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ABSTRACT

Estimating the main melody of a polyphonic audio record-
ing remains a challenging task. We approach the task from
a classification perspective and adopt a convolutional re-
current neural network (CRNN) architecture that relies on
a particular form of pretraining by source-filter nonneg-
ative matrix factorisation (NMF). The source-filter NMF
decomposition is chosen for its ability to capture the pitch
and timbre content of the leading voice/instrument, pro-
viding a better initial pitch salience than standard time-
frequency representations. Starting from such a musically
motivated representation, we propose to further enhance
the NMF-based salience representations with CNN lay-
ers, then to model the temporal structure by an RNN net-
work and to estimate the dominant melody with a final
classification layer. The results show that such a system
achieves state-of-the-art performance on the MedleyDB
dataset without any augmentation methods or large train-
ing sets.

1. INTRODUCTION

Automatic dominant melody estimation (AME) is a pop-
ular and rather challenging task in Music Information Re-
trieval (MIR). In general, AME can be defined as the esti-
mation of fundamental frequencies that represent the pitch
values of the dominant melody [24]. The source of the
dominant melody could be a leading singing voice or an
instrument. The difficulty is that there is usually a poly-
phonic accompaniment to the lead vocal/instrument, and
that this accompaniment follows the melody rhythmically
and harmonically, in the sense that chord progressions will
naturally contain the dominant Fg and/or its harmonics. As
a consequence, it is not trivial to obtain a representation
that discriminates the main melody from the background
music. Hence, one of the main research directions in AME
remains finding a salience representation that enhances the
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fundamental frequency of the dominant melody against the
possibly polyphonic background.

One of the most popular and rather simple salience rep-
resentations is the Harmonic Sum Spectrum (HSS) [18]
that consists of mapping the energy among harmonically
related Fjs. This has been used effectively in a popular
melody extraction algorithm, jbcorso-called Melodia [23].
Durrieu et. al. [11, 12] proposed a salience function where
the dominant melody (singing voice or instrument) is mod-
eled with a Source-Filter Nonnegative Matrix Factoriza-
tion (SF-NMF). This method was later combined with HSS
in [7] in order to obtain an enhanced salience representa-
tion. There also exist other methods that utilize a simple
time-frequency representation, e.g., the Short Time Fourier
Transform (STFT) or Constant Q-Transform (CQT), as a
low-level representation of salience [13,25].

Recently, Bittner et. al. [6] proposed a Convolutional
Neural Network (CNN) system to learn salience represen-
tations based on harmonic CQT. The rationale for this ap-
proach is to learn harmonic relationships implicitly and to
obtain a salience representation similar to (or better than)
HSS.

Salience-based melody estimation methods usually use
pitch tracking methods on top of salience representations
to exploit the temporal relationships between dominant
Fps. In [12], a Hidden Markov model (HMM) was adopted
where the states represent the bins of the source activa-
tions, i.e. Fps. Then a threshold-based voicing estima-
tion (melody/non-melody estimation) was applied. An-
other very popular pitch tracking method was proposed by
Salamon et. al. [23] where the algorithm creates and char-
acterizes pitch contours on top of HSS. Characteristics of
these contours have proven very effective in voicing esti-
mation [7,23].

Recently, Deep Neural Networks (DNNs) have become
very popular in MIR applications such as sound event de-
tection [2, 4] and chord estimation [20]. The ability of
DNNSs to approximate any function with linear weights and
non-linear activations, given enough data, makes such sys-
tems attractive for MIR tasks. That said, comparatively
few attempts have been made to estimate dominant melody
using neural networks. In [19, 22], bidirectional Long
Short-Term Memory (LSTM) [15], a special kind of Re-
current Neural Network (RNN), are used for singing voice
separation. Such networks are mostly used in modeling the
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temporal information in time sequences. Recently, in [3],
a hierarchical CNN structure similar to a stacked denois-
ing autoencoder (SDA) [26] is used to learn a mapping be-
tween an STFT representation and a transcription similar
to a piano roll. A tutorial on deep learning techniques for
MIR tasks can be found in [9].

Although most of these DNNs perform end-to-end
training, it has proven effective to use a more structured
input data, such as harmonic-CQT [6]. Recently, [4]
achieved state-of-the-art results in sound classification by
using NMF activations as input as a form of pretraining.

Contributions. Inspired by these works, we propose a
Convolutional-Recurrent Neural Network (CRNN) model
whose pretraining is based on the SF-NMF model pro-
posed in [12]. We show that with NMF-based pretrain-
ing, we can achieve state-of-the-art results without requir-
ing large training datasets or data augmentation methods,
and using relatively simpler networks in terms of training
parameters. Our results clearly demonstrate the usefulness
of a good input salience representation to the network, sug-
gesting that performance would climb even higher if the
SF-NMF model were improved. Our results are obtained
on MedleyDB [5], which is a challenging dataset due to
inclusion of singing voice and instrument melodies in a di-
verse set of music genres.

The rest of the paper is organized as follows: the pro-
posed CRNN system and pretraining with SF-NMF are
detailed in Section 2. Section 3 discusses the domi-
nant melody estimation results obtained on the MedleyDB
dataset, and also gives an analysis of SF-NMF-based
salience and the comparison between different CRNN vari-
ants. Finally, some conclusions and future directions are
given in Section 4.

2. SYSTEM OVERVIEW

The block diagram of the CRNN system we propose is
given in Figure 1. In the first stage (Pretraining), we es-
timate an initial salience representation using the SF-NMF
model. Then this salience is fed into a CNN (CNN stage),
where the salience representation is further enhanced by
learning local features. The CNN output activations are
then fed into an RNN to exploit the long-term relationships
between fundamental frequencies (RNN stage). Then in
the final Classification stage, we classify the representa-
tions as melody/non-melody and give an estimate for Fj
at each time-frame where each class represents a semitone
fundamental frequency. Note that the same procedure is
applied in both the training and testing of the system.

In the design of the CRNN system, we are inspired by
a similar CRNN proposed in [20] for chord recognition,
where the network is interpreted as an encoder-decoder
scheme. In the CRNN structure we propose, the CNN
and RNN stages can also be treated together as an encod-
ing stage (input sequence to mid-level salience representa-
tion) where the output is an enhanced salience representa-
tion that captures both spatial and temporal features. Then
the classification stage acts as a decoding stage (mid-level
representation to output sequence) where the salience is

| Pretraining with SF-NMF |
+ Salience
| representation

| CNN Stage
| RNN Stage | :l_ Temporal pitch
tracking

v

| Classification

| :l_ Melody/non-melody
Fo estimation

Figure 1: Block diagram of the proposed CRNN system
with pretraining

mapped into a frame-based note representation.

2.1 Pretraining with SF-NMF

In [12], the dominant melody (voice/instrument) is mod-
eled using a source-filter model. Assuming the mixing
of the dominant melody and the accompaniment (back-
ground) is instantaneous, the source, filter and accompa-
niment parts are modeled with the SF-NMF model as fol-
lows:

VaV=vhov®ivE
— Whogto ®W<I>H<I> +WBHB (1)
=whgh o wH'H® + WEHE ()

where V represents the power spectrogram of the signal,
i.e., V = |X|? (where X is the STFT of the audio signal to
be analyzed); Fy, ® and B represents the source, filter and
background respectively; W and H represent the basis and
activation matrices; and ® denotes the Hadamard product.
The filter basis W is further modeled with yet another
NMF representation, as in [11]: W® = WI'HT,

In this model, the source, VFo = WHoH0 i assumed
to have a harmonic structure. To ensure such a struc-
ture, the basis W is pre-constructed (not estimated) such
that each column represents the harmonic structure for one
Fy. Represented Fjs start from a minimum frequency, i.e.,
Fy = 55 H z, and they are logarithmically spaced, i.e., the
ratio between consecutive Fjy values would be 2(2/60) for a
resolution of 5 bins per semitone. Such a construction en-
forces the corresponding row in the activation matrix Ho
to represent the activation of that specific Fj, similar to a
saliency representation. That is the rationale behind using
Hfo asa saliency representation as in [7,11,12].

The main assumption with the filter, V2, is to have a
smooth structure. One way to ensure such smoothness is
to construct a basis W from smooth filters in advance,
similar to enforcing harmonic structure in the source Vo,
However it is not possible to directly construct W® with
smooth basis filter structures since it depends on the dom-
inant melody. In [11], it is proposed to represent W with
another NMF model, WI'HY', where the columns of WT
are constructed (not estimated) as simple and smooth band
pass filters that are linearly spaced and overlapping. This
structure forces W to be smooth, thus ensuring that ve
will be smooth as expected.
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The accompaniment/background, VB = WBHSE, is
also represented with a standard NMF model where there
are no constraints on the basis such as smoothness or being
harmonic. In summary, the source basis W? and smooth
filter basis W are pre-constructed and the rest of the pa-
rameters H°, H' H® W2 and HP are estimated using
the standard alternating scheme and heuristic multiplica-
tive updates.

In this work, for the SF-NMF model, we follow the
parametrization given in [7] where the minimum and max-
imum frequencies represented in FI® are chosen as 55 H z
and 1760H z respectively. We choose the resolution of the
Foys as 5 bins per semitone which results in 60 bins per
octave (bpo) and 301 bins in total per frame.

Note that due to the logarithmic spacing of the Fys
where the consecutive frequencies have a ratio of 21/60
one can tune the represented Fyys with proper choice of the
minimum frequency Fp ,nin. As an example, if Fy pnin =
55H z, the notes will be tuned to A4 = 440H z whereas if
Fomin = 55.25H z, they will be tuned to A4 = 442H z.
This choice of tuning might depend on the target dataset.
Here, we choose the tuning A4 = 440H z assuming that
such tuning is more widely used. It is important to men-
tion that this construction of Fys in W cannot be gener-
alized to all music genres, e.g., traditional Turkish music
with makams. Hence the methods based on SF-NMEF, as
well as the proposed scheme, are limited in that sense.

Although we aim to classify the fundamental frequen-
cies at semitone resolution, we initially choose a higher
resolution for the Fys in WT0, In practice, it is highly
probable that a dominant voice or instrument will be
slightly out-of-tune, and hence will not fit any of the repre-
sented Fys. In such cases, a high resolution representation
of Fys might better describe these out-of-tune notes.

2.2 CNN stage

In order to enhance the H-salience, we propose two dif-
ferent CNN architectures, which we denote as CNN1 and
CNN2. In CNN architecture 1 (CNN1), we first decrease
the F{, resolution to semitones, then we train CNN layers
to learn local structures, i.e., the confusions between semi-
tones. In the second approach (CNN2), we follow the net-
work proposed in [6]. Here, the network learns the features
in the original resolution and within a semitone interval
with one additional layer that learns the octave patterns.
Note that since each CNN architecture only applies 2D
linear filters and non-linear activations, the input structure
is not lost through the layers of the network. This provides
an advantage of interpretable hidden layer activations and
leads to a new form of salience as output where each row
still represents the activation of a fundamental frequency.
In both architectures, rectified linear units (ReLus) are
used as non-linear activations and are applied to each CNN
layer output. Batch normalization is applied before each
intermediate CNN layer input, as it has proven effective
in the convergence of the network by reducing the internal
covariance shift [16]. The columns of H° are normalized
with /; norm before being fed into the CNN network. Such

301 x 50

Layer 1
- 64 (5,1) filters
- Output shape: 61x50

Layer 2
- 64 (5,3) filters
- Output shape: 61x50

Layer 5
-1(1,1)filters
- Output shape: 61x50

Layer 4
- 16 (15,3) filters
- Output shape: 61x50

Layer 3
- 64 (3,3) filters
- Output shape: 61x50

Figure 2: CNN Architecture 1 (CNN1).

a normalization is possible since the task at hand is the
estimation of the melody; that is, only the position of the
fundamental frequency is needed, not the exact energy.

2.2.1 CNN Architecture 1 (CNNI)

There are 5 layers in the CNN1 architecture. The first layer
gathers the energy around each semitone by applying fo-
cused filters centered around each semitone frequency. In
this layer, there are 64 (5x1) filters each with a stride (5,1).
This way, not only is the energy focused on the semitones,
but also the frequency resolution is decreased to the semi-
tone scale from 5 bins per semitone (time resolution re-
mains the same). The rationale behind the first layer is
two-fold: First, the number of parameters is severely de-
creased by lowering the frequency resolution, i.e., it takes
5 times less filter parameters in order to learn features. Sec-
ond, out-of-tune notes would already be represented in the
vicinity of the corresponding semitone in the H repre-
sentation. Focused filters on semitones would gather the
energy on the semitone that is a way of retuning the melody
on the represented semitone fundamental frequencies.

In the following layers, zero padding is applied to con-
volutions to keep the dimensions unchanged. The second
layer has 64 (5 x 3) filters that cover +2 semitone inter-
val and roughly 30ms in time. Then the third layer has 64
(3 x 3) filters that cover 41 semitone and 30ms in time.
The fourth layer has 16 (15 x 3) filters to learn note con-
fusions in one octave. Filters cover +7 semitone interval
and again 30ms in time. Then enhanced salience represen-
tation is obtained as the output of the final CNN layer that
has only one (1x1) filter as in [6] but with a rectified linear
unit instead of a sigmoid. The overall structure of CNN
architecture 1 is shown in Figure 2.

2.2.2 CNN Architecture 2 (CNN2)

CNN?2 is based on the network proposed in [6]. In this net-
work, the resolution of the input remains the same through-
out the layers of the CNN, i.e., no pooling is applied. Note
that the input to CNN2 is H; therefore, the first layer of
the network contains only a single channel instead of six.
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As mentioned before, the overall system targets semi-
tone resolution for the output fundamental frequencies.
This requires a reduction in resolution somewhere in the
system. In this architecture, we left the dimensionality re-
duction to the final classification layer.

2.3 RNN stage

Recurrent neural networks are mostly used in MIR and
audio analysis tasks to model the dynamics of the obser-
vations, typically for chord recognition [20] and speech
recognition [14]. Here, we use a single bidirectional Gated
Recurrent Unit (BiGRU) layer to capture temporal rela-
tionships between Fps. A GRU is a special kind of RNN
[8] where the units are able to model long-term temporal
relationships whilst using a gate structure. It has the advan-
tage of not suffering from the vanishing gradient problem
of standard RNN and has proven to be easier to train com-
pared to the LSTM alternative.

The number of units in a BIGRU layer should be chosen
higher or equal to the output dimension of the preceding
CNN network. In the BiGRU structure, actually two GRU
layers are trained with the same input but in reverse direc-
tions to model the F{, relationships from both directions.
Later, the two layers are merged to have a single output.

2.4 Classification

The final layer of the system is a classifier where one class
represents the non-melody and the rest of the 61 classes
represent semitone fundamental frequencies between Al
and A6 (inclusive). The multiclass classification output is
obtained with a single dense layer and softmax activations.

The overall system is trained minimizing the cross en-
tropy loss between the softmax activations and true proba-
bilities. A frame is classified as a non-melody frame only
if the probability of non-melody class is higher than the
rest. Regardless of this decision, Fj is estimated for each
frame by simply picking the most probable F{, class among
the 61 note classes. Note that even if the non-melody class
has the highest probability, the second-highest probability
gives a good estimation of the pitch.

An example output of the classification layer that is ob-
tained from a CNN1 + RNN + Classification architecture
is shown in Figure 3. In this example, ' input (top-left)
gives a very good initial salience. Then the CNN1 output
activations (top-right) further enhance the dominant part
against the harmonic background. It is observed that the
dominant Fy classes mostly have the highest probabilities
against the rest of the class probabilities (bottom-left).

3. EXPERIMENTS

In this section, we evaluate the proposed NMEF-based
CRNN system using the MedleyDB dataset [5]. For the
annotations, we use the "Melody2" definition in Med-
leyDB that is the F{y of the dominant melody at each time
step, drawn from multiple sources. With this definition
of melody, it is possible to have separate instruments or

1760

880

440

220

Frequency (Hz)

110

55

1760
880
440

220

A e T,

Frequency (Hz)

110

55 . . . ' ! !
15 16 17 18 19 20
Time (sec)
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Figure 3: (Top-left) H® representation of a small au-
dio excerpt as input to CRNN, (Top-right) CNN1 activa-
tions, (Bottom-left) Classifier activations of CRNN, (Bot-
tom right) Ground-truth annotations.

voices as the source of dominant melody throughout a sin-
gle song. Among 108 annotated songs in the dataset, 48
songs have predominant instrumental melody, 30 songs
have predominant vocal melody and 30 songs have both
predominant instrument and vocal melodies.

We randomly split the MedleyDB set into train, valida-
tion and test sets such that the tracks from the same artist
do not belong to different sets following the artist condi-
tional random splitting as in [6,7]. There are 27 full-length
tracks in the test set, 67 full-length tracks in the training set
and 14 full-length tracks in the validation set. Note that we
used the same test split with [6] in the MedleyDB in the
rest of the experiments to be able compare the results.

We use the five standard evaluation metrics given in
[24], namely: Raw Pitch Accuracy (RPA), Raw Chroma
Accuracy (RCA), Overall Accuracy (OA), Voicing False
Alarm (VFA) and Voicing Recall (VR). All the codes are
written in Python and available online ! . CQT implemen-
tation is based on the librosa python package [21].

3.1 Network training

We trained three different networks with the following
combinations of the architectures given in Section 2:

CRNN-1: CNNI1 + 1 layer BiGRU (128 Units) + Classifi-
cation layer;

CRNN-2: CNN2 + 1 layer BiGRU (160 Units) + Classifi-
cation layer;

C-NN: CNN2 + Classification layer.

We further denote the network variants by prepending
a label indicating the input to the network: "SF" for H 0
input and "CQT" for CQT input. Note that the CQT pa-
rameters are chosen such that the representation of a signal

via H or CQT would have the same dimensions 2.

! github.com/dogacbasaran/ismir2018_dominant_melody_estimation
2 CQT parameters: Minimum Fp=55Hz, # of octaves = 5, bpo = 60
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CRNN-1
307,199

CRNN-2
854,319

Baseline
406,253

# of Param.

Table 1: The number of trainable parameters for CRNN-1,
CRNN-2 and the baseline CNN network [6]

In the proposed CRNN structure, the purpose of the
CNN stage is to learn local features, whereas the purpose
of the RNN stage is to account for long term temporal re-
lationships. This requires selecting relatively small patch
lengths for the CNN layers but longer patch lengths for
the RNN layer. For this purpose, we used different patch
lengths for the CNN and RNN parts while jointly training
them.

In all the models, the CNN layers are trained on either
0.29-second (25-frame) or 0.58-second (50-frame) patches
and the RNN layer is trained on 5.8-second (500-frame)
patches. The training is performed using mini-batches of
16 patches per batch. We use the ADAM optimizer [17],
and reduce the learning rate if there is no improvement in
validation loss after 20 epochs. The early stopping strat-
egy is used if the validation loss is not decreased after 20
epochs. The maximum possible number of epochs is set to
200. All models were implemented with Keras 2.0 [10]
and Tensorflow 1.0 [1] and tested using NVIDIA-Tesla
K80 GPUs. The number of parameters for each network
model is given in Table 1.

Note that, in the training, we do not benefit from any
data augmentation method or from other larger datasets.

3.2 Results

We compare the outputs of all three models to a CNN-
based melody tracking system [6], considered as a base-
line, which proved to significantly outperform the previous
state-of-the-art methods in [7,23]. The evaluation results
of [6] are available online.® By choosing the same test
split from the MedleyDB, we are able to compare these
published results to ours without any re-evaluation. The
evaluation results for all network variants (SF-CRNN-1,
SF-CRNN-2, CQT-CRNN-2, SF-C-NN) and for the base-
line are given in Figure 4. We use McNemar’s test on the
classification results and provide p-values as a measure of
significance whenever relevant *.

CQT vs. H™ as salience
We explore the usefulness of pretrained input by com-
paring the evaluation results of the CRNN-2 model when
the input is CQT or H*—i.e., comparing CQT-CRNN-2
and SF-CRNN-2. The results show that CRNN-2 model
performs significantly better in OA (p=0.0015) and RCA
(p=0.0003) scores when the input to the network is H®.
On average, results for SF-CRNN-2 are 6, 9 and 7 percent-
age points higher for OA, RPA and RCA, respectively.
The reason the CRNN-2 model performs better with
pretrained input is that H'® provides a better initial

3 github.com/rabitt/ismir2017-deepsalience
4 Mcnemar test is based on statsmodel package in python.

Ho CQT
RPA | 0.538 +£0.141 | 0.210 £ 0.16
RCA | 0.648 +£0.127 | 0.411 £ 0.15

Table 2: The comparison of RPA and RCA scores for H
feature and CQT feature by simple peak-picking method.

oA T

RPA ———
B SF-C-RNN-1 —— e
B SF-C-RNN-2 1
RCA B CQT-C-RNN-2 ——— e ———
SF-C-NN e—— = u—
B Baseline ————— 0
VR e B . S—
e —— m— —
VFA i T——————
0.0 0.2 0.4 0.6 0.8 1.0
Score

Figure 4: Evaluation metrics for SF-CRNN-1, SF-CRNN-
2, CQT-CRNN-2, SF-C-NN and the baseline [6].

salience representation than the CQT. Ideally, a salience
representation of melody should be discriminative for each
target fundamental frequency against the polyphonic back-
ground music. We can analyze both FI¥® and CQT repre-
sentations to see how well they fit this definition of “ideal”
salience by performing a simple peak-picking strategy as
in [6]. Specifically, the frequency with maximum ampli-
tude/salience for each time frame point is chosen as the
estimate of the fundamental frequency. We can compute
the RPA and RCA scores using those estimates to see their
performances as salience. The results obtained on the full
MedleyDB dataset are given in Table 2. It can be seen
that H performs nearly twice as well as the CQT repre-
sentation in both RPA and RCA scores, showing that FIF°
provides a better initial salience to the CRNN networks.

SF-CRNN-2 model vs. Baseline CNN Network

The SF-CRNN-2 model uses the CNN-2 architecture in the
CNN stage, the same CNN as the baseline. When we
compare the evaluation results given in Figure 4, we ob-
serve that the SF-CRNN-2 model outperforms the baseline
in the RPA (p = 0.0015) and VR (p=0.052) scores. The
model has slightly higher OA and RCA scores on average
than the baseline. On the other hand, SF-CRNN-2 has a
higher number of network parameters (854, 319) than the
baseline CNN (406, 253). This is due to the additional
RNN layer that exists in SF-CRNN-2.

Comparison between variants SF-CRNN-1, SF-CRNN-
2 and SF-C-NN

On average, SF-CRNN-1 performs slightly better than all
other models in all metrics aside from VFA. Comparing
SF-CRNN-1 and SF-CRNN-2, we observe that a similar or
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OA RPA | RCA VR VFA
SF-CRNN-1 | 0.444 | 0.595 | 0.677 | 0.556 | 0.423
Baseline | 0.580 | 0.756 | 0.725 | 0.590 | 0.219

Table 3: Evaluation results for the track "MatthewEn-
twistle_TheFlaxenField" where the worst OA performance
occurs against the baseline [6].

higher performance can be achieved by the low resolution
CNNI1 architecture and with far fewer training parameters
(see Table 1). VR rates for SF-CRNN-1 and SF-CRNN-2
are significantly higher than the SF-C-NN; however, VFA
rates are higher as well. This behavior could be due to the
activations of the RNN layer that should force some sort of
temporal smoothing on the salience representation.

On the other hand, the significantly better OA, RPA and
RCA scores of SF-CRNN-2 relative to SF-C-NN suggest
that the temporal tracking with RNN effectively improves
the performance of the melody estimation.

Comparing the best performing network variant SF-
CRNN-1 to the baseline, we observe that it outperforms
the baseline on the OA (p=0.052), RPA (p=0.0003) and
VR (p=0.0015) scores, and achieve those results with a less
complex network in terms of network parameters (see Ta-
ble 1). A track-level comparison by computing the overall
accuracy differences for each track shows that SF-CRNN-
1 performs better on 19 tracks out of 27.

The worst OA of SF-CRNN-1 occurs against the base-
line with the "MatthewEntwistle TheFlaxenField" track
where the dominant melody consists only of instruments
including Piano. The evaluation results for this track are
given in Table 3. It is observed that both SF-CRNN-1
and baseline have relatively high VFA; however, the effect
of this is minimal since the track mostly contains voiced
frames. On the other hand, the OA score would be highly
affected by the combination of high RPA and VR scores.
For this track, although the baseline and SF-CRNN-1 have
comparable VR rates, the RPA score of the baseline is bet-
ter, which explains the difference in OA performance.

Singing voice vs. Instrument

Among the test set in MedleyDB, 16 tracks contain only
instrumental dominant melody, 3 tracks contain only dom-
inant singing voice melody and 8 tracks contain both? .
Evaluation results in Table 4 show that SF-CRNN-1 per-
forms better for singing voice melodies than instrument
melodies. SF-CRNN-1 outperforms the baseline in over-
all accuracy for singing voice melodies and instrument
melodies.

4. CONCLUSIONS AND FUTURE WORK

In this work, we have introduced a novel audio-based dom-
inant melody estimation architecture using source-filter
NMF as pretraining for a new variant of deep network for

3 The ratio of the dominant singing voice melody frames and the dom-
inant instrumental melody frames among all voiced frames is 0.238 and
0.762, respectively.

SF-CRNN-1 Baseline

S.V. Ins. S.\V. Ins.
OA 0.638 0.466 | 0.598 0.424
RPA | 0.791 0.647 | 0.784 0.619
RCA | 0.804 0.726 | 0.823 0.717

Table 4: OA, RPA and RCA scores for singing voice (S.V.)
main melody and Instrument (Ins.) main melody for SF-
CRNN-1 and baseline.

this task, namely a CNN-BiGRU scheme. We have shown
that the proposed system achieves state-of-the-art perfor-
mance on standard evaluation metrics, even significantly
improving on it while maintaining a lower system com-
plexity.

Analysis of H as a salience representation shows that
it provides a good initial salience in general with high RPA
and RCA, even when performing melody estimation us-
ing frame-based salience peak-picking. The evaluation re-
sults clearly show the usefulness of SF-NMF-based pre-
training in many aspects. We observe that when provided
with a good initial salience input to the CRNN structure,
the system performs considerably better without requir-
ing any augmentation or additional training data. This
encourages the idea of improving the pretraining part to
obtain even more discriminative salience representations
which will surely increase the melody estimation perfor-
mance. For such improvements, SF-NMF is a good can-
didate since many other variants with various constraints
such as smoothness or sparsity exist in the literature.

We observe that in the proposed CRNN structure, the
CNN stage helps to improve the quality of the salience
representation against H7°. In addition, exploiting tempo-
ral information with the RNN significantly improves OA,
RPA, RCA and VR. These two stages act similarly to an
encoder scheme and the classification layer acts as the de-
coder. Therefore one can interpret the proposed CRNN as
an encoder-decoder network where the encoder is used to
obtain an enhanced salience representation and the decoder
produces a frame-based transcription.

From a melody classification viewpoint, the MedleyDB
dataset is quite challenging due to its diverse range of in-
strumentation and music genres.  Also, there is an im-
balance between the note classes and the non-melody class
in the dataset. The CRNN network has proven effective
in handling such imbalance when pretrained with an SF-
NMF model.

A clear future direction to pursue is training the SF-
NMF and CRNN jointly, learning the FI*® representation
while minimizing the classification error.
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