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Electrodeposition in Ionie Liquid (IL) media is being widely used to obtain different metals, alloys and 
more recently binary compounds. However, the understanding of this process is still slim due to poor 
knowledge in the chemistry ofILs and also the complex structure of the double layer at the electrode sur­
face. lt is then difficult to predict deposition conditions when trying to synthesize a desired deposit. ln this 
work, we provide insight into the processes taking place at the electrode by detailed studies of Co2

• reduc­
tion in ionic liquid media at elevated temperature, which have revealed an unusual Cyclic Voltammetry 
profile. A drastic drop in the reaction rate was observed, together with a well-shaped reduction peak dur­
ing the oxidation sweep. Using Electrochemical Quartz Crystal Microbalance, lmpedance Spectroscopy 
measurements and varying bath parameters, we ascribed those phenomena to the reconstruction of the 
double layer structure upon imposed polarization. Similar behaviors were observed for other systems 
(Mn2•, Ni2•, Zn2•). Finally, this work provides new insight into the electrochemical processes in Ils. We
anticipate that it will also result in significant improvement in preparing metal and other deposits in the 
ionic liquid media. 

t. Introduction

Ionie liquids (Ils) have received great attention in recent years 

as a media for electrodeposition thanks to their attractive chemi­

cal/physical properties. They are non-flammable, display very high 

thermal stability together with negligible vapor pressure, and are 

good sol vents for numerous salts and polymers. Their wide window 

of electrochemical stability and relatively high conductivity have 

allowed the electrodeposition of less noble metals, semiconductors 

and alloys that could not be accomplished in aqueous solution 

due to its limited potential window and thermal stability[1-7). 

More recently binary compounds such as sulfides[8,9) and metal 

oxides[10-12) have been electrodeposited from IL baths, opening 

new possibilities for this media. 

An issue of primary importance regarding electrodeposition 

processes is the structure of the double layer and its behavior under 

applied potential which is different in Ils, aqueous solution and 
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other molecular solvents. lt has been proven bath theoretically and 

experimentally that the cations and anions of Ils are highly struc­

tured, forming layers within the double layer (1, 13-16). Depending 

on surface polarization, the arrangement and conformation of 

the anions and cations may change as proven by Atomic Force 

Microscopy[17) and Sum Frequency Generation Spectroscopy[18). 

Cobalt and its alloys are very important functional materi­

als due to their magnetic properties, and resistance to corrosion, 

temperature and wear. Electrodeposition of Co is relatively dif­

ficult from aqueous solutions due to hydrogen evolution[19,20), 

necessitating to shift to more stable solvents such as ionic liq­

uids. Katayama's[21,22) and Guo's[23) studies have shown that 

Co2+ undergoes 2e- reduction with high overpotential. Slow kinet­

ics of the reduction process was ascribed to the existence of a 

huge octahedral cobalt complex [ Co(TFSlh J-. Katayama et al. have 

further shown that the reduction overpotential decreases with 

temperature, and they attribute this effect to the dissociation of 

the [Co(TFSl)3J- complex, based on the change of bath color from 

pink ( octahedral complexation) to blue (tetrahedral complexation) 

at high temperature[21 ]. The tetrahedral cobalt complex was also 

obtained by either changing a cobalt sait (CoCI2 in BMPTFSl)[24] or 



by adding strong organic complexing agents as TU[22,25). Despite
ail these researches, issues dealing with double layer structur­
ing and cation complexation, which are of crucial importance for
understanding and planning electrochemical processes in IL media,
are still not well known, hence our motivation to address them. 

In this study, we perform a detailed investigation of the Co2+ /Co
electrochemical reduction process in ionic liquid media by explor­
ing the influence of temperature, substrate, nature of the ionic
liquid (with focus on EMlmTFSI), and complexation of Co2+. Special
attention is devoted to the fundamental aspects of the processes
taking place at the electrode surface via the complementary use
of Electrochemical Quartz Crystal Microbalance (EQCM), Cyclic
Voltammetry (CV) and Impedance Spectroscopy (IS) measure­
ments. Sorne interesting phenomena, never reported previously
for the Co2+ /Co system, have been unravelled. Finally we attempt to
exp Iain them based on our results and the large amount of literature
data on ionic liquids.

2. Experimental

The electrochemical bath was composed of Co(TFSih (Solvionic)
solution in IL either EMlmTFSI, OMlmTFSI, BMPTFSI, BMlmTfO
or tBMNTFSI ordered from Solvionic, 99.9% pure (H2O < 0.005%),
Table 1. Prior to being used, the Ils were purified under vacuum at
75 °c for 2 days; the final water content was ~6 ppm as checked by
Karl Fischer measurement. The complexing agent Thiourea (from
Aldrich) was used as received. The Co(TFSih sait was chosen as
cobalt cation precursor in order to avoid the addition of highly
corrosive chlorides (CoCl2 ). If not otherwise specified, the initial
concentration of cobalt cations was 0.12 M. Ali the substances were
kept in an argon-filled glove box (02 and H2O<0.1 ppm). ln ail
TFSI- based Ils ( containing only Co2+ cations) the col or of the bath
was purple indicating octahedral coordination of cobalt cations
[Co(TFSlhJ-. We have just noted a minor change of the bath color
(0.12 M Co(TFSih in EMlmTFSI) from purple (RT) to dark purple
upon heating (up to 200 °c), suggesting only a slight tempera­
ture influence on the cobalt coordination. This contrasts with the
results presented by Katayama et al. where the solution of Co(TFSih
in BMPTFSI changed to blue at high temperature[21 ]. However
Raman/IR results have recently revealed the absence of change in
coordination number as a function of temperature, although the
conformational equilibrium in the coordination sphere (between
two most stable states cis and trans) has been found to be strongly
dependent[26]. 

A three-electrode set-up was used for electrochemical mea­
surements ( chronoamperometry, cyclic voltammetry, impedance
spectroscopy). Five different substrates were used as working elec­
trodes (WE): platinum dise (Ptd) 5=1.78 cm2 , platinum planar
electrode ( Ptp) S = 0.020 cm2 , glassy carbon planar electrode ( GC)
5=0.071 cm-2, platinum and stainless steel wires (Ptw and SSw
respectively). The surface area of the last one was estimated accord­
ing to the length of the dipped part (surface ranging from 0,017 to
0,033 cm2 ). The counter electrodes (CE) were platinum grids with
high surface area (S ""2 cm2 and 10 cm2 depending on the chosen
WE). An Ag wire covered with Ag2O was used as the pseudo ref­
erence electrode (RE). The stability of RE at high temperature has
been checked by me ans of OCP stability and reproducibility. It was
found stable enough for the purpose of our experiments. Ali the
values of potential will be given versus the pseudo Ag/Ag2O refer­
ence electrode if not otherwise specified. Prior to being used, the
platinum WEs were annealed in 0.5 M H2SO4 in order to obtain a
stress-free and clean surface (the CV profile patterns were compa­
rable with now standard ones representative of an impurity free Pt
surface)[27). Next, the electrodes were rinsed with distilled water,
ethanol, acetone and deionized water. The CE electrode was cleaned

in 0.5 M ni tric acid in an ultrasonic bath for 1 h, and then inten­
sively rinsed with distilled water, ethanol, acetone and deionized
water. Ali the components of the cell were dried in an oven at
T= 50 °C for 2 hours before the experiment. Preparation of the solu­
tion and assembly of the cell were done in a glove box. The cell
was immersed in an oil bath while the temperature was controlled
with ± 2 °c difference between heating and deposition bath. 

The electrochemical measurements were carried out with an
Autolab PGSTAT 30 potentiostat (Eco Chemie BV). The impedance
measurements were conducted with a Biologie VSP potentiostat;
collection of impedance data started after the system reached
steady state conditions at fixed potential. The chosen frequency
ranged from 1 MHz to 50mHz while the amplitude of sinusoidal
potential was set to 10 mV. Ali the CV measurements were per­
formed starting from the OCP with a reduction scan followed by
the oxidation one if not otherwise specified. 

The obtained deposits on Ptd were soaked in chloroform to
remove adsorbed IL from the surface. Their morphology was further
analyzed using a Philips XL 30 field emission gun FEG microscope.

EQCM measurements were carried out using a commercial
SEIKO microbalance with AT-eut 9 MHz quartz covered with plat­
inum on both sides. The electro-active geometric surface area was
equal to S = 0.196 cm2 • Simultaneous measurements of the quartz
frequency and motional resistance were done in order to follow
bath the change in mass and the variation in Co2+ concentration
in the vicinity of the electrode (by following the change of viscos­
ity and density product of the solution)[12,28,29). The EQCM was
calibrated with CV measurement in 0.05 M solution of AgTFSI in
EMimTFSI, at 100 °(, with 2 mV•s-1 scanning rate. The proportion­
ality constant (�m=C.�f) was determined between the change of
quartz frequency (�f) and change of deposited mass (�m)(30). A
constant value C= 1.065-10-9 g-Hz-1 close to the theoretical one
Ct = 1.068-10-9 g-Hz-1 was found, suggesting that issues regarding
viscosity of the bath or roughness of the substrate can be neglected.
So, to analyze the EQCM data, the function M/z (molar mass over
number of exchanged electrons) was simply calculated according
to Sauerbrey equation (1) and Faraday's laws of electrolysis (2),
assuming that the reaction efficiency is near 100% (3). The M/z
value was calculated from the �f and �Q difference between each
adjacent point.

.<1m = -C,1f 

,1m = ( 
,1

FQ) ( �)

M =-(FC) ,1f 
z ,1Q 

(1) 

(2) 

(3) 

The expected value of M/z for the growth of Co, which relies on
a 2 e- process, is 29.5 g•moI-1

. The CV with scanning rate 2mV-s-1 

and probe time 1s, was performed in 0.12 M Co(TFSih solution in
EMimTFSI at 100 °c under Ar atmosphere. 

Ali the experiments were done several times to check the
repeatability. We would also like to mention that Co2+ /Co+ 

symbols are mostly written as cobalt species in the solu­
tion instead of complexated forms, which they are in reality
([Co(TFSihJ-/[Co(TFSI)x)Y-), although we corne back to the latter
when it is needed for the sake of clarity.

3. Results

3.1. Cyclic Voltammetry in EMlmTFSI

We initially checked the electrochemical response of 0.12 M
Co2+ solution in EMimTFSI IL, at 100 °c, on 3 different sub­
strates: Ptp, GC and SSw (Fig. 1a, b, c respectively). Whatever the
nature of the substrate, CVs revealed identical features during the



Table 1 

Abbreviations for the IL components and their structures. 

IL component full name Abbreviation 

1-ethyl-3methylimidazolium cation EMlm• 

1-butyl-3methylimidazolium cation BMlm• 

1-octyl-3methylimidazolium cation OMlm• 

tri-butyl-methylammonium cation tBMW 

1-butyl-1-Methylpyrrolidinium cation BMP' 

bis(trifluoromethylsulfonyl)imide anion TFSI-

trifluoromethanesulfonate anion rro-

dicyanamide anion 

reduction and oxidation sweeps {Fig. 1 I, II, III, IV, V, insets). Follow­

ing the reduction sweep on the Ptp electrode (Fig. la, black curve), 

the first reduction peak with an onset at -0.70V and centered at 

-0.88 V (I) is ascribed to Co2+ reduction. The reduction starts at a

high overpotential of ~0.8 V as compared to the coupled oxida­

tion process ( onset ~0 V). Subsequently, between -0.9 V and -1.1 V

a diffusion limited process appears as the current density tends to

stabilize. At lower potentials, the reduction current density sud­

denly drops and reaches a minimum at -1.20V {Il). Afterwards, the

reduction current density increases again and reaches the maxi­

mum at -1.38V (III), which we again assigned to the reduction of

Co2+
. The value of the Iimiting current density below -1.38 V is simi­

lar to the one of diffusion Iimited reaction taking place between-0.9 

and-1.1 V. On the reverse sweep {Fig. la, red curve), the current 

density progressively decreases and reaches a minimum at slightly 

higher potentials (-1.18 V) in comparison to the reduction sweep 

(-1.20V). Above -1.18V, a very sharp reduction peak centered at 

-1.09 V is observed {IV), followed by a diffusion limited and then

a diffusion/activation limited reduction process. The oxidation sig­

nal at more positive potentials was ascribed to Co stripping. The

reversibility (the charge ratio between oxidation and reduction

process) of the electrochemical reaction is above 75%; however,

it varies according to the chosen reverse potential reaching almost

100% at higher potentials (Supplementary Materials (SM), Fig. 1 *).

Such aforementioned features, namely the drop in current density

around -1.2 V and the oxidation peak on the reverse sweep, were
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also observed for the other substrates with slight shifts in onset and 

peak potentials ( Fig. 1 b, c ). 

3.2. EQCM measurement 

Both the huge drop in current during the reduction sweep and 

the well-defined reduction peak during the oxidation sweep are 

rare phenomena in electrochemistry. To gain further insight into 

the origins of these unusual features, we have conducted an EQCM 

measurement which is an elegant technique to indirectly deter­

mine the mass of the deposit as well as the concentration of Co2
+ 

near the electrode via quartz frequency and motional resistance 

changes, respectively. Cyclic voltammetry at a rate of 2 mV-s-1
, 

at 100 °c, in 0.12 M Co{TFSih was performed. The reverse poten­

tial was chosen at the minimum of the current drop during the 

reduction sweep (-1.20V). 

Figs 2a, b, c, d show current, quartz frequency, quartz resistance 

and M/z variations versus potential, respectively. The current pro­

file is almost identical to the one obtained on the Ptp electrode in 

the same conditions (Fig. 1 a). A shift in potential is visible most 

Iikely due to minor differences in the Pt surface, which in case of 

quartz is electrochemically mirror polished as opposed to mechan­

ically. Whatever the origin of the shift, a drop in current density 

with the minimum at -1.20 V and a very sharp reduction peak dur­

ing the oxidation sweep are still observed. The reduction of Co2
+ 

species starts at slightly Iower potentials of -0.87 V and is centered 
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GC. c) SSw electrode. The black curve presents the reduction sweep while the red 

oxidation sweep. CE-Pt, RE-Ag/Ag2 0, scanning rate 5 mv.s- 1
. lnset: magnification 

of negative potential part. 

at-0.96 V. A time derivative of the current (SM, Fig. 2a*) reveals two 
weak anomalies at-0.88 and-0.92 V. Further, comparing CV (Fig. 2a) 
and variation in quartz frequency (Fig. 2b) between -0.87 and -
0.90 V (within the blue dashed lines potential window, Fig. 2 ), a high 
reduction current density is observed while only small changes in 
frequency occurred ( clearly visible on the time derivative of the 
frequency which is proportional to the current according to Sauer­
bay and Faradays equations - SM, Fig. 2b*). Additionally, a small 
decrease in motional resistance (Fig. 2c) is observed, attributed to 
the change of viscosity/density properties of the solution in the 
vicinity of the electrode. ln our opinion, this part of the reduction 
process involves only soluble species with 1e- reduction process 
of Co2+ ( equation 4 ), and the aforementioned variation in motional 
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lines divide the CV curve into regions where different phenomena occur. 0.12 M 

Co(TFSlh, T= 100 °C, WE-Pt mirror polished on quartz, CE-Pt, RE- Ag/Ag20, scan 

rate 2 mv.s-1.

resistance is due to the change in the coordination sphere of Co2+ 

as it is reduced. 

Co2+ + e- � co+ 

soluble 
� soluble 

Co:taluble + e- � COsoild 

Co:;;;uble + 2e- � Cosoild 

(4) 

(5) 

(6) 

Below -0.9V, there is a significant decrease in frequency that 
is accompanied by the appearance of a dark deposit on the 
quartz, indicating the consumption of Co2+ /Co+ cations according 
to equations (5) and ( 6). This leads to a decrease of solution vis­
cosity/density, in agreement with the quartz motional resistance 



change (Fig. 2c) that suddenly starts to decrease and then stabilize 

at R = 915 Q in the region of the diffusion Iimiting step (-1.0/-1.1 V). 

Calculated M/z values (Fig. 2d) start to progressively increase reach­

ing a maximum of 42 g-moJ-1 at E=-0.97V. This maximum most

likely originates from the simultaneous reduction of Co2+ and co+ 

species which should theoretically give M/z values of 29.5 g-moJ-1 

and 59 g-moJ-1, respectively.Afterwards, M/z stabilizes at a value of

29-30 g-moJ-1 indicating a direct 2 electron Co2+ reduction process

at lower potentials (equation 6). Once the current density starts to

drop (below -1.1 V, blue dashed line Fig. 2), the frequency tends to

stabilize due to a slowdown in the deposition rate; more impor­

tantly, the motional resistance increases dramatically (increase in

viscosity and density product) reaching 935 Q. This is in relation

with the diffusion of the Co2+ in the vicinity of the electrode, equal­

izing its concentration with the bulk one.

When the potential is reversed, a huge and very sharp reduction 

peak is observed. It is linked to both a sudden increase in the depo­

sition rate and a decrease in motional resistance (drop in viscosity 

and density product). This means that Co2+ reduction resumes 

rapidly with therefore the onset of a diffusion limiting process (as 

further suggested by the constancy of the motional resistance) at 

the plateau of the motional resistance value (R= 905 Q). Overall, 

from the current profile, quartz frequency and quartz motional 

resistance variation, it seems that the reduction of Co2+ around 

-1.2 V is inhibited by a reversible potential triggered phenomenon.

At this stage, it should be recalled that the quartz motional

resistance does not solely depend on the bath viscosity and

density product; other parameters such as viscoelasticity, rough­

ness or adhesion of the deposit also contribute to the motional

resistance[29,31 ]. However, in our case, the shape of the motional

resistance curve follows the change in current density which is pro­

portional to the change of Co2+ concentration. The change in Co2+ 

content affects the structure of IL in the vicinity of the electrode

(diffuse layer of Co2+) that acts as a viscoelastic film on the quartz

electrode. Any variation in IL structure leads to changes in the

viscosity/density parameter consequently affecting the motional

resistance. Additionally, note that during the diffusion limited

reduction process (-1. 1 V to -0.8 V on oxidation sweep and -1.0 to

-1.1 V on reduction sweep ), the motional resistance remains almost

constant (R""' 905 Q). Moreover its value is close to the quartz resis­

tance in pure IL solution at 100° C (R= 895 Q), while there is still

a progressive evolution of the deposit. This led us to conclude that

the growth of the Co deposit has negligible impact on the resis­

tance which mostly depends on the properties of the diffuse layer

(viscosity/density) that is related to Co2+ concentration.

3.3. Influence of the bath parameters 

ln order to further investigate the origin of the sudden drop in 

current density during reduction at -1.20 V (Fig. 1 ), the influence of 

temperature, IL formulation, and complexation of Co2+ cations on 

the CV response were checked. Ali the experiments were conducted 

on the Ptw electrode if not otherwise specified. The CV curve col­

lected at 100 °C in 0.12 M Co(TFSl)z in EMlmTFSI (Fig. 3a) is a blank 

test that will be treated as a reference through the rest of this paper. 

3.3.1. Temperature 

Fig. 3 represents CV curves of 0.12 M Co(TFSI)z solutions at dif­

ferent temperatures. At RT (Fig. 3b, black curve), a single peak (1) 

with huge overpotential ( ~ 1.5 V) is observed as opposed to two 

at 100 °C. However during the next cycle (Fig. 3b, red curve) an 

additional reduction peak (Il) appears at slightly higher potentials 

(onset at -1 V). The intensity of the reduction peak (II) progres­

sively increases with the number of cycles while the intensity of 

the reduction peak (1) decreases (Fig. 3b, inset); this suggests that 

in both reactions the same species, namely the Co2+ cations, are 
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reduced. The reduction/oxidation process at RT is poorly reversible 

(33%) as on the reverse sweep, only a small oxidation peak (III) is 

visible during the first cycle (Fig. 3b, black curve). The reversibility 

improves upon cycling, due to the appearance of a new reduction 

peak (II) that is almost 100% reversible (SM, Fig. 3*). On the other 

hand, at high temperature (T = 150 °c, Fig. 3c ), the same phenomena 

(onset of 2 reduction peaks together with a sudden drop in the 

current density) are observed alike at 100 °c. The minimum of the 

current density drop is slightly shifted to higher potentials (-1.18 V). 

3.3.2. IL nature 

One of the advantages of ILs is the possibility of playing with 

their formulation by substituting either their cation or anion, and 

hence changing greatly their physical and chemical properties and 

their interactions with cobalt cations and the substrate. 

First, substitution of TFSI- with Tm- was investigated. Once 

the Co(TFSI)z is added to the TfQ- based IL, its color changes 

to blue meaning that the coordination is no longer octahe­

dral ([Co(TFSihJ-) as in the case of EMimTFSI, but tetrahedral 

([Co(Tf0)4J2-) as deduced from the collected UV-VIS spectra (SM,
Fig. 4*). Fig. 4a shows the CV curve of 0.12 M Co(TFSI)2 solution 

in EMimTfO IL at 100 °c. Although the shape of the peaks as well 

as their onsets change significantly (the reduction of Co2+ starts at 
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higher potentials), the two reduction peaks separated by a drop in 
current density are still visible, as well as the reduction peak on the 
oxidation sweep (SM, Fig. 5*). 

The influence of imidazolium ring back bone was checked by 
substituting the EMlm+ cation with OMlm+ . The successive CV 

curves of 0.12 M Co(TFSlh on the Ptw at 100 °C in OMlmTFSI IL are 

reported on Fig. 4b. On the first scan (black curve), a small redue­
tian peak (I) starting at -0.89 V and centered at -1.12 V followed by 
a huge reduction peak (Il) with the onset at-1.30 V and centered at 

-1.62 V are observed; bath features were assigned to the reduction

of Co2+ . ln the next scans, the intensity of bath the reduction peak
(1) and the oxidation peak (Ill) increase. That is very similar to the

CVs obtained in 0.12 M Co(TFSlh in EMlmTFSI at RT (Fig. 3b ); never­

theless, in the case of OMlmTFSI at 100 °c the intensity of the peak
at -1.60 V (Il) does not change upon cycling. At higher temperature

( 150 °C), the intensity of the first peak is greatly enhanced in com­

parison to the second one (Fig. 4c). Additionally, a very clear drop in

current density is visible, reaching again the minimum at -1.20 V.

Similarly, a reduction peak on the oxidation sweep is observed as
well (more clear when the potential is reversed at -1.20 V, (SM,
Fig. 6*).

a) BMPTFSI at 100 °C

4 

0 

-4-----------�--�------� 

-2 -1 0 1 

4 

'1�
b) tBMNTFSI at 100 °c

2 

0 

-2 --+-----------�--�------� 

-2 -1 0 1 
E vs (Ag/Ag

2
O) / V

Fig. 5. CV of0.12M Co(TFSI)i solution in a) BMPTFSI at 100 °C and b) tBMNTFSI at 

100 °C. WE-Ptw, CE-Pt, RE-Ag/Ag2 O, scanning rate 5 mv-s-1• 

Lastly, the IL cation was replaced by BMP+ and tBMW. ln bath 
cases, two reduction peaks are visible (Fig. Sa and b, respectively); 

however, the drop in current density is not so significant as for the 

imidazolium based Ils described above (the density current at the 

minimum of the drop is very high as compared to blank test, Fig. 3a ), 
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even at high temperatures (SM, Fig. 7*). Additionally, the minimum 
of the current density drop is shifted to lower potentials, -1.34 V for 
BMP+ and -1.35 V for tBMW. 

So overall, it turns out that the nature of the cation solely influ­
ences both the current drop during reduction and the reduction 
peak on the reverse sweep. 

3.3.3. Complex charge 

As a last part of our survey, the influence of the charge of the 
cobalt complex was investigated, which is negatively charged in 
either TFSI- or no- based IL. To assess such a parameter, a neutral
complexing agent thiourea (known to produce positive [Co{TU)4]2+ 

complexes) was added to a 0.12 M Co{TFSl)i solution in EMimTFSI 

IL[22). Upon addition of TU, the solution rapidly turns blue, mean­
ing that the complexation changed from octahedral [Co{TFSlhJ­
to tetrahedral [Co{TU)4]2+ . Fig. 6 displays the CV curves on the Ptp
electrode of EMimTFSI solution containing 0.48 M TU (black curve) 
and 0.48 TU +0.12 M Co{TFSl)i (red curve). The same Ptp electrode 
with constant surface area was used in both cases to directly com­
pare the intensities. The stability window for the TU, which ranges 
from -1.0 to 0.8 V, can be widened upon the addition of metal 
cations. Lastly, the onset of TU oxidation shifts to 1 V (SM, Fig. 8*) 
while its reduction is highly hindered (Fig. 6). Indeed since the cur­
rent profile indicates steady state diffusion (Co2+ reduction) while 
the solution with only TU reveals a continuous increase in current 
density. Reduction of the Co2+ starts at relatively high potential E = -
0.5 V and is followed by a single reduction wave without any current 
drop and reduction peak on the reverse scan, unlike previously 
described systems. Following the oxidation sweep, an additional 
oxidation wave is observed starting at 0.41 V (apart from Co strip­
ping process at 0.3 V), however, for the sake of conciseness, it will 
not be discussed further. We can thus conclude from the afore­
mentioned results that the charge of the complex is also one of the 
crucial parameters responsible for the unusual behavior observed 
during the reduction/oxidation sweeps. 

3.4. Impedance spectroscopy: Nyquist and Cole-Cole plots 

The dynamic aspect of the system was tested by potentio­
electrochemical impedance spectroscopy at different potentials 
(-0.80; -1.00; -1.16; -1.20; -1.26; -1.50 V). For each experiment, 
a newly prepared electrode was used. Ali the impedance spectra 
were collected after the steady state was reached at each applied 
potential. Fig. 7a reports the Nyquist impedance curves of 0.12 M 
Co{TFSI)i solution at 100 °c on the Ptp electrode. At -0.80 V (full 
black squares), a semicircle ( 42 !J-cm2 of diameter) is observed 
and can be assigned to parallel association of the charge trans­
fer resistance and the double layer capacitance. As the potential 
decreases (-1,00 V), a sharp increase of the imaginary part, proba­
bly related to diffusion limitation, is noticed. At -1.14 V (green full 
triangles) and -1.20 V (blue full triangles) for lower frequencies, 
a second semicircle appears with the opposite sign of curvature, 
crossing the negative part of the real axis at finite frequencies (neg­
ative impedance). This is in agreement with our CV curve, where 
in between -1.1 and -1.2 V a negative slope on the voltammo­
gram is observed (Fig. la) leading to negative value of polarization 
resistance. The negative impedance further disappears at Iower 
potentials (-1.26 and -1.50 V, brown empty circle and purple empty 
square, respectively) at the expense of a half semicircle (however 
a Warburg impedance cannot be excluded). 

The above mentioned negative impedance is a part of wider con­
sideration on the stability nature of the system. If the intersection 
of the impedance spectra happened in the origin of the complex 
impedance plane, a Hopf-bifurcation (since the crossing happens at 
finite frequencies) would appear leading to an oscillatory current 
profile at fixed potential[32]. The shift of the intersection can be 
done by either applying a sufficient external resistance or changing 
the deposition parameters. To our surprise, a very clear oscilla­
tion current could be obtained at fixed potential of -1.16 V without 
any additional resistance (SM, Fig. 9*). In our opinion, the freshly 
deposited Co can act as the additional resistance, so that the oscil­
lation will be triggered by the thickness and the morphology of the 
deposit. Whatever the origin of the Hopf-bifurcation, the existence 
of an oscillation indicates an alternative transition between two 
antagonistic metastable states having highly different kinetics. 

The representation of the same impedance data in a com­
plex capacitance type curve brings some additional information 
(Fig. 7b ). At -1.26 and -1.00 V, only a single semicircle assigned to 
the charging of a double layer is present. This contrasts with the 
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data collected at -1.14 and -1.20 V which present two semi ci rel es, 
indicative of capacitive phenomena with fast and slow kinetics. 
Similar results have already been observed in the case of BMPFAP IL, 
in which the second semicircle was ascribed to charge flow caused 
by the surface reconstruction (herringbone structures)[33,34]. 

At this juncture, it is worth mentioning that in pure EMimTFSI 
IL at 100 °C, the negative impedance and two capacitive semi ci rel es 
were not observed in the wide potential range of its stability. 

3.5. Potentiostatic e/ectrodeposition 

Having completed the fundamental studies on Co2+ reduc­
tion, we would like now to check the influence of the reported 
phenomena on the synthesis of Co deposits. Potentiostatic depo­
sition at three different potentials (-0.95; -1.20 and -1.40V) for 
10 min were performed on a Pt dise (Fig. 8a). The morphologies of 
obtained deposits were checked by SEM (Fig. 8b, c). The j-t curves 
obtained at -0.95 and -1.40V almost overlap from the beginning; 
divergence begins after 125 s, Ieading to different final current den­
sity values of j = 2.0 mAcm-2 andj = 2.6 mAcm-2, respectively. The 

curve obtained at -1.20 V shows significantly smaller current den­
sity (0.95 mAcm-2 at the end of the deposition), in agreement with 
the CV curve, where at this potential a minimum of the current 
drop was reached. For the deposits taking place at -1.40 and -0.95 V, 
the j-t data reveal valleys during the first 25 s of deposition (Fig. 8 
inset), which we believe to be associated to a 3D nucleation pro­
cess with diffusion controlled growth[35]. However in the case of 
the process at -1.20 V, the current decreases drastically from the 
first seconds. The Elovich equation, commonly used to describe the 
chemisorption-like phenomena, has been used to fit the first thirty 
seconds of current profile obtained at -1.20 V ( equation 7)[36]. 

- �; = a • exp (b • Q) (7) 

where a, b are fitting parameters and Qis the coverage ratio. Taking 
into account that Qo = 0 at t0 = 0 and Q= Qn at t = tn (for n>0), the 
integrated form of equation 7 is: 

Qn = a' + b' • ( c + tn) (8) 

where a', b' and c are the new fitting parameters. We have assumed 
that the current is driven by the coverage ratio of an "adsorption 



like" phenomenon, so that the concentration of cobalt species in 
the vicinity of the electrode is constant (the current is not limited 
by the diffusion phenomenon, which is justified since the deposi­
tion current at -1.20 V is much smaller than at -0.95 V). The current 
equation can be written as: 

i= -ddQ
dt (9) 

where d is the proportionality constant. So the derived equation 
takes the form: 

i= B:t (10) 

where A and B are the new fitting parameters. The brown triangle 
curve on the inset (Fig. Sa) represents the fitting with equation 
1 O. A considerable difference between fit and experimental data is 
observed; the fit curve tends toj = 0 as t ➔ ex, while the experimental 
data tends to lil = lioo I that is higher than O. The reason for such a 
difference most likely lies in the fact that the Elovich equation solely 
describes pure adsorption phenomena. Therefore, we found that a 
decent fit (R2 = 0.991) could be achieved (Fig. Sa, inset - blue circles) 
by inserting an additional parameter io: to equation 10, representing 
the non-zero current also called the leakage current. Thus using 
equation (11 ), we could nicely simulate for short deposition times, 
the experimental results with the parameters as follows: A= -1.90 
mC.cm-2 , B=-2.46 s andj00 =-0.71 mA-cm-2 . 
. A .

( )J = B + t + loo 11 

Such a correlation suggests that the blocking of the reduction 
originates from drastic changes in the initial native double layer. 
For times greater than 30 s, the fitting is no longer valid since an 
increase in current density is observed, unlike the Elovich equation 
prediction. This is indicative of the perturbation of the "adsorption" 
phenomenon by the morphology of the deposited film. 

The obtained deposits at -0.95 and -1.20 V were shiny and very 
adhesive, unlike the one at -1 .40 V which detached once the sub­
strate was removed from the solution. In bath cases, they consist of 
a thin layer made of parti cl es ranging from 20 to 100 nm on top of 
which we could visualize largely dispersed 500 nm to 1 µm size par­
ti cl es (Fig. Sb, c). Lastly, the cracks/scratches observed through our 
deposits are simply coming from the morphology of the substrate. 

4. Discussion

We have reported that the reduction mechanism of Co2+ in ionic 
Iiquid media is rather complex, dependent on many parameters and 
displaying unusual behavior such as: i) sudden drop in reduction 
current density at -1.2 V, ii) reduction peak on the oxidation sweep, 
iii) current profile following the Elovich law, and iv) existence of
tricky charge motions as deduced from the negative impedance 
and the delicate balance between two capacitive semicircles. 

First of ail, we should recall that the double layer of pristine 
Ionie liquids in contact with a metal surface is highly structured, 
especially under additional polarization (Graph la, b) where the 
oscillatory like concentration profiles of cations and anions were 
observed experimentally and theoretically[ 13, 14,161. Now, a legit­
imate question deals with the localization of the cobalt species 
depending upon concentration, a pp lied potential and so on. We will 
consider two different scenarios enlisting 1) an uniform distribu­
tion of the [Co(TFSih 1- complex throughout the double layer, hence 
disturbing its structure (diffusion of [Co(TFSl)JJ- complex with­
out any obstacle) - Graph 1 c, 2) the exclusion of the [ Co(TFSih J­
complex within the compact layer of the double layer structure ( dif­
fusion of [Co(TFSihJ- occurs through the compact layer) - Graph 
1 d. Next, we are trying to decide which of these proposed scenar­
ios is the most likely to be in agreement with our experiments and 

existing literature so as to better understand the electrochemical 
electrodeposition of Co in ionic liquid media, and further try to 
extend it to other systems. 

From the EQCM results, we have a straightforward evidence for 
an "accumulation" of [Co(TFSlh J- complex during the current den­
sity drop and further its spontaneous consumption on the reverse 
sweep (leading to very sharp reduction peak). This is in agree­
ment with our IS spectra that showed the negative impedance in 
the potential range of sud den current density drop (-1.1 /-1.2 V), 
correlated with the negative slope on the polarization curve. Such 
behavior is related to the inhibition of the electrochemical process 
at the electrode as it was already investigated by other groups in 
aqueous solution[37I and more recently in IL[37,38I. The inhibition 
may be caused by many different phenomena such as: desorption of 
electrochemically active species, creation of passive layer, adsorp­
tion of surfactant or changes in double layer structuration. Further, 
the appearance of an oscillating current profile at fixed potential 
(-1.16 V) suggests an alternative transition between two antago­
nistic metastable states having highly different kinetics[32,37-39I. 
Additionally, as investigated by impedance spectroscopy during the 
current drop phenomenon, a second capacitive semicircle occurred 
(at low frequencies) that could be assigned to slow surface recon­
struction, as for example formation of herringbone structures, 
although those structures were found only at single crystal oriented 
electrodes[33,34I. Furthermore, chemisorption-like phenomena 
are consistent with the current profile of potentiostatic deposition 
at -1.20V, which could be well fitted with the modified Elovich 
equation. Ali these results suggest that strong interactions between 
the electrode and the electrolyte occur, which is believed to be 
linked to the creation of a reversible energetic barrier related to 
the reconstruction of the double layer upon a pp lied potential. 

We also found that the nature of the Ionie Liquid cations as 
well as the charge of the cobalt complex strongly affect the exist­
ence and amplitude of the current density drop. More specifically, 
the current density drop is very clear when either the cation of 
IL is based on the ring structure with delocalized electrons (imid­
azolium based cation) or that the cobalt complex is negatively 
charged. To the extreme, this drop weakens or even disappears 
for IL based either on pyrrolidinium or ammonium cations and 
when positively charged cobalt complex is present. As those two 
parameters are the major ones influencing on the structure of the 
double layer, it is becoming doubtful that the scenario 1 (Graph le) 
does occur; indeed the changes in double layer would not affect the 
state of the [ Co(TFSih 1- complex. However it would have tremen­
dous impact in scenario 2. With an increase in negative polarization 
( decrease in potential ), the concentration of anions in the first layer 
of the double layer decreases, because of the electrostatic repul­
sion. As a consequence, the created cations layer moves towards 
the electrode surface ( thinning of the layer) and finally the double 
layer gets more structured ( e.g. higher number of layers) and com­
pact (Graph 1 b). This leads to an increase in bath the high potential 
damping and the viscosity nearby the interface. Those changes can 
highly affect the electrochemical process taking place at the elec­
trode by disturbing bath [Co(TFSl)JJ- diffusion and charge transfer 
in scenario 2. Additionally, because of its negative charge, the cobalt 
complex will sit on the second layer (negative charge layer); thus 
a first cation layer stands as a barrier hindering cobalt from being 
reduced. Once the charge of the cobalt complex is changed to posi­
tive, thanks to the migration flux, it can be directly incorporated in 
the first layer resulting in the Jack of current drop. Overall, taking 
into account ail the above statements, we believe that the ener­
getic barrier at -1.20V concerns the restructuring of the double 
layer under applied potential. 

Now, it remains to explain why the aforementioned barrier 
is clearer in imidazolium based ionic liquids. Baldelli et al. [18] 
found that the imidazolium ring changes the conformation from 
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perpendicular to cofacial versus the substrate surface as the neg­

ative polarization increases, due to its delocalized positive charge. 

Consequently, it produces more compact layer (as illustrated on 

Graph 1 b ), highly inhibiting the reaction rate. However, this still 

does not explain the increase in current below -1.2 V since accord­

ing to this theory, the current should drop continuously and not 

exhibit a minimum as it is visible on the CVs curve. The actual charge 

transfer reaction plane (place where the electron exchange hap­

pens) is not localized at the surface of the electrode but at a distance 

from it (on the magnitude of few angstroms, Graph la, b)[40]. As 

mentioned above with an increase in negative polarization, the first 

cation layer becomes thinner and closer to the substrate. Addition­

ally, in case of imidazolium cation based IL metal-pi interactions 

can occur so that finally the first cation layer becomes conductive 

and further reduction of [Co(TFSlhJ- complex positioned on sec­

ond layer, can take place. This phenomenon could explain the very 

Iow adhesion of the deposit obtained at -1.40 V, as a layer of IL 

cations remains between the substrate and deposit. It would also 

justify the decrease in oxidation efficiency when the reverse sweep 

is chosen below the barrier phenomenon (SI, Fig. 1 *). The mecha­

nism of the electron transfer at low and high potentials due to the 

change in double layer is probably very different; more sophisti­

cated experiments must be performed to probe the validity of this 

statement. Lastly, it should be noted that in both potential ranges 

-1.0/-1, 1 V and -1.3/-1.4 V, the reaction limiting parameters are the

same since the current values are very similar. On the other hand,

if the phenomena are purely caused by surface reconstruction, as

in the formation of herringbone structures, the further increase in

current would be attributed to the instability of such structures at

Iower potentials[33].

Another important aspect is the dynamics of this phenomenon. 

We found that the energetic barrier (minimum of the current drop) 

shifts to more negative values with an increase in the scanning rate 

(SM, Fig. 10*), suggesting that it is a rather slow phenomenon (in 

the range of few seconds). Furthermore, the negative loop observed 

in impedance spectra is visible at frequencies as low as 0.15 Hz. This 

is in agreement with previous statements on the origin of the bar­

rier since the changes in the structure of the double layer, which is 

governed by ion transfer, do not occur rapidly. This can also justify 

the difference in CV shapes between RT and 100 °c in EMimTFSI IL. 

At low temperatures, the barrier can actually be enhanced (strong 

interactions between ions and the substrate ), while the recons­

tructions slowed down (high viscosity/low conductivity); so that 

only one reduction peak appears at very low potentials during the 

first scan. 

It must be recalled that this is not the only system within which 

the current suddenly drops leading to a split of the reduction waves 

or/and the reduction peak on oxidative sweeps. When Co2+ cations 

are substituted with Mn2+, we experienced the same phenomena, 

though shifted to more negative potentials (Fig. 9b). With Ni2
+ 

cations, we solely observe a reduction peak on the reverse sweep 

(Fig. 9c). Finally, for Zn2+ cations, neither a drop in current nor the 

reduction on the reverse sweep (although some small valleys are 

present) are visible (Fig. 9d). However, the barrier phenomenon for 

Zn2+ system was clearly visible in Ionie Liquid containing stronger 

complexing anions EMlmDCA[ 41 ], as studied by Forsytch et al. [ 42 ). 

Baldelli et al. [18] claimed thatthe BMlmdca IL creates a more struc­

tured double layer than EMlmTFSI (with higher amount of layers 

that were ascribed to strong coordinating ability of DCA-); addi­

tionally, the viscosity of this IL (19.8 cp) is much smaller than 

EMlmTFSI (34 cp), so that this phenomenon could be observed 

already at RT. ln ail cases, the imidazolium cation and negatively 

charged metal complex are present, therefore there are still other 

parameters to be considered. Among them, the complex strength 

may be an important parameter as the DCA- is a much stronger 

complexing agent than TFS1- ( difference in reduction of Zn2+ in 
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both IL). The charge density of the complex (the relative charge 

taking into account the size of the complex) may also be a signifi­

cant issue. Other systems such as Mn(TFSih in BMPDCA[41 ], PdCl2 

in BMlmCl[43] and BMPDCA[44], NiCl2 in BMPDCA[44], or Zn(TfO) 

in BMPTf0[45] also exhibit uncommon CV curves. Sorne authors 

suggest that the two reduction peaks are due to the existence of 2 

different metal complexes. This might be true in systems where the 

metal sait and IL have different anions; it becomes doubtful in our 

systems where both anions are the same, namely TFSJ-. Addition­

ally it is not limited to divalent metallic cations since in a solution 

of TaF5 in BMPTSI, EMimTFSI and PMimTFSI ILs similar behavior 

was observed[46]. 

Although we suspect that the uncommon shape of the CV curve 

is due to double layer reconstruction, we still do not know what 

exactly its origin is or how the different metal cation complexes 

affect it. More detailed experimental work is needed on this tapie 

as well as theoretical modeling, both are ongoing. 

5. Conclusions

We have reported detailed studies on the reduction of Co2+ 

cations in Ionie Liquid media at elevated temperatures, based on the 

Electrochemical Quartz Crystal Microbalance, Cyclic Voltammetry, 

Chronoamperometric, lmpedance Spectroscopy, Scanning Electron 

Microscopy and UV-Vis Spectroscopy experiments. An uncommon 

shape of the CV curve during reduction has been spotted with the 

sudden current density drop reaching its minimum at -1.2 V and 

well defined reduction peak on the reverse sweep. We think this 

effect to be rooted in the creation of a reversible energetic bar­

rier that prevents from Co2
+ reduction. By a precise adjustment 

of different bath parameters (substrate, IL formulation, Co2
+ com­

plexation), we found that this phenomenon greatly depends on the 

nature of the ionic Iiquid cation and the charge of metal complex 

although other parameters such as the strength of the cation-anion 

interaction within the metal complex together with the electronic 

delocalization should be considered as well. Therefore, we believe 

that this barrier is nested in the reconstruction of the double layer 

under applied polarization. Such a phenomenon is not specific to 

the reduction of Co2
+ in EMimTFSI IL since we show herein that 

it occurs as well for Mn2+, Ni2+ cations while it has already been 

reported for Zn2+, Pb2+, and Pd2+. 

Finally, the paper shows the importance of tuning precisely the 

bath solution and specifically the ionic liquid formulation to grow 

deposits having the desired properties (such as good adhesion) 

which could find applications within the field of batteries, pho­

tovoltaic and microelectronics. We hope this better understanding 

of the double layer structuring, when working with ionic liquids, 

will help the community in harvesting ail the advantages that ionic 

liquid media present. 
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