z r (l,m) ∞ (j, z -y) Ṽλ (i, y) Ṽ * λ (j, z) dz νλ (j).

Proof. Fix (i, y) ∈ supp Ṽλ , j ∈ X, l 1 and m 1 and let g be a function

X l+m × R → R + defined by g(i 1 , . . . , i l , i n-m+1 , . . . , i n , z) = e λy e -λz 1 {z 0} Pλ (i n , j) × 1 -f i 1 • • • • • f i l 1 -e z-y-ρ(in)-•••-ρ(i n-m+1 )-ρ(i l )-•••-ρ(i 1 ) × 1 -f i n-m+1 • • • • • f in • f j (0) + , for all (i 1 , . . . , i l , i n-m+1 , . . . , i n , z) ∈ X l+m × R and note that on {τ y > n}, g(X 1 , . . . , X l , X n-m+1 , . . . , X n , y + S n ) = r (l,m) n (j) e -λSn Pλ (i n , j).
Observe also that since 0 g(i 1 , . . . , i l , i n-m+1 , . . . , i n , z)

e λy e -λz 1 {z 0} , the function g belongs to the set, say C + X l+m × R + , of non-negative function g:

X l+m × R + → R + satisfying the following properties:

• for any (i 1 , . . . , i l+m ) ∈ X l+m , the function z → g(i 1 , . . . , i l+m , z) is continuous, • max i 1 ,...i l+m ∈X sup z 0 g(i 1 , . . . , i l+m , z)(1 + z) 2+ε < +∞ for some ε > 0.

Therefore, by the Markov property and Proposition 2.10, we obtain that

I 0 := lim n→+∞ n 3/2 Ẽi r (l,m) n (j) e -λSn ; X n+1 = j , τ y > n = lim n→+∞ n 3/2 Ẽi (g (X 1 , . . . , X l , X n-m+1 , . . . , X n , y + S n ) ; τ y > n) = 2 √ 2πσ 3 +∞ 0 e -λ(z-y) j ∈X Ẽi,j r (l,m) ∞ (j, z -y) Pλ (X * 1 , j) × Ṽλ (X l , y + S l ) Ṽ * λ (X * m , z + S * m ) ; τ y > l , τ * z > m νλ (j ) dz.
Since νλ is P * λ -invariant, we write

I 0 = 2 √ 2πσ 3 +∞ 0 e -λ(z-y) j 1 ∈X Pλ (j 1 , j)ν λ (j 1 ) Ẽi r (l,m) ∞ (j, z -y) × Ṽλ (X l , y + S l ) Ṽ * λ (X * m , z + S * m ) ; τ y > l , τ * z > m X * 1 = j 1 dz.
Using the definition of P * λ in (6.4), we have

I 0 = 2 √ 2πσ 3 +∞ 0 e -λ(z-y) νλ (j) Ẽi,j r (l,m) ∞ (j, z -y) Ṽλ (X l , y + S l ) × Ṽ * λ (X * m , z + S * m ) ; τ y > l , τ * z > m dz.
Now, note that when (j, z) / ∈ supp Ṽ * λ , using the point 1 of Proposition 2.6, Ẽi,j r (l,m) ∞ (j, z -y) Ṽλ (X l , y

+ S l ) Ṽ * λ (X * m , z + S * m ) ; τ y > l , τ * z > m Ẽi Ṽλ (X l , y + S l ) ; τ y > l Ẽ * j Ṽ * λ (X * m , z + S * m ) ; τ * z > m = Ṽλ (i, y) Ṽ * λ (j, z) = 0.
Together with (6.8), it proves the lemma.

Consider for any l 1, j ∈ X and u ∈ R, (6.9)

r (l,∞) ∞ (j, u) = 1 -f X 1 • • • • • f X l 1 -e -S l e u q * ∞ (j) + ∈ [0, 1],
where as in (4.9), Proof. Fix (i, y) ∈ supp Ṽλ , (j, z) ∈ supp Ṽ * λ , l 1 and u ∈ R. By the convexity of f 1,l , for any m 1, we have P+ i,y,j,z a.s.,

q * ∞ (j) = 1 1 -f j (0) + ∞ k=1 e -S * k η * k (j)
r (l,m) ∞ (j, u) -r (l,∞) ∞ (j, u) (f X 1 • • • • • f X l ) (1) 1 -e -S l e u q * m (j) + -1 -e -S l e u q * ∞ (j) + e S l e -S l e u q * m (j) -e -S l e u q * ∞ (j) = e u |q * m (j)q * ∞ (j)| (q * ∞ (j)) -1 -(q * m (j)) -1 . Moreover, for any m 1, q * m (j) = 1 1 -f j (0) + m k=1 e -S * k η * k (j) -1 ∈ (0, 1], q * ∞ (j) = 1 1 -f j (0) + ∞ k=1 e -S * k η * k (j) -1 ∈ [0, 1]
and by Lemma 2.3, for any k 1, (6.10) 0 η * k (j) η. Therefore,

r (l,m) ∞ (j, u) -r (l,∞) ∞ (j, u) e u η +∞ k=m+1 e -S * k .
Using Lemma 2.13 and the Lebesgue dominated convergence theorem,

Ẽ+ i,y,j,z r (l,m) ∞ (j, u) -r (l,∞) ∞ (j, u) e u η +∞ k=m+1 Ẽ+ i,y,j,z e -S * k .
By Lemma 2.13, we obtain the desired assertion.

For any l 1, j ∈ X and u ∈ R, set (6.11) s l (j, u) = 1 -e -S l e u q * ∞ (j)

+ .
Note that, by Lemma 2.13, (q * ∞ (j)) -1 is integrable and so finite a.s. (see (5.6)). Therefore s l (j, u) ∈ [0, 1). In addition, by the convexity of f X l+1 , we have for any j ∈ X, u ∈ R and l 1,

f X l+1 (s l+1 (j, u)) 1 -f X l+1 (1) (1 -s l+1 (j, u))
1 -e ρ(X l+1 ) e -S l+1 e u q * ∞ (j) = 1 -e -S l e u q * ∞ (j). Since f X l+1 is non-negative on [0, 1], we see that f X l+1 (s l+1 (j, u)) s l (j, u) and so for any k 1, (f k+1,l (s l (j, u))) l k is non-decreasing and bounded by 1. Using the continuity of g X k and (2.12), we deduce that (η k,l (s l (j, u))) l k converges and we denote for any k 1, (6.12) η k,∞ (j, u) := lim l→+∞ η k,l (s l (j, u)).

Moreover, by Lemma 2.3, we have for any k 1, l k and u ∈ R, (6.13) 0 η k,l (s l (j, u)) η and 0 η k,∞ (j, u) η.

For any j ∈ X and u ∈ R, set r ∞ (j, u) := e -u q * ∞ (j) + +∞ k=0 e -S k η k+1,∞ (j, u) Proof. Fix (i, y) ∈ supp Ṽλ , (j, z) ∈ supp Ṽ * λ and u ∈ R. By (6.9), Lemma 2.2 and (6.11), we have r (l,∞) ∞ (j, u) -1

=

e -S l 1 -s l (j, u) + l-1 k=0 e -S k η k+1,l (s l (j, u)).

So, for any p 1 and l p, using (6.13), r (l,∞) ∞ (j, u) Letting p → +∞, we obtain that lim l→+∞ I 0 = 0. Moreover, by (6.9) for any l 1, r (l,∞) ∞ (j, u) ∈ [0, 1]. In the same manner as we proved (3.7), we have also r ∞ (j, u) 1. v λ (i) v λ (j) e λ(y-ρ(j))

× +∞ z 0 (j) + e -λz Ẽ+ i,y,j,z (r ∞ (j, z -y)) Ṽλ (i, y) Ṽ * λ (j, z) dz νλ (j).

Using (6.10), (6.13) and Lemma 2. So, r ∞ (j, u) > 0 P+ i,y,j,z -a.s. and therefore, for any (i, y) ∈ supp Ṽλ , j ∈ X, (6.14) U (i, y, j) > 0.

Lemma 6.7. Assume that the conditions of Theorem 1.4 are satisfied. For any (i, y) ∈ supp Ṽλ and j ∈ X, we have E i (q n+1 ; X n+1 = i , τ y > n) ∼ n→+∞ U (i, y, j)k(λ) n+1 (n + 1) 3/2 .

Proof. Fix (i, y) ∈ supp Ṽλ and j ∈ X. By (6.3), for any n 1, I 0 := (n + 1) 3/2 k(λ) n+1 E i (q n+1 ; X n+1 = i , τ y > n) = v λ (i) e -λρ(j) v λ (j) (n + 1) 3/2 Ẽi e -λSn q n+1 ; X n+1 = j , τ y > n .

Using Lemmas 6. e -λz Ẽ+ i,y,j,z r (l,m) ∞ (j, z -y)

× Ṽλ (i, y) Ṽ * λ (j, z) dz νλ (j).

Since for any l 1, m 1 and u ∈ R, r (l,m) ∞ (j, u) 1, by the Lebesgue dominated convergence theorem and Lemmas 6.5 and 6.6, lim n→+∞ I 0 = 2v λ (i) √ 2πσ 3 v λ (j) e λ(y-ρ(j)) +∞ z 0 (j) + e -λz Ẽ+ i,y,j,z (r ∞ (j, z -y))

× Ṽλ (i, y) Ṽ * λ (j, z) dz νλ (j).

Denoting the right-hand side by U (i, y, j) ends the proof.

Proof of Theorem 1.4. We use arguments similar to those of the proof of Lemma 5.9. Fix (i, j) ∈ X 2 . For any y ∈ R and n 1, let I 0 := (n + 1) 3/2 k(λ) n+1 E i (q n+1 ; X n+1 = j) and I 1 := I 0 -(n + 1) 3/2 k(λ) n+1 E i (q n+1 ; X n+1 = j , τ y > n) (6.15)

=

(n + 1) 3/2 k(λ) n+1 E i (q n (f j (0)) ; X n+1 = j , τ y n) .

Since f j (0) 0, it is easy to see that q n (f j (0)) q n (0). Using the fact that (q k (0)) k 1 is non-increasing and Lemma 2.2, it holds q n (f j (0)) min Moreover, there exists y 0 (i) ∈ R such that, for any y y 0 (i) it holds (i, y) ∈ supp Ṽλ . Using (6.15) and Lemma 6.7, we obtain that, for any y y 0 (i), U (i, y, j) lim inf n→+∞ I 0 lim sup n→+∞ I 0 U (i, y, j) + c v λ (i) e -λρ(j) v λ (j) e -(1-λ)y (1 + max(y, 0)). (6.16) This proves that lim sup n→+∞ I 0 is a finite real which does not depend on y and so y → U (i, y, j) is a bounded function. Moreover, by Lemma 6.7, U (i, y, j) = lim n→∞ (n + 1) 3/2 k(λ) n+1 E i (q n+1 ; X n+1 = j , τ y > n) and so y → U (i, y, j) is non-decreasing. Let u be its limit: u(i, j) := lim y→+∞ U (i, y, j) ∈ R.

By (6.14), for any y y 0 (i), u(i, j) U (i, y, j) > 0.

Taking the limit as y → +∞ in (6.16), lim n→+∞ I 0 = u(i, j).

Finally, by (2.2), lim n→+∞ (n + 1) 3/2 k(λ) n+1 P i (Z n+1 > 0 , X n+1 = j) = lim n→+∞ (n + 1) 3/2 k(λ) n+1 E i (q n+1 ; X n+1 = j) = u(i, j).
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 52 Assume that the conditions of Theorem 1.3 are satisfied. For any (j, z) ∈ supp( Ṽ *
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 165 Lemma Assume that the conditions of Theorem 1.4 are satisfied. For any u ∈ R, (i, y) ∈ supp Ṽλ , (j, z) ∈ supp Ṽ * λ and l 1, lim m→+∞ Ẽ+ i,y,j,z r (l,m) ∞ (j, u) -r (l,∞) ∞ (j, u) = 0.
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 11 r ∞ (j, u) -1 p k=0 e -S k |η k+1,l (s l (j, u)) -η k+1,∞ (j, r ∞ (j, u) -1 p k=0 Ẽ+ i,y,j,z e -S k |η k+1,l (s l (j, u)) -η k+1,∞ (j, u)| + Ẽ+ i,y,j,z e -u q * ∞ (j) -e -S l ; e -S l >e is the marginal law of P+ i,y,j,z on σ (X n , n 1). Using Lemma 2.13 and the Lebesgue dominated convergence theorem,I 0 Ẽ+ i,y e -S l + p k=0 Ẽ+ i,y,j,z e -S k |η k+1,l (s l (j, u)) -η k+1,∞ (j, u)| + 2η +∞ k=p+1 Ẽ+ i,y e -S k c (1 + max(y, 0)) e y V (i, y) ,j,z e -S k |η k+1,l (s l (j, u)) -η k+1,∞ (j, u)| .Since |η k+1,l (s l (j, u)) -η k+1,∞ (j, u)| 2η, by the Lebesgue dominated convergence theorem and (6

  u) -r ∞ (j, u) lim l→+∞ I 0 = 0.We now consider the functionU (i, y, j) := 2 √ 2πσ 3
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 2 Ẽi r (l,m) n (j) e -λSn ; X n+1 = j , τ y > n = lim (l,m)→+∞ 2v λ (i) √ 2πσ 3 v λ (j)e λ(y-ρ(j)) +∞ z 0 (j) +
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  3/2 Ẽi e -S k (1 + y + S k ) ; τ y > k Ẽi e -S k (1 + y + S k ) ; τ y > k

			+∞
			e -λp (1 + p)
			p=0
	e λy cn 3/2 (n -k) 3/2 e (1+λ)y cn 3/2 (n -k) 3/2	p=0 +∞	e -p (2 + p) Pi (y + S

k ∈ [p, p + 1] ; τ y > k) .

  Assume that the conditions of Theorem 1.4 are satisfied. For any (i, j) ∈ X 2 and y ∈ R, we have

	Lemma 6.2. lim n→+∞ l,m→+∞ lim sup	n 3/2	
		3, for any k n -1,	
	(6.7)	0 η k+1,n (f j (0)) η	Pi -a.s.

  Ẽi e -λSn ; y + S n > N , τ y > n

		+∞	
		e λy e -λp n 3/2	
		p=N	
	× Pi (y + S n ∈ [p, p + 1] , τ y > n) c e λy (1 + max(y, 0))	+∞	e -λp (1 + p).
			p=N
	Consequently, using Lemma 6.2, we obtain that	
	lim l,m→+∞	lim sup	

n→+∞

I 0 c e λy (1 + max(y, 0))