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Abstract. We present a class of numerical schemes for the solution of
the Euler equations; these schemes are based on staggered discretiza-
tions and work either on structured meshes or on general simplicial or
tetrahedral/hexahedral meshes. The time discretization is performed by
fractional-step algorithms, either based on semi-implicit pressure cor-
rection techniques or segregated in such a way that only explicit steps
are involved (referred to hereafter as ”explicit” variants). These schemes
solve the internal energy balance, with corrective terms to ensure the
correct capture of shocks, and, more generally, the consistency in the
Lax-Wendroff sense. To keep the density, the internal energy and the
pressure positive, positivity-preserving convection operators for the mass
and internal energy balance equations are designed, using upwinding with
respect of the material velocity only. The construction of the fluxes thus
does not need any Riemann or approximate Riemann solver, and yields
particularly efficient algorithms. The stability is obtained without restric-
tion on the time step for the pressure correction time-stepping and under
a CFL-like condition for explicit variants: preservation of the integral of
the total energy over the computational domain, entropy estimates and
positivity of the density and the internal energy.

Keywords: Euler equations · staggered schemes.

1 Introduction

We address in this paper the solution of the Euler equations for an ideal gas,
which read:

∂tρ + div(ρ u) = 0, (1a)

∂t(ρ u) + div(ρ u ⊗ u) + ∇p = 0, (1b)

∂t(ρ E) + div(ρ E u) + div(p u) = 0, (1c)

p = (γ − 1) ρ e, E =
1

2
|u|2 + e, (1d)

where t stands for the time, ρ, u, p, E and e are the density, velocity, pressure,
total energy and internal energy respectively, and γ > 1 is a coefficient specific
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Fig. 1. Meshes and unknowns – Left: unstructured discretizations (the present sketch
illustrates the possibility, implemented in our software CALIF3S [2], of mixing simpli-
cial and quadrangular cells); scalars variables are associated to the primal cells (here K,
L and M) while velocity vectors are associated to the faces (here, σ and σ

′) or, equiva-
lently, to dual cells (here, Dσ and D

σ
′). – Right: MAC discretization; scalars variables

are associated to the primal cells and each face is associated to the component of the
velocity normal to the face.

to the considered fluid. The problem is supposed to be posed over Ω × (0, T ),
where Ω is an open bounded connected subset of R

d, 1 ≤ d ≤ 3, and (0, T ) is
a finite time interval. System (1) is complemented by initial conditions for ρ, e
and u, let us say ρ0, e0 and u0 respectively, with ρ0 > 0 and e0 > 0, and by
suitable boundary conditions (not specified for short).

Finite volume schemes for the solution of System (1), and, more generally
speaking, of hyperbolic problems, generally use a collocated arrangement of the
unknowns, all of them being associated to the cell centers, and apply a Godunov-
like technique for the computation of the fluxes at the cells faces: the face is
seen as a discontinuity line for the beginning-of-time-step numerical solution,
supposed to be constant in the two adjacent cells; a solution, either exact or
approximate, of the so-posed Riemann problem is constructed and the numerical
solution is advanced in time by projection of this construction on piecewise
constant functions (see e.g. [17, 1] for the development of such solvers). Thanks
to the properties of the projection, at least for exact Riemann solvers, application
of this process to the Euler equations yields consistant schemes which preserve
the non-negativity of the density and the internal energy and, for first-order
variants, satisfy an entropy inequality. The price to pay is the computational
cost of the evaluation of the fluxes, and the fact that this issue is intricate
enough to put almost out of reach implicit-in-time formulations, which would
allow to relax CFL time step constraints. In addition, preserving the accuracy
for low Mach number flows is a difficult task (see e.g. [9] and references herein).
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The aim of this paper is to review recent developements performed to derive a
class of schemes following a different route. The space discretization is staggered:
scalar variables are associated to cell centers while the velocity is associated to
the faces, or, equivalently, to staggered mesh(es). Two different space discretiza-
tions may be considered: either the so-called Marker-And-Cell (MAC) scheme for
structured grids [11] or, for general meshes, a space discretization using degrees
of freedom similar to low-order Rannacher-Turek [16] or Crouzeix-Raviart [3] fi-
nite elements (see Figure 1). With this space discretization, the use of Riemann
solvers seems difficult (scalar unknowns and velocities may still be considered
as piecewise constant functions, but not associated to the same partition of the
computational domain). The positivity of the internal energy is thus ensured by
a non-standard argument: the internal energy balance is discretized instead of
the actual (total) energy balance (1c) by a positivity-preserving scheme. This
leads to consistency problems, which are the main difficulty faced here. We de-
velop two time discretizations: a pressure correction technique and a fractional
step scheme involving only explicit steps. We finally obtain a class of schemes
which offer many interesting properties: both the density and internal energy
positivity are preserved, unconditionnally for the pressure correction scheme
and under CFL-like conditions for the (quasi) explicit variant, and the integral
of the total energy on the computational domain is conserved (which yields a
stability result); the construction of the fluxes is very simple (essentially based
on standard upwinding techniques of the convection operators with respect to
the material velocity); finally, the space approximation, the fluxes and the choice
of the internal energy balance are consistent with usual discretizations of quasi-
incompressible flows, so the pressure correction scheme is asymptotic preserving
by construction in the limit of vanishing low Mach number flows. In addition,
an entropy estimate is obtained for the pressure correction scheme, while only a
weak entropy estimate seems to hold for the explicit variant. The development
of this class of schemes started ten years ago, and we review here the essential
arguments; details may be found in [12, 8, 13].

The use of staggered discretization for compressible flows began with the
very first papers on the MAC scheme [10], and has been the subject of a wide
litterature (see [18] for a textbook and references in [12, 8, 13]). However, the use
of the internal energy equation associated to a consistency correction seems to
be restricted to the context of Lagrangian approaches, up to a very recent work
implementing a Lagrange-remap technique on staggered meshes [4].

2 A pressure correction scheme

2.1 A basic lemma

Let ρ and u be regular scalar and vector-valued functions, respectively, such that

∂tρ + div(ρu) = 0.
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Let z be a regular scalar function. Then we have:

C(z) = ∂t(ρz) + div(ρzu) = ρ
(

∂tz + u · ∇z
)

+ z
(

∂tρ + div(ρu)
)

= ρ
(

∂tz + u · ∇z
)

.
(2)

Let ϕ be a regular real function. Then:

ϕ′(z) C(z) = ϕ′(z) ρ
(

∂tz + u · ∇z
)

= ρ
(

∂tϕ(z) + u · ∇ϕ(z)
)

.

Now, reversing the computation performed in Relation (2) with ϕ(z) instead of
z, we get:

ϕ′(z) C(z) = ∂t

(

ρϕ(z)
)

+ div
(

ρϕ(z)u
)

. (3)

The following lemma states a time semi-discrete version of this computation.

Lemma 1. Let ρn, ρn+1, zn and zn+1 be regular scalar functions, let u be a

regular vector-valued function and let ϕ be a twice-differentiable real function.

Let us suppose that

1

δt
(ρn+1 − ρn) + div(ρn+1

u) = 0, (4)

with δt a positive real number. Then

ϕ′(zn+1)
[ 1

δt
(ρn+1zn+1 − ρnzn) + div(ρn+1zn+1

u)
]

=
1

δt

(

ρn+1ϕ(zn+1) − ρnϕ(zn)
)

+ div
(

ρn+1ϕ(zn+1)u
)

+ Rn, (5)

with

Rn =
1

2 δt
ρnϕ′′(z̄) (zn+1 − zn)2, z̄ = θzn + (1 − θ)zn+1, θ ∈ [0, 1].

Proof. We first begin by deriving a discrete analogue to Identity (2):

1

δt
(ρn+1zn+1 − ρnzn) + div(ρn+1zn+1

u)

=
1

δt
ρn (zn+1 − zn) + ρn+1

u · ∇zn+1 + zn+1
[ 1

δt
(ρn+1 − ρn) + div(ρn+1

u)
]

=
1

δt
ρn (zn+1 − zn) + ρn+1

u · ∇zn+1.

(6)
Then the result follows by multiplying this relation by ϕ′(zn+1), using a Taylor
expansion for the first term and the same combination of partial derivative as in
the continuous case for the second one, and finally, still as in the continuous cas,
by performing this computation in the reverse sense with ϕ(zn) and ϕ(zn+1)
instead of zn and zn+1.
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2.2 The time semi-discrete scheme

We begin with a formal reformulation of the energy equation. Let us suppose that
the solution is regular, and let Ek be the kinetic energy, defined by Ek = 1

2 |u|
2.

Taking the inner product of (1b) by u yields, after the formal compositions of
partial derivatives described in the previous section:

∂t(ρEk) + div
(

ρ Ek u
)

+ ∇p · u = 0. (7)

This relation is referred to as the kinetic energy balance. Subtracting this relation
to the total energy balance (1c), we obtain the so-called internal energy balance
equation:

∂t(ρe) + div(ρeu) + p divu = 0. (8)

Since,

- as seen in the previous section, thanks to the mass balance equation, the first
two terms in the left-hand side of (8) may be recast as a transport operator,

- and, from the equation of state, the pressure vanishes when e = 0,

this equation implies that, if e ≥ 0 at t = 0 and with suitable boundary condi-
tions, then e remains non-negative at all time. The same result would hold if (8)
featured a non-negative right-hand side, as for the compressible Navier-Stokes
equations. Solving (8) instead of the total energy balance is thus appealing, to
preserve this positivity property by construction of the scheme. In addition, it
avoids introducing a space discretization for the total energy which, for a stag-
gered discretization, combines cell-centered (the internal energy and the den-
sity) and face-centered (the velocity) variables. However, a raw discretization of
a non-conservative equation derived from a conservative system (formally, i.e.

supposing unrealistic regularity properties of the solution) may be non-consistent
(and the numerical test presented in Section 4 shows that, for the problem at
hand, a such a scheme would be unable to capture shock solutions). To deal with
this problem, we implement the following strategy:

- First, we derive a discrete kinetic energy balance, by mimicking at the discrete
level the computation used to obtain Equation (7). This relation allows to
identify the terms which are likely to lead to non-consistency: the numerical
diffusion in the momentum balance equation yields dissipation terms in the
kinetic energy balance which are observed to behave, when the space and
time step tend to zero, as measure born by the shocks which modify the
jump conditions.

- These terms are thus compensated in the internal energy balance.

At the fully discrete level, for staggered discretizations, the kinetic and internal
energy balances are not posed on the same mesh (the dual and primal mesh
respectively) and cannot be combined to provide a local discrete total energy
balance, even though the dissipation and correction terms have opposite inte-
grals over the computational domain, so that the integral of the total energy
over the domain is conserved. However, we are able to show that the scheme
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is consistent, in the Lax-Wendroff sense, to the weak form of the total energy
balance: indeed, for a given sequence of discrete solutions (obtained with a se-
quence of discretizations where the space and time steps tend to zero) controlled
and converging to a limit in suitable norms (namely, controlled in BV norms
and converging in Lp norms, for p ∈ [1, +∞)), we show that the limit is a weak
solution of the Euler equations. As far as the total energy balance is concerned,
the key trick to this purpose is to use two interpolates of the test function, on
the dual and primal mesh for the kinetic and energy balance respectively, and
to pass to the limit in the equation obtained by summing the two corresponding
relations.

We now derive the time semi-discrete formulation of a pressure correction
scheme following these guidelines. This scheme takes the following general form:

1

δt
(ρn

ũ
n+1 − ρn−1

u
n) + div(ρn

u
n ⊗ ũ

n+1) + ζn
∇pn = 0, (9a)

1

δt
ρn (un+1 − ũ

n+1) + ∇pn+1 − ζn
∇pn = 0, (9b)

1

δt
(ρn+1 − ρn) + div(ρn+1

u
n+1) = 0, (9c)

1

δt
(ρn+1 en+1 − ρn en) + div(ρn+1 en+1

u
n+1) + pn+1divu

n+1 = Sn+1, (9d)

pn+1 = (γ − 1) ρn+1 en+1. (9e)

The first equation allows for the computation of a tentative velocity ũ
n+1; it is

decoupled from the other equations of the system, and referred to as the veloc-
ity prediction step. Equations (9b)-(9e) constitute the correction step, and are
solved simultaneously; note however that using the equation of state to recast
ρn+1 en+1 as a function of the pressure only in (9d) and eliminating u

n+1 in
this relation thanks to the divergence of (9b) divided by ρn yields a nonlinear
and nonconservative elliptic problem for the pressure only. This process must be
performed at the fully discrete level to preserve the properties of the scheme.
The coefficient ζn in Equation (9a) and the correction term Sn+1 in (9d) are
computed in the derivation of the scheme so as to ensure stability and consis-
tency. The first step of this process is to obtain a discrete kinetic energy balance.
To this purpose, let us multiply (9a) by ũ

n+1 and apply Lemma 1 component
by component, with ϕ(s) = 1

2s2. We get:

1

2 δt

(

ρn |ũn+1|2 − ρn−1 |un|2
)

+
1

2
div

(

ρn |ũn+1|2un
)

+ ζn
∇pn · ũn+1 + Rn

1 = 0,

(10)
with

Rn
1 =

1

2 δt
|ũn+1 − u

n|2.

Note that the mass balance equation (9c), which is a fundamental assumption
of Lemma 1, only holds at this stage of the algorithm with the previous time
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step values, hence the shift of the time level of the density in (9a). Let us now
recast Equation (9b) as

αn
u

n+1 +
1

αn
∇pn+1 = αn

ũ
n+1 +

ζn

αn
∇pn, αn =

[ρn

δt

]1/2

and square this relation, to get

1

2 δt
ρn |un+1|2 + ∇pn+1 · un+1 + Rn

2 =
1

2 δt
ρn |ũn+1|2 + ζn

∇pn · ũn+1, (11)

with

Rn
2 =

δt

ρn
|∇pn+1|2 − (ζn)2

δt

ρn
|∇pn|2.

Summing (10) and (11) yields the kinetic energy balance that we are seeking:

1

2 δt

(

ρn |un+1|2−ρn−1 |un|2
)

+
1

2
div

(

ρn |ũn+1|2un
)

+∇pn+1·un+1+Rn
1 +Rn

2 = 0.

We now choose the coefficient ζn in such a way that the remainder term Rn
2

becomes the difference of two consecutive time levels of the same quantity, which
is realized by choosing

ζn =
[ ρn

ρn−1

]1/2
.

Supposing the control in L1(0, T, BV ) of the pressure and in L∞ of the pressure
and of the inverse of the density, the term Rn

2 may thus be seen to tend with
zero with the discretization parameters in a distributional sense. We just need
to compensate Rn

1 in the internal energy balance, which is done by choosing
Sn+1 = Rn

1 , which thus ensures Sn+1 ≥ 0. The definition of the time-discrete
scheme is now complete.

2.3 The fully discrete scheme

The fully discrete scheme is obtained from System (9) by applying the following
guidelines:

- The mass and internal energy balances (i.e. Equations (9c) and (9d) respec-
tively) are discretized on the primal mesh, while the velocity prediction (9a)
and correction (9b) are discretized on the dual mesh(es). The equation of
state only involves cell quantities, and its expression is obtained by writing
(9e) for these latter.

- The space arrangement of the unknowns (density discretized at the cell and
velocity at the faces) yields a natural expression of the mass fluxes in the
mass balance, performed by a first-order upwind scheme (with respect to the
velocity). By construction, the density is thus non-negative (in fact, positive,
at the discrete level, if the initial density is positive). The discrete mass
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balance equation on the cell K of measure |K| and faces σ ∈ E(K) takes the
form:

|K|

δt
(ρn+1

K − ρn
K) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (12)

where FK,σ is the mass flux across σ outward K.

- The form of the time-derivative and convection operator from the internal
energy (let us denote CK(en+1) the sum of these two terms) in Equation (9d)
follows from this relation:

CK(en+1) =
|K|

δt
(ρn+1

K en+1
K − ρn

Ken
K) +

∑

σ∈E(K)

FK,σen+1
σ ,

where en+1
σ is the upwind approximation of en+1 at σ with respect to Fn+1

K,σ

(or, equivalently, since the density is positive, with respect to the velocity).
This was shown in [14] to be a sufficient condition to obtain a positivity-
preserving operator, and is also a necessary condition for a fully discrete
version of Lemma 1 to hold; this is of course linked since both results rely
on the possibility to recast CK as a transport operator, and the positivity-
preserving property of CK may be proved by applying Lemma 1 with ϕ(s) =
min(s, 0)2. Once again, thanks to the arrangement of the unknowns, a natural
discretization for divu

n+1 is available. Since pn+1 is a function of en+1 given
by the equation of state and invoking the corrective term is non-negative,
we are able to show that the discrete internal energy is kept positive by the
scheme.

- For the derivation of a discrete kinetic energy balance, the same structure is
needed for the time-derivative and convection operator in the velocity predic-
tion step (9a). This raises a difficulty since this equation is posed on the dual
mesh, and thus we need an analogue of the mass balance (12) to also hold
on this mesh. The way to build the face density and the mass fluxes across
the faces of the dual mesh for such a relation to hold, while still ensuring the
scheme consistency, is a central ingredient of the scheme; it is detailed in [5]
for the MAC discretization and in [15] for unstructured discretizations.
Once the face density is defined, the discretization of the coefficient ζn is
straightforward. In order to combine the discrete equivalents of u·∇p (kinetic
energy balance) and p divu (internal energy balance), the discrete gradient is
defined as the transposed of the divergence operator with respect to the L2

inner product (if u ·∇p+p divu = div(p u), the integral of this quantity over
the computational domain vanishes when the normal velocity is prescribed to
zero at the boundary). Note that this definition is consistent with the usual
treatment in the incompressible case, and is a key ingredient for the scheme to
be asymptotic preserving in the limit of vanishing Mach number flows. As in
the incompressible case, it also allows to control the L2 norm of the pressure
by a weak norm of its gradient, which is central for convergence studies; with
this respect, a discrete inf-sup condition is required in some sense, which is
true for staggered discretizations.
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3 A ”quasi-explicit” variant

A variant of the proposed scheme which consists only in explicit steps (in the
sense that these steps do not require the solution of any linear or non-linear
algebraic system) reads, in the time semi-discrete setting:

1

δt
(ρn+1 − ρn) + div(ρn

u
n) = 0, (13a)

1

δt
(ρn+1 en+1 − ρn en) + div(ρn en

u
n) + pndivu

n = Sn, (13b)

pn+1 = (γ − 1) ρn+1 en+1, (13c)

1

δt
(ρn+1

u
n+1 − ρn

u
n) + div(ρn

u
n ⊗ u

n) + ∇pn+1 = 0. (13d)

The update of the pressure before the solution of the momentum balance equa-
tion is crucial in our derivation of entropy estimates (see Section 5 below). This
issue seems to be supported by numerical experiments: ommitting it, we observe
the appearance of non-entropic discontinuities in rarefaction waves.

The space discretization differs from the pressure correction scheme in two
points:

- the discretization of the convection operator in the momentum balance equa-
tion (13d) is performed by the first order upwind scheme (still with respect
to the material velocity u

n),

- the corrective term Sn is still obtained by deriving a kinetic energy balance
multiplying Equation (13d) by u

n+1, but its expression is quite different, due
to the time-level used in the convection operator. The time-discretization
is now anti-diffusive but, as usual for explicit schemes, this anti-diffusion
is counterbalanced by the diffusion in the approximation of the convection
(hence the upwinding) and Sn is non-negative only under a CFL condition.

4 A numerical test

In this section, we assess the behaviour of the scheme on a one dimensional
Riemann problem. We choose initial conditions such that the structure of the
solution consists in two shock waves, separated by the contact discontinuity, with
sufficiently strong shocks to allow an easy discrimination of correct numerical
solutions. These initial conditions are those proposed in [17, chapter 4], for the
test referred to as Test 5. The computations are performed with the open-source
software CALIF3S [2].

The density fields obtained with h = 1/2000 (or a number of cells n = 2000)
at t = 0.035, with and without assembling the corrective source term in the
internal energy balance, together with the analytical solution, are shown on
Figure 2. We observe that both schemes seem to converge, but the corrective
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term is necessary to obtain the right solution. Without a corrective term, one
can check that the obtained solution is not a weak solution to the Euler system
(Rankine-Hugoniot conditions are not verified). We also observe that the scheme
is rather diffusive especially for contact discontinuities for which the beneficial
compressive effect of the shocks does not apply; this may be cured in the explicit
variant by implementing MUSCL-like algorithms [7].
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Fig. 2. Test 5 of [17, chapter 4] - Density obtained with n = 2000 cells, with and
without corrective source terms, and analytical solution.

5 Entropy estimates

Let us consider the following subsystem of the Euler equations:

∂tρ + div(ρ u) = 0, (14a)

∂t(ρ e) + div(ρ e u) + p div(u) = R ≥ 0, (14b)

p = (γ − 1) ρ e. (14c)

The derivation of an entropy estimate for the continuous Euler system may
be deduced from the subsystem (14) in the following way. We seek an entropy
function η satisfying the entropy balance:

∂tη(ρ, e) + div
[

η(ρ, e)u
]

≤ 0. (15)

To this end, let the convex functions ϕρ and ϕe be defined as follows:

ϕρ(z) = z log(z), ϕe(z) =
−1

γ − 1
log(z), for z > 0.
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Let us multiply (14a) by ϕ′
ρ(ρ), which yields:

∂t

[

ϕρ(ρ)
]

+ div
[

ϕρ(ρ)u
]

+
[

ρϕ′
ρ(ρ) − ϕρ(ρ)

]

div(u) = 0. (16)

Then, multiplying (14b) by ϕ′
e(e) yields, once again formally, since ϕ′

e(z) < 0
for z > 0:

∂t

[

ρ ϕe(e)
]

+ div
[

ρ ϕe(e)u
]

+ ϕ′
e(e) p div(u) ≤ 0. (17)

Summing (16) and (17) and noting that ρϕ′
ρ(ρ)−ϕρ(ρ)+ϕ′

e(e) p = 0, we obtain
(15) for η(ρ, e) = ϕρ(ρ) + ρϕe(e).

Depending on the time and space discretization, we obtain two types of
results [6]:

- local entropy estimates, i.e. discrete analogues of (15), in which case the
scheme is called entropy-stable,

- “weak local” entropy inequalities, i.e. results of the form:

∂tη(ρ, e) + div
[

η(ρ, e)u
]

+ R ≤ 0,

with R tending to zero with respect to the space and time discretization steps,
provided that the solution is controlled in reasonable norms (here, L∞ and
BV norms). Such an inequality readily yields a ”Lax-consistency” property,
in the sense that the limit of a convergent sequence of solutions, bounded in
suitable norms, satisfies the following weak entropy inequality:

−

∫ T

0

∫

Ω

η(ρ, e) ∂tϕ+η(ρ, e)u ·∇ϕdx dt−

∫

Ω

η(ρ, e)(x, 0) ϕ(x, 0) dx ≤ 0,

for any function ϕ ∈ C∞
c

(

[0, T )× Ω̄
)

, ϕ ≥ 0.

The pressure correction scheme - In the pressure correction scheme, the cor-
rection step includes a fully implicit discretization of Subsystem (14). A fully
discrete analogue of the relation (16) may be found in [12, Lemma A1], while
the relation (17) is a direct application of Lemma 1. The pressure correction
scheme is thus entropy-stable.

The explicit variant - In this variant, the time discretization of Subsystem (14)
is explicit. An adaptation of Lemma 1 still holds under a CFL condition, but it
does not seem to be the case for Relation (16). Consequently, we only obtain a
“weak local” entropy inequality, under the restrictive assumption that the ratio
of the time to the space step tends to zero for the sequence of discretization at
hand. Nevertheless, we never observed in numerical experiment any phenomena
likely to lead to thinking that the scheme could converge to a non-entropy weak
solution.
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