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Introduction

In this work, we study the existence and uniqueness of a µ-pseudo almost automorphic mild solutions of the following semilinear parabolic evolution equation with inhomogeneous boundary conditions: u (t) = A m (t)u(t) + f (t, u(t)), t ∈ R, B(t)u(t) = g(t, u(t)), t ∈ R.

(1.1)

Where (A m (t), D(A m (t))), t ∈ R is a family of linear operators defined in a Banach space X, for t ∈ R, B(t) : D(A m (t)) -→ ∂X is a boundary linear operator, where ∂X is a boundary space (see Section 6 for an example of such spaces). It is assumed that, A m (•), B(•) are Stepanov-like almost automorphic and that A(t) t ∈ R satisfy the "Acquistapace-Terreni" conditions and has an exponential dichotomy on R, where A(t) := A m (t)| ker(B(t)), t ∈ R. The functions f : R × X t β -→ X and g : R × X t β -→ ∂X are Stepanovlike µ-pseudo almost automorphic, where X t β , 0 < β < 1 are some continuous interpolation spaces with respect to the linear operators A(t), t ∈ R.

The concept of almost automorphy was introduced by S. Bochner [START_REF] Bochner | Abstrakte fastperiodische funktionen[END_REF] as a generalisation of the well known almost perdioc functions. Due to its applications in differential equations, almost automorphic functions have undergone several interesting generalizations in different settings. In [START_REF] N'guérékata | Stepanov-like almost automorphic functions and monotone evolution equations[END_REF], J. M. N'Guerekata and A. A. Pankov introduced a new concept of almost automorphy defined on average of measurable functions which are locally integrable, namely, Stepanov-like almost automorphy. Another generalization, this time is in term of perturbation, the so-called pseudo almost automorphy due to J. Liang et al. in [START_REF] Xiao | Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces[END_REF]. A pseudo almost automorphic function is a perturbation of an almost automorphic fonction by an ergodic term (see Section 2). In [START_REF] Diagana | Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces[END_REF], T. Diagana gave a generalisation of the concept of pseudo almost automorphic functions by introducing a more general definition of the ergodic perturbation of Zhang [START_REF] Zhang | Pseudo almost periodic solutions of some differential equations[END_REF], namely, the weighted pseudo almsot automorphic functions. After that, in [START_REF] Blot | Measure theory and pseudo almost automorphic functions: New developments and applications[END_REF], K. Ezzinbi et al. introduced a new concept of pseudo almost automorphic functions called µ-pseudo almost automorphic functions. More precisely, a µ-pseudo almost automorphic function is a perturbation of an almost automorphic function by an ergodic term as in the two previous concepts, but here the authors gave a more general definition of the ergodicity in the mean of positive measures in which the other previous definitions are just simple particular cases. Finally, by combining the previous notions we obtain a more general concept of Stepanov-like µ-pseudo almost automorphy introduced by B. Es-sebbar and K. Ezzinbi in [START_REF] Akdad | Composition Theorems of Stepanov µ-Pseudo Almost Automorphic Functions and Applications to Nonautonomous Neutral Evolution Equations[END_REF].

In the litterature, we found several works. In [START_REF] Zhang | New composition theorems of Stepanov-like weighted pseudo almost automorphic functions and applications to nonautonomous evolution equations[END_REF], the authors established the existence of weighted pseudo almost automorphic a mild solution to equation (1.1) in the particular case where g ≡ 0. Under assumptions that (A(t)) t∈R satisfy "Aquistapace-Terreni" conditions (2.1), (2.2) on a Banach space X, the evolution family (U(t, s)) t≥s generated by (A(t)) t∈R has an exponential dichotomy on R. The Green function Γ(•, •) is bi-almost automorphic and the function f is Stepanov-like weighted pseudo almost automorphic. In [START_REF] Liang | Composition of Stepanov-like pseudo almost automorphic functions and applications to nonautonomous evolution equations[END_REF], the authors established the existence of pseudo almost automorphic a mild solution to equation (1.1) in the particular case where g ≡ 0. Under assumptions that (A(t)) t∈R generates an evolution family (U(t, s)) t≥s which has an exponential dichotomy on R. The Green function Γ(•, •) is bi-almost automorphic and the function f is Stepanov-like pseudo almost automorphic.

In this work, we use the approach developed in [START_REF] Baroun | Almost Periodicity of Parabolic Evolution Equations with Inhomogeneous Boundary Values[END_REF]. We prove the results for the following equivalent evolution equation associated to equation (1.1):

u (t) = A α-1 (t)u(t) + f (t, u(t)) + (ω -A α-1 (t))D(t)g(t, u(t)) f (t, u(t))
for all t ∈ R, (1.2) in the continuous extrapolation spaces X t α-1 , associated to the sectorial operators A α-1 (t), t ∈ R, 0 < α < 1, where, D(t) := (B(t)|ker(ω -A m (t))) -1 , t ∈ R are the Dirichlet maps for ω large enough. We begin by introducing the fact that, if R(ω, A(•)) ∈ AAS p (R, L(X)) it holds that Γ(•, •) ∈ bAA(R, L(X)), see Theorem 4.1, this is a generalisation to the result introduced in [START_REF] Baroun | Almost automorphy of parabolic evolution equations[END_REF] where the authors proved that Γ(•, •) ∈ bAA(R, L(X)) if R(ω, A(•)) ∈ AA(R, L(X)) which is strong as hypothesis than ours. Therefore, we prove the existence and uniqueness of a µ-pseudo almost automorphic mild solution to the following linear evolution equation:

u (t) = A α-1 (t)u(t) + h(t) for all t ∈ R, (1.3) 
in the spaces X t α-1 , where h is Stepanov-like µ-pseudo almost automorphic, see Theorems 4.2 and 4.3. Using contraction mapping Theorem, we prove the existence of a unique µ-pseudo almost automorphic mild solution to the following semilinear evolution equation: u (t) = A α-1 (t)u(t) + f (t, u(t)) for all t ∈ R, (1.4) in the spaces X t α-1 , under the assumption that f is Stepanov-like µ-pseudo almost automorphic and Lipschitzian with respect to the second argument, see Theorem 4.4. Finally, under Greiner's assumptions [START_REF] Greiner | Perturbing the boundary conditions of a generator[END_REF], we prove the result to equation (1.1), see Theorem 5.1.

The organization of this paper is as follows, in Section 2, we recall some results in the interpolation and the extrapolation theory of a family of linear operators, then we introduce some dichotomy estimates in the extrapolated spaces X α-1 , which are a key fact to prove our main results. After that, we give important properties of µ-pseudo almost automorphic functions in Bochner and Stepanov senses respectively. Section 3 is devoted to a new composition result of µ-pseudo almost automorphic functions in Stepanov sense. In Section 4, we prove the existence and uniqueness of a µ-pseudo almost automorphic mild solution to equation (1.4), under assumptions that f is µ-pseudo almost automorphic in Stepanov sense and R(ω, A(•)) is Stepanov-like almost automorphic. In Section 5, we show the existence of a unique µ-pseudo almost automorphic mild solution to equation (1.1) under Greiner's assumptions and that A m (•), B(•) are Stepanovlike almost automorphic and the functions f and g are µ-pseudo almost automorphic in Stepanov sense. In Section 6, for illustration, we provide an application for some diffusion problems.

Preliminaries

In this section, we recall some definitions and notations as we introduce some results needed in the following. Throughout this work, (X, • ) and (Y, • Y ) are two Banach spaces. BC(R, X) equipped with the supremum norm, the Banach space of bounded continuous functions f from R into X. Moreover, for 1 ≤ p < ∞, q denotes its conjugate exponent defined by

1 p + 1 q = 1 if p = 1 and q = ∞ if p = 1. By L p loc (R, X) (resp. L p (R, X))
, we designate the space (resp. the Banach space) of all equivalence classes of measurable functions f from R into X such that f (•) p is locally integrable (resp. integrable). We denote by B(R), the Lebesgue σ-field of R and by M the set of all positive measures µ on B(R) satisfying µ(R) = +∞ and µ([a, b]) < +∞, for all a, b ∈ R with a ≤ b.

Evolution families and intermediate spaces

We provide results on interpolation and extrapolation spaces for A(t), t ∈ R. For more details, we refer to [START_REF] Acquistapace | Evolution operators and strong solutions of abstract linear parabolic equations[END_REF][START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF][START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF]. Let (A(t), D(A(t))), t ∈ R be a family of linear closed operators on a Banach space X that satisfies the conditions introduced by P. Acquistapace and B. Terrini in [START_REF] Acquistapace | A unified approach to abstract linear nonautonomous parabolic equations[END_REF], i.e., there exist constants

ω ∈ R, θ ∈ ( π 2 , π), M > 0 and η, ν ∈ (0, 1] with η + ν > 1 such that λR(λ, A(t) -ω) L(X) ≤ L, (2.1) 
(A(t) -ω)R(λ, A(t) -ω)[R(ω, A(t)) -R(ω, A(s))] L(X) ≤ M|t -s| η |λ| ν (2.2) for all t ≥ s, t, s ∈ R and λ ∈ Σ ω,θ := {z ∈ C : z = 0, | arg(z) |≤ θ} ⊂ ρ(A(t) -ω). The domains D(A(t))
of the operators A(t) may change with t and not required to be dense in X.

By the condition (2.1), each operator A(t) generates a bounded analytic semigroup (T t (s)) s≥0 where the domains D(A(t)) may change with respect to t and not dense in X, so that the semigroups may be not strongly continuous at 0. The condition (2.2) provides some regularity in the dependence on t of the operators A(t). Hence, the conditions (2.1) and (2.2) implies that the operators A(t) generates an evolution family U(t, s) for t, s ∈ R with t ≥ s. More precisely, for t > s the map (t, s) -→ U(t, s) ∈ L(X) is continuous and continuously differentiable in t, U(t, s) maps X into D(A(t)) and it holds ∂U(t, s) ∂t = A(t)U(t, s). Moreover, U(t, s) and (ts)A(t)U(t, s) are exponentially bounded. We further have U(t, s)U(s, r) = U(t, r) and U(t, t) = I for t ≥ s ≥ r.

Finally, for s ∈ R and x ∈ D(A(s)), the function t -→ u(t) = U(t, s)x is continuous at t = s and u is the unique solution in C([s, ∞), X) ∩ C 1 ((s, ∞), X) of the Cauchy problem:

u (t) = A(t)u(t), t > s, u(s) = x.
For more details, we refer to [START_REF] Acquistapace | A unified approach to abstract linear nonautonomous parabolic equations[END_REF][START_REF] Acquistapace | Evolution operators and strong solutions of abstract linear parabolic equations[END_REF][START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF].

We introduce the interpolation and extrapolation spaces for the operators A(t), t ∈ R. Let A be a sectorial operator, i.e., A satisfy (2.1) in place of A(t) (it is well known that A generates an analytic semigroup (T A (t)) t≥0 on X). For α ∈ (0, 1), we use the real interpolation spaces:

X α := D(A)
• α , where

x α := sup λ>0 λ α (A -ω)x for all x ∈ D(A).
Then, (X α , • α ) are Banach spaces. Let X 0 := X, X 1 := D(A) and x 0 = x , x 1 = (Aω)x be the corresponding norms respectively. We also take the closed subspace X := D(A) of X. Furthermore, we define the extrapolation space denoted by X -1 as the completion of X with respect to the norm x -1 = R(ω, A)x , for x ∈ X. This implies that A has a unique continuous extension A -1 : X -→ X -1 . Since for every t ≥ 0, T(t) commutes with the operator resolvent R(ω, A) := (Aω) -1 , the extensions of T A (t) to X -1 exist and define an analytic semigroup (T A -1 (t)) t≥0 generated by A -1 with D(A -1 ) = X. We define the spaces:

X α-1 := (X -1 ) α = X • α-1 where x α-1 := sup λ>0 λ α R(λ, A -1 -ω)x . The restriction A α-1 : X α -→ X α-1 of A -1 generates the analytic semigroup (T A α-1 (t)) t≥0 on X α-1 which is the extension of T A (t) on X α-1 . Observe that ω -A α-1 : X α -→ X α-1 is an isometric isomorphism.
We frequently use the continuous embeddings:

D(A) → X β → X α → X X → X β-1 → X α-1 → X -1 (2.3) for all 0 < α < β < 1.
Let A(t), t ∈ R which satisfies (2.1), we set (ii) U(t, s) : Q(s)X -→ Q(t)X is invertible with the inverse Ũ(t, s).

X t α := X α , X t α-1 := X t α-
(iii) U(t, s)P(s) ≤ Ne -δ(t-s) and Ũ(s, t)Q(t) ≤ Ne -δ(t-s) for all t, s ∈ R with s ≤ t, where, Q(t) := I -P(t).

Definition 2.2 [START_REF] Akdad | Composition Theorems of Stepanov µ-Pseudo Almost Automorphic Functions and Applications to Nonautonomous Neutral Evolution Equations[END_REF] Given a hyperbolic evolution family (U(t, s)) s≤t , we define the Green function by:

Γ(t, s) = U(t, s)P(s), t, s ∈ R, s ≤ t, -Ũ(t, s)Q(s), t, s ∈ R, s > t.
(2.4)

Now, we give some dichotomy estimates of the extension evolution family (U α-1 (t, s)) s≤t of (U(t, s)) s≤t to the extrapolated spaces X t α-1 , 0 ≤ α < 1. Theorem 2.1 [START_REF] Baroun | Almost Periodicity of Parabolic Evolution Equations with Inhomogeneous Boundary Values[END_REF] Let 1µ < α < 1. Assume that (2.1) and (2.2) hold. Then, the following holds for s < t ≤ s + t 0 and t 0 > 0: The operators U(t, s) have continuous extension U α-1 (t, s) :

X s α-1 -→ X satisfying U α-1 (t, s)x β ≤ N(α, t 0 )(t -s) α-β-1 x α-1 , (2.5) 
and

U α-1 (t, s)x = U γ-1 (t, s)x for 1 -µ < γ < α < 1, 0 ≥ β ≥ 1 and x ∈ X s α-1 .
Theorem 2.2 [START_REF] Baroun | Almost Periodicity of Parabolic Evolution Equations with Inhomogeneous Boundary Values[END_REF] Assume that (2.1) and (2.2) hold and that U has an exponential dichotomy on R. Let 1µ < α ≤ 1. Then, the operators P(t) and Q(t) have continuous extensions

P α-1 (t) : X t α-1 -→ X t α-1
and Q α-1 (t) : X t α-1 -→ X respectively, for t ∈ R, which are uniformly bounded. Moreover, the following assertions hold for t, s ∈ R with t ≥ s:

(i) Q α-1 (t)X t α-1 = Q(t)X. (ii) U α-1 (t, s)P α-1 (s) = P α-1 (t)U α-1 (t, s). (iii) U α-1 (t, s) : Q α-1 (s)X s α-1 -→ Q α-1 (t)X t α-1 is invertible with the inverse Ũα-1 (t, s). (iv) Let t, s ∈ R, t ≥ s. Then, U α-1 (t, s)P α-1 (s)x ≤ m(α) max{(t -s) α-1 , 1}e -δ(t-s) x α-1 , x ∈ X s α-1 . (2.6) Ũα-1 (t, s)Q α-1 (t)x ≤ c(α)e -δ(t-s) x α-1 , x ∈ X t α-1 .
(2.7)

Theorem 2.3 Let x ∈ X α-1 , 0 < α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ β < α.
Then, the following hold:

(i) There exists a constant c(α, β), such that

Ũα-1 (t, s)Q α-1 (t)x β ≤ c(α, β)e -δ(t-s) x α-1 for t ≤ s. (2.

8)

(ii) There exists a constant m(α, β), such that

U α-1 (t, s)P α-1 (s)x β ≤ m(α, β)(t -s) α-β-1 e -γ(t-s) x α-1 for t ≥ s.
(2.9) [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF]Definition 1.1.1], there exists a constant n(β) such that

Proof. Let x ∈ X s α-1 , 0 < α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ β < α. (i) As X β is a space of class J β , see
x β ≤ n(β) x 1-β (ω -A(t))x β , x ∈ D(A(t)).
(2.10)

Hence, from (2.7), we obtain that

Ũα-1 (t, s)Q α-1 (t)x β ≤ n(β) Ũα-1 (t, s)Q α-1 (t)x 1-β (A(t) -ω) Ũα-1 (t, s)Q α-1 (t)x β ≤ n(β) Ũα-1 (t, s)Q α-1 (t)x 1-β (A(t) -ω)Q(t) β Ũα-1 (t, s)Q α-1 (t)x β ≤ n(β)c β Ũα-1 (t, s)Q α-1 (t)x ≤ c(α, β)e -δ(t-s) x α-1 for t ≤ s. (ii) Let t -s > 1.
Then, from the estimate (2.6), we obtain that

U α-1 (t, s)P α-1 (s)x β ≤ U(t, t -1) L(X,X t β ) U α-1 (t -1, s)P α-1 (s)x ≤ m 1 (α, β)(t -s) α-1 e -δ(t-s) x α-1 ≤ m 1 (α, β)(t -s) β e -δ 2 (t-s) (t -s) α-β-1 e -δ 2 (t-s) x α-1 . Since τ β e -δ 2 τ → 0 as τ → ∞. Then U α-1 (t, s)P α-1 (s)x β ≤ m 1 (α, β)(t -s) α-β-1 e -δ 2 (t-s) x α-1 . Now, if 0 ≤ t -s ≤ 1, it follows from (2.5) that U α-1 (t, s)P α-1 (s)x β ≤ N(α, 1)(t -s) α-β-1 P α-1 (s)x α-1 ≤ cN(α, 1)e δ 2 (t-s) (t -s) α-β-1 x α-1 ≤ m 2 (α, β)(t -s) α-β-1 e -δ 2 (t-s) x α-1 for all x ∈ X s α-1 .
Therefore, there exist m(α, β) = max{m 1 (α, β), m 2 (α, β)} > 0 and γ := δ 2 such that:

U α-1 (t, s)P α-1 (s)x β ≤ m(α, β)(t -s) α-β-1 e -δ 2 (t-s) x α-1 for t ≥ s.

Almost automorphic functions

In this section, we recall some properties of almost automorphic functions in the classical sense and in Stepanov sense.

Definition 2.3 (H. Bohr) [9]

A continuous function f : R -→ X is said to be almost periodic if for every ε > 0, there exists l ε > 0, such that for every a ∈ R, there exists τ ∈ [a, a + l ε ] satisfying:

f (t + τ) -f (t) < ε for all t ∈ R.
The space of all such functions is denoted by AP(R, X).

Definition 2.4 (S. Bochner) [8]

A continuous function f : R -→ X is called almost automorphic if for every sequence (σ n ) n≥0 of real numbers, there exist a subsequence (s n ) n≥0 ⊂ (σ n ) n≥0 and a measurable function g : R -→ X, such that

g(t) =: lim n f (t + s n ) and f (t) = lim n g(t -s n ) for all t ∈ R.
The space of all such functions is denoted by AA(R, X).

Then, we have the following inclusions:

AP(R, X) ⊂ AA(R, X) ⊂ BC(R, X).
(2.11) Definition 2.5 A continuous function F : R × R -→ X is said to be bi-almost automorphic if for every sequence (σ n ) n≥0 of real numbers, there exist a subsequence (s n ) n≥0 ⊂ (σ n ) n≥0 and a measurable function

G : R × R -→ X, such that G(t, s) =: lim n F(t + s n , s + s n ) and F(t, s) = lim n G(t -s n , s -s n ) for all t, s ∈ R.
The space of all such functions is denoted by bAA(R, X).

Proposition 2.1 [25] Let f 1 , f 2 , f ∈ AA(R, X) and λ ∈ R.
Then, the following are true:

(i) λ f 1 + f 2 ∈ AA(R, X). (ii) The set { f (t) : t ∈ R} is relatively compact in X. (iii) The space AA(R, X) is translation invariant, i.e., for all τ ∈ R, f ∈ AA(R, X) implies f (• + τ) ∈ AA(R, X).
(iv) The space AA(R, X) equipped with the supnorm is a Banach space.

(v) f is bounded i.e., sup t∈R f (t) < ∞.

Remark 2.1 (i)

The function g in Definition 2.4 is measurable not necessarily continuous. Using the characterization of S. Bochner of almost periodicity one can claim easily that, if the convergence in Definition 2.4 is uniform in t ∈ R, then necessarily f belongs to AP(R, X).

(ii) An almost automorphic function may not be uniformly continuous. Indeed, the real function

f (t) = sin 1 2 + cos(t) + cos( √ 2t) for t ∈ R, belong to AA(R, R), but is not uniformly continuous. Hence, f does not belongs to AP(R, R). Definition 2.6 [17] Let 1 ≤ p < ∞. A function f ∈ L p loc (R, X) is said to be bounded in the sense of Stepanov if sup t∈R [t,t+1] f (s) p ds 1 p = sup t∈R [0,1] f (t + s) p ds 1 p < ∞.
The space of all such functions is denoted by BS p (R, X) and is provided with the following norm:

f BS p := sup t∈R [t,t+1] f (s) p ds 1 p = sup t∈R f (t + •) L p ([0,1],X) .
Then, the following inclusions hold:

BC(R, X) ⊂ BS p (R, X) ⊂ L p loc (R, X).
(2.12)

Definition 2.7 (Bochner transform) [17] Let f ∈ L p loc (R, X) for 1 ≤ p < ∞. The Bochner transform of f is the function f b : R -→ L p ([0, 1] , X) defined for all t ∈ R by ( f b (t))(s) = f (t + s) for s ∈ [0, 1] . Remark 2.2 [6] Let f , g ∈ L p loc (R, X) for 1 ≤ p < ∞.
Then, the following hold:

(i) ( f + g) b = f b + g b . (ii) for all λ ∈ R, (λ f ) b = λ f b . (iii) for all τ ∈ R, (T τ f ) b = T τ f b
, where T τ is the translation map. Now, we give the definition of almost automorphy in the sense of Stepanov.

Definition 2.8 [16] Let 1 ≤ p < ∞. A function f ∈ L p loc (R, X) is said to be almost automorphic in the sense of Stepanov (or S p -almost automorphic), if for every sequence (σ n ) n≥0 of real numbers, there exists a subsequence (s n ) n≥0 ⊂ (σ n ) n≥0 and a measurable function g ∈ L p loc (R, X), such that lim n t+1 t f (s + s n ) -g(s) p ds 1 p = 0 and lim n t+1 t g(s -s n ) -f (s) p ds 1 p for all t ∈ R.
The space of all such functions is denoted by AAS p (R, X).

Theorem 2.4 [START_REF] Es-Sebbar | Almost periodicity and almost automorphy for some evolution equations using Favard's theory in uniformly convex Banach spaces[END_REF] The following are equivalent:

(i) f is S p -almost automorphic in the sense of Definition 2.8. (ii) For every sequence (σ n ) n≥0 of real numbers, there exists a subsequence (s n ) n≥0 ⊂ (σ n ) n≥0 lim n,m t+1 t f (τ + s n -s m ) -f (τ) p dτ 1 p = 0, for all t ∈ R. Remark 2.3 [6] (i) Every almost automorphic function is S p -almost automorphic for 1 ≤ p < ∞. (ii) For all 1 ≤ p 1 ≤ p 2 < ∞, if f is S p 2 -almost automorphic, then f is S p 1 -almost automorphic. (iii) The Bochner transform of an X-valued function is a L p ([0, 1] , X)-valued function. Moreover, a function f is S p -almost automorphic if and only if f b is (Bochner) almost automorphic. (iv) A function ϕ(t, s) for t ∈ R, s ∈ [0, 1] is the Bochner transform of a function f (i.e., ∃ f : R -→ X such that ( f b (t))(s) = ϕ(t, s), t ∈ R, s ∈ [0, 1]) if and only if ϕ(t + τ, s -τ) = ϕ(t, s) for all t ∈ R, s ∈ [0, 1] and τ ∈ [s -1, s]. Proposition 2.2 [16] For all 1 ≤ p < ∞, (AAS p (R, X), • BS p ) is a Banach space.

µ-pseudo almost automorphic functions

This section is provided to properties of µ-ergodic and µ-pseudo almost automorphic functions. In the sequel, we denote by B(R) the Lebesgue σ-field of R and by M the set of all positive measures µ on B(R) satisfying µ(R) = +∞ and µ([a, b]) < +∞ for all a, b ∈ R with (a ≤ b), we denote also by Y any other Banach space. We assume the following hypothesis. (H2) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a + τ : a ∈ A}) ≤ βµ(A)
where A ∈ B(R) and A ∩ I = ∅.

Definition 2.9 [START_REF] Blot | New approach for weighted pseudo almost periodic functions under the light of measure theory, basic results and applications[END_REF] Let µ ∈ M. A continuous bounded function f

: R -→ X is called µ-ergodic, if lim r→+∞ 1 µ([-r, r]) [-r,r] f (t) dµ(t) = 0.
The space of all such functions is denoted by E (R, X, µ).

Proposition 2.3 [START_REF] Blot | New approach for weighted pseudo almost periodic functions under the light of measure theory, basic results and applications[END_REF] Let µ ∈ M. Then,

(i) (E (R, X, µ), • ∞ ) is a Banach space. (ii) If µ satisfies (H2), then E (R, X, µ) is translation invariant.
Examples 2.1 (1) An ergodic function in the sense of Zhang [START_REF] Zhang | Pseudo almost periodic solutions of some differential equations[END_REF] is a µ-ergodic function in the particular case where the measure µ is the Lebesgue measure.

(2) Let ρ : R -→ [0, +∞) be a B(R)-measurable function. We define the positive measure µ on B(R) by

µ(A) = A ρ(t)dt for A ∈ B(R),
where dt denotes the Lebesgue measure on B(R). (3) In [START_REF] Hong | Almost periodic type solutions of some differential equations with piecewise constant argument[END_REF], the authors considered the space of bounded continuous functions f : R -→ X satisfying

lim r→+∞ 1 2r [-r,r] f (t) dt = 0 and lim N→+∞ 1 2N + 1 N ∑ n=-N f (n) = 0.
This space coincides with the space of µ-ergodic functions where µ is defined in B(R) by the sum µ(A) = µ 1 (A) + µ 2 (A) with µ 1 is the Lebesgue measure on (R, B(R)) and

µ 2 (A) = card(A ∩ Z) if A ∩ Z is finite ∞ if A ∩ Z is infinite.
Definition 2.10 [START_REF] Blot | Measure theory and pseudo almost automorphic functions: New developments and applications[END_REF] Let µ ∈ M. A continuous function f : R -→ X is said to be µ-pseudo almost automorphic if f is written in the form:

f = g + ϕ,
where g ∈ AA(R, X) and ϕ ∈ E (R, X, µ).

The space of all such functions is denoted by PAA(R, X, µ).

Proposition 2.4 [START_REF] Blot | Measure theory and pseudo almost automorphic functions: New developments and applications[END_REF] Let µ ∈ M satisfy (H2). Then the following are true: (i) The decomposition of a µ-pseudo almost automorphic in the form f = g + ϕ where g ∈ AA(R, X) and ϕ ∈ E (R, X, µ), is unique.

(ii) PAA(R, X, µ) equipped with the supnorm is a Banach space.

(iii) PAA(R, X, µ) is invariant by translation, that is:

f ∈ PAA(R, X, µ) implies f τ ∈ PAA(R, X, µ) for all τ ∈ R.
Now, we give the definition and the important properties of µ-S p -pseudo almost automorphic functions.

Definition 2.11 [START_REF] Es-Sebbar | Stepanov ergodic perturbations for some neutral partial functional differential equations[END_REF] Let

µ ∈ M. A function f ∈ BS p (R, X) is said to be µ-ergodic in the sense of Stepanov (or µ-S p -ergodic) if lim r→+∞ 1 µ([-r, r]) [-r,r] [t,t+1] f (s) p ds 1 p dµ(t) = lim r→+∞ 1 µ([-r, r]) [-r,r] f b (t) p,X dµ(t) = 0. (2.13)
The space of all such functions is denoted by E p (R, X, µ).

Remark 2.4 Using (2.13) we obtain that,

f ∈ E p (R, X, µ) if and only if f b ∈ E (R, L p ([0, 1] , X), µ).
Proposition 2.5 [START_REF] Baroun | Pseudo almosr periodic solutions for some parabolic evolution equations with Stepanov-like pseudo almost periodic forcing terms[END_REF] Let µ ∈ M. Then, for all 1 ≤ p < ∞, (E p (R, X, µ), • BS p ) is a Banach space.

Proposition 2.6 [START_REF] Es-Sebbar | Stepanov ergodic perturbations for some neutral partial functional differential equations[END_REF] Let µ ∈ M satisfy (H2). Then, the following hold:

(i) E p (R, X, µ) is translation invariant. (ii) E (R, X, µ) ⊂ E p (R, X, µ).
Example 2.1 Let f : R -→ R defined by:

f (t) =    1 k k ≤ t ≤ k + 1 2k with k ∈ N * , 0 otherwise. The function f is not continuous in R, which implies that f / ∈ E (R, R, µ). But, f ∈ E 1 (R, R, µ). In fact, let r > 1. Then, we have 1 2r r -r t+1 t f (s)ds dt ≤ 1 2r +∞ 1 t+1 t f (s)ds dt ≤ 1 2r +∞ 1 [t]+2 [t] f (s)ds dt ≤ 1 2r ∑ k≥1 1 k 2 = π 2 12r
→ 0 as r → +∞.

In the next, we give a sufficient condition for a µ-S p -ergodic function to be µ-ergodic.

Proposition 2.7 [START_REF] Es-Sebbar | Stepanov ergodic perturbations for some neutral partial functional differential equations[END_REF] Let µ ∈ M satisfy (H2) and f : R -→ X be bounded, uniformly continuous and µ-S p -ergodic. Then, f is µ-ergodic.

Definition 2.12 [START_REF] Es-Sebbar | Stepanov ergodic perturbations for some neutral partial functional differential equations[END_REF] Let µ ∈ M. A function f ∈ BS p (R, X) is said to be µ-pseudo almost automorphic in the sense of Stepanov (or µ-S p -pseudo almost automorphic) if:

f = f + ϕ,
where f ∈ AAS p (R, X) and ϕ ∈ E p (R, X, µ).

The space of all such functions will be denoted PAAS p (R, X, µ).

Definition 2.13 [12]

Let µ ∈ M. A continuous function f : R × X -→ Y is said to be µ-pseudo almost automorphic if f is written in the form:

f = g + ϕ,
where g ∈ AAU(R × X, Y), and ϕ ∈ EU(R × X, Y, µ).

The space of all such functions is denoted by PAAU(R × X, Y, µ).

Definition 2.14 Let µ ∈ M and f : R × X -→ Y be such that f (•, x) ∈ BS p (R, Y) for each x ∈ X. The function f is µ-S p -almost automorphic if f is written as: f = g + ϕ, where g ∈ AAS p U(R × X, Y), and ϕ ∈ E p U(R × X, Y, µ).
The space of all such functions will be denoted PAAS p U(R, X, µ).

New composition results of µ-S p -pseudo almost automorphic functions

In this section, we prove a new composition result of µ-S p -pseudo almost automorphic functions using the uniform continuity property.

Lemma 3.1 Let 1 ≤ p < +∞ and f : R × X -→ Y be a function such that f (•, x) ∈ L p loc (R, Y) for each x ∈ X. Then, f ∈ AAS p U(R × X, Y) if
and only if the following hold:

(i) For each x ∈ X, f (•, x) ∈ AAS p (R, Y).
(ii) f is S p -uniformly continuous with respect to the second argument on each compact subset K in X, namely: for all ε > 0 there exists δ K,ε such that for all x 1 , x 2 ∈ K, we have

x 1 -x 2 ≤ δ K,ε =⇒ t+1 t f (s, x 1 ) -f (s, x 2 ) p Y ds 1 p ≤ ε for all t ∈ R. (3.1) Proof. Let f ∈ AAS p U(R × X, Y) and f b : R × X -→ L p ([0, 1],
Y) be the Bochner transform associated to f . It follows in view of [START_REF] Blot | Measure theory and pseudo almost automorphic functions: New developments and applications[END_REF]Proposition 5.5], that (i) is clearly satisfied and that: for each compact subset K in X, for all ε > 0 there exists δ K,ε such that for all x 1 , x 2 ∈ K, we have

x 1 -x 2 ≤ δ K,ε =⇒ f b (t, x 1 ) -f b (t, x 2 ) Y,p ≤ ε for all t ∈ R.
Since

f b (t, x 1 ) -f b (t, x 2 ) Y,p = [0,1] ( f b (t, x 1 ))(s) -( f b (t, x 2 ))(s) p Y ds 1 p = t+1 t f (s, x 1 ) -f (s, x 2 ) p Y ds 1 p
for all t ∈ R.

It follows that (3.1) holds and then (ii) is achieved.

Conversely, let f : R × X -→ Y be a function such that f (•, x) ∈ L p loc (R, Y) for each x ∈ X. Assume that f satisfies (i)-(ii).
Let us fix a compact subset K in X and ε > 0. Since K is compact, it follows that there exists a finite subset {x 1 , ...,

x n } ⊂ K (n ∈ N * ) such that K ⊆ n i=1 B(x i , δ K,ε
). Therefore, for x ∈ K, there exist i = 1, ..., n satisfying xx i ≤ δ K,ε . Let (σ n ) n≥0 be a sequence of real numbers and let (s n ) n≥0 ⊂ (σ n ) n≥0 be a subsequence such that:

t+1 t f (s + s l -s k , x) -f (s, x) p Y ds 1 p ≤ t+1 t f (s + s l -s k , x) -f (s + s l -s k , x i ) p Y ds 1 p + t+1 t f (s + s l -s k , x i ) -f (s, x i ) p Y ds 1 p + t+1 t f (s, x i ) -f (s, x) p Y ds 1 p for all t ∈ R. (3.2) From (i), f (•, x i ) ∈ AAS p (R, Y). Hence, for k, l large enough t+1 t f (s + s l -s k , x i ) -f (s, x i ) p Y ds 1 p ≤ ε 3 for all t ∈ R. (3.3) 
Otherwise, since xx i ≤ δ K,ε and by using (ii) we claim that

t+1 t f (s + s l -s k , x) -f (s + s l -s k , x i ) p Y ds 1 p ≤ ε 3 for all t ∈ R and k, l ∈ N (3.4) and t+1 t f (s, x) -f (s, x i ) p Y ds 1 p ≤ ε 3 for all t ∈ R. (3.5) 
Consequently, we replace (3.3), (3.4) and (3.5) in (3.2), we obtain, for k, l large enough, that sup

x∈K t+1 t f (s + s l -s k , x) -f (s, x) p Y ds 1 p
≤ ε for all t ∈ R.

By Lemma 3.1, we deduce the following result.

Proposition 3.1 Let µ ∈ M and f ∈ PAAS p U(R × X, Y, µ), for 1 ≤ p < +∞. Then, the following hold:

(i) For each x ∈ X, f (•, x) ∈ AAS p (R, Y, µ).
(ii) f is S p -uniformly continuous with respect to the second argument on each compact subset K in X in the following sense: for all ε > 0 there exists δ K,ε such that for all x 1 , x 2 ∈ K, one has:

x 1 -x 2 ≤ δ K,ε =⇒ t+1 t f (s, x 1 ) -f (s, x 2 ) p Y ds 1 p
≤ ε for all t ∈ R.

(3.6)

Theorem 3.1 Let 1 ≤ p < +∞ and f ∈ AAS p U(R × X, Y). Assume that u ∈ AA(R, X). Then, f (•, u(•)) ∈ AAS p (R, Y).
Proof. Let (σ n ) n≥0 be a sequence of real numbers, since f ∈ AAS p U(R × X, Y), then for each x ∈ X there exists a subsequence (s n ) n≥0 such that

t+1 t f (s + s l -s k , x) -f (s, x) p Y ds 1 p → 0 as k, l → ∞ (3.7)
for all t ∈ R. On the other hand, we have

t+1 t f (s + s l -s k , u(s + s l -s k )) -f (s, u(s)) p Y ds 1 p ≤ t+1 t f (s + s l -s k , u(s + s l -s k )) -f (s + s l -s k , u(s)) p Y ds 1 p + t+1 t f (s + s l -s k , u(s)) -f (s, u(s)) p Y ds 1 p
for all t ∈ R.

Moreover, given K := {u(t) : t ∈ R} a compact subset of X and ε > 0. Using Lemma 3.1-(ii) it follows that there exists δ ε,K > 0 such that (3.1) holds. Since u ∈ AA(R, X). Then, u(s) ∈ K for all s ∈ R and for k, l large enough, u(s + s ls k )u(s) ≤ δ for each s ∈ R which implies that

t+1 t f (s + s l -s k , u(s + s l -s k )) -f (s + s l -s k , u(s)) p Y ds 1 p ≤ ε 4 for all t ∈ R. (3.8) 
Since K is compact, there exist a finite subset {u 1 , ...,

u n } ⊂ K (n ∈ N * ) such that K ⊆ n i=1 B(u i , δ K,ε ).
Then, for all t ∈ R, there exists i(t) = 1, ..., n such that u(t)u i(t) ≤ δ K,ε . Thus

t+1 t f (s + s l -s k , u(s)) -f (s + s l -s k , u i(t) ) p Y ds 1 p ≤ ε 4 (3.9) and t+1 t f (s, u(s)) -f (s, u i(t) ) p Y ds 1 p ≤ ε 4 . (3.10) Using 3.1-(i), we get that t+1 t f (s + s l -s k , u i(t) ) -f (s, u i(t) ) p Y ds 1 p ≤ ε 4 . (3.11)
Consequently, by (3.8), (3.9), (3.10) and (3.11), we obtain for l, k large enough, that

t+1 t f (s + s l -s k , u(s + s l -s k )) -f (s, u(s)) p Y ds 1 p ≤ ε 4 + ε 4 + ε 4 + ε 4 = ε for all t ∈ R. Theorem 3.2 Let µ ∈ M. If u ∈ BS p (R, X) with K = {u(t) : t ∈ R} is compact in X and f ∈ E p U(R × X, Y, µ). Then, f (•, u(•)) ∈ E p (R, Y, µ).
Proof. Let f ∈ E p U(R × X, Y, µ) and K = {u(t) : t ∈ R} be fixed. Then for all ε > 0 there exists δ ε,K > 0 such that (3.1) holds. Since K is compact, then there exists a finite subset {u 1 , ...,

u n } ⊂ K (n ∈ N * ) such that K ⊆ n i=1
B(u i , δ K,ε ). Therefore, for all t ∈ R, there exists i(t) = 1, ..., n such that u(t)

-u i(t) ≤ δ K,ε . t+1 t f (s, u(s)) p Y ds 1 p ≤ t+1 t f (s, u(s)) -f (s, u i(t) ) p Y ds 1 p + t+1 t f (s, u i(t) ) p Y ds 1 p ≤ ε + n ∑ i=1 t+1 t f (s, u i ) p Y ds 1 p . ( 3 
.12)

Since for i = 1, ..., n, f (•, x i ) ∈ E p (R, Y, µ).
Then, for r > 0, we have

1 µ([-r, r]) r -r t+1 t f (s, u(s)) p Y ds 1 p dµ(t) ≤ ε + 1 µ([-r, r]) n ∑ i=1 r -r t+1 t f (s, u i ) p Y ds 1 p dµ(t).
Consequently, lim sup Proof. From u ∈ AA(R, X), we deduce that u ∈ APS p (R, X) and that K = {u(t) : t ∈ R} is compact in X.

r→+∞ 1 µ([-r, r]) r -r t+1 t f (s, u (s)) p 
Hence, conditions and hypotheses of Theorem 3.2 are satisfied.

Lemma 3.2 [12]

Let µ ∈ M and f ∈ BC(R, X). Then, f ∈ E (R, X, µ) if and only if for all ε > 0

lim r→+∞ µ (M ε,r ( f )) µ([-r, r]) = 0, (3.15) 
where

M ε,r ( f ) := {t ∈ [-r, r] : f (t) ≥ ε}.
The proof of our result of composition of µ-S p -pseudo almost automorphic functions is based on the following Lemma due to Schwartz [28, p. 109]. Lemma 3.3 Let Φ ∈ C(X, Y). Then, for each compact K ⊂ X and for all ε > 0, there exists δ K,ε > 0, such that for any x 1 , x 2 ∈ X, one has

x 1 ∈ K and x 1 -x 2 ≤ δ ⇒ Φ(x 1 ) -Φ(x 2 ) Y ≤ ε. Theorem 3.3 Let µ ∈ M and f : R × X -→ Y. Assume that: (i) f = f + ϕ ∈ PAAS p U(R × X, Y, µ) with f ∈ AAS p U(R × X, Y) and ϕ ∈ E p U(R × X, Y, µ). (ii) u = u 1 + u 2 ∈ PAA(R, X, µ), where u 1 ∈ AA(R, X) and u 2 ∈ E (R, X, µ). (iii) For every bounded subset B ⊂ X the set Λ := { f (•, x) : x ∈ B} is bounded in BS p (R, X). Then, f (•, u(•)) ∈ PAAS p (R, Y, µ).

Remark 3.2

The condition (iii) is needed only to prove that f (•, u(•)) ∈ BS p (R, Y).

Proof of Theorem 3.3. By definition of f and u, we obtain the following decomposition:

f (t, u(t)) = f (t, u 1 (t)) F(t) + [ f (t, u(t)) -f (t, u 1 (t))] F(t) + ϕ(t, u 1 (t)) Ψ(t)
.

Using Theorem 3.1, it follows that F ∈ AAS p (R, Y) and from Corollary 3.1, we deduce that Ψ ∈ E p (R, Y, µ). Now, it suffices to prove that F ∈ E p (R, Y, µ). In view of Lemma 3.2, we have for all ε > 0,

lim r→+∞ µ (M ε,r (u 2 )) µ([-r, r]) = 0. (3.16)
Let ε > 0. Then, for r > 0, we have

1 µ([-r, r]) r -r t+1 t F(s) p Y ds 1 p dµ(t) ≤ 1 µ([-r, r]) M ε,r (u 2 ) t+1 t F(s) p Y ds 1 p dµ(t) + 1 µ([-r, r]) [-r,r]\M ε,r (u 2 ) t+1 t F(s) p Y ds 1 p dµ(t) ≤ F BS p µ (M ε,r (u 2 )) µ([-r, r]) + 1 µ([-r, r]) [-r,r]\M ε,r (u 2 ) t+1 t f (s, u(s)) -f (s, u 1 (s)) p ds 1 p dµ(t). (3.17) Let K = {u 1 (t) : t ∈ R}. Since u 1 ∈ AA(R, X), then K is a compact subset of X.
Hence, we define the function:

Φ : X -→ PAAS p (R, Y); x → f (•, x).
Since f ∈ PAAS p U(R × X, Y, µ), then, from Proposition 3.1, we deduce that the restriction of Φ on all compact K of X is uniformly continuous, which is equivalent to say that the function Φ is continuous on X. From Lemma 3.3 applied to Φ, we deduce that for ε > 0, there exists δ > 0 such that, for all ξ 1 , ξ 2 ∈ X, we have

ξ 1 ∈ K and ξ 1 -ξ 2 ≤ δ ⇒ t+1 t f (s, ξ 1 ) -f (s, ξ 2 ) p Y ds 1 p
≤ ε for all t ∈ R.

Then, from u(t) = u 1 (t) + u 2 (t) and u 1 (t) ∈ K for t ∈ R, we have

t ∈ R and u 2 (s) ≤ δ for s ∈ [t, t + 1] ⇒ t+1 t f (s, u(s)) -f (s, u 1 (s)) p Y ds 1 p ≤ ε Therefore, by the fact that u 2 ∈ E (R, X, µ), we have lim sup r→+∞ µ (M δ,r (u 2 )) µ([-r, r]) = 0.
Hence, using (3.17 4 µ-pseudo almost automorphic solutions for equation (1.4) In this section, we study the following semilinear nonautonomous evolution equations:

u (t) = A α-1 (t)u(t) + f (t, u(t)) for t ∈ R. (4.1)
We assume that A(t), t ∈ R are linear operators on a Banach space X satisfying the conditions (2.1) and (2.2). Denote by (U(t, s)) t≥s the evolution family generated by A(t), t ∈ R on X and by (U α-1 (t, s)) t≥s its extrapolated evolution family defined in Proposition 2.1 for each 0 < α ≤ 1. The function f : R × X t β -→ X t α-1 is locally integragble with respect to the first variable and Lipschitzian with respect to the second one.

Firstly, we prove the existence of a µ-pseudo almost automorphic solution to the following ihomogeneous linear equation associated to (4.1): 

u (t) = A α-1 (t)u(t) + h(t) for t ∈ R. ( 4 
u(t) = U(t, σ)u(σ) + t σ U α-1 (t, s)h(s)ds for all t ≥ σ, ( 4.3) 
where h : R -→ X t β is locally integrable. Hence, we list the following hypotheses: (H1) The operators A(t), t ∈ R satisfy the assumptions (2.1) and (2.2). (H2) the evolution family (U(t, s)) t≥s generated by A(t), t ∈ R has an exponential dichotomy on R with constants N, δ > 0, projections P(t), t ∈ R, and Green's function Γ. (H3) For all 1 ≤ p < ∞, the function R(ω, A(•)) ∈ AAS p (R, L(X)). (H4) There exist 0 ≤ α < β < 1 such that X t α = X α and X t β = X β for every t ∈ R with uniformly equivalent norms. (H5) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a + τ : a ∈ A}) ≤ βµ(A),
where A ∈ B(R) and A ∩ I = ∅. Now, we introduce some preliminary results. Let us define the Yosida approximations A n (t) = nA(t)R(n, A(t)) of A(t) for n > ω and t ∈ R. For each n, the operator A n generates an evolution family (U n (t, s)) t≥s on X. It has been shown in [24, Lemma 3.1, Proposition 3.3, Corollary 3.4] that assumptions (H1) and (H2) are satisfied by A n with the same constants for every n ≥ n 0 (with n 0 > ω). Lemma 4.1 Let (H1) and (H3) be satisfied. Then, there exists n 1 ≥ n 0 such that

R(ω, A n (•)) ∈ AAS p (R, L(X)) for all n ≥ n 1 .
Proof. Let (σ l ) l≥0 be a sequence of real numbers, since R(ω, A(•)) ∈ AAS p (R, L(X)), there exists a subsequence (s l ) l≥0 such that

t+1 t R(ω, A(s + s l -s k )) -R(ω, A(s)) p ds 1 p → 0 as k, l → ∞ (4.4) for all t ∈ R. Let t ∈ R and s ∈ [t, t + 1]. If n ≥ n 0 and | arg(λ -ω)| ≤ θ, then R(ω, A n (s + s l -s k )) -R(ω, A n (s)) = n 2 (ω + n) 2 R ωn ω + n , A(s + s l -s k ) -R ωn ω + n , A(s) = n 2 (ω + n) 2 R (ω, A(s + s l -s k )) I - ω 2 ω + n R (ω, A(s + s l -s k )) -1 - n 2 (ω + n) 2 R (ω, A(s)) I - ω 2 ω + n R (ω, A(s)) -1 . (4.5)
Otherwise, we have

ω 2 (ω + n) 2 R (ω, A(s)) ≤ ωL (ω + n) 2 ≤ ωL n ≤ 1 2 for n ≥ n 1 = max{n 0 , 2ωL}.
Therefore,

I - ω 2 ω + n R (ω, A(s)) -1 ≤ 2. (4.6)
Hence, from (4.5), we obtain that

R(ω, A n (s + s l -s k )) -R(ω, A n (s)) ≤ 2 (R (ω, A(s + s l -s k )) -R (ω, A(s))) + K 1 + ω [I - ω 2 ω + n R (ω, A(s + s l -s k ))] -1 -[I - ω 2 ω + n R (ω, A(s))] -1 .
Now, using (4.6), we obtain that

[I - ω 2 ω + n R (ω, A(s + s l -s k ))] -1 -[I - ω 2 ω + n R (ω, A(s))] -1 ≤ 4 [I - ω 2 ω + n R (ω, A(s + s l -s k ))] -[I - ω 2 ω + n R (ω, A(s))] ≤ 4ω (R (ω, A(s + s l -s k )) -R (ω, A(s))) . Consequently, (R (ω, A n (s + s l -s k )) -R (ω, A n (s))) ≤ (2 + 4K) (R (ω, A(s + s l -s k )) -R (ω, A(s))) for n ≥ n 1 .(4.7)
By integrating in both sides of (4.7) from t to t + 1, we obtain by (4.9) that

t+1 t R(ω, A n (s + s l -s k )) -R(ω, A n (s)) p ds 1 p → 0 as k, l → ∞ for all t ∈ R.
Lemma 4.2 Assume that (H1)-(H3) are satisfied. Then, for every sequence (σ l ) l≥0 of real numbers, there exists a subsequence (s l ) l≥0 such that for every η > 0 and t, s ∈ R, there exists l(η, t, s) > 0 satisfying

Γ n (t + s l -s k , s + s l -s k ) -Γ n (t, s) ≤ cn 2 η (4.8)
for a large n and l, k ≥ l(η, t, s).

Proof. Let (σ l ) l≥0 be a sequence of real numbers. Since R(ω, A(•)) ∈ AAS p (R, L(X)) there exists a subsequence (s l ) l≥0 such that

t+1 t R(ω, A(s + s l -s k )) -R(ω, A(s)) p ds 1 p → 0 as k, l → ∞ (4.9)
for all t ∈ R. Let t, s ∈ R. Arguing as in [START_REF] Maniar | Almost periodicity of inhomogeneous parabolic evolution equations[END_REF], we obtain that

Γ n (t + s l -s k , s + s l -s k ) -Γ n (t, s) = R Γ n (t, σ)(A n (σ) -ω) [R (ω, A n (σ + s l -s k )) -R (ω, A n (σ))] ×(A n (σ + s l -s k ) -ω)Γ n (σ + s l -s k , s + s l -s k )dσ (4.10)
for l, k ∈ N and large n. From (4.10), (4.7), [START_REF] Maniar | Almost periodicity of inhomogeneous parabolic evolution equations[END_REF]Corollary 3.4] and Hölder inequality, we claim that

Γ n (t + s l -s k , s + s l -s k ) -Γ n (t, s) ≤ cn 2 R e -3 4δ |t-σ| e -3 4δ |s-σ| R (ω, A n (σ + s l -s k )) -R (ω, A n (σ)) dσ ≤ cn 2 (2 + 4K) R e -3 4δ |t-σ| e -3 4δ |s-σ| [R (ω, A(σ + s l -s k )) -R (ω, A(σ))] dσ ≤ cn 2 (2 + 4K) R e -3q 4δ |t-σ| dσ 1 q R e -3p 4δ |s-σ| R (ω, A(σ + s l -s k )) -R (ω, A(σ)) p dσ 1 p = cn 2 (2 + 4K) 3q 2δ 1 q R e -3p 4δ |s-σ| R (ω, A(σ + s l -s k )) -R (ω, A(σ)) p dσ 1 p (I) (4.11)
we develop the formula (I), we obtain that

R e -3p 4δ |s-σ| R (ω, A(σ + s l -s k )) -R (ω, A(σ)) p dσ = s -∞ e -3p 4δ (s-σ) R (ω, A(σ + s l -s k )) -R (ω, A(σ)) p dσ + +∞ s e 3p 4δ (s-σ) R (ω, A(σ + s l -s k )) -R (ω, A(σ)) p dσ := I 1 + I 2 . (4.12)
Using (4.9) and the Lebesgue's Dominated Convergence Theorem, we get that

I 1 = ∞ ∑ m=1 s-m+1 s-m e -3p 4δ (s-σ) R (ω, A(σ + s l -s k )) -R (ω, A(σ)) p dσ ≤ ∞ ∑ m=1 e -3p 4δ (m-1) s-m+1 s-m R (ω, A(σ + s l -s k )) -R (ω, A(σ)) p dσ → 0 as k, l → ∞, (4.13) 
and

I 2 = ∞ ∑ m=0 s+m+1 s+m e -3p 4δ (s-σ) R (ω, A(σ + s l -s k )) -R (ω, A(σ)) p dσ ≤ ∞ ∑ m=0 e -3p 4δ m s+m+1 s+m R (ω, A(σ + s l -s k )) -R (ω, A(σ)) p dσ → 0 as k, l → ∞. (4.14)
Hence, for every η > 0, there exists l(η, t, s) > 0 such that

Γ n (t + s l -s k , s + s l -s k ) -Γ n (t, s) ≤ cn 2 η (4.15)
for a large n and l, k ≥ l(η, t, s).

In the next Theorem, we show that, to have Γ almost automorphic, we only need that R(ω, A(•)) to be S p -almost automorphic. 

4.2 Let 1 ≤ p < ∞, 0 ≤ β < α ≤ 1 and h ∈ BS p (R, X α-1
). Assume that (H1)-(H4) are satisfied. Then, the following hold:

(i) The equation ( 4.2) has a unique bounded mild solution u : R -→ X β given by

u(t) = R Γ α-1 (t, s)h(s)ds for all t ∈ R. (4.16) (ii) If h ∈ AAS p (R, X α-1 ), then u ∈ AA(R, X β ). Proof. Let 1 ≤ p < ∞, 0 ≤ β < α ≤ 1 and h ∈ BS p (R, X α-1
).

(i) Firstly, let us prove that formula (4.16) is well-defined. Indeed, we take

u s (t) := t -∞ U α-1 (t, s)P α-1 (s)h(s)ds and u u (t) := - +∞ t Ũα-1 (t, s)Q α-1 (t)h(s)ds for all t ∈ R.(4.17)
Using Theorem 2.3 and Hölder's inequality, we obtain that

u s (t) β ≤ t -∞ U α-1 (t, s)P α-1 (s)h(s) β ds ≤ m(α, β) t -∞ e -γ(t-s) (t -s) α-β-1 h(s) α-1 ds ≤ m(α, β) t -∞ e -qγ(t-s) 2 (t -s) q(α-β-1) ds 1 q t -∞ e -pγ(t-s) 2 h(s) p α-1 ds 1 p = m(α, β) 2 qγ (α-β-1) [q(α -β -1)Γ(q(α -β -1))] 1 q t -∞ e -pγ(t-s) 2 h(s) p α-1 ds 1 p = m(α, β) 2 qγ (α-β-1) [q(α -β -1)Γ(q(α -β -1))] 1 q ∞ ∑ k=1 t-k+1 t-k e -pγ(t-s) 2 h(s) p α-1 ds 1 p ≤ m(α, β) 2 qγ (α-β-1) [q(α -β -1)Γ(q(α -β -1))] 1 q [Γ(q(α -β))] 1 q ∞ ∑ k=1 e -pγ(k-1) 2 t-k+1 t-k h(s) p α-1 ds 1 p ≤ m(α, β) 2 qγ (α-β-1) [q(α -β -1)Γ(q(α -β -1))] 1 q 1 1 -e -pγ 2 1 p h BS p α-1 for all t ∈ R. (4.18) 
Arguing as above, we obtain that

u u (t) β ≤ +∞ t Ũα-1 (t -s)Q α-1 (t)h(s) ds ≤ c(α, β) +∞ t e δ(t-s) h(s) α-1 ds ≤ c(α, β) +∞ t e qδ(t-s) 2 ds 1 q +∞ t e pδ(t-s) 2 h(s) p α-1 ds 1 p ≤ c(α, β) 2 qδ 1 q 1 1 -e -pδ 2 1 p h BS p α-1 for all t ∈ R. (4.19) 
Thus, the integrals given by u s and u u are both defined. Moreover,

sup t∈R u(t) β < ∞,
which proves that u is bounded. Now, we show that u defined by (4.3) is the unique mild solution of (4.2). In fact, let ũ be the mild solution of the equation (4.2) given by (4.3). Then, by using the uniqueness of the decomposition of X t β , we claim that ũ = ũs + ũu , where

ũs (t) := U α-1 (t, σ)P(σ)u(σ) + t σ U α-1 (t, s)P α-1 (s)h(s)ds for all t ≥ σ (4.20)
and ũu (t

) := Ũα-1 (t, σ)Q α-1 (t)u(σ) + t σ Ũα-1 (t, s)Q α-1 (t)h(s)ds for all t, σ ∈ R. (4.21) 
From the estimates given in Proposition 2.3, (4.33) and (4.33) we claim that ũs and ũu are bounded respectively and by letting σ → -∞ in (4.20) and σ → +∞ in (4.21) respectively, we obtain that ũs (t

) := t -∞ U α-1 (t, s)P α-1 (s)h(s)ds for all t ∈ R, (4.22) 
and ũu (t

) := - +∞ t Ũα-1 (t, s)Q α-1 (t)h(s)ds for all t ∈ R. (4.23) 
Therefore, we have u(t) = ũ(t) for all t ∈ R, which prove the uniqueness.

(ii) Let h ∈ AAS p (R, X α-1 ). For each k ∈ N, we define:

Φ k (t) := t-k t-k-1 U α-1 (t, σ)P α-1 (σ)h(σ)dσ for t ∈ R and Ψ k (t) := t-k t-k-1 Ũα-1 (t, σ)Q α-1 (t)h(σ)dσ for t ∈ R.
Let k ∈ N. Then, we have

Φ k (t) β ≤ t-k t-k-1 U α-1 (t, s)P α-1 (s)h(s) ds ≤ m(α, β) t-k t-k-1 e -γ(t-s) (t -s) α-β-1 h(s) α-1 ds ≤ m(α, β) t-k t-k-1 e -qγ(t-s) 2 (t -s) q(α-β-1) ds 1 q t-k t-k-1 e -pγ(t-s) 2 h(s) 
p α-1 ds 1 p ≤ m(α, β) qγ 2 
(1-α+β) +∞ 0 e -s s q(α-β-1) ds

1 q e -γk 2 h BS p α-1 = m(α, β) qγ 2 (1-α+β) [q(α -β -1)Γ(q(α -β -1))] 1 q h BS p α-1 e -γk 2
for all t ∈ R and

Ψ k (t) β ≤ t+k+1 t+k Ũα-1 (t, s)Q α-1 (t)h(s) ds ≤ c(α, β) t+k+1 t+k e δ(t-s) h(s) α-1 ds ≤ c(α, β) t+k+1 t+k e qδ(t-s) 2 ds 1 q t+k+1 t+k e pδ(t-s) 2 h(s) p α-1 ds 1 p ≤ c(α, β) +∞ 0 e -qδs 2 ds 1 q h BS p α-1 = c(α, β) qδ 2 -1 q h BS p α-1 e -δk 2 for all t ∈ R. Since ∑ k≥0 e -ξk 2 = 1 1 -e -ξ 2 < ∞, for ξ := γ, δ, it follows from Weierstrass Theorem that the series ∑ k≥0 Φ k (t)
and ∑ k≥0 Ψ k (t) are uniformly convergent on R. Then, we define

Φ(t) := ∑ k≥0 Φ k (t) and Ψ(t) := ∑ k≥0 Ψ k (t) for all t ∈ R.
In addition, we have

u(t) = Φ(t) + Ψ(t) for all t ∈ R,
where

Φ(t) = t -∞ U α-1 (t, s)P α-1 (s)h(s)ds and Ψ(t) = +∞ t Ũα-1 (t, s)Q α-1 (t)h(s)ds for t ∈ R.
In fact, let n ∈ N. Then,

Φ(t) - n ∑ k=0 Φ k (t) = t -∞ U α-1 (t, s)P α-1 (s)h(s)ds -∑ k≥0 t-k t-k-1 U α-1 (t, σ)P α-1 (σ)h(σ)dσ ≤ ∑ k≥n+1 t-k t-k-1 U α-1 (t, σ)P α-1 (σ)h(σ) dσ ≤ m(α, β) qγ 2 (1-α+β) [q(α -β -1)Γ(q(α -β -1))] 1 q h BS p α-1 ∑ k≥n+1 e -γk 2 → 0 as n → ∞.
uniformly in t ∈ R.

By the same way, we prove the result for Ψ. conclude, it suffices to prove that for each k ∈ N, Φ k and

Ψ k belong to AA(R, X β ). Let (σ n ) n ⊂ R be a sequence of real numbers. Since h ∈ AAS p (R, X α-1
), and Γ ∈ bAA(R, X) it follows that: (A) there exist a subsequence (s n ) n ⊂ (σ n ) n and a measurable function g : R -→ X α-1 such that lim

n t+1 t g(s + s n ) -g(s) p α-1 ds 1 p = 0 and lim n t+1 t g(s -s n ) -g(s) p α-1 ds 1 p = 0 (4.24) for all t ∈ R. (B) there exist a subsequence (s n ) n ⊂ (σ n ) n and a measurable function Γ : R 2 -→ X such that lim n Γ(t + s n , s + s n )x -Γ(t, s)x = 0 and lim n Γ(t -s n , s -s n )x -Γ(t, s)x = 0 (4.25)
for all t, s ∈ R and x ∈ X. Let (σ n ) n ⊂ (σ n ) n , (σ n ) n be a subsequence of the sequences (σ n ) n and (σ n ) n respectively. Then, for each k ∈ N, we have

Φ k (t + σ n ) - t-k t-k-1
Γα-1 (t, s) h(s)ds

= k+1 k Γ α-1 (t + σ n , t + σ n -s)h(t + σ n -s)ds -Γα-1 (t, t -s) h(t -s) ds ≤ k+1 k Γ α-1 (t + σ n , t + σ n -s) -Γα-1 (t, t -s) h(t -s) α-1 ds + k+1 k Γ α-1 (t + σ n , t + σ n -s) h(t + σ n -s) -h(t -s) α-1 ds ≤ k+1 k Γ α-1 (t + σ n , t + σ n -s) -Γα-1 (t, t -s) h(t -s) α-1 ds + m(α, β)
k+1 k e -qγs s q(α-β-ε-1) ds

1 q k+1 k h(t + σ n -s) -h(t -s) p α-1 ds 1 p ≤ k+1 k Γ α-1 (t + σ n , t + σ n -s) -Γα-1 (t, t -s) h(t -s) α-1 ds + m(α, β) (qγ) (1-α+β) [q(α -β -1)Γ(q(α -β -1))] 1 q k+1 k h(t + σ n -s) -h(t -s) p α-1 ds 1 p := J 1 + J 2 .
By using (A), J 2 → 0 as n → ∞ for all t ∈ R. From (B) and since

Γ α-1 (t + σ n , t + σ n -s) -Γα-1 (t, t -s) h(t -s) α-1 ≤ 2m(α, β)e -γs s α-β-1 h(t -s) α-1
it follows in view of the dominated convergence Theorem, that J 1 → 0 as n → ∞ for all t ∈ R. Hence

lim n Φ k (t + σ n ) - t-k t-k-1
Γα-1 (t, s) h(s)ds = 0 for all t ∈ R.

Analogously, we prove that

lim n k+1 k Γα-1 (t -σ n , t -σ n -s) h(t -σ n -s)ds -Φ k (t) = 0 for all t ∈ R.
Therefore, for each k ∈ N, Φ k ∈ AA(R, X β ). We recall that the series ∑ k≥0 Φ k (t) is uniformly convergent on R, which implies that Φ ∈ AA(R, X β ).

Similarly, we prove that Ψ ∈ AA(R, X β ).

Consequently, u ∈ AA(R, X β ).

In the next Theorem, we show that to have a µ-pseudo almost automorphic mild solution, we only need h to be µ-pseudo almost automorphic in the sense of Stepanov. To get that purpose, we need the following Lemma. Proof. Let h := h + ϕ ∈ PAPS p (R, X α-1 , µ) where h ∈ AAS p (R, X α-1 ) and ϕ ∈ E p (R, X α-1 , µ). Then, the mild solution of (4.2) has the unique decomposition:

Lemma 4.3 Let µ ∈ M and f ∈ E p (R, X, µ). Then, 1 µ([-r, r]) [-r,r] [t,t+1] f (s) p dsdµ(t) → 0 as r → ∞. (4.26) Proof. Let f ∈ E p (R, X, µ). Then, for every r > 0 1 µ([-r, r]) [-r,r] [t,t+1] f (s) p dsdµ(t) ≤ f p-1 BS p 1 µ([-r, r]) [-r,r] [t,t+1] f (s) p
u = u 1 + u 2 ,
where, for all t ∈ R, we have 

u 1 (t) = R Γ α-1 (t,
∈ E (R, X α-1 , µ). In fact, let r > 0, then 1 µ([-r, r]) [-r,r] u s 2 (s) β dsdµ(t) ≤ 1 µ([-r, r]) [-r,r] t -∞ U α-1 (t, s)P α-1 (s)h 2 (s) α-1 dsdµ(t) ≤ m(α, β) µ([-r, r]) [-r,r] t -∞ e -γ(t-s) (t -s) (α-β-1) h 2 (s) α-1 dsdµ(t) ≤ m(α, β) µ([-r, r]) [-r,r] t -∞
e -q γ 2 (t-s) (ts) q(α-β-1) ds 

1 q ∞ ∑ k=0 t-k+1 t-k e -p γ 2 (t-s) h 2 (s) p α-1 ds 1 p dµ(t) ≤ m(α, β) qγ 2 (1-α+β) [q(α -β -1)Γ(q(α -β -1))] 1 q 1 µ([-r, r]) [-r,r] ∞ ∑ k=0 e -p γ 2 k t+1 t h 2 (s -k) p ds 1 p dµ(t) ≤ m(α, β) qγ 2 (1-α+β) [q(α -β -1)Γ(q(α -β -1))] 1 q 1 µ([-r, r] 1-1 q [-r,r] ∞ ∑ k=0 e -p γ 2 k t+1 t h 2 (s -k) p dsdµ(t) 1 p = m(α, β) qγ 2 (1-α+β) [q(α -β -1)Γ(q(α -β -1))] 1 q       ∞ ∑ k=0 e -p γ 2 k 1 µ([-r, r] [-r,r] t+1 t h 2 (s -k) p dsdµ(t) (III)      
≤ L BS p M + f (•, 0) BS p < ∞.
Consequently, the set

Λ := { f (•, x) : x ∈ B} is bounded in BS p (R, X α-1 ). From Remark 4.1, for µ ∈ M, if we consider u ∈ PAA(R, X β , µ) and f ∈ PAAS p U(R × X α-1 , X β , µ) satisfies ( 
H3), then by Theorem 3.3, the function h(•) := f (•, u(•)) belongs to PAAS p (R, X α-1 , µ). Therefore, we have the following main result:

Theorem 4.4 Let 1 ≤ p < ∞, 0 ≤ β < α ≤ 1 and µ ∈ M. Assume that (H1)-(H5) hold and f ∈ PAAS p U(R × X β , X α-1 , µ) satisfies (H6) with: L f BS p <   m(α, β) qγ 2 (1-α+β) [q(α -β -1)Γ(q(α -β -1))] 1 q 1 1 -e -pγ 2 1 p + c(α, β) 2 qδ 1 q 1 1 -e -pδ 2 1 p   -1
.

Then, equation (4.1) has a unique mild solution u ∈ PAA(R, X β , µ).

Proof. Consider the mapping F : PAA(R, X β , µ) -→ PAA(R, X β , µ) defined by

(Fu)(t) := t -∞ U α-1 (t, s)P α-1 (s)h(s)ds - +∞ t Ũα-1 (t, s)Q α-1 (t)h(s)ds = (F s u)(t) + (F u u)(t) for all t ∈ R, (4.32) 
where

(F s u)(t) := t -∞ U α-1 (t, s)P α-1 (s) f (s, u(s))ds and (F u u)(t) := - +∞ t Ũα-1 (t, s)Q α-1 (t) f (s, u(s))ds, t ∈ R. It is clear that, F(PAA(R, X β , µ)) ⊂ PAA(R, X β , µ). Moreover, we have (F s u)(t) -(F s v)(t) β ≤ t -∞ U α-1 (t, s)P α-1 (s) f (s, u(s)) -f (s, v(s)) β ds ≤ m(α, β) t -∞ e -γ(t-s) (t -s) α-β-1 f (s, u(s)) -f (s, v(s)) α-1 ds ≤ m(α, β) t -∞ e -qγ(t-s) 2 (t -s) q(α-β-1) ds 1 q t -∞ e -pγ(t-s) 2 f (s, u(s)) -f (s, v(s)) p α-1 ds 1 p = m(α, β) qγ 2 (1-α+β) [q(α -β -1)Γ(q(α -β -1))] 1 q t -∞ e -pγ(t-s) 2 f (s, u(s)) -f (s, v(s)) p α-1 ds 1 p = m(α, β) qγ 2 (1-α+β) [q(α -β -1)Γ(q(α -β -1))] 1 q ∞ ∑ k=1 t-k+1 t-k e -pγ(t-s) 2 L p (s)ds 1 p u -v ∞ ≤ L f BS p m(α, β) qγ 2 (1-α+β) [q(α -β -1)Γ(q(α -β -1))] 1 q 1 1 -e -pγ 2 1 p u -v ∞ .
where the extrapolated spaces E α-1 (R) are defined as in [5, Section 2], with the associated norms:

f α-1 := sup r>0 sup t∈R t+1 t r α R(r, (ω -A α-1 (s)) f (s) p ds 1 p and E 0 (R) = E(R), E 1 (R) = D(A(•)).
Under the assumptions (2.1), (H3) and (H4) it holds that

E α-1 (R) ∼ = BS p (R, X α-1 ) and AAS p α-1 (R) ∼ = AAS p (R, X α-1
). Furthermore, from (i) and (ii) and since Z → X, the functions D(•)h and 

f n := nR(n, A(•))D(•) ĝ ∈ AAS p (R, X) for n > ω. Then, A(•) f n = (n 2 R(n, A(•)) -n)D(•) ĝ ∈ AAS p (R, X). Moreover, by (2.1) and (A3), we claim that f n is uniformly bounded in the norm of E ≤ (R). Since f n → D(•) ĝ in BS p (R, X), we con- clude by interpolation that f n → D(•) ĝ in E α (R). As a consequence, (ω -A(•)) f n → (ω -A α-1 (•))D(•) ĝ in E α-1 (R).

2). Let

A m (•) ∈ AAS p (R, L(Z, X)), B(•) ∈ AAS p (R, L(Z, ∂X)) and the functions f ∈ PAAS p (R, X, µ), ĝ ∈ PAAS p (R, ∂X, µ). Then, h := f + (ω -A α-1 (•))D(•) ĝ ∈ PAAS p (R, X α-1 , µ) for every 0 ≤ α < α < 1. Proof. Let f = f0 + ξ ∈ PAAS p (R, X, µ), where f0 ∈ AAS p (R, X) and ξ ∈ E p (R, X, µ) and let ĝ = ĝ0 + ϕ ∈ PAAS p (R, ∂X, µ), where ĝ ∈ AAS p (R, ∂X) and ϕ ∈ E p (R, ∂X, µ). Hence h = f0 + (ω -A α-1 (•))D(•) ĝ0 h 0 + ξ + (ω -A α-1 (•))D(•)ϕ ψ . Since X → X α-1 , f0 ∈ AAS p (R, X) and ĝ0 ∈ AAS p (R, ∂X), it follows in view of Lemma 5.1 that h 0 ∈ AAS p (R, X α-1 ) for every 0 ≤ α < α < 1. It suffices to prove that ψ ∈ E p (R, X α-1 , µ) for every 0 ≤ α < α < 1. Let r > 0, then we have 1 µ([-r, r]) [-r,r] t+1 t ψ(s) p α-1 ds 1 p dµ(t) ≤ 1 µ([-r, r]) [-r,r] t+1 t ξ(s) p α-1 ds 1 p dµ(t) + M µ([-r, r]) [-r,r] t+1 t φ(s) p ∂X ds 1 p dµ(t) → 0 as r → ∞, where M := sup t∈R (ω -A α-1 (t))D(t) L(∂X,X α-1 ) < ∞.
≤ p < ∞, 0 ≤ β < α ≤ 1 and µ ∈ M. Assume that A m (•) ∈ AAS p (R, L(Z, X)), B(•) ∈ AAS p (R, L(Z, ∂X)) and f ∈ PAAS p U(R × X β , X, µ), g ∈ PAAS p U(R × X β , ∂X, µ) satisfy (H6)
with small constants L f BS p and L g BS p . Furthermore, if the hypotheses (A1)-(A4) and (H2), (H4)-(H5) hold. Then, equation (1.1) has a unique mild solution u ∈ PAA(R, X β , µ) given by:

u(t) = R Γ α-1 (t, s) [ f (s, u(s)) + (ω -A α-1 (s))D(s)g(s, u(s))
] ds for all t ∈ R.

(5.4)

Proof. Define f (t, x) = f (t, x) + (ω -A α-1 (•))D(•)g(t, x) where f ∈ PAPS p U(R × X β , X, µ) and g ∈ PAAS p U(R × X β , ∂X, µ). Since M = sup t∈R (ω -A α-1 (t))D(t) L(∂X,X α-1 ) < ∞ and Z → X → X α-1 , it follows from Lemma 5.2 that f ∈ PAAS p U(R × X β , X α-1 , µ). Furthermore, the function f satisfies (H6) with constant of Lipschitz L f ≤ L f + ML g . Hence, by a particular choice of L f and L g we can obtain L f BS p small enough. Hence, by Theorem 4.4, we deduce that there exists a unique mild solution u ∈ PAA(R, X β , µ) of equation of (1.1) satisfying the formula (5.4).

Application: Diffusion equation with inhomogeneous boundary conditions

Let µ be a measure with a Radon-Nikodym derivative ρ defined by: ρ(t) = e t for t ≤ 0, 1 for t > 0. (6.1)

From [START_REF] Blot | Measure theory and pseudo almost automorphic functions: New developments and applications[END_REF]Example 3.6.], µ satisfies the hypothesis (H5).

In this section, we study the following diffusion equation with inhomogeneous boundary conditions: By the proof in [11, Section 5.], t -→ arctan(t) -π 2 belongs to E (R, R, µ). Otherwise, from [START_REF] Es-Sebbar | Stepanov ergodic perturbations for some neutral partial functional differential equations[END_REF] and references therein, a 1 ∈ C ∞ (R, R), but a 1 / ∈ AA(R, R) since it is not bounded. However, a 1 ∈ AAS 1 (R, R).

       ∂u(t
In order to rewrite equation (1.1) as an abstract differential equation, we take the spaces X := L 2 ((0, π), R), Z := H 2 ((0, π), R) and ∂X := H )|Γ

Hence, we define A(t) := A m (t)| ker(B(t)) where ker(B(t)) = H 2 ((0, π), R) ∩ H 1 0 ((0, π), R). Since c ∈ L ∞ (R × Γ), it follows in view of the Trace Theorem [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]Theorem 9.4] that B(t) is surjective and bounded uniformly in t ∈ R. Moeover, X t α = H 2α ((0, π), R) with uniformly equivalent norms, for α ∈ ( 1 3 , 1 2 ) and that the Dirichlet map D(t) : Z -→ ∂X is uniformly bounded for t ∈ R, see [START_REF] Amann | Linear and Quasilinear Parabolic Problems[END_REF]Example IV.2.6.3 ]. It is well known that the graph norm of A(t) is uniformly equivalent the norm of Z and that the operator A := A m | ker(B(t)) is a generator of an analytic semigroup (T(t)) t≥0 on X. Moreover, we have

T(t) f = ∞ ∑ n=0
e -n 2 π 2 t < f , e n > L 2 [0,π] e n for all t ∈ R, f ∈ X, where {e n ; n ≥ 0} is the family of eigenvectors associated to the egeinvalues {-n 2 π 2 ; n ≥ 0}. Take v(t)(•) := u(t, •), hence the equation (1.1) has the following abstract form: v (t) = A m (t)v(t) for t ∈ R, B(t)v(t) = g(t, v(t)) for t ∈ R.

The operators (A(t)) t∈R generate an evolution family (U(t, s)) t≥s on X given by: Let us prove that (U(t, s)) t≥s has an exponential dichotomy on R. Indeed, the series given in (6.3) is uniformly convergent which implies that the sequence (e Therefore, there exist δ, M > 0 and the projections P(t) := P and Q(t) := Q = I -P, for t ∈ R defined as Rank(Q) = N and Rank(P) = ∞, since it can be seen as Q = diag(1, ..., 1, 0, 0, ...) with N numbers 1 at the diagonal. Then, we have the following decomposition: U(t, s)P(s) ≤ Me -δ(t-s) , t, s ∈ R, s ≤ t, U(s, t)Q(t) ≤ Me -δ(s-t) , t, s ∈ R, s > t. 

U(t
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 1313131 Since formula(3.13) holds for all ε > 0, we obtain that lim r→+∞ From (3.15), we can deduce that for all 1≤ p < ∞, f (•, u(•)) ∈ BS p (R, Y). Let µ ∈ M. Assume that u ∈ AA(R, X) and f ∈ E p U(R × X, Y, µ). Then, f (•, u(•)) ∈ E p (R, Y, µ).

Theorem 4 . 1

 41 Let (H1)-(H3) be satisfied. Then, Γ ∈ bAA(R, X).Proof. It suffices to use Lemma 4.2 and arguing as the same as in the proof of [10, Proposition 3.3 ]. Now, we prove the existence of a unique µ-pseudo almost automorphic mild solution to (4.2).

Theorem

  

ds 1 pTheorem 4 . 3

 143 dµ(t). (4.27)By the fact that f ∈ E p (R, X, µ), the right hand side in (4.27) → 0 as r → ∞. Hence, (4.26) holds. Let µ ∈ M and 0 ≤ β < α ≤ 1. Assume that (H1)-(H5) are satisfied and that h ∈ PAAS p (R, X α-1 , µ). Then, equation (4.2) has a unique mild solution u ∈ PAA(R, X β , µ) given by the formula (4.16).

5 . 2

 52 Hence, the result follows from the definition of AAS p α-1 (R). Lemma Let 1 ≤ p < ∞ and µ ∈ M. Assume that (H5) and (A1)-(A4) without the condition (2.

Theorems 4 . 2 , 4 . 3 andTheorem 5 . 1

 424351 Lemmas 5.1, 5.2 imply the following main result of this section on the existence of a µ-pseudo almost automorphic mild solution to equation (1.1). Let 1

1 2 (∂x 2 + 1 2

 221 (0, π), R) equipped with there usual norms. Moreover, we consider the following statement: b(t):= A m + b(t) for t ∈ R, D(A m (t)) = D(A m ) = H 2 ((0, π), R) for t ∈ R,where b(t) := b(t, •) ∈ AAS 1 (R, X) and the boundary operatorB(t) : H 2 (0, π), R) -→ H (Γ, R) v → (c(t) ∂v ∂n

  (τ)-n 2 π 2 ]dτ < f , e n > L 2 [0,π] e n for all t ≥ s, f ∈ X, which satisfies (2.1) and (2.2). Furthermore, we haveU(t, s) f 2 = < U(t, s) f , U(t, s) f > L 2 [0,π] (τ)-n 2 π 2 ]dτ e t s [b(τ)-m 2 π 2 ]dτ < f , e n > L 2 [0,π] < f , e m > L 2 [0,π] < e n , e m > L 2 [0,π] (τ)-n 2 π 2 ]dτ f 2 for all t ≥ s, f ∈ X. (τ)-n 2 π 2 ]dτ f for all t ≥ s, f ∈ X.Consequently, the hypotheses (A1)-(A4) and (H4) are satisfied.

ts

  [b(τ)-n 2 π 2 ]dτ ) n goes to 0 as n → 0. Let N ≥ 1 large enough, since b ∈ AAS 1 (R, X), it follows that: )dτn 2 π 2 (ts) BS 1n 2 π 2 )(ts) , with M = e 2|b| BS 1 BS 1n 2 π 2 )(ts) + M ∞ ∑ n=N+1 e [|b| BS 1n 2 π 2 ](ts)

Lemma 6 . 1

 61 The function g satisfies the condition (H6) for p = 1 andL g := |m| ∞ |a(•)| ∈ BS 1 (R, R).

  Using Theorem 4.2, we obtain that u 1 ∈ AA(R, X α-1 ). Let us prove that u 2 ∈ E (R, X α-1 , µ). It suffices to show that u s 2 , u u 2

						s) h(s)ds		
	and							
			u 2 (t) =	R	Γ α-1 (t, s)ϕ(s)ds		
			:= u s 2 (t) + u u 2 (t),		
	where							
	u s 2 (t) :=	t -∞	U α-1 (t, s)P α-1 (s)ϕ(s)ds	and	u u 2 (t) := -	t	+∞	Ũα-1 (t, s)Q α-1 (t)ϕ(s)ds.

  For all p ≥ 1, there exists a nonegative functionL f (•) ∈ BS p (R, R) such that f (t, x) -f (t, y) α-1 ≤ L f (t) xy β for all t ∈ R, x, y ∈ X β . (4.30) Definition 4.2 A continuous function u : R -→ X β is called a mild solution of equation (4.2) if it satisfies the following variation of constants formula: The hypothesis (H5) implies the condition (C') in Theorem 3.3. In fact, let B be a bounded subset of X β , i.e., there exists M > 0 such that x β ≤ M for all x ∈ B. + f (•, 0) BS p for all t ∈ R.

	Using Proposition 2.4-(iii) and Lemma 4.3, we deduce for each k ∈ N, that lim r→+∞ 1 µ([-r, r]) [-r,r] t+1 t h 2 (s -k) p dsdµ(t) = 0. Since, (III) ≤ ∞ ∑ k=0 e -p γ 2 k h 2 BS p , it holds that the series in (III) is uniformly convergent in r. Therefore, in view of the dominated conver-gence Theorem, we obtain that lim r→+∞ 1 µ([-r, r]) [-r,r] u s 2 (t) dµ(t) = 0. (4.28) By the same way, we obtain that lim r→+∞ 1 µ([-r, r]) [-r,r] u u 2 (t) dµ(t) = 0. (4.29) From (4.28) and (4.29), we claim that lim r→+∞ 1 µ([-r, r]) [-r,r] u 2 (t) dµ(t) = 0. Hence, u 2 ∈ E (R, X, µ). Now, we return to the semilinear evolution equation (4.1). We need the following additional assumption: t σ U α-1 (t, s) f (s, u(s))ds for all t ≥ σ. (4.31) Remark 4.1 Since f satisfies (H5), it follows for all x ∈ B, that t+1 t f (s, x) p α-1 ds 1 p ≤ t+1 t L(s) p ds 1 p x β + t+1 t f (s, 0) p α-1 ds 1 p (H6) u(t) = U(t, σ)u(σ) + ≤ L BS p M Therefore, sup t∈R t+1 t f (s, x) α-1 ds p 1 p	1 p

  , x) ∂t = ∂ 2 u(t, x) ∂x 2 + b(t)u(t, x), (t, x) ∈ R × (0, π), {0} ∪ {π}, b ∈ L ∞ (R), c ∈ BS 1 (R, C 1 (Γ)) ∩ L ∞ (R, C 1 (Γ)) are given. The function g : R × X -→

	c(t, x)	∂n ∂u(t, x)	= Φ(t, u(t, x)), (t, x) ∈ R × Γ,	(6.2)
	where Γ = ∂X defined by			
		g(t, ϕ)(x) = Φ(t, ϕ(x)) =	a(t) 1 + |ϕ(x)|	,
	where a(t) := a 1 (t) + arctan(t) -	π 2	, with
				a 1 (t) = ∑
					2 , 1 2 ) such that
		H ≥ 0, H(0) = 1 and	1 2 -1
					2

n≥1

β n (t), such that, for every n ≥ 1

β n (t) = ∑ i∈P n H(n 2 (ti)), with P n = 3 n (2Z + 1) and H ∈ C ∞ 0 (R, R) with support in ( -1

H(s)ds = 1.

Arguing as above, we have also f (s, u(s)) -f (s, v(s)) p α-1 ds

Consequently, we have

qγ 2

(1-α+β)

[q(αβ -1)Γ(q(αβ -1))]

Thus, F has a unique fixed point belongs to PAA(R, X β , µ). This proves the result.

µ-pseudo almost automorphic solutions for equation (1.1)

Consider now the nonautonomous semilinear boundary differential equation:

where (A m (t), D(A m (t))) t∈R are linear operators on a Banach space X, B(t) : D(A m (t)) -→ ∂X, is a linear boundary operator and f : R × X β -→ X and g : R × X t β -→ ∂X are locally integrable with resoect to first variable and Lipschitzian in the seconde one. We use the following assumptions: (A1) There are Banach spaces Z which are continuously embedded in X and ∂X respectively such that A m (t) ∈ L(Z, X) and B(t) ∈ L(Z, ∂X) with: sup t∈R A m (t) L(Z,X) , sup t∈R B(t) L(Z,∂X) < ∞.

(A2)

The restriction operators A(t) := A m (t)|ker(B(t)) for t ∈ R, satisfy the conditions (2.1) and (2.2) with constants ω, θ, K, L, µ, ν. Hence, there is an evolution family (U(t, s)) s≤t on X solving the equation (1.3) for f = g = 0. Moreover, denote by X t m := (D(A(t)), • A(t) ) where • A(t) is the graph norm of A(t). Then, • A(t) and the norm of Z are equivalent with constants being uniform in t ∈ R.

α for each t ∈ R with uniformly bounded embedding constants and sup

where

Note that the above assumptions are introduced the first time by G. Greiner in [START_REF] Greiner | Perturbing the boundary conditions of a generator[END_REF] in the autonomous case. By taking f (t, Section 5], that equation (1.1) is equivalent to (4.1). Hence, a mild solution of equation (1.1) is a continuous function u : R -→ X β satisfying the following variation of constants formula:

for all t ≥ σ. (5.1)

and B(•) ∈ AAS p (R, L(Z, ∂X)). Then, the following statements hold:

Proof. Let (σ n ) n≥0 be a sequence of real numbers, since A m (•) ∈ AAS p (R, L(Z, X)) and B(•) ∈ AAS p (R, L(Z, ∂X)).

Then, there exists a subsequence (s n ) n≥0 such that: 

By assumptions, it holds that

Therefore, from the limits in (5.2) and ( 5.3), we obtain that:

Hence,

Therefore, arguing as in (i), we obtain that:

(iii) To prove this statement, we need to introduce the following spaces: For 1 ≤ p < ∞ and 0 < α < 1, we set E(R) = BS p (R, X) and we define:

Hence

The result follows from the fact that a ∈ PAAS 1 (R, R, µ).

Then, the following hold

Now, we show that A m (•) ∈ AAS 1 (R, L(Z, X)). Let (σ l ) l≥0 be a sequence of real numbers, since b ∈ AAS 1 (R, R), there exists a subsequence (s l ) l≥0 such that Then, by (6.5), we deduce the result.

(ii) We follow the proof as in (i).

Then, we have the following main result.

). If we take L g BS 1 small enough. Then equation (6.2) has a unique mild solution u ∈ PAA(R, X β , µ).