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Deconvolution of SIMS Depth Profiles of Boron in 
Silicon 

B. Gautier,*' R. Prost,' G. Prudon' and J. C. Dupuy' 
' Institut National des Sciences Appliquks de Lyon, Laboratoire de Physique de la Matiere, UMR CNRS 5511, Bdt. 502, 
20 Avenue A. Einstein, 69621 Villeurbanne Cedex, France 

69621 Villeurbanne Cedex, France 
Institut Natonal des Sciences Appliqubes de Lyon, CREATIS, URA CNRS 1216, Bit. 502,20 Avenue A. Einstein, 

We have measured the depth resolution function of the SIMS analysis of boron in silicon for different experimental 
conditions and fitted this function with an analytical expression initially proposed by Dowsett et ul. We use this 
analytical depth resolution function for the implementation of an iterative deconvolution algorithm, taking into 
account several properties of the signal, such as positivity and regularity. This algorithm is described precisely. 

The algorithm is tested on several theoretical structures and then implemented for the deconvolution of real 
structures .Of borondoped silicon layers in silicon. In particular, a sample constituted by six consecutive delta layers 
and a 75 A thick layer are deconvolved. It is shown that the asymmetry of the profiles is complftely removed and 
that the full width at half-maximum of the deconvolved delta layers can be reduced down to 41 A. It is also shown 
that a layer whose real thickness is smaller than the measured width of the resolution function can be easily 
distinguished from a delta layer, and its thickness estimated. 

INTRODUCTION 

The microelectronics industry has reached a level where 
the dimensions of the new devices do not exceed a few 
tens of angstroms. Therefore, the depth resolution of the 
characterization techniques must be increased in order 
to provide reliable and precise information on struc- 
tures that are sometimes below their power of 
resolution. 

The analysis by secondary ion mass spectrometry 
(SIMS) is one of the most powerful tools for the charac- 
terization of very thin structures, because of its great 
sensitivity. In a magnetic sector instrument at low 
primary beam energy the SIMS depth resolution in 
silicon samples is governed mostly by the collisional 
mixing, and in the case of an oxygen primary beam by 
the incorporation of the primary oxygen ions in the 
matrix of the sample (swelling). Those phenomena, 
which are responsible for the artificial broadening of the 
profiles, are inherent in the measurement process and 
can only be limited by improving the performances of a 
SIMS instrument. The lowering of the primary ion ener- 
gies seems to be a good solution and low-energy 
columns have already been developed, but the price to 
pay for the improvement of the depth resolution is a 
great increase in the measurement time. Moreover, the 
development of more and more sophisticated instru- 
mentation might give rise to an increase in the skills of 
SIMS operators, which is already very high. 

This is why the development of alternative solutions, 
like the deconvolution of the profiles, is needed. Decon- 
volution will not replace either a good experiment nor 
instrumental improvements (which are obviously the 
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only way toward the best resolution), but it allows 
better depth resolutions to be reached from a careful 
analysis. We will discuss this point further in the text. 

Some attempts have already been carried out using 
deconvolution procedures based on the maximum 
entropy method' (inverse methods) or on Fourier 
transforms' (direct method). The object of this paper is 
to present another way of deconvolving the SIMS depth 
profiles by implementing an iterative algorithm. 

The first step of our work has been to find the depth 
resolution function (DRF) of the SIMS experiment in 
the case of an Si : B delta layer in silicon. 'This DRF has 
been fitted by an analytical expression and the experi- 
mental conditions have been changed in order to verify 
that the parameters that govern the analytical expres- 
sion vary in a satisfactory way. Then, we have per- 
formed the deconvolution of simulated profiles in order 
to test the possibilities of our algorithm. The last step 
was the deconvolution of real profiles using an analyti- 
cal expression of the DRF. 

THE RESOLUTION FUNCTION 

General properties and analytical expression 

In signal processing, the recovery of signals that have 
been distorted by some linear and shift invariant 
process is called deconv~lution.~ To restore the initial 
signal from its output, one has to solve the convolution 
equation 

~ ( t )  = x ( ~ ) h ( t  - Z) dr + ~ ( t )  I-: 
where y(t)  is the output signal, x( t )  is the input signal, 
h(t) is the resolution function and u(t) is the additive 
noise. 
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The resolution function is a specific function that has 
to be determined for each set of experimental condi- 
tions. In the case of a SIMS experiment, the DRF 
changes each time the primary beam energy, the impact 
angle, the matrix or the impurity under investigation 
changes. 

First of all, in order to prove the correctness of this 
model in the case of the SIMS experiment, one must 
verify that the SIMS analysis is a linear and a shift 
invariant process. In the case of the analysis of boron in 
silicon, there is no degradation of the depth resolution 
due to the formation of ripples or uneven crater bottom. 
It has been verified in the case of a bombardment of Si 
by an oxygen beam, that the DRF can be considered as 
constant once the steady state is reached, until the 
eroded depth is at least 8000 A' The linearity of the 
process is verified so long as the concentration of the 
boron-doped layer stays below the dilute limit.4 Thus, 
the assumption on which SIMS analysis can be 
described in terms of the convolution of an initial 
profile with a DRF that depends on the instrument and 
the analysis conditions seems to be valid, as has already 
been pointed out by Dupuy et uL5 

It is easy to see that if the input signal is a delta func- 
tion, then y(t) = h(t). The DRF can thus be found from 
the measurement of a delta function. This function has 
to be determined for each specific combination of 
matrix, dopant and experimental condition. From a 
practical point of view, the elaboration of delta-doped 
structures of uniformly doped layers with ultrasharp 
interfaces is better ~ontrolled,~ so that it is possible to 
get the DRF from the measurement of a rapid thermal 
chemical vapour deposition (RTCVD)-grown sample, 
which can be supposed to be very abrupt and very thin. 

The deconvolution process can be performed with a 
numerical DRF, experimentally determined. Another 
way is to use an analytical function that perfectly fits 
the experimental data. This method leads to some 
advantages : 

The noise in the DRF is smoothed out. (We can 
assume that the noise is a consequence of the mea- 
surement, and not an inherent parameter of the 
DRF.) Thus some of the artifacts in the result of the 
deconvolution can be avoided. 
The sampling interval of the analytical DRF can be 
easily adjusted to match that of other experimental 
profiles to be deconvolved, especially where the 
erosion rate is not exactly the same as in the initial 
DRF measurement. 
If the DRF is experimentally measured for a lot of 
energies, it is possible to determine the variation of 
the fitting parameters with respect to the energy: a 
better determination of these parameters for a given 
energy can be obtained by checking a continuity cri- 
terion. 
The possibility of describing the depth resolution 
with an analytical expression, via its moments, 
makes the performance of the analysis more compa- 
rable for different users working with different 
apparatus. 
One is free to choose the extent of the analytical 
DRF so that the fitting covers only the experimental 
data (in that case, the dynamic range of the analyti- 
cal DRF is the same as the experimental one) or to 

extrapolate the DRF to simulate a very large 
dynamic range. In the first case, where the use of an 
analytical function is just a smoothing of the ana- 
lytical data, there is no reason why the analytical 
form should not be implemented in a deconvolution 
scheme, as claimed by DowsettY6 if we assume that 
our sample is a real delta layer (MBE-grown 
samples are known to be very abrupt) and that the 
entire response is due to the measurement process. 
Comments on the physical validity of the DRF can 
be found in Refs 6, 17 and 26. 

According to Zalm,7 many analytical expressions can 
be chosen that fit equally well the result of the analysis, 
and care must be taken so that the parameters that 
govern the analytical model function have a satisfactory 
behaviour when varying the experimental conditions.E 
Actually, because a variety of input functions lead to the 
same output function when convolved with the response 
function with experimental error, the deconvolution 
process would result in any of these initial functions. 
This leads to the conclusion that implementing a DRF 
whose behaviour is not in agreement with the physical 
truth will lead to a result that cannot be considered to 
be physically valid. 

When looking at a SIMS profile of a delta-doped 
layer of Si : B in silicon, we notice that it comprises an 
exponential trailing edge and a Gaussian-like rounded 
top. The rising part of the profile is often exponential 
too, although it is not always evident. Nevertheless, our 
DRF will have to take into account these features of the 
profiles, which is why we have chosen to implement an 
analytical DRF, initially proposed by Dowsett et ul.,' 
which is constituted by the convolution of a double 
exponential with a Gaussian 

p(y) z < z o  

D exp ( z )  = A 
exp (-(: - '0)) z > z ,  

p(y) z < z o  

D exp ( z )  = A 
exp (-(: - '0)) z > z ,  

c "down / 

and 

B exp (+) 
Gauss (2) = f i  ~ g a l l s s  2agauss 

The result of this convolution is given by the normal- 
ized expression 

This DRF can be described by three parameters I,, , 
&own and agauss, and a fourth parameter Z, that rep- 
resents the position of the cusp of the double exponen- 
tial. We will give more precisions on this parameter 
later. 
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Experimental determinaton of the resolution functon 

To have an analytical function at one's disposal allows 
the properties of this function to be characterized, 
thanks to its moments. The first-order moment rep- 
resents the mean value of Res (z) and is equal to Adown 

- A,, . The second-order moment is 

This expression will be very useful to characterize, in an 
objective manner, the depth resolution of the SIMS 
experiment. Published results for the depth resolution 
always mention the length of the exponential trailing 
or/and leading part of the profile without taking care of 
the flat top of the function that is not negligible when 
the energy of the primary beam is getting low. On the 
other hand, talking about full width at half-maximum 
(FWHM) does not take correctly into account the expo- 
nential part of the profile. 

The experiments have been carried out with a 
Cameca IMS 3f/4f apparatus with 02+ primary ions, 
collecting the positive second ions. With this kind of 
instrument the energy ranges theoretically from 1.5 to 
13 keV, from 3 to 13 keV in practice (because of the 
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instrumental tuning being difficult, and the craters being 
less flat and more difficult to measure at very low 
energy), and the impact angle ranges from 35.5" to 
64.3". The fitting of the experimental curves is very good 
over two orders of magnitude for the leading edge, and 
on more than three for the trailing edge. Figure 1 shows 
the result of the fitting for two different energies, with a 
linear and a logarithmic intensity scale.g 

We have changed the experimental conditions in 
order to study the behaviour of the fitting parameters. 
The results are summarized in Fig. 2. We have verified 
that the set of parameters that fit the resolution function 
for a given energy is unique. 

The results are not expressed with respect to the 
primary ion energy but with respect to the primary ion 
range, R,, given by the formula (derived from TRIM 
simulations using 0' ions with the same impact angles 
as the OZf ions and an energy equal to 

= 50.46E,0.665 cos e (2) 
where 0 is the implicit angle of the beam and E,  is the 
primary energy per incident oxygen ion. This represen- 
tation has been chosen in order to have synthetic results 
taking into account both the energy and the angle of 
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Figure 1. Fitting of the resolution function by the analytical expression: (a, b) 9.5 keV/O,+; (c, d) 6.5 keV/O,+ (normalized functions). Full 
lines: experimental curve; circles: fitting. 
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Figure 2. Evolution of the fitting parameters with the primary ion 
range: (a) evolution of the exponential coefficients Aup and Adown; 
(b) evolution of the Gaussian parameter oQauss and of or,,; (c) 
evolution of the position Z, of the apparent peak (maximum of 
experimental resolution function) and of the parameter Z, that rep- 
resent the position of the double exponential, with respect to the 
real depth of the layer: 2,. We have also represented (dashed 
lines) the fitting of the curves by a power law: (0) Zi-Zp = 0.52 
- 0.055*~"~*; (0 )  Zi-Zo = -9.52 - 0.078* x'"' 

impact, which are not independent in a magnetic sector 
instrument. 

The variation of the fitting parameters when chang- 
ing the experimental conditions conforms with the 
behaviour of their physical homologues. We notice in 
particular the increase of Adown with R,,  which has 

already been rep~r ted , l*~* '~- '  and the increase of ugauss 
which confirms the results from Dowsett.' However, 
when the impact energy is lowered below 3.5 keV/O,+, 
this parameter increases again. This may not be sur- 
prising considering the fact that the lower the energy, 
the poorer the focusing of the beam and the higher the 
impact angle. The increase of this parameter could be 
due to the fact that at very low energy, the craters can 
become asymmetric and inclined because of the varia- 
tion of the incidence angle along the crater at grazing 
impact angles. 

The rising exponential coefficient I,, seems to 
decrease slightly with R, .  We suspect that this coeffi- 
cient is linked to the instrumental conditions and may 
vary, among other parameters, with the shape of the 
beam. 

The well-documented differential shift of the 
p r ~ f i l e ' ~ . ~ ~  is present in our results: the maximum of 
the peak (which we will call 2,) moves slightly toward 
the surface when the energy of the primary ions 
increases, and so does the centroid of the DRF. This 
may be surprising, considering the fact that at an 
oblique angle and in the absence of oxygen bleed-in 
there should be no shift due to the formation of an SO,  
layer.27 We think that the shift we have measured is 
mostly due to the collisional mixing and to the antici- 
pation of the response that becomes greater when the 
thickness of the altered layer is increased, i.e. when the 
energy is increased (the diffusion in the altered layer is 
supposed to be fast compared to the erosion of the 
sample). This phenomenon can be amplified by the 
diminution of the angle of incidence when the energy is 
increased, which could produce a slight shift due to a 
small variation of the initial erosion rate with the aug- 
mentation of the incorporation of oxygen. 

This shift is not in disagreement with the work from 
Barlow et which measures a mean shift equal to 
-70 A at all energies and at a 45" angle of incidence. 
The variation of Barlow's shift is chaotic, and we notice 
from Barlow's figure 6f that the experimental point 
comparable to our ex eriments (4 keV/O,+, 45" 

We notice from Fig. 2(c) that the parameter that we 
have called 2, moves significantly toward the surface 
too. This may not be surprising due to the fact that this 
parameter is linked to the centroid of the DRF by 
means of (z) and will move toward the surface if the 
centroid is moved because of the differential shift. One 
must not expect this parameter to give the exact posi- 
tion of the delta layer. In order to have an idea of what 
the true depth of the delta layer could be, an extrapo- 
lation of the position of the peak when R, tends to zero 
might be a good solution, as already pointed 0 ~ t . l ~  
Figure 2(c) represents the difference between Z ,  (or 2,) 
and the real position of the delta layer, Zi, which we 
have found to be equal to 2506 A power law fit 2, = 
aR," + b, with n - 1.5, seems to be the best. Such a 
behaviour corresponds to a fairly good linear fit when 
the data are expressed with respect to E ,  instead of R , .  
Nevertheless, there is no physical reason why this 
parameter should change linearly with the primary 
beam energy. 

We notice also that the parameters 2, and Z ,  tend to 
very close values when R ,  tends to zero, although they 
are very different at high energy. This behaviour seems 

incidence) shows a - 130 x shift. 
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to be linked to the asymmetry of the curve and one can 
think that both parameters would be equal if the DRF 
was symmetric. 

Figure 3(a) makes clear the difference between the 
parameter Z ,  and the real position of the delta layer by 
showing all the measured DRF. Figure 3(b) summarizes 
the different position parameters that we are dealing 
with. 

In conclusion, the behaviour of the fitting parameters 
can be related to the experimental conditions. Just as it 
can be observed, for example, that the exponential 

decay of a SIMS profile gets slower when the primary 
ion energy is increased, so the parameter Adown increases. 
Those parameters are not only mathematical entities, 
like the coefficients of a polynomial fitting would have 
been, but they correspond to independent aspects of the 
resolution function’s shape and can be used to describe 
the depth resolution in an unambiguous manner. From 
t h s  point of view, we can say that their behaviour is 
satisfactory, as they are directly correlated to the physi- 
cal changes in the shape of the DRF when the experi- 
mental conditions are changed. Moreover, with this 
kind of fitting it is possible to extrapolate the shape of 
the resolution function by extrapolating the values of 
the fitting parameters, which would not have been pos- 
sible with a purely mathematical fitting like a poly- 
nomial fitting. 

-100 0 
Position (A) 

Figure 3. (a) Representation of all the depth resolution functions 
(DRF) measured for different primary energies. Left curve: 13 
keV/O,+; right curve: 2.5 keV/O,+. The last two DRFs at very low 
energy are less high because of the increase of ogsuS,; (b) Position 
parameters Z,, Zi and Z,. Z, is the maximum of the DRF, Zi the 
initial (real) position of the delta layer andZ,, the position of the 
double exponential. 

THE DECONVOLUTION PROCEDURE 

The next step is the implementation of our analytical 
resolution in a deconvolution procedure. Many decon- 
volution schemes are available, which are usually 
separated into two groups: ‘inverse’ and ‘forward’ 
method13 or ‘direct’ and ‘indirect’ method,I6 depending 
on whether they use a convolution procedure or a 
deconvolution procedure. Our method is close to what 
is commonly called a ‘forward’ method, because the 
deconvolution is not achieved through a division in the 
Fourier space. It is close to a maximum entropy 
method, and the main difference between the methods is 
the manner in which the problem of the deconvolution 
is regularized. 

We have chosen this algorithm because it is very flex- 
ible and allows the constraints applied to the signal to 
be chosen and more constraints to be added when more 
information on the signal is available. Moreover, it 
allows a confidence level to be defined under which the 
deconvolution is no more reliable. 

The algorithm 

Discretizing the convolution equation results in a 
problem of solving a system of linear equations 

Nh- 1 

y(mA) = 1 h(kA)x[(m - k)A] + u(mA) 
k = O  

m = 0, ..., N,, = N ,  + N h  - 1 (3) 
where N , ,  N h  and A are the length of the true profile, 
the length of the resolution function array and the 
depth step, respectively. 

In this equation, the DRF is assumed to be causal, i.e. 
it corresponds to a delta layer located at z = 0. This 
does not correspond to the physical situation, and will 
shift the result of the profile. The correct positioning of 
the result of the deconvolution will be achieved a poste- 
riori by means of extrapolation of the position of the 
layer when R, tends to zero. 

Equation (3) can then be rewritten as 

~ = H x + u  (4) 



B. GAUTIER ET AL. 738 

where the vectors y, x and u represent the observed 
profile, the true profile and the noise, respectively. The 
operator H is a Toeplitz matrix, of size N , N , ,  con- 
structed with the discretized resolution function. From 
Eqn (3) the length of y is greater than that of x. As a 
result, the system of linear Eqn (4) for u = 0 (noise free) 
is overdetermined. Thus, there will be only a least- 
squares solution. The noisy Eqn (4) has an infinite 
number of solutions. Then, an admissible solution from 
the physical meaning is the minimum normal least- 
squares solution’* 

X , , ( l f r H )  - l P Y  ( 5 )  

where HT denotes the transposed matrix. 
However this solution is usually unacceptable 

because the normal matrix @H is most often ill condi- 
tioned due to small singular values. Thus, a small error 
in the data results in a large error in the solution. It can 
be noted that the finer the discretization, the worse the 
conditioning of I%H. 

Considering a derivation of Eqn (4) where x(n) is 
padded with zeros from N ,  up to N ,  - 1 and H is a 
circulant square Toeplitz matrix of size N ,  N ,  , the 
resulting vector Hx + u is identical to the observed y. 
The singular values of the circulant matrix P H  are the 
modulus of the discrete Fourier transform (DRF) coeff- 
cients of the resolution function h(mA) padded with 
zeros from N ,  up to N ,  - 1. Figure 4(a) shows that 
some values of this spectrum vanish. This result clearly 
proves the ill conditioning of P H  in the problem of 
interest. Even in the case where an analytical form of 
the resolution function is used, the DRF falls very 
rapidly to very small values [Fig. 4(b)]. 

Regularization is a remedy to both the lack of stabil- 
ity and uniqueness of the problem. The basic feature is 
to introduce a compromise between fidelity to the data 
and fidelity to some prior knowledge about the solu- 
tion. A regularized solution is defined as 

Xb7 = argmin HX) + BJ2(X)) (6) 
where Jib, Hx), J,(x) and /3 are the measure of the dis- 
tance between the convolved solution and the data (the 
observed profile), the measure of the closeness to some a 
priori information and the mixing factor, respectively. 
‘Argmin’ denotes the argument that minimizes the 
expression in the brackets. Perfect fidelity to the data is 
achieved for /I = 0, whereas perfect matching with a 
priori knowledge is achieved for /I = CO. 

Equation (4) only defines a set of admissible solu- 
tions. A priori knowledge should be used in order to 
obtain an acceptable solution. In our problem we will 
assume that the unknown profile and the additive noise 
lie in the set of regular profiles with bounded roughness 
and in the set of bounded energy noise, respectively. In 
addition, the unknown profile lies both in the set of 
positive profiles and bounded support (finite extent) 
profiles. This idea is not new and has been addressed by 
a variety of mathematical methods.18 For example, if 
the distances J ,  and J 2  are, respectively, the squared 
Euclidian distance and the Kullback distance,” then it 
results in the maximum entropy method of Gull and 
Skilling.’ 5,29  We will consider the quadratic 
approach’ 9 ~ 2 0  based on the estimation theory for 
unknown but bounded vectors.21 It has an interesting 
physical meaning for the depth profile deconvolution 

DFT of the resolution function h 
I, I 

frequency (I/@ 

DFT of the analytical resolution function h 

O h  

-5 t r 
0.05 0.1 0.15 I 

frequency (1/A) 
-60 

Figure 4. Direct Fourier transform (DFT) of the resolution func- 
tion: (a) experimental; (b) analytical. 

problem. The vector sets considered in our case are 
often ellipsoids. (Quadratic distance measure results in 
general in ellipsoidal sets [see Eqns (7), (9), (12) and 
(14)], however nest in the following derivation is not an 
ellipsoid.) The equation for an ellipsoid is given by 

Q, = (x:(x - X,)Tr-l(X - x,) < 1) (7) 
where x, is the centre of the ellipsoid and r is a positive 
definite matrix whose eigenvectors and eigenvalues 
determine the orientation and the lengths of the semi- 
major axes of the ellipsoid. 

The deconvolution problem may be stated as follows. 
The noise vector u lies in the set R, of bounded energy 
noise 

1 1 ~ 1 1 ~  < n2 (8) 
The set Q, is a sphere and its centre is the null vector 

(9) 
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where Z is the unity matrix. 

contain x 
The observed profile y specifies a set a,,, which must 

x E R,, R,,, = { x : y  - Hx E Q} (10) 

(1 1) 

From Eqn (4) we have 

1I4l2 = IlY - WI2 
From Eqns (8) and (11) the set Q,,, is an ellipsoid 

The solution x lies in the set a, of the regular profiles 
with bounded roughness 

llDxIIz < r2  (13) 
The Toeplitz matrix D is a differential operator or a 

high-pass filter with impulse response d(nA), n = 0, . . . , 
Nd - 1. The scalar I(Dx112 increases with the roughness 
of the true profile. A bounded roughness means that the 
profile has a limited sharpness. However, Eqn (13) 
allows sharp discontinuities for high values of r2.  The 
choices of this upper bound for the sharpness should be 
consistent with the available data y .  Both the properties 
of D and the value of rz will be discussed in detail later. 

The set 0, is an ellipsoid and its centre is the null 
vector 

a,= { x:xT- Dr:D x <  l} (14) 

Consider both the set R, and R,,, . Each set contains 
x. Thus x must lie in their intersection SZ,,, = 
0, n a,,,. The intersection is the smallest set which 
must contain x and which can be calculated from the 
available data. This set is the best estimate set.21 In con- 
trast with usual estimation theory, the estimate is a set 
of vectors and not a single vector. In order to solve the 
problem of lack of uniqueness, a reasonable choice for a 
vector estimate xest is to define x,,, at the centre of Re,, . 
Unfortuntely Re,, is not an ellipsoid. As a result, the 
centre cannot be easily computed. However, a bounding 
ellipsoid can be found which contains the intersection 
Re,, . This bounding ellipsoid is defined by 

X 
D ~ D  

x:(l - p)xT - 
r2 

or 

o b  = (x (x - Xb)Tr, ‘(x - x b )  < 1) (15b) 

The centre x b  of R b  is the solution of the normal 

Axb = 2 (16) 

(17) 

z = P P Y  (18) 

equation 

where 

A = pl%H + (1 - p)aDTD 

with 

a = n2/r2 

The matrix r b  is defined by 

where” 

(21) 

There is a whole family of bounding ellipsoid esti- 
mate sets R,, depending on the choice of p. Setting 
p = 1, then x b  becomes the minimum normal least- 
squares solution of Eqn (4), defined by Eqn (5). Setting 
p = 0.5, then x b  becomes the well-known Miller22 solu- 
tion. 

Clearly, if 1 - 6’ is negative the matrix r b  becomes 
definitely negative and the intersection Re,, is empty. It 
is provedlg that (IyI(’ -yTHxb is positive and is the 
minimum of the functional in Eqn (15a). The minimum 
occurs for x = xb. The non-emptiness of a,,, can be 
verified a posteriori. It can be noted that if the computa- 
tion of the estimate Xb requires only the knowledge of 
ct = n2/r2,  the non-emptiness requires the knowledge of 
n2 in Eqns (20) and (21). 

Denoting A:, and A:, the singular values of H and 
D, respectively, then the condition number for A is 

1 
n 

62 = - 2 P(IbI12 -YTHxb) 

In order that the matrix A is better conditioned than 
P H ,  the operator D should be chosen with large singu- 
lar values (or small singular values) when singular 
values of H are small (or large). As the operator A is a 
low-pass filter, the operator D should be a high-pass 
filter.lg Figure 5 shows the frequency response of the 
filter used in the experiments. The deconvolution results 
are robust in terms of the choice of the high-pass oper- 
ator D. 

According to Eqn (15b) the larger length of the semi- 
major axes of the ellipsoid of the estimate set Rb is 

OFT of the filter D 
0.1 1 

0 0.1 I 

Figure 5. Direct Fourier transform (DFT) of the filter D. 

-0.9‘ 

frequency (i/A) 
2 
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defined by the square root of the largest eigenvalue of 
the matrix r b ,  denoted (Lt, rb)rnax. Then, from Eqns (20) 
and (1 7) we have 

This original result allows the estimation of the size 
of the bounding ellipsoid R b  . It can be noted that if the 
minimum value of A;, is very small, the size of the set 
R b  is only reduced by uAi, D .  We use Eqn (23) for the 
definition of an estimate for the upper bound of the sum 
of squares of the errors on the solution xb . 

Let x, be a vector at the intersection of the surface of 
the ellipsoid Qb with its larger major axis. Then the sum 
of squares of the errors between the two admissible 
solutions x, and xb is defined by 

/Ix, - Xbll = rb)rnax (24) 
This is the upper bound of the error for the solution 

x b .  Clearly, from Eqn (23) no error occurs when the 
data are noise free. The squares of the errors increase 
both with the noise-bound n2 and with the smallest 
eigenvalue of the matrix A .  As the local error bound 
cannot be known, we consider that the error is uni- 
formly distributed on the N x  elements of xb. Then, 
according to this hypothesis, the upper bound of the 
error on each element is 

From Eqn (11) a consistent estimate for the noise- 
bound n2 is the square of the residual 

n2 # IlY - HXb1I2 (26) 
We use this estimate both in the evaluation of 6' in 

Eqn (21) for checking that the intersection Re,, is not 
empty, and in Eqn (23). It will also be useful to define a 
confidence level below which the restoration cannot be 
considered as reliable. 

The regularization parameter u can be estimated by a 
variety of  technique^.^^.^^ We used the generalized 
cross-validation because it applies for Gaussian white 
noise and, in addition, is both fast and easily imple- 
mented in the DFT domain using the Fast Fourier 
Transform (FFT) algorithm. In order to prove the 
whiteness of the noise, we have calculated the power 
spectrum of the signal at the end of the profile accord- 
ing to the well-known Welch e~tirnator,~' in a region 
where the boron level was constant but not too low. In 
addition we have considered the generalized Gaussian 
probability distribution function (pdf) as a candidate for 
the model. We have estimated the shape parameter 
according to the estimator proposed in Ref. 25. A shape 
parameter of 1 corresponds to a Laplacian pdf. In con- 
trast, a shape parameter of 2 corresponds to a Gaussian 
distribution. The experimental result was 2.06, which 
proves the correctness of the Gaussian model for the 
noise. In fact, this assumption on the Gaussian nature 
of the noise has already been used by Allen et a1.15 At 
the bottom of the profile, where the boron concentra- 
tion is very low, we have verified that the noise was 
Poissonian, but its level is very low (a few counts per 
minute). At high count rates, i.e. when a boron profile is 
being measured, this Poissonian noise is negligible with 

respect to the total noise, probably constituted by 
several contributions. 

The solution of the normal Eqn (16) is not positive. 
Figure 6 illustrates this solution for the circulant matrix 
H constructed with the experimental profile. The Miller 
deconvolution is implemented in the DFT domain, 
according to Eqns (16)-(18) as follows 

x(nA) = 

pDFT [ h( n A)] * DFT [ y( n A)] 
DFT- I{pDFT[h(nA)] *DFT[h(nA)] 

+ (1 - p)~tDFT[d(nA)l*DFa[d(nA)] 

(27) 
where DFT[-]* is the conjugate of DFT[-]; y(nA), 
h(nA) and d(nA) are padded with zeros from N ,  - 1 to 
N ,  N ,  - 1 to N and N ,  - 1 to N ,  respectively. The 
number of samples N should be greater or equal to Ny.  

In order to incorporate the positivity constraint, we 
solve the normal equations using a constrained iterative 
procedure of the form3320 

2 (28) x ( n )  - c x(n - 1) + p) p) 

where C, is a non-linear projection operator onto the 
convex set of positive profiles We consider that 
the intersection R, n 0, is not empty. 

The operator C,  replaces the negative elements of the 
vector x("-') by zeros and leaves the positive ones. This 
operator is non-expansive, i.e. 

IlGf- Cxgll d I l f -  911, f, 4 E (29) 
The distance between two constrained signals never 
exceeds the distance between two original signals. 

Both the relaxation parameter p@') and the vector v'") 
are computed in order to minimize the following posi- 

deconvolved (xb) (solid) and exact profile (x) (dashed) 
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Figure 6.. Non-iterative deconvolution of a theoretical Gaussian 
(a =50 A). The signal is shown with the (better) dynamic of the 
iterative deconvolution. The horizontal line represents the upper 
bound of the error reached by the non-iterative deconvolution, 
compared to the error reached by the iterative deconvolution 
(-2.6). Peaks that appear at the right and at the left side of the 
Gaussian are artifacts caused by the folding up of the negative 
component of the solution. 
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deconvolved (xb) (solid) and exad profile (x) (dashed) 

Depth (A) 

depth (l/& 

Figure 7. Iterative deconvolution of a theoretical Gaussian 
(a = 50 A, signal/noise ratio = 25 dB). 

tive functional of the error at each step 

J(n) = &(")=A&(") (30) 

(31) 

where the error is defined by 
&(4 = - X(n) 

b 

Then 
p'") = P"[z - AC, x("- "]/[P)TA P'] (32) 

= J F - 1 )  - {V(")T[Z - AC,x("-1 ) ] }2 / [P)TAV( , ) ]  

(33) 

(34) 
(35) 

where 
J r - 1 )  = & F - l ) T / f & ? - l )  

&:-I) = xb - CxX("-1) 

From Eqn (33) a sufficient condition for convergence 
is J',"-') < J("-').  This at each step, e.g. J'") < 

d ; 10' 

P 
e c 

Depth@) 

Figure 8. qesult of the deconvolution of two Gaussians (a = 70 
A, d=250 A) blurred by the 13 keV/O,+ DRF. Noisy line: mea- 
sured profile, dotted line: initial profile, thin solid line: decon- 
volved profile. 

~~ 
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Depth (4 
Figure 9. Deconvolutipn of a theoretical Gaussian profile with 
a = 10 A and d = 100 A shown on a linear and a semilog scale. 
The sharpest profile is the initial theoretical input. The convolution 
of the initial profile with the resolution function (profile to be 
deconvolved) is also shown for comparison (noisy signal). The 
intensities on the y-axes of Figs 8-1 1 are all arbitrary intensities. 

condition is fulfilled if C ,  is non-expansive. According 
to Eqn (33) the rate of convergence is maximized by 
taking 

(36) P) = z - AC ~ ( " - 1 )  

From Eqn (28) the elements of the vector x(") are not 
necessarily positive at each step but converge to positive 
values. 

The iterative procedure is stopped when the residual 
I(z - AC,x(")I12 becomes almost constant. Then C,x(") is 
on the surface of R, at the point of minimum distance 
from the centre x b  of R b  . 

It can be noted that if we choose a constant relax- 
ation parameter p("), this parameter should satisfy 

This results in a slower convergence rate. 
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Depth (A) 

Depth (A) 

Figure j0. Deconvolttion of a theoretical Gaussian profile with 
a = 10 A and d = 80 A shown on a linear and a semilog scale. 
Signal-to-noise ratio =40 (16 dB). 

1 omt 1 

Simulated deconvolutions 

Deconvolution of a single Gaussian. Before we implement 
our algorithm to some real SIMS profile, it is inter- 
esting to study the theoretical behaviour of the decon- 
volution. Thus, we have constructed theoretical profiles 
(noisy or noise-free) that we have convolved with our 
analytical DRF. Figures 6 and 7 show the result of this 
simulation for a single Gaussian profile with a 25 dB 
noise. The normal Eqn (16) is first solved in the DFT 
domain [see Eqn (27)] [Fig. 6(a)]. The resulting 
solution is not positive, creating more artifacts. We have 
verified that the intersection of the ellipsoids S Z ,  n Q,,, 
was not empty (a2 < 1). The upper bound of the error 
[Eqn (25)] corresponds to the horizontal line. 

The iterative algorithm allows a positive solution to 
be obtained with a lower upper bound for the error (see 
the lower bound of the logarithmic y-axis in Fig. 7). 

Test of separability: deconvolution of two Gaussians. We have 
tested the deconvolution scheme on another Gaussian 
profile, that is two Gaussian functions with a standard 
deviation t~ separated by a distance that we will call d. 
We have also added a white noise to the perfect analyti- 
cal convolution of the initial profile with the DRF (both 
analytical), in order to have a signal-to-noise ratio of 40 
(in energy ratio, or 16 dB), which is rather pessimistic 
compared to a real SIMS experiment. 

The first example is the deconvolution of two Gauss- 
ians with CT = 70 8, and d = 250 & convolved with the 
13 keV resolution (that is the ‘worst’, in terms of convol- 
ution, of our set of measurement: A, =.6.7 & Adown = 
67.5 & cgauss = 39.2 & crtotal = 91.1 L). The parameters 
of the DRF were taken from the results of the analytical 
fitting. The results of the deconvolution is shown in Fig. 
8. We can see that the initial profile is retrieved in a 
very satisfactory way, although the width of the 
resolution function is greater than the standard deviation 
of the Gaussian profiles. Note that the intensities on the 
y-axis of Figs 8-10 are all arbitrary intensities. 

The second example of deconvolution involves two 
Gaussian profiles with a standard deviation CT = 10 8, 
separated by 100 8, (Fig. 9). In this example the simu- 
lated profile was convolved with the 3.5 keV primar 

ogauss = 27.2 & dtotal = 52.8 8,). This DRF can be con- 
sidered as the ‘best’ in terms of experimental conditions: 
it appears like a good compromise between collisional 
mixing and reliability, precision or easiness of the 
apparatus tuning. It is clear that the Gaussian profile 
that was severely blurred by the convolution can be 
retrieved in a very satisfactory way. Figure 10 shows the 
same exercise with t~ = 10 8, and d = 80 8,: this time, 
the two Gaussians are no more visible when convolved 
with the DRF. The deconvolution process manages to 
retrieve partially the original features and shows that 
two Gaussians are present. 

beam energy DRF (Aup = 11.8 & ,Idown = 35.0 i 

EXPERIMENTAL DECONVOLUTIONS 

500 1000 1500 2000 2500 
Depth@) 

Figure 11. Deconvolution of a 13 keV/02+ profile taking the dif- 
ferential shift into account: straight line: deconvolution, dotted 
line: initial profile. 

Deconvolution of six consecutive delta layers 

The time has come to implement our deconvolution 
procedure in the case of real SIMS experiments. This 
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first sample that we will try to deconvolve is an 
RTCVD-grown sample containing six deltas of Si : B in 
silicon. This experimental exercise is a kind of test for 
our deconvolution procedure. Actually, the DRF used 
in the deconvolution algorithm is taken from the sixth 
delta layer of the sample we deconvolve. The result 
should be a perfect delta if the deconvolution experi- 
ment was perfect. Of course, this is not the case and the 
deconvolution algorithm just leads to an improvement 
of the measured signal but is not supposed to give the 
exact original feature. 

The result of the deconvolution is given in Fig. 11 
(this time the y-axis represents the concentration). This 
figure takes into account the differential shift: we have 
positioned the result of the deconvolution by consider- 
ing that the real position of the delta layer was the 
extrapolation of 2, when Re tends to zero. 

Characterization of the deconvolution results. The FWHM of 
the sixth delta is -41 %, (41.6 2 %, at 6.5 keV/O,+) 
and is remarkably constant over the studied range of 
primary beam energies. This can be considered as a very 
good result if one takes into account that the origmal 
FWHM of the profile is approximately 100 A at the 
same energy. The improvement of the measured signal 
is far better than in the case of the delta layer recovered 
by the inverse FFT algorithm of Herzel et al.' 

From Fig. 11 it can be seen that the deconvolved 
delta layers seem to get narrower with depth. This is not 
surprising, due to the fact that the DRF was taken from 
the last delta layer, which is supposed to be the best 
delta layer and where the signal is the highest. Actually, 
in the case of RTCVD-grown layers, the first deposited 
layer is a good delta.' The quality of the layers depos- 
ited later is not guaranteed to be as good as the first. 
Thus, the result of the deconvolution of the other delta 
layers is slightly wider and can be related to a physical 
width and a poorer deconvolution because of their 
lower intensity. 

It is worth pointing out that the deconvolution 
scheme is responsible for the appearance of artifacts 
that seem to be more numerous as the primary beam 
energy is lowered. 

It is clear that those artifacts arise from the noise and 
that a deconvolved peak that is under the level of the 
noise can be considered as physically meaningless. 

It is also important to know whether it is better to 
deconvolve the SIMS profile rather than perform a very 
good instrumental analysis, which will require a lot of 
time or require very expensive instrument, and which is 
not adapted to a context where the SIMS apparatus is 
used by many operators who need to make different 
analyses on different samples with different experimen- 
tal conditions. This conception of the deconvolution 
does not mean that deconvolution is a substitute for 
careful analysis or that a proper analysis cannot be con- 
ducted: it is a surrogate way of reaching good depth 
resolution when time or adapted instruments are not 
available. Moreover, deconvolution will apply when 
better instrumental profiles are available, leading to 
even better depth resolution. 

We tried to answer this question by comparing the 
result of the deconvolution of a 13 keV analysis with the 
raw data obtained by a careful 3.5 keV analysis. The 
result can be seen in Fig. 12. It is obvious that the 

m 
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Depth (A) 

Fiaure 12. ComDarison between a deconvolved 13 KeV/O,+ 
signal (smooth line) with a raw 3.5 keV/O,+ data (dashed line). 

deconvolution procedure has strongly improved the 
slo-pe and the regularity of the delta layer, even com- 
pared to the lowest energy experiment. 

Deconvolution of the 75 A thick layer 

Structure of the 75 A layer. This layer was grown under 
the same conditions as the delta layers, leading to very 
well-defined interfaces. We have calculated the analyti- 
cal expression of the convolution of our analytical DRF 
with an analytical thick layer (thickness 22,) and we 
have fitted this expression to the experimental data of 
the analysis of our real layer. The analytical result of the 
convolution is 

1 
Conv(z) = 

4zl(nup + Adown) 

+ Aupexp -+- (;, if,) 

+ &ow,, exp( --z + 4) 
Idown 2ndown 

The fitting is as good as in the case of the DRF (Fig. 
13 shows the fitting of the analysis of the thick layer) for 
all the range of primary energies we studied. 
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Deconvolution of the 75 A layer. The result of the decon- 
volution for a 6.5 keV/O,+ primary energy is given by 
Fig. 14. The depth resolution has been geatly improved 
by the deconvolution process, as can be seen in Fig. 
14(a), where a deconvolved profile is compared to the 
raw data. Moreover, the deconvolution algorithm has 
removed the asymmetry of the profile and has led to a 
Gaussian-like profile, without any exponential behav- 
iour. The result of the deconvolution for energies higher 
than 6.5 keV/O,+ (up to 13 keV) is almost exactly the 
same. 

In order to compare these results with those obtained 
in the previous section, we have superimposed on Fig. 
13(b) the result shown in Fig. 14(a) and an artificial rec- 
tangular profile, which has the same dose as the decon- 
volved profile and a thickness of 75 8, (which is the 
nominal thickness; this result we found in the previous 
section). From Fig. 14 we can conclude that the result of 
the deconvolution is very consistent with the results of 
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Figure 13. Fitting of a 75 A thick layer by an analytical expres- 
sion for 9.5 keV/O,+, linear and semilog scale. (e Fitting; (- - - - -) 
Experimental data. 

As a preliminary exercise before we attempt to decon- 
volve this thicker profile, we have tried to find out the 
thickness of the layer by fitting the experimental data 
for a given primary ion energy using the parameters 
Aup,  Adown and d taken from the analysis of the delta 
layer analysed in exactly the same conditions. The only 
parameters that were allowed to vary were the thickness 
and the position of the layer. 

The result is extremely good for energies ranging 
from 5.5 to 13 keV/O,+: the calculated thickness is 
close to the nominal thickness of 75 A9 We have veri- 
fied that for given Aup, Adown and dgauss there was only 
one possible fitting of the experimental data and that 
there were single values for the thickness and the posi- 
tion minimizing the quadratic distance between the 
fitted and the experimental curve. 

The results obtained lead us to think that this layer 
can be considered as a correct thick layer because it can 
be described by our analytical treatment. It will be used 
to test our deconvolution procedure. 

I 
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a) 

Depth (A) 

Depth (A) 
Figure 14. Deconvolution of the thicker lay%r (thickness 75 A, 
approximately located between 300 and 375 A) : (a) comparison 
with the raw data for a 6.5 keV/O,+ primary beam; (b) comparison 
of a rectangular profile with the deconvolved profile and the mea- 
sured profile (6.5 keV/O,+). 
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the fitting (where a perfect rectangular profile is 
assumed), although the result of the deconvolution 
cannot lead to the restoration of a perfect rectangular 
profile. 

CONCLUSION 

We have implemented a deconvolution procedure for 
SIMS depth profiling, using an analytical form of the 
DRF. The deconvolution scheme takes into account 
some of the properties (positivity, smoothness) of the 
signal in order to obtain a physically acceptable result. 
The deconvolution procedure has been conducted with 
an analytical DRF, the behaviour of whose parameters 
is in agreement with physical reality. 

We have shown that a great improvement of the 

signal can be performed in a short time (deconvolution 
times are of the order of a few minutes). 

Nevertheless, the deconvolution procedures have 
limits that one must keep in mind in order to perform 
an improvement of the signal that is not artificial. Those 
limits, including the use of the noise estimate defined in 
Eqn (25) as a confidence level, and the ultimate per- 
formances that can be expected from the algorithm will 
be the subject of another paper, in preparation. A com- 
parative study with the maximum entropy algorithm 
would also be judicious. 
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