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Optimal piezoelectric resistive-inductive
shunt damping of plates with residual
mode correction

Johan F. Toftekær 1, Ayech Benjeddou 2,3, Jan Høgsberg 1 and Steen Krenk 1

Abstract
This work concerns vibration suppression of plates and plate-like structures by resonant piezoelectric damping,
introduced by resistive-inductive (RL) shunts. The performance of this type of shunt damping relies on the precise
calibration of the shunt frequency, where an important aspect is the ability to account for the energy spill-over from
the non-resonant modes, not taken into account by most available calibration methods. A newly proposed calibration
procedure includes this residual mode contribution by a quasi-dynamic modal correction, taking both flexibility and
inertia effects of the non-resonant modes into account. In the present work, this procedure is implemented in a finite
element model combining Kirchhoff plate bending kinematics for the host structure, and a plane-stress assumption
for a pair of bonded piezoceramic patches. The established model is verified by comparison with shunt calibrations
from benchmark examples in the literature. As demonstrated by frequency response plots and the obtained damping
ratios, the RL-shunt tuning is influenced by the effect of the non-resonant modes and omission may yield a significant
detuning of the shunt circuit. Finally, an alternative method for precise evaluation of the effective (or generalized)
electromechanical coupling coefficient (EMCC) is derived from the modal electromechanical equations of motion. This
results in a new shunt tuning method, based on the effective EMCC obtained by the short- and open-circuit frequencies
of the coupled piezo-plate structure.

Keywords
Shunt piezoelectric damping, resonant shunt calibration, quasi-dynamic residual mode correction, effective modal
electromechanical coupling coefficient, plates

Introduction

This paper concerns the suppression of plate vibrations
by means of resonant piezoelectric shunt damping.
Piezoceramic patches, bonded to vibrating plates, have
the ability to convert mechanical energy into electrical
energy, that can then be dissipated in supplemental resonant
shunts. The amount of converted energy is governed by
the squared effective (or generalized) electromechanical
coupling coefficient (EMCC), which depends on the
properties of the piezoceramic patches and their placement
on the host structure. Furthermore, the EMCC is a key
parameter for the performance and tuning of a shunt,
traditionally composed of an inductor (L), calibrated such
that the shunted piezoelectric device works in resonance
with the host structure, and a resistor (R), dissipating the
converted mechanical energy into heat via the Joule effect.
However, alternative passive and semi-active resonant (RL)
shunts have been proposed, for instance by the addition
of a negative capacitance (de Marneffe and Preumont, 2008;
Berardengo et al., 2016) or by the use of switch damping
(Ducarne et al., 2010). The motivation behind most of
these alternative resonant shunts is the difficulty in
generating the large inductance required in shunt damping
of (low-frequency) structural vibrations. The problem is
commonly solved by the introduction of synthetic inductors
(Thomas et al., 2012), which are active components that
emulate the inductive behaviour in the desired frequency
range. Nonetheless, high inductance values have recently

been obtained and demonstrated for pure passive inductors
with windings around a magnetic coil (Lossouarn et al.,
2017), allowing an unconditionally stableRL-shunt with
large damping potential if a precise shunt tuning can be
obtained already in the structural design phase. This can
be realized using a consistent calibration procedure that
explicitly takes into account the dynamic effects of the full
flexible structure, as the present work shall demonstrate.

Piezoelectric vibration damping by resonantRL-shunts
was originally suggested byForward (1979) and further
developed byHagood and von Flotow(1991), who pro-
posed two calibration procedures for a series shunt based on
minimization of the response amplitudes and maximization
of the damping characteristics. A calibration procedure for
the parallelRL shunt was subsequently proposed byWu
(1996), arguing that the series shunt would be inappropriate
for large resistances. The series and parallel shunts have
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been compared byPark and Inman(1999), revealing a larger
attainable energy dissipation using the parallel configura-
tion, while a critical analysis of the calibration methods
has been provided byCaruso (2001). Methods for multi-
modal piezoelectric shunt damping have been proposed by
Hollkamp (1994) and Wu (1998). In later years, several
alternative procedures have been proposed for the detailed
tuning of RL-shunts, for example based on anH∞-norm
of the response amplitude (Soltani et al, 2014) or a balanced
calibration procedure based on the principle of equal modal
damping (Høgsberg and Krenk, 2012), originally developed
for the mechanical tuned mass damper (Krenk , 2005). The
balanced calibration procedure has recently been extendedto
include the effects from non-resonant structural modes, first
by a quasi-static correction (Krenk and Høgsberg, 2014) and
then by a more general quasi-dynamic correction with both
flexibility and inertia terms (Krenk and Høgsberg, 2016).

An important part of all calibration methods is the accurate
determination of the squared EMCC, which governs both
the attainable damping and the shunt tuning. Commonly,
the squared EMCC is estimated from a single mode repre-
sentation of the electromechanical structure (Thomas et al.,
2009), while improved accuracy has been demonstrated
by including quasi-static effects from higher non-resonant
vibration modes (Berardengo et al., 2016). In other cases,
the tuning is based directly on the squared effective
EMCC determined from either experiments (Porfiri et al.,
2007; Delperro et al., 2012) or by numerical analysis
(Trindade and Benjeddou, 2009; Benjeddou, 2014). How-
ever, inherent inconsistencies between the squared modal
and effective EMCC often lead to discrepancies in the tuning
formulas, because the influence from non-resonant modes
is neglected in the modal representation of the electrome-
chanical structure. This motivates the present derivationof a
new and consistentRL-shunt tuning procedure based on the
effective EMCC.

The proposed shunt calibration relies on the pro-
cedure with residual mode correction, introduced by
Krenk and Høgsberg(2016) for mechanical absorbers and
subsequently extended to piezoelectric shunt damping in
Høgsberg and Krenk(2017). It is applied to the optimal
calibration of RL-shunted piezoceramic patches, bonded
symmetrically to plate elements and structures for which
the tuning is influenced by vibration modes and frequen-
cies that are closely grouped both spectrally and spatially.
It is the aim to account for the influence from the non-
resonant modes on the shunt calibration, and discuss the
errors associated with the pure single mode representation
of the electromechanical structure, by considering both the
squared modal and effective EMCC. A new modal EMCC is
presented that accounts for the spill-over from non-resonant
modes, whereby it becomes identical to the effective EMCC.
Thus, a consistent relation is established between the modal
equations of motion and the corresponding short-circuit (SC)
and open-circuit (OC) frequencies of the coupled electrome-
chanical structure. Consequently, this enables the derivation
of a shunt tuning procedure based on the effective EMCC, as
demonstrated in the third section of this paper.

The first section of the paper presents a finite element
(FE) model for plates with a symmetrically bonded pair of
piezoceramic patches in order to facilitate the subsequent

analysis and assessment of the proposedRL-shunt tuning
procedures. The plate displacements are approximated using
Kirchhoff plate bending kinematics, whereas only the in-
plane displacements are considered for the piezoceramic
patch. Equipotential conditions are imposed to all continuous
patch electrodes, reducing the number of electric variables
to two for the discretized piezoceramic patch. Subsequently
the coupling between a pair of piezoceramic patches and
a plate is established by transforming the electric forcing
from the patches to the equivalent moment loads in the plate
model. In the present work, a symmetric pair of identical
piezoceramic patches is considered. The patches are either
same-poled and parallel-wired (SP-PW) or opposite-poled
and series-wired (OP-SW), whereby they operate out of
phase. The number of variables in the electric domain can
hereby be reduced to the voltage over the supplemental shunt
by the introduction of resulting capacitance and the plane
stress-reduced piezoelectric coupling coefficient for the
specific patches electric connection. A thorough review of
finite element techniques for the modelling of piezoelectric
structural elements was provided byBenjeddou(2000).

The second section conducts a modal analysis of the SC
electromechanical structure. For a specific vibration mode,
the consistent modal truncation inKrenk and Høgsberg
(2016) reduces the system to a single mechanical equation,
in which the piezoceramic patches are represented by their
resulting displacement. Hereby, the optimal tuning for both
parallel and series shunt circuits (Høgsberg and Krenk,
2017) can be derived for the targeted mode of the
electromechanical FE-model.

In the third section, a new shunt tuning procedure is
developed based on the effective EMCC, where a simple
format of the shunt tuning formulas is obtained.

In the fourth section it is demonstrated and justified
that the influence from the residual modes can be directly
identified from the squared modal EMCC, both with and
without residual mode correction. Further, the influence on
the shunt tuning when having either a SP-PW or OP-SW pair
of piezoceramic patches can be seen from the new tuning
formulas.

In the fifth section the established FE-model and imple-
mentation of the calibration procedures with residual mode
corrections is compared withRL-shunt tuning results from
previously proposed calibration methods for benchmark
examples with a cantilever beam (Thomas et al., 2009) and
a simply supported plate (Gardonio and Casagrande, 2017).
For the cantilever, available experimental data are used for
comparison with the proposed FE based tuning methods.
Both examples analyze the ability to achieve optimal damp-
ing by the proposed calibration procedures and validate
the equality between the squared effective EMCC, and the
squared modal EMCC with residual mode correction.

As a closure of this introduction, it is worth emphasising
the originality of the present work with regards of the related
earlier publications Høgsberg and Krenk (2012, 2015,
2017). In previous works, the balanced shunt tuning has
been considered with and without residual mode correction
for beam structures. Thus, the present implementation for
plates and two-dimensional piezoceramic patches is a novel
extension that relies on the derived FE-model. Furthermore,
optimal tuning formulas have here been derived directly
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from the underlying electric equations. Besides, a new
methodology for the precise evaluation of the effective
EMCC is proposed. It is based on the corresponding
modal EMCC with residual mode correction. Following the
accurate evaluation of the effective EMCC, an alternative
tuning procedure based on the latter is proposed in the
third section which, as well, is a new contribution. Finally,
the present shunt tuning procedures with residual mode
corrections are assessed by comparison with benchmark
examples for beam and plate structures.

Electromechanical Piezo-Plate Model

This first section is devoted to the derivation of a FE-model
for the coupled piezo-plate structure. Initially, the variational
formulations are obtained for the host plate structure and the
piezoceramic patch separately, by considering the respective
kinematic and constitutive relations. Subsequently, the
coupling is established by transforming the electric forcing
from a considered pair of piezoceramic patches to the
equivalent moment loads in the plate model. Alternatively,
a layer model could have been established by the use of
sandwich theory (Benjeddou, 2002).

Host elastic plate
The host elastic structure is considered to cover the
three-dimensional (3D) domainΩ, subjected to prescribed
displacements̄ui on part of the boundaryΓu, and prescribed
surface tractionsFi on the remaining part of the domain
boundaryΓF , such that∂Ω = Γu ∪ ΓF andΓu ∩ ΓF = ∅.
Hereby, the dynamic equilibrium, under free-body loads, and
boundary equations, can be written as

σij,j = ρüi in Ω (1)

σijnj = Fi on ΓF (2)

ui = ūi on Γu (3)

where i, j denote the 3D vector and tensor components,
with repeated subscripts implying summation. Partial
differentiation with respect to a space coordinate is denoted
by comma, and time differentiation by a dot. The material
density of the plate is denotedρ, andnj are the components
of the outward unit normal toΩ.

The variational formulation is established using the
weighted residual method by multiplying the equation of
motion (1) with the virtual displacementδui, followed by
an integration over the structural domain,

∫

Ω

δui(σij,j − ρüi)dΩ = 0 (4)

Integration by parts then, using the kinematically admissible
boundary conditions, gives the weak variational formulation

∫

Ω

δεijσijdΩ+

∫

Ω

δuiρüidΩ =

∫

ΓF

δuiFidΓ (5)

where the displacement has to satisfy the essential boundary
condition (3).

In the present work, plates and plate-like structures
with thicknesst0 significantly smaller than the in-plane
dimensions of the surface areaA are considered. Thus, a

good representation of the structural behaviour is obtained
by Kirchhoff plate theory. The latter considers a plane stress
state, whereby the constitutive relation between the strains
and stresses is reduced to the relation between the in-plane
components. For an isotropic material

σ =
E

1− ν
Dpε (6)

with Young’s modulusE, Poisson’s ratioν, and the stress
and strain vectors and constitutive matrix defined as

σ =





σxx
σyy
σxy



, ε =





εxx
εyy
2εxy



, Dp =
1

1 + ν





1 ν 0
ν 1 0
0 0 1−ν

2



 (7)

The particular form ofDp becomes convenient in the
subsequent derivations. Considering bending only, the in-
plane strains are determined from the transverse coordinate
z and vertical displacementw as

ε = zκ = −z∆w (8)

where∆ is a two-dimensional Laplace-like operator, defined
as

∆ = ∇p∇ =









∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x









[

∂
∂x

∂
∂y

]

=









∂2

∂x2

∂2

∂y2

2 ∂2

∂x∂y









(9)

Using the constitutive relation (6), the strain definition (8),
and the Laplace-like operator (9), the variational formulation
(5) can be written as

∫

A

δw
(

∆
TD∆− ω2ρt0

)

wdA =

∫

AF

δwFwdA (10)

where harmonic solutionsw = w exp(iωt), of circular
frequencyω, are assumed, and the boundary forces are given
only by the vertical surface tractionFw onΓF = AF . In (10),
the constitutive matrix for the isotropic plate is

D =
Et30

12(1− ν)
Dp (11)

The FE-formulation is now obtained from the variational
formulation (10) by discretizing the amplitude of the
displacement field as

w(x, y) = N(x, y)ue (12)

where the shape functions inN and nodal degrees of freedom
(dofs) in the harmonic amplitude vectorue for elemente are

N =
[

N1
w N1

φ N1
ψ · · · N4

w N4
φ N4

ψ

]

ue =
[

w1 φ1 ψ1 · · · w4 φ4 ψ4

]T
(13)

The numerical index1, . . . , 4 denotes the node number
in the considered rectangular plate element. The shape
functionsN i

w, N i
φ andN i

ψ are derived for the nodal vertical
displacementwi and the associated nodal rotationsφi and
ψi about thex- and y-axis, respectively, corresponding to
a cubic Hermitian interpolation of the vertical displacement
field.



4 XX(X)

By substitution of (12) into the variational equation (10),
followed by summation over the number of elementsn, the
equation of motion for the discretized plate can be written as

n
∑

e=1

(δue)T
{

(Ke
0 − ω2Me

0)u
e − fe

}

= 0 (14)

where the element mass and stiffness matrices have been
introduced as

Me
0 =

∫

Ae

NT ρt0 N dAe,

Ke
0 =

∫

Ae

(∆N)TD(∆N) dAe
(15)

and the external element force vector

fe =
∫

Ae
F

NTFw dAe (16)

It is noted that four point Gauss integration is sufficient to
integrate the highest polynomial order exactly.

The global mass and stiffness matricesM0 andK0, and
the forcef and displacementu vectors are then assembled
using a standard FEM assembly procedure, adding each
mass, stiffness and force component to a defined global nodal
order, whereby the full discretized equation of motion can be
written as

(K0 − ω2M0)u = f (17)

which represents a system of3N linear equations of motion,
whereN is the number of FE-model nodes.

Piezoceramic patch
In the following, the variational formulation for a
piezoceramic patch with continuous top and bottom
electrodes is derived and a FE-model established, which will
later be coupled to the FE-model of the host plate structure.

The mechanical dynamic equilibrium of the piezoceramic
patch is described similarly to (1), (2) and (3) as

σpij,j = ρpü
p
i in Ωp (18)

σpijn
p
j = F p

i onΓpF (19)

upi = ūpi onΓpu (20)

with Ωp being the patch domain of boundary∂Ωp = ΓpF ∪
Γpu and ΓpF ∩ Γpu = ∅, and ρp the mass density of the
piezoceramic patch. Again, it is assumed that no body
loads act on the patch domain. Additionally, the electric
quasi-static equilibrium and boundary conditions for the
piezoceramic patch follow as

Di,i = 0 in Ωp (21)

Dini = −Q onΓQ (22)

ϕ = ϕ̄ onΓϕ (23)

with the electric displacementDi, surface charge densityQ
onΓQ, electric potentialϕ and prescribed potential̄ϕ onΓϕ.
Here, the total patch boundary follows as∂Ωp = ΓQ ∪ Γϕ
andΓQ ∩ Γϕ = ∅.

Again, the weighted residual method is used to obtain the
variational formulations, by multiplying the mechanical and

electric equilibrium equations (18) and (21) with the virtual
displacementsδupi and potentialδϕ, respectively, followed
by integration over the patch domain

∫

Ωp

(σpij,j − ρpü
p
i )δu

p
i dΩp = 0

∫

Ωp

Di,iδϕdΩp = 0

(24)

The weak variational formulations follow by integration
by parts and substitution of the mechanical and electrical
kinematically admissible boundary conditions (19) and (22)

∫

Ωp

δεpijσ
p
ijdΩp +

∫

Ωp

δupi ρpü
p
i dΩp

=

nc
∑

ic=1

δupα(xic , yic)(F
p
α )ic

∫

Ωp

δEiDidΩp =

∫

ΓQ

δϕQdΓQ

(25)

where the fields have to satisfy the corresponding mechanical
and electrical essential boundary conditions (20) and (23). It
is noted that the boundary loads will be considered only as
concentrated loads atnc points of the coordinates(xic , yic),
whileα = 1, 2 with summation over the repeated indices.

By assuming that the piezoceramic patch is thin and
bonded to either of the major plate surfaces, the effect
from the patch on the plate approximately reduces to the
in-plane electric forces, whereby a plane stress constitutive
behaviour, similar to (6), can be used for the patch. This
implies that the bending stiffness and associated transverse
inertia effects of the patch are not considered. However,
when the patch is thin, the bending stiffness of the patch
becomes insignificant, while the omission of the transverse
inertia effects can be accounted for by lumping the mass
of the patch at the relevant dofs in the system mass matrix,
which will be discussed in the benchmark examples.

Regarding the electric domain, it is assumed that no
electric field is generated from bending of the piezoceramic
patch and the electric field is considered to be non-vanishing
only in the transverse (poling) direction3. Hereby, the
reduced electromechanical constitutive equations can be
written as

[

σp

D3

]

=

[

Ep

1−νp
Dp −e3

eT3 ǫ
εp
33

] [

εp

E3

]

(26)

They represent the relations between the mechanical in-plane
stressesσp and transverse electric displacementD3, and the
associated in-plane strainsεp and transverse electric fieldE3.
The pure mechanical behaviour is recovered by SC patch
electrodes, while the pure electric behaviour is represented
by the dielectric constant at constant (nil) strainsǫεp33. The
electromechanical coupling is governed by the piezoelectric
constants in the vectore3, defined for a piezoceramic patch
as

e3 = d31
Ep

1− νp
Dpb = e31b (27)

where Ep is the Young’s modulus of the piezoceramic
material,νp is the corresponding Poisson’s ratio, andd31b =
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d31[1 1 0]T represents the isotropic plane electromechanical
coupling with the strength governed by the piezoelectric
strain coefficient d31 = d32. It is noted that there is
no inherent coupling with the in-plane shear strain for
piezoceramic materials, which is the reason for the zero
component in the last entry ofb. Because1− νp is contained
explicitly in (27), the remaining SC constitutive matrix
Dp can be written as in (7) with νp instead of ν. It
is readily shown thatDpb = b, whereby the scalar plane
stress-reduced piezoelectric coupling coefficient in (27) is
identified as

e31 = d31
Ep

1− νp
(28)

It recovers the stress piezoelectric coupling coefficient
resulting from the one-directional (1D) transverse mode
constitutive equation whenνp = 0.

The in-plane strains can here be represented by

εp = ∇pvp (29)

where the in-plane displacementsu and v are arranged in
the displacement vectorvp = [u, v]T , and the 2D derivation
operator∇p is as in (9). As for the host plate, the frequency
domain representation of the weak variational formulations
(25) of the patch, is reached by assuming harmonic loads
and solutionsvp = vp exp(iωt).

The patch thicknesstp is assumed significantly smaller
than a characteristic in-plane dimension of the patch surface.
Hereby, the electric fieldE3 is approximately constant
through the patch thickness and can thus be determined by
the difference between the electric potentials on the topϕ+

and bottomϕ− electrodes by

E3 = −∇ϕϕ = −
[

1/tp −1/tp
]

[

ϕ+

ϕ−

]

(30)

Thus, in this notation, the symbol∇ϕ denotes the row vector
[1 − 1]/tp. By substituting (26), (27), (29) and (30) into
(25), the variational weak formulations for the patch (25) can
be written in the frequency domain as

∫

Ap

δvTp
(

∇
T
p

Eptp
1− νp

Dp∇pvp +∇
T
p e31tpb∇ϕϕ

−ω2ρptpvp
)

dAp =

nc
∑

ic=1

δupα(xic , yic)(F
p
α )ic

(31)

for the mechanical relation and as
∫

Ap

δϕT∇T
ϕ

(

−e31tpbT∇pvp + ǫ
εp
33tp∇ϕϕ

)

dAp

=

∫

AQ

δϕTQdAQ

(32)

for the corresponding electrical relation. In both relations,
the integration over the constant patch thicknesstp has been
conducted. From (32), it is seen that the surface charge
densities inQ = [Q+, Q−]

T are distributed on the top and
bottom electrodes with identical surface areasAQ, while
zero surface charges are assumed on the lateral parts of the
patch boundaries.

The FE-formulation for the piezoceramic patch is then
established by introducing a rectangular four node element

1

23

tp
ue1

ve1
ue2

ve2

ue3

ve3

ue4

ve4

ϕe+

ϕe−

Figure 1. Piezoceramic patch element with 8 mechanical and 2
electric dofs.

with two uniform electric potential surface dofs for the top
and bottom electrodes

ϕ = ϕe =
[

ϕe+ ϕe−
]T

(33)

and two nodal dofs representing the in-plane displacements
ui andvi, as shown inFigure 1. The harmonic amplitudesvp
can therefore be represented by

vep(x, y) = Np(x, y)uep

=

[

N1 0 · · · N4 0
0 N1 · · · 0 N4

]















ue1
ve1
...
ue4
ve4















(34)

where Np contains the shape functionsNi, uep the nodal
displacements, while subscript4 again represents the number
of element nodes.

The discretized equations of motion are obtained next by
substituting (33) and (34) into both (31) and (32), followed
by summation over the number of patch elementsnp as

np
∑

e=1

[

δuep
δϕe

]T
{[

Ke
p − ω2Me

p Ke
c

− (Ke
c)
T (

Cεpp
)e

][

uep
ϕe

]

−
[

f ep
Qe

]}

= 0

(35)

In this expression, the element mass, SC stiffness and
electromechanical coupling matrices are determined as

Me
p =

∫

Ae
p

NTp ρptpI2Np dAep

Ke
p =

∫

Ae
p

(∇pNp)T
Eptp
1− νp

Dp(∇pNp) dAep

Ke
c =

∫

Ae
p

(∇pNp)Tbe31tp∇ϕ dA
e
p

(36)

whereI2 is the two by two identity matrix, and the element
nodal force and surface charge vectors are defined as

f ep =

nc
∑

ic=1

N(xic , yic)f
p
ic

Qe =

∫

Ae
p

QdAep

(37)

with the concentrated force vectorf pic = [F p
x F p

y ]
T
ic

.
Furthermore, the blocked capacitance matrix in (35) is given
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by

(

Cεpp
)e

=

∫

Ae
p

∇
T
ϕǫ
εp
33tp∇ϕdA

e
p = Cεpp

[

1 −1
−1 1

]

(38)

in which

Cεpp =
ǫ
εp
33Ap
tp

(39)

is the scalar blocked capacitance.
The global coupled FE-equations for a piezoceramic patch

discretized bynp elements are then established by assembly
of the element matrices and vectors to the global nodal order,
following a rearrangement of the full system matrices and
vectors such that the final format of the global FE-equations
can be written as

[

Kp − ω2Mp Kc

−KT
c Cεpp

][

up

ϕp

]

=

[

fp

Q

]

(40)

where the mechanical and electric equations are arranged
respectively as the first2Np and lastNpe coupled equations
of motions;Np is the number of element nodes andNpe =
2np the number of electrical dofs.

The equipotential condition is then applied to the poten-
tials of the piezoceramic elements forming a continuous
surface of an electrode. In the present case, only a single
piezoceramic patch is considered with one top and one
bottom electrodes, whereby

ϕ1
+ = ϕ2

+ = . . . = ϕ
np

+ , ϕ1
− = ϕ2

− = . . . = ϕ
np

− (41)

The equipotential conditions (41) can be imposed by defining
a boolean matrixP, that determines the relation between the
element potentials inϕp and the full surface potentials of the
top or bottom electrodes as

ϕp = Pϕ± =

[

1 0 · · · 1 0
0 1 · · · 0 1

]T [

ϕ+

ϕ−

]

(42)

The coupled FE-equations for the discretized piezoceramic
patch with consideration of the equipotential condition can
thereby be written as

[

Kp − ω2Mp KcP

−PTKT
c PTCεpp P

] [

up

ϕ±

]

=

[

fp

Q±

]

(43)

which consists of2Np + 2 equations of motion, where the
charge at the top and bottom electrodes are defined similarly
to (42) by

Q = PQ± , Q± =
[

Q+ Q−

]T
(44)

The introduction of the equipotential conditions results in
pure edge coupling between the electric and mechanical
domains. The coupling between the equation of motions
of the plate (17) and the patch (43) is obtained next by
transforming the electric forcing from the patch elements to
the equivalent moment loads for the plate elements.

Coupled piezo-plate structure
Piezoceramic patches are often placed symmetrically in pairs
on the host structure. This is beneficial as the neutral axis

of the composite and host structure hereby coincide and
higher electromechanical coupling can be achieved, when
the piezoceramic patches are poled and wired correctly.
In the later benchmark examples, only pairs of identical
and symmetrically positioned piezoceramic patches are
considered. Therefore, a single pair of piezoceramic patches,
bonded symmetrically to the upper and lower plate surfaces,
is considered in the following. It is assumed that the
discretization of the piezoceramic patches concides with the
discretization of the underlying part of the plate, whereby
the coupling between each (top and bottom) patch and plate
element can be described as inFigure 2. It is now considered
that the generated electric forcing from the piezoceramic
patches acts as external moment loads on the host plate
structure, whereby the former force vectorf in (17), can be
written as a sum

f = fe + f rp (45)

of the external mechanical loadsfe and the resulting
transformed electric forcing from the patchesf rp . It is seen
fromFigure 2that the in-plane forcesf tx, f ty andf bx, f by of the
top and bottom piezoceramic patch elements, respectively,
couple with the associated momentsMxx andMyy of the
plate, through the distanceh between the mid planes of the
plate and the patches. The moment loads to the plate from
the patches in-plane forces can thus be found as

Mxx = −hf ty + hf by

Myy = hf tx − hf bx

(46)

Hereby, the resulting electric forcing from the piezoceramic
patchesf rp on the plate can be written as

f rp = Wf tp − Wf bp (47)

where f tp and f bp are respectively the in-plane forces from
(43) of the top and bottom piezoceramic patches transformed
through (46) by the connectivity matrix

W =















0 0 0
W1 0 0

0
. . . 0

0 0 WNp

0 0 0















, Wi =





0 0
0 −h
h 0



 (48)

for the top patch, while forcing from the bottom patch is
determined by−W, as seen in (47). The nodal connectivity
arrayWi of patch nodei is placed at the rows and columns
of W that correspond to the dofs shared by the plate and
patches, respectively. Thus, there are as many nodal arrays
as there are nodes (Np) in the piezoceramic patch.

By use of (45), the equation of motion (17) for the plate
structure, augmented by the electric forcing from the pair of
piezoceramic patches, can then be written as

(K0 − ω2M0)u − f rp = fe (49)

The coupled FE-equations then follow from eliminating the
piezoelectric forcesf rp in (49) by (47) and (43), whereby they
can be written as






K − ω2M −WKcP WKcP

(WKcP)T PTCεpp P 0

−(WKcP)T 0 PTCεpp P













u

ϕt±

ϕb±






=







fe

Qt
±

Qb
±






(50)
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(
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(
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Figure 2. Moment equilibrium of plate and piezoceramic patch
elements, superscript e is omitted in the figure notations.

which consists of the full set of3N mechanical equations and
four electric equations for the pair of piezoceramic patches.
The mass and stiffness matrices of the piezoceramic patches
further provide additional terms in the system matrices,

K = K0 + 2WKpWT , M = M0 + 2WMpWT (51)

where the multiplication with the connectivity matrixW
ensures that the mass and stiffness effects of the patches are
transferred to the correct nodes of the plate structure.

It is now the aim to reduce the number of electric equations
by considering the pair of patches being either configured as
SP-PW or OP-SW and connected to a shunt circuit with an
impedanceZsh(ω), seeFigure 3.

SP-PW pair of patches For the SP-PW shunted pair of
piezoceramic patches, the following relations between the
electrodes potentials can be deduced fromFigure 3(a) as

ϕt− = ϕb+ , ϕt+ = ϕb− , V = ϕt+ − ϕt− (52)

These relations are now used to eliminate some potentials
and to introduce the voltageV over the electric shunt by
establishing the matrixPϕ as follows

[

ϕt±
ϕb±

]

= Pϕ





V
ϕt−
ϕb±



 , Pϕ =









1 1 0 0
0 1 0 0
0 1 0 0
1 1 0 0









(53)

Introducing (53) in (50), the coupling and capacitance
matrices are altered byPϕ, such that

PTϕ

[

PTCεpp P 0
0 PTCεpp P

]

Pϕ = 2C
εp
p

[

1
0

]

[

1 0
]

W
[

−KcP KcP
]

Pϕ = −Wkc2e31
[

1 0
]

(54)

Thus, the capacitance is determined by a scalar2C
εp
p for

the parallel wired pair of patches and the coupling by a
vectorWkc2e31 as the rows and arrays associated with the
remaining potentials contain zeroes only. It is noted that the
blocked capacitanceCεpp is given in (39) and the coupling

(a) (b)

x, yx, y x, y
z z

1, 2

1, 2

1, 2

1, 2
33

3 3

e31

e31

e31

−e31

ϕt+ϕt+

ϕt−ϕt−

ϕb+ϕb+

ϕb−ϕb−P

P

P

P

ZshZsh

Figure 3. Conducting plate structure with a pair of patches
wired to a shunt circuit according to poling configurations (a)
SP-PW and (b) OP-SW.

vectorkc is defined as

kc = KcP
[

1
−1

]

1

2e31
(55)

By defining a resulting capacitancēCεpp and plane stress-
reduced piezoelectric coupling coefficientē31 as

C̄εpp = 2Cεpp , ē31 = 2e31, (56)

the coupled FE-equations (50) can be reduced to

[

K − ω2M −Wkcē31
(Wkcē31)T C̄

εp
p

]

[

u

V

]

=

[

fe

Q

]

(57)

where the number of electric equations is reduced to one with
the voltage as variable, while the resulting charge

Q = Qt+ + Qb− (58)

is obtained after multiplication of the surface charges in (50)
with PTϕ .

The resulting charge Q can be linked to the voltageV
through the shunt impedanceZ(ω) via Ohm’s law

V = −iωZsh(ω)Q (59)

Therefore, the coupled FE-equations for the plate with a pair
of SP-PW shunted piezoceramic patches can be written as





K − ω2M −Wkcē31

(Wkcē31)T C̄
εp
p +

1

iωZsh(ω)





[

u

V

]

=

[

fe

0

]

(60)

where the inverse of the shunt impedance enters in the last
diagonal term of the system matrix after substitution of (59)
into (57) leading to the zero on the right hand side of (60).

OP-SW pair of patches For the OP-SW shunted pair of
patches inFigure 3(b), the relations between the potentials
can be defined as

ϕt− = ϕb+ , V = ϕt+ − ϕb− (61)

and furthermore, as the patches are considered identical and
symmetrically positioned on the host structure, the individual
differences in patches potentials are equal

ϕt+ − ϕt− = ϕb+ − ϕb− (62)
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These relations are now defined by the matrixPϕ as

[

ϕt±
ϕb±

]

= Pϕ





V
ϕt−
ϕb±



 , Pϕ =









1/2 1 0 0
0 1 0 0
0 1 0 0

−1/2 1 0 0









(63)

whereby the capacitance and coupling matrices are altered
by the substitution of (63) into (50),

PTϕ

[

PTCεpp P 0
0 PTCεpp P

]

Pϕ =
1

2
Cεpp

[

1
0

]

[

1 0
]

W
[

−KcP −KcP
]

Pϕ = −Wkce31
[

1 0
]

(64)

As for the SP-PW pair of patches, the number of electric
equations can be reduced to one with the voltage as variable,
whereby (50) can be written as (60), now with the resulting
capacitance and plane stress-reduced piezoelectric coupling
coefficient defined for the OP-SW pair of patches as

C̄εpp =
1

2
Cεpp , ē31 = e31 (65)

It is seen that the resulting capacitances for the SP-PW
and OP-SW pairs of piezoceramic patches correspond to
the resulting capacitances of two capacitors connected,
respectively, in parallel and series, seeChevallier et al.
(2009). For both configurations of the pairs of piezoceramic
patches the vector

w = Wkc (66)

defines a resulting scalar measure of displacementup of the
pair of patches as

up = wTu (67)

used in the following.

Shunt circuit
In the coupled FE-equations (60), the voltage V is
governed by the relation between the resulting blocked
capacitanceC̄εpp and plane stress-reduced piezoelectric
coupling coefficientē31 and the shunt circuit impedance
Zsh(ω). The former can be obtained from the material
properties, electrode configuration and wiring of the pair
of piezoceramic patches, while the shunt circuit impedance
depends on the configuration and tuning of the connected
shunt electronic components.

The solution to (60) is bounded by two limits associated
with SC and OC patch electrodes. The corresponding SC
and OC eigenvalue problems can be deduced from (57), with
respectivelyV = 0 and Q= 0. The SC eigenvalue problem
hereby follows as

[

K − ω2
jM

]

uj = 0 (68)

with SC frequenciesωj and mode shapesuj , while the
additional sensor equation provides the modal charge

Qj = −ē31wTuj (69)

In the opposite OC limit, the stiffness is augmented by the
voltage stiffening contribution which, for Q= 0, can be
determined as

V =
ē31

C̄
εp
p

wTu (70)

(a) (b) (c)

C
σp

p Ip

III

R
R

L

LV

Figure 4. Electric model for (a) piezoceramic patch, with (b)
parallel and (c) series RL shunts, where I is the electric current
and C

σp
p is the constant stress (free) capacitance.

Inserting this relation in the former mechanical equationsof
(57), the OC eigenvalue problem is determined as

[(

K +
ē231
C̄
εp
p

wwT
)

− ω̂2
jM

]

ûj = 0 (71)

Thus, the OC circular frequencieŝωj ≥ ωj because of the
piezoelectric effect, where the equality might occur due to
charge cancelation effects.

The relative difference between the squared OC and SC
frequencies provides the so-called squared effective EMCC

κ2e =
ω̂2
j − ω2

j

ω2
j

(72)

which determines the authority of the pair of patches on
mode j and consequently the associated attainable modal
damping from the supplemental shunt. Therefore, the latter
increases with the separation of the two limiting natural
frequenciesωj andω̂j.

For RL shunts, the inductanceL is calibrated in order
for the circuit frequency to work in resonance with the
vibrating structure, while the resistanceR is tuned in order
to maximize the dissipation of electrical energy. TheRL-
network can be established by either placing the inductance
and resistance in parallel or in series, as shown inFigure 4.
It is noted that these networks are idealized in the sense
that any resistance associated with either synthetic or purely
passive inductors is neglected, which may have an effect on
the tuning of the shunt resistance. Further, it can be seen in
Figure 4that the capacitance is the stress free capacitance
C
σp
p , which can be found by the relation to the blocked

capacitance for the transverse response mode as

Cεpp = Cσp

p (1− k231) , k231 = 2
d31e31

ǫ
σp

33

(73)

wherek31 is the piezoceramic material plane stress-reduced
electromechanical coupling factor.

For the parallel shunt configuration inFigure 4(b), the
impedanceZsh(ω) is conveniently expressed in terms of
reciprocal values,

1

Zsh(ω)
=

1

R
+

1

iωL
(74)

Substitution of the previous impedance function into (60)
gives the parallel coupled FE-equations





K − ω2M −w ē31

ē31wT C̄
εp
p +

1

iωR
− 1

ω2L





[

u

V

]

=

[

fe

0

]

(75)
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with the inverse impedance terms appearing directly in the
system matrix.

For the series network inFigure 4(c), the impedance
function is given as

Zsh(ω) = R+ iωL (76)

whereby the series coupled FE matrix equation takes the
form





K − ω2M −wē31

ē31wT C̄
εp
p +

1

iωR− ω2L





[

u

V

]

=

[

fe

0

]

(77)

For both shunt circuit configurations, the mechanical
equivalence is presented in e.g.Høgsberg and Krenk(2017),
where the inerter (inductance) and the damper (resistance)
are connected in series for the parallelRL shunt, while they
are placed in parallel for the series shunt. However, in the
present work the electric notation is kept, whereby existing
shunt calibration formulas can be directly applied based on
the derived electric analogies.

Shunt Tuning Based on Balanced Modal
Calibration

In this second section, the coupled FE-equations (75) and
(77) for the parallel and series shunt circuits are analyzed in
order to determine the particular shunt tuning that maximizes
the damping of a targeted resonant vibration modej = r.
In order to apply analytical calibration methods, the full
complex eigenvalue problem is reduced to a representative
system of only two coupled equations, governing the
structural response of target moder and the associated
electric loading from the pair of piezoceramic patches.

The mechanical equations in (75) and (77) can
be decoupled in terms of the mode shapesuj from
the SC eigenvalue problem in (68). For this purpose,
the displacement vectoru is represented by a linear
combination of the normalized mode shape vectors
uj/(wTuj), whereafter pre-multiplication of (75) and (77),
with the transpose of the normalized mode shape vector gives
the scalar equation of motion

(kj − ω2mj)uj − ē31V = fj (78)

in which the normalised modal mass, stiffness and loads are
defined as

mj =
uTj Muj

(wTuj)(uTj w)
, kj =

uTj Kuj
(wTuj)(uTj w)

, fj =
uTj fe
wTuj

(79)
The resulting displacementup (67) of the pair of patches
is, because of the normalisation, given by the sum of the
modal displacementsuj obtained by solving the3N scalar
equations (78).

The aim is to derive the optimal shunt tuning for a specific
resonant vibration modej = r, which can be approximated
by the single dynamic termj = r and two supplemental
terms, accounting for the flexibility and inertia effects
from the non-resonant modesj 6= r (Krenk and Høgsberg,
2016). This modal correction approach is based on a
two-term representation of the response contribution from

non-resonant modes and enables the derivation of explicit
expressions for the optimal shunt tuning. This is briefly
reviewed in the following and expressed in terms of
representative electro-mechanical components.

The resulting plane stress-reduced piezoelectric coupling
coefficient ē31 translates displacement in the mechanical
domain to charge Q in the electric domain by (69). This is
now used to eliminateuj in the modal equations of motion
(78), which by considering free vibrations can be written as

−
(

kj
ē231

− ω2mj

ē231

)

Qj = V (80)

The sum of the modal charge components Qj determines the
magnitude of the resulting charge Q.

For resonant damping, the charge Q is specifically
determined at the resonant frequency of moder, taking
into account the influence from the other residual modes
by including the flexibility and inertia correction terms as
presented inKrenk and Høgsberg(2016) and transferred to
the equivalent electric corrections by multiplication with ē231,

C′
r = ē231wTK−1

r KK−1
r w − ē231

kr
ω2
r

L′
r

= ē231wTK−1
r KK−1

r w − ē231wTK−1
r w

(81)

The modified stiffness and mass matrices correspond to
removing the mass contribution from the resonant mode and
making a frequency shift of the stiffness matrix. They are
given as,Krenk and Høgsberg(2016),

Kr = K − ω2
rMr , Mr = M − (Mur)(Mur)T

uTr Mur
(82)

with Kr = K for the case of a pure quasi-static residual mode
correction. The flexibility and inertia corrections for thenon-
resonant modes, due to the presence of the electric shunt,
can thus be represented by the modal capacitanceC′

r and
inductanceL′

r in (81), respectively. Hereby, the charge Q is
truncated consistently for moder as

Q ≃ Qr −
(

C′

r −
1

ω2L′
r

)

V (83)

where the modal charge for resonant moder is determined
from (80) by the dynamic equation

Qr = − ω2
r

ω2
r − ω2

ē231
kr
V (84)

Substitution of the modal electric representation (83) into the
last equation of (60) gives the homogeneous equation
(

ω2
r

ω2
r − ω2

ē231
kr

+ Cr −
1

ω2L′
r

+
1

iωZsh(ω)

)

V = 0 (85)

when the modal chargeQr has been eliminated by (84),
while the modal capacitance

Cr = C̄εpp + C′

r (86)

is conveniently represented as the sum of the resulting
blocked capacitancēCεpp and modal capacitanceC′

r in (81a).
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Non-trivial solutions require the expression inside the
parenthesis in (85) to vanish, constituting the characteristic
equation of the system. In common calibration methods,
based on single mode representations of the mechanical
structure, division with the blocked capacitancēCεpp
introduces the so-called squared modal EMCC

κ20 =
ē231
C̄
εp
p kr

(87)

see for instanceThomas et al.(2012). In the present case,
the introduced residual mode corrections in (81) modify the
effective capacitance of the pair of piezoceramic patches
by a constant flexibility and a frequency dependent inertia
contribution from the non-resonant modes. This means
that the effective capacitance varies with the frequency as
discussed inBerardengo et al.(2016). At resonance in mode
r, the effective capacitance can thus be determined as

CL = Cr −
1

ω2
rL

′
r

(88)

whereby the residual mode corrected squared modal EMCC
can be defined as

κ2L =
ē231
CLkr

(89)

As demonstrated in the later benchmark examples, this
residual mode corrected modal EMCC approximately equals
the effective EMCC in (72), with a minor deviation due to
the approximation of the non-resonant mode representation
in Krenk and Høgsberg(2016). However, for the derivation
of the shunt tuning formulas, it is convenient to introduce the
frequency independent squared modal EMCC

κ2r =
ē231
Crkr

(90)

which is only modified by the flexibility correction for the
non-resonant modes, by the modified capacitance in (86).
Hereby, the characteristic equation for (85) can be written
as

ω2
r

ω2
r − ω2

κ2r +
1

iωZr(ω)Cr
+ 1 = 0 (91)

in which the modal shunt circuit impedance

1

Zr(ω)
=

1

Zsh(ω)
+

1

iωL′
r

(92)

is explicitly modified by the modal inductanceL′
r in (81).

Parallel shunt
For the parallel shunt circuit, the impedance functionZsh(ω)
in (74) is substituted into (92), whereby the modal impedance
function can be written as

1

Zr(ω)
=

1

Rr
+

1

iωLr
(93)

introducing the modal inductance and resistance as

1

Lr
=

1

L
+

1

L′
r

, Rr = R (94)

Any preferred calibration procedure can now be used to
determine the modal inductanceLr and resistanceRr. In the

Table 1. Balanced calibration procedure for parallel and series
shunt circuits, without L0, R0, with flexibility Lr, Rr and with
flexibility-inertia L, R residual mode corrections.

Parameter Parallel Series

L0

1

C̄
εp
p ω2

r

1

C̄
εp
p (1 + κ20)

2ω2
r

R0

1

C̄
εp
p ωr

√

1

2κ20

1

C̄
εp
p ωr

√

2κ20
(1 + κ20)

3

Lr
1

Crω2
r

1

Cr(1 + κ2r)
2ω2

r

Rr
1

Crωr

√

1

2κ2r

1

Crωr

√

2κ2r
(1 + κ2r)

3

L
1

CLω2
r

1

CL(1 + κ2L)
2ω2

r

R Rr Rr(L/Lr)
2

present case, the modal shunt components are determined
by the balanced calibration method (Høgsberg and Krenk,
2017), based on the equal modal damping calibration for the
tuned mass damper (Krenk , 2005). The electric components
of the modal shunt circuit are therefore determined according
to Høgsberg and Krenk(2012) by the two calibration
formulas

LrCrω
2
r = 1 , RrCrωr =

√

1

2κ2r
(95)

whereωr is the natural frequency of the targeted mode with
SC electrodes,Cr is the modal capacitance in (86), whileκr
has been defined in (90).

The actual shunt inductanceL follows from (94) and is
conveniently written as in (95)

LCLω
2
r = 1 (96)

with the effective modal capacitance defined in (88). Hereby,
the resistance in (95) and the inductance in (96) are
determined by expressions similar to those for an idealized
single-mode structure (Høgsberg and Krenk, 2012), but
with modified capacitancesCr andCL, respectively.

The calibration formulas forLr, Rr with only flexibility
correction and forL, R with the full flexibility-inertia
residual mode correction are listed in the second column of
Table 1. Furthermore, the table provides the commonly used
single-mode calibration (L0, R0) determined by the squared
modal EMCC in (87) and resulting blocked capacitanceC̄εpp
of the pair of piezoceramic patches.

Series shunt

For the series shunt circuit, the modal impedanceZr(ω) is
obtained by substitution of (76) into (92)

Zr(ω) =
iωL′

r(R+ iωL)

iωL′
r + (R+ iωL)

(97)
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As for the parallel shunt, this modal function is approximated
by the format

Zr(ω) = Rr + iωLr (98)

similar to the actual shunt in (76). The modal impedance in
(97) is separated into its real and imaginary parts, whereby
the frequency-independentRr and Lr are obtained by
omitting terms containingR2. The electrical components of
the modal shunt impedance are then obtained as

1

Lr
=

1

L
+

1

L′
r

, Rr =
R

(1 + L/L′
r)

2
(99)

where the inductanceLr is defined as for the parallel
shunt in (94), while the modal resistanceRr is additionally
affected by the modal inductance correctionL′

r. Again,
the balanced calibration inHøgsberg and Krenk(2012) is
applied, which in the present notation gives the following
calibration formulas for the modal components of the series
shunt,

LrCrω
2
r =

1

(1 + κ2r)
2

, RrCrωr =

√

2κ2r
(1 + κ2r)

3
(100)

The actual shunt tuning then follows by considering (88),
(89), (99) and (100)

LCLω
2
r =

1

(1 + κ2L)
2 + κ2Lξ

, R = Rr

(

L

Lr

)2

(101)

which is seen to depend on the residual mode corrected
squared modal EMCC, while the parameterξ, in the
inductance tuning formula, represents the difference between
κ2r andκ2L,

ξ = κ2r − κ2L = κ2r
1

1− ω2
rL

′
rCr

(102)

The parameterξ depends on the difference between unity and
the ratio of the modal capacitanceCr to the inertia correction
1/(ω2

rL
′
r), and thereforeξ → 0 when the inertia correction

becomes small relative to the modal capacitance. Asξ in
(101) is furthermore multiplied byκ2L, the term is negligible
and can be omitted in the tuning of the series connected
inductance. The optimal calibration formulas both with and
without the flexibility and flexibility-inertia residual mode
corrections are summarized in last column ofTable 1.

Shunt Tuning Based on the Effective EMCC

The squared effective EMCCκ2e defined in (72) is commonly
used as the governing parameter in the calibration of resonant
shunt circuits. It is a convenient parameter, as it can be
determined experimentally by simple dynamic tests in the SC
and OC limits and thereby takes actual device imperfections
into account. However, the squared effective EMCC is
typically represented by the squared modal EMCCκ20 in
(87), evaluated for a single-mode of the structure without
any residual mode correction. As demonstrated in the later
analysis of two benchmark examples, the approximation
κ20 ≃ κ2e becomes rather inaccurate when the contribution
from non-resonant modes is substantial. In particular, the
flexibility contribution from the residual modes can be shown

to have a significant effect on the evaluated squared modal
EMCC κ2r in (90), as also discussed byBerardengo et al.
(2016). An even more accurate evaluation of the squared
effective EMCC is however obtained by the squared modal
EMCC κ2L in (89), where the modified capacitanceCL in
(88) contains both the flexibility correction byCr in (86) and
the inertia correction directly byL′

r. The only approximation
associated with this coupling coefficient is the truncation
introduced in the derivation of the residual mode components
in (81), see details inKrenk and Høgsberg(2016). Thus, it is
investigated in the next section by two benchmark examples
how accurately the representation of the squared effective
EMCC by

κ2L ≃ κ2e (103)

captures the influence from residual vibration modes.
Assuming κ2L = κ2e, an alternative calibration procedure
based on the SC and OC frequencies of the structure can then
be established, as demonstrated in the following.

The characteristic equation resulting from (85) is now
expressed in terms of the squared effective EMCCκ2e and
the modified capacitanceCL via elimination of ē231/kr by
(89) and (103), and ofL′

r by (88). Hereby, the characteristic
equation can be written as

κ2eω
2
rω

2

ω2
r − ω2

+ ω2
r −

Cr
CL

(ω2
r − ω2) +

ω2

iωZsh(ω)CL
= 0 (104)

The optimal shunt inductance is now based on the squared
effective EMCCκ2e, while the resistance is subsequently
derived from the squared modal EMCCκ2r. Thus, the present
calibration procedure depends on two effective coupling
coefficients:κ2e andκ2r.

Parallel shunt
For the parallel shunt circuit, the inductanceL is determined
by (96). When the modified capacitanceCL is eliminated
in terms of the squared effective EMCCκ2e by (89) and
(103), with the normalised modal stiffness expressed askr =
mrω

2
r , the shunt inductance can be represented as

L = κ2e
mr

ē231
. (105)

In this expression, the normalised modal massmr may
often be estimated quite accurately from the vibration form
of the structure, while the squared effective EMCCκ2e
is determined by (72). The resulting plane stress-reduced
piezoelectric coupling coefficient̄e231 is further specified for
the particular piezoceramic patches through (28) and wiring
by (56) and (65) for respectively SP-PW and OP-SW pair of
patches.

Once the inductanceL has been determined, a pure
L-shunt is constructed, as indicated inFigure 4(b) with
R = 0. Hereby, two new resonant frequenciesω2

− andω2
+

emerge around the original SC frequencyω2
r . Expressions

for these two frequencies can be determined by inserting
the expression for the inductance (96) into the characteristic
equation (104) and considering the expressions for the
residual mode corrected modal EMCCs (89) and (90),
whereby the following quadratic equation inω2 is obtained,

ω4 − (2 + κ2r)ω
2
rω

2 + ω4
r = 0. (106)
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Table 2. Tuning procedure based on the effective EMCC for
parallel and series shunt circuits.

Parameter Parallel Series

L κ2e
mr

ē231
κ2e

mr

(1 + κ2e)
2ē231

R κ2r
mrωr
ē231

√

1

2κ2r
κ2r
mrωr
ē231

√

2κ2r
(1 + κ2r)

3

Initial step:

κ2e =
ω̂2 − ω2

ω

2

, L = κ2e
mr

ē231
Determine:

ω+, ω− , κ2r =
(ω+ − ω−)

2

ω+ω−

The product and sum of the solutionsω2
+ andω2

− can be
written as

ω2
+ω

2
− = ω4

r , ω2
+ + ω2

− = (2 + κ2r)ω
2
r (107)

and elimination ofω2
r between these relations gives the

modal EMCCκ2r as

κ2r =
(ω+ − ω−)

2

ω+ω−

(108)

The shunt resistance then follows from (95) as

R = κ2r
mrωr
ē231

√

1

2κ2r
(109)

whereCr has been eliminated by (90) andkr = ω2
rmr has

again been used. As for the inductanceL in (105), the
resistanceR is determined by the normalised modal mass
and the resulting plane stress-reduced piezoelectric coupling
coefficient ē231, while κ2r should be used forR instead of
κ2e. The tuning formulas for the optimal parallel connected
inductance and resistance based on the effective EMCC are
summarised in the second column ofTable 2.

Series shunt
For the series shunt circuit, the same approach is used. The
inductanceL is calibrated by the expression in (101), where
the assumptionκ2Lξ ≪ 1 yields the simplified expression

L = κ2e
mr

(1 + κ2e)
2ē231

, (110)

which only contains the squared effective EMCCκ2e
from (103), the normalised modal massmr and the
squared resulting plane stress-reduced piezoelectric coupling
coefficient ē231, while CL is eliminated by (89), (103)
and kr = ω2

rmr. Again, the pureL-shunt withR = 0 in
Figure 4(b) is constructed and the two natural frequencies
ω+ andω− are determined numerically or experimentally.
The shunt resistance is given by the expression in (101b),
in which the modal resistanceRr from (100) is scaled by the
apparent inductance ratioL/Lr, where the modal inductance
in (100) alternatively can be written as

Lr = κ2r
mr

(1 + κ2r)
2ē231

(111)

when introducing (89), (103) and kr = ω2
rmr. Thus, the

shunt resistance can be obtained by the expression

R = κ2r
mrωr
ē231

√

2κ2r
(1 + κ2r)

3

(

L

Lr

)2

(112)

which besides the normalised modal massmr, the resulting
plane stress-reduced piezoelectric coupling coefficientē231
and the squared modal EMCCκ2r, also depends on the
squared effective EMCCκ2e through the ratioL/Lr.
However, while the calibration of the inductance must
be calibrated rather precisely because it governs the
shunt frequency, the corresponding shunt resistance may
subsequently be approximated by assumingLr/L ≃ 1, as
the shunt performance is less sensitive to deviations in the
resistance. The approximated tuning formulas for the series
connected resistance and the corresponding expression for
the inductance are listed in the last column ofTable 2.

For both the parallel and series shunt circuits, accurate
calibration of the inductance and resistance can be achieved
from the effective EMCC only, when the inertia correction
is significantly smaller than the flexibility correction
1/(ω2

rL
′
r) << C′

r, wherebyκr ≃ κe. This is often the case
for the lower and well separated vibration modes, while
the influence of the inertia correction may increase for
the higher and closely spaced modes. It is beneficial to
base the shunt tuning on the effective EMCC only, as one
avoids the evaluation of an additional eigenvalue problem or
experiments with the pureL-shunt, which can be difficult
to produce due the inherent resistance in both synthetic and
purely passive inductors.

Error estimate

The error arising from the use of either a single-mode
representationκ20 or the method with pure quasi-static
correctionsκ2r for the shunt circuit calibration can for the
parallel shunt be represented by the ratioκ2/κ2e, which is
unity when the residual mode correction is insignificant.
For the series shunt, this ratio provides a good estimate of
the error, although it is not entirely unity because of the
truncations introduced for this shunt. Thus, the necessityof
including both the flexibility and the inertia contributions
from the non-resonant modes can be evaluated by comparing
the different squared modal EMCCs:κ20, κ2r and κ2L with
the squared effective EMCCκ2e, as demonstrated in the
following benchmark examples.

In the shunt tuning formulas inTable 2, the effect of
having, respectively, an SP-PW or an OP-SW configured
pair of piezoceramic patches is directly seen to be
governed by the corresponding resulting plane stress-
reduced piezoelectric coupling coefficientē231. The SC and
OC frequencies and thereby the squared effective EMCC
will be the same for the structure with respectively a pair of
patches in SP-PW and OP-SW configurations. Consequently,
the squared modal EMCCκ2r will as well be identical for the
two configurations. Finally, since the normalised modal mass
mr is also independent of the poling and wiring of the pair
of piezoceramic pacthes, it is found that both the optimal
inductance and resistance for the OP-SW pair of patches
are four times as large as the corresponding values for the
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SP-PW patch configuration. This is because the resulting
plane stress-reduced piezoelectric coupling coefficient for
the SP-PW and OP-SW pairs of patches are respectively
2e31 ande31, see (56) and (65). Hence, as̄e31 is squared in
the denominator of the tuning formulas inTable 2, a factor
four occurs between the shunt tunings of the two respective
pair of patches configurations. InThomas et al.(2009) and
Lossouarn et al.(2017), the same cantilever beam with a
single pair of respectively OP-SW and SP-PW piezoceramic
patches is analyzed. Considering the corresponding optimal
shunt tunings based on experiments, it is approximately
found that the OP-SW configured patches cause four times
larger optimal inductance and resistance values compared to
the SP-PW configuration.

Benchmark Examples

In this section, the balanced calibration procedure based on
the modal and effective EMCC, respectively, are analyzed.
It is noted that only one shunt tuning will be provided in
the examples as the two methods give almost the same
tuning values. The small deviations are only due to the
approximation (103).

The implemented FE-model enables comparison with
shunt tuning methods from benchmark examples in the
literature concerning optimalRL-shunt tuning. The two
examples of this section consider a cantilever beam, analyzed
by both Thomas et al. (2009, 2012) and Ducarne et al.
(2012), and a plate analyzed byGardonio and Casagrande
(2017). In both cases the structure is equipped with a
single pair of piezoceramic patches, configured either as OP-
SW or SP-PW. The present examples apply the particular
configurations from the benchmark cases, although the SP-
PW configuration is seemingly adequate, as it leads to four
times smaller inductances and resistances than for OP-SW.

As experimental results are available for the cantilever
beam example, it can be used to verify the established
numerical model as well as assess the effect of using beam
instead of plate elements for the modelling of plate-like beam
structures. For the subsequent plate benchmark presented
by Gardonio and Casagrande(2017), the influence of
the non-resonant modes are investigated by a thorough
parametric study. Therefore, this example constitutes a good
opportunity to compare the benchmark results with the
present calibration procedures, in which the presence of the
non-resonant modes are accounted for explicitly.

Cantilever beam
The first example concerns the cantilever beam with a
single pair of OP-SW piezoceramic patches, for which the
SC and OC frequencies and the associated modal EMCC
are determined both numerically and experimentally by
Thomas et al.(2009). The optimal tuning of the electronic
components for bothR- and RL-shunts is provided in
Thomas et al. (2012), while the optimum design and
placement of the piezoceramic patches are analyzed by
Ducarne et al.(2012). The geometry of the cantilever beam
can be seen inFigure 5. The single pair of ideally bonded
OP piezoceramic patches (red color) are placed in series
with a shunt circuit (blue color) with impedanceZsh(ω). The
beam is conductive and a conductive adhesive is used for the

b
l

t0

lp

tp

Zsh(ω)

Figure 5. Geometry of cantilever beam, with one pair of OP,
surface bonded and SW piezoceramic patches.

Table 3. Dimensions and material properties for cantilever
beam and piezoceramic patches.

Beam Piezo
Length (mm) l 170 lp 25
Width (mm) b 20 b 20
Thickness (mm) t0 2 tp 0.5

Density (kg/m3) ρ 2800 ρp 8500
Young’s Modulus (GPa) E 72 Ep 66.7
Poisson’s ratio (-) ν 0 νp 0

Piezoelectric coefficient (10−12m/V) d31 -210
Blocked dielectric coefficient (F/m) ǫ

εp
33 2068ε0

ε0 = 8.854× 10−12F/m, seeIEEE inc. (1988)

bonding of the piezoceramic patches, whereby the two inner
electrodes of the patches are connected. The pair of patchesis
modelled as described in the first section, where the resulting
capacitance and plane stress-reduced piezoelectric coupling
coefficient can be determined by (65).

The dimensions and material properties of the beam and
the piezoceramic patches are given inTable 3. A vanishing
Poisson’s ratio is assumed for both patch and beam, whereby
the present results can be compared to the numerical results
for the beam model inThomas et al.(2009). In the original
experimental design, an additional tip massmex = 4.2g is
added for excitation purpose. This mass is therefore also
added to the diagonal element of the mass matrix for the
transverse dof of the center node at the free end of the beam.
Finally, the pair of piezoceramic patches is placed with a
horizontal offset ofxp = 0.5mm relative to the fixed support.

The cantilever beam is discretized by41× 2 plate ele-
ments, while the piezoelectric patches are each represented
by 5× 2 patch elements. The corresponding beam model
(Høgsberg and Krenk, 2015) with 41 Bernoulli beam ele-
ments and 5 (1D) patch elements is used for comparison. It
corresponds to the model inThomas et al.(2009) with 41
beam elements, with 5 elements containing the electrome-
chanical coupling to the pair of patches and it reproduces the
first two vibration modes with sufficient accuracy.

In order to verify the current electromechanical piezo-
plate model, the first two SC and OC frequencies are
determined. They are summarized inTable 4, which also
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Table 4. SC and OC frequencies, modal EMCC and shunt
circuit calibration for modes 1 and 2 of a cantilever beam, using
a beam and a plate model.

Model
f [Hz] f̂ [Hz] κ L[H] R[kΩ]

Shunt

M
o

d
e

1

Plate
Parallel∗

48.93 49.36 0.13
991.0 1619

Series∗ 957.0 55.85

Parallel0
48.93 49.36 0.14

1156 1749
Series0 1110 70.00
Beam
Series∗ 48.93 49.39 0.14 1021 61.69
Series1 48.96 49.42 0.14 1131 61.56
Experiment
Series2 51.64 52.17 0.14 10203 58.63

M
o

d
e

2

Plate
Parallel∗

337.0 340.3 0.14
21.26 226.2

Series∗ 20.45 8.702

Parallel0
337.0 340.3 0.15

24.36 242.5
Series0 23.29 10.61
Beam
Series∗ 337.1 340.7 0.15 21.84 9.63
Series1 337.1 340.7 0.15 23.81 9.37
Experiment
Series2 337.0 340.2 0.14 23.93 8.653

∗ Present model with residual mode correction (κL)
0 Present model without residual mode correction (κ0)
1 Tuning based on theory inThomas et al.(2012) (κ0)
2 Experimental results fromThomas et al.(2012) (κe)
3 Final values not measuredThomas et al.(2012)

contains the experimental and numerical frequencies for the
first bending modes reported inThomas et al.(2009).

The optimum series and parallel shunt tuning of the
pair of piezoceramic patches, based on the present piezo-
plate model, is now determined with and without residual
mode contribution. The results are shown in the first
rows of Table 4 for modes 1 and 2. The table also
contains the optimal series shunt tuning with residual mode
correction for the simple beam model. For comparison
Table 4 also presents the optimal experimental shunt
tuning (Thomas et al., 2012) (superscript 2), the theoretical
tuning based on the tuning formulas without correction
(Thomas et al., 2012)(superscript 1) and numerical beam
model described inThomas et al.(2009). Finally, the modal
EMCCs κ, in Table 4, are calculated respectively with
(89) and without (87) residual mode correction, whileκ’s
provided for the experiment are the effective EMCC (72).

The reported numerical results based on the tuning
formulas in Thomas et al. (2012) are obtained by the
numerical beam model described inThomas et al.(2009).
They are seen to be in good agreement with the frequencies
determined by the beam model inHøgsberg and Krenk
(2015). The reason for the slightly lower frequencies
is mainly due to the omission of the patches bending
contribution in the present model. Good agreement is also
observed for the determined SC and OC frequencies for the
plate model, where the small decrease of the OC frequency
occurs because of plate effects at the supports, which is not

Table 5. The effective EMCC (κe) and the ratio between this
squared and the squared modal EMCC, with (κ2

L) and without
(κ2

0) residual mode correction.

Mode κe κ20/κ
2
e (κ2L/κ

2
e)

1 κ2L/κ
2
e

1 0.1330 1.1661 1.0694 1.0000
2 0.1405 1.1457 1.0682 1.0001

1 κL from beam model.

captured by the simpler beam model. The experimentally
obtained SC and OC frequencies (Thomas et al., 2012)
are for the first mode slightly larger, while the mode2
frequencies are in very good agreement with the numerical
results. Significant differences are found between the modal
EMCCs κL and κ0 with- and without residual mode
correction, respectively. Furthermore, the corrected modal
EMCC κL from the beam model is seen to deviate from
the corresponding EMCC determined by the plate model,
demonstrating that the influence from the residual modes
depends on the model accuracy. The effective EMCC based
on the experimental data is expected to correspond well
with the modal EMCCκL. However, it is seen to be larger
for the first vibration mode, due to differences between the
associated SC and OC frequencies. For the second vibration
mode, the SC and OC frequencies are in better agreement,
whereby the effective EMCC determined by (72) is more
accurately represented byκL.

Comparing the values of the shunt resistances and
inductances inTable 4 shows that the spill-over from the
non-resonant residual vibration modes has a significant effect
on the calibration. For both vibration modes, the relative
deviation is approximately 15% on the shunt inductance
between the calibration with and without residual mode
correction for both series and parallel shunts. Because of
this deviation in inductance, substantial changes in the
corresponding resistance are also observed. It is noted that
the final electronic components based on experiments are not
measured, but merely stated inThomas et al.(2012) to be
close to the theoretical values. This indicates that a precise
shunt tuning has not been obtained prior to the experiments.

The effective EMCC’s for the first two beam vibration
modes are provided in the first column ofTable 5. Further,
the ratio between the squared modal EMCCs and the
squared effective EMCCs are compared in the second to
last column ofTable 5. It is found that the ratio between
κ20 (without correction) and the squared effective EMCCκ2e
exactly accounts for the observed error in the inductance
for the parallel shunt, while it accounts approximately for
the error for the series shunt, seeTable 5. It follows from
the last two columns ofTable 5 that the residual mode
corrected squared modal EMCCκ2L almost exactly recovers
the squared effective EMCCκ2e. Whenκ2L is determined by
the beam model, the deviation is around 7%, while it exactly
matchesκ2e for the plate model. This shows that the accuracy
of the numerical model also influences the residual mode
correction and thus the subsequent shunt tuning.

The effect of including the residual mode contributions in
the shunt tuning is now illustrated by frequency response
plots in Figure 6, for the cantilever beam exposed to a
harmonic tip load with excitation frequencies around the first
and second resonant frequencies. The response is determined
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Figure 6. Frequency response around modes 1 and 2 of a
cantilever beam exposed to a harmonic tip load; (a,c) tip
displacement, (b,d) voltage response. Blue lines indicate
parallel and red lines series shunts, tuned respectively with
(solid) and without (dashed) residual mode correction.

by solving the full system of equations for the parallel (75)
and series (77) shunts with optimal components inTable 4.

It can be seen fromFigure 6 that the calibrations
without residual mode correction (dashed lines) cause
significantly larger maximum amplification of both the
tip displacement and voltage, compared to the tuning
including the contribution from the non-resonant modes
(solid lines). In particular, for the voltage amplification,
an almost flat plateau around both resonant modes is seen
for the calibration with the residual mode correction. The
small deviations from a completely flat plateau are caused
by the inclusion of structural damping in the model and
from the fact that we do not have an ideal modal load,
which is not accounted for by the calibration method. The
structural damping is represented by Rayleigh damping with
the damping ratiosζ1 = 0.34% andζ2 = 0.28% for the first
two vibration modes (Thomas et al., 2009). The damping
introduced by the shunted piezoceramic patches can be
assessed either directly by the obtained damping ratios or
from the reduction in vibration amplitude, as summarized in
Table 6. The damping ratios are determined by solving the
full complex eigenvalue problems for the parallel (75) and
series (77) shunt circuits. The table contains the two damping
ratios for each mode, associated with the two resonant
frequencies emerging around the original resonant frequency
when introducing the resonant shunt circuit. It is noted that
the two damping ratios inTable 6 are ordered according
to the magnitude of their associated natural frequencies.
The amplitude reduction is obtained as the logarithm to the
ratio of the maximum amplification of the structure with
SC patch electrodes to that with optimally shunted pair of

Table 6. Damping ratios and amplitude reductions of cantilever
beam with optimally calibrated parallel and series shunted
piezoceramic patches, for resonant modes 1 and 2.

Model Corrected Non-corrected
Shunt ζd[%] AdB ζ0d [%] A0

dB

M
o

d
e

1

Plate
Parallel 4.88 4.88 22.86 7.39 2.36 17.86
Series 4.91 4.85 22.708.90 2.40 17.80
Beam
Parallel 6.28 3.48 20.98 7.39 2.36 17.86
Series 6.83 3.57 21.048.90 2.40 17.80

M
o

d
e

2

Plate
Parallel 5.10 5.10 24.26 7.49 2.70 20.28
Series 5.13 5.07 24.508.85 2.76 20.23
Beam
Parallel 6.55 3.66 22.33 7.49 2.70 20.28
Series 7.14 3.77 22.388.85 2.76 20.23

0 Without residual mode correction

piezoceramic patches

AdB = 20 log(ASC/Aopt) (113)

It can be seen from the attained damping ratios and
amplitude reductions inTable 6, that the inclusion of the non-
resonant modes significantly improves the shunt calibration.
The amplitude reduction is found to decrease about 35%
from the best to the worst shunt calibration. It can also be
seen that equal modal damping of the emerging resonant
modes is obtained exactly for the parallel shunt with residual
mode correction, while almost insignificant deviations occur
for the corresponding series shunt, due to approximations
made to simplify the tuning formulas. These results illustrate
the potential improvement in common calibration methods,
when taking into account the influence from non-resonant
vibration modes. However, small discrepancies occur when
the simplified beam model is used to obtain the desired
level of damping or vibration mitigation. This illustrates
the importance of having a sufficiently accurate numerical
model for the dynamic structure, in order to obtain a
precise shunt tuning. For the beam based shunt tuning
without residual mode contribution, the damping ratios and
amplitude reductions are identical to those obtained from the
plate model. This is because the more substantial residual
mode correction in the plate model is now omitted, while the
corresponding vibration modes are almost identical.

Simply supported plate
The second example concerns a simply supported plate
analyzed byGardonio and Casagrande(2017), with a single
SP-PW shunted pair of piezoceramic patches placed with a
small offset of(1/28lx,−1/28ly) to the plate center. The
plate geometry and the geometry and position of the pair
of piezoceramic patches can be seen inFigure 7, while the
dimensions and material properties are provided inTable 7.
It is noted that the plate is conductive and that a conductive
adhesive is used for the bonding of the piezoceramic patches,
whereby the inner electrodes are connected. The structural
damping is assumed to beζs = 0.2%, and side lengths of
the pair of patches are1/5 of the corresponding lengths of
the plate (lpx,py = lx,y/5). As the piezoceramic patches in
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Figure 7. Geometry of a simply supported plate with one pair
of SP-PW piezoceramic patches.

Table 7. Dimensions and material properties for the plate and
piezoceramic patches.

Plate Piezo
Length (mm) lx 414 lpx 82.8
Width (mm) ly 314 lpy 62.8
Thickness (mm) t0 1 tp 0.5
Center patch along x-axis (mm) xc

13

28
lx

Center patch along y-axis (mm) yc
15

28
ly

Density (kg/m3) ρ 2700 ρp 7600
Young’s Modulus (GPa) E 70 Ep 50
Poisson’s ratio (-) ν 0.33 νp 0.35

Piezoelectric coefficient (10−12m/V) d31 -150
Free dielectric coefficient (10−9F/m) ǫ

σp

33 29.2

the present example are relatively thick and placed far from
the boundary simple supports, the omission of the patches
bending stiffness and transverse inertia becomes significant.
Thus, the additional mass from the pair of piezoceramic
patches is lumped and included at the relevant dofs in the
system mass matrix. Hereby, the present results become
comparable with those inGardonio and Casagrande(2017).

In Gardonio and Casagrande(2017), the optimal calibra-
tion of the parallelRL-shunts electronic components is
determined for a particular load case, described as a rain
on the roof load scenario. The solution is evaluated using a
mode shape expansion, with a gradually increasing number
of modes. The solution is seemingly converged when 150
modes are included. The bottom row ofTable 8 provides
the fundamental frequencies of the plate, both with and
without SC patches, and the optimal tuning components
from Gardonio and Casagrande(2017). The two top rows
of the table summarize the corresponding results obtained
by the present balanced calibration procedure, with and
without residual mode correction. The present FE-model
consists of28× 28 plate elements and6× 6 patch elements,
whereby the relative errors on the first eight SC frequencies
of the coupled piezo-plate structure is below one percent,
as demonstrated by the convergence curves inFigure 8with
reference values obtained by a fine mesh with112× 112
plate and24× 24 patch elements. Furthermore, the straight
lines in the logarithmic scale ofFigure 8indicate quadratic
convergence. The SP-PW pair of piezoceramic patches is
modelled according to the piezo-plate coupling subsection

Table 8. Fundamental frequencies of simply supported plate
with (f ) and without (f0) short-circuit piezoceramic patches,
modal EMCC and optimal shunt tuning.

Shunt f0[Hz] f [Hz] κ L[H] R[kΩ]
Parallel∗

39.05 35.73
0.070 33.87 76.89

Parallel0 0.074 36.92 80.31

Parallel1 ≃39.1 ≃37.2 - ≃34 ≃160
∗ With residual mode correction (κL)
0 Without residual mode correction (κ0)
1 Results fromGardonio and Casagrande(2017)
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Figure 8. Relative error on first eight SC frequencies of piezo-
plate structure (reference, refined mesh 112 × 112).

in the first section, with the resulting capacitance and plane
stress-reduced piezoelectric coupling coefficient determined
from (56). The blocked dielectric constant

ǫ
εp
33 = ǫ

σp

33 − 2d31ē31. (114)

is determined from the free dielectric constantǫ
σp

33 in Table 7.
Good agreement between the base plate frequencies (f0)

can be observed inTable 8, while the SC frequency of the
piezo-plate structure (f ) is seen to be lower using the present
FE-model. This discrepancy occurs because of the omission
of the patches bending stiffness. Therefore, the presently
determined SC frequencies will all be lower than actual
frequencies (Gardonio and Casagrande, 2017). The present
tuning of the inductanceL with residual mode correction
is seen to be in good agreement with the tuning obtained
by Gardonio and Casagrande(2017), while a significant
deviation can be seen for the shunt resistanceR. This agrees
well with the fact that the present tuning formula for the
inductance is identical to that inGardonio and Casagrande
(2017), while the present resistance is

√
2 smaller than in

the previous study. The slightly smaller inductance is due to
the differences in the SC frequencies, while the deviation on
the resistance is dominated by the different tuning formulas
based on free vibration properties in the present procedure
and a specific forcing inGardonio and Casagrande(2017).
In Table 8the calibration without residual mode contribution
(L0, R0) deviates about 9% for the inductance and 4.5% for
the resistance, which is slightly less than in the previous
beam example. This is because the patches in the present
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Figure 9. Plate modes 1-8 for a bare plate (a-h) and plate with
a SC pair of piezoceramic patches (i-p).

plate example have reduced authority, whereas the larger
capacitance of the present SP-PW patches configuration is
equalled by the correspondingly larger plane stress-reduced
piezoelectric coupling coefficient, see (56) and (65).

The magnitude of structural authority by the piezoceramic
patches is determined by the relation between stiffness, mass
and dimensions for the host structure and the patches in SC
conditions. In the present case the low authority is caused by
the small patch to plate area ratio, whereby the contribution
from non-resonant modes becomes less pronounced than
in the previous beam example. However, as it will be
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Figure 10. Frequency response around mode 1 for a plate
(dashed black line) with a SC (green dot-dashed line) and
parallel shunted pair of patches, optimally tuned with (blue line)
and without (red line) residual mode correction.

shown subsequently, the low structural authority causes the
shunt performance to be more sensitive to deviations from
the optimum shunt tuning. The low structural authority
implies reduced effective EMCCs, as the separation of the
SC and OC frequencies in (72) is governed by the term
(ē231/C̄

εp
p )wwT in (71). A significant effective EMCC and

thereby large damping is attainable in the present plate
example, when the pair of patches is placed optimally with
respect to the deformation pattern of the concerned vibration
mode.Figure 9shows the first eight vibration modes of the
base plate (a-h) and the plate with the SC patches (i-p). It
is seen that the pair of patches is placed optimally for the
first vibration mode (a,i), while the authority is reduced for
the second mode (b,j). To realize a desired level of damping
by an indirectly placed pair of patches, requires either larger
patch dimensions or improved electromechanical coupling,
in which case the influence from residual modes will increase
as well. Thus, it is important in these cases to include
the influence from residual vibration modes in the shunt
calibration. This is illustrated inFigure 10, which shows
the dynamic amplification curve for harmonic distributed
transverse load with constant spatial intensity. The figure
shows the resonance peaks for the base plate (black dashed)
and the plate with the SC pair of patches (green dashed-
dotted), and the curves obtained by shunt with (blue) and
without residual mode correction (red). It is seen that
the dynamic amplification is doubled, when neglecting the
residual mode correction compared to the calibration with
correction. In the beam example, a factor of two can also
be observed between the dynamic amplifications associated
with the shunt tunings with and without residual mode
correction, seeFigure 6(a). However, in the beam example
the relative deviation on the shunt tuning is significantly
larger than in the plate example. This indicates that the shunt
tuning is more sensitive to deviations, when the piezoceramic
patches have less structural authority. It should also be noted
that the frequency response plots are produced by a dynamic
point- and distributed load, respectively, in the beam and
plate examples, which as well influence the responses.

Optimum calibration for the parallel shunt circuit with
and without residual mode correction is now determined
for the first eight vibration modes with the corresponding
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Table 9. Optimum parallel shunt tuning and attained damping
ratios, with (w) and without (wo) residual mode correction, for
the first eight vibration modes of simply supported plate.

Mode f [Hz] κ L[H] R[kΩ] ζ[%]

1
w

35.73
0.070 33.87 76.89 2.57 2.57

wo 0.073 36.92 80.31 3.95 1.19

2
w

80.03
0.016 6.740 152.9 0.66 0.66

wo 0.016 7.358 160.3 1.08 0.23

3
w

111.0
0.017 3.488 99.29 0.71 0.71

wo 0.018 3.827 104.9 1.18 0.23

4
w

153.4
0.074 1.840 16.74 2.72 2.71

wo 0.078 2.003 17.59 1.31 0.21

5
w

163.1
0.007 1.698 153.5 0.33 0.33

wo 0.007 1.772 185.1 0.37 0.21

6
w

227.8
0.007 0.801 90.90 0.36 0.35

wo 0.008 0.908 116.8 0.50 0.20

7
w

239.9
0.070 0.756 11.34 2.55 2.55

wo 0.073 0.819 11.99 1.24 0.21

8
w

247.3
0.005 0.772 107.8 0.27 0.27

wo 0.005 0.771 169.8 0.23 0.24

w With residual mode correction (κL)
wo Without residual mode correction (κ0)

mode shapes shown inFigure 9(i-p) for SC patch electrodes.
The results are summarized inTable 9, where the provided
modal EMCCs areκ = κL in (89) with residual mode
correction andκ = κ0 in (87) without correction. The last
columns of the table show the two damping ratios for the
targeted vibration mode, determined from the full complex
eigenvalue problem in (75).

The results inTable 9indicate that considerable damping
is realized only for modes1, 4 and 7. This is due to the
low structural authority of the pair of piezoceramic patches
and its indirect location with respect to the deformation
form of the five remaining vibration modes inFigure 9.
Some of the vibration modes inFigure 9are very sensitive
to the actuation by the pair of patches. For example, in
modes5 (e,m) and6 (f,n) the symmetry in the pattern
is slightly altered by the presence of the patch, while for
modes7 (g,o) and8 (h,p) the shape is more drastically
changed. As it was observed for the damping of the first
vibration modes, the deviation on the shunt calibration, when
neglecting the residual modes, leads to a significant detuning
and thereby smaller minimum damping ratios of the first
eight vibration modes, seeTable 9. There also seems to be
a connection between the magnitude of the modal EMCC
and the deviations observed for shunt tuning without residual
mode correction. This supports the previous conclusion that
the effect of the residual mode correction is governed by the
apparent structural authority of the piezoceramic patches.

The influence of using the flexibility and flexibility-
inertia corrections, respectively, for the shunt tuning can be
analyzed by looking at the relative errors on the squared
modal EMCC, withoutκ20 and with flexibility κ2r and
flexibility-inertia κ2L residual mode corrections, in respect
to the squared effective EMCCκ2e, provided inTable 10.
It follows from Table 10that the squared effective EMCC

Table 10. The squared effective EMCC and the ratio between
this and the squared modal EMCC with flexibility,
flexibility-inertia and no residual mode correction.

Mode κe κ20/κ
2
e κ2r/κ

2
e κ2L/κ

2
e

1 0.0699 1.0899 1.0007 1.0000
2 0.0156 1.0917 0.9976 1.0000
3 0.0172 1.0974 1.0029 1.0000
4 0.0744 1.0891 1.0006 1.0001
5 0.0068 1.0442 0.9540 1.0000
6 0.0074 1.1343 1.0364 1.0000
7 0.0699 1.0826 0.9939 1.0002
8 0.0050 0.9985 0.9123 1.0000
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Figure 11. Frequency response around the seventh resonant
frequency of a plate with pair of piezoceramic patches; SC
(green dot-dashed line) and shunted optimally with
flexibility-inertia (blue line), flexibility (dashed magenta line) and
without (dotted-dashed red line) residual mode corrections.

(κ2e) is determined very accurately by the squared modal
EMCC (κ2L) with residual mode correction. Also, the squared
modal EMCC with pure flexibility correction (κ2r) recovers
the effective values rather precisely, in particular for the
first four modes. For modes5-8 the importance of using
the more accurate flexibility-inertia corrections increases,
especially for modes5, 6 and 8, where the errors on the
squared modal EMCCs (κ2r) are significant. The latter may
be due to the indirect placement of the pair of patches
with respect to these modes. Generally, the importance
of using the more substantial flexibility-inertia corrections
for the non-resonant modes increases for resonant shunt
damping of higher and closely spaced vibration modes with
indirectly placed patches. The ratio between the squared
modal and effective EMCC seems to correlate with relative
errors observed for the (parallel) shunt inductance. It is
for instance noted inTable 10that κ20/κ

2
e indicates a 9%

relative error on the inductance, while for the first vibration
mode the same order of error has been observed between
L and L0. The error associated with the pure flexibility
correction for the non-resonant modes observed for mode
5-8 is now analyzed by considering the frequency response
to a harmonic uniformly distributed load around the seventh
resonant frequency shown inFigure 11.

It can be seen fromFigure 11 that the calibration
without residual mode correction (red dotted-dashed) causes
significantly larger maximum amplifications compared to the
tuning with flexibility-inertia residual mode correction (blue
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solid). The tuning with pure flexibility correction (magenta
dashed) yields a small off-calibration, which shows that
it may be important to use the precise flexibility-inertia
compensation for the dynamic residual mode effects. In
this example larger levels of attainable damping could have
been achieved for the five lightly damped modes (2, 3, 5,
6 and8) by either placing the pair of piezoceramic patches
more appropriately, according to the deformation pattern of
the respective modes, or by applying several interconnected
pairs of patchess. The same position with larger patches or
lower resulting capacitance could also have been realized,
whereby the effects of including the non-resonant modes in
the calibration would have been more pronounced. However,
the design, optimisation and application of several pairs of
patches is outside the main scope of the present work.

Conclusions and future work

An FE-model for coupled piezo-plate structures was
established, by considering the constitutive relations and
dynamic equilibrium equations of the plate, described by
Kirchhoff theory, in which the patch was represented
by a plane-stress assumption and its electromechanical
interaction. The coupling between the plate and a pair
of either SP-PW or OP-SW piezoceramic patches was
considered through the transformation of the electric forcing
from the two patches to the equivalent moment loads
on the plate. The wiring and poling are subsequently
implemented by considering the relations between the patch
electrodes potentials and the voltage over the connected
shunt. This reduces the number of electric equations to one,
by the introduction of a resulting capacitance and a plane
stress-reduced piezoelectric coupling coefficient. Hereby, the
voltage across the shunt becomes the governing electric
variable in the equations of motion.

A recently proposed balanced calibration procedure for
RL-shunted piezoelectric transducers, with quasi-dynamic
residual mode correction, is implemented for the shunted
pair of piezoceramic patches bonded symmetrically to
the plate. This calibration procedure enables precise and
effective calibration of the electronic shunt components,as
demonstrated by two benchmark examples concerning beam
and plate vibrations.

A new calibration procedure based on the effective EMCC
has also been proposed and used in the two benchmark
examples. The method was derived from a new modal
EMCC corrected by the spill-over from the non-resonant
modes. In the benchmark examples, it is illustrated that this
modal EMCC precisely retains the effective EMCC, hereby
providing an explicit connection between the SC and OC
frequencies of the coupled structure and the modal shunt
tuning based on the numerical FE-model. It is further shown
that the ratio between the squared modal EMCC with and
without residual mode correction, and the corresponding
squared effective EMCC provides the deviation in the
corresponding shunt tuning. A simple format of the tuning
formulas was obtained for the new calibration procedure.
It showed that the difference in the shunt calibration of
respectively an SP-PW or OP-SW pair of patches is simply
determined by the reciprocal value of the squared resulting
plane stress-reduced piezoelectric coupling coefficient.In the

present case, this corresponds to four times higher shunt
tuning values for the OP-SW pair of patches for a given
level of attainable damping. Thus, it is often preferable to
use this SP-PW configuration, as it is notoriously difficult
to achieve the large inductances associated with damping of
low-frequency structural vibrations.

The considered benchmark examples represent a can-
tilever beam and a simply supported plate, both equipped
with a single pair of shunted piezoceramic patches config-
ured in OP-SW and SP-PW, respectively. For the cantilever
beam, optimum shunt tuning for vibration suppression of the
first two resonant modes was determined and compared to
former calibration results in the literature (Thomas et al.,
2012). It was found that the omission of the residual mode
correction leads to significant deviations on the shunt circuit
electronic components. The latter is directly related to the
ratio between the modal EMCC with and without residual
mode correction. The deviation on the shunt tuning when
neglecting the non-resonant modes leads to a further reduc-
tion in attainable damping. This was demonstrated directly
by the damping ratios and by the amplitude reduction from
frequency response curves for a particular harmonic load.

For the second benchmark example with a simply
supported plate and a single pair of SP-PW piezoceramic
patches, the effect of the non-resonant modes on the
shunt tuning was found to be less pronounced. This is
due to a smaller structural authority by the piezoceramic
patches. However, notable influence by the residual mode
correction is still observed on the frequency response curves
and the damping ratios, verifying that the residual mode
correction may be important in shunt tuning. It was found
for the lower vibration modes that the residual mode
corrections are sufficiently determined by the pure flexibility
contribution, while the importance of using the flexibility-
inertia corrections increases for higher and closely spaced
vibration modes. This was illustrated by the frequency
response curves at the first and the seventh vibration
modes and the evaluation of the modal EMCC, both
with flexibility and with flexibility-inertia residual mode
corrections. At last, it was shown that the deviation on the
shunt inductances can be determined by the ratio between
the squared modal EMCC with and without residual mode
correction and the corresponding squared effective EMCC.
It was here demonstrated that the newly proposed residual
mode corrected modal EMCC precisely retains the effective
EMCC, which suggests that this coefficient should be used
in shunt calibration based on modal analysis.

It is worth mentioning that the two proposed calibration
methods give approximately the same shunt tuning as
the corrected modal EMCC precisely retains the effective
EMCC. The choice of method thus depends on whether the
tuning is based on experiments or a numerical model and the
associated computational costs. For the first balanced modal
calibration procedure, the SC eigenvalue problem of the
electromechanical structure has to be solved and a modified
stiffness matrix has to be inverted in order to determine the
residual mode correction terms. For the calibration based on
the effective EMCC, both the SC and OC and an additional
third eigenvalue problem, after determination of the optimal
inductance, have to be evaluated. However, in many cases the
inversion of the modified stiffness matrix will be associated
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with significant computational costs, thus the new calibration
procedure, based on the effective EMCC, will in many
cases be superior, also in regards of experimentally based
calibration.

In future works, the proposed calibration procedures
will be implemented in more sophisticated numerical
models, allowing for even more accurate modelling of
an experimental set-up or an industrial application. It is
expected that the new procedure with the corrected modal
EMCC will result in good agreement between optimum
numerical and experimental based shunt tuning.
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