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Abstract. In this work, we study the existence and uniqueness of an almost automorphic solution to
semilinear nonautonomous parabolic evolution equations with inhomogeneous boundary conditions us-
ing the exponential dichotomy. We assume that the homogeneous problem satisfies the "Acquistapace–Terreni"
conditions and that the forcing terms are Stepanov-like almost automorphic. An example is given for il-
lustration.
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1 Introduction

In this work, we study the existence and uniqueness of a µ-pseudo almost automorphic mild solutions of
the following semilinear parabolic evolution equation with inhomogeneous boundary conditions:{

u′(t) = Am(t)u(t) + f (t, u(t)), t ∈ R,
B(t)u(t) = g(t, u(t)), t ∈ R.

(1.1)

Where (Am(t), D(Am(t))), t ∈ R is a family of linear operators defined in a Banach space X, for t ∈ R,
B(t) : D(Am(t)) −→ ∂X is a boundary linear operator, where ∂X is a boundary space (see Section 6 for
an example of such spaces). It is assumed that, Am(·), B(·) are Stepanov-like almost automorphic and that
A(t) t ∈ R satisfy the "Acquistapace–Terreni" conditions and has an exponential dichotomy on R, where
A(t) := Am(t)| ker(B(t)), t ∈ R. The functions f : R× Xt

β −→ X and g : R× Xt
β −→ ∂X are Stepanov-

like µ-pseudo almost automorphic, where Xt
β, 0 < β < 1 are some continuous interpolation spaces with

respect to the linear operators A(t), t ∈ R.

The concept of almost automorphy was introduced by S. Bochner [7] as a generalisation of the well
known almost perdioc functions. Due to its applications in differential equations, almost automorphic
functions have undergone several interesting generalizations in different settings. In [26], J. M. N’Guerekata
and A. A. Pankov introduced a new concept of almost automorphy defined on average of measurable func-
tions which are locally integrable, namely, Stepanov-like almost automorphy. Another generalization, this
time is in term of perturbation, the so-called pseudo almost automorphy due to J. Liang et al. in [31]. A
pseudo almost automorphic function is a perturbation of an almost automorphic fonction by an ergodic
term (see Section 2). In [13], T. Diagana gave a generalisation of the concept of pseudo almost automorphic
functions by introducing a more general definition of the ergodic perturbation of Zhang [32], namely, the
weighted pseudo almsot automorphic functions. After that, in [11], K. Ezzinbi et al. introduced a new
concept of pseudo almost automorphic functions called µ-pseudo almost automorphic functions. More
precisely, a µ-pseudo almost automorphic function is a perturbation of an almost automorphic function by
an ergodic term as in the two previous concepts, but here the authors gave a more general definition of the
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2 PRELIMINARIES

ergodicity in the mean of positive measures in which the other previous definitions are just simple partic-
ular cases. Finally, by combining the previous notions we obtain a more general concept of Stepanov-like
µ-pseudo almost automorphy introduced by B. Es-sebbar and K. Ezzinbi in [3].

In the litterature, we found several works. In [33], the authors established the existence of weighted
pseudo almost automorphic a mild solution to equation (1.1) in the particular case where g ≡ 0. Un-
der assumptions that (A(t))t∈R satisfy "Aquistapace-Terreni" conditions (2.1), (2.2) on a Banach space X,
the evolution family (U(t, s))t≥s generated by (A(t))t∈R has an exponential dichotomy on R. The Green
function Γ(·, ·) is bi-almost automorphic and the function f is Stepanov-like weighted pseudo almost au-
tomorphic. In [19], the authors established the existence of pseudo almost automorphic a mild solution to
equation (1.1) in the particular case where g ≡ 0. Under assumptions that (A(t))t∈R generates an evolu-
tion family (U(t, s))t≥s which has an exponential dichotomy on R. The Green function Γ(·, ·) is bi-almost
automorphic and the function f is Stepanov-like pseudo almost automorphic.

In this work, we use the approach developed in [5]. We prove the results for the following equivalent
evolution equation associated to equation (1.1):

u′(t) = Aα−1(t)u(t) + f (t, u(t)) + (ω− Aα−1(t))D(t)g(t, u(t))︸ ︷︷ ︸
f̃ (t, u(t))

for all t ∈ R, (1.2)

in the continuous extrapolation spaces Xt
α−1, associated to the sectorial operators Aα−1(t), t ∈ R, 0 <

α < 1, where, D(t) := (B(t)|ker(ω− Am(t)))−1, t ∈ R are the Dirichlet maps for ω large enough.
We begin by introducing the fact that, if R(ω, A(·)) ∈ AASp(R,L(X)) it holds that Γ(·, ·) ∈ bAA(R,L(X)),
see Theorem 4.1, this is a generalisation to the result introduced in [10] where the authors proved that
Γ(·, ·) ∈ bAA(R,L(X)) if R(ω, A(·)) ∈ AA(R,L(X)) which is strong as hypothesis than ours. Therefore,
we prove the existence and uniqueness of a µ-pseudo almost automorphic mild solution to the following
linear evolution equation:

u′(t) = Aα−1(t)u(t) + h(t) for all t ∈ R, (1.3)

in the spaces Xt
α−1, where h is Stepanov-like µ-pseudo almost automorphic, see Theorems 4.2 and 4.3.

Using contraction mapping Theorem, we prove the existence of a unique µ-pseudo almost automorphic
mild solution to the following semilinear evolution equation:

u′(t) = Aα−1(t)u(t) + f̃ (t, u(t)) for all t ∈ R, (1.4)

in the spaces Xt
α−1, under the assumption that f̃ is Stepanov-like µ-pseudo almost automorphic and Lips-

chitzian with respect to the second argument, see Theorem 4.4. Finally, under Greiner’s assumptions [20],
we prove the result to equation (1.1), see Theorem 5.1.

The organization of this paper is as follows, in Section 2, we recall some results in the interpolation and
the extrapolation theory of a family of linear operators, then we introduce some dichotomy estimates in
the extrapolated spaces Xα−1, which are a key fact to prove our main results. After that, we give important
properties of µ-pseudo almost automorphic functions in Bochner and Stepanov senses respectively. Section
3 is devoted to a new composition result of µ-pseudo almost automorphic functions in Stepanov sense. In
Section 4, we prove the existence and uniqueness of a µ-pseudo almost automorphic mild solution to equa-
tion (1.4), under assumptions that f̃ is µ-pseudo almost automorphic in Stepanov sense and R(ω, A(·)) is
Stepanov-like almost automorphic. In Section 5, we show the existence of a unique µ-pseudo almost au-
tomorphic mild solution to equation (1.1) under Greiner’s assumptions and that Am(·), B(·) are Stepanov-
like almost automorphic and the functions f and g are µ-pseudo almost automorphic in Stepanov sense.
In Section 6, for illustration, we provide an application for some diffusion problems.

2 Preliminaries

In this section, we recall some definitions and notations as we introduce some results needed in the fol-
lowing. Throughout this work, (X, ‖ · ‖) and (Y, ‖ · ‖Y) are two Banach spaces. BC(R, X) equipped with
the supremum norm, the Banach space of bounded continuous functions f from R into X. Moreover, for
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2.1 Evolution families and intermediate spaces 2 PRELIMINARIES

1 ≤ p < ∞, q denotes its conjugate exponent defined by
1
p
+

1
q

= 1 if p 6= 1 and q = ∞ if p = 1. By

Lp
loc(R, X) (resp. Lp(R, X)), we designate the space (resp. the Banach space) of all equivalence classes of

measurable functions f from R into X such that ‖ f (·)‖p is locally integrable (resp. integrable). We de-
note by B(R), the Lebesgue σ-field of R and byM the set of all positive measures µ on B(R) satisfying
µ(R) = +∞ and µ([a, b]) < +∞, for all a, b ∈ R with a ≤ b.

2.1 Evolution families and intermediate spaces

We provide results on interpolation and extrapolation spaces for A(t), t ∈ R. For more details, we refer to
[2, 18, 23].
Let (A(t), D(A(t))), t ∈ R be a family of linear closed operators on a Banach space X that satisfies the con-
ditions introduced by P. Acquistapace and B. Terrini in [1], i.e., there exist constants ω ∈ R, θ ∈ (π

2 , π), M >
0 and η, ν ∈ (0, 1] with η + ν > 1 such that

‖λR(λ, A(t)−ω)‖L(X) ≤ L, (2.1)

‖(A(t)−ω)R(λ, A(t)−ω)[R(ω, A(t))− R(ω, A(s))]‖L(X) ≤
M|t− s|η
|λ|ν (2.2)

for all t ≥ s, t, s ∈ R and λ ∈ Σω,θ := {z ∈ C : z 6= 0, | arg(z) |≤ θ} ⊂ ρ(A(t)−ω). The domains D(A(t))
of the operators A(t) may change with t and not required to be dense in X.

By the condition (2.1), each operator A(t) generates a bounded analytic semigroup (Tt(s))s≥0 where
the domains D(A(t)) may change with respect to t and not dense in X, so that the semigroups may be
not strongly continuous at 0. The condition (2.2) provides some regularity in the dependence on t of the
operators A(t). Hence, the conditions (2.1) and (2.2) implies that the operators A(t) generates an evolution
family U(t, s) for t, s ∈ R with t ≥ s. More precisely, for t > s the map (t, s) 7−→ U(t, s) ∈ L(X) is

continuous and continuously differentiable in t, U(t, s) maps X into D(A(t)) and it holds
∂U(t, s)

∂t
=

A(t)U(t, s). Moreover, U(t, s) and (t− s)A(t)U(t, s) are exponentially bounded. We further have

U(t, s)U(s, r) = U(t, r) and U(t, t) = I for t ≥ s ≥ r.

Finally, for s ∈ R and x ∈ D(A(s)), the function t 7−→ u(t) = U(t, s)x is continuous at t = s and u is the
unique solution in C([s, ∞), X) ∩ C1((s, ∞), X) of the Cauchy problem:

u′(t) = A(t)u(t), t > s, u(s) = x.

For more details, we refer to [1, 2, 23].

We introduce the interpolation and extrapolation spaces for the operators A(t), t ∈ R. Let A be a sec-
torial operator, i.e., A satisfy (2.1) in place of A(t) (it is well known that A generates an analytic semigroup
(TA(t))t≥0 on X). For α ∈ (0, 1), we use the real interpolation spaces:

Xα := D(A)
‖·‖α , where ‖x‖α := sup

λ>0
‖λα(A−ω)x‖ for all x ∈ D(A).

Then, (Xα, ‖ · ‖α) are Banach spaces. Let X0 := X, X1 := D(A) and ‖x‖0 = ‖x‖, ‖x‖1 = ‖(A−ω)x‖ be the
corresponding norms respectively. We also take the closed subspace X̂ := D(A) of X. Furthermore, we
define the extrapolation space denoted by X−1 as the completion of X̂ with respect to the norm ‖x‖−1 =
‖R(ω, A)x‖, for x ∈ X. This implies that A has a unique continuous extension A−1 : X̂ −→ X−1. Since for
every t ≥ 0, T(t) commutes with the operator resolvent R(ω, A) := (A−ω)−1, the extensions of TA(t) to
X−1 exist and define an analytic semigroup (TA−1(t))t≥0 generated by A−1 with D(A−1) = X̂. We define
the spaces:

Xα−1 := (X−1)α = X̂
‖·‖α−1

where ‖x‖α−1 := sup
λ>0
‖λαR(λ, A−1 −ω)x‖.
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2.1 Evolution families and intermediate spaces 2 PRELIMINARIES

The restriction Aα−1 : Xα −→ Xα−1 of A−1 generates the analytic semigroup (TAα−1(t))t≥0 on Xα−1 which
is the extension of TA(t) on Xα−1. Observe that ω− Aα−1 : Xα −→ Xα−1 is an isometric isomorphism. We
frequently use the continuous embeddings:

D(A) ↪→ Xβ ↪→ Xα ↪→ X
X ↪→ Xβ−1 ↪→ Xα−1 ↪→ X−1 (2.3)

for all 0 < α < β < 1.
Let A(t), t ∈ R which satisfies (2.1), we set

Xt
α := Xα, Xt

α−1 := Xt
α−1 and X̂t := X̂

where A(t) is taken instead of A in the definition of the spaces Xδ, 0 < δ < 1, X̂ and the corresponding
norms. Then, the embeddings in (2.3) hold and the norms of the embeddings are uniformly bounded in
t ∈ R.
Exponential dichotomy is another important tool in our study.

Definition 2.1 [3] An evolution family (U(t, s))s≤t on a Banach space X is called has an exponential di-
chotomy (or hyperbolic) in R if there exists a family of projections P(t) ∈ L(X), t ∈ R, being strongly
continuous with respect to t, and constants δ, N > 0 such that

(i) U(t, s)P(s) = P(t)U(t, s).

(ii) U(t, s) : Q(s)X −→ Q(t)X is invertible with the inverse Ũ(t, s).

(iii) ‖U(t, s)P(s)‖ ≤ Ne−δ(t−s) and ‖Ũ(s, t)Q(t)‖ ≤ Ne−δ(t−s)

for all t, s ∈ R with s ≤ t, where, Q(t) := I − P(t).

Definition 2.2 [3] Given a hyperbolic evolution family (U(t, s))s≤t, we define the Green function by:

Γ(t, s) =

{
U(t, s)P(s), t, s ∈ R, s ≤ t,

−Ũ(t, s)Q(s), t, s ∈ R, s > t.
(2.4)

Now, we give some dichotomy estimates of the extension evolution family (Uα−1(t, s))s≤t of (U(t, s))s≤t
to the extrapolated spaces Xt

α−1, 0 ≤ α < 1.

Theorem 2.1 [5] Let 1 − µ < α < 1. Assume that (2.1) and (2.2) hold. Then, the following holds for
s < t ≤ s + t0 and t0 > 0:
The operators U(t, s) have continuous extension Uα−1(t, s) : Xs

α−1 −→ X satisfying

‖Uα−1(t, s)x‖β ≤ N(α, t0)(t− s)α−β−1‖x‖α−1, (2.5)

and Uα−1(t, s)x = Uγ−1(t, s)x for 1− µ < γ < α < 1, 0 ≥ β ≥ 1 and x ∈ Xs
α−1.

Theorem 2.2 [5] Assume that (2.1) and (2.2) hold and that U has an exponential dichotomy on R. Let
1− µ < α ≤ 1. Then, the operators P(t) and Q(t) have continuous extensions Pα−1(t) : Xt

α−1 −→ Xt
α−1

and Qα−1(t) : Xt
α−1 −→ X respectively, for t ∈ R, which are uniformly bounded. Moreover, the following

assertions hold for t, s ∈ R with t ≥ s:

(i) Qα−1(t)Xt
α−1 = Q(t)X.

(ii) Uα−1(t, s)Pα−1(s) = Pα−1(t)Uα−1(t, s).

(iii) Uα−1(t, s) : Qα−1(s)Xs
α−1 −→ Qα−1(t)Xt

α−1 is invertible with the inverse Ũα−1(t, s).

(iv) Let t, s ∈ R, t ≥ s. Then,

‖Uα−1(t, s)Pα−1(s)x‖ ≤ m(α)max{(t− s)α−1, 1}e−δ(t−s)‖x‖α−1, x ∈ Xs
α−1. (2.6)

‖Ũα−1(t, s)Qα−1(t)x‖ ≤ c(α)e−δ(t−s)‖x‖α−1, x ∈ Xt
α−1. (2.7)
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2.2 Almost automorphic functions 2 PRELIMINARIES

Theorem 2.3 Let x ∈ Xα−1, 0 < α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ β < α. Then, the following hold:

(i) There exists a constant c(α, β), such that

‖Ũα−1(t, s)Qα−1(t)x‖β ≤ c(α, β)e−δ(t−s)‖x‖α−1 for t ≤ s. (2.8)

(ii) There exists a constant m(α, β), such that

‖Uα−1(t, s)Pα−1(s)x‖β ≤ m(α, β)(t− s)α−β−1e−γ(t−s)‖x‖α−1 for t ≥ s. (2.9)

Proof. Let x ∈ Xs
α−1, 0 < α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ β < α.

(i) As Xβ is a space of class Jβ, see [23, Definition 1.1.1], there exists a constant n(β) such that

‖x‖β ≤ n(β)‖x‖1−β‖(ω− A(t))x‖β, x ∈ D(A(t)). (2.10)

Hence, from (2.7), we obtain that

‖Ũα−1(t, s)Qα−1(t)x‖β ≤ n(β)‖Ũα−1(t, s)Qα−1(t)x‖1−β‖(A(t)−ω)Ũα−1(t, s)Qα−1(t)x‖β

≤ n(β)‖Ũα−1(t, s)Qα−1(t)x‖1−β‖(A(t)−ω)Q(t)‖β‖Ũα−1(t, s)Qα−1(t)x‖β

≤ n(β)cβ‖Ũα−1(t, s)Qα−1(t)x‖
≤ c(α, β)e−δ(t−s)‖x‖α−1 for t ≤ s.

(ii) Let t− s > 1. Then, from the estimate (2.6), we obtain that

‖Uα−1(t, s)Pα−1(s)x‖β ≤ ‖U(t, t− 1)‖L(X,Xt
β)
‖Uα−1(t− 1, s)Pα−1(s)x‖

≤ m1(α, β)(t− s)α−1e−δ(t−s)‖x‖α−1

≤ m1(α, β)(t− s)βe−
δ
2 (t−s)(t− s)α−β−1e−

δ
2 (t−s)‖x‖α−1.

Since τβe−
δ
2 τ → 0 as τ → ∞. Then

‖Uα−1(t, s)Pα−1(s)x‖β ≤ m1(α, β)(t− s)α−β−1e−
δ
2 (t−s)‖x‖α−1.

Now, if 0 ≤ t− s ≤ 1, it follows from (2.5) that

‖Uα−1(t, s)Pα−1(s)x‖β ≤ N(α, 1)(t− s)α−β−1‖Pα−1(s)x‖α−1

≤ cN(α, 1)e
δ
2 (t−s)(t− s)α−β−1‖x‖α−1

≤ m2(α, β)(t− s)α−β−1e−
δ
2 (t−s)‖x‖α−1 for all x ∈ Xs

α−1.

Therefore, there exist m(α, β) = max{m1(α, β), m2(α, β)} > 0 and γ := δ
2 such that:

‖Uα−1(t, s)Pα−1(s)x‖β ≤ m(α, β)(t− s)α−β−1e−
δ
2 (t−s)‖x‖α−1 for t ≥ s.

2.2 Almost automorphic functions

In this section, we recall some properties of almost automorphic functions in the classical sense and in
Stepanov sense.

Definition 2.3 (H. Bohr) [9] A continuous function f : R −→ X is said to be almost periodic if for every
ε > 0, there exists lε > 0, such that for every a ∈ R, there exists τ ∈ [a, a + lε] satisfying:

‖ f (t + τ)− f (t)‖ < ε for all t ∈ R.

The space of all such functions is denoted by AP(R, X).
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Definition 2.4 (S. Bochner) [8] A continuous function f : R −→ X is called almost automorphic if for
every sequence (σn)n≥0 of real numbers, there exist a subsequence (sn)n≥0 ⊂ (σn)n≥0 and a measurable
function g : R −→ X, such that

g(t) =: lim
n

f (t + sn) and f (t) = lim
n

g(t− sn) for all t ∈ R.

The space of all such functions is denoted by AA(R, X).

Then, we have the following inclusions:

AP(R, X) ⊂ AA(R, X) ⊂ BC(R, X). (2.11)

Definition 2.5 A continuous function F : R×R −→ X is said to be bi-almost automorphic if for every
sequence (σn)n≥0 of real numbers, there exist a subsequence (sn)n≥0 ⊂ (σn)n≥0 and a measurable function
G : R×R −→ X, such that

G(t, s) =: lim
n

F(t + sn, s + sn) and F(t, s) = lim
n

G(t− sn, s− sn) for all t, s ∈ R.

The space of all such functions is denoted by bAA(R, X).

Proposition 2.1 [25] Let f1, f2, f ∈ AA(R, X) and λ ∈ R. Then, the following are true:

(i) λ f1 + f2 ∈ AA(R, X).

(ii) The set { f (t) : t ∈ R} is relatively compact in X.

(iii) The space AA(R, X) is translation invariant, i.e., for all τ ∈ R, f ∈ AA(R, X) implies f (· + τ) ∈
AA(R, X).

(iv) The space AA(R, X) equipped with the supnorm is a Banach space.

(v) f is bounded i.e., sup
t∈R

‖ f (t)‖ < ∞.

Remark 2.1
(i) The function g in Definition 2.4 is measurable not necessarily continuous. Using the characterization of
S. Bochner of almost periodicity one can claim easily that, if the convergence in Definition 2.4 is uniform
in t ∈ R, then necessarily f belongs to AP(R, X).
(ii) An almost automorphic function may not be uniformly continuous. Indeed, the real function f (t) =

sin

(
1

2 + cos(t) + cos(
√

2t)

)
for t ∈ R, belong to AA(R, R), but is not uniformly continuous. Hence, f

does not belongs to AP(R, R).

Definition 2.6 [17] Let 1 ≤ p < ∞. A function f ∈ Lp
loc(R, X) is said to be bounded in the sense of

Stepanov if

sup
t∈R

(∫
[t,t+1]

‖ f (s)‖pds
) 1

p
= sup

t∈R

(∫
[0,1]
‖ f (t + s)‖pds

) 1
p
< ∞.

The space of all such functions is denoted by BSp(R, X) and is provided with the following norm:

‖ f ‖BSp := sup
t∈R

(∫
[t,t+1]

‖ f (s)‖pds
) 1

p

= sup
t∈R

‖ f (t + ·)‖Lp([0,1],X).

Then, the following inclusions hold:

BC(R, X) ⊂ BSp(R, X) ⊂ Lp
loc(R, X). (2.12)
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2.3 µ-pseudo almost automorphic functions 2 PRELIMINARIES

Definition 2.7 (Bochner transform) [17] Let f ∈ Lp
loc(R, X) for 1 ≤ p < ∞. The Bochner transform of f is

the function f b : R −→ Lp([0, 1] , X) defined for all t ∈ R by

( f b(t))(s) = f (t + s) for s ∈ [0, 1] .

Remark 2.2 [6] Let f , g ∈ Lp
loc(R, X) for 1 ≤ p < ∞. Then, the following hold:

(i) ( f + g)b = f b + gb.

(ii) for all λ ∈ R, (λ f )b = λ f b.

(iii) for all τ ∈ R, (Tτ f )b = Tτ f b, where Tτ is the translation map.

Now, we give the definition of almost automorphy in the sense of Stepanov.

Definition 2.8 [16] Let 1 ≤ p < ∞. A function f ∈ Lp
loc(R, X) is said to be almost automorphic in the

sense of Stepanov (or Sp-almost automorphic), if for every sequence (σn)n≥0 of real numbers, there exists
a subsequence (sn)n≥0 ⊂ (σn)n≥0 and a measurable function g ∈ Lp

loc(R, X), such that

lim
n

(∫ t+1

t
‖ f (s + sn)− g(s)‖pds

) 1
p
= 0 and lim

n

(∫ t+1

t
‖g(s− sn)− f (s)‖pds

) 1
p

for all t ∈ R.

The space of all such functions is denoted by AASp(R, X).

Theorem 2.4 [16] The following are equivalent:

(i) f is Sp-almost automorphic in the sense of Definition 2.8.

(ii) For every sequence (σn)n≥0 of real numbers, there exists a subsequence (sn)n≥0 ⊂ (σn)n≥0

lim
n,m

(∫ t+1

t
‖ f (τ + sn − sm)− f (τ)‖pdτ

) 1
p
= 0,

for all t ∈ R.

Remark 2.3 [6]
(i) Every almost automorphic function is Sp-almost automorphic for 1 ≤ p < ∞.
(ii) For all 1 ≤ p1 ≤ p2 < ∞, if f is Sp2 -almost automorphic, then f is Sp1 -almost automorphic.
(iii) The Bochner transform of an X-valued function is a Lp([0, 1] , X)-valued function. Moreover, a function
f is Sp-almost automorphic if and only if f b is (Bochner) almost automorphic.
(iv) A function ϕ(t, s) for t ∈ R, s ∈ [0, 1] is the Bochner transform of a function f (i.e., ∃ f : R −→ X such
that ( f b(t))(s) = ϕ(t, s), t ∈ R, s ∈ [0, 1]) if and only if ϕ(t + τ, s− τ) = ϕ(t, s) for all t ∈ R, s ∈ [0, 1] and
τ ∈ [s− 1, s].

Proposition 2.2 [16] For all 1 ≤ p < ∞, (AASp(R, X), ‖ · ‖BSp) is a Banach space.

2.3 µ-pseudo almost automorphic functions

This section is provided to properties of µ-ergodic and µ-pseudo almost automorphic functions. In the
sequel, we denote by B(R) the Lebesgue σ-field of R and byM the set of all positive measures µ on B(R)
satisfying µ(R) = +∞ and µ([a, b]) < +∞ for all a, b ∈ R with (a ≤ b), we denote also by Y any other
Banach space. We assume the following hypothesis.
(H2) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a + τ : a ∈ A}) ≤ βµ(A) where A ∈ B(R) and A ∩ I = ∅.
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2.3 µ-pseudo almost automorphic functions 2 PRELIMINARIES

Definition 2.9 [12] Let µ ∈ M. A continuous bounded function f : R −→ X is called µ-ergodic, if

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

‖ f (t)‖dµ(t) = 0.

The space of all such functions is denoted by E(R, X, µ).

Proposition 2.3 [12] Let µ ∈ M. Then,
(i) (E(R, X, µ), ‖ · ‖∞) is a Banach space.
(ii) If µ satisfies (H2), then E(R, X, µ) is translation invariant.

Examples 2.1
(1) An ergodic function in the sense of Zhang [32] is a µ-ergodic function in the particular case where the
measure µ is the Lebesgue measure.
(2) Let ρ : R −→ [0,+∞) be a B(R)-measurable function. We define the positive measure µ on B(R) by

µ(A) =
∫

A
ρ(t)dt for A ∈ B(R),

where dt denotes the Lebesgue measure on B(R). The measure µ is absolutely continuous with respect to
dt and the function ρ is called the Radon-Nikodym derivative of µ with respect to dt. In this case µ ∈ M if
and only if the function ρ is locally Lebesgue-integrable on R and it satisfies∫

R
ρ(t)dt = +∞.

(3) In [21], the authors considered the space of bounded continuous functions f : R −→ X satisfying

lim
r→+∞

1
2r

∫
[−r,r]

‖ f (t)‖dt = 0 and lim
N→+∞

1
2N + 1

N

∑
n=−N

‖ f (n)‖ = 0.

This space coincides with the space of µ-ergodic functions where µ is defined in B(R) by the sum µ(A) =
µ1(A) + µ2(A) with µ1 is the Lebesgue measure on (R,B(R)) and

µ2(A) =

{
card(A ∩Z) if A ∩Z is finite

∞ if A ∩Z is infinite.

Definition 2.10 [11] Let µ ∈ M. A continuous function f : R −→ X is said to be µ-pseudo almost
automorphic if f is written in the form:

f = g + ϕ,

where g ∈ AA(R, X) and ϕ ∈ E(R, X, µ).
The space of all such functions is denoted by PAA(R, X, µ).

Proposition 2.4 [11] Let µ ∈ M satisfy (H2). Then the following are true:
(i) The decomposition of a µ-pseudo almost automorphic in the form f = g + ϕ where g ∈ AA(R, X) and
ϕ ∈ E(R, X, µ), is unique.
(ii) PAA(R, X, µ) equipped with the supnorm is a Banach space.
(iii) PAA(R, X, µ) is invariant by translation, that is:

f ∈ PAA(R, X, µ) implies fτ ∈ PAA(R, X, µ) for all τ ∈ R.

Now, we give the definition and the important properties of µ-Sp-pseudo almost automorphic functions.

Definition 2.11 [17] Let µ ∈ M. A function f ∈ BSp(R, X) is said to be µ-ergodic in the sense of Stepanov
(or µ-Sp-ergodic) if

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

(∫
[t,t+1]

‖ f (s)‖pds
) 1

p
dµ(t) = lim

r→+∞

1
µ([−r, r])

∫
[−r,r]

‖ f b(t)‖p,X dµ(t) = 0. (2.13)

The space of all such functions is denoted by E p(R, X, µ).
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3 NEW COMPOSITION RESULTS OF µ-SP-PSEUDO ALMOST AUTOMORPHIC FUNCTIONS

Remark 2.4 Using (2.13) we obtain that, f ∈ E p(R, X, µ) if and only if f b ∈ E(R, Lp([0, 1] , X), µ).

Proposition 2.5 [6] Let µ ∈ M. Then, for all 1 ≤ p < ∞, (E p(R, X, µ), ‖ · ‖BSp) is a Banach space.

Proposition 2.6 [17] Let µ ∈ M satisfy (H2). Then, the following hold:
(i) E p(R, X, µ) is translation invariant.
(ii) E(R, X, µ) ⊂ E p(R, X, µ).

Example 2.1 Let f : R −→ R defined by:

f (t) =


1
k

k ≤ t ≤ k +
1
2k

with k ∈N∗,

0 otherwise.

The function f is not continuous in R, which implies that f /∈ E(R, R, µ). But, f ∈ E1(R, R, µ). In fact, let
r > 1. Then, we have

1
2r

∫ r

−r

∫ t+1

t
f (s)ds dt ≤ 1

2r

∫ +∞

1

∫ t+1

t
f (s)ds dt

≤ 1
2r

∫ +∞

1

∫ [t]+2

[t]
f (s)ds dt

≤ 1
2r ∑

k≥1

1
k2 =

π2

12r
→ 0 as r → +∞.

In the next, we give a sufficient condition for a µ-Sp-ergodic function to be µ-ergodic.

Proposition 2.7 [17] Let µ ∈ M satisfy (H2) and f : R −→ X be bounded, uniformly continuous and
µ-Sp-ergodic. Then, f is µ-ergodic.

Definition 2.12 [17] Let µ ∈ M. A function f ∈ BSp(R, X) is said to be µ-pseudo almost automorphic in
the sense of Stepanov (or µ-Sp-pseudo almost automorphic) if:

f = f̃ + ϕ,

where f̃ ∈ AASp(R, X) and ϕ ∈ E p(R, X, µ).
The space of all such functions will be denoted PAASp(R, X, µ).

Definition 2.13 [12] Let µ ∈ M. A continuous function f : R× X −→ Y is said to be µ-pseudo almost
automorphic if f is written in the form:

f = g + ϕ,

where g ∈ AAU(R× X, Y), and ϕ ∈ EU(R× X, Y, µ).
The space of all such functions is denoted by PAAU(R× X, Y, µ).

Definition 2.14 Let µ ∈ M and f : R× X −→ Y be such that f (·, x) ∈ BSp(R, Y) for each x ∈ X. The
function f is µ-Sp-almost automorphic if f is written as:

f = g + ϕ,

where g ∈ AASpU(R× X, Y), and ϕ ∈ E pU(R× X, Y, µ).
The space of all such functions will be denoted PAASpU(R, X, µ).

3 New composition results of µ-Sp-pseudo almost automorphic func-
tions

In this section, we prove a new composition result of µ-Sp-pseudo almost automorphic functions using the
uniform continuity property.
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3 NEW COMPOSITION RESULTS OF µ-SP-PSEUDO ALMOST AUTOMORPHIC FUNCTIONS

Lemma 3.1 Let 1 ≤ p < +∞ and f : R× X −→ Y be a function such that f (·, x) ∈ Lp
loc(R, Y) for each

x ∈ X. Then, f ∈ AASpU(R× X, Y) if and only if the following hold:

(i) For each x ∈ X, f (·, x) ∈ AASp(R, Y).

(ii) f is Sp-uniformly continuous with respect to the second argument on each compact subset K in X,
namely: for all ε > 0 there exists δK,ε such that for all x1, x2 ∈ K, we have

‖x1 − x2‖ ≤ δK,ε =⇒
(∫ t+1

t
‖ f (s, x1)− f (s, x2)‖

p
Yds
) 1

p
≤ ε for all t ∈ R. (3.1)

Proof. Let f ∈ AASpU(R× X, Y) and f b : R× X −→ Lp([0, 1], Y) be the Bochner transform associated to
f . It follows in view of [11, Proposition 5.5], that (i) is clearly satisfied and that: for each compact subset K
in X, for all ε > 0 there exists δK,ε such that for all x1, x2 ∈ K, we have

‖x1 − x2‖ ≤ δK,ε =⇒ ‖ f b(t, x1)− f b(t, x2)‖Y,p ≤ ε for all t ∈ R.

Since

‖ f b(t, x1)− f b(t, x2)‖Y,p =

(∫
[0,1]
‖( f b(t, x1))(s)− ( f b(t, x2))(s)‖

p
Yds
) 1

p

=

(∫ t+1

t
‖ f (s, x1)− f (s, x2)‖

p
Yds
) 1

p
for all t ∈ R.

It follows that (3.1) holds and then (ii) is achieved.
Conversely, let f : R× X −→ Y be a function such that f (·, x) ∈ Lp

loc(R, Y) for each x ∈ X. Assume that
f satisfies (i)-(ii). Let us fix a compact subset K in X and ε > 0. Since K is compact, it follows that there

exists a finite subset {x1, ..., xn} ⊂ K (n ∈N∗) such that K ⊆
n⋃

i=1

B(xi, δK,ε). Therefore, for x ∈ K, there exist

i = 1, ..., n satisfying ‖x− xi‖ ≤ δK,ε. Let (σn)n≥0 be a sequence of real numbers and let (sn)n≥0 ⊂ (σn)n≥0
be a subsequence such that:(∫ t+1

t
‖ f (s + sl − sk, x)− f (s, x)‖p

Yds
) 1

p
≤
(∫ t+1

t
‖ f (s + sl − sk, x)− f (s + sl − sk, xi)‖

p
Yds
) 1

p

+

(∫ t+1

t
‖ f (s + sl − sk, xi)− f (s, xi)‖

p
Yds
) 1

p
+

(∫ t+1

t
‖ f (s, xi)− f (s, x)‖p

Yds
) 1

p
for all t ∈ R. (3.2)

From (i), f (·, xi) ∈ AASp(R, Y). Hence, for k, l large enough(∫ t+1

t
‖ f (s + sl − sk, xi)− f (s, xi)‖

p
Yds
) 1

p
≤ ε

3
for all t ∈ R. (3.3)

Otherwise, since ‖x− xi‖ ≤ δK,ε and by using (ii) we claim that(∫ t+1

t
‖ f (s + sl − sk, x)− f (s + sl − sk, xi)‖

p
Yds
) 1

p
≤ ε

3
for all t ∈ R and k, l ∈N (3.4)

and (∫ t+1

t
‖ f (s, x)− f (s, xi)‖

p
Yds
) 1

p
≤ ε

3
for all t ∈ R. (3.5)

Consequently, we replace (3.3), (3.4) and (3.5) in (3.2), we obtain, for k, l large enough, that

sup
x∈K

(∫ t+1

t
‖ f (s + sl − sk, x)− f (s, x)‖p

Yds
) 1

p
≤ ε for all t ∈ R.
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3 NEW COMPOSITION RESULTS OF µ-SP-PSEUDO ALMOST AUTOMORPHIC FUNCTIONS

By Lemma 3.1, we deduce the following result.

Proposition 3.1 Let µ ∈ M and f ∈ PAASpU(R× X, Y, µ), for 1 ≤ p < +∞. Then, the following hold:

(i) For each x ∈ X, f (·, x) ∈ AASp(R, Y, µ).

(ii) f is Sp-uniformly continuous with respect to the second argument on each compact subset K in X in
the following sense: for all ε > 0 there exists δK,ε such that for all x1, x2 ∈ K, one has:

‖x1 − x2‖ ≤ δK,ε =⇒
(∫ t+1

t
‖ f (s, x1)− f (s, x2)‖

p
Yds
) 1

p
≤ ε for all t ∈ R. (3.6)

Theorem 3.1 Let 1 ≤ p < +∞ and f ∈ AASpU(R× X, Y). Assume that u ∈ AA(R, X).
Then, f (·, u(·)) ∈ AASp(R, Y).

Proof. Let (σn)n≥0 be a sequence of real numbers, since f ∈ AASpU(R× X, Y), then for each x ∈ X there
exists a subsequence (sn)n≥0 such that(∫ t+1

t
‖ f (s + sl − sk, x)− f (s, x)‖p

Yds
) 1

p
→ 0 as k, l → ∞ (3.7)

for all t ∈ R. On the other hand, we have(∫ t+1

t
‖ f (s + sl − sk, u(s + sl − sk))− f (s, u(s))‖p

Yds
) 1

p
≤(∫ t+1

t
‖ f (s + sl − sk, u(s + sl − sk))− f (s + sl − sk, u(s))‖p

Yds
) 1

p

+

(∫ t+1

t
‖ f (s + sl − sk, u(s))− f (s, u(s))‖p

Yds
) 1

p
for all t ∈ R.

Moreover, given K := {u(t) : t ∈ R} a compact subset of X and ε > 0. Using Lemma 3.1-(ii) it follows
that there exists δε,K > 0 such that (3.1) holds. Since u ∈ AA(R, X). Then, u(s) ∈ K for all s ∈ R and for
k, l large enough, ‖u(s + sl − sk)− u(s)‖ ≤ δ for each s ∈ R which implies that(∫ t+1

t
‖ f (s + sl − sk, u(s + sl − sk))− f (s + sl − sk, u(s))‖p

Yds
) 1

p
≤ ε

4
for all t ∈ R. (3.8)

Since K is compact, there exist a finite subset {u1, ..., un} ⊂ K (n ∈ N∗) such that K ⊆
n⋃

i=1

B(ui, δK,ε).

Then, for all t ∈ R, there exists i(t) = 1, ..., n such that ‖u(t)− ui(t)‖ ≤ δK,ε. Thus(∫ t+1

t
‖ f (s + sl − sk, u(s))− f (s + sl − sk, ui(t))‖

p
Yds
) 1

p
≤ ε

4
(3.9)

and (∫ t+1

t
‖ f (s, u(s))− f (s, ui(t))‖

p
Yds
) 1

p
≤ ε

4
. (3.10)

Using 3.1-(i), we get that(∫ t+1

t
‖ f (s + sl − sk, ui(t))− f (s, ui(t))‖

p
Yds
) 1

p
≤ ε

4
. (3.11)

Consequently, by (3.8), (3.9), (3.10) and (3.11), we obtain for l, k large enough, that(∫ t+1

t
‖ f (s + sl − sk, u(s + sl − sk))− f (s, u(s))‖p

Yds
) 1

p
≤ ε

4
+

ε

4
+

ε

4
+

ε

4
= ε for all t ∈ R.
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3 NEW COMPOSITION RESULTS OF µ-SP-PSEUDO ALMOST AUTOMORPHIC FUNCTIONS

Theorem 3.2 Let µ ∈ M. If u ∈ BSp(R, X) with K = {u(t) : t ∈ R} is compact in X and f ∈ E pU(R×
X, Y, µ). Then, f (·, u(·)) ∈ E p(R, Y, µ).

Proof. Let f ∈ E pU(R× X, Y, µ) and K = {u(t) : t ∈ R} be fixed. Then for all ε > 0 there exists δε,K > 0
such that (3.1) holds. Since K is compact, then there exists a finite subset {u1, ..., un} ⊂ K (n ∈ N∗) such

that K ⊆
n⋃

i=1

B(ui, δK,ε). Therefore, for all t ∈ R, there exists i(t) = 1, ..., n such that ‖u(t)− ui(t)‖ ≤ δK,ε.

(∫ t+1

t
‖ f (s, u(s))‖p

Yds
) 1

p
≤

(∫ t+1

t
‖ f (s, u(s))− f (s, ui(t))‖

p
Yds
) 1

p
+

(∫ t+1

t
‖ f (s, ui(t))‖

p
Yds
) 1

p

≤ ε +
n

∑
i=1

(∫ t+1

t
‖ f (s, ui)‖

p
Yds
) 1

p
. (3.12)

Since for i = 1, ..., n, f (·, xi) ∈ E p(R, Y, µ). Then, for r > 0, we have

1
µ([−r, r])

∫ r

−r

(∫ t+1

t
‖ f (s, u(s))‖p

Yds
) 1

p
dµ(t) ≤ ε +

1
µ([−r, r])

n

∑
i=1

∫ r

−r

(∫ t+1

t
‖ f (s, ui)‖

p
Yds
) 1

p
dµ(t).

Consequently,

lim sup
r→+∞

1
µ([−r, r])

∫ r

−r

(∫ t+1

t
‖ f (s, u(s))‖p

Yds
) 1

p
dµ(t) ≤ ε. (3.13)

Since formula (3.13) holds for all ε > 0, we obtain that

lim
r→+∞

1
µ([−r, r])

∫ r

−r

(∫ t+1

t
‖ f (s, u(s))‖p

Yds
) 1

p
dµ(t) = 0. (3.14)

Remark 3.1 From (3.15), we can deduce that for all 1 ≤ p < ∞, f (·, u(·)) ∈ BSp(R, Y).

Corollary 3.1 Let µ ∈ M. Assume that u ∈ AA(R, X) and f ∈ E pU(R × X, Y, µ). Then, f (·, u(·)) ∈
E p(R, Y, µ).

Proof. From u ∈ AA(R, X), we deduce that u ∈ APSp(R, X) and that K = {u(t) : t ∈ R} is compact in X.
Hence, conditions and hypotheses of Theorem 3.2 are satisfied.

Lemma 3.2 [12] Let µ ∈ M and f ∈ BC(R, X). Then, f ∈ E(R, X, µ) if and only if for all ε > 0

lim
r→+∞

µ (Mε,r( f ))
µ([−r, r])

= 0, (3.15)

where Mε,r( f ) := {t ∈ [−r, r] : ‖ f (t)‖ ≥ ε}.

The proof of our result of composition of µ-Sp-pseudo almost automorphic functions is based on the
following Lemma due to Schwartz [28, p. 109].

Lemma 3.3 Let Φ ∈ C(X, Y). Then, for each compact K ⊂ X and for all ε > 0, there exists δK,ε > 0, such
that for any x1, x2 ∈ X, one has

x1 ∈ K and ‖x1 − x2‖ ≤ δ⇒ ‖Φ(x1)−Φ(x2)‖Y ≤ ε.

Theorem 3.3 Let µ ∈ M and f : R× X −→ Y. Assume that:
(i) f = f̃ + ϕ ∈ PAASpU(R× X, Y, µ) with f̃ ∈ AASpU(R× X, Y) and ϕ ∈ E pU(R× X, Y, µ).
(ii) u = u1 + u2 ∈ PAA(R, X, µ), where u1 ∈ AA(R, X) and u2 ∈ E(R, X, µ).
(iii) For every bounded subset B ⊂ X the set Λ := { f (·, x) : x ∈ B} is bounded in BSp(R, X).
Then, f (·, u(·)) ∈ PAASp(R, Y, µ).
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3 NEW COMPOSITION RESULTS OF µ-SP-PSEUDO ALMOST AUTOMORPHIC FUNCTIONS

Remark 3.2
The condition (iii) is needed only to prove that f (·, u(·)) ∈ BSp(R, Y).

Proof of Theorem 3.3. By definition of f and u, we obtain the following decomposition:

f (t, u(t)) = f̃ (t, u1(t))︸ ︷︷ ︸
F̃(t)

+ [ f (t, u(t))− f (t, u1(t))]︸ ︷︷ ︸
F(t)

+ ϕ(t, u1(t))︸ ︷︷ ︸
Ψ(t)

.

Using Theorem 3.1, it follows that F̃ ∈ AASp(R, Y) and from Corollary 3.1, we deduce that Ψ ∈ E p(R, Y, µ).
Now, it suffices to prove that F ∈ E p(R, Y, µ). In view of Lemma 3.2, we have for all ε > 0,

lim
r→+∞

µ (Mε,r(u2))

µ([−r, r])
= 0. (3.16)

Let ε > 0. Then, for r > 0, we have

1
µ([−r, r])

∫ r

−r

(∫ t+1

t
‖F(s)‖p

Yds
) 1

p
dµ(t)

≤ 1
µ([−r, r])

∫
Mε,r(u2)

(∫ t+1

t
‖F(s)‖p

Yds
) 1

p
dµ(t) +

1
µ([−r, r])

∫
[−r,r]\Mε,r(u2)

(∫ t+1

t
‖F(s)‖p

Yds
) 1

p
dµ(t)

≤ ‖F‖BSp
µ (Mε,r(u2))

µ([−r, r])
+

1
µ([−r, r])

∫
[−r,r]\Mε,r(u2)

(∫ t+1

t
‖ f (s, u(s))− f (s, u1(s))‖pds

) 1
p

dµ(t). (3.17)

Let K = {u1(t) : t ∈ R}. Since u1 ∈ AA(R, X), then K is a compact subset of X. Hence, we define the
function:

Φ : X −→ PAASp(R, Y); x 7→ f (·, x).

Since f ∈ PAASpU(R × X, Y, µ), then, from Proposition 3.1, we deduce that the restriction of Φ on all
compact K of X is uniformly continuous, which is equivalent to say that the function Φ is continuous on
X. From Lemma 3.3 applied to Φ, we deduce that for ε > 0, there exists δ > 0 such that, for all ξ1, ξ2 ∈ X,
we have

ξ1 ∈ K and ‖ξ1 − ξ2‖ ≤ δ⇒
(∫ t+1

t
‖ f (s, ξ1)− f (s, ξ2)‖

p
Yds
) 1

p
≤ ε for all t ∈ R.

Then, from u(t) = u1(t) + u2(t) and u1(t) ∈ K for t ∈ R, we have

t ∈ R and ‖u2(s)‖ ≤ δ for s ∈ [t, t + 1] ⇒
(∫ t+1

t
‖ f (s, u(s))− f (s, u1(s))‖

p
Yds
) 1

p
≤ ε

Therefore, by the fact that u2 ∈ E(R, X, µ), we have

lim sup
r→+∞

µ (Mδ,r(u2))

µ([−r, r])
= 0.

Hence, using (3.17), we obtain that

lim sup
r→+∞

1
µ([−r, r])

∫ r

−r

(∫ t+1

t
‖F(s)‖p

Yds
) 1

p
dµ(t) ≤ ε

for all ε > 0. Consequently,

lim
r→+∞

1
µ([−r, r])

∫ r

−r

(∫ t+1

t
‖F(s)‖p

Yds
) 1

p
dµ(t) = 0.
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4 µ-PSEUDO ALMOST AUTOMORPHIC SOLUTIONS FOR EQUATION (??)

4 µ-pseudo almost automorphic solutions for equation (1.4)

In this section, we study the following semilinear nonautonomous evolution equations:

u′(t) = Aα−1(t)u(t) + f̃ (t, u(t)) for t ∈ R. (4.1)

We assume that A(t), t ∈ R are linear operators on a Banach space X satisfying the conditions (2.1) and
(2.2). Denote by (U(t, s))t≥s the evolution family generated by A(t), t ∈ R on X and by (Uα−1(t, s))t≥s its
extrapolated evolution family defined in Proposition 2.1 for each 0 < α ≤ 1. The function f̃ : R× Xt

β −→
Xt

α−1 is locally integragble with respect to the first variable and Lipschitzian with respect to the second
one.

Firstly, we prove the existence of a µ-pseudo almost automorphic solution to the following ihomoge-
neous linear equation associated to (4.1):

u′(t) = Aα−1(t)u(t) + h(t) for t ∈ R. (4.2)

Definition 4.1 A continuous function u : R −→ Xt
β is called a mild solution of equation (4.2) if it satisfies

the following variation of constants formula:

u(t) = U(t, σ)u(σ) +
∫ t

σ
Uα−1(t, s)h(s)ds for all t ≥ σ, (4.3)

where h : R −→ Xt
β is locally integrable.

Hence, we list the following hypotheses:
(H1) The operators A(t), t ∈ R satisfy the assumptions (2.1) and (2.2).
(H2) the evolution family (U(t, s))t≥s generated by A(t), t ∈ R has an exponential dichotomy on R with
constants N, δ > 0, projections P(t), t ∈ R, and Green’s function Γ.
(H3) For all 1 ≤ p < ∞, the function R(ω, A(·)) ∈ AASp(R,L(X)).
(H4) There exist 0 ≤ α < β < 1 such that Xt

α = Xα and Xt
β = Xβ for every t ∈ R with uniformly equivalent

norms.
(H5) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a + τ : a ∈ A}) ≤ βµ(A), where A ∈ B(R) and A ∩ I = ∅.

Now, we introduce some preliminary results. Let us define the Yosida approximations An(t) = nA(t)R(n, A(t))
of A(t) for n > ω and t ∈ R. For each n, the operator An generates an evolution family (Un(t, s))t≥s on
X. It has been shown in [24, Lemma 3.1, Proposition 3.3, Corollary 3.4] that assumptions (H1) and (H2) are
satisfied by An with the same constants for every n ≥ n0 (with n0 > ω).

Lemma 4.1 Let (H1) and (H3) be satisfied. Then, there exists n1 ≥ n0 such that

R(ω, An(·)) ∈ AASp(R,L(X)) for all n ≥ n1.

Proof. Let (σl)l≥0 be a sequence of real numbers, since R(ω, A(·)) ∈ AASp(R,L(X)), there exists a subse-
quence (sl)l≥0 such that(∫ t+1

t
‖R(ω, A(s + sl − sk))− R(ω, A(s))‖pds

) 1
p
→ 0 as k, l → ∞ (4.4)

for all t ∈ R. Let t ∈ R and s ∈ [t, t + 1]. If n ≥ n0 and | arg(λ−ω)| ≤ θ, then

R(ω, An(s + sl − sk))− R(ω, An(s))

=
n2

(ω + n)2

(
R
(

ωn
ω + n

, A(s + sl − sk)

)
− R

(
ωn

ω + n
, A(s)

))
=

n2

(ω + n)2 R (ω, A(s + sl − sk))

[
I − ω2

ω + n
R (ω, A(s + sl − sk))

]−1

− n2

(ω + n)2 R (ω, A(s))
[

I − ω2

ω + n
R (ω, A(s))

]−1

. (4.5)
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4 µ-PSEUDO ALMOST AUTOMORPHIC SOLUTIONS FOR EQUATION (??)

Otherwise, we have

‖ ω2

(ω + n)2 R (ω, A(s)) ‖ ≤ ωL
(ω + n)2 ≤

ωL
n
≤ 1

2
for n ≥ n1 = max{n0, 2ωL}.

Therefore,

‖
[

I − ω2

ω + n
R (ω, A(s))

]−1

‖ ≤ 2. (4.6)

Hence, from (4.5), we obtain that

‖R(ω, An(s + sl − sk))− R(ω, An(s))‖ ≤ 2‖ (R (ω, A(s + sl − sk))− R (ω, A(s))) ‖

+
K

1 + ω
‖[I − ω2

ω + n
R (ω, A(s + sl − sk))]

−1 − [I − ω2

ω + n
R (ω, A(s))]−1‖.

Now, using (4.6), we obtain that

‖[I − ω2

ω + n
R (ω, A(s + sl − sk))]

−1 − [I − ω2

ω + n
R (ω, A(s))]−1‖

≤ 4‖[I − ω2

ω + n
R (ω, A(s + sl − sk))]− [I − ω2

ω + n
R (ω, A(s))]‖

≤ 4ω‖ (R (ω, A(s + sl − sk))− R (ω, A(s))) ‖.

Consequently,

‖ (R (ω, An(s + sl − sk))− R (ω, An(s))) ‖ ≤ (2 + 4K)‖ (R (ω, A(s + sl − sk))− R (ω, A(s))) ‖ for n ≥ n1.(4.7)

By integrating in both sides of (4.7) from t to t + 1, we obtain by (4.9) that

(∫ t+1

t
‖R(ω, An(s + sl − sk))− R(ω, An(s))‖pds

) 1
p
→ 0 as k, l → ∞

for all t ∈ R.

Lemma 4.2 Assume that (H1)- (H3) are satisfied. Then, for every sequence (σl)l≥0 of real numbers, there
exists a subsequence (sl)l≥0 such that for every η > 0 and t, s ∈ R, there exists l(η, t, s) > 0 satisfying

‖Γn(t + sl − sk, s + sl − sk)− Γn(t, s)‖ ≤ cn2η (4.8)

for a large n and l, k ≥ l(η, t, s).

Proof. Let (σl)l≥0 be a sequence of real numbers. Since R(ω, A(·)) ∈ AASp(R,L(X)) there exists a subse-
quence (sl)l≥0 such that

(∫ t+1

t
‖R(ω, A(s + sl − sk))− R(ω, A(s))‖pds

) 1
p
→ 0 as k, l → ∞ (4.9)

for all t ∈ R. Let t, s ∈ R. Arguing as in [24], we obtain that

Γn(t + sl − sk, s + sl − sk)− Γn(t, s) =
∫

R
Γn(t, σ)(An(σ)−ω) [R (ω, An(σ + sl − sk))− R (ω, An(σ))]

×(An(σ + sl − sk)−ω)Γn(σ + sl − sk, s + sl − sk)dσ (4.10)
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4 µ-PSEUDO ALMOST AUTOMORPHIC SOLUTIONS FOR EQUATION (??)

for l, k ∈N and large n. From (4.10), (4.7), [24, Corollary 3.4] and Hölder inequality, we claim that

‖Γn(t + sl − sk, s + sl − sk)− Γn(t, s)‖

≤ cn2
∫

R
e−

3
4δ |t−σ|e−

3
4δ |s−σ|‖R (ω, An(σ + sl − sk))− R (ω, An(σ)) ‖dσ

≤ cn2(2 + 4K)
∫

R
e−

3
4δ |t−σ|e−

3
4δ |s−σ| [R (ω, A(σ + sl − sk))− R (ω, A(σ))] dσ

≤ cn2(2 + 4K)
(∫

R
e−

3q
4δ |t−σ|dσ

) 1
q
(∫

R
e−

3p
4δ |s−σ|‖R (ω, A(σ + sl − sk))− R (ω, A(σ)) ‖pdσ

) 1
p

= cn2(2 + 4K)
(

3q
2δ

) 1
q
(∫

R
e−

3p
4δ |s−σ|‖R (ω, A(σ + sl − sk))− R (ω, A(σ)) ‖pdσ

) 1
p

︸ ︷︷ ︸
(I)

(4.11)

we develop the formula (I), we obtain that∫
R

e−
3p
4δ |s−σ|‖R (ω, A(σ + sl − sk))− R (ω, A(σ)) ‖pdσ =

∫ s

−∞
e−

3p
4δ (s−σ)‖R (ω, A(σ + sl − sk))− R (ω, A(σ)) ‖pdσ

+
∫ +∞

s
e

3p
4δ (s−σ)‖R (ω, A(σ + sl − sk))− R (ω, A(σ)) ‖pdσ

:= I1 + I2. (4.12)

Using (4.9) and the Lebesgue’s Dominated Convergence Theorem, we get that

I1 =
∞

∑
m=1

∫ s−m+1

s−m
e−

3p
4δ (s−σ)‖R (ω, A(σ + sl − sk))− R (ω, A(σ)) ‖pdσ

≤
∞

∑
m=1

e−
3p
4δ (m−1)

∫ s−m+1

s−m
‖R (ω, A(σ + sl − sk))− R (ω, A(σ)) ‖pdσ→ 0 as k, l → ∞, (4.13)

and

I2 =
∞

∑
m=0

∫ s+m+1

s+m
e−

3p
4δ (s−σ)‖R (ω, A(σ + sl − sk))− R (ω, A(σ)) ‖pdσ

≤
∞

∑
m=0

e−
3p
4δ m

∫ s+m+1

s+m
‖R (ω, A(σ + sl − sk))− R (ω, A(σ)) ‖pdσ→ 0 as k, l → ∞. (4.14)

Hence, for every η > 0, there exists l(η, t, s) > 0 such that

‖Γn(t + sl − sk, s + sl − sk)− Γn(t, s)‖ ≤ cn2η (4.15)

for a large n and l, k ≥ l(η, t, s).

In the next Theorem, we show that, to have Γ almost automorphic, we only need that R(ω, A(·)) to be
Sp-almost automorphic.

Theorem 4.1 Let (H1)- (H3) be satisfied. Then, Γ ∈ bAA(R, X).

Proof. It suffices to use Lemma 4.2 and arguing as the same as in the proof of [10, Proposition 3.3 ].

Now, we prove the existence of a unique µ-pseudo almost automorphic mild solution to (4.2).

Theorem 4.2 Let 1 ≤ p < ∞, 0 ≤ β < α ≤ 1 and h ∈ BSp(R, Xα−1). Assume that (H1)-(H4) are satisfied.
Then, the following hold:

(i) The equation (4.2) has a unique bounded mild solution u : R −→ Xβ given by

u(t) =
∫

R
Γα−1(t, s)h(s)ds for all t ∈ R. (4.16)
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4 µ-PSEUDO ALMOST AUTOMORPHIC SOLUTIONS FOR EQUATION (??)

(ii) If h ∈ AASp(R, Xα−1), then u ∈ AA(R, Xβ).

Proof. Let 1 ≤ p < ∞, 0 ≤ β < α ≤ 1 and h ∈ BSp(R, Xα−1).
(i) Firstly, let us prove that formula (4.16) is well-defined. Indeed, we take

us(t) :=
∫ t

−∞
Uα−1(t, s)Pα−1(s)h(s)ds and uu(t) := −

∫ +∞

t
Ũα−1(t, s)Qα−1(t)h(s)ds for all t ∈ R.(4.17)

Using Theorem 2.3 and Hölder’s inequality, we obtain that

‖us(t)‖β ≤
∫ t

−∞
‖Uα−1(t, s)Pα−1(s)h(s)‖βds

≤ m(α, β)
∫ t

−∞
e−γ(t−s)(t− s)α−β−1‖h(s)‖α−1ds

≤ m(α, β)

[∫ t

−∞
e−

qγ(t−s)
2 (t− s)q(α−β−1)ds

] 1
q
[∫ t

−∞
e−

pγ(t−s)
2 ‖h(s)‖p

α−1ds
] 1

p

= m(α, β)

(
2

qγ

)(α−β−1)

[q(α− β− 1)Γ(q(α− β− 1))]
1
q

[∫ t

−∞
e−

pγ(t−s)
2 ‖h(s)‖p

α−1ds
] 1

p

= m(α, β)

(
2

qγ

)(α−β−1)

[q(α− β− 1)Γ(q(α− β− 1))]
1
q

[
∞

∑
k=1

∫ t−k+1

t−k
e−

pγ(t−s)
2 ‖h(s)‖p

α−1ds

] 1
p

≤ m(α, β)

(
2

qγ

)(α−β−1)

[q(α− β− 1)Γ(q(α− β− 1))]
1
q [Γ(q(α− β))]

1
q

[
∞

∑
k=1

e−
pγ(k−1)

2

∫ t−k+1

t−k
‖h(s)‖p

α−1ds

] 1
p

≤ m(α, β)

(
2

qγ

)(α−β−1)

[q(α− β− 1)Γ(q(α− β− 1))]
1
q

[
1

1− e−
pγ
2

] 1
p
‖h‖BSp

α−1
for all t ∈ R. (4.18)

Arguing as above, we obtain that

‖uu(t)‖β ≤
∫ +∞

t
‖Ũα−1(t− s)Qα−1(t)h(s)‖ds

≤ c(α, β)
∫ +∞

t
eδ(t−s)‖h(s)‖α−1ds

≤ c(α, β)

[∫ +∞

t
e

qδ(t−s)
2 ds

] 1
q
[∫ +∞

t
e

pδ(t−s)
2 ‖h(s)‖p

α−1ds
] 1

p

≤ c(α, β)

(
2
qδ

) 1
q
[

1

1− e−
pδ
2

] 1
p

‖h‖BSp
α−1

for all t ∈ R. (4.19)

Thus, the integrals given by us and uu are both defined. Moreover,

sup
t∈R

‖u(t)‖β < ∞,

which proves that u is bounded.
Now, we show that u defined by (4.3) is the unique mild solution of (4.2). In fact, let ũ be the mild solution
of the equation (4.2) given by (4.3). Then, by using the uniqueness of the decomposition of Xt

β, we claim
that ũ = ũs + ũu, where

ũs(t) := Uα−1(t, σ)P(σ)u(σ) +
∫ t

σ
Uα−1(t, s)Pα−1(s)h(s)ds for all t ≥ σ (4.20)

and

ũu(t) := Ũα−1(t, σ)Qα−1(t)u(σ) +
∫ t

σ
Ũα−1(t, s)Qα−1(t)h(s)ds for all t, σ ∈ R. (4.21)

Page 17



4 µ-PSEUDO ALMOST AUTOMORPHIC SOLUTIONS FOR EQUATION (??)

From the estimates given in Proposition 2.3, (4.33) and (4.33) we claim that ũs and ũu are bounded respec-
tively and by letting σ→ −∞ in (4.20) and σ→ +∞ in (4.21) respectively, we obtain that

ũs(t) :=
∫ t

−∞
Uα−1(t, s)Pα−1(s)h(s)ds for all t ∈ R, (4.22)

and

ũu(t) := −
∫ +∞

t
Ũα−1(t, s)Qα−1(t)h(s)ds for all t ∈ R. (4.23)

Therefore, we have u(t) = ũ(t) for all t ∈ R, which prove the uniqueness.
(ii) Let h ∈ AASp(R, Xα−1). For each k ∈N, we define:

Φk(t) :=
∫ t−k

t−k−1
Uα−1(t, σ)Pα−1(σ)h(σ)dσ for t ∈ R

and

Ψk(t) :=
∫ t−k

t−k−1
Ũα−1(t, σ)Qα−1(t)h(σ)dσ for t ∈ R.

Let k ∈N. Then, we have

‖Φk(t)‖β ≤
∫ t−k

t−k−1
‖Uα−1(t, s)Pα−1(s)h(s)‖ds

≤ m(α, β)
∫ t−k

t−k−1
e−γ(t−s)(t− s)α−β−1‖h(s)‖α−1ds

≤ m(α, β)

[∫ t−k

t−k−1
e
−qγ(t−s)

2 (t− s)q(α−β−1)ds
] 1

q
[∫ t−k

t−k−1
e
−pγ(t−s)

2 ‖h(s)‖p
α−1ds

] 1
p

≤ m(α, β)
( qγ

2

)(1−α+β)
[∫ +∞

0
e−ssq(α−β−1)ds

] 1
q

e
−γk

2 ‖h‖BSp
α−1

= m(α, β)
( qγ

2

)(1−α+β)
[q(α− β− 1)Γ(q(α− β− 1))]

1
q ‖h‖BSp

α−1
e
−γk

2 for all t ∈ R

and

‖Ψk(t)‖β ≤
∫ t+k+1

t+k
‖Ũα−1(t, s)Qα−1(t)h(s)‖ds

≤ c(α, β)
∫ t+k+1

t+k
eδ(t−s)‖h(s)‖α−1ds

≤ c(α, β)

[∫ t+k+1

t+k
e

qδ(t−s)
2 ds

] 1
q
[∫ t+k+1

t+k
e

pδ(t−s)
2 ‖h(s)‖p

α−1ds
] 1

p

≤ c(α, β)

[∫ +∞

0
e
−qδs

2 ds
] 1

q
‖h‖BSp

α−1

= c(α, β)

(
qδ

2

)− 1
q
‖h‖BSp

α−1
e
−δk

2 for all t ∈ R.

Since ∑
k≥0

e
−ξk

2 =
1

1− e
−ξ
2

< ∞, for ξ := γ, δ, it follows from Weierstrass Theorem that the series ∑
k≥0

Φk(t)

and ∑
k≥0

Ψk(t) are uniformly convergent on R. Then, we define

Φ(t) := ∑
k≥0

Φk(t) and Ψ(t) := ∑
k≥0

Ψk(t) for all t ∈ R.
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In addition, we have
u(t) = Φ(t) + Ψ(t) for all t ∈ R,

where Φ(t) =
∫ t

−∞
Uα−1(t, s)Pα−1(s)h(s)ds and Ψ(t) =

∫ +∞

t
Ũα−1(t, s)Qα−1(t)h(s)ds for t ∈ R.

In fact, let n ∈N. Then,

‖Φ(t)−
n

∑
k=0

Φk(t)‖ = ‖
∫ t

−∞
Uα−1(t, s)Pα−1(s)h(s)ds− ∑

k≥0

∫ t−k

t−k−1
Uα−1(t, σ)Pα−1(σ)h(σ)dσ‖

≤ ∑
k≥n+1

∫ t−k

t−k−1
‖Uα−1(t, σ)Pα−1(σ)h(σ)‖dσ

≤ m(α, β)
( qγ

2

)(1−α+β)
[q(α− β− 1)Γ(q(α− β− 1))]

1
q ‖h‖BSp

α−1
∑

k≥n+1
e
−γk

2 → 0 as n→ ∞.

uniformly in t ∈ R.
By the same way, we prove the result for Ψ. To conclude, it suffices to prove that for each k ∈ N, Φk and
Ψk belong to AA(R, Xβ). Let (σn)n ⊂ R be a sequence of real numbers. Since h ∈ AASp(R, Xα−1), and
Γ ∈ bAA(R, X) it follows that:
(A) there exist a subsequence (sn)n ⊂ (σn)n and a measurable function g̃ : R −→ Xα−1 such that

lim
n

∫ t+1

t

(
‖g(s + sn)− g̃(s)‖p

α−1ds
) 1

p
= 0 and lim

n

∫ t+1

t

(
‖g̃(s− sn)− g(s)‖p

α−1ds
) 1

p
= 0 (4.24)

for all t ∈ R.
(B) there exist a subsequence (s

′
n)n ⊂ (σn)n and a measurable function Γ̃ : R2 −→ X such that

lim
n
‖Γ(t + s

′
n, s + s

′
n)x− Γ̃(t, s)x‖ = 0 and lim

n
‖Γ̃(t− s

′
n, s− s

′
n)x− Γ(t, s)x‖ = 0 (4.25)

for all t, s ∈ R and x ∈ X.
Let (σ

′′
n )n ⊂ (σ

′
n)n, (σn)n be a subsequence of the sequences (σ

′
n)n and (σn)n respectively. Then, for each

k ∈N, we have

‖Φk(t + σ
′′
n )−

∫ t−k

t−k−1
Γ̃α−1(t, s)h̃(s)ds‖

= ‖
∫ k+1

k

[
Γα−1(t + σ

′′
n , t + σ

′′
n − s)h(t + σ

′′
n − s)ds− Γ̃α−1(t, t− s)h̃(t− s)

]
ds‖

≤
∫ k+1

k
‖
[
Γα−1(t + σ

′′
n , t + σ

′′
n − s)− Γ̃α−1(t, t− s)

]
h̃(t− s)‖α−1ds

+
∫ k+1

k
‖Γα−1(t + σ

′′
n , t + σ

′′
n − s)

[
h(t + σ

′′
n − s)− h̃(t− s)

]
‖α−1ds

≤
∫ k+1

k
‖
[
Γα−1(t + σ

′′
n , t + σ

′′
n − s)− Γ̃α−1(t, t− s)

]
h̃(t− s)‖α−1ds

+ m(α, β)

[∫ k+1

k
e−qγssq(α−β−ε̃−1)ds

] 1
q
[∫ k+1

k
‖h(t + σ

′′
n − s)− h̃(t− s)‖p

α−1ds
] 1

p

≤
∫ k+1

k
‖
[
Γα−1(t + σ

′′
n , t + σ

′′
n − s)− Γ̃α−1(t, t− s)

]
h̃(t− s)‖α−1ds

+ m(α, β) (qγ)(1−α+β) [q(α− β− 1)Γ(q(α− β− 1))]
1
q

[∫ k+1

k
‖h(t + σ

′′
n − s)− h̃(t− s)‖p

α−1ds
] 1

p

:= J1 + J2.

By using (A), J2 → 0 as n→ ∞ for all t ∈ R. From (B) and since

‖
[
Γα−1(t + σ

′′
n , t + σ

′′
n − s)− Γ̃α−1(t, t− s)

]
h̃(t− s)‖α−1 ≤ 2m(α, β)e−γssα−β−1‖h̃(t− s)‖α−1
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it follows in view of the dominated convergence Theorem, that J1 → 0 as n→ ∞ for all t ∈ R. Hence

lim
n
‖Φk(t + σ

′′
n )−

∫ t−k

t−k−1
Γ̃α−1(t, s)h̃(s)ds‖ = 0 for all t ∈ R.

Analogously, we prove that

lim
n
‖
∫ k+1

k
Γ̃α−1(t− σ

′′
n , t− σ

′′
n − s)h̃(t− σ

′′
n − s)ds−Φk(t)‖ = 0 for all t ∈ R.

Therefore, for each k ∈ N, Φk ∈ AA(R, Xβ). We recall that the series ∑
k≥0

Φk(t) is uniformly convergent on

R, which implies that Φ ∈ AA(R, Xβ).
Similarly, we prove that Ψ ∈ AA(R, Xβ).
Consequently, u ∈ AA(R, Xβ).

In the next Theorem, we show that to have a µ-pseudo almost automorphic mild solution, we only need
h to be µ-pseudo almost automorphic in the sense of Stepanov. To get that purpose, we need the following
Lemma.

Lemma 4.3 Let µ ∈ M and f ∈ E p(R, X, µ). Then,

1
µ([−r, r])

∫
[−r,r]

∫
[t,t+1]

‖ f (s)‖p dsdµ(t)→ 0 as r → ∞. (4.26)

Proof. Let f ∈ E p(R, X, µ). Then, for every r > 0

1
µ([−r, r])

∫
[−r,r]

∫
[t,t+1]

‖ f (s)‖p dsdµ(t) ≤ ‖ f ‖p−1
BSp

1
µ([−r, r])

∫
[−r,r]

(∫
[t,t+1]

‖ f (s)‖p ds
) 1

p
dµ(t). (4.27)

By the fact that f ∈ E p(R, X, µ), the right hand side in (4.27)→ 0 as r → ∞. Hence, (4.26) holds.

�

Theorem 4.3 Let µ ∈ M and 0 ≤ β < α ≤ 1. Assume that (H1)-(H5) are satisfied and that h ∈
PAASp(R, Xα−1, µ). Then, equation (4.2) has a unique mild solution u ∈ PAA(R, Xβ, µ) given by the
formula (4.16).

Proof. Let h := h̃ + ϕ ∈ PAPSp(R, Xα−1, µ) where h̃ ∈ AASp(R, Xα−1) and ϕ ∈ E p(R, Xα−1, µ). Then, the
mild solution of (4.2) has the unique decomposition:

u = u1 + u2,

where, for all t ∈ R, we have

u1(t) =
∫

R
Γα−1(t, s)h̃(s)ds

and

u2(t) =
∫

R
Γα−1(t, s)ϕ(s)ds

:= us
2(t) + uu

2 (t),

where

us
2(t) :=

∫ t

−∞
Uα−1(t, s)Pα−1(s)ϕ(s)ds and uu

2 (t) := −
∫ +∞

t
Ũα−1(t, s)Qα−1(t)ϕ(s)ds.
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Using Theorem 4.2, we obtain that u1 ∈ AA(R, Xα−1). Let us prove that u2 ∈ E(R, Xα−1, µ). It suffices to
show that us

2, uu
2 ∈ E(R, Xα−1, µ). In fact, let r > 0, then

1
µ([−r, r])

∫
[−r,r]

‖us
2(s)‖βdsdµ(t)

≤ 1
µ([−r, r])

∫
[−r,r]

∫ t

−∞
‖Uα−1(t, s)Pα−1(s)h2(s)‖α−1dsdµ(t)

≤ m(α, β)

µ([−r, r])

∫
[−r,r]

∫ t

−∞
e−γ(t−s)(t− s)(α−β−1)‖h2(s)‖α−1dsdµ(t)

≤ m(α, β)

µ([−r, r])

∫
[−r,r]

[∫ t

−∞
e−q γ

2 (t−s)(t− s)q(α−β−1)ds
] 1

q
[

∞

∑
k=0

∫ t−k+1

t−k
e−p γ

2 (t−s)‖h2(s)‖
p
α−1ds

] 1
p

dµ(t)

≤ m(α, β)
( qγ

2

)(1−α+β)
[q(α− β− 1)Γ(q(α− β− 1))]

1
q

1
µ([−r, r])

∫
[−r,r]

[
∞

∑
k=0

e−p γ
2 k
∫ t+1

t
‖h2(s− k)‖pds

] 1
p

dµ(t)

≤ m(α, β)
( qγ

2

)(1−α+β)
[q(α− β− 1)Γ(q(α− β− 1))]

1
q

1

µ([−r, r]1−
1
q

[∫
[−r,r]

∞

∑
k=0

e−p γ
2 k
∫ t+1

t
‖h2(s− k)‖pdsdµ(t)

] 1
p

= m(α, β)
( qγ

2

)(1−α+β)
[q(α− β− 1)Γ(q(α− β− 1))]

1
q


∞

∑
k=0

e−p γ
2 k 1

µ([−r, r]

∫
[−r,r]

∫ t+1

t
‖h2(s− k)‖pdsdµ(t)︸ ︷︷ ︸

(III)


1
p

Using Proposition 2.4-(iii) and Lemma 4.3, we deduce for each k ∈N, that

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

∫ t+1

t
‖h2(s− k)‖pdsdµ(t) = 0.

Since,

(III) ≤
∞

∑
k=0

e−p γ
2 k‖h2‖BSp ,

it holds that the series in (III) is uniformly convergent in r. Therefore, in view of the dominated conver-
gence Theorem, we obtain that

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

‖us
2(t)‖dµ(t) = 0. (4.28)

By the same way, we obtain that

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

‖uu
2 (t)‖dµ(t) = 0. (4.29)

From (4.28) and (4.29), we claim that

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

‖u2(t)‖dµ(t) = 0.

Hence, u2 ∈ E(R, X, µ).

Now, we return to the semilinear evolution equation (4.1). We need the following additional assumption:
(H6) For all p ≥ 1, there exists a nonegative function L f̃ (·) ∈ BSp(R, R) such that

‖ f̃ (t, x)− f̃ (t, y)‖α−1 ≤ L f̃ (t)‖x− y‖β for all t ∈ R, x, y ∈ Xβ. (4.30)
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Definition 4.2 A continuous function u : R −→ Xβ is called a mild solution of equation (4.2) if it satisfies
the following variation of constants formula:

u(t) = U(t, σ)u(σ) +
∫ t

σ
Uα−1(t, s) f̃ (s, u(s))ds for all t ≥ σ. (4.31)

Remark 4.1 The hypothesis (H5) implies the condition (C’) in Theorem 3.3. In fact, let B be a bounded
subset of Xβ, i.e., there exists M > 0 such that

‖x‖β ≤ M for all x ∈ B.

Since f̃ satisfies (H5), it follows for all x ∈ B, that(∫ t+1

t
‖ f̃ (s, x)‖p

α−1ds
) 1

p
≤

(∫ t+1

t
L(s)pds

) 1
p
‖x‖β +

(∫ t+1

t
‖ f̃ (s, 0)‖p

α−1ds
) 1

p

≤ ‖L‖BSp M + ‖ f̃ (·, 0)‖BSp for all t ∈ R.

Therefore,

sup
t∈R

(∫ t+1

t
‖ f̃ (s, x)‖p

α−1ds
) 1

p
≤ ‖L‖BSp M + ‖ f̃ (·, 0)‖BSp < ∞.

Consequently, the set Λ := { f̃ (·, x) : x ∈ B} is bounded in BSp(R, Xα−1).

From Remark 4.1, for µ ∈ M, if we consider u ∈ PAA(R, Xβ, µ) and f ∈ PAASpU(R× Xα−1, Xβ, µ)

satisfies (H3), then by Theorem 3.3, the function h(·) := f̃ (·, u(·)) belongs to PAASp(R, Xα−1, µ). Therefore,
we have the following main result:

Theorem 4.4 Let 1 ≤ p < ∞, 0 ≤ β < α ≤ 1 and µ ∈ M. Assume that (H1)-(H5) hold and f̃ ∈
PAASpU(R× Xβ, Xα−1, µ) satisfies (H6) with:

‖L f̃ ‖BSp <

m(α, β)
( qγ

2

)(1−α+β)
[q(α− β− 1)Γ(q(α− β− 1))]

1
q

[
1

1− e−
pγ
2

] 1
p
+ c(α, β)

(
2
qδ

) 1
q
[

1

1− e−
pδ
2

] 1
p
−1

.

Then, equation (4.1) has a unique mild solution u ∈ PAA(R, Xβ, µ).

Proof. Consider the mapping F : PAA(R, Xβ, µ) −→ PAA(R, Xβ, µ) defined by

(Fu)(t) :=
∫ t

−∞
Uα−1(t, s)Pα−1(s)h(s)ds−

∫ +∞

t
Ũα−1(t, s)Qα−1(t)h(s)ds

= (Fsu)(t) + (Fuu)(t) for all t ∈ R, (4.32)

where

(Fsu)(t) :=
∫ t

−∞
Uα−1(t, s)Pα−1(s) f̃ (s, u(s))ds and (Fuu)(t) := −

∫ +∞

t
Ũα−1(t, s)Qα−1(t) f̃ (s, u(s))ds, t ∈ R.

It is clear that, F(PAA(R, Xβ, µ)) ⊂ PAA(R, Xβ, µ). Moreover, we have

‖(Fsu)(t)− (Fsv)(t)‖β ≤
∫ t

−∞
‖Uα−1(t, s)Pα−1(s)

[
f̃ (s, u(s))− f̃ (s, v(s))

]
‖βds

≤ m(α, β)
∫ t

−∞
e−γ(t−s)(t− s)α−β−1‖ f̃ (s, u(s))− f̃ (s, v(s))‖α−1ds

≤ m(α, β)

[∫ t

−∞
e−

qγ(t−s)
2 (t− s)q(α−β−1)ds

] 1
q
[∫ t

−∞
e−

pγ(t−s)
2 ‖ f̃ (s, u(s))− f̃ (s, v(s))‖p

α−1ds
] 1

p

= m(α, β)
( qγ

2

)(1−α+β)
[q(α− β− 1)Γ(q(α− β− 1))]

1
q

[∫ t

−∞
e−

pγ(t−s)
2 ‖ f̃ (s, u(s))− f̃ (s, v(s))‖p

α−1ds
] 1

p

= m(α, β)
( qγ

2

)(1−α+β)
[q(α− β− 1)Γ(q(α− β− 1))]

1
q

[
∞

∑
k=1

∫ t−k+1

t−k
e−

pγ(t−s)
2 Lp(s)ds

] 1
p

‖u− v‖∞

≤ ‖L f̃ ‖BSp m(α, β)
( qγ

2

)(1−α+β)
[q(α− β− 1)Γ(q(α− β− 1))]

1
q

[
1

1− e−
pγ
2

] 1
p

‖u− v‖∞.
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Arguing as above, we have also

‖(Fuu)(t)− (Fuv)(t)‖β ≤
∫ +∞

t
‖Ũα−1(t− s)Qα−1(t)

[
f̃ (s, u(s))− f̃ (s, v(s))

]
‖βds

≤ c(α, β)
∫ +∞

t
eδ(t−s)‖ f̃ (s, u(s))− f̃ (s, v(s))‖α−1ds

≤ c(α, β)

[∫ +∞

t
e

qδ(t−s)
2 ds

] 1
q
[∫ +∞

t
e

pδ(t−s)
2 ‖ f̃ (s, u(s))− f̃ (s, v(s))‖p

α−1ds
] 1

p

≤ ‖L f̃ ‖BSp c(α, β)

(
2
qδ

) 1
q
[

1

1− e−
pδ
2

] 1
p

‖u− v‖∞.

Consequently, we have

‖Fu− Fv‖∞ ≤ ‖L f̃ ‖BSp

m(α, β)
( qγ

2

)(1−α+β)
[q(α− β− 1)Γ(q(α− β− 1))]

1
q

[
1

1− e−
pγ
2

] 1
p
+ c(α, β)

(
2
qδ

) 1
q
[

1

1− e−
pδ
2

] 1
p
 ‖u− v‖∞.

Thus, F has a unique fixed point belongs to PAA(R, Xβ, µ). This proves the result.

5 µ-pseudo almost automorphic solutions for equation (1.1)

Consider now the nonautonomous semilinear boundary differential equation:{
u′(t) = Am(t)u(t) + f (t, u(t)) for t ∈ R,

B(t)u(t) = g(t, u(t)) for t ∈ R,

where (Am(t), D(Am(t)))t∈R are linear operators on a Banach space X, B(t) : D(Am(t)) −→ ∂X, is a linear
boundary operator and f : R× Xβ −→ X and g : R× Xt

β −→ ∂X are locally integrable with resoect to first
variable and Lipschitzian in the seconde one. We use the following assumptions:
(A1) There are Banach spaces Z which are continuously embedded in X and ∂X respectively such that
Am(t) ∈ L(Z, X) and B(t) ∈ L(Z, ∂X) with: sup

t∈R

‖Am(t)‖L(Z,X), sup
t∈R

‖B(t)‖L(Z,∂X) < ∞.

(A2) The restriction operators A(t) := Am(t)|ker(B(t)) for t ∈ R, satisfy the conditions (2.1) and (2.2) with
constants ω, θ, K, L, µ, ν. Hence, there is an evolution family (U(t, s))s≤t on X solving the equation (1.3) for
f = g = 0. Moreover, denote by Xt

m := (D(A(t)), ‖ · ‖A(t)) where ‖ · ‖A(t) is the graph norm of A(t). Then,
‖ · ‖A(t) and the norm of Z are equivalent with constants being uniform in t ∈ R.
(A3) The operator B(t) : Z −→ ∂X is surjective, i.e. im(B(t)) = ∂X for each t ∈ R.
(A4) For some 0 < α̃ < 1, Z is continuously embedded in Xt

α̃ for each t ∈ R with uniformly bounded
embedding constants and sup

t∈R

‖D(t)‖L(Z,X) < ∞.

where D(t) := (B(t)|ker(ω− Am(t)))−1, t ∈ R are the Dirichlet maps given in [20, Lemma 1.2].

Note that the above assumptions are introduced the first time by G. Greiner in [20] in the autonomous
case. By taking f̃ (t, x) := f (t, x) + (ω − Aα−1(t))D(t)g(t, x), it follows from [5, Section 5], that equation
(1.1) is equivalent to (4.1). Hence, a mild solution of equation (1.1) is a continuous function u : R −→ Xβ

satisfying the following variation of constants formula:

u(t) = U(t, σ)u(σ) +
∫ t

σ
Uα−1(t, s) [ f (s, u(s)) + (ω− Aα−1(s))D(s)g(s, u(s))] ds for all t ≥ σ. (5.1)

Lemma 5.1 Let 1 ≤ p < ∞. Assume that (A1)-(A4) without the condition (2.2). Let Am(·) ∈ AASp(R,L(Z, X))
and B(·) ∈ AASp(R,L(Z, ∂X)). Then, the following statements hold:
(i) D(·) ∈ AASp(R,L(Z, ∂X)).
(ii) R(ω, A(·)) ∈ AASp(R,L(Z, X)).
(iii) (ω− Aα−1(·))D(·)ĝ ∈ AASp(R, Xα−1) for every ĝ ∈ AASp(R, ∂X) and 0 ≤ α < α̃ < 1.
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Proof. Let (σn)n≥0 be a sequence of real numbers, since Am(·) ∈ AASp(R,L(Z, X)) and B(·) ∈ AASp(R,L(Z, ∂X)).
Then, there exists a subsequence (sn)n≥0 such that:(∫ t+1

t
‖Am(σ + sl − sk)− Am(σ)‖pds

) 1
p
→ 0 as k, l → ∞ (5.2)

for all t ∈ R and (∫ t+1

t
‖B(σ + sl − sk)− B(σ)‖pds

) 1
p
→ 0 as k, l → ∞ (5.3)

for all t ∈ R.
(i) Let y ∈ ∂X and t ∈ R. By definition of D(t), it follows for s ∈ [t, t + 1] that:

(ω− Am(s))(D(s + sl − sk)y− D(s)y) = (Am(s + sl − sk)− Am(s))D(s + sl − sk)y =: φ(s),
B(t)(D(s + sl − sk)y− D(s)y) = −(B(s + sl − sk)− B(s))D(s + sl − sk)y =: ψ(s).

Hence

D(s + sl − sk)y− D(s)y = R(ω, A(s))φ(s) + D(s)ψ(s).

By assumptions, it holds that(∫ t+1

t
‖D(s + sl − sk)y− D(s)y‖p

Z

) 1
p

=

(∫ t+1

t
‖R(ω, A(s))φ(s) + D(s)ψ(s)‖p

) 1
p

≤ C
[
‖φb(t)‖Lp([0,1],X) + ‖ψb(t)‖Lp([0,1],∂X)

]
≤ C

[(∫ t+1

t
‖(Am(s + sl − sk)− Am(s))‖p

L(Z,X)

) 1
p

+

(∫ t+1

t
‖(B(s + sl − sk)− B(s))‖p

L(Z,∂X)

) 1
p
]
‖y‖∂X .

Therefore, from the limits in (5.2) and (5.3), we obtain that:(∫ t+1

t
‖D(s + sl − sk)− D(s)‖p

L(Z,∂X)

) 1
p
→ 0 as k, l → ∞

for all t ∈ R.
(ii) Let x ∈ X and t ∈ R. For s ∈ [t, t + 1], take y = R(ω, A(s + sl − sk))x− R(ω, A(s))x, Then:

(ω− Am(s))y = (Am(s + sl − sk)− Am(s))R(ω, A(s + sl − sk))x =: φ̃(s),
B(t)y = −(B(s + sl − sk)− B(s))R(ω, A(s + sl − sk))x =: ψ̃(s).

Hence,

y = R(ω, A(s))φ̃(s) + D(s)ψ̃(s).

Therefore, arguing as in (i), we obtain that:(∫ t+1

t
‖R(ω, A(s + sl − sk))− R(ω, A(s))‖p

L(Z,X)

) 1
p
→ 0 as k, l → ∞

for all t ∈ R.
(iii) To prove this statement, we need to introduce the following spaces:
For 1 ≤ p < ∞ and 0 < α < 1, we set E(R) = BSp(R, X) and we define:

AASp
α−1(R) := { f ∈ Eα−1(R) there exist ( fn)n ⊂ AASp(R, X) converging to f in Eα−1(R)},
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where the extrapolated spaces Eα−1(R) are defined as in [5, Section 2], with the associated norms:

‖ f ‖α−1 := sup
r>0

sup
t∈R

(∫ t+1

t
‖rαR(r, (ω− Aα−1(s)) f (s)‖pds

) 1
p

and E0(R) = E(R), E1(R) = D(A(·)).
Under the assumptions (2.1), (H3) and (H4) it holds that

Eα−1(R) ∼= BSp(R, Xα−1) and AASp
α−1(R) ∼= AASp(R, Xα−1).

Furthermore, from (i) and (ii) and since Z ↪→ X, the functions D(·)h and fn := nR(n, A(·))D(·)ĝ ∈
AASp(R, X) for n > ω. Then, A(·) fn = (n2R(n, A(·))− n)D(·)ĝ ∈ AASp(R, X). Moreover, by (2.1) and
(A3), we claim that fn is uniformly bounded in the norm of E≤(R). Since fn → D(·)ĝ in BSp(R, X), we con-
clude by interpolation that fn → D(·)ĝ in Eα(R). As a consequence, (ω− A(·)) fn → (ω− Aα−1(·))D(·)ĝ
in Eα−1(R). Hence, the result follows from the definition of AASp

α−1(R).

Lemma 5.2 Let 1 ≤ p < ∞ and µ ∈ M. Assume that (H5) and (A1)-(A4) without the condition (2.2).
Let Am(·) ∈ AASp(R,L(Z, X)), B(·) ∈ AASp(R,L(Z, ∂X)) and the functions f̂ ∈ PAASp(R, X, µ), ĝ ∈
PAASp(R, ∂X, µ). Then, h := f̂ + (ω− Aα−1(·))D(·)ĝ ∈ PAASp(R, Xα−1, µ) for every 0 ≤ α < α̃ < 1.

Proof. Let f̂ = f̂0 + ξ ∈ PAASp(R, X, µ), where f̂0 ∈ AASp(R, X) and ξ ∈ E p(R, X, µ) and let ĝ =
ĝ0 + ϕ ∈ PAASp(R, ∂X, µ), where ĝ ∈ AASp(R, ∂X) and ϕ ∈ E p(R, ∂X, µ). Hence

h = f̂0 + (ω− Aα−1(·))D(·)ĝ0︸ ︷︷ ︸
h0

+ ξ + (ω− Aα−1(·))D(·)ϕ︸ ︷︷ ︸
ψ

.

Since X ↪→ Xα−1, f̂0 ∈ AASp(R, X) and ĝ0 ∈ AASp(R, ∂X), it follows in view of Lemma 5.1 that h0 ∈
AASp(R, Xα−1) for every 0 ≤ α < α̃ < 1. It suffices to prove that ψ ∈ E p(R, Xα−1, µ) for every 0 ≤ α <
α̃ < 1. Let r > 0, then we have

1
µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖ψ(s)‖p

α−1ds
) 1

p
dµ(t) ≤ 1

µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖ξ(s)‖p

α−1ds
) 1

p
dµ(t)

+
M

µ([−r, r])

∫
[−r,r]

(∫ t+1

t
‖φ(s)‖p

∂Xds
) 1

p
dµ(t)→ 0 as r → ∞,

where M := supt∈R ‖(ω− Aα−1(t))D(t)‖L(∂X,Xα−1)
< ∞.

Theorems 4.2, 4.3 and Lemmas 5.1, 5.2 imply the following main result of this section on the existence
of a µ-pseudo almost automorphic mild solution to equation (1.1).

Theorem 5.1 Let 1 ≤ p < ∞, 0 ≤ β < α ≤ 1 and µ ∈ M. Assume that Am(·) ∈ AASp(R,L(Z, X)),
B(·) ∈ AASp(R,L(Z, ∂X)) and f ∈ PAASpU(R× Xβ, X, µ), g ∈ PAASpU(R× Xβ, ∂X, µ) satisfy (H6)
with small constants ‖L f ‖BSp and ‖Lg‖BSp . Furthermore, if the hypotheses (A1)-(A4) and (H2), (H4)-(H5)
hold. Then, equation (1.1) has a unique mild solution u ∈ PAA(R, Xβ, µ) given by:

u(t) =
∫

R
Γα−1(t, s) [ f (s, u(s)) + (ω− Aα−1(s))D(s)g(s, u(s))] ds for all t ∈ R. (5.4)

Proof. Define f̃ (t, x) = f (t, x) + (ω − Aα−1(·))D(·)g(t, x) where f ∈ PAPSpU(R × Xβ, X, µ) and g ∈
PAASpU(R× Xβ, ∂X, µ). Since M = supt∈R ‖(ω − Aα−1(t))D(t)‖L(∂X,Xα−1)

< ∞ and Z ↪→ X ↪→ Xα−1,
it follows from Lemma 5.2 that f̃ ∈ PAASpU(R × Xβ, Xα−1, µ). Furthermore, the function f̃ satisfies
(H6) with constant of Lipschitz L f̃ ≤ L f + MLg. Hence, by a particular choice of L f and Lg we can
obtain ‖L f̃ ‖BSp small enough. Hence, by Theorem 4.4, we deduce that there exists a unique mild solution
u ∈ PAA(R, Xβ, µ) of equation of (1.1) satisfying the formula (5.4).
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6 Application: Diffusion equation with inhomogeneous boundary con-
ditions

Let µ be a measure with a Radon–Nikodym derivative ρ defined by:

ρ(t) =

{
et for t ≤ 0,
1 for t > 0.

(6.1)

From [11, Example 3.6.], µ satisfies the hypothesis (H5).
In this section, we study the following diffusion equation with inhomogeneous boundary conditions:

∂u(t, x)
∂t

=
∂2u(t, x)

∂x2 + b(t)u(t, x), (t, x) ∈ R× (0, π),

c(t, x)
∂u(t, x)

∂n
= Φ(t, u(t, x)), (t, x) ∈ R× Γ,

(6.2)

where Γ = {0}∪ {π}, b ∈ L∞(R), c ∈ BS1(R, C1(Γ))∩ L∞(R, C1(Γ)) are given. The function g : R×X −→
∂X defined by

g(t, ϕ)(x) = Φ(t, ϕ(x)) =
a(t)

1 + |ϕ(x)| ,

where a(t) := a1(t) +
(

arctan(t)− π

2

)
, with

a1(t) = ∑
n≥1

βn(t),

such that, for every n ≥ 1
βn(t) = ∑

i∈Pn

H(n2(t− i)),

with Pn = 3n(2Z + 1) and H ∈ C∞
0 (R, R) with support in (−1

2 , 1
2 ) such that

H ≥ 0, H(0) = 1 and
∫ 1

2

−1
2

H(s)ds = 1.

By the proof in [11, Section 5.], t 7−→ arctan(t)− π

2
belongs to E(R, R, µ). Otherwise, from [17] and refer-

ences therein, a1 ∈ C∞(R, R), but a1 /∈ AA(R, R) since it is not bounded. However, a1 ∈ AAS1(R, R).

In order to rewrite equation (1.1) as an abstract differential equation, we take the spaces X := L2((0, π), R),
Z := H2((0, π), R) and ∂X := H

1
2 ((0, π), R) equipped with there usual norms. Moreover, we consider the

following statement:  Am(t) =
∂2

∂x2 + b(t) := Am + b(t) for t ∈ R,

D(Am(t)) = D(Am) = H2((0, π), R) for t ∈ R,

where b(t) := b(t, ·) ∈ AAS1(R, X) and the boundary operator

B(t) : H2(0, π), R) −→ H
1
2 (Γ, R)

v 7→ (c(t)
∂v
∂n

)|Γ

Hence, we define A(t) := Am(t)| ker(B(t)) where ker(B(t)) = H2((0, π), R) ∩ H1
0((0, π), R). Since c ∈

L∞(R× Γ), it follows in view of the Trace Theorem [22, Theorem 9.4] that B(t) is surjective and bounded
uniformly in t ∈ R. Moeover, Xt

α = H2α((0, π), R) with uniformly equivalent norms, for α ∈ ( 1
3 , 1

2 ) and
that the Dirichlet map D(t) : Z −→ ∂X is uniformly bounded for t ∈ R, see [4, Example IV.2.6.3 ]. It
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is well known that the graph norm of A(t) is uniformly equivalent the norm of Z and that the operator
A := Am| ker(B(t)) is a generator of an analytic semigroup (T(t))t≥0 on X. Moreover, we have

T(t) f =
∞

∑
n=0

e−n2π2t < f , en >L2[0,π] en for all t ∈ R, f ∈ X,

where {en ; n ≥ 0} is the family of eigenvectors associated to the egeinvalues {−n2π2; n ≥ 0}.
Take v(t)(·) := u(t, ·), hence the equation (1.1) has the following abstract form:{

v′(t) = Am(t)v(t) for t ∈ R,
B(t)v(t) = g(t, v(t)) for t ∈ R.

The operators (A(t))t∈R generate an evolution family (U(t, s))t≥s on X given by:

U(t, s) f =
∞

∑
n=0

e
∫ t

s [b(τ)−n2π2]dτ < f , en >L2[0,π] en for all t ≥ s, f ∈ X,

which satisfies (2.1) and (2.2). Furthermore, we have

‖U(t, s) f ‖2 = < U(t, s) f , U(t, s) f >L2[0,π]

=
∞

∑
n=0

∞

∑
m=0

e
∫ t

s [b(τ)−n2π2]dτe
∫ t

s [b(τ)−m2π2]dτ < f , en >L2[0,π]< f , em >L2[0,π]< en, em >L2[0,π]

≤
∞

∑
n=0

e2
∫ t

s [b(τ)−n2π2]dτ‖ f ‖2

=

(
∞

∑
n=0

e
∫ t

s [b(τ)−n2π2]dτ‖ f ‖
)2

for all t ≥ s, f ∈ X. (6.3)

Hence,

‖U(t, s) f ‖ =
∞

∑
n=0

e
∫ t

s [b(τ)−n2π2]dτ‖ f ‖ for all t ≥ s, f ∈ X.

Consequently, the hypotheses (A1)-(A4) and (H4) are satisfied.
Let us prove that (U(t, s))t≥s has an exponential dichotomy on R. Indeed, the series given in (6.3) is uni-

formly convergent which implies that the sequence (e
∫ t

s [b(τ)−n2π2]dτ)n goes to 0 as n → 0. Let N ≥ 1 large
enough, since b ∈ AAS1(R, X), it follows that:

∞

∑
n=0

e
∫ t

s [b(τ)−n2π2]dτ ≤
∞

∑
n=0

e

[t]+1

∑
k=[s]

∫ k+1

k
b(τ)dτ − n2π2(t− s)

≤ M
∞

∑
n=0

e(|b|BS1 − n2π2)(t− s), with M = e2|b|BS1

= M
N

∑
n=0

e(|b|BS1 − n2π2)(t− s) + M
∞

∑
n=N+1

e[|b|BS1 − n2π2](t− s)

Therefore, there exist δ, M̃ > 0 and the projections P(t) := P and Q(t) := Q = I − P, for t ∈ R defined as
Rank(Q) = N and Rank(P) = ∞, since it can be seen as Q = diag(1, ..., 1, 0, 0, ...) with N numbers 1 at the
diagonal. Then, we have the following decomposition:{

‖U(t, s)P(s)‖ ≤ M̃e−δ(t−s), t, s ∈ R, s ≤ t,

‖U(s, t)Q(t)‖ ≤ M̃e−δ(s−t), t, s ∈ R, s > t.

Lemma 6.1 The function g satisfies the condition (H6) for p = 1 and Lg := |m|∞|a(·)| ∈ BS1(R, R).

Page 27
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Proof. Let ϕ1, ϕ2 ∈ X. Then,∫
[0,π]
|g(t, ϕ1)(x)− g(t, ϕ2)(x)|2dx = [a(t)]2

∫
[0,π]
| 1

1 + |ϕ1(x)| −
1

1 + |ϕ2(x)| |
2 dx

≤ [a(t)]2
∫
[0,π]
| ϕ1(x)− ϕ2(x) |2 dx

≤ [a(t)]2‖ϕ1 − ϕ2‖2 for all t ∈ R.

Hence

‖g(t, ϕ1)− g(t, ϕ1)‖ ≤ |a(t)|‖ϕ1 − ϕ2‖ for all t ∈ R.

The result follows from the fact that a ∈ PAAS1(R, R, µ).

Lemma 6.2 Let b ∈ AAS1(R, R) and c ∈ AAS1(R, C1(Γ)). Then, the following hold
(i) Am(t) ∈ L(Z, X) with sup

t∈R

‖Am(t)‖L(Z,X) < ∞. Moreover, Am(·) ∈ AAS1(R,L(Z, X)).

(ii) B(t) ∈ L(Z, ∂X) with sup
t∈R

‖B(t)‖L(Z,∂X) < ∞. Moreover, B(·) ∈ AASp(R,L(Z, ∂X)).

Proof. Let b ∈ AAS1(R, R) ∩ L∞(R) and c ∈ AAS1(R, C1(Γ)) ∩ L∞(R, C1(Γ)).
(i) Let ϕ ∈ X. Since Z ↪→ X, it holds that,

‖Am(t)ϕ‖ ≤ ‖Am ϕ‖+ |b(t)|‖ϕ‖
≤ ‖Am‖L(Z,X)‖ϕ‖Z + C|b(t)|‖ϕ‖Z

=
[
‖Am‖L(Z,X) + C|b(t)|

]
‖ϕ‖Z, t ∈ R.

Hence,

‖Am(t)‖L(Z,X) ≤
[
‖Am‖L(Z,X) + C|b(t)|

]
(6.4)

≤
[
‖Am‖L(Z,X) + C|b|∞

]
, t ∈ R.

Then,
sup
t∈R

‖Am(t)‖L(Z,X) < ∞.

Now, we show that Am(·) ∈ AAS1(R,L(Z, X)). Let (σl)l≥0 be a sequence of real numbers, since b ∈
AAS1(R, R), there exists a subsequence (sl)l≥0 such that∫ t+1

t
|b(s + sl − sk)− b(s)|ds→ 0 as k, l → ∞. (6.5)

for all t ∈ R.
Therefore, from (6.4), we obtain that∫ t+1

t
‖Am(s + sl − sk)− Am(s)‖L(Z,X)ds ≤ C

∫ t+1

t
|b(s + sl − sk)− b(s)|ds, k, l ∈N, t ∈ R.

Then, by (6.5), we deduce the result.
(ii) We follow the proof as in (i).

Then, we have the following main result.

Theorem 6.1 Let 0 ≤ β < α ≤ 1. Assume that b ∈ AAS1(R, R) ∩ L∞(R), c ∈ AAS1(R, C1(Γ)) ∩
L∞(R, C1(Γ)). If we take ‖Lg‖BS1 small enough. Then equation (6.2) has a unique mild solution u ∈
PAA(R, Xβ, µ).
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