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Optimal piezoelectric resistive-inductive
shunt damping of plates with residual
mode correction

Johan F. Toftekeer !, Ayech Benjeddou 22, Jan Hggsberg ! and Steen Krenk *

Abstract

This work concerns vibration suppression of plates and plate-like structures by resonant piezoelectric damping,
introduced by resistive-inductive (RL) shunts. The performance of this type of shunt damping relies on the precise
calibration of the shunt frequency, where an important aspect is the ability to account for the energy spill-over from
the non-resonant modes, not taken into account by most available calibration methods. A newly proposed calibration
procedure includes this residual mode contribution by a quasi-dynamic modal correction, taking both flexibility and
inertia effects of the non-resonant modes into account. In the present work, this procedure is implemented in a finite
element model combining Kirchhoff plate bending kinematics for the host structure, and a plane-stress assumption
for a pair of bonded piezoceramic patches. The established model is verified by comparison with shunt calibrations
from benchmark examples in the literature. As demonstrated by frequency response plots and the obtained damping
ratios, the RL-shunt tuning is influenced by the effect of the non-resonant modes and omission may yield a significant
detuning of the shunt circuit. Finally, an alternative method for precise evaluation of the effective (or generalized)
electromechanical coupling coefficient (EMCC) is derived from the modal electromechanical equations of motion. This
results in a new shunt tuning method, based on the effective EMCC obtained by the short- and open-circuit frequencies
of the coupled piezo-plate structure.

Keywords
Shunt piezoelectric damping, resonant shunt calibration, quasi-dynamic residual mode correction, effective modal
electromechanical coupling coefficient, plates

Introduction been obtained and demonstrated for pure passive inductors
with windings around a magnetic coiLdssouarn et al.

This paper concerns the suppression of plate vibratiopg17, allowing an unconditionally stabl&L-shunt with

by means of resonant piezoelectric shunt dampingwge damping potential if a precise shunt tuning can be

Piezoceramic patches, bonded to vibrating plates, hayetained already in the structural design phase. This can

the ability to convert mechanical energy into electricale realized using a consistent calibration procedure that

energy, that can then be dissipated in supplemental resor@gplicitly takes into account the dynamic effects of the ful

shunts. The amount of converted energy is governed B¥xible structure, as the present work shall demonstrate.

the squared effective (or generalized) electromechanicalpiezoelectric vibration damping by resonaRL-shunts

coupling coefficient (EMCC), which depends on thguas originally suggested biorward (1979 and further

properties of the piezoceramic patches and their placemgateloped byHagood and von Flotow(1991), who pro-

on the host structure. Furthermore, the EMCC is a kedvsed two calibration procedures for a series shunt based on

parameter for the performance and tuning of a shumhinimization of the response amplitudes and maximization

traditionally composed of an inductoL), calibrated such of the damping characteristics. A calibration procedure fo

that the shunted piezoelectric device works in resonangf para||e|RL shunt was subsequent]y proposed\w

with the host structure, and a resistdt)( dissipating the (1996, arguing that the series shunt would be inappropriate

converted mechanical energy into heat via the Joule effefr large resistances. The series and parallel shunts have
However, alternative passive and semi-active resonan) (
shunts have been proposed, for instance by the additien
of a negative capacitancee Marneffe and Preumgr008  1pepartment of Mechanical Engineering
Berardengo et al. 2016 or by the use of switch damping Technical University of Denmark
(Ducarne etal, 2010. The motivation behind most of Nils Koppels Allé, Building 404, DK-2800 Kgs. Lyngby, Denmark
these alternative resonant shunts is the difficulty |2r§orbonne Universités, Universite de Technologie de Compiégne,
generating the large inductance required in shunt dampiCNRS’ FRE 2012 ROBERVAL

B ! _%PMECA, 3 Rue Fernand Hainaut, 93407 Saint Ouen, France
of (low-frequency) structural vibrations. The problem is
commonly solved by the introduction of synthetic inductor§orresponding author:
(Thomas et a|’ 2013, which are active components that]ohan F Toftekeer, Department of Mechanicgl AEngineering, Technical
emulate the inductive behaviour in the desired frequeng iversity of Denmark, Nils Koppels Allé, Building 404, DK-2800 Kgs.

. . ngby, Denmark
range. Nonetheless, high inductance values have rece Ayail:jotof@mek_dtu_dk
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been compared byark and Inmar(1999, revealing alarger analysis and assessment of the propoBédshunt tuning
attainable energy dissipation using the parallel configurarocedures. The plate displacements are approximategl usin
tion, while a critical analysis of the calibration method&irchhoff plate bending kinematics, whereas only the in-
has been provided bgaruso (2001). Methods for multi- plane displacements are considered for the piezoceramic
modal piezoelectric shunt damping have been proposed figtch. Equipotential conditions are imposed to all cortirsu
Hollkamp (1999 and Wu (1999. In later years, several patch electrodes, reducing the number of electric varg&able
alternative procedures have been proposed for the detailedwo for the discretized piezoceramic patch. Subsequentl
tuning of RL-shunts, for example based on &h.-norm the coupling between a pair of piezoceramic patches and
of the response amplitud&dgltani et al 2014 or a balanced a plate is established by transforming the electric forcing
calibration procedure based on the principle of equal modabm the patches to the equivalent moment loads in the plate
damping Hagsberg and Krenk20132), originally developed model. In the present work, a symmetric pair of identical
for the mechanical tuned mass damperepk, 2005. The piezoceramic patches is considered. The patches are either
balanced calibration procedure has recently been extdndedame-poled and parallel-wired (SP-PW) or opposite-poled
include the effects from non-resonant structural modest, fiand series-wired (OP-SW), whereby they operate out of
by a quasi-static correctioi(enk and Haggsberg2014 and phase. The number of variables in the electric domain can
then by a more general quasi-dynamic correction with boliereby be reduced to the voltage over the supplemental shunt
flexibility and inertia termsKrenk and Hagsberg2016. by the introduction of resulting capacitance and the plane
An important part of all calibration methods is the accuragiress-reduced piezoelectric coupling coefficient for the
determination of the squared EMCC, which governs bogpecific patches electric connection. A thorough review of
the attainable damping and the shunt tuning. Commonfijite element techniques for the modelling of piezoelectri
the squared EMCC is estimated from a single mode rep&iructural elements was provided Bgnjeddou(2000.
sentation of the electromechanical structureqmas et al, The second section conducts a modal analysis of the SC
2009, while improved accuracy has been demonstrat@tectromechanical structure. For a specific vibration mode
by including quasi-static effects from higher non-resdnathe consistent modal truncation iKrenk and Hagsberg
vibration modes Berardengo et al. 2016. In other cases, (2019 reduces the system to a single mechanical equation,
the tuning is based directly on the squared effective which the piezoceramic patches are represented by their
EMCC determined from either experimentoffiri et al., resulting displacement. Hereby, the optimal tuning forhbot
2007 Delperroetal, 2019 or by numerical analysis parallel and series shunt circuitsiggsberg and Krenk
(Trindade and Benjeddqu2009 Benjeddoy 2014. How- 2017 can be derived for the targeted mode of the
ever, inherent inconsistencies between the squared moelactromechanical FE-model.
and effective EMCC often lead to discrepancies in the tuningIn the third section, a new shunt tuning procedure is
formulas, because the influence from non-resonant modseloped based on the effective EMCC, where a simple
is neglected in the modal representation of the electronfermat of the shunt tuning formulas is obtained.
chanical structure. This motivates the present derivaifan  In the fourth section it is demonstrated and justified
new and consiste® L-shunt tuning procedure based on thenat the influence from the residual modes can be directly
effective EMCC. identified from the squared modal EMCC, both with and
The proposed shunt calibration relies on the pravithout residual mode correction. Further, the influence on
cedure with residual mode correction, introduced bine shunttuningwhen having either a SP-PW or OP-SW pair
Krenk and Hagsberg2016 for mechanical absorbers andof piezoceramic patches can be seen from the new tuning
subsequently extended to piezoelectric shunt damping formulas.
Hagsberg and Krenk(2017). It is applied to the optimal In the fifth section the established FE-model and imple-
calibration of RL-shunted piezoceramic patches, bondegientation of the calibration procedures with residual mode
symmetrically to plate elements and structures for whiatorrections is compared witR L-shunt tuning results from
the tuning is influenced by vibration modes and frequempreviously proposed calibration methods for benchmark
cies that are closely grouped both spectrally and spatialékamples with a cantilever beamhiomas et al, 2009 and
It is the aim to account for the influence from the nona simply supported platéS@rdonio and Casagrangd2017).
resonant modes on the shunt calibration, and discuss fuwr the cantilever, available experimental data are used fo
errors associated with the pure single mode representatsmmparison with the proposed FE based tuning methods.
of the electromechanical structure, by considering bo¢h tlBoth examples analyze the ability to achieve optimal damp-
squared modal and effective EMCC. A new modal EMCC ing by the proposed calibration procedures and validate
presented that accounts for the spill-over from non-resbnahe equality between the squared effective EMCC, and the
modes, whereby it becomes identical to the effective EMCE&guared modal EMCC with residual mode correction.
Thus, a consistent relation is established between the Imodaas a closure of this introduction, it is worth emphasising
equations of motion and the corresponding short-circi@)(S the originality of the present work with regards of the retht
and open-circuit (OC) frequencies of the coupled electromearlier publications Hagsberg and Krenk (2012 2015
chanical structure. Consequently, this enables the diniva 2017. In previous works, the balanced shunt tuning has
of a shunt tuning procedure based on the effective EMCC, lagen considered with and without residual mode correction
demonstrated in the third section of this paper. for beam structures. Thus, the present implementation for
The first section of the paper presents a finite elemepiaites and two-dimensional piezoceramic patches is a novel
(FE) model for plates with a symmetrically bonded pair oéxtension that relies on the derived FE-model. Furthermore
piezoceramic patches in order to facilitate the subsequeptimal tuning formulas have here been derived directly



from the underlying electric equations. Besides, a negood representation of the structural behaviour is obthine
methodology for the precise evaluation of the effectivey Kirchhoff plate theory. The latter considers a planessire
EMCC is proposed. It is based on the correspondirsiate, whereby the constitutive relation between thersrai
modal EMCC with residual mode correction. Following th@nd stresses is reduced to the relation between the in-plane
accurate evaluation of the effective EMCC, an alternatimponents. For an isotropic material

tuning procedure based on the latter is proposed in the

third section which, as well, is a new contribution. Finally o= LD € (6)

the present shunt tuning procedures with residual mode 1—v?

corrections are assessed by comparison with benchmgri¢, Young's modulusE, Poisson’s ratio/, and the stress
examples for beam and plate structures. and strain vectors and constitutive matrix defined as

Electromechanical Piezo-Plate Model e Cu T
o o o o= |0y |, €= syy,Dp:1 v 1 0 @)
This first section is devoted to the derivation of a FE-model Oy 2y tvilog o 1lzz

for the coupled piezo-plate structure. Initially, the @gional ?

formulations are obtained for the host plate structure bad tThe particular form ofD, becomes convenient in the
piezoceramic patch separately, by considering the respectsubsequent derivations. Considering bending only, the in-
kinematic and constitutive relations. Subsequently, thane strains are determined from the transverse coogdinat
coupling is established by transforming the electric fogci z and vertical displacement as

from a considered pair of piezoceramic patches to the

equivalent moment loads in the plate model. Alternatively, € =2k =—zAw (8)

a layer model could have been established by the use of ) . . . ,
sandwich theoryBenjeddoy 2002. whereA is a two-dimensional Laplace-like operator, defined

as
. 2 9%
Host elastic plate 9z 2 ox>
. . . _ _ 90 z | _ fo
The host elastic structure is considered to cover the A=V,V=10 dy [g] — | 9y ©)
three-dimensional (3D) domaif, subjected to prescribed a% a% 9y %
0y

displacements; on part of the boundary,,, and prescribped o _ _ o
surface tractions¥; on the remaining part of the domainUsing the constitutive relatiorb), the strain definition§),
boundaryl', such that)Q = I', UTr andT, N Ty = 0. and the Laplace-like operatd)( the variational formulation
Hereby, the dynamic equilibrium, under free-body loads, art®) ¢an be written as

boundary equations, can be written as

/ Sw (ATDA —w2pt0) WdA = [ SwF,dA (10)
Oijj = pPU; in Q Q) A Ap
oijn; = F; onlp (2)  where harmonic solutionsy = wexp(iwt), of circular

up = U; onl, (3) frequencyw, are assumed, and the boundary forces are given

o only by the vertical surface tractidri, onI'r = Ap. In (10),
where i, j denote the 3D vector and tensor componentge constitutive matrix for the isotropic plate is
with repeated subscripts implying summation. Partial

differentiation with respect to a space coordinate is deshot D— Et} D (11)

by comma, and time differentiation by a dot. The material C12(1-v) "

density of the plate is denotedandn; are the components o . o

of the outward unit normal tep. The FE-formulation is now obtained from the variational

The variational formulation is established using th&rmulation (L0) by discretizing the amplitude of the
weighted residual method by multiplying the equation dlisplacement field as
motion (L) with the virtual displacemeniu;, followed by

an integration over the structural domain, W(z,y) = N(z, y)u® (12)

) where the shape functionshand nodal degrees of freedom
/Q dui(oij,; — piig)d€t =0 (4)  (dofs) in the harmonic amplitude vectof for element are
Integration by parts then, using the kinematically adrbissi N =[N, Nj Nj .- N Nj N

boundary conditions, gives the weak variational formolati (13)

U =fwr ¢ Y1 - wa Pa 1/14}T

/Q 55ij‘7ijdﬂ+/g 5“ip“idQ/FF duiF3dl (3)  The numerical indexl, ...,4 denotes the node number
in the considered rectangular plate element. The shape
where the displacement has to satisfy the essential boyndnctionsN? , N; and N, are derived for the nodal vertical
condition @). displacementv; and the associated nodal rotatiopisand
In the present work, plates and plate-like structures, about thex- and y-axis, respectively, corresponding to
with thicknesst, significantly smaller than the in-planea cubic Hermitian interpolation of the vertical displacerme
dimensions of the surface arehare considered. Thus, afield.
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By substitution of {2) into the variational equatiorL(), electric equilibrium equations.8) and @1) with the virtual
followed by summation over the number of elememtshe displacementgu” and potentiaby, respectively, followed
equation of motion for the discretized plate can be written &y integration over the patch domain

> Eu)"{(K§ - MU —fF =0 (14) /Q (03,5 — ppiiy)ouydQy = 0
=1 ! _ (24)
where the element mass and stiffness matrices have been D; i6pdQ2, = 0

introduced as 2

T’ . The weak variational formulations follow by integration
/ ) N™ pto NdAS, by parts and substitution of the mechanical and electrical
(15) kinematically admissible boundary conditiodi®) and @2)

M3

K = /(AN)TD(AN)dAe
. i (stzi’jafjdﬂp—|—/Sz dul ppii dSdy,
and the external element force vector i v

=l v ) FD(29)

ie=1

fe = / NTF, dA® (16)
Af

It is noted that four point Gauss integration is sufficient to 0B DidSty = /FQ 0pQdlq

integrate the highest polynomial order exactly.

The global mass and stiffness matriddg andK,, and where the fields have to satisfy the corresponding mechlanica
the forcef and displacement vectors are then assembledand electrical essential boundary conditiob8) @nd 3). It
using a standard FEM assembly procedure, adding eagtnoted that the boundary loads will be considered only as
mass, stiffness and force componentto a defined global nodancentrated loads at. points of the coordinates:;_ , y;. ),
order, whereby the full discretized equation of motion can bwhile o = 1, 2 with summation over the repeated indices.
written as By assuming that the piezoceramic patch is thin and

(Ko —w*Mo)u = f (17) bonded to either of the major plate surfaces, the effect
from the patch on the plate approximately reduces to the
in-plane electric forces, whereby a plane stress consgtut
behaviour, similar to ), can be used for the patch. This
. . implies that the bending stiffness and associated trassver
Piezoceramic patch inertia effects of the patch are not considered. However,
In the following, the variational formulation for awhen the patch is thin, the bending stiffness of the patch
piezoceramic patch with continuous top and bottomecomes insignificant, while the omission of the transverse
electrodes is derived and a FE-model established, whidh wiilertia effects can be accounted for by lumping the mass
later be coupled to the FE-model of the host plate structuref the patch at the relevant dofs in the system mass matrix,

The mechanical dynamic equilibrium of the piezoceramighich will be discussed in the benchmark examples.

Q,

which represents a systemaW¥ linear equations of motion,
whereN is the number of FE-model nodes.

patch is described similarly td), (2) and @) as Regarding the electric domain, it is assumed that no
, o electric field is generated from bending of the piezoceramic
Oi5 = PpUy N Qp (18) patch and the electric field is considered to be non-vanishin
opni = FP onT% (19) only in the transverse (poling) directiod. Hereby, the
uw? = @’ onI? (20) reduced electromechanical constitutive equations can be
written as

with ,, being the patch domain of bounda®y,, = I'’. U

EP
I'? and I', NI'? =0, and p, the mass density of the Ir| _ |1= P —&| |Ep (26)
piezoceramic patch. Again, it is assumed that no body Ds el eh | | Es

loads act on the patch domain. Additionally, the electric _ o
quasi-static equilibrium and boundary conditions for th&hey representthe relations between the mechanical imepla

piezoceramic patch follow as stressesr,, and transverse electric displacemény, and the
associated in-plane straiag and transverse electric fielcs.
D;; = 0 in€Q, (21) The pure mechanical behaviour is recovered by SC patch
Din; = —-Q onlg (22) electrodes, while the pure electric behaviour is represent
0 = @ onT, 23) by the dielectric constant at constant (nil) straifjs. The

electromechanical coupling is governed by the piezoetectr

with the electric displacemet®;, surface charge density constants in the vectas, defined for a piezoceramic patch
onT'g, electric potentiap and prescribed potenti@lonT,. S E
Here, the total patch boundary follows 88, =T'q UT', €3 = d3; 1 f D,b = e3b 27)
andl'g NT, = 0. Vp

Again, the weighted residual method is used to obtain thehere £, is the Young’s modulus of the piezoceramic
variational formulations, by multiplying the mechanicada material v, is the corresponding Poisson’s ratio, alygb =




ds1[1 1 0]T represents the isotropic plane electromechanical
coupling with the strength governed by the piezoelectric
strain coefficientds; = ds». It is noted that there is
no inherent coupling with the in-plane shear strain for
piezoceramic materials, which is the reason for the zero
componentin the last entry bf Becausé — v, is contained
explicitly in (27), the remaining SC constitutive matrix
D, can be written as in7) with v, instead ofwv. It

is readily shown thaD,b = b, whereby the scalar plane _ ) ) )
stress-reduced piezoelectric coupling coefficientd) (is Flgurg 1. Piezoceramic patch element with 8 mechanical and 2
identified as electric dofs.

= (28)
11—y,
It recovers the stress piezoelectric coupling coefficiedith two uniform electric potential surface dofs for the top
resulting from the one-directional (1D) transverse mocd bottom electrodes
constitutive equation whew, = 0. . . 1T
The in-plane strains can here be represented by e=¢"=lpt ]

and two nodal dofs representing the in-plane displacements

u; andv;, as shown irFigure 1 The harmonic amplitudes,
can therefore be represented by

e31 = d31

(33)

ep = V,v, (29)

where the in-plane displacementsand v are arranged in

the displacement vecter, = [u, v]”, and the 2D derivation Ve(z,y) = Np(z,y)ue
operatorV, is as in Q). As for the host plate, the frequency ’ pRmer us
domain representation of the weak variational formulation e
(25) of the patch, is reached by assuming harmonic loads Ny, 0 --- Ny, O : (34)
and solutionas,, = v,, exp(iwt). - { 0 Ny--- 0 Ng|l|:
The patch thickness, is assumed significantly smaller ug
than a characteristic in-plane dimension of the patch sarfa Vg

Hereby, the electric fieldE; is approximately constant
through the patch thickness and can thus be determined
the difference between the electric potentials on thegdop
and bottomy_ electrodes by

here N, contains the shape functions;, uy, the nodal
|¥placements, while subscripagain represents the number
of element nodes.
The discretized equations of motion are obtained next by
substituting 83) and (34) into both 31) and @32), followed
Ey=—-V,p=—[1/t, —1/t,] [2+] (30) by summation over the number of patch elementss

Thus, in this notation, the symb®1,, denotes the row vector i {5112] TR —wtMp o KE up
[l —1]/t,. By substituting 26), (27), (29) and @0) into dp© — (KT (o)
(25), the variational weak formulations for the pat@b) can

be written in the frequency domain as

e

@

o) )=
Qe

In this expression, the element mass, SC stiffness and
(31) electromechanical coupling matrices are determined as

e=1

(35)

' Byt
/ V) (vf #Dpvpvp + Ves1t,bV ¢
A, Vp

Ne
~w2putyVp ) dAy = Y Sl (i i) (FY) .
ie=1 My = /Ae ngpthQNp dAj,
for the mechanical relation and as ?

€ . E t €
Ky = / (Vpr)T 1 f 5 D, (VpNp) dA; (36)
/ 0TV (—eartyb" Vv, + 6551, Vip) dA, ‘b :
o (32) Ke = / (V,N,)Tbesit, V,, dAS
= [ sp"QdAg A
AQ

wherel, is the two by two identity matrix, and the element
for the corresponding electrical relation. In both relaip nodal force and surface charge vectors are defined as
the integration over the constant patch thickngdsas been ne
cond_u_cteql. From32), it is seen_thz_it the surface charge fe Z N(zs,, i, )f?
densities inQ = [Q,, Q_]T are distributed on the top and izl 37)
bottom electrodes with identical surface are&s, while Q° / QdA
zero surface charges are assumed on the lateral parts of the Ae p
patch boundaries. !

The FE-formulation for the piezoceramic patch is thewith the concentrated force vectdy = [F} pr]i.
established by introducing a rectangular four node eleménirthermore, the blocked capacitance matrix3p) (s given
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by of the composite and host structure hereby coincide and
higher electromechanical coupling can be achieved, when
(CEP)e _ / VTeggtpVg,dAe — Ccr { 1 1] (38) the piezoceramic patches are poled and yvired _corre_ctly.
v e A R In the later benchmark examples, only pairs of identical
) _ and symmetrically positioned piezoceramic patches are
in which & 4 considered. Therefore, a single pair of piezoceramic gatch
Cpr = E3flp (39) bonded symmetrically to the upper and lower plate surfaces,
tp is considered in the following. It is assumed that the
is the scalar blocked capacitance. discretization of the piezoceramic patches concides wiigh t
The global coupled FE-equations for a piezoceramic patdfscretization of the underlying part of the plate, whereby
discretized byn,, elements are then established by assemHtlye coupling between each (top and bottom) patch and plate
of the element matrices and vectors to the global nodal prdelement can be described agHigure 2 It is now considered
following a rearrangement of the full system matrices arttiat the generated electric forcing from the piezoceramic
vectors such that the final format of the global FE-equatiopsitches acts as external moment loads on the host plate

P

can be written as structure, whereby the former force vectdn (17), can be
) written as a sum
[Kp—w M, Kl [up] M (40) f=f+f7 (45)
T P - . .
—Ke C; Pp Q of the external mechanical loads and the resulting

tréaé1sformed electric forcing from the patcHgs It is seen

9om Figure 2that the in-plane forceg!, f andf?, f? of the

top and bottom piezoceramic patch elements, respectively,

couple with the associated momeriis,,, and M, of the

rg)_late, through the distandebetween the mid planes of the
ate and the patches. The moment loads to the plate from

patches in-plane forces can thus be found as

where the mechanical and electric equations are arran
respectively as the fir&t/V,, and lastV,. coupled equations
of motions; .V, is the number of element nodes ang. =
2n,, the number of electrical dofs.

tials of the piezoceramic elements forming a continuo
surface of an electrode. In the present case, only a sin &

piezoceramic patch is considered with one top and one My, = 7hf; +hf§
bottom electrodes, whereby (46)
Myy = hf; - hf£
Ol =¢r =... =" ot =@ =... =" (41) . . . . .
+ + + s - - Hereby, the resulting electric forcing from the piezoceiam
The equipotential conditiong () can be imposed by defining Patched,; on the plate can be written as
a boolean matri®, that determines the relation between the r ¢ b
S . fr=Wf — Wf (47)
element potentials i, and the full surface potentials of the P P P
top or bottom electrodes as wheref/ andf] are respectively the in-plane forces from
T (43) of the top and bottom piezoceramic patches transformed
10 --- 10 ivi i
¢, =Pp, = {0 L 1] {wt] (42) through @6) by the connectivity matrix
0 O 0
The coupled FE-equations for the discretized piezoceramic w; O 0 0 0
patch with consideration of the equipotential conditionca  y — 0 o | . Wi=1]0 —h (48)

o -

thereby be written as 0 Wy, Lo
Kp—w’™, KP |[u] [H 43 0 0 0
—PTKT PTc;pP ©. oL (43) for the top patch, while forcing from the bottom patch is

determined by-W, as seen in47). The nodal connectivity
which consists 02N, + 2 equations of motion, where thearrayW; of patch node is placed at the rows and columns
charge at the top and bottom electrodes are defined similanfy\W that correspond to the dofs shared by the plate and
to (42) by patches, respectively. Thus, there are as many nodal arrays
as there are nodes/(,) in the piezoceramic patch.
(44) By use of ¢5), the equation of motionl(?) for the plate

Q=PQ: , Qu=[Q Q
_ ) _ ) - structure, augmented by the electric forcing from the phir o
The introduction of the equipotential conditions resufts ipjezoceramic patches, can then be written as

pure edge coupling between the electric and mechanical ) .
domains. The coupling between the equation of motions (Ko —w'Mo)u—f; =f. (49)

of the plate {7) and the patch43) is obtained next by rhe coupled FE-equations then follow from eliminating the

transforming the electric forcing from the patch elemeats biezoelectric force§] in (49) by (47) and ¢3), whereby they
the equivalent moment loads for the plate elements. can be written as

}T

Coupled piezo-plate structure K—-w’M —-WK.P WKP]|[U fe

8 » _ t
Piezoceramic patches are often placed symmetrically i pai (WK:P)T PTCrP 0 ¢4 |=[Q%| (50)
on the host structure. This is beneficial as the neutral axig —(WK.P)” 0 PTCorP|| b Q4
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ty T (a) (b) ¢ 3
L o p oo | P/ <|P+ 1,2
' €31 €31
Z * z,7 Zsh
(fai)z 1 = to 1< 80b+ Agl 9
fi : . €31 | e[ T
T M ;y P P 2
_'?\‘/[7 LT 7771 3T
xTT =
AP Figure 3. Conducting plate structure with a pair of patches
(fb) ] wired to a shunt circuit according to poling configurations (a)
4’ SP-PW and (b) OP-SW.

¢ —

Figure 2. Moment equilibrium of plate and piezoceramic patch vectork, is defined as
elements, superscript e is omitted in the figure notations.

1 1
ke = K.P —— 55
LJ 2e31 (55)

which consists of the full set 8V mechanical equations andBy defining a resulting capacitancg,” and plane stress-
four electric equations for the pair of piezoceramic pasche’eéduced piezoelectric coupling coefficient as

The mass and stiffness matrices of the piezoceramic patches e . -

further provide additional terms in the system matrices, Cpr =20, ey = 2eq, (56)

K =Ko+ 2WKPWT’ M =M, + QWMPWT (51) the coupled FE-equationS(@) can be reduced to

u
|4

where the multiplication with the connectivity matriw/ K —w?M _che31] fe
ensures that the mass and stiffness effects of the patches ar (Wkees)” Gy’ Q
transferred to the correct nodes of the plate structure.

Itis now the aim to reduce the number of electric equatiot¢gere the number of electric equations is reduced to one with
by considering the pair of patches being either configured & voltage as variable, while the resulting charge
SP-PW or OP-SW and connected to a shunt circuit with an s b
impedanceZ, (w), seeFigure 3 Q=0Q; +Q- (58)

] (57)

SP-PW pair of patches For the SP-PW shunted pair ofis obtained after multiplication of the surface charge<i) (
piezoceramic patches, the following relations between tMéth PZ-

electrodes potentials can be deduced fiéigure 3a) as The resulting charge Q can be linked to the voltage

through the shunt impedanégw) via Ohm’s law
t b t b t t
=9y , wp=¢l , V=¢L—p_ (52)
" i i V = —iwZn(w)Q (59)

These relations are now used to eliminate some potentials ) . )
and to introduce the voltag€ over the electric shunt by Therefore, the coupled FE-equations for the plate with a pai

establishing the matriR,, as follows of SP-PW shunted piezoceramic patches can be written as
110 0 K —w?M —Wk.é31 u
o M 010 0 Wk.es)T G+ —2 | |y| = o] (60)
Loli]P“" ol Pe=lo1 0 0o ©3 T T Za(w)
(e 1 100

where the inverse of the shunt impedance enters in the last
; ; ; : diagonal term of the system matrix after substitutions) (
Introducing 63) in (50), the coupling and capacitance ) ; ,
matrices are altered b, such that into (57) leading to the zero on the right hand side @)
. OP-SW pair of patches For the OP-SW shunted pair of
pT [P C,rP 0 } P ocer H 1o patches inFigure 3b), the relations between the potentials
¢ 0 PTCrP| ¥ P0 (54) can be defined as

W [7KCP KCP] PL/, = —Wk02€31 [1 0]

pl=¢h , V=ul - (61)
Thus, the capacitance is determined by a sca@” for and furthermore, as the patches are considered identidal an

the parallel wired pair of patches and the coupling by &mmetrically positioned on the host structure, the irutiiil
vectorWk.2e3; as the rows and arrays associated with thﬁﬁ‘erences in patches potentia|s are equa|

remaining potentials contain zeroes only. It is noted that t
blocked capacitanc€,” is given in @9) and the coupling <pi -t = <pi — (62)
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These relations are now defined by the ma®jxas (@) 7 ® © ,
- o <— o<~
4 % 100 S .
o : 0 100 Lol dr)
i =Pe|¢l| Pe= ) LEEEY V) r=iE
Pt b 0 100 ,:&'\\\\\\ R
LS ~1/2 1 0 0 Emeps

—O [e; O
whereby the capacitance and coupling matrices are altered

by the substitution of@3) into (50), Figure 4. Electric model for (a) piezoceramic patch, with (b)
parallel and (c) series RL shunts, where [ is the electric current

pPlcerp 0 1 1 and Cp” is the constant stress (free) capacitance.
PT{ 4 T e ]PW—C%H[l 0]
@ 0 P*C.P 2P |0 (64)
W[-KP —KP|P, = Wkoez [1 0] Inserting this relation in the former mechanical equatiohs

(57), the OC eigenvalue problem is determined as
As for the SP-PW pair of patches, the number of electric S
equations can be reduced to one with the voltage as variable, [(K + e__ilwa) — C:,Q_M] a;, =0 (71)
whereby 60) can be written asg0), now with the resulting Cp” !
capacitance and plane stress-reduced piezoelectriciogup.

i ias > .
coefficient defined for the OP-SW pair of patches as ll'hus, the OC circular frequencies = w; because of the

piezoelectric effect, where the equality might occur due to
charge cancelation effects.
The relative difference between the squared OC and SC
F)unencies provides the so-called squared effective EMCC

_ 1
Cpr = 50;” , €31 =e31 (65)

It is seen that the resulting capacitances for the SP-
and OP-SW pairs of piezoceramic patches correspond to ) wf _%2,
the resulting capacitances of two capacitors connected, Ke = (72)

2
respectively, in parallel and series, s€#evallier et al. “i
(2009. For both configurations of the pairs of piezoceramighich determines the authority of the pair of patches on

patches the vector mode j and consequently the associated attainable modal
w = Wk, (66) damping from the supplemental shunt. Therefore, the latter
defines a resulting scalar measure of displacemgnf the increases with the separation of the two limiting natural
pair of patches as frequenciesy; andw;. _ _ _ _
w =wlu (67) For RL shunts, the inductance is calibrated in order
p

for the circuit frequency to work in resonance with the
vibrating structure, while the resistanéeis tuned in order
L to maximize the dissipation of electrical energy. TRé-
Shunt circuit network can be established by either placing the inductance
In the coupled FE-equations6@, the voltage V is and resistance in parallel or in series, as showhrigure 4
governed by the relation between the resulting blockdtlis noted that these networks are idealized in the sense
capacitanceC,” and plane stress-reduced piezoelectribat any resistance associated with either synthetic ayur
coupling coefficientes; and the shunt circuit impedancepassive inductors is neglected, which may have an effect on
Zsn(w). The former can be obtained from the materighe tuning of the shunt resistance. Further, it can be seen in
properties, electrode configuration and wiring of the pafrigure 4that the capacitance is the stress free capacitance
of piezoceramic patches, while the shunt circuit impedan€g?, which can be found by the relation to the blocked
depends on the configuration and tuning of the connectegipacitance for the transverse response mode as
shunt electronic components.

The solution to §0) is bounded by two limits associated Cer = C9v(1 - k2) o, k= 2d31:;31 (73)
with SC and OC patch electrodes. The corresponding SC €33
and OC eigenvalue problems can be deduced f&af (ith
respectivelyl” = 0 and Q= 0. The SC eigenvalue problem
hereby follows as

used in the following.

whereks; is the piezoceramic material plane stress-reduced
electromechanical coupling factor.
For the parallel shunt configuration iigure 4b), the
) o impedanceZ,,(w) is conveniently expressed in terms of
[K ij} U =0 (68) regprocal valuges? e
with SC frequenciesv; and mode shapes;, while the 1 1 1

additional sensor equation provides the modal charge =4+ (74)
Zsp(w) R iwL

Qj = 7631WTUJ' (69) . i X i .
Substitution of the previous impedance function iné)(

In the opposite OC limit, the stiffness is augmented by trgives the parallel coupled FE-equations
voltage stiffening contribution which, for & 0, can be

determined as B K —w?M —Wesn u f. )
€31 T _ 1 1 =
V=—=wu (70) cwl  Ofr _ 0
Cy et TR T oL



with the inverse impedance terms appearing directly in tt®n-resonant modes and enables the derivation of explicit

system matrix. expressions for the optimal shunt tuning. This is briefly
For the series network irFigure 4c), the impedance reviewed in the following and expressed in terms of
function is given as representative electro-mechanical components.
' The resulting plane stress-reduced piezoelectric cogiplin
Zsp(w) = R+ iwL (76) coefficientes; translates displacement in the mechanical
i ) , omain to charge Q in the electric domain ). This is
¥vhereby the series coupled FE matrix equation takes tESW used to eliminate; in the modal equations of motion
orm (78), which by considering free vibrations can be written as
K — w?M —Wesy f, k. M
] i | -1 @ (#-w5)e-v (80)
esw’  CpF + iR — 2L \4 0‘| €5 e/

For both shunt circuit configurations, the mechanic;-lhe sum of the modal charge componenjsi@termines the

equivalence is presented in ekfpgsberg and Krenk2017), magnitude of the resultl_ng charge Q. . .
where the inerter (inductance) and the damper (resistancefOr resonant damping, the charge Q is speqﬂcally
are connected in series for the paralidl shunt, while they ,de ermined at thg resonant frequency of mogietakmg

are placed in parallel for the series shunt. However, in gyt account the |nflygpce fmm th? other regdual modes
present work the electric notation is kept, whereby ex:j;stirpy including the flexibility and inertia correction terms as

shunt calibration formulas can be directly applied based &gesent_ed iKrenk ar_1d Hzgsb_erg(ZOl@ an_d fcran_sferriad to
the derived electric analogies. the equivalent electric corrections by multiplicationfwig, ,

=2
. 22 Wk —lpw -1y €31
Shunt Tuning Based on Balanced Modal W KKK w2
Calibration Yo wWIK KK S hw— e wTK lw

2
I

SN

(81)

<~

In this second section, the coupled FE-equatiofy and

(77) for the parallel and series shunt circuits are analyzedjlrlg1e modified stifiness and mass matrices correspond to

orderto determine the particular shunttuning that ma)Gm"’"zremoving the mass contribution from the resonant mode and

the damping of a targeted resonant vibration mgde r. . . . .
In order to apply analytical calibration methods, the fuﬁnak|ng a frequency shift of the stiffiness matrix. They are
giyen asKrenk and Hggsberg20186,

complex eigenvalue problem is reduced to a representat
system of only two coupled equations, governing the ) (Mu,)(Mu,)”
structural response of target modeand the associated Kr =K —w;M, . M, =M — == (82)
electric loading from the pair of piezoceramic patches. T
The mechanical equations in7% and (77) can withK, = K forthe case of a pure quasi-static residual mode
be decoupled in terms of the mode shapes from correction. The flexibility and inertia corrections for then-
the SC eigenvalue problem in6§). For this purpose, resonant modes, due to the presence of the electric shunt,
the displacement vectou is represented by a linearcan thus be represented by the modal capacitéatjcand
combination of the normalized mode shape vectoisductancel! in (81), respectively. Hereby, the charge Q is
u;/(w”u;), whereafter pre-multiplication of76) and (77), truncated consistently for modeas
with the transpose of the normalized mode shape vector gives .
the scalar equation of motion Q~Q, - (C; B oﬂ—L;> % (83)
(kj - mej)uj - églv = f]‘ (78) .

where the modal charge for resonant meds determined
in which the normalised modal mass, stiffness and loads drem (80) by the dynamic equation
defined as

_ OJ% é%l 84

uMu; ul'Ku; - uffe Q = T2 k_TV (84)
(WTuy)(uTw)” 7

" W) WTw) =W

(7Jg) Substitution of the modal electric representati®g) {nto the
The resulting displacement, (67) of the pair of patches last equation of§0) gives the homogeneous equation
is, because of the normalisation, given by the sum of the

2 =2
modal displacements; obtained by solving th8 N scalar ( QW’“ o it +C, — 21 -+ - ! ) V=0 (85)
equations 19). w2 —w? k, w2l iwZgp(w)

The aim is to derive the optimal shunt tuning for a specifigh o the modal charg®, has been eliminated byg4),
resonant vibration modg= r, which can be approximated,,iie the modal capacitance
by the single dynamic term = r and two supplemental
terms, accounting for the flexibility and inertia effects C, :@;p +C (86)
from the non-resonant modgs# » (Krenk and Hggsberg
2016. This modal correction approach is based on ia conveniently represented as the sum of the resulting
two-term representation of the response contribution froblocked capacitana€,” and modal capacitanc®. in (81a).
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Non-trivial solutions require the expression inside th&ble 1. Balanced calibration procedure for parallel and series

parenthesis ing5) to vanish, constituting the characteristi¢hunt circuits, without Lo, Ro, with flexibility L,., 12, and with
. . . flexibility-inertia L, R residual mode corrections.
equation of the system. In common calibration methods;

based on single mode representations of the me_chanirﬁ""r""m":'ter Parallel Series
structure, division with the blocked capacitancg,” Lo 1 _ 1
introduces the so-called squared modal EMCC CpPw? Cp? (1 + K3)2w?
_9 2
2 €31 1 1 1 2K
R = = 87 R, I _ 0
"k, B Fmom Ge | TERp
see for instanc&homas et al.(2019. In the present case, 1 1
the introduced residual mode corrections&i)(modify the Ly C,w? Cr(1 + k2)2w?2
effective capacitance of the pair of piezoceramic patches ! v
by a constant flexibility and a frequency dependent inertia 1 1 1 262
contribution from the non-resonant modes. This means f%r Co\ 252 Crwy | (1+ £2)
that the effective capacitance varies with the frequency as i i
discussed ilBerardengo et al(2016. At resonance in mode I 1 1
r, the effective capacitance can thus be determined as Crw? Cr(1+ k%)2w?
1 R R, R, (L/L,)?
CpL=0C— 7 (88) (L/Ly)

whereby the residual mode corrected squared modal EMCC

can be defined as .
present case, the modal shunt components are determined

by the balanced calibration method4gsberg and Krenk

As demonstrated in the later benchmark examples, tiig1 ), based onthe equal modal damping calibration for the

residual mode corrected modal EMCC approximately equé}éned mass dampeh(-(enlk, 2009. The electric qomponent;
the effective EMCC in72), with a minor deviation due to of the modal shunt circuit are therefore determined acogrdi

the approximation of the non-resonant mode representatiGn H29sberg and Krenk (2019 by the two calibration

_2
€31

Crk,

(89)

2 _
R, =

in Krenk and Haggsberd2016. However, for the derivation formulas
of the shunt tuning formulas, it is convenient to introduee t
frequency independent squared modal EMCC L,Cow?=1 , R.Chw, = 12 (95)
. 2KZ
K2 = 8l (90)
" Crky wherew, is the natural frequency of the targeted mode with

SC electrodeg},. is the modal capacitance i6), while «,.
has been defined i®().

The actual shunt inductande follows from (94) and is
conveniently written as indb)

which is only modified by the flexibility correction for the
non-resonant modes, by the modified capacitance3@). (

Hereby, the characteristic equation f&5( can be written

as

2
wy. 9 1 _
=t we, =0 Oh LOww? =1 (96)

w2 —w
in which the modal shunt circuitimpedance with the effective modal capacitance definedd8)( Hereby,
1 1 1 the resistance in95) and the inductance in9f) are
Zo(w) = Zon (@) + il (92) dgtermined by expressions similar to those for an idealized

single-mode structure Hggsberg and Krenk 2012, but

is explicitly modified by the modal inductandg. in (81). with modified capacitances, andC'y, respectively.
The calibration formulas fof.,., R, with only flexibility
Parallel shunt correction and forL, R with the full flexibility-inertia

For the parallel shunt circuit, the impedance functibp(w) ~ Fesidual mode correction are listed in the second column of

in (74) is substituted intoq2), whereby the modal impedance'able 1 Furthermore, the table provides the commonly used
function can be written as single-mode calibration/(y, R) determined by the squared

1 ) 1 modal EMCC in 87) and resulting blocked capacitancg”

- oy 93) of the pair of piezoceramic patches.
Zy(w) R, wL, (93)

introducing the modal inductance and resistance as Series shunt
1 1 1 For the series shunt circuit, the modal impedaficéy) is
L, -7 + L_; , r=R (94)  obtained by substitution of7@) into (92)

Any preferred calibration procedure can now be used to iwL,. (R +iwl)

determine the modal inductan£e and resistanc&,.. In the Zr(w) = iwL! + (R +iwl) ©7)
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As for the parallel shunt, this modal function is approxietht to have a significant effect on the evaluated squared modal
by the format EMCC «2 in (90), as also discussed Werardengo et al.
Z»(w) = Ry +iwL, (98) (2019. An even more accurate evaluation of the squared
effective EMCC is however obtained by the squared modal
MCC «2 in (89), where the modified capacitancg, in
8) contains both the flexibility correction kY, in (86) and
the inertia correction directly bi!.. The only approximation
associated with this coupling coefficient is the truncation
introduced in the derivation of the residual mode compasient
1 1 1 R in (81), see details ilkrenk and Hggsber§2016. Thus, itis
I =7 + o R, = m (99) investigated in the next section by two benchmark examples
! ! how accurately the representation of the squared effective
where the inductance., is defined as for the parallel EMCC by
shunt in @4), while the modal resistanck, is additionally K7 ~ K2 (103)

affected by the .mod.al mductance correctié. Agam, captures the influence from residual vibration modes.
the lloalance_d cgllbratlon |hlragsberg_and KrenKZOla IS Assuming k2 = k2, an alternative calibration procedure
app“ed.’ which in the present notation gives the fOHOW'r_‘gased on the SC and OC frequencies of the structure can then
calibration formulas for the modal components of the serigs, .<i-blished. as demonstrated in the following

shunt, ’ .

similar to the actual shunt irv). The modal impedance in
(97) is separated into its real and imaginary parts, where
the frequency-independem®, and L, are obtained by

omitting terms containind??. The electrical components of
the modal shunt impedance are then obtained as

The characteristic equation resulting fro®5) is now
expressed in terms of the squared effective EM&Cand

L.Crw? = !  » R.Crw, = 2“32 - (100) the modified capacitanc€;, via elimination ofée3, /&, by
(1+~&7) (1+~3) (89) and (103, and of L’. by (88). Hereby, the characteristic

. o equation can be written as
The actual shunt tuning then follows by consideriBg)(
2, .2 2
;

(89), (99) and (LOO Kowiw 9 (w? —w?) + w

w2 — w? - oL iwZsp(w)C,

o N

=0 (104)

S

1 L\’
2 _ —
LCLw; = (1+r2)% + K2E R=R, <L,.) (101) The optimal shunt inductance is now based on the squared

effective EMCC 2, while the resistance is subsequently
which is seen to depend on the residual mode correctéerived from the squared modal EMGE. Thus, the present
squared modal EMCC, while the parametgr in the calibration procedure depends on two effective coupling
inductance tuning formula, represents the difference etw coefficientsx? andx?2.
2 2
k7 andks,
Parallel shunt
2 2 1

=kl — K] = S T 2L O (102)  For the parallel shunt circuit, the inductantés determined
T by (96). When the modified capacitance, is eliminated

The parametef depends on the difference between unity ani@d terms of the squared effective EMCE by (89) and
the ratio of the modal capacitan€g to the inertia correction (103, with the normalised modal stiffness expressedas
1/(w2L"), and thereforg — 0 when the inertia correction m-w;, the shuntinductance can be represented as
becomes small relative to the modal capacitanceéAs m.
(107) is furthermore multiplied by:2 , the term is negligible L= 53577- (105)
and can be omitted in the tuning of the series connected 31
inductance. The optimal calibration formulas both with angh this expression, the normalised modal mass may
without the flexibility and flexibility-inertia residual nie  often be estimated quite accurately from the vibration form

corrections are summarized in last columrTable 1 of the structure, while the squared effective EMGE
is determined by 12). The resulting plane stress-reduced
Shunt Tuning Based on the Effective EMCC piezoelectric coupling coefficient, is further specified for

) . ) _ the particular piezoceramic patches throug#) @nd wiring
The squared effective EMCE; defined in {2) is commonly py (56) and 5) for respectively SP-PW and OP-SW pair of
used as the governing parameter in the calibration of regongatches.
shunt circuits. It is a convenient parameter, as it can bepnce the inductancd. has been determined, a pure
determined experimentally by simple dynamic tests inthe SCshunt is constructed, as indicated Figure 4b) with
and OC limits and thereby takes actual device imperfectiops— (. Hereby, two new resonant frequencie and w?
into account. However, the squared effective EMCC ismerge around the original SC frequency. Expressions
typically represented by the squared modal EMEECIn  for these two frequencies can be determined by inserting
(87), evaluated for a single-mode of the structure withoyhe expression for the inductand@sy into the characteristic
any residual mode correction. As demonstrated in the Ia@(ﬁuaﬂon 104 and considering the expressions for the
analysis of two benchmark examples, the approximatiggsidqual mode corrected modal EMCC89) and ©0),

kg =~ 12 becomes rather inaccurate when the contributiqghereby the following quadratic equationds is obtained,
from non-resonant modes is substantial. In particular, the

flexibility contribution from the residual modes can be show w — (2 + kHwiw® +wi =0. (106)
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Table 2. Tuning procedure based on the effective EMCC for when introducing §9), (103 and k, = wf_m,.. Thus, the
paraliel and series shunt circuits. _ shunt resistance can be obtained by the expression
Parameter Parallel Series
m m 2
I K2 o L — o MWy 2k2 L
U+ 22 e o L (112)
wr [ 1 Wy 2k , . , .
R K2 m_72w’ \/ 52 K2 m_72w’ : KTQ = which besides the normalised modal mass the resulting
€31 K &1\ (L+A7) plane stress-reduced piezoelectric coupling coefficignt
Initial step: and the squared modal EMCE?, also depends on the
' o 92 squared effective EMCCk? through the ratioL/L,.
K2 = e Fig However, while the calibration of the inductance must
o w €31 be calibrated rather precisely because it governs the
Determine: ) shunt frequency, the corresponding shunt resistance may
Wi, wo , KZ= (Wi —w-)” subsequently be approximated by assumingL =~ 1, as
Ww— the shunt performance is less sensitive to deviations in the

resistance. The approximated tuning formulas for the serie

. ) connected resistance and the corresponding expression for
The product and sum of the solution§ andw? can be hq inductance are listed in the last columiTable 2

written as For both the parallel and series shunt circuits, accurate
W =wt | W 4w = (24 k2wl (107) calibration of the inductance and resistance can be adahieve

from the effective EMCC only, when the inertia correction
and elimination ofw? between these relations gives thés significantly smaller than the flexibility correction

modal EMCCk? as 1/(w?L!) << C!, wherebyk, ~ k.. This is often the case
) for the lower and well separated vibration modes, while
K2 — (Wi —w-) (108) the influence of the inertia correction may increase for
T . - . o
Ww— the higher and closely spaced modes. It is beneficial to
The shunt resistance then follows frof§| as basg the shunt tuplng on the Qf_fecuve_ EMCC only, as one
avoids the evaluation of an additional eigenvalue problem o
1 experiments with the puré-shunt, which can be difficult
2 MWy . . . .
R =k 22 952 (109) to produce due the inherent resistance in both synthetic and
31 T

purely passive inductors.

whereC,. has been eliminated bpQ) andk, = w?m, has

aga_lin been _used. As_ for the inductanbgin (109, the Error estimate

resistanceR is determined by the normalised modal mass

and the resulting plane stress-reduced piezoelectridiogup The error arising from the use of either a single-mode
coefficiente2,, while x2 should be used foR instead of 'epresentationsg or the method with pure quasi-static
k2. The tuning formulas for the optimal parallel connectegorrectionss? for the shunt circuit calibration can for the
inductance and resistance based on the effective EMCC Rsallel shunt be represented by the ratfg/xZ, which is

For the series shunt, this ratio provides a good estimate of
Series shunt the error, although it is not entirely unity because of the

truncations introduced for this shunt. Thus, the necesdity

For the series shunt circuit, the same approach is used. 108, 4ing both the flexibility and the inertia contributien

inductance’ _is c2a|ibrated_ by the ex_pres_s_ion ibA(D), wr_\ere from the non-resonant modes can be evaluated by comparing
the assumption? ¢ < 1 yields the simplified expression the different squared modal EMCCsZ, «2 and #2 with

the squared effective EMCG?2, as demonstrated in the
following benchmark examples.
. _ . In the shunt tuning formulas ifable 2 the effect of
which only contains the squared effective EMCE  haying, respectively, an SP-PW or an OP-SW configured
from (103, the normalised modal mass:. and the pair of piezoceramic patches is directly seen to be
squared resulting plane stress-reduced piezoelectrigiogu governed by the corresponding resulting plane stress-
coefficient e3,, while Cy, is eliminated by 89), (103 reduced piezoelectric coupling coefficiert;. The SC and
and k, = wim,. Again, the pureL-shunt with R =0 in  oC frequencies and thereby the squared effective EMCC
Figure 4b) is constructed and the two natural frequenciggj|| pe the same for the structure with respectively a pair of
wy andw_ are determined numerically or experimentallyyatches in SP-PW and OP-SW configurations. Consequently,
The shunt resistance is given by the expressionlbilf), the squared modal EMCE will as well be identical for the
in which the modal resistande,. from (100 is scaled by the 1y configurations. Finally, since the normalised modalsnas
apparentinductance ratio/ L., where the modal inductance;,, is also independent of the poling and wiring of the pair
in (100 alternatively can be written as of piezoceramic pacthes, it is found that both the optimal
my inductance and resistance for the OP-SW pair of patches
W (11)  are four times as large as the corresponding values for the

my
L=x?

i — 110
AT 2R, (110)

2
L, = k;
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SP-PW patch configuration. This is because the resulting
plane stress-reduced piezoelectric coupling coefficient f
the SP-PW and OP-SW pairs of patches are respectively
2e31 andesy, see b6) and 65). Hence, ags; is squared in

the denominator of the tuning formulas Tlable 2 a factor
four occurs between the shunt tunings of the two respective
pair of patches configurations. Trhomas et al.(2009 and
Lossouarn et al.(2017, the same cantilever beam with a
single pair of respectively OP-SW and SP-PW piezoceramic
patches is analyzed. Considering the corresponding optima
shunt tunings based on experiments, it is approximately
found that the OP-SW configured patches cause four times
larger optimal inductance and resistance values compared t

the SP-PW configuration. Figure 5. Geometry of cantilever beam, with one pair of OP,
surface bonded and SW piezoceramic patches.

Benchmark Examples

In this section, the balanced calibration procedure basedfpje 3. Dimensions and material properties for cantilever
the modal and effective EMCC, respectively, are analyzegbam and piezoceramic patches.

It is noted that only one shunt tuning will be provided in Beam Piezo
the examples as the two methods give almost the samMggngth (mm) I 170 L, 25
tuning values. The small deviations are only due to theyigth (mm) b 20 b 20
approximation {03. Thickness (mm) to 2 tp 0.5
The implemented FE-model enables comparison with

shunt tuning methods from benchmark examples in theDensity (kg/n?) p 2800 Pp 8500
literature concerning optimaRL-shunt tuning. The two Young’'s Modulus (GPa) £ 72 E, 66.7
examples of this section consider a cantilever beam, aedlyz Poisson’s ratio (-) v 0 Vp 0
by both Thomas et al. (2009 2012 and Ducarne et al. ] _ o

(2012, and a plate analyzed bgardonio and Casagrande Piezoelectric coefficient ()~ ?m/V) ds1  -210

(2017. In both cases the structure is equipped with aBlocked dielectric coefficient (F/m) €35 20680

single pair of piezoceramic patches, configured either as OP:; = 8.854 x 10~ !2F/m, sed EEE inc. (1989

SW or SP-PW. The present examples apply the particular

configurations from the benchmark cases, although the SP-

PW configuration is seemingly adequate, as it leads to fabnding of the piezoceramic patches, whereby the two inner

times smaller inductances and resistances than for OP-SWectrodes of the patches are connected. The pair of pagches
As experimental results are available for the cantilevefiodelled as described in the first section, where the regulti

beam example, it can be used to verify the establishedpacitance and plane stress-reduced piezoelectriciogupl

numerical model as well as assess the effect of using beagefficient can be determined by5).

instead of plate elements for the modelling of plate-likarbe  The dimensions and material properties of the beam and

structures. For the subsequent plate benchmark presenigdpiezoceramic patches are giveriTable 3 A vanishing

by Gardonio and Casagrand¢2017, the influence of pgjsson’s ratio is assumed for both patch and beam, whereby

the non-resonant modes are investigated by a thorougl present results can be compared to the numerical results

parametric study. Therefore, this example constitutesoal goror the beam model iThomas et al.(2009. In the original

opportunity to compare the benchmark results with thgperimental design, an additional tip mass, = 4.2g is

present calibration procedures, in which the presenceeof thqded for excitation purpose. This mass is therefore also

non-resonant modes are accounted for explicitly. added to the diagonal element of the mass matrix for the
_ transverse dof of the center node at the free end of the beam.
Cantilever beam Finally, the pair of piezoceramic patches is placed with a

The first example concerns the cantilever beam with hrizontal offsetofr;, = 0.5mm relative to the fixed support.
single pair of OP-SW piezoceramic patches, for which the The cantilever beam is discretized By x 2 plate ele-

SC and OC frequencies and the associated modal EM@®nts, while the piezoelectric patches are each represente
are determined both numerically and experimentally By 5 x 2 patch elements. The corresponding beam model
Thomas et al.(2009. The optimal tuning of the electronic (Hggsberg and Krenk2015 with 41 Bernoulli beam ele-
components for bothR- and RL-shunts is provided in ments and 5 (1D) patch elements is used for comparison. It
Thomas et al. (2012, while the optimum design andcorresponds to the model ifhomas et al.(2009 with 41
placement of the piezoceramic patches are analyzed bgam elements, with 5 elements containing the electrome-
Ducarne et al.(2019. The geometry of the cantilever beanthanical coupling to the pair of patches and it reproduces th
can be seen iffigure 5 The single pair of ideally bonded first two vibration modes with sufficient accuracy.

OP piezoceramic patches (red color) are placed in seriedn order to verify the current electromechanical piezo-
with a shunt circuit (blue color) with impedanggy, (w). The plate model, the first two SC and OC frequencies are
beam is conductive and a conductive adhesive is used for ttetermined. They are summarized Table 4 which also
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Table 4. SC and OC frequencies, modal EMCC and shunt
circuit calibration for modes 1 and 2 of a cantilever beam, using
a beam and a plate model.

M odel A

Shunt flHz]  f[HZz] K L[H] R[kQ]

Plate

Parallet 991.0 1619

Serie$ 48.93 4936 0.13 957.0 55.85
— Paralle? 1156 1749
§ Serie§ 4893 4936 014 44,5 7000
S Beam

Series 48.93 49.39 0.14 1021 61.69

Series 48.96 49.42 0.14 1131 61.56

Experiment

Seried 51.64 52.17 0.14 1020 58.6

Plate

Parallet 21.26 226.2

Series 337.0 3403 0.14 20.45 8.702
N Parallef 24.36 2425
§ Seried o370 3403 015 50050 1061
S Beam

Series 337.1 340.7 0.15 21.84 9.63

Series 337.1 340.7 0.15 23.81 9.37

Experiment

Series 337.0 3402 0.14 239 8.65

* Present model with residual mode correctien)

9 Present model without residual mode correctieg) (
! Tuning based on theory ifihomas et al.(20129) (ko)
2 Experimental results fromihomas et al.(2019) (k.)
3 Final values not measurddhomas et al.(2012

Table 5. The effective EMCC (x.) and the ratio between this
squared and the squared modal EMCC, with (x2 ) and without
(k2) residual mode correction.

Mode k.  w§/we (k1/k2)' KL/Ke
1 01330 1.1661 1.0694  1.0000
2 01405 11457 1.0682  1.0001

Lk from beam model.

captured by the simpler beam model. The experimentally
obtained SC and OC frequencieShpmas et al, 2012

are for the first mode slightly larger, while the mode
frequencies are in very good agreement with the numerical
results. Significant differences are found between the inoda
EMCCs x; and kg with- and without residual mode
correction, respectively. Furthermore, the corrected ahod
EMCC k, from the beam model is seen to deviate from
the corresponding EMCC determined by the plate model,
demonstrating that the influence from the residual modes
depends on the model accuracy. The effective EMCC based
on the experimental data is expected to correspond well
with the modal EMCGCx . However, it is seen to be larger
for the first vibration mode, due to differences between the
associated SC and OC frequencies. For the second vibration
mode, the SC and OC frequencies are in better agreement,
whereby the effective EMCC determined by2) is more
accurately represented ly, .

Comparing the values of the shunt resistances and
inductances inTable 4 shows that the spill-over from the
non-resonantresidual vibration modes has a significaateff
on the calibration. For both vibration modes, the relative
deviation is approximately 15% on the shunt inductance
between the calibration with and without residual mode

contains the experimental and numerical frequencies r thorrection for both series and parallel shunts. Because of

first bending modes reportedithomas et al.(2009.

this deviation in inductance, substantial changes in the

The optimum series and parallel shunt tuning of theorresponding resistance are also observed. It is noted tha
pair of piezoceramic patches, based on the present piettee final electronic components based on experiments are not
plate model, is now determined with and without residuaheasured, but merely stated Tinomas et al.(2012 to be
mode contribution. The results are shown in the firsiose to the theoretical values. This indicates that a peeci
rows of Table 4 for modes 1 and 2. The table also shunttuning has not been obtained prior to the experiments.
contains the optimal series shunt tuning with residual modeThe effective EMCC'’s for the first two beam vibration
correction for the simple beam model. For comparisanodes are provided in the first column Bble 5 Further,
Table 4 also presents the optimal experimental shumiie ratio between the squared modal EMCCs and the
tuning (Thomas et al, 2012 (superscript 2), the theoreticalsquared effective EMCCs are compared in the second to
tuning based on the tuning formulas without correctiolast column ofTable 5 It is found that the ratio between
(Thomas et al, 2019 (superscript 1) and numerical beamsZ (without correction) and the squared effective EMEE
model described iffthomas et al.(2009. Finally, the modal exactly accounts for the observed error in the inductance
EMCCs &, in Table 4 are calculated respectively withfor the parallel shunt, while it accounts approximately for

(89) and without 87) residual mode correction, while's
provided for the experiment are the effective EMCR)(

the error for the series shunt, séeble 5 It follows from
the last two columns offable 5 that the residual mode

The reported numerical results based on the tuniggrrected squared modal EMGE, almost exactly recovers
formulas in Thomas etal. (20129 are obtained by the the squared effective EMCEZ. Whenx7 is determined by

numerical beam model describedTimomas et al.(2009.

the beam model, the deviation is around 7%, while it exactly

They are seen to be in good agreement with the frequencieatches:? for the plate model. This shows that the accuracy
determined by the beam model iH@gsberg and Krenk of the numerical model also influences the residual mode
(2015. The reason for the slightly lower frequenciesorrectionand thus the subsequent shunt tuning.

is mainly due to the omission of the patches bending The effect of including the residual mode contributions in
contribution in the present model. Good agreement is aldwe shunt tuning is now illustrated by frequency response
observed for the determined SC and OC frequencies for thiets in Figure § for the cantilever beam exposed to a
plate model, where the small decrease of the OC frequer@rmonic tip load with excitation frequencies around the fir
occurs because of plate effects at the supports, which is aod second resonant frequencies. The response is detdrmine
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Figure 6. Frequency response around modes 1 and 2 of a
cantilever beam exposed to a harmonic tip load; (a,c) tip
displacement, (b,d) voltage response. Blue lines indicate
parallel and red lines series shunts, tuned respectively with
(solid) and without (dashed) residual mode correction.

Table 6. Damping ratios and amplitude reductions of cantilever
beam with optimally calibrated parallel and series shunted
piezoceramic patches, for resonant modes 1 and 2.

Model Corrected Non-corrected
Shunt Ga[%] A | C9I%] Adp
Plate
— Parallel 4.88 488 22.867.39 2.36 17.86
9 Series 491 4.85 22.7%8.90 2.40 17.80
§ Beam
Parallel 6.28 3.48 20.987.39 2.36 17.86
Series 6.83 3.57 21.0t18 90 2.40 17.80
Plate
« Parallel 5.10 5.10 24.2%7.49 2.70 20.28
e Series 5.13 5.07 24.5p8.85 2.76 20.23
§ Beam
Parallel 6.55 3.66 22.337.49 2.70 20.28
Series 7.14 3.77 22.3%8.85 2.76 20.23

0 Without residual mode correction

piezoceramic patches
Aip = 20log(Asc/Aopt) (113)

It can be seen from the attained damping ratios and
amplitude reductions iable § that the inclusion of the non-
resonant modes significantly improves the shunt calibmatio

The amplitude reduction is found to decrease about 35%
from the best to the worst shunt calibration. It can also be
seen that equal modal damping of the emerging resonant
modes is obtained exactly for the parallel shunt with residu
by solving the full system of equations for the paralléb)( mode correction, while almost insignificant deviationsurcc
and series{7) shunts with optimal componentsTable 4  for the corresponding series shunt, due to approximations
It can be seen fromFigure 6 that the calibrations made to simplify the tuning formulas. These results illatgr

without residual mode correction (dashed lines) caugée poten_tial i_mprovementin common calibration methods,
significantly larger maximum amplification of both thewhen taking into account the influence from non-resonant

tip displacement and voltage, compared to the tuniﬁ’. rat.ion modes. However, small discrepancigs occur vvhen
including the contribution from the non-resonant modd&€ Simplified beam model is used to obtain the desired
(solid lines). In particular, for the voltage ampliﬁca’tionleve_I of damping or vllbrat|on rmfuga’uon. This |IIustratgs
an almost flat plateau around both resonant modes is <& importance of haV|_ng a suff|C|en_tIy accurate numgrlcal
for the calibration with the residual mode correction. Thl%md_eI for the dy_namlc structure, in order to obtain a
small deviations from a completely flat plateau are causBfCIse sh_unt tuning. For _the_ beam based_ shun_t tuning
by the inclusion of structural damping in the model aantho_ut residual mode CO.ntrIbL.Jtlon, the dampm_g ratios and
from the fact that we do not have an ideal modal |oa&mplltude reductions are identical to those obtained fioen t
which is not accounted for by the calibration method. Thlate model. _Thi_s is because the more sub;tantial r_esidual
structural damping is represented by Rayleigh damping withode corref:tlon_m th_e plate model is now o_mltte_d, while the
the damping ratio§, = 0.34% and¢s — 0.28% for the first corresponding vibration modes are almost identical.

two vibration modesThomas et al, 2009. The damping _.

introduced by the shunted piezoceramic patches can %lamply supported plate

assessed either directly by the obtained damping ratiosTdre second example concerns a simply supported plate
from the reduction in vibration amplitude, as summarized ianalyzed byGardonio and Casagranq2017), with a single
Table 6 The damping ratios are determined by solving th8P-PW shunted pair of piezoceramic patches placed with a
full complex eigenvalue problems for the paralléb( and small offset of(1/281,,—1/28l,) to the plate center. The
series {7) shunt circuits. The table contains the two dampinglate geometry and the geometry and position of the pair
ratios for each mode, associated with the two resonaoftpiezoceramic patches can be seerfrigure 7 while the
frequencies emerging around the original resonant frequerdimensions and material properties are provideddhle 7
when introducing the resonant shunt circuit. It is noted thé& is noted that the plate is conductive and that a conductive
the two damping ratios imable 6 are ordered according adhesive is used for the bonding of the piezoceramic patches
to the magnitude of their associated natural frequencieghereby the inner electrodes are connected. The structural
The amplitude reduction is obtained as the logarithm to tldamping is assumed to kg = 0.2%, and side lengths of
ratio of the maximum amplification of the structure witlthe pair of patches arg/5 of the corresponding lengths of
SC patch electrodes to that with optimally shunted pair dfie plate {,. ., = l.,,/5). As the piezoceramic patches in
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Table 8. Fundamental frequencies of simply supported plate
with (f) and without (fo) short-circuit piezoceramic patches,
modal EMCC and optimal shunt tuning.

Shunt folHz]  f[HZz] K L[H] R[kQ]

Parallef 0.070 33.87 76.89
Paralle? 39.05 35.73 0.074 36.92 80.31
Parallef ~39.1 ~37.2 - ~34 ~160

* With residual mode correctiom:()
0 Without residual mode correctior()
! Results fronGardonio and Casagrand2017

Figure 7. Geometry of a simply supported plate with one pair
of SP-PW piezoceramic patches.

10%¢
Table 7. Dimensions and material properties for the plate and —_
piezoceramic patches. e I N
Plate Piezo 5
Length (mm) l, 414 lpe 82.8 o} -
Width (mm) I, 314 1, 628 o' S Modes
Thickness (mm) to 1 tp 0.5 © = Moge 3
nter h along x-axis (mm . B a - Mode 4
Center patch along x-a _s (mm) Ze ??lz € 2| £ Mode 5
Center patch along y-axis (mm) Ye  3aly ~ Mode 8
~ Mode 7
Density (kg/n¥) p 2700 pp 7600 7/~ Mode 8
’ -3 L L
Yogng S,Mod_ulus (GPa) E 70 E, 50 0. 14 % 14 28 x 78 56 x 56
Poisson’s ratio (-) v 0.33 v, 0.35 Plate mesh
Piezoelectric coefficientl()~'?m/V) d3;  -150 Figure 8. Relative error on first eight SC frequencies of piezo-
Free dielectric coefficienti()~?F/m) €55 29.2 plate structure (reference, refined mesh 112 x 112).

the present example are relatively thick and placed far froim the first section, with the resulting capacitance and @lan
the boundary simple supports, the omission of the patchgs ' g cap ?

bending stiffness and transverse inertia becomes sigmific stress-reduced plezoele_ctrlc cpupllng coefficient deitezah
Thus, the additional mass from the pair of piezoceram em (56). The blocked dielectric constant
patches is lumped and included at the relevant dofs in the
system mass matrix. Hereby, the present results become
comparable with those iGardonio and Casagrand2017). is determined from the free dielectric constéfjtin Table 7
Good agreement between the base plate frequenfjes (

In Gardonio and Casagrand2017), the optimal calibra- can be observed ifable § while the SC frequency of the
tion of the parallel RL-shunts electronic components igiezo-plate structuref( is seen to be lower using the present
determined for a particular load case, described as a r&B-model. This discrepancy occurs because of the omission
on the roof load scenario. The solution is evaluated usingé the patches bending stiffness. Therefore, the presently
mode shape expansion, with a gradually increasing numiatermined SC frequencies will all be lower than actual
of modes. The solution is seemingly converged when 1%i@quenciesGardonio and Casagrand2017). The present
modes are included. The bottom row ®fble 8 provides tuning of the inductancé. with residual mode correction
the fundamental frequencies of the plate, both with ansl seen to be in good agreement with the tuning obtained
without SC patches, and the optimal tuning componertty Gardonio and Casagrand€017, while a significant
from Gardonio and Casagrand@017. The two top rows deviation can be seen for the shunt resistaRc&his agrees
of the table summarize the corresponding results obtainedll with the fact that the present tuning formula for the
by the present balanced calibration procedure, with amtHuctance is identical to that i@ardonio and Casagrande
without residual mode correction. The present FE-modgl017), while the present resistance & smaller than in
consists 0R8 x 28 plate elements an@l x 6 patch elements, the previous study. The slightly smaller inductance is due t
whereby the relative errors on the first eight SC frequencitree differences in the SC frequencies, while the deviation o
of the coupled piezo-plate structure is below one percethge resistance is dominated by the different tuning formula
as demonstrated by the convergence curvésdare 8with  based on free vibration properties in the present procedure
reference values obtained by a fine mesh wiit? x 112 and a specific forcing ifcardonio and Casagrand2017).
plate and24 x 24 patch elements. Furthermore, the straighih Table 8the calibration without residual mode contribution
lines in the logarithmic scale dfigure 8indicate quadratic (Lg, Rg) deviates about 9% for the inductance and 4.5% for
convergence. The SP-PW pair of piezoceramic patchesthe resistance, which is slightly less than in the previous
modelled according to the piezo-plate coupling subsectib@am example. This is because the patches in the present

Egg = Egg - 2d31€31. (114)



17

Figure 9. Plate modes 1-8 for a bare plate (a-h) and plate with
a SC pair of piezoceramic patches (i-p).
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Figure 10. Frequency response around mode 1 for a plate
(dashed black line) with a SC (green dot-dashed line) and
parallel shunted pair of patches, optimally tuned with (blue line)
and without (red line) residual mode correction.

shown subsequently, the low structural authority causes th
shunt performance to be more sensitive to deviations from
the optimum shunt tuning. The low structural authority
implies reduced effective EMCCs, as the separation of the
SC and OC frequencies irv?) is governed by the term
(e2,/Cyr)wwT in (71). A significant effective EMCC and
thereby large damping is attainable in the present plate
example, when the pair of patches is placed optimally with
respect to the deformation pattern of the concerned vilorati
mode.Figure 9shows the first eight vibration modes of the
base plate (a-h) and the plate with the SC patches (i-p). It
is seen that the pair of patches is placed optimally for the
first vibration mode (a,i), while the authority is reduced fo
the second mode (b,j). To realize a desired level of damping
by an indirectly placed pair of patches, requires eithaydar
patch dimensions or improved electromechanical coupling,
in which case the influence from residual modes will increase
as well. Thus, it is important in these cases to include
the influence from residual vibration modes in the shunt
calibration. This is illustrated irFigure 1Q which shows
the dynamic amplification curve for harmonic distributed
transverse load with constant spatial intensity. The figure
shows the resonance peaks for the base plate (black dashed)
and the plate with the SC pair of patches (green dashed-
dotted), and the curves obtained by shunt with (blue) and
without residual mode correction (red). It is seen that
the dynamic amplification is doubled, when neglecting the
residual mode correction compared to the calibration with
correction. In the beam example, a factor of two can also
be observed between the dynamic amplifications associated
with the shunt tunings with and without residual mode

plate example have reduced authority, whereas the lar§éfrection, seé-igure §a). However, in the beam example
capacitance of the present SP-PW patches configuratiod§ relative deviation on the shunt tuning is significantly
equa”ed by the CO”‘esponding'y |arger p|ane Stress_mjudarger than in the p|ate examp|e. This indicates that thatshu

piezoelectric coupling coefficient, se&df and €5).

tuning is more sensitive to deviations, when the piezocaram

The magnitude of structural authority by the piezoceramR,atChes have less structural authority. It should also bedno
patches is determined by the relation between stiffnesss minat the frequency response plots are produced by a dynamic
and dimensions for the host structure and the patches in B@int- and distributed load, respectively, in the beam and
conditions. In the present case the low authority is cauged Blate examples, which as well influence the responses.
the small patch to plate area ratio, whereby the contributio Optimum calibration for the parallel shunt circuit with
from non-resonant modes becomes less pronounced tlaad without residual mode correction is now determined
in the previous beam example. However, as it will béor the first eight vibration modes with the corresponding
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Table 9. Optimum parallel shunt tuning and attained damping Table 10. The squared effective EMCC and the ratio between
ratios, with (w) and without (wo) residual mode correction, for this and the squared modal EMCC with flexibility,
the first eight vibration modes of simply supported plate. flexibility-inertia and no residual mode correction.
Mode f[Hz] K L[H] R[kQ] ([%] Mode Ke kK3/K2  KZ/KE K3 /K2
1 w 3573 0.070 33.87 76.89 257 257 1 0.0699 1.0899 1.0007 1.0000
WO ’ 0.073 36.92 80.31 3.95 1.19 2 0.0156 1.0917 0.9976 1.0000
) W £0.03 0016 6.740 1529 066 0.66 3 0.0172 1.0974 1.0029 1.0000
wo °°7° 0016 7.358 160.3 1.08 0.23 4 00744 10891 1.0006 1.0001
5 0.0068 1.0442 0.9540 1.0000
3 W gy 0017 3.488 9929 0.71 0.71 6  0.0074 1.1343 1.0364 1.0000
wo 0.018 3.827 1049 1.18 0.23 7 0.0699 1.0826 0.9939 1.0002
4 w 153.4 0.074 1.840 16.74 2.72 2.71 8 0.0050 0.9985 0.9123 1.0000
WO ’ 0.078 2.003 1759 131 0.21
5 w 163.1 0.007 1.698 153.5 0.33 0.33 1 : : : —
WO ' 0.007 1.772 185.1 0.37 0.21 ! i
6 w 2978 0.007 0.801 90.90 0.36 0.35 081 /’ \
wo © 0008 0908 1168 050 020 g /' Mode8
S W a5 0070 0756 1134 255 255 = /
WO ’ 0.073 0.819 1199 124 0.21 §O
g W 475 0005 0772 107.8 027 0.27 =
WO ' 0.005 0.771 1698 0.23 0.24 02}
w  With residual mode correctiom ()

wo  Without residual mode correctioR()

) ] Figure 11. Frequency response around the seventh resonant
mode shapes shown ﬁ"gl.”e qi-p) for SC patch electrqdes. frequency of a plate with pair of piezoceramic patches; SC
The results are summarized Tlable 9 where the provided (green dot-dashed line) and shunted optimally with

modal EMCCs arex = k1, in (89 with residual mode flexibility-inertia (blue line), flexibility (dashed magenta line) and
correction andk = kg in (87) without correction. The last without (dotted-dashed red line) residual mode corrections.
columns of the table show the two damping ratios for the

targeted vibration mode, determined from the full complex

eigenvalue problem invg). (k2) is determined very accurately by the squared modal

The results infable 9indicate that considerable dampingepmcc (x2) with residual mode correction. Also, the squared
is realized only for modes, 4 and 7. This is due to the modal EMCC with pure flexibility corrections) recovers
low structural authority of the pair of piezoceramic pathehe effective values rather precisely, in particular foe th
and its indirect location with respect to the deformatiofirst four modes. For modes-8 the importance of using
form of the five remaining vibration modes iRigure 9  the more accurate flexibility-inertia corrections incress
Some of the vibration modes frigure 9are very sensitive especially for mode$, 6 and 8, where the errors on the
to the actuation by the pair of patches. For example, ¥yuared modal EMCCs:f) are significant. The latter may
modes5 (e,m) and6 (f,n) the symmetry in the patternpe due to the indirect placement of the pair of patches
is slightly altered by the presence of the patch, while fgith respect to these modes. Generally, the importance
modes7 (g,0) and8 (h,p) the shape is more drasticallyof using the more substantial flexibility-inertia corrects
changed. As it was observed for the damping of the firidr the non-resonant modes increases for resonant shunt
vibration mOdeS, the deviation on the shunt CalibratiorEWh damp|ng of h|gher and C|ose|y Spaced vibration modes with
neglecting the residual modes, leads to a significant defuningdirectly placed patches. The ratio between the squared
and thereby smaller minimum damping ratios of the firshodal and effective EMCC seems to correlate with relative
eight vibration modes, seEable 9 There also seems to beerrors observed for the (parallel) shunt inductance. It is
a connection between the magnitude of the modal EMGgr instance noted ifable 10that x2/x2 indicates a 9%
and the deviations observed for shunt tuning without reslidutelative error on the inductance, while for the first viboati
mode correction. This supports the previous conclusion thaode the same order of error has been observed between
the effect of the residual mode correction is governed by the and .. The error associated with the pure flexibility
apparent structural authority of the piezoceramic patches correction for the non-resonant modes observed for mode

The influence of using the flexibility and flexibility- 5-8 is now analyzed by considering the frequency response
inertia corrections, respectively, for the shunt tuning ba to a harmonic uniformly distributed load around the seventh
analyzed by looking at the relative errors on the squaregsonant frequency shownligure 11
modal EMCC, withoutx2 and with flexibility 2 and It can be seen fromFigure 11 that the -calibration
flexibility-inertia <% residual mode corrections, in respecwithout residual mode correction (red dotted-dashed)esus
to the squared effective EMCE?, provided inTable 10  significantly larger maximum amplifications compared to the
It follows from Table 10that the squared effective EMCCtuning with flexibility-inertia residual mode correctiobl¢e
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solid). The tuning with pure flexibility correction (magent present case, this corresponds to four times higher shunt
dashed) yields a small off-calibration, which shows thatining values for the OP-SW pair of patches for a given
it may be important to use the precise flexibility-inertidevel of attainable damping. Thus, it is often preferable to
compensation for the dynamic residual mode effects. use this SP-PW configuration, as it is notoriously difficult
this example larger levels of attainable damping could hat@ achieve the large inductances associated with damping of
been achieved for the five lightly damped modes3, 5, low-frequency structural vibrations.
6 and8) by either placing the pair of piezoceramic patches The considered benchmark examples represent a can-
more appropriately, according to the deformation pattérn glever beam and a simply supported plate, both equipped
the respective modes, or by applying several intercondectgith a single pair of shunted piezoceramic patches config-
pairs of patchess. The same position with larger patchesped in OP-SW and SP-PW, respectively. For the cantilever
lower resulting capacitance could also have been realiz¢@am, optimum shunt tuning for vibration suppression of the
whereby the effects of including the non-resonant modesfifst two resonant modes was determined and compared to
the calibration would have been more pronounced. Howevesrmer calibration results in the literatur@Homas et al,
the design, optimisation and application of several paiirs 2019. It was found that the omission of the residual mode
patches is outside the main scope of the presentwork.  correction leads to significant deviations on the shuntétrc
electronic components. The latter is directly related ® th
ratio between the modal EMCC with and without residual
mode correction. The deviation on the shunt tuning when
An FE-model for coupled piezo-plate structures wageglecting the non-resonant modes leads to a further reduc-
established, by considering the constitutive relationd ation in attainable damping. This was demonstrated directly
dynamic equilibrium equations of the plate, described Hyy the damping ratios and by the amplitude reduction from
Kirchhoff theory, in which the patch was representetiequency response curves for a particular harmonic load.
by a plane-stress assumption and its electromechanicaFor the second benchmark example with a simply
interaction. The coupling between the plate and a paupported plate and a single pair of SP-PW piezoceramic
of either SP-PW or OP-SW piezoceramic patches wasatches, the effect of the non-resonant modes on the
considered through the transformation of the electricifgrc shunt tuning was found to be less pronounced. This is
from the two patches to the equivalent moment loadRie to a smaller structural authority by the piezoceramic
on the plate. The wiring and poling are subsequentfatches. However, notable influence by the residual mode
implemented by considering the relations between the patabrrection is still observed on the frequency responseesurv
electrodes potentials and the voltage over the connectai the damping ratios, verifying that the residual mode
shunt. This reduces the number of electric equations to omesrection may be important in shunt tuning. It was found
by the introduction of a resulting capacitance and a plafier the lower vibration modes that the residual mode
stress-reduced piezoelectric coupling coefficient. Hgrile  corrections are sufficiently determined by the pure fleitibil
voltage across the shunt becomes the governing elect@ntribution, while the importance of using the flexibitity
variable in the equations of motion. inertia corrections increases for higher and closely space
A recently proposed balanced calibration procedure fegibration modes. This was illustrated by the frequency
RL-shunted piezoelectric transducers, with quasi-dynamigsponse curves at the first and the seventh vibration
residual mode correction, is implemented for the shuntedodes and the evaluation of the modal EMCC, both
pair of piezoceramic patches bonded symmetrically with flexibility and with flexibility-inertia residual mode
the plate. This calibration procedure enables precise agmrections. At last, it was shown that the deviation on the
effective calibration of the electronic shunt componeass, shunt inductances can be determined by the ratio between
demonstrated by two benchmark examples concerning betira squared modal EMCC with and without residual mode
and plate vibrations. correction and the corresponding squared effective EMCC.
A new calibration procedure based on the effective EMCIt was here demonstrated that the newly proposed residual
has also been proposed and used in the two benchm@x®de corrected modal EMCC precisely retains the effective
examples. The method was derived from a new modaMCC, which suggests that this coefficient should be used
EMCC corrected by the spill-over from the non-resonatit shunt calibration based on modal analysis.
modes. In the benchmark examples, it is illustrated that thi It is worth mentioning that the two proposed calibration
modal EMCC precisely retains the effective EMCC, herehyethods give approximately the same shunt tuning as
providing an explicit connection between the SC and Otbe corrected modal EMCC precisely retains the effective
frequencies of the coupled structure and the modal shi#¥ICC. The choice of method thus depends on whether the
tuning based on the numerical FE-model. It is further shownning is based on experiments or a numerical model and the
that the ratio between the squared modal EMCC with amgsociated computational costs. For the first balancedimoda
without residual mode correction, and the correspondirglibration procedure, the SC eigenvalue problem of the
squared effective EMCC provides the deviation in thelectromechanical structure has to be solved and a modified
corresponding shunt tuning. A simple format of the tuningtiffness matrix has to be inverted in order to determine the
formulas was obtained for the new calibration procedureesidual mode correction terms. For the calibration based o
It showed that the difference in the shunt calibration dhe effective EMCC, both the SC and OC and an additional
respectively an SP-PW or OP-SW pair of patches is simpiyird eigenvalue problem, after determination of the optim
determined by the reciprocal value of the squared resultiimgluctance, have to be evaluated. However, in many cases the
plane stress-reduced piezoelectric coupling coefficiehe inversion of the modified stiffness matrix will be associhte
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with significant computational costs, thus the new calibrat Hagood NW and von Flotow A (1991) Damping of structural
procedure, based on the effective EMCC, will in many vibrations with piezoelectric materials and passive eleait
cases be superior, also in regards of experimentally based networks.Journal of Sound and Vibration 146:243-268.
calibration. Heggsberg J and Krenk S (2012) Balanced calibration of ragona
In future works, the proposed calibration procedures shunt circuits for piezoelectric vibration contrdournal of
will be implemented in more sophisticated numerical Intelligent Material Systems and Structures 23:1937-1948.
models, allowing for even more accurate modelling dfiggsberg J and Krenk S (2015) Balanced calibration of regona
an experimental set-up or an industrial application. It is piezoelectric RL shunts with quasi-static background Hidity
expected that the new procedure with the corrected modal correction.Journal of Sound and Vibration 341:16-30.

EMCC will result in good agreement between optimumyggsherg J and Krenk S (2017) Calibration of piezoelectiic R

numerical and experimental based shunt tuning. shunts with explicit residual mode correctidournal of Sound
and Mibration 386:65-81
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