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Abstract
Global sensitivity analysis (GSA) of numerical simulators aims at studying the global impact of

the input uncertainties on the output. To perform the GSA, statistical tools based on inputs/output
dependence measures are commonly used. We focus here on dependence measures based on reproduc-
ing kernel Hilbert spaces: the Hilbert-Schmidt Independence Criterion denoted HSIC. Sometimes,
the probability distributions modeling the uncertainty of inputs may be themselves uncertain and
it is important to quantify the global impact of this uncertainty on GSA results. We call it here
the second-level global sensitivity analysis (GSA2). However, GSA2, when performed with a double
Monte Carlo loop, requires a large number of model evaluations which is intractable with CPU time
expensive simulators. To cope with this limitation, we propose a new statistical methodology based
on a single Monte Carlo loop with a limited calculation budget. Firstly, we build a unique sample
of inputs from a well chosen probability distribution and the associated code outputs are computed.
From this inputs/output sample, we perform GSA for various assumed probability distributions of
inputs by using weighted HSIC measures estimators. Statistical properties of these weighted esti-
mators are demonstrated. Finally, we define 2nd-level HSIC-based measures between the probability
distributions of inputs and GSA results, which constitute GSA2 indices. The efficiency of our GSA2
methodology is illustrated on an analytical example, thereby comparing several technical options.
Finally, an application to a test case simulating a severe accidental scenario on nuclear reactor is
provided.

1 Introduction
Numerical simulators (or computer codes) are fundamental tools for understanding, modeling and pre-
dicting phenomena. They are widely used nowadays in several fields such as physics, chemistry and
biology, but also in economics and social science. These numerical simulators take a large number of
input parameters more or less uncertain, characterizing the studied phenomenon. Consequently, the out-
put which is provided by the numerical code is also uncertain. It is therefore important to consider not
only the nominal values of inputs, but also the set of all possible values in the range of variation of each
uncertain parameter [13, 24]. In the framework of a probabilistic approach, the inputs and the output
are considered as random variables and their uncertainties are modeled by probability distributions. The
objective is then to evaluate the impact of the input uncertainties on the variability of the output. For
this, sensitivity analysis studies can be performed, using statistical methods based on code simulations
(also called realizations or observations). To choose these numerical simulations, experimental design
techniques can be used (see e.g. [11]).

Generalities on sensitivity analysis. Sensitivity analysis [35] aims at determining how the vari-
ability of inputs contributes, qualitatively or quantitatively, to the output variability. Sensitivity analysis
can yield a screening of the inputs, which consists in separating the inputs into two subgroups: those
that significantly influence the output value (significant inputs) and those whose influence on the output
can be neglected. More generally, sensitivity analysis can be divided into two main areas:
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• local sensitivity analysis (LSA) which studies the output variability for a small input variation
around nominal values (reference values);

• global sensitivity analysis (GSA) which studies the impact of the input uncertainties on the output,
considering the whole range of input variation.

We focus here on GSA and we call it in the following, first-level GSA, denoted GSA1.

Use of dependence measures for GSA1. Among GSA1 tools [25], one of the most popular
methods used in industrial applications is based on a variance decomposition of the output [38]. The
sensitivity indices thus obtained by this decomposition are called Sobol’ indices. These indices have the
advantage of being easily interpretable but are in practice very expensive in computing time (several tens
of thousands of code simulations required). More recently, tools based on dependence measures have
been proposed for GSA1 purpose [10]. These measures aim at quantifying, from a probabilistic point of
view, the dependence between the output random variable and the input random variables. Among these
measures, we can mention the f -divergence of Csiszár which, for a given input, compares the distribution
of the output and its distribution when this input is fixed, thanks to a function with specific properties
(see [9] for more details). Always on the same principle, the distance correlation is an other dependence
measure which compares the characteristic function of a couple of random input/output variables, with
the product of the joint characteristic functions of the two variables [42]. Last but not least, the Hilbert-
Schmidt independence criterion denoted HSIC [22], generalizes the notion of covariance between two
random variables and takes into account a very large spectrum of forms of dependence between variables.
Initially developed by statisticians [22] to perform independence tests, these dependence measures offer
the advantage of having a low cost of estimation (in practice a few hundred simulations against several
tens of thousands for Sobol’ indices) and their estimation for all inputs does not depend on the number
of inputs. In addition, recent work proposed by [12] showed the efficiency of these measures to perform a
screening of the input variables, from various HSIC-based statistical tests of significance. Finally, HSIC
measures can easily be extended to non-vector inputs (functional, categorical, etc.). For all these reasons,
we will focus here on HSIC measures for GSA1 of numerical simulators.

Second-level input uncertainties and GSA2. In some cases, the probability distributions char-
acterizing the uncertain inputs may themselves be uncertain. This uncertainty may be related to a
divergence of expert opinion on the probability distribution assigned to each input or a lack of informa-
tion to characterize this distribution. The modeling of this lack of knowledge on input laws can take
many forms:

• the type of the input distribution is uncertain (uniform, triangular, normal law, ...);

• the distribution is known but its parameters are uncertain (e.g., known normal distribution with
unknown mean and variance, eventually estimated on data).

In both cases, the resulting uncertainties on the input laws are referred to here as second-level uncer-
tainties. As part of a probabilistic approach, these uncertainties can be modeled by a probability law on
a set of possible probability laws of inputs or by a probability law on the parameters of a given input law
(e.g. Gaussian distribution with probability law on mean and/or variance). In any case, these 2nd-level
uncertainties can significantly change the GSA1 results performed by HSIC or any other dependence
measure. In this framework, the main purpose of second-level GSA denoted GSA2 is to answer the
following questions: «What impact do 2nd-level uncertainties have on the GSA1 results?» and «What
are the most influential ones and those whose influence is negligible?». The GSA2 results and conclusion
can then be used to prioritize the characterization efforts on the inputs whose uncertainties on proba-
bility laws have the greatest impact on GSA1 results. Note that, we assume here that the inputs are
independent and continuous random variables with a probability density function, denoted here pdf.

Practical problems raised by GSA2. In practice, the realization of GSA2 raises several issues
and technical locks. First, it is necessary to characterize GSA1 results, i.e. to define a representative
quantity of interest in order to compare the results obtained for different uncertain input pdf. Then, the
impact of each uncertain input pdf on this quantity of interest has to be evaluated. For this, sensitivity
indices measuring the dependence between GSA1 results and each input pdf have to be defined. We

2



propose to call them 2nd-level GSA indices. In order to estimate these measures, an approach based on
a "double Monte Carlo loop" could be considered. In the outer loop, a Monte Carlo sample of input pdfs
is sorted, while the inner loop aims at evaluating the GSA1 results associated to each pdf. For each pdf
selected in the outer loop, the inner loop consists in generating a Monte Carlo sample of code simulations
(set of inputs/output) and to compute GSA1 results. The process is repeated for each input pdf. At
the end of the outer loop, the impact of input pdf on the GSA1 results can be observed and quantify by
computing 2nd-level GSA. Unfortunately, this type of double loop approach requires in practice a very
large number of simulations which is intractable for time expensive computer codes. Therefore, other
less expensive approaches must be developed.
To answer these different issues (choice of the quantity of interest, definition of 2nd-level sensitivity in-
dices and reduction of the budget of simulations), we propose in this paper a "single loop" Monte Carlo
methodology for GSA2 based on both 1st-level and 2nd-level HSIC dependence measures.

The paper is organized as follows. In Section 2, we introduce HSIC measures, before presenting the
statistical estimators of these measures, as well as the associated characteristics (bias, variance, asymp-
totic law). Then, we show that these measures can be formulated and estimated with a sample generated
from a different distribution than the prior distribution of the inputs. For this, new estimators are pro-
posed and their characteristics are detailed, these new estimators being a key point for the proposed
GSA2 methodology. In Section 3, the full methodology for GSA2 is presented: a single inputs/output
sample is used, taking advantage of the new HSIC estimators. The GSA2 principle and the related prac-
tical issues are first introduced. The general algorithm is then detailed, followed by dedicated sections
focusing on major technical elements. In Section 4, the methodology is illustred on an analytical example,
thereby comparing different options and technical choices of the methodology. Finally, an application on
a test case simulating a severe accidental scenario on a nuclear reactor is proposed.

2 Statistical inference around Hilbert-Schmidt dependence mea-
sures (HSIC)

Throughout the rest of this document, the numerical model is represented by the relation:

Y = F (X1, . . . , Xd) ,

where X1, . . . , Xd and Y are respectively the d uncertain inputs and the uncertain output, evolving in
one-dimensional real areas respectively denoted X1, . . . ,Xd and Y. F denotes the numerical simulator.
We note X = (X1, . . . , Xd) the vector of inputs. As part of the probabilistic approach, the d inputs
are considered as continuous and independent random variables with known densities. These densities
are respectively denoted f1, . . . , fd. Finally, f(x1, . . . , xd) = f1(x1)× . . .× fd(xd) denotes the density of
the random vector X. As the model F is not known analytically, a direct computation of the output
probability density as well as dependence measures between X and Y is impossible. Only observations
(or realisations) of F are available. It is therefore assumed in the following that we have a n-sample of
inputs and associated outputs

(
X(i), Y (i))

1≤i≤n, where Y
(i) = F (X(i)) for i = 1, . . . , n.

2.1 Review on HSIC measures
After introducing their theoretical definition, the estimation of HSIC dependence measures and their use
for GSA1 are detailed.

2.1.1 Definition and description

To define the HSIC measure between Xk and Y (where k ∈ {1, . . . , d}), [22] associate to Xk a reproducing
kernel Hilbert space (denoted RKHS, see [3] for more details) Fk composed of functions mapping from
Xk to R and characterized by a kernel lk. The same transformation is carried out for Y, considering a
RKHS denoted G and a kernel l. The scalar products on Fk and G are respectively denoted 〈., .〉Fk

and
〈., .〉G . Under this RKHS framework, [4] defines the cross-covariance operator Ck between Fk and G as
the linear operator from G to Fk defined for all f ∈ Fk and all g ∈ G by:

〈f, Ckg〉Fk
= Cov(f(Xk), g(Y )).
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The operator Ck generalizes the notion of covariance, taking into account a large spectrum of relationships
between Xk and Y (not only linear).

Finally, the Hilbert-Schmidt independence criterion (HSIC) is defined by [22] as the Hilbert-Schmidt
norm of the operator Ck:

HSIC(Xk, Y )Fk,G = ‖Ck‖2HS =
∑
i,j

〈ui, Ck(vj)〉2Fk
, (1)

where (ui)i≥0 and (vj)j≥0 are respectively orthonormal bases of Fk and G.

Remark 2.1. In the following, the notation HSIC(Xk, Y )Fk,G is replaced by HSIC(Xk, Y ) in order to
lighten the expressions.

Authors of [22] show that the HSIC measure between an input Xk and the output Y can be expressed
using the kernels lk and l in a more convenient form:

HSIC(Xk, Y ) = E [lk(Xk, X
′
k)l(Y, Y ′)] + E [lk (Xk, X

′
k)]E [l (Y, Y ′)] (2)

− 2E [E [lk (Xk, X
′
k) | Xk]E [l (Y, Y ′) | Y ]] ,

where (X ′1, . . . , X ′d) is an independent and identically distributed copy of (X1, . . . , Xd) and Y ′ = F (X ′1, . . . , X ′d).

Independence characterization. The nullity of HSIC(Xk, Y ) is not always equivalent to the
independence between Xk and Y : this characteristic depends on the RKHS associated to Xk and Y .
To ensure equivalence between HSIC nullity and independence, the kernels lk and l must belong to the
specific class of universal kernels [32]. A kernel is said to be universal if the associated RKHS is dense
in the space of continuous functions w.r.t the infinity norm. However, the universality is a very strong
assumption, especially on non-compact spaces. Let us mention as example the Gaussian kernel (the most
commonly used for real variables) which is universal only on compact subsets Z of Rq [40]. This kernel
is defined for a pair of variables (z, z′) ∈ Rq × Rq by:

kλ(z, z′) = exp
(
−λ‖z − z′‖22

)
, (3)

where λ is a positive real parameter (fixed) and ‖.‖2 is the euclidean norm in Rq.

First referred to as probability-determining kernels [18], the notion of characteristic kernels [19], which
is a weaker assumption than universality, has been lately introduced. It has been proven that this last
assumption is sufficient for independence characterization using HSIC. In fact, when the kernels l and
lk are characteristic then, HSIC(Xk, Y ) = 0 iff Xk and Y are independent (see e.g. [41]). In particular,
the Gaussian kernel defined in Formula (3) is characteristic on the entire Rq [19].

Remark 2.2. There is no theoretical result for the optimal choice for the kernel width λ in (3). In prac-
tice, two main options are adopted for the adjustment of λ: whether the inverse of empirical variance of
z, or the inverse of empirical median of ‖z−z′‖22. In the following, for the computation of HSIC(Xk, Y ),
we choose the first option for both kernels associated to Xk and Y . We propose to call the HSIC measures
built with these kernels: HSIC measures with standardized Gaussian kernel.

2.1.2 Statistical estimation

In this paragraph, we present HSIC estimators, as well as their characteristics. As a reminder, we assume
that we have a n-sample of independent realizations

(
X(i), Y (i))

1≤i≤n of the inputs/output couple (X, Y )
where X = (X1, . . . , Xd).

Monte Carlo estimation. From Formula (2), authors of [22] propose to estimate each HSIC(Xk, Y )
by:

ĤSIC(Xk, Y ) = 1
n2

∑
1≤i,j≤n

(Lk)i,jLi,j + 1
n4

∑
1≤i,j,q,r≤n

(Lk)i,jLq,r −
2
n3

∑
1≤i,j,r≤n

(Lk)i,jLj,r, (4)
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where Lk and L are the matrices defined for all (i, j) ∈ {1, . . . , n} by (Lk)i,j = lk(X(i)
k , X

(j)
k ) and

(L)i,j = l
(
Y (i), Y (j)).

These V-statistic estimators can also be written in the following more compact form (see [22]):

ĤSIC(Xk, Y ) = 1
n2Tr(LkHLH), (5)

where H is the matrix defined by H =
(
δi,j −

1
n

)
1≤i,j≤n

, with δi,j the Kronecker symbol between i and

j which is equal to 1 if i = j and 0 otherwise.

Remark 2.3. The estimator of Equation (4) is part of a class of estimators called V-statistics (in the
name of Richard Von Mises [33]), which, althought being biased (but asymptotically unbiased), are more
easily computable than an unbiased version based on U-statistics.

Characteristics of HSIC estimators. Under the assumption of independence between Xk and
Y and the assumption lk(xk, xk) = l(y, y) = 1 (as in the case of Gaussian kernels), the estimator
ĤSIC(Xk, Y ) is asymptotically unbiased, its bias converges in O( 1

n ), while its variance converges to 0 in
O( 1

n2 ). Moreover, the asymptotic distribution of n× ĤSIC(Xk, Y ) is an infinite sum of independent χ2

random variables, which can be approximated by a Gamma law [36] with shape and scale parameters,
respectively denoted γk and βk:

γk '
e2
k

vk
, βk '

n.vk
ek

where ek and vk respectively are the expectation and the variance of ĤSIC(Xk, Y ), i.e. ek = E
[
ĤSIC(Xk, Y )

]
and vk = Var

(
ĤSIC(Xk, Y )

)
. The reader can refer to [23] and [12] for more details on ek and vk and

their estimation.

2.1.3 Use for first-level GSA

Several methods based on the use of HSIC measures have been developed for GSA1. In this paragraph,
we mention three possible approaches: sensitivity indices [10], asymptotic tests [23] and permutation
(also referred to as bootstrap) tests [12].

HSIC-based sensitivity indices. These indices directly derived from HSIC measures, classify the
input variables X1, .., Xd by order of influence on the output Y . They are defined for all k ∈ {1, . . . , d}
by:

R2
HSIC,k = HSIC(Xk, Y )√

HSIC(Xk, Xk) HSIC(Y, Y )
. (6)

The normalization in (6) implies that R2
HSIC,k is bounded and included in the range [0, 1] which makes

its interpretation easier. In practice, R2
HSIC,k can be estimated using a plug-in approach:

R̂
2
HSIC,k = ĤSIC(Xk, Y )√

ĤSIC(Xk, Xk)ĤSIC(Y, Y )
. (7)

Asymptotic tests. The independence test between the input Xk and the output Y based on HSIC
rejects the independence assumption between these two random variables (hypothesis denotedH0,k) when
the p-value1 of the test based on the statistic n× ĤSIC(Xk, Y ) is less than a threshold α (in practice α

1The p-value of the test is the probability that, under H0,k, the test statistic (in this case, n× ĤSIC(Xk, Y )) is greater
than or equal to the value observed on the data.
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is set at 5% or 10%). Within the asymptotic framework, this p-value denoted Pk is approximated under
H0,k using the Gamma approximation (denoted Gk) of n× ĤSIC(Xk, Y ) law:

Pk ' 1− FGk

(
n× ĤSIC(Xk, Y )obs

)
, (8)

where FGk is the cumulative distribution function of Gk and ĤSIC(Xk, Y )obs is the observed value of the
random variable ĤSIC(Xk, Y ).

Permutation tests. Outside the asymptotic framework, independence tests based on permutation
technique can be used. For this, the observed n-sample is resampled B independent times considering
random permutations denoted τ on the set {1, .., n}. For each bootstrap sample, the permutation is
applied. This permutation is applied only to the vector X of inputs. We thus obtain B bootstrap-
samples

(
X(τ [b](i)), Y (i)

)
1≤i≤n

with 1 ≤ b ≤ B. The HSIC measures computed on these samples are

denoted
(

ĤSIC
[b]
)

1≤b≤B
. The p-value (denoted pk) of the test is then computed by:

pk = 1
B

B∑
b=1

1
ĤSIC

[b]
(Xk,Y )>ĤSIC(Xk,Y )

. (9)

These different approaches can be used to screen the input variables by order of influence and conse-
quently, to characterize, in the following, the GSA1 results.

2.2 Estimation of HSIC with a sample generated from an alternative distri-
bution

In this part, we first demonstrate that HSIC measures presented in Section 2.1.1, can be expressed and
then estimated using a sample generated from a probability distribution of inputs which is not their
prior distribution. This sampling distribution will be called "alternative law" or "modified law". The
characteristics of these new HSIC estimators (bias, variance, asymptotic law) will be presented. These
estimators will then be used in the proposed methodology for 2nd-level global sensitivity
analysis in Section 3.

2.2.1 Expression and estimation of HSIC measures under an alternative law

The purpose of this paragraph is to express HSIC measures between the inputs X1, ..., Xd and the output
Y , using d random variables X̃1, ..., X̃d whose laws are different from those of X1, ..., Xd. We assume
that their densities denoted f̃1, f̃2, ..., f̃d have respectively the same supports as f1, ..., fd. We denote
in the following by X̃ and Ỹ respectively the random vector X̃ = (X̃1, ..., X̃d) and the associated output
Ỹ = F (X̃). Finally, we designate by f̃(x1, .., xd) = f̃1(x1)× f̃2(x2)× ...× f̃d(xd) the density of X̃.

Changing the probability laws in HSIC expression is based on a technique commonly used in the
context of importance sampling (see e.g. [5]). This technique consists in expressing an expectation
E [g(Z)], where Z is a random variable with density fZ , by using a random variable Z̃ with density f

Z̃
whose support is the same as that of fZ . This gives the following expression for E [g(Z)]:

E [g(Z)] =
∫

Supp(Z)
g(z) fZ(z) dz =

∫
Supp(Z)

g(z) fZ(z)
f
Z̃

(z) fZ̃(z) dz = E
f̃

[
g(Z̃) fZ(Z̃)

f
Z̃

(Z̃)

]
, (10)

where the notation E
f̃

[h(Z)] designates the expectation of h(Z) under the hypothesis Z ∼ f̃ and Supp(Z)
denote the support of Z.

The HSIC measures, formulated as a sum of expectations in Equation (2), can then be expressed
under the density f

Z̃
by adapting Equation (10) to more general forms of expectations. Hence, we obtain:

HSIC(Xk, Y ) = H1
k +H2

kH
3
k − 2H4

k , (11)

where (H l
k)1≤l≤4 are the real numbers defined by:
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• H1
k = E

[
lk(X̃k, X̃

′
k)l(Ỹ , Ỹ ′)w(X̃)w(X̃ ′)

]
;

• H2
k = E

[
lk

(
X̃k, X̃

′
k

)
w(X̃)w(X̃ ′)

]
;

• H3
k = E

[
l
(
Ỹ , Ỹ ′

)
w(X̃)w(X̃ ′)

]
;

• H4
k = E

[
E
[
lk

(
X̃k, X̃

′
k

)
w(X̃ ′) | X̃k

]
E
[
l
(
Ỹ , Ỹ ′

)
w(X̃ ′) | Ỹ

]
w(X̃)

]
where X̃′ is an independent and identically distributed copy of X̃, Ỹ ′ = F (X̃′) and w = f

f̃
.

Formula (11) shows that HSIC(Xk, Y ) with k = 1, ..., d can then be estimated using a sample gener-
ated from f̃ , provided that f̃ has the same support than the original density f . Thus, if we consider a
n-sample of independent realizations

(
X̃(i), Ỹ (i)

)
1≤i≤n

, where X̃ is generated from f̃ and Ỹ (i) = F (X̃(i))
for i = 1, ..., n, we propose the following V-statistic estimator of HSIC(Xk, Y ):

H̃SIC(Xk, Y ) = H̃1
k + H̃2

kH̃
3
k − 2H̃4

k , (12)

where (H̃ l
k)1≤l≤4 are the V-statistics estimators of (H l

k)1≤l≤4.

Proposition 2.1. Similarly to Equation (5), this estimator can be rewritten as:

H̃SIC(Xk, Y ) = 1
n2Tr

(
WL̃kWH1L̃H2

)
, (13)

where W , L̃k, L̃, H1 and H2 are the matrices defined by:

• L̃k =
(
lk

(
X̃

(i)
k , X̃

(j)
k

))
1≤i,j≤n

;

• L̃ =
(
l
(
Ỹ (i), Ỹ (j)

))
1≤i,j≤n

;

• W = Diag
(
w(X̃(i))

)
1≤i≤n

;

• H1 = In −
1
n
UW ;

• H2 = In −
1
n
WU ;

• In the identity matrix of size n;

• U the matrix filled with 1.

The proof of this proposition is detailed in Appendix A.

Remark 2.4. Similarly to Equation (7), the sensitivity index R2
HSIC,k can also be estimated using the

sample
(

X̃(i), Ỹ (i)
)

1≤i≤n
by:

R̃
2
HSIC,k = H̃SIC(Xk, Y )√

H̃SIC(Xk, Xk)H̃SIC(Y, Y )
. (14)
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2.2.2 Statistical properties of HSIC modified estimators

In this section we show that the estimator H̃SIC(Xk, Y ) has asymptotic properties similar to those of
the estimator ĤSIC(Xk, Y ): same asymptotic behaviors of expectation and variance and same type of
asymptotic distribution. The properties presented in the following are proved in Appendix B, C and D.

Proposition 2.2 (Bias). The estimator H̃SIC(Xk, Y ) is asymptotically unbiased and its bias converges
in O( 1

n ). Moreover, under the hypothesis of independence between Xk and Y and the assumption
lk(xk, xk) = l(y, y) = 1, its bias is:

E
[
H̃SIC(Xk, Y )

]
−HSIC (Xk, Y ) = 2

n
(Ekω − Exk,ω)(E−kω − Ey,ω)− 1

n
(Eω − Exk

)(Eω − Ey)

+ 1
n
Eω(Eω − 1) +O( 1

n2 ), (15)

where

Eω = E
[
ω2(X̃)

]
, Exk

= E
[
lk

(
X̃k, X̃

′
k

)
ωk(X̃k) ωk(X̃ ′k)

]
,

Ey = E
[
l
(
Ỹ , Ỹ ′

)
ω−k(X̃−k) ω−k(X̃ ′−k)

]
, Exk,ω = E

[
lk

(
X̃k, X̃

′
k

)
ω2
k(X̃k) ωk(X̃ ′k)

]
,

Ey,ω = E
[
l
(
Ỹ , Ỹ ′

)
ω2
−k(X̃−k) ω−k(X̃ ′−k)

]
, Ekω = E

[
ω2
k(X̃k)

]
,

E−kω = E
[
ω2
−k(X̃−k)

]
,

ω and ωk respectively denote the functions f
f̃
, fk
f̃k

, X̃−k is the random vector extracted from X̃ by remov-

ing the k-th coordinate, X̃ ′−k an independent and identically distributed copy of X̃−k and ω−k(x−k) =
d∏
r=1
r 6=k

ωr(xr) with x−k the vector extracted from the vector (x1, .., xd) by removing the k-th coordinate.

Under the independence assumption, an asymptotically unbiaised estimator of the bias of H̃SIC(Xk, Y )
can be obtained by replacing each expectation in (15) by its empirical estimator.

Proposition 2.3 (Variance). Under the independence hypothesis between Xk and Y , the variance of
H̃SIC(Xk, Y ) (denoted here ϑk) converges to 0 in O( 1

n2 ). More precisely, the variance ϑk can be expressed
as:

ϑk = 72(n− 4)(n− 5)
n(n− 1)(n− 2)(n− 3) E1,2

[
E3,4[h̃1,2,3,4]2

]
+O( 1

n3 ), (16)

where h̃1,2,3,4 = 1
4!

(1,2,3,4)∑
(t,u,v,s)

[
(l̃k)t,u l̃t,u + (l̃k)t,u l̃v,s − 2 (l̃k)t,u l̃t,v

]
, where the notation corresponds to the

sum over all permutations (t, u, v, s) of (1, 2, 3, 4). The notations (l̃k)p,q, l̃p,q and wp respectively denote

lk

(
X̃

(p)
k , X̃

(q)
k

)
, l
(
Ỹ (p), Ỹ (q)

)
and f

f̃
(X̃(p)). Finally, the notation Ep,q means that the expectation is

done by integrating only with respect to the variables indexed by p and q.

An estimator ϑ̃k of ϑk can be deduced from Equation (16):

ϑ̃k = 2(n− 4)(n− 5)
n3(n− 1)(n− 2)(n− 3)1T (B̃ � B̃)1, (17)
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with B̃ =
4∑
r=1

B̃r, where the matrices
(
B̃r

)
1≤r≤4

are defined for all (i, j) ∈ {1, . . . , n}2 by:

(B̃1)i,j = (l̃k)i,jwiwj
(
l̃i,j − l̃i,. − l̃j,. + l̃

)
, (B̃2)i,j = −(l̃k)i,.wi

(
l̃i,jwj − l̃i,. − l̃j,.wj + l̃

)
,

(B̃3)i,j = −(l̃k).,jwj
(
l̃i,jwi − l̃i,.wi − l̃j,. + l̃

)
, (B̃4)i,j = (l̃k)

(
l̃i,jwiwj − l̃i,.wi − l̃j,.wj + l̃

)
,

where wi = Wi,i and the terms (l̃k)i,., (l̃k).,j , (l̃k), l̃i,., l̃.,j and l̃ are the empirical means (denoted with
a bar above):

(l̃k)i,. = Lk

(
X̃

(i)
k , X̃k

)
ωk(X̃k), l̃i,. = L

(
Ỹ (i), Ỹ

)
ω−k(X̃−k),

(l̃k) = Lk

(
X̃ ′k, X̃k

)
ωk(X̃k), l̃ = L

(
Ỹ ′, Ỹ

)
ω−k(X̃−k).

Theorem 2.1 (Asymptotic law). In a similar way as n×ĤSIC(Xk, Y ), one can prove that the asymptotic
distribution of n × H̃SIC(Xk, Y ) can be approximated by a Gamma distribution, whose parameters γ̃k
and β̃k are given by γ̃k = ε2

k

ϑk
and β̃k = nϑk

εk
, where εk and ϑk are the expectation and variance of

H̃SIC(Xk, Y ), i.e. εk = E
[
H̃SIC(Xk, Y )

]
and ϑk = Var

(
H̃SIC(Xk, Y )

)
.

In practice, these parameters are respectively estimated by the empirical estimator for εk and the
estimator given by Equation (16) for ϑk.

Remark 2.5. From a practical point of view, the greater Var
(
ωk(X̃k)

)
, the greater the number of

simulations required to accurately estimate HSIC(Xk, Y ). It is therefore highly recommended to check
that Var

(
ωk(X̃k)

)
is finite. For instance, in the case of densities with compact supports, it is enough to

check that ωk is finite on its support.

2.2.3 Illustration on an analytical example

In this paragraph, we illustrate via a numerical application the behavior and the convergence of the
modified estimators H̃SIC, according to the size of the inputs/outputs sample. For that, we consider the
analytic model h inspired from Ishigami’s model [26] and defined by:

h(X1, X2, X3) = sin(X1) + 1.8 sin2(X2) + 0.5 X4
3 sin(X1), (18)

where the inputs X1, X2 et X3 are assumed to be independent and follow a triangular distribution on
[0, 1] with a mode equal to 1

2 . We denote by Y the output variable Y = h(X).

We consider standardized Gaussian kernel HSIC measures (see remark 2.2) between each input
Xk, k = 1 . . . 3 and the output Y . The objective is to estimate these measures from samples where
the inputs are independent and identically distributed but generated from a uniform distribution on
[0, 1] (modified law). For this, we consider Monte Carlo samples of size n = 100 to n = 1500 and for
each sample size, the estimation process is repeated 200 times, with independent random samples.

Figure (1) presents as a boxplot the convergence graphs of the estimators H̃SIC(Xk, Y ). Results for
the estimator ĤSIC(Xk, Y ) computed with samples generated from the original law (namely triangular)
are also given. Theoretical values of HSIC are represented in red dotted lines. We observe that for small
sample sizes (n < 500), modified estimators H̃SIC(Xk, Y ) have more bias and variance than estimators
ĤSIC(Xk, Y ). But, from size n = 700, both estimators have similar behaviors.

9



Figure 1: Convergence plots of the estimators ĤSIC(Xk, Y ) and H̃SIC(Xk, Y ) for Ishigami function,
according to the sample size n. Theoretical values are represented in red dashed lines.

On this same example, we are now interested in the classification of input variables by order of
influence. For this, the sensitivity index R2

HSIC,k (1 ≤ k ≤ d) is computed from H̃SIC(Xk, Y ) with
Equation (14) and the inputs are ordered by decreasing R̃2

HSIC,k. For each sample size, the rates of good
ranking of inputs given by R̃

2
HSIC estimators are also computed. Results are given in Table (1):

they illustrate that, even for small sample sizes (e.g n = 200), modified estimators R̃
2
HSIC

have good ranking ability.

n = 100 n = 200 n = 300 n > 500
88% 93.5% 97% 100%

Table 1: Good ranking rates of input variables using modified estimators R̃
2
HSIC for the Ishigami function,

for different sample sizes n.

3 New methodology for second-level GSA
In this section, we first define the 2nd-level global sensitivity analysis (GSA2) before listing the issues
raised by its implementation. We then present and detail the methodology that we propose, in order to
tackle these issues.

3.1 Principle and objective
In this part, we assume that the inputs X1, . . . , Xd vary according to unknown probability distribu-
tions PX1 , . . . ,PXd

. This lack of knowledge can take many forms; we mention as examples, the case
of parameterized distributions where the parameters are unknown, or the case where the distribution
characteristics (e.g. mean, variance, etc.) are known but not the nature of the law (uniform, triangular,
normal, etc.). As part of a probabilistic approach, this lack of knowledge is modeled by probability laws
(on a set of distributions) denoted PPX1

, . . . ,PPXd
.
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Each assumed joint distribution PX = PX1 × . . .×PXd
of inputs yields potentially different

results of 1st-level global sensitivity analysis (GSA1). It is therefore important to take into
account the impact of these uncertainties on GSA1 results. Thus, we will designate by GSA2
the statistical methods whose purpose is to quantify for each input parameter Xk, the impact of the
uncertainty of PXk

on GSA1 results, this uncertainty being modeled by PPXk
. From GSA2 results, the

probability distributions of inputs can be separated into two groups: those which significantly modify
GSA1 results and those whose influence is negligible. Subsequently, probability distributions with a
small impact can be set to a reference law and the efforts of characterization will be focused on the most
influential distributions to improve their knowledge (strategy of uncertainty reduction).

3.2 Issues raised by GSA2
We present in what follows the different issues and technical locks raised by the realization of a GSA2.

3.2.1 Characterization of GSA1 results

The realization of GSA2 requires a prior characterization of GSA1 results. This characterization consists
in associating to a given input distribution PX = PX1 × . . . × PXd

, a measurable quantity R which
represents GSA1 results. To choose this quantity of interest, we propose the following options, all based
on HSIC (see 2.1.3):

• Vector R2
HSIC = (R2

HSIC,1, . . . ,R2
HSIC,d) of sensitivity indices. The quantity of interest R =

R2
HSIC is thereby a vector of d real components.

• Ranking of inputs X1, . . . , Xd using the indices R2
HSIC,1, . . . ,R2

HSIC,d . In this case, the quan-
tity of interest R is a permutation on the set {1, . . . , d}, which verifies that R(k) = j if and only
if the variable Xj is the k-th in the ranking.

• Vector P = (P1, . . . ,Pd) of p-values associated with asymptotic independence tests. In
this case, the quantity of interest R = P is a vector of d components in [0, 1]d.

• Vector p = (p1, . . . ,pd) of p-values associated with permutation independence tests. The
quantity of interest R = p is a vector of d components in [0, 1]d.

3.2.2 Definition of 2nd-level sensitivity indices

By analogy with formulas (2), it is possible to build 2nd-level HSIC measures between the probabil-
ity distributions PX1 , . . . ,PXd

and the quantity of interest R. This involves to define RKHS kernels
lD1 , . . . , lDd on input distributions and a RKHS kernel lR on the quantity of interest R. This point will
be further detailed in Section 3.4. Thus, assuming all the kernels are defined, we propose the 2nd-level
HSIC measures defined for k = 1..d by:

HSIC(PXk
,R) = E

[
lDk(PXk

,P′Xk
)lR(R,R′)

]
+ E

[
lDk

(
PXk

,P′Xk

)]
E
[
lR
(
R,R′

)]
− 2E

[
E
[
lDk

(
PXk

,P′Xk

)
| PXk

]
E
[
lR
(
R,R′

)
| R
]]
, (19)

where P′Xk
is an independent and identically distributed copy of PXk

and R′ the GSA1 results associated
to P′Xk

.

From 2nd-level HSIC measures, we can define GSA2 indices by:

R2
HSIC(PXk

,R) = HSIC(PXk
,R)√

HSIC(PXk
,PXk

) HSIC(R,R)
, for k = 1..d. (20)

3.2.3 Monte Carlo estimation

To estimate R2
HSIC(PXk

,R), for k = 1..d, one has to dispose of a n1-sized sample (P(i)
X ,R(i))1≤i≤n1 of

(PX,R). For this, we could consider a double loop Monte Carlo approach. In the outer loop, at each
iteration i, a distribution P(i)

X is randomly generated from PPX
= PPX1

× . . . × PPXd
. The quantity of
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interest R(i) associated to this distribution P(i)
X is provided by a 2nd loop. This inner loop consists

in generating a n2-sized sample (X(i,j)
1 , . . . , X

(i,j)
d )1≤j≤n2 where X follows P(i)

X . The n2 corresponding
outputs (Y (i,j))1≤j≤n2 are computed in this inner loop. Once this loop performed, the quantity of interest
R(i) is computed from E(i) = (X(i,j)

1 , . . . , X
(i,j)
d , Y (i,j))1≤j≤n2 . This process is repeated for each P(i)

X of
the outer loop. At the end, 2nd-level HSIC can be estimated from the sample (P(i)

X ,R(i))1≤i≤n1 by:

ĤSIC(PXk
,R) = 1

n2
1
Tr(LDkHLRH), (21)

where LDk and LR are the matrices defined for all (i, j) ∈ {1, . . . , n1} by: (LDk)i,j = lDk(P(i)
Xk
,P(j)
Xk

),
(LR)i,j = lR

(
R(i),R(j)) and H the matrice defined in Formula (5).

From 2nd-level HSIC estimators, 2nd-level R2
HSIC indices can be estimated using plug-in and Formula

(21) by:

R̂
2
HSIC(PXk

,R) = ĤSIC(PXk
,R)√

ĤSIC(PXk
,PXk

)ĤSIC(R,R)
. (22)

Consequently, this Monte Carlo double-loop approach requires a total of n1n2 code simulations. For
example, if n1 = 100 and n2 = 1000, the computation of 2nd-level sensitivity indices HSIC requires 105

code calls. This approach is therefore not tractable for CPU-time expensive simulators.

To overcome this problem and reduce the number of code-calls, we propose a single-
loop Monte Carlo approach to obtain the sample (P(i)

X ,R(i))1≤i≤n1 , which requires only n2
simulations, and allows to consider a large sample P of distributions PX. This new algorithm
is detailed in the next section.

3.3 Algorithm for computing 2nd-level sensitivity indices with a single Monte
Carlo loop

In this part, we detail the algorithm to estimate the 2nd-level HSIC (and R2
HSIC) from a unique in-

puts/output sample E . We assume that inputs are generated from a unique and known probability
distribution denoted PX = PX1 × . . .× PXd

with density denoted f(x1, . . . , xd) = f1(x1)× . . .× fd(xd).
The options for choosing f will be discussed in Section 3.5. The algorithm consists of 3 steps:

ä Step 1. Build a unique n2-sized sample E from f

In this step, we first draw a sample X =
(
X(i))

1≤i≤n2
according to f , then we compute the

associated outputs Y =
(
Y (i))

1≤i≤n2
, to obtain a sample E = (X, Y ) of inputs/output. Thus, in

what follows, all the formulas for modified HSIC will be used with the alternative sample E , f being
the alternative distribution. Hence, in all the modified HSIC formulas, the alternative sample will
be (X̃, Ỹ ) = (X, Y ).

ä Step 2. Perform n1 GSA1 from E
First, we generate a n1-sized sample of input distributions according to PPX . This sample of distri-
butions is denoted P =

(
P(i)

X

)
1≤i≤n1

and the density associated to each distribution P(i)
X is denoted

f (i) = (f (i)
1 , . . . , f

(i)
d ). The objective is then to compute the GSA1 results R(i) associated to each

distribution P(i)
X , using only E . The options proposed for R(i) in Section 3.2.1 are distinguished:

• Vector R(i) = (R2,(i)
HSIC,1, . . . ,R

2,(i)
HSIC,d) of sensitivity indices. In this case, each R2,(i)

HSIC is
estimated by R̃

2
HSIC,k given by Equation (14) with E = (X, Y ).

• Ranking of inputs X1, . . . , Xd using the indices R2
HSIC,1, . . . ,R2

HSIC,d . These rankings are
obtained by ordering the coordinates of R̃

2
HSIC vectors; still estimated from E and Equation

(14).
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• Vector R(i) = (P(i)
1 , . . . ,P(i)

d ) of p-values associated with asymptotic independence
tests. By analogy with Equation (8), each P(i)

k is estimated thanks to the properties of the
modified estimators:

P̃
(i)
k ' 1− F̃Gk

(
n2 × H̃SIC(X(i)

k , Y )obs
)
, k = 1, . . . , d (23)

where F̃Gk is the cumulative distribution function of Gamma law approximating the asymp-
totic law of n2 × H̃SIC(X(i)

k , Y ).

• Vector R(i) = (p(i)
1 , . . . ,p(i)

d ) of p-values associated with permutation independence
tests. Using the same notations as in Formula (9), each p(i)

k is estimated by:

p̃(i)
k = 1

B

B∑
b=1

1
H̃SIC

[b]
(X(i)

k
,Y )>H̃SIC(X(i)

k
,Y )
, k = 1, . . . , d. (24)

ä Step 3. Estimate 2nd-level sensitivity indices
Finally, the 2nd-level sensitivity indices R2

HSIC(PXk
,R) are estimated with the sample (P(i)

X , R̃(i))1≤i≤n1

using Formulas (21) and (22). The computation of matrices LDk , k = 1, . . . , d and LR requires
the definition of specific RKHS kernels lDk , k = 1, . . . , d and lR. This item is detailed in the next
section.

3.4 Choice of characteristic kernels for probability distributions and for
quantities of interest

In this part, we present examples of characteristic RKHS kernels for probability distributions and for
the different quantities of interest R, these kernels being involved in Formula (21) (and as a result in
Equation (22)).

Characteristic RKHS kernel for probability distributions. Before defining a characteristic
kernel for distributions, we first introduce the Maximum Mean Discrepancy (MMD) defined in [21]. If we
consider two distributions P1 and P2 having the same support and if K denotes a RKHS kernel defined
on the commun support of P1 and P2, then the MMD between P1 and P2 induced by K is defined as:

MMDK(P1,P2) = E[K(Z1, Z
′
1)]− 2E[K(Z1, Z2)] + E[K(Z2, Z

′
2)], (25)

where Z1, Z2 are random variables respectively with laws P1, P2 and Z ′1, Z ′2 are independent and
identically distributed copies respectively of Z1, Z2.

Authors of [21] establish that when K is characteristic, the MMD associated to K defines a distance.
From MMD distance, [39] defines Gaussian RKHS kernels between probability distributions in a similar
way to Formula (3):

lD(P1,P2) = exp
(
−λMMD2

K(P1,P2)
)
, (26)

where λ is a positive real parameter.

It has been shown in [7] that when the commun support of distributions is compact, the Gaussian
MMD-based kernel is universal (and consequently characteristic). We can then define kernels lDk , k =
1, . . . , d introduced in Formula (19) by:

lDk(PXk
,PX′

k
) = exp

(
−λk MMD2

lk
(PXk

,PX′
k
)
)
, (27)

where λk, k = 1, . . . , d are positive real parameters.

From a practical point of view, one can choose λk as the inverse of s2
k, the empirical variance w.r.t

MMD distance (i.e. λk = 1/s2
k):

s2
k = 1

n2
1

n1∑
i=1

MMD2
lk

(
P(i)
Xk
,PXk

)
,

13



where the distribution PXk
is defined as, PXk

= 1
n1

n1∑
i=1

P(i)
Xk

.

Characteristic RKHS kernel for permutations as quantity of interest. When GSA1 results
R is a permutation (see Section 3.2.1), we propose to use Mallows kernel KM [27], the Mallows kernel is
universal (and characteristic) [31]. This kernel is given, for two permutations σ, σ′ by:

KM (σ, σ′) = exp (−λnd(σ, σ′)) , (28)

where λ is a positive real parameter and nd is the number of discordant pairs between σ and σ′:

nd(σ, σ′) =
∑

1≤r<s≤d

[
1{σ(r)<σ(s)}1{σ′(r)>σ′(s)} + 1{σ(r)>σ(s)}1{σ′(r)<σ′(s)}

]
. (29)

In practice, if a n1-sample of σ is available, we propose to choose λ as the inverse of the empirical
mean of nd(σ, σ′).

Characteristic RKHS kernel for real vectors as quantities of interest. In cases where R is
a vector of Rd, the usual Gaussian kernel defined in Formula (3) can be considered.

3.5 Possibilities for the unique sampling distribution
We propose three different possibilities for the single draw density f(x1, . . . , xd) = f1(x1)× . . .× fd(xd)
which is used to generate the unique sample E in Step 1 of the algorithm (Section 3.3). Note here
that the support of each fk, k = 1, . . . , d must be Xk (the variation domain of Xk, see Section 2). To
have a density fk close to the set of all possible densities and more particularly to the most likely ones,
we propose to use either mixture distribution or two barycenter distributions, namely the Wasserstein
barycenter and the symmetric Kullback-Leibler barycenter.

Option 1: mixture distribution. The mixture density fM (see e.g. [17, 43]) of a random density
probability f is defined by:

fM = EF [f ] =
∫
F
f dF(f), (30)

with f lying in F with probability distribution measure dF.

If F is discrete over a finite parametric set {fθ0 , . . . , fθm
}, the mixture density is written as

fM =
m∑
r=0

fθr F(fθr ). (31)

If the density f depends on a parameter which is generated according to a continuous density π over
Θ, the mixture density is defined by

fM =
∫

Θ
fθ π(θ) dθ. (32)

Option 2: symmetrized Kullback-Leibler barycenter. The symmetric Kullback-Leibler dis-
tance [28] is a distance obtained by symmetrizing the Kullback-Leibler divergence. It is defined for two
real distributions µ and ν by:

DS
K(µ, ν) = 1

2
(
KL(µ||ν) +KL(ν||µ)

)
, (33)

where KL(Q1||Q2) =
∫
log(dQ1

dQ2
)dQ1 is the Kullback-Leibler divergence.
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For of a finite set of unidimensional and equiprobable densities {f1, . . . , fm}, the symmetrized Kullback-
Leibler barycenter fK can not directly be expressed using densities. However, the distribution QK of
density fK defined by:

fK = 1
2m

m∑
r=1

fr +

(
m∏
r=1

fr

) 1
m

2
∫ ( m∏

r=1
fr

) 1
m

, (34)

is a very good approximation of symmetrized Kullback-Leibler barycenter (see [44] for detailed proofs).

To generalize the Formula (34) to a probabilistic set of one-dimensional densities, we propose:

fK = 1
2EF [f ] + eEF[lnf ]

2
∫
eEF[lnf ]

. (35)

where EF [f ] and EF [lnf ] are mixture functions of random functions f and lnf (given by Equation (30)).

Option 3: Wasserstein barycenter distribution. The Wasserstein distance (see e.g. [20, 45]) of
order p between two real distributions µ and ν with the same support A is defined by:

Wp(µ, ν) =
(

inf
γ∈Γ(µ,ν)

∫
A×A

|x− y|p dγ(x, y)
)1/p

, (36)

where Γ(µ, ν) is the set of probability measures on A×A with marginals µ and ν.

Note that in the general case, when referring to the Wasserstein distance (without specifying the
order) we refer to Wasserstein distance of order 2.

For a finite set F of unidimensional and equiprobable densities, the Wasserstein barycenter density
[1] is the one whose quantile function is the mean of the quantile functions of the elements of the set F :

qW = 1
|F|

∑
f∈F

qf , (37)

where qW denotes the quantile function of Wasserstein barycenter, |F| the cardinal of the set F and qf
the quantile function associated to f .

To generalize Formula (37) to a probabilistic set of one-dimensional densities, we propose to use:

qW = EF[qf ], (38)

where EF[qf ] is the mixture quantile function of the quantile functions (qf )f∈F .

4 Application of GSA2 methodology
In this part, our proposed methodology is first applied to an analytical model. The three different options
proposed in Section 3.5 to genarate the unique sample are studied and compared. Moreover, the benefit
of this new methodology comparing to a "double loop" approach is highlighted. Thereafter, the whole
methodology is applied to a nuclear study case simulating a severe nuclear reactor accident.

4.1 Analytical example
Our proposed "single loop" methodology for GSA2 is first tested on the analytical model presented in
Section 2.2.3. We recall that this model is defined on the set [0, 1]3 by h(X1, X2, X3) = sin(X1) +
1.5 sin2(X2) + 0.5 X4

3 sin(X1). The inputs X1, X2 and X3 are assumed here to be independent and
their probability distributions PX1 , PX2 et PX3 can equiprobably be the laws PU , PT et PN , where
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• PU is the uniform distribution on [0, 1],

• PT is the triangular distribution on [0, 1] with mode 0.4,

• PN is the truncated normal distribution on [0, 1] with mean 0.6 and standard deviation 0.2.

We want here to estimate from a single inputs/output sample, the 2nd-level GSA indices R2
HSIC(PXk

,R)k=1...d
indices of the model Y = h(X) for different sample sizes. For this, we use HSIC measures for GSA1
(and R2

HSIC(Xk, Y )k=1...d indices) with standardized Gaussian kernel. We characterize GSA1 results by
the vector of 1st-level R2

HSIC (option 1 in Section 3.3). To compute the 2nd-level R2
HSIC indices, MMD-

based kernels lDk (Equation 26) are used for input distributions and the standardized Gaussian kernel
(Equation 3) is used for GSA1 results.

Remark 4.1. The other quantities of interest characterizing GSA1 results could be studied in a similar
way.

4.1.1 Computation of theorical values

In order to compute theoretical values of 2nd-level HSIC and R2
HSIC indices, we consider the finite set of

the n1 = 27 possible triplet of input probability distributions. The 1st-level R2
HSIC vector associated to

each distribution is then computed with a sample of size n2 = 1000 (which ensures the convergence of
HSIC estimators). Theorical values of 2nd-level HSIC are estimated with Formula (21):

- HSIC(PX1 ,R) = 0.0414,

- HSIC(PX2 ,R) = 0.0261,

- HSIC(PX3 ,R) = 0.0009.

The theorical values of 2nd-level R2
HSIC(PXk

,R) indices can also be computed:

- R2
HSIC(PX1 ,R) = 0.4152,

- R2
HSIC(PX2 ,R) = 0.2516,

- R2
HSIC(PX3 ,R) = 0.0086.

We observe that R2
HSIC(PX1 ,R) is considerably larger than R2

HSIC(PX2 ,R), while R2
HSIC(PX3 ,R) is

negligible compared to the other two. In this example, the lack of knowledge on PX3 has therefore no
influence on 1st-level R2

HSIC. Furthermore, the uncertainty on PX1 has a much higher impact than the
one of PX2 , which remains non-negligible. Consequently, characterization efforts must be targeted in
priority on PX1 , followed-up by PX2 .

4.1.2 GSA2 with our single loop approach

In the following, H̃SICM (PXk
,R), H̃SICW (PXk

,R) and H̃SICK(PXk
,R), k = 1, . . . , 3 denote the 2nd-

level HSIC measures respectively associated to mixture law, Wasserstein barycenter law and symmetrized
Kullback-Leibler barycenter law. Similarly, R̃

2
HSIC,M(PXk

,R), R̃
2
HSIC,W(PXk

,R) and R̃
2
HSIC,K(PXk

,R), k =
1, . . . , 3 are the derived 2nd-level R2

HSIC indices.

In this section, we apply the methodology proposed in Section 3.3 to estimate GSA2 HSIC-based
indices. For this, we consider Monte Carlo samples of sizes n2 = 100 to n2 = 1500. The estimations
are repeated independently 200 times from independent samples. The results obtained with the three
modified laws are given by Figure 2. The theoretical values of R2

HSIC(PXk
,R) are represented in dotted

lines. In this case, the estimators R̃
2
HSIC,M(PXk

,R) and R̃
2
HSIC,K(PXk

,R) seem to have similar behaviors
for both small and higher sample sizes. The dispersion of these two estimators remains high for small
sizes (especially for n2 ≤ 200) and becomes satisfying from n2 = 700. The estimators R̃

2
HSIC,W(PXk

,R)
have a higher variance than the two previous estimators, particularly for small and medium sample sizes
(300 ≤ n2 ≤ 700).
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Figure 2: Convergence plots of the estimators R̃
2
HSIC,M(PXk

,R), R̃
2
HSIC,W(PXk

,R) and
R̃

2
HSIC,K(PXk

,R), k = 1, . . . , 3, for the model h and w.r.t the size n2 of samples. Theorical values
are represented in dotted lines.

In addition, we compare the ability of the three estimators to correctly order PXk
, k = 1 . . . 3 by

order of influence. For this, we compute for each sample size, the ratio of times when they give the good
theorical ranking. Table (2) gives the good ranking rates of 2nd-level R2

HSIC estimators w.r.t the sample
size. These results confirm that the estimators based on mixture and Kullback-Leibler barycenter laws
outperform those based on Wasserstein barycenter law. Both R̃

2
HSIC,M(PXk

,R) and R̃
2
HSIC,K(PXk

,R)
yield highly accurate ranking from n2 = 500 against n2 = 700 for R̃

2
HSIC,W(PXk

,R). Furthermore, the
Kullback-Leibler barycenter seems to give slightly better results for small samples n2 ≤ 300, this being
reversed from n2 = 500. The lower performance of Wasserstein barycenter law could be explained by
the fact that the ratio f

fW
becomes very high in the neighborhood of 0.

n2 100 200 300 500 700 1000 1500

R̃
2
HSIC,M(PXk

,R) 74% 79% 84% 94.5% 97% 100% 100%
R̃

2
HSIC,K(PXk

,R) 75.5% 79% 87% 92% 97% 99.5% 99.5%
R̃

2
HSIC,W(PXk

,R) 57.5% 71% 77% 82% 91% 93.5% 98%

Table 2: Good ranking rates of (PXi
)i=1..3 given by the estimators R̃

2
HSIC,M(PXk

,R), R̃
2
HSIC,K(PXk

,R)
and R̃

2
HSIC,W(PXk

,R) for the model h, w.r.t the size n2 of samples.

17



4.1.3 Comparison with Monte Carlo "double loop" approach

In this part, we compare the "single loop" estimation of 2nd-level HSIC measures with the "double loop"
estimation. For this, we consider a total budget n = 1026 simulations for both methods and propose the
following test:

• For the "double loop" approach, a sample of size n2 = 38 is generated for each triplet of
input distributions (n = n1 × n2 = 1026 simulations). The computed "double loop" estimators are
denoted R̂

2
HSIC(PXk

,R), k = 1 . . . 3.

• For the "single loop" approach, we apply the proposed methodology with n2 = 1026 to compute
the "single loop" estimators R̃

2
HSIC,M(PXk

,R) and R̃
2
HSIC,K(PXk

,R), k = 1 . . . 3.

This numerical test is repeated 200 times with independent Monte Carlo samples. Figure 3 shows the
dispersion of the obtained estimators. Theoretical values are shown in dotted lines. We observe that the
"double loop" estimators have much more variability than "single loop" ones (especially for the distribution
PX3). We even observe a much larger bias (especially for PX3) for the "double loop" approach. Good
ranking rates are given by Table 3 and confirm that our proposed "single loop" approach significantly
outperforms the "double loop" approach.

This example illustrates the interest of the "simple loop" approach which allows a much more accurate
estimation of 2nd-level HSIC measures. Indeed, for a given total budget of n simulations, 1st-level HSIC
are computed via modified HSIC from n2 = n simulations in our "single loop" approach against n2 = n/n1
in the "double loop" one. Even if classical estimators converge faster than modified ones, the number of
simulations available for their estimation is drastically reduced with the double loop approach.

On this same analytical function, other numerical tests with different hypothesis on the input distri-
butions (more different from each other) have been performed and yield similar results and conclusions.

Figure 3: Comparison of convergence plots of 2nd-level GSA indices by "double loop" approach (R̂
2
k =

R̂
2
HSIC(PXk

,R)) and by "single loop" approach (R̃
2
M,k = R̃

2
HSIC,M(PXk

,R) and R̃
2
K,k = R̃

2
HSIC,K(PXk

,R))
for the model h and n = 1026. Theorical values are represented in dotted lines.

Double loop Single loop

R̂
2
HSIC(PXk

,R) R̃
2
HSIC,M(PXk

,R) R̃
2
HSIC,K(PXk

,R)
67.5% 100% 99%

Table 3: Comparison of good ranking rates of "double loop" and "simple loop" estimators, for model h
and n = 1026.
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4.2 Nuclear safety application
Within the framework of 4th-generation sodium-cooled fast reactor ASTRID: Advanced Sodium Techno-
logical Reactor for Industrial Demonstration (see Figure 4), the CEA (French Commissariat à l’Énergie
atomique et aux Énergies alternatives) provides numerical tools in order to assess the safety in case
of several accidents. For this, various physical modelling tools have been developed to study different
severe accidental scenarios. Among these physical modelling tools, a numerical tool called MACARENa
(French: Modélisation de l’ACcident d’Arrêt des pompes d’un REacteur refroidi au sodium) developped
by [15] simulates a primary phase of an Unprotected Loss Of Flow (ULOF) accident. During this type
of accident, the power loss of primary pumps and the dysfunction of shutdown systems cause a gradual
decrease of the sodium flow in the primary circuit, which subsequently may increase the temperature of
sodium until it boils. This temperature increase can lead to a degradation of several components and
structures of the reactor core.

Previous GSA studies were performed on MACARENa simulator with several tens of uncertain
parameters whose pdf were assumed to be known and set at a reference pdf (see [14] for more details).
These studies showed the predominant influence of only 3 parameters on the accident transient predicted
by MACARENa:

• X1: error of measurement on external pressure loss,

• X2: primary half-flow time,

• X3: Lockart-Martinelli correction value.

Figure 4: Basic architecture of a Sodium-cooled Fast Reactor

However, due to lack of data and knowledge, uncertainty remains on the distributions PX1 , PX2 and
PX3 respectively of X1, X2 and X3. To take into account this uncertainty, for each input, the type of law
is assumed to be known but one of its parameters is uncertain, as described in Table (4). The notations
Nt(a, b,m, σ), T(a, b, c) and U(a, b) are respectively, the truncated normal law of mean m and standard
deviation σ on [a, b], the triangular law on [a, b] with mode c and the uniform law on [a, b].

Law of input Nature Uncertain parameter
PX1 Nt(−0.1, 0.1, 0, σ) σ ∼ U(0.03, 0.05)
PX2 T(0, 20, c) c ∼ U(8, 15)
PX3 T(0.8, 2,m) m ∼ U(1, 1.5)

Table 4: Uncertainties on the laws PX1 ,PX2 and PX3 .

Among the outputs computed by MACARENa simulator to describe the ULOF accident, we focus
on the first instant of sodium boiling denoted Y . The objective is then to assess how each uncertainty
on input pdf can impact the results of sensitivity analysis of Y .
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Methodological choices. In order to perform GSA2, we apply our proposed algorithm with the
following methodological choices (see Section 3.3):

• the unique sample for each input is generated according to the mixture law,

• the quantity of interest characterizing GSA1 results is the vector R2
HSIC,

• the RKHS kernel based on the MMD distance is used for input distributions and the standardized
Gaussian kernel is used for GSA1 results.

Choices of sample sizes n1 and n2. We consider a Monte Carlo sample of size n2 = 1000
for the unique sample. This choice is motivated by two main reasons, firstly the calculation time of
one simulation of MACARENa (between 2 and 3 hours on average) which limits the total number of
simulations and secondly the analytical three-dimensional example of Section (4.1) for which a budget of
1000 simulations gave good results. Furthermore, for the sample of distributions, we consider a Monte
Carlo sample of n1 = 200 triplets of pdf. These two choices for n1 and n2 will then be justified later in
this section, by checking the convergence of estimators.

By applying our 2nd GSA methodology, with all these choices, we obtain the following 2nd-level
sensitivity indices values:

- R̃
2
HSIC,M(PX1 ,R) = 0.5341,

- R̃
2
HSIC,M(PX2 ,R) = 0.3317,

- R̃
2
HSIC,M(PX3 ,R) = 0.0753.

Consequently, uncertainty on PX1 mainly impacts GSA1 results, followed by PX2 , while PX3 has a
negligible impact. Therefore, the efforts of characterization must be targeted on PX1 to improve the
confidence in GSA1 results. Note that, similar results and conclusions are obtained considering for R
the ranking of X1, X2 and X3 using 1st-level R2

HSIC.

Remark 4.2. A deeper analysis of the 200 GSA1 results shows that X2 is almost all the time the
predominant input (99% of cases). On the other hand, the rank of X3 or X1 varies: X3 is the least
influential input in 63% of cases, against 37% for X1.

In the light of GSA2 results, this alternation between the rank of X3 and X1 is therefore mainly driven
by the uncertainty on PX1 , to a lesser extend by PX2 , while PX3 has no impact. Moreover, X2 whose
distribution is not the most influential on GSA1 result, is surprisingly, the most influential inputs on Y .
This example illustrates, if necessary, that GSA2 aims to capture an information that is different but
complementary to that of GSA1.

In order to assess the accuracy of 2nd-level R2
HSIC estimation, we use a non-asymptotic bootstrapping

approach (see e.g. [16]). For this, we first generate Monte Carlo subsamples with replacement from
the initial sample (of 1000 simulations), then we re-estimate 2nd-level R2

HSIC using these samples. We
consider in particular subsamples of sizes n2 = 100 to n2 = 800. For each size, the estimation is repeated
independently B = 20 times. Furthermore, to reduce computational efforts, we consider a sample of
distributions of reduced size n1 = 30 and generated with a space-filling approach. More precisely, the
vector (σ, c,m) is sampled with a Maximum Projection Latin Hypercube Design [29] of size n1 = 30 and
defined on the cubic domain [0.03, 0.05]× [8, 15]× [1, 1.5].

Figure (5) presents as a boxplot the mismatch between the value estimated from the initial sample
and the values estimated from subsamples. We first observe a robustness of estimation: the means of
estimators seem to match the value given by the initial sample. We notice also high dispersions for small
and medium sizes (n2 ≤ 400) and small dispersions for medium and big sizes (n2 ≥ 500). Therefore,
it can be deduced that the estimations of GSA2 indices with the sample of n2 = 1000 simulations have
converged, the stabilization of the estimations being satisfactory from n2 = 700.

We also test the robustness of the estimation in terms of ranking of input distributions. Table (5)
gives for each subsample size, the rate of times that the ranking matches with the ranking obtained on
the initial sample. The results given by Table (5) validate the conclusions drawn from convergence plots
(5).
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n2 = 100 n2 = 200 n2 = 300 n2 = 400 n2 = 500 n2 = 600 n2 ≥ 700
45% 55% 70% 75% 95% 95% 100%

Table 5: Good ranking rates given by the estimators R̃
2
HSIC,M(PXk

,R) for MACARENa w.r.t the size
n2 of the unique sample.

Figure 5: Convergence plots of the estimators R̃
2
HSIC,M(PXk

,R) for MACARENa, according to the sample
size n2. Theoretical values are represented in red dashed lines.

5 Conclusion and Prospect
In this article, we proposed a new methodology for second-level Global Sensitivity Analysis (GSA2)
based on Hilbert-Schmidt Independence Criterion (HSIC). For this, we first proposed new weighted
estimators for HSIC, using an alternative sample generated according to a probability distribution which
is not the prior distribution of the inputs. We also demonstrated the properties of these new estimators
(bias, variance and asymptotic law), which are similar to those of classical estimators. Moreover, their
convergence has been illustrated on an analytical example which has also highlighted their ability to
correctly rank variables (even for small and medium sample sizes). Subsequently, 2nd-level GSA based
on HSIC measures is discussed. When input distributions are uncertain, GSA2 purpose is to assess the
impact of these uncertainties on GSA results. In order to perform GSA2, we presented a new "single
loop" Monte Carlo methodology to address problems raised by GSA2: characterization of GSA results,
definition of 2nd-level HSIC measures and limitation of the calculation budget. This methodology is based
on a single sample generated according to a "reference distribution" (related to the set of all possible
distributions). Three options have been proposed for this distribution: mixture law and barycentric
laws w.r.t symmetrized Kullback-Leibler distance or Wasserstein distance. The estimation of 2nd-level
HSIC seems to be more accurate using the two first options rather than the Wasserstein barycenter. We
also illustrated the great interest of the "single loop" approach compared to the "double loop" approach.
Finally, the whole methodology has been applied to a nuclear test case simulating a severe reactor
accident and has shown how GSA2 can provide additional information to classical GSA.

Several points of the methodology could be more investigated in future research. First, we could
focus on comparing Space Filling Design (see e.g. [34], [8], [46]) techniques and Monte Carlo methods for
the sampling of input distribution in the case of probabilistic densities (pdf) with uncertain parameters.
Indeed, sampling the uncertain parameters of pdf following a space-filling design could improve the accu-
racy of the estimators of GSA2 indices. Another interesting perspective would be to build independence
tests based on 2nd-level HSIC measures estimators. This could be achieved by identifying the asymptotic
distributions of these estimators under the assumption of independence between distributions and GSA1
results.

Furthermore, this new approach for GSA2 could also be compared to the classical approach of epis-
temic GSA in the framework of Dempster-Shafer theory (see [37], [2]). Indeed, Dempster-Shafer theory
gives a description of random variables with epistemic uncertainty, which is to associate with an epis-
temic variable Z on a set A, a mass function representing a probability measure on the set P(A) of all
A-subsets. This lack of knowledge is reflected in Dempster-Shafer theory by an upper and lower bound
of the cumulative distribution function and can be viewed as 2nd-level of uncertainty.
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An other potential prospect could be to make the connection between our approach and Perturbed-
Law based Indices (PLI) [30]. These indices are used to quantify the impact of a perturbation of an
input density on the failure probability (probability that a model output exceeds a given threshold).
To compare our GSA2 indices with PLI, the probability of failure could be considered as the quantity
of interest characterizing GSA results in our methodology. Last but not least, GSA2 method can be
compared to the approach proposed in [6] which models 2nd-level uncertainties as a uni-level uncertainty
on the vector (Θ, X), where Θ is the vector of uncertain parameters.
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Proofs
A Proof of Proposition 1
In this annex, we prove that:

H̃SIC(Xk, Y ) = 1
n2 Tr

(
W L̃k WH1 L̃ H2

)
.

Firstly, we evaluate the matrix W L̃k WH1 L̃ H2 coefficients before computing its trace. The matrix W
being diagonal, we write for i, j ∈ {1, . . . , n}:

(W L̃k W)i,j = (L̃k)i,j Wi,i Wj,j .

The coefficient of the matrix W L̃k WH1 indexed by i and j can therefore be computed:

(W L̃k WH1)i,j =
n∑
r=1

(L̃k)i,r Wi,i Wr,r(H1)r,j

=
n∑
r=1

(L̃k)i,r Wi,i Wr,r(δr,j −
1
n

Wj,j)

= (L̃k)i,j Wi,i Wj,j −
1
n

n∑
r=1

(L̃k)i,r Wi,i Wr,r Wj,j .
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Subsequently, the matrix W L̃k WH1 L̃ coefficients are obtained:

(W L̃k WH1 L̃)i,j =
n∑
r=1

(W L̃k WH1)i,r L̃r,j

=
n∑
r=1

(
(L̃k)i,r Wi,i Wr,r −

1
n

n∑
s=1

(L̃k)i,s Wi,i Ws,s Wr,r

)
L̃r,j

=
n∑
r=1

(L̃k)i,r L̃r,j Wi,i Wr,r −
1
n

n∑
s=1

(L̃k)i,s Wi,i Ws,s

n∑
r=1

L̃r,j Wr,r .

Finally,

(W L̃k WH1 L̃ H2)i,j =
n∑
r=1

(W L̃k WH1 L̃)i,r(H2)r,j

=
n∑
r=1

(W L̃k WH1 L̃)i,r(δr,j −
1
n

Wr,r)

= (W L̃k WH1 L̃)i,j −
1
n

n∑
r=1

(W L̃k WH1 L̃)i,r Wr,r

=
n∑
r=1

(L̃k)i,r L̃r,j Wi,i Wr,r −
1
n

∑
1≤r,s≤n

(L̃k)i,s L̃r,j Wi,i Ws,s Wr,r

− 1
n

n∑
r=1

 n∑
s=1

(L̃k)i,s L̃s,r Wi,i Ws,s−
1
n

∑
1≤p,q≤n

(L̃k)i,q L̃p,r Wi,i Wq,q Wp,p

Wr,r

=
n∑
r=1

(L̃k)i,r L̃r,j Wi,i Wr,r −
1
n

∑
1≤r,s≤n

(L̃k)i,s L̃r,j Wi,i Ws,s Wr,r

− 1
n

∑
1≤r,s≤n

(L̃k)i,s L̃s,r Wi,i Ws,s Wr,r + 1
n2

∑
1≤r,p,q≤n

(L̃k)i,q L̃p,r Wi,i Wq,q Wp,p Wr,r .

Summing up the matrix W L̃k WH1 L̃ H2 diagonal terms, then dividing by n2 gives:

1
n2 Tr

(
W L̃k WH1 L̃ H2

)
= 1
n2

∑
1≤i,r≤n

(L̃k)i,r L̃i,r Wi,i Wr,r + 1
n4

∑
1≤i,q≤n

(L̃k)i,q Wi,i Wq,q

∑
1≤p,r≤n

L̃p,r Wp,p Wr,r

− 2
n3

∑
1≤i,r,s≤n

(L̃k)i,s L̃i,r Wi,i Ws,s Wr,r .

By definition of L̃k, L̃ and W, the three terms of the last equation are respectively the estimators
defined in Formula (12).

B Proof of Proposition 2
Throughout the rest of the document, to lighten formulas, we denote (lk)i,j = (L̃k)i,j , li,j = L̃i,j and
wi = Wi,i. We also denote H̃SICU(Xk, Y ) the U-statistic associated to the estimator H̃SIC(Xk, Y ).

Under the null hypothesisH0,k, the estimator H̃SICU(Xk, Y ) is unbiased. The estimator H̃SIC(Xk, Y )
bias, is then equal to that of H̃SIC(Xk, Y )−H̃SICU(Xk, Y ) under this same assumption. We first compute
the expression of H̃SIC(Xk, Y )− H̃SICU(Xk, Y ), before computing its expectation. We recall that,

25



H̃SIC(Xk, Y ) = 1
n2

∑
1≤i,j≤n

(lk)i,j li,j wi wj + 1
n4

∑
1≤i,j,p,q≤n

(lk)i,j lp,q wi wj wp wq

− 2
n3

∑
1≤i,j,r≤n

(lk)i,j li,r wi wj wr

:= H̃1
k + H̃2

k−2 H̃3
k,

H̃SICU(Xk, Y ) = 1
(n)2

∑
(i,j)∈in2

(lk)i,j li,j wi wj + 1
(n)4

∑
(i,j,p,q)∈in4

(lk)i,j lp,q wi wj wp wq

− 2
(n)3

∑
(i,j,r)∈in3

(lk)i,j li,r wi wj wr

:= H̃1,U
k + H̃2,U

k −2 H̃3,U
k ,

where (n)s = n!
(n− s)! and i

n
s is the set of all s-tuples drawn without replacement from the set {1, . . . , n}.

Let us compute H̃SIC(Xk, Y )− H̃SICU(Xk, Y ) term by term:

H̃1
k− H̃1,U

k = 1
n2

n∑
i=1

(lk)i,ili,i w2
i −

1
n2(n− 1)

∑
1≤i6=j≤n

(lk)i,j li,j wi wj ,

H̃2
k− H̃2,U

k = 1
n4

∑
(i,j,q)∈in3

[
(lk)i,ilj,q w2

i wj wq +4(lk)i,j li,q w2
i wj wq +(lk)i,j lq,q wi wj w2

q

]
− 6
n(n)4

∑
(i,j,p,q)∈in4

(lk)i,j lp,q wi wj wp wq +O( 1
n2 ),

H̃3
k− H̃3,U

k = 1
n3

∑
1≤i 6=j≤n

[
(lk)i,ili,j w2

i wj +(lk)i,j li,i w2
i wj +(lk)i,j li,j wi w2

j

]
− 3
n(n)3

∑
(i,j,r)∈in3

(lk)i,j li,r wi wj wr +O( 1
n2 ).

These expressions can be simplified by replacing (lk)i,i = li,i = 1:

H̃1
k− H̃1,U

k = 1
n2

n∑
i=1

w2
i −

1
n2(n− 1)

∑
1≤i 6=j≤n

(lk)i,j li,j wi wj ,

H̃2
k− H̃2,U

k = 1
n4

∑
(i,j,q)∈in3

[
lj,q w2

i wj wq +4(lk)i,j li,q w2
i wj wq +(lk)i,j wi wj w2

q

]
− 6
n(n)4

∑
(i,j,p,q)∈in4

(lk)i,j lp,q wi wj wp wq +O( 1
n2 ),

H̃3
k− H̃3,U

k = 1
n3

∑
1≤i6=j≤n

[
li,j w2

i wj +(lk)i,j w2
i wj +(lk)i,j li,j wi w2

j

]
− 3
n(n)3

∑
(i,j,r)∈in3

(lk)i,j li,r wi wj wr +O( 1
n2 ).

By computing the expectation of these three estimators under H0,k, we have:

E
[
H̃1

k− H̃1,U
k

]
= 1
n

(Eω −Exk
Ey) ,

E
[
H̃2

k− H̃2,U
k

]
= 1
n

(Eω Ey +4 Exk,ω Ey,ω + Eω Exk
)− 6

n
Exk

Ey +O( 1
n2 ),

E
[
H̃3

k− H̃3,U
k

]
= 1
n

(
Ekω Ey,ω + E−kω Exk,ω + Exk,ω Ey,ω

)
− 3
n

Exk
Ey +O( 1

n2 ).
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From these last equations, we obtain:

E
[
H̃SIC(Xk, Y )− H̃SICU(Xk, Y )

]
= 2
n

(Ekω −Exk,ω)(E−kω −Ey,ω)− 1
n

(Eω −Exk
)(Eω −Ey)

+ 1
n

Eω(Eω −1) +O( 1
n2 ).

Finally, The bias of H̃SIC(Xk, Y ) under H0,k is written:

E[H̃SIC(Xk, Y )]−HSIC(Xk, Y ) = 2
n

(Ekω −Exk,ω)(E−kω −Ey,ω)− 1
n

(Eω −Exk
)(Eω −Ey)

+ 1
n

Eω(Eω −1) +O( 1
n2 ).

C Proof of Proposition 3

In order to compute the variance of H̃SIC(Xk, Y ) and to determine its asymptotic law underH0,k, general
theorems on V-statistics must be used. For this, we write this last estimator as a single V-statistic. By
analogy with theorem 1 of [23], we have:

H̃SIC(Xk, Y ) = 1
n4

∑
1≤i,j,q,r≤n

h̃ijqr,

where

h̃i,j,q,r = 1
4!

(i,j,q,r)∑
(t,u,v,s)

(lk)t,ult,u wt wu +(lk)t,ulv,s wt wu wv ws−2(lk)t,ult,v wt wu wv,

the sum represents all ordered quadruples (t, u, v, s) drawn without replacement from (i, j, q, r).

This equality is easily obtained by decomposing the last sum into three sums, then by writing that:

1
n4

∑
1≤i,j,q,r≤n

1
4!

(i,j,q,r)∑
(t,u,v,s)

(lk)t,ult,u wt wu = 1
n2

∑
1≤i,j≤n

(lk)i,j li,j wi wj ,

1
n4

∑
1≤i,j,q,r≤n

1
4!

(i,j,q,r)∑
(t,u,v,s)

(lk)t,ulv,s wt wu wv ws = 1
n4

∑
1≤i,j,q,r≤n

(lk)i,j lq,r wi wj wq wr,

1
n4

∑
1≤i,j,q,r≤n

1
4!

(i,j,q,r)∑
(t,u,v,s)

(lk)t,ult,v wt wu wv = 1
n3

∑
1≤i,j,r≤n

(lk)i,j li,r wi wj wr .

The result is then obtained by combining the last three equalities.

Remark .1. The U-statistic associated to the estimator H̃SIC(Xk, Y ) is written:

H̃SICU(Xk, Y ) = 1
(n)4

∑
(i,j,q,r)∈in4

h̃ijqr.

Under H0,k, the estimators n×H̃SIC(Xk, Y ) et n×H̃SICU(Xk, Y ) have the same asymptotic behavior
(see e.g. [36]). Moreover, Hoeffding variance decomposition of H̃SICU(Xk, Y ) is written:

Var
(

H̃SICU(Xk, Y )
)

=
(
n

4

)−1 4∑
r=1

(
r

4

)(
n− 4
4− r

)
ζr,
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where ζr = Var
(
E[h̃i,j,p,q | X1, . . . , Xr]

)
, r = 1, . . . , 4.

Moreover, under H0,k, the variance of H̃SICU(Xk, Y ) converges to 0 in O( 1
n2 ):

Var(H̃SICU(Xk, Y )) = 72(n− 4)(n− 5)
n(n− 1)(n− 2)(n− 3)ζ2 +O( 1

n3 ).

Under H0,k, ζ2 = Ei,j
[
Eq,r[h̃i,j,p,q]2

]
, where the notation Er,s designates the expectation by integrating

only w.r.t variables Xr and Xs.

Moreover, by detailing the different terms of h̃i,j,p,q, we easily show that:

6h̃ijqr = (lk)i,j wi wj (li,j + lq,r wq wr) + (lk)i,q wi wq (li,q + lj,r wj wr) + (lk)i,r wi wr (li,r + lj,q wj wq)
+ (lk)j,q wj wq (lj,q + li,r wi wr) + (lk)j,r wj wr (lj,r + lq,i wq wi) + (lk)q,r wq wr (lq,r + li,j wi wj)

− 1
2

(i,j,q,r)∑
(t,u,v)

(lk)t,u wt wu (lt,v wv +lu,v wv)

where

(lk)i,. = Ẽ
[
L̃k
(
X

(i)
k , Xk

)
ωk(Xk)

]
, li,. = Ẽ

[
L̃
(
Y (i), Y

)
ω−k(X−k)

]
,

(lk).,j = Ẽ
[
L̃k
(
X

(j)
k , Xk

)
ωk(Xk)

]
, lj,. = Ẽ

[
L̃
(
Y (j), Y

)
ω−k(X−k)

]
,

(lk) = Ẽ
[
L̃k (X ′k, Xk)ωk(Xk)

]
, l = Ẽ

[
L̃ (Y ′, Y )ω−k(X−k)

]
.

We therefore write under H0,k:

6Eq,r
[
h̃ijqr

]
= (l̃k)i,j wi wj

(
l̃i,j − l̃i,. − l̃j,. + l̃

)
− (l̃k)i,. wi (li,j wj −li,. − lj,. wj +l)

− (lk).,j wj (li,j wi−li,. wi−lj,. + l)− (lk) (li,j wi wj −li,. wi−lj,. wj +l) .

Eq,r

[
h̃ijqr

]
can be estimated empirically by 1

6(B̃)i,j , where B̃ is the matrice defined in Formula (16).

The variance ζ2 can be estimated by: ζ̂2 = 1
36n2 1T (B̃� B̃)1. Formula (16) is then obtained by replacing

the expression of ζ̂2, in Hoeffding’s decomposition.

D Proof of Theorem 1
The asymptotic law of the V-statistic n× H̃SIC(Xk, Y ) (as well as the U-statistic n× H̃SICU(Xk, Y )) is
given by Theorem 5.5.2, page 194 of [36], which gives a formulation of the asymptotic laws of degenerate
V-statistics (and U-statistics). Indeed, under H0,k the statistic H̃SIC(Xk, Y ) is degenerate, that is:
∀(i, j, q, r) ∈ {1, .., n} : E

[
h̃ijqr

]
= 0.

Theorem. Under H0,k we have the following two law convergence theorems:

n× H̃SIC
V

(X̃k, Ỹ ) L−→
+∞∑
l=1

λlz̃
2
l ,

n× H̃SIC
U

(X̃k, Ỹ ) L−→
+∞∑
l=1

λl
(
z̃2
l − 1

)
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where (z̃l)l≥1 are independent and identically distributed random variables of law N (0, 1) and (λl)l≥1 are
the eigenvalues of the following operator:

A(g) : z 7→
∫
h̃ijqr(z̃, z̃j , z̃q, z̃r) g(z̃j) dFjqr

where dFjqr denotes random variables z̃j , z̃q and z̃r.

To conclude, the distribution
+∞∑
l=1

λlz̃
2
l can be approximated by a Gamma law according to [23]. In

fact, it is an infinite sum of random variables independent of law χ2 (Chi two). The asymptotic law of
the V-statistic n× H̃SIC(Xk, Y ) under H0,k is a Gamma law, whose parameters can be estimated based
on the empirical expectation and variance of n× H̃SIC(Xk, Y ) (see section 2.2.2).

29


	Introduction
	Statistical inference around Hilbert-Schmidt dependence measures (HSIC)
	Review on HSIC measures
	Definition and description
	Statistical estimation
	Use for first-level GSA

	Estimation of HSIC with a sample generated from an alternative distribution
	Expression and estimation of HSIC measures under an alternative law
	Statistical properties of HSIC modified estimators
	Illustration on an analytical example


	New methodology for second-level GSA
	Principle and objective
	Issues raised by GSA2
	Characterization of GSA1 results
	Definition of 2nd-level sensitivity indices
	Monte Carlo estimation

	Algorithm for computing 2nd-level sensitivity indices with a single Monte Carlo loop
	Choice of characteristic kernels for probability distributions and for quantities of interest
	Possibilities for the unique sampling distribution

	Application of GSA2 methodology
	Analytical example
	Computation of theorical values
	GSA2 with our single loop approach
	Comparison with Monte Carlo "double loop" approach

	Nuclear safety application

	Conclusion and Prospect
	ANNEXES
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 1


