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Introduction 

Exocyclic enol ethers are a class of heterocycle present in a 
range of natural or pharmacology active molecules [1]. (Figure 
1). Moreover, they are useful intermediates for the synthesis of 
important biomolecules subunits such as C-glycosides [2a,b] or 
spirodiketal [2c]. 

 

 
 

Figure 1. Naturally occurring and biologically active exocyclic enol 
ethers. 

 

Early strategies for their synthesis relied on the olefination of 
parent lactones or isomerisation of endocyclic enol ethers [3]. 
Intramolecular hydroalkoxylations of alkynes represent a straight 
and atom-economical alternative to construct such oxygenated 

heterocycles, that could be promoted by numerous metals. Due to 
their toxicity, mercury salts [4] have been replaced with 
transition metals such as palladium [5a–d], platinum [5e], indium 
[5f] , copper [5g,h], silver [5i], gold [6] or even lanthanide and 
actinide complexes [7]. In sharp contrast, base mediated 
cyclisation are much more difficult in absence of any 
electrophilic activation of the alkyne moiety and consequently 
less investigated. With exception of one reaction reported by 
Knochel [8a], only conformationally  favourable cyclizations 
leading to benzofurans and involving excess of inorganic bases 
are documented (Figure 2) [8b-e]. 

 

 
Figure 2. Context of base mediated hydroalkoxylation of alkynes. 

 

In the context of our recent study regarding selective 
pyrrolidine and pyrrole synthesis [9] we recently discovered that 
linear alkynes substituted with an appropriate alcohol moiety 
could be rapidly cyclized through a specific combination of a 
small amount of Triton B (benzyltrimethylammonium hydroxide) 
and microwave irradiations. The overall process conveniently 
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Benzyltrimethylammonium hydroxide act as an efficient metal-free catalyst for the 
intramolecular hydroalkoxylation of alkynes. Notably, the use of microwave irradiation allowed 
reaction to operate in only two minutes. Under optimized reaction conditions, linear alkynes 
bearing aryl and heteroaryl substituents were successfully cyclized with good level of 
stereoselectivity. 
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yielded the corresponding 5-membered exocyclic enol ethers in 

a catalytic and metal-free manner. 

Results and discussion 

Our investigations started with the attempted cyclization of 
inactivated alcohol 1a under moderate microwave irradiations. 
Using catalytic amount of cesium or potassium hydroxide as base 
in highly polar solvents such as N-methylpyrrolidone (NMP) or 
dimethylsulfoxyde (DMSO), no conversion to the desired cyclic 
enol ethers 2a was observed (Table 1, Entry 1 and 2). Switching 
to tetrabutylammonium fluoride in dimethylformamide (DMF) 
did not promote the reaction. Surprisingly, when using the strong 
organic bases tetrabutyl ammonium hydroxide (TBAH), a clean 
5-exo-dig cyclisation of alcohol 1a was observed in very short 
reaction time and expected selectivity favouring isomer (Z)-2a.[8b] 
Moreover, Triton B gave a slightly improved selectivity with a 
(Z)-2a:(E)-2a ratio of 88:12 (Table 1, Entry 6). Thus, non-
activated alkyne 1a was efficiently cyclized upon a catalytic and 
metal-free process. 

 

Table 1 
Optimization of 1a 5-exo-dig cyclization. 
 

 
Entry Conditions Yield (%) 

(Z):(E)-2a[a] 

1 CsOH (20 mol%), DMF 0 

2 KOH (20 mol%), DMSO/H20 15:1 0 

3 KOH (20 mol%), DMSO 0 

4 TBAF (10 mol%), DMF 0 

5 TBAH (10 mol%), DMF >95 (85:15) 

6 Triton B (10 mol%), DMF >95 (88:12) 

7 Triton B (5 mol%), DMF >95 (88:12) 

8 Triton B (1 mol%), DMF 0 

9 Triton B (10 mol%), 1,4-dioxane[b] 0 

10 Triton B (10 mol%), toluene[b] 0 

11 Triton B (10 mol%), THF[b] 0 

11 Triton B (10 mol%), CH3CN[b] >95 (65/35) 

12 Triton B (10 mol%), DMSO[b] >85 (88/12) 

[a] Isolated as a (Z/E) mixture, yield and ratio determined by 1H 
NMR. [b] 60 °C, 3,5 min. 

 

The amount of Triton B could be decreased to 5 mol% (Table 
1, Entry 7). When 1 mol% Triton B was used, no conversion was 
observed after 2 minutes. Increased concentration gave a 
complex mixture of unidentified products while decreasing the 
temperature at 40 °C led to reproducibility problems. 

The nature of the solvent has a decisive influence on the result 
of the reaction: dioxane, toluene or THF gave no conversion, in 
line with known ineffective microwave heating in solvents with 

low dielectric constant [10]. More polar solvent such as 
acetonitrile gave complete conversion with a lower (Z)-2a 
selectivity and dimethyl sulfoxide (DMSO) provided similar 
selectivity as DMF, although inseparable side products (< 10%) 
were detected in the crude reaction mixture (Table 1, Entries 11 
and 12). 

To assess the critical effect of microwave irradiations, control 
experiments with one equivalent of Triton B at room temperature 
or at 100 °C using a conventional oil bath heating were 
performed. After a prolonged period (3-12 hours), no conversion 
was observed. However, increasing the temperature to 120 °C 
during 10 hours finally gave a lower 84% conversion and no 
selectivity (Z/E 55:45). 

With optimized conditions in hand, the scope of the catalytic 
reaction was explored with various alcohols (Table 2). 

 
Table 2 
Scope of Triton B-mediated cyclization of arylalkynyl alcohols. 
 

 
Entry   Yield %)[a] (Z):(E)[a] 

1 

 

2b 81 88:12 

2 

 

2c 40 87:13 

3 
 

2d 44 75:25 

4 

 

2e > 98 93:7 

5 

 

2f > 98 87:13 

6 
 

2g 88 60:40, 98:2[b] 

7 
 

2h 86 63:37, 98:2[b] 

8 

 

2i 87 88:12, 98:2[b] 

9 

 

2j 90 96:4 

Isolated yields; Z/E ratio determined by 1H NMR of crude mixture; 
[a] Over 2 steps after hydrogenation using Pd/C, see SI for details; 
[b] After treatment with CF3CO2H, see SI for details. 

 
Thus electron-rich arenes connected to alkynyl alcohols were 

successfully reacted and converted into cycloethers 2b-2d with 
moderate (Z)-selectivity. Those heterocycles displayed poor 
stability and required an additional reduction step (Pd/C, AcOEt, 
H2) to be isolated, providing 2-substituted tetrahydrofurans in 81-
40% yield over 2 steps.  

Having a lower LUMO, electron-poor alkynes gave better 
results leading to stable cyclic ethers 2e and 2f in excellent yields 
(> 98%). Furthermore, pyridine, pyrazine, quinoline and 



 3
pyrimidine substituted alkynes were similarly cyclized in 2h‒j 
with excellent yields (86‒90%). In some instances, moderate 
stereoselectivities were enhanced by isomerisation upon work-up 
with trifluoroacetic acid in dichloromethane (2h‒i). This was 
rationalized in terms of increased stabilization of (Z)-2g‒i 
through intramolecular hydrogen bonding between the oxygen 
atom and the protonated heterocycle. The substitution of the 
alkyne with electron depleted heterocycles facilitated 
considerably the cyclization process. Hence, a control experiment 
showed that 1g (Ar = 2-pyridyl) cyclized into 2g in 93% yield 
(Z/E 66:34) at room temperature, but at a much slower pace over 
5 hours. Replacing the ammonium hydroxide with catalytic 1,8-
diazabicyclo-[5.4.0]undec-7-ene or 1,1,3,3-tetramethylguanidine 
failed to promote the cyclization of 1g at room temperature. 

The possibility to obtain cyclic enol ethers substituted with 
Lewis basic nitrogen heterocycles further illustrate the versatility 
of this metal-free process. However, some limitations were 
noted: no cyclization occurred with 4-pentyn-1-ol and 
trimethylsilyl-substituted alkyne led only to clean desilylation. 
With more robust triisopropylsilyl group, only degradation 
compounds were observed. 

Intramolecular hydroalkoxylation of alkyne leading to a 6-
membered heterocycle is considerably less documented than 5-
membered counterpart. Therefore cyclization of homologous 
phenylhexynol 3 was attempted. Upon treatment with Triton B, a 
6-exo-dig cyclization took place followed by an isomerization, 
providing dihydropyran 4 with >90% NMR purity (Scheme 2) 
[11]. 

 
Scheme 2. 6-exo-dig cycloisomerization of phenylhexynol 3 

 

Poor stability of compound 4 prevented further purification by 
flash chromatography and subsequent hydrogenation afforded 
tetrahydropyran 5 in 65% yield over 2 steps. 

Conclusion 

In summary, we have developed 5-exo-dig cyclizations of 
arylalkynyl alcohols under unprecedented tetraalkylammonium 
hydroxide catalysis. One example of 6-exo-dig cyclization is also 
reported. Without favorable bias such as present in benzylic 
alcohol derived alkynes, the chemistry is compatible with alkynyl 
connected to electron-rich or electron-poor aryl groups with 
similar efficiency. In all cases, good to excellent 
stereoselectivities in favour of the (Z)-enol ethers were obtained. 
The base used in this reaction, Triton B, is readily available, easy 
to handle and was used in catalytic amount. Further studies to 
clarify the reaction mechanism, in particular the contribution of 
the counter cation are currently in progress in our laboratory. 
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