
HAL Id: hal-02019402
https://hal.science/hal-02019402v1

Preprint submitted on 19 Feb 2019 (v1), last revised 28 May 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient online learning with kernels for adversarial
large scale problems

Rémi Jézéquel, Pierre Gaillard, Alessandro Rudi

To cite this version:
Rémi Jézéquel, Pierre Gaillard, Alessandro Rudi. Efficient online learning with kernels for adversarial
large scale problems. 2019. �hal-02019402v1�

https://hal.science/hal-02019402v1
https://hal.archives-ouvertes.fr

EFFICIENT ONLINE LEARNING WITH KERNELS FOR
ADVERSARIAL LARGE SCALE PROBLEMS

Rémi Jézéquel Pierre Gaillard Alessandro Rudi

INRIA - Département d’Informatique de l’École Normale Supérieure
PSL Research University

Paris, France

ABSTRACT

We are interested in a framework of online learning with kernels for low-dimensional but large-scale
and potentially adversarial datasets. Considering the Gaussian kernel, we study the computational
and theoretical performance of online variations of kernel Ridge regression.
The resulting algorithm is based on approximations of the Gaussian kernel through Taylor expansion.
It achieves for d-dimensional inputs a (close to) optimal regret of order O((log n)d+1) with per-round
time complexity and space complexity O((log n)2d). This makes the algorithm a suitable choice
as soon as n � ed which is likely to happen in a scenario with small dimensional and large-scale
dataset.

Keywords Online learning · Kernel methods · Large scale

1 Introduction

Nowadays the volume and the velocity of data flows are deeply increasing. Consequently many applications need to
switch from batch to online procedures that can treat and adapt to data on the fly. Furthermore to take advantage of very
large datasets, non-parametric methods are gaining increasing momentum in practice. Yet the latter often suffer from
slow rates of convergence and bad computational complexities. At the same time, data is getting more complicated and
simple stochastic assumptions such as i.i.d. data are often not satisfied. In this paper, we try to combine these different
aspects due to large scale and arbitrary data. We build a non-parametric online procedure based on kernels, which is
efficient for large data sets and achieves close to optimal theoretical guarantees.

Online learning is a subfield of machine learning where some learner sequentially interacts with an environment and
tries to learn and adapt on the fly to the observed data as one goes along. We consider the following sequential setting
summarized in Figure 1. At each iteration t ≥ 1, the learner receives some input xt ∈ X ; makes a prediction ŷt ∈ R and
the environment reveals the output yt ∈ R. The inputs xt and the outputs yt are sequentially chosen by the environment
and can be arbitrary. Learner’s goal is to minimize his cumulative regret

Rn(f) :=

n∑
t=1

(yt − ŷt)2 −
n∑
t=1

(
yt − f(xt)

)2
(1)

uniformly over all functions f in a space of functionsH. We will consider Reproducing Kernel Hilbert Space (RKHS)
H, [see next section or 1, for more details]. It is worth noting here that all the properties of a RKHS are controlled by
the associated kernel function k : X ×X → R, usually known in closed form, and that many function spaces of interest
are (or are contained in) RKHS, e.g. when X ⊆ Rd: polynomials of arbitrary degree, band-limited functions, analytic
functions with given decay at infinity, Sobolev spaces and many others [2].

Previous work Kernel regression in a batch statistical setting has been widely studied by the statistics community.
Our setting of online kernel regression with adversarial data is more recent.

Most of existing work focuses on the linear setting (i.e., linear kernel). First work on online linear regression dates
back to [3]. [4] provided the minimax rates (together with an algorithm) and we refer to reader to references therein for

a recent overview of the literature in the linear case. We only recall relevant work for this paper. [5, 6] designed the
nonlinear Ridge forecaster (referred to as AWV). In linear regression (linear kernel), it achieves the optimal regret of
order O(d log n) uniformly over all `2-bounded vectors. As we will see in Inequality (5), in online kernel regression,
the kernel version of nonlinear Ridge forecaster (referred to as Kernel-AWV) obtains a regret upper-bounded as

Rn(f) . λ
∥∥f∥∥2H +B2deff(λ) f ∈ H , (2)

where
deff(λ) := Tr(Knn

(
Knn + λIn)

−1) (3)

is the effective dimension, where Ktt ∈ Rt×t denotes the kernel matrix at time t and is defined as Ktt =(
k(xi, xj)

)
1≤i,j≤t. The above upper-bound on the regret is essentially optimal (see next section). Yet the per round

complexity and the space complexity of Kernel-AWV are O(n2). In this paper, we aims at reducing this complexity
while keeping optimal regret guarantees.

Though the literature on online contextual learning is vast, little considalessandro.rudi@inria.frr a clipped version of
kernel Ridge regression and by [7] for a clipped version of Kernel Online Newton Step (KONS) for general exp-concave
loss functions.

The computational complexity (O(n2) per round) of these algorithms is however prohibitive for large datasets. [7] and
[8] provide approximations of KONS to get manageable complexities. However these come with deteriorated regret
guarantees. [7] improve the time and space complexities by a factor γ > 0 enlarging the regret upper-bound by 1/γ.
[8] propose an efficient approximation of KONS based on Nyström approximation [9, 10] and restarts with per-round
complexities O

(
deff(λ/n)

2
)
. Yet their regret bound suffers an additional multiplicative factor deff(λ/n) with respect

to (2) because of the restarts. Another relevant approximation scheme of Online Kernel Learning was done by [11]. The
authors consider online gradient descent algorithms which they approximate using Nyström approximation or a Fourier
basis. However since they use general Lipschitz loss functions and consider `1-bounded functions f , their regret bounds
of order O(

√
n) are hardly comparable to ours and seem suboptimal in n in our restrictive setting with square loss and

Gaussian kernel.

Contributions and outline of the paper The main contribution of the paper is to propose for the Gaussian kernel an
efficient algorithm for online kernel regression. Theorem 4.1 shows that the latter satisfies (up to log) the optimal regret
bounds (2) while enjoying a total computational cost of O

(
n log2d

(
n
λ

))
in time and O

(
log2d

(
n
λ

))
in space. For the

Gaussian kernel, these respectively correspond to O
(
ndeff(λ)

2
)

and O
(
deff(λ)

2
)
.

Our method denoted φ̃-AWV is a based on Kernel-AWV. It consists in approximating the Gaussian kernel by a finite
set of basis functions. The number of functions included in the basis is a parameter to be optimized and fixes an
approximation-computational trade-off. Section 2 recalls the optimal regret bound of Kernel-AWV. Section 3 introduces
our algorithm to approximate Kernel-AWV in general RKHS. Section 4 considers the important particular case of the
Gaussian kernel and studies its approximation properties to state our main result (Theorem 4.1). Finally, we perform in
Section 5 several experiments based on real and simulated data to compare the performance (in regret and in time) of
our methods with competitors.

Notations We recall here basic notations that we will use throughout the paper. Given a vector v ∈ Rd, we write
v = (v(1), . . . , v(d)). We denote by N0 = N∪{0} the set of non-negative integers and for p ∈ Nd0, |p| = p(1)+· · ·+p(d).
We denote by ‖ · ‖ the Euclidean norm and by ‖ · ‖H the norm for a Hilbert space H. Write v>w, the dot product
between v, w ∈ RD. The conjugate transpose for linear operator Z on H will be denoted Z∗. The notation . will
refer to rough inequalities up to logarithmic multiplicative factors. Finally we will denote a ∨ b = max(a, b) and
a ∧ b = min(a, b), for a, b ∈ R.

For t = 1, . . . , n
• the learner receives input xt ∈ X ⊂ Rd

• the learner predicts ŷt := f̂t(xt) ∈ R
• the environment reveals output yt ∈ R
• the learner suffers loss (yt − ŷt)2

Figure 1: Setting of online non-parametric prediction.

2

2 Background

In this section we introduce some background on kernel methods and their known theoretical properties.

Kernels. Let k : X × X → R be a positive definite kernel [1]. The function k is characterized by the existence of a
feature map φ : X → RD, with D ∈ N ∪ {∞}1, such that

k(x, x′) = φ(x)>φ(x′),

moreover the reproducing kernel Hilbert space (RKHS) associated to k is characterized by

H = {f | f(x) = w>φ(x), w ∈ RD, x ∈ X},
with inner product 〈f, g〉H := v>w, for f, g ∈ H defined by f(x) = v>φ(x), g(x) = w>φ(x) and v, w ∈ RD. For
more details and different characterizations of k,H, see [1, 2]. It’s worth noting that the knowledge of φ is not necessary
when working with functions of the form f =

∑p
i=1 αiφ(xi), with αi ∈ R, xi ∈ X and finite p ∈ N, indeed

f(x) =

p∑
i=1

αiφ(xi)
>φ(x) =

p∑
i=1

αik(xi, x),

and moreover ‖f‖2H = α>Kppα, with Kpp the kernel matrix associated to the set of points x1, . . . , xp.

Kernel-AWV. The nonlinear Ridge forecaster (denoted AWV) on the space of linear functions on X = Rd has been
introduced and analyzed in [5, 6]. It predicts ŷt = ŵ>t xt, where

ŵt = argmin
w∈Rd

t−1∑
s=1

(
ys − w>xs)

)2
+ λ‖w‖2 + (w>xt)

2.

We consider here a straightforward generalization to kernels (we denote it Kernel-AWV) in which the forecaster produces
ŷt = f̂t(xt), where

f̂t = argmin
f∈H

t−1∑
s=1

(
ys − f(xs)

)2
+ λ

∥∥f∥∥2H + f(xt)
2. (4)

A variant of this algorithm, more used in the context of data independently sampled from distribution, is known as
Ridge regression (kernel Ridge regression) corresponding to solving the problem above, without the last penalization
term (w>xt)

2, (f(xt)2 for the kernel case).

In the next proposition we state a preliminary result which proves that Kernel-AWV achieves a regret depending on the
eigenvalues of the kernel matrix. In the next paragraph we show that the regret is optimal (up to log terms).
Proposition 2.1. Let λ,B. For any RKHSH, for all n ≥ 1, for all inputs x1, . . . , xn ∈ X and all y1, . . . , yn ∈ [−B,B],
the regret of Kernel-AWV is upper-bounded for all f ∈ H as

Rn(f) ≤ λ
∥∥f∥∥2H +B2

n∑
k=1

log

(
1 +

λk(Knn)

λ

)
,

where λk(Knn) denotes the k-th largest eigenvalue of Knn.

The proof is a direct consequence of the known regret bound of AWV in the finite dimensional linear regression
setting—see Theorem 11.8 of [12] or Theorem 2 of [13]. For completeness, we reproduce the analysis for infinite
dimensional space (RKHS) in Appendix A. In online linear regression in dimension d, the above result implies the
optimal rate of convergence dB2 log(n) +O(1) (see [13] and [6]).

Optimal regret for Kernel-AWV. We show here that Proposition 2.1 yields optimal regret (up to log) of the form (2)
for online kernel regression. The following proposition upper-bounds for any bounded kernel (i.e. supx∈X k(x, x) ≤ κ2,
with κ > 0) the right-hand side of Inequality (5) with the effective dimension.
Proposition 2.2. For all n ≥ 1 λ > 0 and all input sequences x1, . . . , xn ∈ X ,

n∑
k=1

log

(
1 +

λk(Kn)

λ

)
≤ log

(
e+

enκ2

λ

)
deff
(
λ
)
.

1when D =∞ we consider RD as the space of squared summable sequences.

3

Algorithm 1 φ̃-AWV

Input: λ > 0, φ̃ : X → Rr for r ≥ 1

Initialization: A−10 = λ−1Ir, b0 = 0

For t = 1, . . . , n

• receive xt ∈ X
• compute vt = φ̃(xt) ∈ Rr

• update A−1t = A−1t−1 −
(A−1
t vt)(A

−1
t vt)

>

1+v>t A
−1
t vt

• predict ŷt = φ̃(xt)
>A−1t bt−1

• receive yt ∈ R
• update bt = bt−1 + vtyt

Combined with Proposition 2.1, this entails that Kernel-AWV satisfies the close to be optimal regret bound

Rn(f) ≤ λ
∥∥f∥∥2H +B2 log

(
e+

enκ2

λ

)
deff
(
λ
)
. (5)

As discussed in the introduction, such an upper-bound on the regret is not new and was already proved by [14]
or by [7] for other algorithms. An advantage of Kernel-AWV is that it does not require any clipping and thus the
beforehand knowledge of Y > 0 to obtained Proposition 2.1. Furthermore, we slightly improve the constants in
the above proposition. We note that the regret bound for Kernel-AWV is optimal up to log terms when λ is chosen
minimizing r.h.s. of Eq. (5), since it meets known minimax lower bounds for the setting where (x(i), yi)ni=1 are sampled
independently from a distribution. For more details on minimax lower bounds see [15], in particular Eq. (9), related
discussion and references therein, noting that their λ correspond to our λ/n and our deff(λ) corresponds to their γ(λ/n).

It is worth pointing out that in the worst case deff(λ) ≤ κ2n/λ for any bounded kernel. In particular, optimizing
the bound yields λ = O(

√
n) and a regret bound of order O(

√
n). In the special case of the Gaussian kernel

(which we consider in Section 4), the latter can be improved to deff(λ) .
(
log(n/λ)

)d
(see [16]) which entails

Rn(f) ≤ O
(
(log n)d+1

)
for well tuned value of λ.

3 Regression with non-linear embedding

In previous section we have seen that, while Kernel-AWV achieves optimal regret, it has computational requirements
that are O(n3 + n2d) in time and O(n2) in space, for n steps of the algorithm, making it unfeasible in the context of
large scale datasets, i.e. n� 105. In this paper we consider and analyze a variation of Kernel-AWV denoted φ̃-AWV.

Let G = {g1, . . . , gr} ⊂ H be a set of functions and denote by φ̃ : X → Rr the map

φ̃(x) = Q−1/2v(x), (6)

with v(x) = (g1(x), . . . , gr(x)), and Q ∈ Rr×r defined as Qij = 〈gi, gj〉H. The algorithms consists in embedding x
in Rr via φ̃ and then performing linear AWV (see Algorithm 1). This reduces the total computational complexity to
O(nr2 + nrd+ r3) in time and O(r2) in space. While the algorithm is very simple, it achieves optimal regret in some
interesting non-parametric cases, with dramatically reduced computational complexity w.r.t. Kernel-AWV, as analyzed
in the next section.

Now we are ready to consider the effect on the regret of learning using the embedding of X in Rr via the map
φ̃ : X → Rr. In the next theorem we assume that k is a positive definite kernel, such that supx∈X k(x, x) ≤ κ2, for
κ > 0 and denote byH the associated RKHS.

Theorem 3.1. When φ̃-AWV is run with λ > 0 and φ̃ built using linearly independent set of functions G ⊂ H (see
Eq. (6)), then for all f ∈ H

Rn(f) ≤ λ
∥∥f∥∥2H +B2

n∑
j=1

log

(
1 +

λj(Knn)

λ

)
+ 2n‖f‖H(‖f‖Hκ+B) sup

x∈X

√
k(x, x)− ‖φ̃(x)‖2 , (7)

for any sequence (x1, y1), . . . , (xn, yn) ∈ X × [−B,B].

4

The result above bounds the regret of the φ̃-AWV for any function f ∈ H and holds for any bounded kernel and any
explicit feature map built as in Eq. (6), with G satisfying the basic properties required by the theorem. This result will
be used in Thm. 4.1 for Gaussian kernel and a specific set of functions derived from the Taylor expansion of the kernel.

3.1 Proof

First note that by defining the linear operator Z : H → Rr as Zf = (〈g1, f〉H , . . . , 〈gr, f〉H), for any f ∈ H, we have
that Q = ZZ∗ and v(x) = Zφ(x), so

φ̃(x) = V φ(x),

with V := (ZZ∗)−1/2Z. Now note that V is a partial isometry, indeed V V ∗ = Ir and P := V ∗V is an orthogonal
projection operator.

Let us denote by ŷt the predictions done by φ̃-AWV. Let f ∈ H and denote by f̃ the function f̃ = Pf ∈ H. We have
that

Rn(f) :=

n∑
t=1

(yt − ŷt)2 −
n∑
t=1

(yt − f(xt))2

= R̃n(w) + cn(f),

where R̃n(f̃) =
∑n
t=1(yt − ŷt)2 −

∑n
t=1(yt − f̃(xt))2 and cn(f) =

∑n
t=1(yt − f̃(xt))2 −

∑n
t=1(yt − f(xt))2.

Bounding R̃n(f̃). Denote by w ∈ Rr the vector w = V f . Note that

φ̃(x)>w = (V φ(x))>(V f) = 〈φ(x), Pf〉H = f̃(x),

then R̃n(f̃) is just the regret of linear AWV computed with respect to the vector w and data (φ̃(xt), yt)nt=1. By applying
standard result for linear AWV, we have then

R̃n(f̃) = Rn(w) ≤ λ‖w‖2Rr +B2
r∑
i=1

log(1 + λi(C̃n)/λ),

with C̃n =
∑n
i=1 φ̃(x

(i))φ̃(x(i))> and λi(C̃n) the i-th eigenvalue, considering the multiplicity, of C̃n.

Bounding the bias. By definition of w, we have that

‖w‖2Rr = ‖V f‖2Rr ≤ ‖V ‖2‖f‖2H ≤ ‖f‖2H,
where the last step is due to the fact that V is a partial isometry.

Bounding the variance. Then C̃n = V CnV
∗, with Cn =

∑n
t=1 φ(x) ⊗ φ(x). By defining the linear operator

Sn : H → Rn as Snf = (〈φ(x1), f〉H , . . . , 〈φ(xn), f〉H), we have that Cn = S∗nSn and Knn = SnS
∗
n. Moreover,

denoting by A � B, the fact that B −A is a positive semidefinite Hermitian operator (when A,B Hermitian operators),
we have that P � I and so SnPS∗n � SnS

∗
n = Knn. By recalling that A � B, when A,B both positive Hermitian

operators, implies that λi(A) ≤ λi(B) [17], and the fact that λi(A∗A) = λi(AA
∗) for any compact linear operator A,

we have

λi(C̃n) = λi(V CnV
∗) = λi(V SnS

∗
nV
∗)

= λi(S
∗
nV
∗V Sn) = λi(S

∗
nPSn)

≤ λi(Knn).

Finally, by bounding λi(Knn) with κ2n and using that log(1+x) with x/(1+x)(1+log(1+xmax)) for 0 ≤ x ≤ xmax

as in proposition 2.1, we have

log(1 + λi(C̃n)/λ) ≤ log(1 + λi(Knn)/λ)

≤ λi(Knn)

λi(Knn) + λ
(1 + log(1 + κ2n/λ)).

So
∑n
i=1 log(1 + λi(C̃n)/λ) ≤ deff(λ)(1 + log(1 + κn/λ)).

Bounding approximation error cn(f). Note that

(yt − f̃(xt))2 − (yt − f(xt))2

= (f(xt)− f̃(xt))(2yt − f(xt)− f̃(xt)). (8)

5

Now note that |yt| ≤ B, that
f(x) = 〈f, φ(x)〉H ≤ ‖f‖H‖φ(x)‖H ≤ κf,

and analogously f̃(x) ≤ κ‖Pf‖H ≤ κ‖f‖H. Therefore,

|2yt − f(xt)− f̃(xt)
∣∣ ≤ 2(B + κ) . (9)

Moreover

f(x)− f̃(x) = 〈φ(x), f − Pf〉 = 〈φ(x), (I − P)f〉
= 〈(I − P)φ(x), f〉
≤ ‖(I − P)φ(x)‖H‖f‖H.

Finally, since I − P is a projection operator, (I − P)2 = I − P , then

‖(I − P)φ(x)‖2H = 〈φ(x), (I − P)φ(x)〉H
= 〈φ(x), φ(x)〉H − 〈φ(x), Pφ(x)〉H .

To conclude, note that 〈φ(x), φ(x)〉H = k(x, x) and that

〈φ(x), Pφ(x)〉H = 〈φ(x), V ∗V φ(x)〉H
= (V φ(x))>(V φ(x)) = ‖φ̃(x)‖2.

So, by defining cX ,G = supx∈X |k(x, x)− ‖φ̃(x)‖2|, we get∣∣f(x)− f̃(x)∣∣ ≤ c1/2X ,G‖f‖H.
Combining with (8) and (9) and summing over n yields∑n

t=1(yt − f̃(xt))
2 − (yt − f(xt))2

≤ 2n‖f‖H(‖f‖Hκ+B)c
1/2
X ,G ,

which concludes the proof.

4 Learning with Taylor expansions and Gaussian kernel for very large data set

In this section we focus on non-parametric regression with a widely used basis function, the Gaussian kernel

k(x, x′) = exp(−‖x− x′‖2/(2σ2)),

for σ > 0 and the associated RKHS H. Using the results from the previous section, we prove that φ̃-AWV with the
considered basis, achieves optimal regret with r only in the order of O(polylog(n/λ)). Leading to a computational
complexity that is only O(n polylog(n/λ)) for optimal regret.

To really exploit the result in the previous section, we need a basis that (1) approximates very well the Gaussian kernel
and at the same time (2) whose projection is easy to compute. We consider the following basis of functions, for k ∈ Nd0,

gk(x) =

d∏
i=1

ψki(x
(i)), ψt(x) =

xt

σt
√
t!
e−

x2

2σ2 . (10)

Let us mention that for one dimensional data this corresponds to Taylor expansion of the Gaussian kernel. In particular
we will use φ̃-AWV with the following subset of functions

GM = {gk | |k| ≤M,k ∈ Nd0},

where |k| := k1 + · · ·+ kd, for k ∈ Nd0.

Our main theorem below states that φ̃-AWV using the basis GM gets optimal regret while enjoying low complexity.
The size of the basis M controls the trade-off between approximating well the Gaussian kernel (to incur low regret) and
large computational cost. Theorem 4.1 optimizes M so that the approximation term of Theorem 3.1 (due to kernel
approximation) is of the same order than the optimal regret.

6

Figure 2: Regret in adversarial setting, see Sec. 5.

Theorem 4.1. Let λ > 0, n ∈ N and let R,B > 0. Assume that ‖xt‖ ≤ R and |yt| ≤ B. When M is chosen as

M =

⌈
8R2

σ2
∨ 2 log

2n(1 + κ)

λ ∧ λ−1

⌉
, then

1. running φ̃-AWV using GM as set of functions leads to a map φ̃ : X → Rr, with

r ≤
(
3 +

21R2

σ2d
∨ 6

d
log

2n(1 + κ)

λ ∧ λ−1

)d
and a computational cost per iteration of

O

((
3 +

1

d
log

n

λ ∧ λ−1

)2d
)

in space and time,

2. moreover, for any f ∈ H, the algorithm achieves a regret bounded by

Rn(f) ≤ 2λ
∥∥f∥∥2H + 2B2

n∑
j=1

log

(
1 +

λj(Knn)

λ

)
.

Therefore φ̃-AWV achieves a regret-bound only deteriorated by a multiplicative factor of 2 with respect to the bound
obtained by Kernel-AWV (see Proposition 2.1). From Proposition 2.2 this also yields (up to log) the optimal bound (2).

In particular, it is known [16] for the Gaussian kernel that

deff(λ) ≤ 3
(
6 +

41

d

R2

2σ2
+

3

d
log

n

λ

)d
= O

((
log

n

λ

)d)
.

The upper-bound is matching even in the i.i.d. setting for non trivial distributions. In this case, we have r . deff(λ).
The per-round space and time complexities are thus O

(
deff(λ)

2
)
. Though our method is quite simple (since it uses

fixed explicit embedding) it is able to recover results -in terms of computational time and bounds in the adversarial
setting- that are similar to results obtained in the more restrictive i.i.d. setting obtained via much more sophisticated
methods, like learning with (1) Nyström with importance sampling via leverage scores [18], (2) reweighted random
features [19, 20], (3) volume sampling [21]. By choosing λ as follows,

λ =
B2

‖f‖2
,

to minimize the r.h.s. of the regret bound of the theorem, we get

Rn(f) .

(
log

n‖f‖2H
B2

)d+1

B2.

Note that the optimal λ does not depend on n and can be optimized in practice through standard online calibration
methods such as doubling trick or with an expert advice algorithm [12]. Similarly, though we use a fixed number of
features M in the experiments, the latter could be increased slowly over time thanks to online calibration techniques.

It is worth mentioning that there is a multiplicative gap of order O(log(n)) with the known minimax lower bound
(see [15]) in the i.i.d. offline setting. Yet, it is known that such a gap between the offline i.i.d. setting and the online
adversarial framework is unavoidable in some cases such as finite linear regression (see [6]). We leave as an open
question whether this gap can be closed in this case.

7

Figure 3: Average loss and time on (top): regression casp (n = 4.5 × 104, d = 9); (bottom) classification ijcnn1
(n = 1.5× 105, d = 22).

4.1 Proof of Theorem 4.1

To apply our Thm. 3.1, we need first (1) to recall that the functions gk, k ∈ Nd0 are in H, (2) to show that they can
approximate perfectly the kernel and (3) to quantify the approximation error of GM for the kernel function. First we
recall some important existing results about the considered set of functions. For completeness, we provide self-contained
(and often shorter and simplified) proofs of the following lemmas in the supplementary material.

The next lemma states that gk with k ∈ N is an orthonormal basis forH induced by the Gaussian kernel.

Lemma 4.2 ([22]). For any k, k′ ∈ Nd0,

gk ∈ H, ‖gk‖H = 1, 〈gk, gk′〉H = 1k=k′ .

Note that byproduct of the lemma, we have that GM ⊂ H and moreover that the matrix Q is the identity, indeed
Qij =

〈
gki , gkj

〉
H = 1ki=kj). This means that the functions in GM are linearly independent. Moreover the fact that

Q = Ir further simplifies the computation of φ̃.

The next lemma recalls the expansion of k(x, x′) in terms of the given basis.

Lemma 4.3 ([23]). For any x ∈ X ,

k(x, x′) = 〈φ(x), φ(x′)〉H =
∑
k∈Nd0

gk(x)gk(x
′). (11)

Finally, next lemma provides approximation error of k(x, x′) in terms of the set of functions in GM , when the data is
contained in a ball or radius R.

Lemma 4.4 ([23]). Let R > 0. For any x, x′ ∈ Rd such that ‖x‖, ‖x′‖ ≤ R∣∣∣k(x, x′)− ∑
g∈GM

g(x)g(x′)
∣∣∣ ≤ (R/σ)2M+2

(M + 1)!
. (12)

Now we are ready to prove Thm. 4.1.

8

Proof of point 1. First, note that r := |GM |, the cardinality of GM , corresponds to number of monomials of the
polynomial (1 + x1 + · · · + xd)

d, i.e. r := |GM | =
(
M+d
M

)
. By recalling that

(
n
k

)
≤ (en/k)k for any n, k ∈ N, we

have

r =

(
M + d

M

)
=

(
M + d

d

)
≤ ed(1 +M/d)d.

We conclude the proof of the first point of the theorem, by considering that φ̃-AWV used with the set of functions GM
incurs in a computational cost of O(nr2 + nrd) in time (no r3 since we don’t need to invert Q which we have proven
to be the identity matrix as consequence of Lemma 4.2) and O(r2) in memory.

Proof of point 2. By Lemma 4.2 we have that GM ⊂ H and Q = Ir, so the functions in GM are linearly independent.
Then we can apply Thm. 3.1 obtaining the regret bound in Eq. (7). Denoting by c the constant 2‖f‖H(‖f‖Hκ+B), by
definition of φ̃ (see (6)) and the fact that Q = Ir, we have ‖φ̃(x)‖2 =

∑
g∈GM g(x)2 and so the approximation term in

Eq. (7) is bounded by

c sup
x∈X

√
k(x, x)− ‖φ̃(x)‖2

Lem. 4.4
≤ c

(R/σ)M+1√
(M + 1)!

≤ c(2π(M + 1))−1/4e
−(M+1)/2 log M+1

eR2/σ2

≤ c(2π)−1/4e−(M+1)/2,

where we used the fact that n! is lower bounded by the Stirling approximation as n! ≥
√
2πnen log ne , for n ∈ N0 and

that M + 1 ≥ e2R2/σ2, so log M+1
eR2/σ2 ≥ 1. Now, since M ≥ 2 log(2n(1 + κ)/(λ ∧ λ−1)), we have

c(2π)−1/4e−(M+1)/2 ≤ c

3
e−M/2 ≤ cλ ∧ λ−1

6n(1 + κ)
.

Now note that when ‖f‖H ≥ B, we have that c ≤ 2n(1+κ)‖f‖2H, while, when ‖f‖H < B, we have c ≤ 2n(1+κ)B2.
So, in the first case

c(λ ∧ λ−1)
6n(1 + κ)

≤ cλ

6n(1 + κ)
≤ 1

3
λ‖f‖2H.

For the second case, first note that (λ ∧ λ−1)/2 ≤ log(1 + 1/λ) for any λ > 0, so

c(λ ∧ λ−1)/2
3n(1 + κ)

≤ B2 log

(
1 +

1

λ

)
.

Now, since log(1 + x) is concave on [0,∞), by subadditivity∑n
j=1 log

(
1 +

λj(Knn)
λ

)
≥ log

(
1 +

∑n
j=1

λj(Knn)
λ

)
.

By definition of trace in terms of eigenvalues and of the diagonal of Knn, we have
n∑
j=1

λj(Knn) = Tr(Knn) =

n∑
j=1

k(xj , xj) = κ2n,

where the last step is due to the fact that for the Gaussian kernel we have k(x, x) = 1 =: κ2, for any x ∈ X . Then

B2 log

(
1 +

1

λ

)
≤ B2 log

(
1 +

κ2n

λ

)

≤ B2
n∑
j=1

log

(
1 +

λj(Knn)

λ

)
.

5 Experiments

We empirically test φ̃-AWV against several state-of-the-art algorithms for online kernel regression. In particular we test
our algorithms in (1) an adversarial setting, (2) on large scale datasets. The following algorithms have been tested:

9

Figure 4: Average classification error and time on: (top) code-rna (n = 2.7 × 105, d = 8); (bottom) SUSY
(n = 6× 106, d = 22).

• Kernel-AWV for adversarial setting or Kernel Ridge Regression for i.i.d. and real data settings;
• Pros-N-Kons [7];
• Fourier Online Gradient Descent (FOGD, [11]);
• φ̃-AWV with M ∈ {2, 3, 4}.

The algorithms above have been implemented in python with numpy (the code for our algorithm is in Appendix D). For
most algorithms we used hyperparameters from the respective papers. One exception is the learning rate of FOGD
because the algorithm is very sensitive to the learning rate which has been globally optimized by grid search. For all
algorithms and all experiments, we set σ = 1 [except for SUSY where σ = 4, to match accuracy results from 24] and
λ = 1. For Pros-N-Kons, we set β = 1, ε = 0.5 as in the original paper. The number of random-features in FOGD is
fixed to 100 and the learning rate η is 10−3 unless otherwise stated. All experiments have been done on a single desktop
computer (Intel Xeon CPU E5-2620) with a timeout of 10-min per algorithm. The results of the algorithms are only
recorded until this time.

Adversarial simulated data. In this experiment we produced the sequence (xt, yt)t∈N adversarially on the regret
function. In particular, given the learning algorithm, we use scipy as a greedy adversary i.e. at each step an optimization
is done on the regret function to find the worst next x and y. In Figure 2, we plot thus simulations until n = 80, with
(xt, yt) ∈ [−1, 1]d × [−1, 1] where d = 5. We see that Kernel-AWV, which does not use any approximation, leads
to the best regret. Furthermore, φ̃-AWV approximations converges very fast to the regret of Kernel-AWV when M
increases. The poor performance of Pros-N-Kons is likely because of its frequent restarts which is harmful when n is
small. On the contrary, FOGD has surprisingly good performance. We runned the simulation up to n = 80 for the high
computational cost required by the adversary (especially for algorithms like Kernel-AWV or Pros-N-Kons).

Large scale datasets. The algorithms are evaluated on four datasets from UCI machine learning repository. In particular
casp (regression) and ijcnn1, cod-rna, SUSY (classification) ranging from 4 × 104 to 6 × 106 datapoints. For all
datasets, we scaled x in [−1, 1]d and y in [−1, 1]. In Figs. 3 and 4 we show the average loss (square loss for regression
and classification error for classification) and the computational costs of the considered algorithm.

In all the experiments φ̃-AWV with M = 2 approximates reasonably well the performance of kernel forecaster and is
usually very fast. We remark that using φ̃-AWV M = 2 on the first million examples of SUSY, we achieve in 10 minutes
on a single desktop, the same average classification error obtained with specific large scale methods for i.i.d. data
[24], although Kernel-AWV is using a number of features reduced by a factor 100 with respect to the one used in for

10

FALKON in the same paper. Indeed they used r = 104 Nyström centers, while with M = 2 we used r = 190 features,
validating empirically the effectiveness of the chosen features for the Gaussian kernel. This shows the effectiveness of
the proposed approach for large scale machine learning problems with moderate dimension d.

References
[1] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical society,

68(3):337–404, 1950.
[2] Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and statistics.

Springer Science & Business Media, 2011.
[3] Dean P. Foster. Prediction in the worst case. The Annals of Statistics, 19(2):1084–1090, 1991.
[4] Peter L. Bartlett, Wouter M. Koolen, Alan Malek, Eiji Takimoto, and Manfred K. Warmuth. Minimax Fixed-

Design Linear Regression. JMLR: Workshop and Conference Proceedings, 40:1–14, 2015. Proceedings of
COLT’2015.

[5] Katy S. Azoury and Manfred K. Warmuth. Relative loss bounds for on-line density estimation with the exponential
family of distributions. Machine Learning, 43(3):211–246, 2001.

[6] Vladimir Vovk. Competitive on-line statistics. International Statistical Review, 69(2):213–248, 2001.
[7] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Second-order kernel online convex optimization

with adaptive sketching. In International Conference on Machine Learning, 2017.
[8] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Efficient second-order online kernel learning with

adaptive embedding. In Neural Information Processing Systems, 2017.
[9] AJ Smola, B Schölkopf, and P Langley. Sparse greedy matrix approximation for machine learning. In 17th

International Conference on Machine Learning, Stanford, 2000, pages 911–911, 2000.
[10] Christopher KI Williams and Matthias Seeger. Using the nyström method to speed up kernel machines. In

Advances in neural information processing systems, pages 682–688, 2001.
[11] Jing Lu, Steven CH Hoi, Jialei Wang, Peilin Zhao, and Zhi-Yong Liu. Large scale online kernel learning. The

Journal of Machine Learning Research, 17(1):1613–1655, 2016.
[12] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.
[13] Pierre Gaillard, Sébastien Gerchinovitz, Malo Huard, and Gilles Stoltz. Uniform regret bounds over Rd for the

sequential linear regression problem with the square loss. arXiv preprint arXiv:1805.11386, 2018.
[14] Fedor Zhdanov and Yuri Kalnishkan. An identity for kernel ridge regression. In International Conference on

Algorithmic Learning Theory, pages 405–419. Springer, 2010.
[15] Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge regression: A distributed

algorithm with minimax optimal rates. The Journal of Machine Learning Research, 16(1):3299–3340, 2015.
[16] Jason Altschuler, Francis Bach, Alessandro Rudi, and Jonathan Weed. Massively scalable sinkhorn distances via

the nystr\" om method. arXiv preprint arXiv:1812.05189, 2018.
[17] Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013.
[18] Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström computational regularization.

In Advances in Neural Information Processing Systems, pages 1657–1665, 2015.
[19] Francis Bach. On the equivalence between kernel quadrature rules and random feature expansions. Journal of

Machine Learning Research, 18(21):1–38, 2017.
[20] Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features. In Advances

in Neural Information Processing Systems, pages 3215–3225, 2017.
[21] Michał Dereziński, Manfred K Warmuth, and Daniel Hsu. Correcting the bias in least squares regression with

volume-rescaled sampling. arXiv preprint arXiv:1810.02453, 2018.
[22] Ingo Steinwart, Don Hush, and Clint Scovel. An explicit description of the reproducing kernel hilbert spaces of

gaussian rbf kernels. IEEE Transactions on Information Theory, 52(10):4635–4643, 2006.
[23] Andrew Cotter, Joseph Keshet, and Nathan Srebro. Explicit approximations of the gaussian kernel. arXiv preprint

arXiv:1109.4603, 2011.
[24] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large scale kernel method. In

Advances in Neural Information Processing Systems, pages 3888–3898, 2017.

11

[25] Frank WJ Olver, Daniel W Lozier, Ronald F Boisvert, and Charles W Clark. NIST handbook of mathematical
functions. Cambridge University Press, 2010.

12

6 Supplementary material

A Proof of Proposition 2.1

The proof follows the classical analysis of online Ridge regression (see for instance the proof of Theorem 2 of [13]).
Let us first define some notation that will ease the proof. For all t ≥ 1, we denote Yt = (y1, . . . , yt)

> ∈ Rt and
Ŷt = (ŷ1, . . . , ŷt)

> ∈ Rt. We also define the operator St : H → Rt such that [Stf]j = f(x(j)) =
〈
f, φ(x(j))

〉
H for

any f ∈ H and we defineCt =
∑t
s=1 φ(xs)⊗φ(xs),At = Ct+λI . Finally, we denoteLt(f) :=

∥∥Yt−Stf∥∥2+λ‖f‖2H
for f ∈ H.

Under this notation, we successively prove the following two inequalities

Rn(f) ≤ λ‖f‖2H +

n∑
t=1

y2t
〈
A−1t φ(xt), φ(xt)

〉
H

≤ λ
∥∥f∥∥2H +B2

∞∑
k=1

log

(
1 +

λk(Cn)

λ

)
.

Let us start with the first inequality. For t ≥ 1 we define

ĝt := argmin
f∈H

{Lt−1(f)} = A−1t−1S
∗
t−1Yt−1

and we remark that
f̂t = A−1t S∗t−1Yt−1

where S∗t is the conjugate transpose of St. Let f ∈ H. By definition of ĝn+1 which minimizes Ln(f) over f ∈ H,

Ln(ĝn+1) ≤ Ln(f)
so that ∥∥Yn − Snĝn+1

∥∥2 − ∥∥Yn − Snf∥∥2 ≤ λ‖f‖2H .
and

Rn(f) =
∥∥Yn − Ŷn∥∥2 − ∥∥Yn − Snf∥∥2

≤
∥∥Yn − Ŷn∥∥2 − ∥∥Yn − Snĝn+1

∥∥2 + λ‖f‖2H

≤ λ‖f‖2H +

n∑
t=1

(
(yt − ŷt)2 + Lt−1(ĝt)− Lt(ĝt+1)

)
. (13)

Now, we need to analyze the terms inside the sum. First we remark that by expanding the square norm

Lt(f) = ‖Yt‖2 − 2Y >t Stf +
∥∥Stf∥∥2 + λ‖f‖H

= ‖Yt‖2 − 2Y >t Stf + 〈f,Atf〉H (14)

where we used ∥∥Stf∥∥2 =

n∑
t=1

f(xt)
2

=

n∑
t=1

〈f, φ(xt)〉

=

n∑
t=1

〈f, φ(xt)⊗ φ(xt)f〉

= 〈f, Ctf〉 .
Therefore, substituting ĝt+1 into (14) we get

Lt(ĝt+1) = ‖Yt‖2 − 2Y >t StA
−1
t︸ ︷︷ ︸

ĝ>t+1

Atĝt+1 + 〈ĝt+1, Atĝt+1〉H

= ‖Yt‖2 − 〈ĝt+1, Atĝt+1〉H

13

Thus,

Lt−1(ĝt)− Lt(ĝt+1)

= −y2t + 〈ĝt+1, Atĝt+1〉H − 〈ĝt, At−1ĝt〉H . (15)

Furthermore,

At(ĝt+1 − f̂t) = At
(
A−1t S∗t Yt −A−1t S∗t−1Yt−1

)
= S∗t Yt − S∗t−1Yt−1 = ytφ(xt) , (16)

where the last inequality is because

〈S∗t Yt, f〉H = (Stf)
>Yt

=

t∑
s=1

f(xs)ys

=

〈
t∑

s=1

ysφ(xs), f

〉
H

.

Then, using, ŷt = f̂t(xt) =
〈
f̂t, φ(xt)

〉
, we get

(yt − ŷt)2 = y2t − 2ytŷt + ŷ2t

= y2t − 2
〈
f̂t, ytφ(xt)

〉
H
+
〈
f̂t, φ(xt)⊗ φ(xt)f̂t

〉
H

= y2t − 2
〈
f̂t, At(ĝt+1 − f̂t)

〉
H
+
〈
f̂t, (At −At−1)f̂t

〉
H

(17)

where in the last inequality we used At −At−1 = φ(xt)⊗ φ(xt). Putting Equations (15) and (17) together, we get

(yt − ŷt)2 + Lt−1(ĝt)− Lt(ĝt+1)

= 〈ĝt+1, Atĝt+1〉H − 〈ĝt, At−1ĝt〉H
− 2

〈
f̂t, At(ĝt+1 − f̂t)

〉
+
〈
f̂t, (At −At−1)f̂t

〉
H

=
(
〈ĝt+1, Atĝt+1〉H − 2

〈
f̂t, Atĝt+1

〉
H
+
〈
f̂t, Atf̂t

〉
H

)
−
(
〈ĝt, At−1ĝt〉H − 2

〈
f̂t, Atf̂t︸︷︷︸

At−1ĝt

〉
H
+
〈
f̂t, At−1f̂t

〉
H

)
.

Then, using the equality Atf̂t = S∗t−1Yt−1 = At−1ĝt, we recognize the difference between two quadratic forms

(yt − ŷt)2 + Lt−1(ĝt)− Lt(ĝt+1) (18)

=
〈
ĝt+1 − f̂t, At(ĝt+1 − f̂t)

〉
H
−
〈
f̂t − ĝt, At−1(f̂t − ĝt)

〉
H

≤
〈
ĝt+1 − f̂t, At(ĝt+1 − f̂t)

〉
H

(16)
= y2t

〈
A−1t φ(xt), φ(xt)

〉
H . (19)

Substituting into (13) concludes the proof: for any f ∈ H

Rn(f) ≤ λ‖f‖2H +

n∑
t=1

y2t
〈
A−1t φ(xt), φ(xt)

〉
H

where we recall that At =
∑t
s=1 φ(xs)⊗ φ(xs) + λI . This proves the first inequality of the theorem.

Let us now prove the second inequality. Upper-bounding |yt| ≤ B, it suffices to show
n∑
t=1

〈
A−1t φ(xt), φ(xt)

〉
H ≤

∞∑
k=1

log

(
1 +

λk(Cn)

λ

)
.

14

Remarking that At = At−1 + φ(xt)⊗ φ(xt) and applying Lemma A.1 stated below we have〈
A−1t φ(xt), φ(xt)

〉
H = 1− det(At−1/λ)

det(At/λ)
.

It is worth pointing out that det(At/λ) is well defined since At = I + Ct with Ct =
∑t
s=1 φ(xs)⊗ φ(xs) at most of

rank t ≥ 0. Then we use 1− u ≤ log(1/u) for u > 0 which yields〈
A−1t φ(xt), φ(xt)

〉
H ≤ log

det(At/λ)

det(At−1/λ)
.

Summing over t = 1, . . . , n, using A0 = λI and An = λI + Cn we get
n∑
t=1

〈
A−1t φ(xt), φ(xt)

〉
H ≤ log

(
det
(
I +

Cn
λ

))

=

∞∑
k=1

log

(
1 +

λk(Cn)

λ

)
,

which concludes the proof.

The following Lemma is a standard result of online matrix theory (see Lemma 11.11 of [12]).
Lemma A.1. Let V : H → H be a linear operator. Let u ∈ H and let U = V − u⊗ u. Then,〈

V −1u, u
〉
H = 1− det(U)

det(V)
.

B Proof of proposition 2.2

Using that for x > 0

log(1 + x) ≤ x

x+ 1
(1 + log(1 + x)) ,

and denoting by a(λ) the quantity a(s, λ) := 1 + log(1 + s/λ), we get for any n ≥ 1

log
(
1 +

λk(Knn)

λ

)
≤ λk(Knn)

λ+ λk(Knn)
a(λk(Knn), λ).

Therefore, summing over k ≥ 1 and denoting by λ1 the largest eigenvalue of Knn

n∑
k=1

log
(
1 +

λk(Knn)

λ

)
≤ a(λ1, λ)

n∑
k=1

λk(Knn)

λ+ λk(Knn)

= a(λ1, λ) Tr
(
Knn(Knn + λI)−1

)
= a(λ1, λ)deff(λ) ,

where the last equality is from the definition of deff(λ). Combining with Proposition 2.1, substituting a and upper-
bounding

λ1(Knn) ≤ Tr(Knn) =

n∑
t=1

‖φ(xt)‖2H ≤ nκ2

concludes the proof.

C Additional Proofs

C.1 Proof of Lemma 4.2

Recall the following characterization of scalar product for translation invariant kernels (i.e. k(x, x′) = v(x− x′) for a
v : Rd → R) [see 2]

〈f, g〉H =

∫
F [f](ω)F [g](ω)
F [v](ω)

,

15

where F [f] is the unitary Fourier transform of f . Let start from the one dimensional case and denote by H0 the
Gaussian RKHS on R. First note that when d = 1, we have gk = ψk. Now, the Fourier transform of ψk is
F [ψk](ω) = 1√

k!
Hk(x/σ

2)e−ω
2/(2σ2), for any k ∈ Nd0, where Hk(x) is the k-th Hermite polynomial [see 25,

Eq. 18.17.35 pag. 457], and F [v] = e−ω
2/2, then, by the fact that Hermite are orthogonal polynomial with respect to

e−ω
2/2 forming a complete basis, we have

〈ψk, ψk′〉H0
=

1

k!

∫
Hk(ω)Hk′(ω)e

−ω2/2dω = 1k=k′ .

The multidimensional case is straightforward since Gaussian is a product kernel, i.e. k(x, x′) =
∏d
i=1 k(x

(i), x(i)) and
H = ⊗di=1H0, so

〈
⊗di=1fi,⊗di=1gi

〉
H =

∏d
i=1 〈fi, gi〉H0

[see 1]. Now, since gk = ⊗di=1ψki , we have 〈gk, gk′〉H =∏d
i=1

〈
ψki , ψk′i

〉
H0

= 1k=k′ .

C.2 Proof of Lemma 4.3

First, for j ∈ N0 define

Qj(x, x
′) := e−

‖x‖2

2σ2
− ‖x

′‖2

2σ2
(x>x′/σ2)j

j!
.

First note that, by multinomial expansion of (x>x′)j ,

Qj(x, x
′) =

e−
‖x‖2+‖x′‖2

2σ2

σ2jj!

∑
|t|=j

(
j

t1 . . . td

) d∏
i=1

(x(i))ti(x′
(i)
)ti

=
∑
|t|=j

gt(x)gt(x
′).

Now note that, by Taylor expansion of ex
>x′/σ2

we have

k(x, x′) =

∞∑
j=0

Qj(x, x
′) =

∞∑
j=0

∑
|t|=j

gt(x)gt(x
′)

=
∑
k∈Nd0

gk(x)gk(x
′).

Finally, with φ defined as above, and the fact that gk forms an orthonormal basis forH, leads to

〈φ(x), φ′(x)〉 =
∑
k∈Nd0

gk(x)gk(x
′) = k(x, x′).

C.3 Proof of Lemma 4.4

Here we use the same notation of the proof of Lemma 4.3. Since by Taylor expansion, we have that k(x, x′) =∑∞
j=0Qj(x, x

′), by mean value theorem for the function f(s) = es/σ
2

, we have that there exists c ∈ [0, x>x′] such
that

|k(x, x′)−
M∑
j=0

Qj(x, x
′)| = e−

‖x‖2+‖x′‖2

2σ2
cM+1

(M + 1)!

dM+1e
s
σ2

dsM+1
|s=c

≤ (|x>x′|/σ2)M+1

(M + 1)!

≤ (R/σ)2M+2

(M + 1)!

where the last step is obtained assuming ‖x‖, ‖x′‖ ≤ R. Finally note that, by definition of GM ,∑
g∈GM

g(x)g(x′) =

M∑
|k|≤M

gk(x)gk(x
′) =

M∑
j=0

Qj(x, x
′).

16

D Python code for φ̃-AWV with Taylor features

i m p o r t numpy as np
from math i m p o r t f a c t o r i a l , s q r t

c l a s s PhiAWV :
d e f _ _ i n i t _ _ (s e l f , d , s igma = 1 . 0 , l b d = 1 . 0 , M= 2) :

s e l f . b = None
s e l f . A_inv = None
s e l f .M = M
s e l f . l b d = l b d
s e l f . s igma = sigma

d e f t a y l o r _ p h i (s e l f , x) :
r e s = np . a r r a y ([1 .])

mm = np . a r r a y ([1 .])
f o r k i n r a n g e (1 , s e l f .M+ 1) :

mm = (np . o u t e r (mm, x)) . f l a t t e n ()
q = s e l f . s igma ∗∗k∗ s q r t (f a c t o r i a l (k))
r e s = np . c o n c a t e n a t e ((r e s ,mm/ q))

c = 2∗ s e l f . s igma ∗∗2
r e s ∗= np . exp(−np . d o t (x , x) / c)
r e t u r n np . a r r a y (r e s)

d e f p r e d i c t (s e l f , x) :
z = s e l f . t a y l o r _ p h i (x)
i f s e l f . b i s None :

r = l e n (z)
s e l f . b = np . z e r o s (r)
s e l f . A_inv = (1 / s e l f . l b d)∗ np . eye (r)

v = np . d o t (s e l f . A_inv , z)
v /= s q r t (1 + np . d o t (z , v))
s e l f . A_inv −= np . o u t e r (v , v)
w_hat = np . d o t (s e l f . A_inv , s e l f . b)
s e l f . z = z
r e t u r n np . d o t (w_hat , z)

d e f u p d a t e (s e l f , y) :
s e l f . b += y∗ s e l f . z

17

	Introduction
	Background
	Regression with non-linear embedding
	Proof

	Learning with Taylor expansions and Gaussian kernel for very large data set
	Proof of Theorem 4.1

	Experiments
	Supplementary material
	Proof of Proposition 2.1
	Proof of Proposition 2.2
	Additional Proofs
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Lemma 4.4

	Python code for Phi-AWV with Taylor features

