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Abstract Under the term behavioral data, we consider any type of data fea-
turing individuals performing observable actions on entities. For instance, vot-
ing data depicts parliamentarians who express their votes w.r.t. procedures. In
this work, we address the problem of discovering exceptional (dis)agreement
patterns in such data, i.e., groups of individuals that exhibit an unexpected
mutual agreement under specific contexts compared to what is observed in
overall terms. To tackle this problem, we design a generic approach, rooted in
the Subgroup Discovery/Exceptional Model Mining framework, which enables
the discovery of such patterns in two different ways. A branch-and-bound al-
gorithm ensures an efficient exhaustive search of the underlying search space
by leveraging closure operators and optimistic estimates on the interesting-
ness measures. A second algorithm abandons the completeness by using a
direct sampling paradigm which is provides an alternative when an exhaustive
search approach becomes unfeasible. To illustrate the usefulness of discovering
exceptional (dis)agreement patterns, we report a comprehensive experimen-
tal study on four real-world datasets relevant to three different application
domains: political analysis, rating data analysis and healthcare surveillance.
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1 Introduction

The last decade has witnessed a huge growth in the collection of data re-
lated to various domains (e.g., governments, rating platforms health). Such
data depict interactions (e.g., vote, review, consumption) of individuals (e.g.,
European parliament members, IMDb users, patients) on entities (e.g., bal-
lots, movies, restaurants, medicines) and drive a large number of decisions.
Leveraging contextual information to discover new actionable insights is very
helpful for the analyst. For example, voting data analysis makes it possible to
discover topics that lead to a strong disagreement between representatives or
to highlight subjects where groups of parliamentarians share the same political
line and which could be the beginning of possible alliances. Similarly, rating
data analysis makes it possible to characterize affinities and contrasting opin-
ions between groups of users. Another example covers Healthcare surveillance
applications. The analysis of outpatient data (e.g. medical prescriptions) may
help epidemiologists to shed some light on sickness prevalence by studying the
drug consumption distributions between subpopulations (gender groups, age
groups, etc.). In this paper, we aim to provide a comprehensive framework
supporting the analysis of such data, discovering groups of individuals that
change their mutual agreement under specific contexts.

We focus on behavioral datasets which we define as abstractions of the
different types of datasets we previously mentioned. We view such data as
a collection of three components: (i) the first defines individuals (e.g. users,
deputies), (ii) the second depicts the entities (e.g. movies, restaurants, ballots,
medicine) and (iii) the last one describes the interactions between entities and
individuals (e.g., votes, ratings, consumption). Table 1 provides an example
of a behavioral dataset which reports the outcomes of European parliament
members (individuals) on ballots (entities). From such datasets, we aim to
discover exceptional (dis)agreement between groups of individuals on specific

ide themes date

e1 1.20 Citizen’s rights 20/04/16
e2 2.10 Free Movement of goods 16/05/16
e3 1.20 Citizen’s rights; 7.30 Judicial Coop 04/06/16
e4 7 Security and Justice 11/06/16
e5 7.30 Judicial Coop 03/07/16
e6 7.30 Judicial Coop 29/07/16

(a) Entities (Voting sessions)

idi country group age

i1 France S&D 26
i2 France PPE 30
i3 Germany S&D 40
i4 Germany ALDE 45

(b) Individuals (Deputies)

idi ide outcome

i1 e1 For
i1 e2 Against
i1 e5 For
i1 e6 Against
i2 e1 For
i2 e3 Against
i2 e4 For
i2 e5 For
i3 e1 For
i3 e2 Against
i3 e3 For
i3 e5 Against
i4 e1 For
i4 e4 For
i4 e6 Against

(c) Outcomes

Table 1: Example of behavioral dataset - European Parliament Voting dataset
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contexts. That is to say, an important difference between the groups’ behaviors
is observed compared to the usual context (i.e., the whole data). This could
answer a large variety of questions. For instance, considering political data,
an analyst (data journalist) may ask: what are the controversial subjects in
the European parliament in which groups or parliamentarians have divergent
points of view? In collaborative rating analysis, one may ask what are the con-
troversial items? And which groups are opposed? In Healthcare surveillance,
the analyst may want to know if some medicines are prescribed much more
often for one group of individuals than another one.

The discovery of regions within the data that stand out with respect to
a given target has been widely studied in data mining and machine learning
communities under several names [43] (subgroup discovery[42,67], emerging
patterns[19], contrast sets[7]). Subgroup Discovery (SD) is known as the most
generic one as it is agnostic of the data and the pattern domain. For instance,
subgroups can be defined by a conjunction of conditions on symbolic [46] or
numeric attributes [32,6] as well as sequences [31]. Furthermore, the single
target can be discrete or numeric [49]. Exceptional Model Mining (EMM) [48]
extends SD by offering the possibility to handle complex targets, e.g., several
discrete attributes [47,22,21,15], graphs [41,10,9], preferences [63] and two
numeric targets [20]. However, no model in the EMM/SD framework makes it
possible to investigate exceptional contextual (dis)agreement between groups.

In this paper, we introduce the problem of discovering exceptional (dis)agreement
patterns. Such patterns (c, u1, u2) allow to describe two groups of individuals
(u1, u2) and a context (c) for which the behavior similarity between the two
groups, importantly differs from the one observed when considering all entities
(i.e., no context). From Table 1, assume that a data journalist is interested in
finding controversial contexts in the European parliament. A (dis)agreement
pattern is p = (c = 〈themes=“7.30 Judicial Coop”〉, u1 = 〈country = France〉,
u2 = 〈country = Germany〉). It highlights a high difference between opinions
of French and German parliamentarians for Judicial Cooperation related voting
sessions while they are generally in agreement. Indeed, using a simple simi-
larity measure (e.g., the percentage of voting sessions in which the majorities
corresponding to the two groups agree), one may observe that the global simi-
larity is 66%. However, this similarity drops to 33% when considering Judicial
cooperation voting sessions only. This problem is rooted in SD/EMM. However
there are no explicit target variables. In other words, we have to enumerate
them, unlike SD/EMM where the targets are usually given and fixed.

Figure 1 gives an overview of the approach we devise to discover excep-
tional (dis)agreement between groups. At a high level of description, 5 steps
are necessary to discover interesting (dis)agreement patterns. First, two groups
of individuals are selected in intention (1). Then, their usual agreement on all
their expressed outcomes is computed in step (2). All characterizable subsets
of entities are then enumerated (3) and for each selected subset, the agree-
ment between the two groups is measured (4) and compared to their usual
agreement (5) to evaluate to what extent the mutual agreement between the
two groups changes. The discovery of exceptional (dis)agreement patterns re-
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quires to explore (simultaneously) both the search space associated to the
individuals and the search space related to the entities. Moreover, behavioral
datasets may contain several types of attributes (e.g., numerical, categorical
attributes potentially organized by a hierarchy), and outcomes. This requires
efficient enumeration strategies and pruning properties. Last but not least,
different measures to capture agreement may be considered depending on the
application domain. Accordingly, the proposed method must be generic.

A preliminary version of this work was published in [8]. This paper sig-
nificantly extends our first attempt. The model proposed in [8] requires the
specifications of several parameters that are not intuitive for the end-user and
may be a source of misleading interpretation of the patterns (e.g., the aggrega-
tion dimensions). In this paper, we simplify the model capturing the agreement
to require less efforts by the end-user in terms of both setting and interpreta-
tion. The problem definition is then modified to be more generic, which allows
handling a wider spectrum of behavioral datasets from different application
domains. The differences with [8] are further discussed in the technical and
related work sections as well as the empirical study. The main contributions
of this paper are threefold:

Problem formulation. We define the novel problem of discovering exceptional
(dis)agreement between groups of individuals when considering a particular
subset of outcomes compared to the whole set of outcomes. Much effort
has been done to ensure a generic framework for behavioral data analysis.

Algorithms. We propose two algorithms to tackle the problem of discovering
exceptional (dis)agreement patterns. DEBuNk1 is a branch-and-bound al-
gorithm that efficiently returns the complete set of patterns. It takes benefit
from both closure operators and optimistic estimates. Quick-DEBuNk is
an algorithm that enables to sample the space of (dis)agreement patterns
in order to support instant discovery of patterns.

Entities
(eg. Movies, Voting sessions) 

Individuals
(eg. Users, Parlementarians) 

Select a subset of entities

e.g. Dotted diamonds

Overall Inter-agreement2

Contextual Inter-agreement4

Select two groups of individuals  

eg. Confront      vs.      

Consider all entities

Outcomes
(eg. Scores, Votes) 

Similarity based on all entities

Compare models to 

evaluate the 

intensity of change 

5 vs.
Pointed out by an 

interestingness 

measure

Significant variation 
of inter-agreement

(   ,   ,   )

Behavioral 
Dataset

1

3

Fig. 1: Overview of the task of discovering exceptional (dis)agreement between groups

1 DEBuNk stands for Discovering Exceptional inter-group Behavior patterNs
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Evaluation. We report an extensive empirical study on both synthetic and
real-world datasets. Synthetic datasets with controlled ground truth allows
to make some qualitative comparisons with some existing methods. It gives
evidence that existing methods fail to discover exceptional (dis)agreement
patterns. The four real-world datasets are then used to demonstrate the
efficiency and the effectiveness of our algorithms as well as the interest
of the discovered patterns. Especially, we report three case-studies from
different application domains: political analysis, rating data analysis and
healthcare surveillance to demonstrate that our approach is generic. The
analysis of political votes, which is done in collaboration with journalists,
is also available online [45]2.

The rest of this paper is organized as follows. The problem formulation is
given in Section 2. We present the agreement measure and how it is integrated
into an interestingness measure to capture changes of inter-group agreement
in Section 3. DEBuNk algorithm is presented in Section 4 while a pattern
space sampling version, Quick-DEBuNk, is defined in Section 5. We report an
empirical study in Section 6. Section 7 reviews the literature. Eventually, we
conclude and discuss future directions of research in Section 8.

2 Problem Definition

We are interested in discovering exceptional inter-agreement among groups in
Behavioral Datasets defined as follows.

Definition 1 (Behavioral Dataset) A behavioral dataset 〈GI , GE , O, o〉
is defined by (i) a collection of Individuals GI , (ii) a collection of Entities GE ,
(iii) a domain of possible Outcomes O, and (iv) a function o : GI ×GE → O
that gives the outcome of an individual i over an entity e, if applicable.

Elements from GI (resp. GE) have descriptive attributes, which set is de-
noted as AI (resp. AE). Attributes a ∈ AI (resp. AE) may be numerical or
categorical. Furthermore, individuals or entities may be associated with a set
of tags which are organized within a taxonomy. Such attributes are said to be
Hierarchical Multi-Tag (HMT). For instance, in Table 1, deputies (i.e., indi-
viduals), described by their country (categorical), their political group (cate-
gorical) and their age (numerical), decide on some voting sessions outlined by
a date (seen as a numerical attribute) and themes (an HMT attribute).

To describe sets of individuals and sets of entities, we define group descrip-
tions and contexts respectively. Both are descriptions formalized by conjunc-
tions of conditions on the values of the attributes, but we use these two different
terms for ease of interpretation. For example, in Table 1, the context c = 〈
themes ⊇ ‘7.30 Judicial Coop’ 〉 imposes the presence of ‘7.30 Judicial Coop’ in
the attribute ‘themes’ and identifies the set of entities GcE = {e3, e5, e6}. Simi-
larly, the group description u = 〈 group=‘S&D’ 〉 selects the set of individuals

2http://contentcheck.liris.cnrs.fr

http://contentcheck.liris.cnrs.fr
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GuI = {i1, i3}. The set of all possible contexts (resp. group descriptions) is the
description space denoted DE (resp. DI).

Since we are interested in patterns highlighting exceptional (dis)agreement
between two groups of individuals described by u1 and u2, in a context c
compared to the overall context, the sought patterns are defined as follows:

Definition 2 ((Dis)Agreement Pattern) A (dis)agreement pattern is a
triple p = (c, u1, u2) where c ∈ DE is a context and (u1, u2) ∈ D2

I are two
group descriptions. P = DE ×DI ×DI denotes the pattern space.

The extent fulfilling p is ext(p) = (GcE , G
u1

I , G
u2

I ) with GcE the set of entities
satisfying the conditions of context c and Gu1

I (resp. Gu2

I ), the set of individuals
supporting the description u1 (resp. u2).

Several patterns may share the same extent. If ext(p) = ext(p′), patterns p
and p′ are said to be equivalent w.r.t their extension, denoted as p ≡GE ,GI p′.
Patterns are partially ordered in P by a specialization relationship. A descrip-
tion d1 is a specialization of a description d2, denoted d2 v d1, iff d1 ⇒ d2.
Consequently, a pattern p′ is a specialization of a pattern p, denoted p v p′,
iff c v c′, and u1 v u′1, and u2 v u′2. It follows that ext(p′) ⊆ ext(p) (i.e.

Gc
′

E ⊆ Gc
′

E and G
u′1
I ⊆ G

u′1
I and G

u′2
I ⊆ G

u′2
I ).

A quality measure ϕ is required to assess the interestingness of a pattern. It
assigns to each pattern p a positive real number. This value is computed consid-
ering exclusively the extent of the pattern. Therefore, two equivalent patterns
have the same quality. Different quality measures are proposed in Sec. 3.

Our objective is to provide the user with a collection of patterns that cap-
tures exceptional (dis)agreement in a given behavioral dataset. A first intuitive
idea is to provide all patterns of high quality, i.e. with a quality greater than
a user-defined threshold σϕ. This is of major importance, but considering the
quality is not enough. Indeed, many different patterns may reach the same
quality level just because they share the same extent. In such a case, we as-
sume that the user would expect the system not to bother her with huge
collections of patterns describing the same parts of the data. More interest-
ingly, the system should provide her with the good generalizations, i.e., the
patterns that are not a specialization of already found ones w.r.t. their extents.
Additionally, some cardinality constraints can be added to avoid patterns of
too small extent. Given two minimum support thresholds σE and σI , these
constraints ensure, for a pattern p = (c, u1, u2), that the size of the context
extent (i.e. |GcE | ≥ σE) and the size of both groups (i.e. |Gu1

I | ≥ σI and
|Gu2

I | ≥ σI) are large enough. Now, we introduce formally the core problem
we tackle in this paper.

Problem Def. (Discovering Exceptional (Dis)Agreement between Groups).
Given a behavioral dataset 〈GI , GE , O, o〉, a quality measure ϕ, a quality

threshold σϕ and a set of cardinality constraints C, the problem is to find the
pattern set P ⊆ P such that the following conditions hold:

1. (Validity) ∀p ∈ P : p valid that is p satisfies C and ϕ(p) ≥ σϕ.
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2. (Maximality) ∀p ∈ P∀q ∈ P : p 6= q and q ≡GE ,GI p⇒ p 6v q
3. (Completeness) ∀q ∈ P \ P : q valid ⇒ ∃p ∈ P s.t. ext(q) ⊆ ext(p)
4. (Generality) ∀(p, q) ∈ P 2 : p 6= q ⇒ ext(p) * ext(q).

Condition (1) assures that the patterns in P are of high quality and sat-
isfy the cardinality constraints. Condition (2) discard equivalent patterns by
retaining only a unique representative which is the maximal one. Condition
(3) ensures completeness and condition (4) ensures that only the most gen-
eral patterns w.r.t. their extents are in P . In other words, the combination
of conditions (3) and (4) guarantees that the solution P is minimal in terms
of the number of patterns and that each valid pattern in P has a representa-
tive in P covering it. Considering the generic definition of the quality measure
discussed here, this problem extends the former top-k problem addressed in
[8] by introducing conditions (3) and (4). That is, for a sufficiently large k,
the method formerly provided in [8] solves this problem only limited to the
two first conditions providing, hence, a solution with a much larger number of
patterns.

3 Quality Measures and Inter-group Agreement Measurement

The previous section has already hinted at the fact that pattern interestingness
is assessed with a quality measure ϕ whose generic definition is given. Here we
show how such measure captures the deviation between the contextual inter-
group agreement and the usual inter-group agreement .

3.1 Quality Measures

For any pattern p = (c, u1, u2) ∈ P, we denote by p∗ the pattern (∗, u1, u2)
which involves all the entities. IAS (p∗) (resp. IAS (p)) represents the usual
(resp. contextual) inter-group agreement observed between the two groups
u1, u2. In order to discover interpretable patterns, we define two quality mea-
sures that rely on IAS (p∗) and IAS (p).

- ϕconsent assesses the strengthening of inter-group agreement in a context c:

ϕconsent(p) = max (IAS (p)− IAS (p∗) , 0) .

- ϕdissent assesses the weakening of inter-group agreement in a context c:

ϕdissent(p) = max (IAS (p∗)− IAS (p) , 0) .

For instance, one can use ϕconsent to answer: “What are the contexts for
which we observe more consensus between groups of individuals than usual?”.
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3.2 Inter-group Agreement Similarity (IAS)

Several IAS measures can be designed according to the domain in which the
data was measured (e.g., votes, ratings) and the user objectives. The evaluation
of an IAS measure between two groups of individuals over a context requires
the definition of two main operators: the outcome aggregation operator (θ)
which computes an aggregated outcome of a group of individuals for a given
entity, and a similarity operator (sim) which captures the similarity between
two groups based on their aggregated outcomes over a single entity. These
operators are defined in a generic way as following.

Definition 3 (Outcome Aggregation Operator θ) An aggregation oper-
ator is a function θ : 2GI ×GE → D which transforms the outcomes of a group
of individuals GuI over one entity e ∈ GE (i.e. {o3(i, e) | i ∈ GuI }) into a value
in a domain D (e.g. R, categorical values).

Definition 4 (Similarity between aggregated outcomes sim) Function
sim : D × D → R+ assigns a real positive value sim(x, y) to any couple of
aggregated outcomes (x,y).

Based on these operators, we properly define IAS which assigns to each
pattern p = (c, u1, u2) ∈ P a value IAS(p) ∈ R+. This similarity evaluates how
the two groups of individuals (u1, u2) behave similarly given their outcomes
w.r.t. the context c. In the scope of our study, we confine ourselves to IAS
measures that can be expressed as weighted averages. The next definition,
though limiting, is generic enough to handle a wide range of behavioral data.

Definition 5 (Inter-group Agreement Similarity Measure IAS) Let w
be a function associating a weight to each triple from (GE × 2GI × 2GI ).
The IAS of a pattern (c, u1, u2) (IAS : P → R+) is the weighted average of
the similarities of the aggregated outcomes for each entity e supporting the
context c.

IAS(c, u1, u2) =

∑
e∈GcE

w(e,Gu1

I , G
u2

I )× sim(θ(Gu1

I , e), θ(G
u2

I , e))∑
e∈GcE

w(e,Gu1

I , G
u2

I )

3.3 Examples of IAS Measures

By simply defining sim and θ, we present two instances of IAS measure that
address two types of behavioral data with specific aims.

3.3.1 Behavioral Data With Numerical Outcomes

Collaborative Rating datasets are a classic example of behavioral data with nu-
merical outcomes. Such datasets describe users who express numerical ratings

3o(i, e) returns the outcome expressed by an individual i to an entity e, if given.
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belonging to some interval O = [min,max] (e.g., 1 to 5 stars) over reviewees
(e.g. movies, places). A simple and adapted measure for aggregating individual
ratings over one entity is the weighted mean θwavg : 2GI ×GE → [min,max].

θwavg(GuI , e) =
1∑

i∈GuI
w(i)

∑
i∈GuI

w(i)× o(i, e) (1)

Weight w(i) corresponds to the importance of ratings given by each individual
i ∈ GI . Such weight may depend on the confidence of the individual or the size
of the sample population if fine granularity ratings (rating of each individual)
are missing. If no weights are given, θwavg computes a simple average over
ratings, denoted θavg. To measure agreement between two aggregated ratings
over a single entity, we define simrating : [min,max]× [min,max]→ [0, 1].

simrating(x, y) = 1− (
|x− y|

max−min ) (2)

3.3.2 Behavioral Data with Categorical Outcomes

A typical example of such datasets are Roll Call Votes (RCVs)4 datasets where
voting members cast categorical votes. The outcome domain O is the set of
all possible votes (e.g., O = {For,Against,Abstain}). To aggregate categorical
outcomes we use the majority vote5 θmajority. We adapt its definition to handle
potential ties (i.e., non unique majority vote). Hence, θmajority : 2GI×GE → 2O

returns all the outcomes that received the majority of votes.

θmajority(GuI , e) = {v ∈ O : v = argmax
z∈O

#votes(z,GuI , e)}

with #votes(z,GuI , e) = |{(i, e) : i ∈ GuI ∧ o(i, e) = z}|
(3)

We use a Jacquard index to assess the similarity between two majority
votes x and y. Hence, simvoting : 2O × 2O → [0, 1] is defined as follows.

simvoting(x, y) =
|x ∩ y|
|x ∪ y| . (4)

3.4 Discussion

We introduced above two simple similarity measures that can be used as part
of the IAS measure to assess how similar two groups of individuals are. More
sophisticated measures can be considered. For instance, in behavioral datasets

4 Roll-Call vote is a voting system where the vote of each member is recorded, such as http:
//www.europarl.europa.eu (EU parliament) or https://voteview.com (US Congresses).

5 The same measure is used by votewatch to observe the voting behaviors of groups of
parliamentarians- http://www.votewatch.eu/blog/guide-to-votewatcheu/

http://www.europarl.europa.eu
http://www.europarl.europa.eu
https://voteview.com
http://www.votewatch.eu/blog/guide-to-votewatcheu/
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with categorical outcomes, one can define an outcome aggregation measure
which takes into account the empirical distribution of votes and then a simi-
larity measure which builds up on a statistical distance (e.g. Kullback-Leibler
divergence [17,39]). Such measures can also be used on behavioral datasets
which involves numerical outcomes, for instance Earth Mover Distance mea-
sure was investigated in similarly structured dataset (rating dataset) in [3].
Several other measures can be relevant to analyze behavioral data with nu-
merical outcomes depending on the aim of the study. In the empirical study,
we investigate another similarity measure which relies on a ratio to highlight
discrepancies between the medicine consumption rates of two subpopulations.

4 A Branch and Bound Algorithm for Mining Relevant
(Dis)Agreement Patterns

We address the design of an efficient algorithm for enumerating candidate pat-
terns. First, we present how candidates are enumerated without redundancy
by relying on a closure operator. Second, we detail the enumeration process,
paying particular attention to the attributes domains depicted by a hierarchy.
Next, we propose optimistic estimates for the quality measures. Eventually,
these elements are used to define an efficient branch-and-bound algorithm
which computes the complete set of relevant (dis)agreement patterns.

4.1 Enumerating Closed Patterns

Exploring the space of patterns (dis)agreement patterns p = (c, u1, u2) ∈
DE × DI × DI is equivalent to explore DE and DI concurrently. Despite
their differences, these two universes are formalized in a similar way, such
that the exploration method presented below can be applied indifferently to
any of them.

Let G be a collection of records (corresponding to entities GE , or individu-
als GI). We assume A = (a1, a2, ..., am) (corresponding to AE or AI) to be the
ordered list of attributes depicting its schema. Each attribute aj has a domain
of interpretation, noted dom(aj), which corresponds to all its possible values.
In this section, we focus on attributes of two types: categorical attributes and
numerical ones that cover a large number of practical cases. Nevertheless, our
approach enables to introduce additional types without any modification of
the general algorithm as illustrated in the section 4.2.

4.1.1 Description Language and Description Space Structure

A description d = 〈r1, r2, ..., rm〉 is an ordered list of conditions on attributes’
values. Gd denotes the support of d, i.e. the subset of G satisfying the condi-
tions rj of d. When a description d1 is less specific than a description d2, we
note d1 v d2. From a logical point of view d2 ⇒ d1. From this it follows that if
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d1 v d2 then Gd2 ⊆ Gd1 . The form of a condition rj depends on the type of its
related attribute. A condition on a categorical (resp. numerical) attribute is an
equality test (resp. a membership test) of the form aj = v (resp. aj ∈ [v..w])
where v (and w) is (are) value(s) of the corresponding domain dom(aj).

Characterizing a given subset S of a collection G with a specific description,
denoted δ(S), plays an important role in our process. δ(S) is built in a bottom-
up fashion. Considering an element s of S, we obtain its characterization δ(s)
by a composition of the characterizations of its values (one δj(s) for each
considered attribute aj of s). The description of S, δ(S), is then obtained by
composing the characterizations of all of its elements. In the same spirit as
in [26], we introduce some mapping functions δj(s) which provide a condition
describing the value v of attribute aj . This clearly depends on the type of aj .
δj(s) is of the form (aj = v) (resp. (aj ∈ [v..v])) when aj is a categorical (resp.
numerical) attribute. Applying such mappings to all the attributes leads to a
complete description of s: δ(s) = 〈δ1(s), δ2(s), ..., δm(s)〉

Once the description δ(s) of a single record s is defined, the support Gd of
description d can be expressed as Gd = {g ∈ G | d v δ(g)}.

It is then possible to obtain a description of S combining the descriptions of
its elements. Each condition domain Dj related to an attribute aj can be con-
ceptualized as a semi-lattice with an infimum operator denoted .u. Intuitively,
such operator provides the tightest condition subsuming two conditions. The
definition of the infimum operator depends on the type of the attribute. The
infimum operator for a categorical (resp. numerical) attribute is denoted cu
(resp. nu). The infimum nu between interval conditions is defined following [40].

(aj = v1) cu(aj = v2) =

{
aj = v1 if v1 = v2

trueaj else

(aj ∈ [v1..w1]) nu(aj ∈ [v2..w2]) = aj ∈ [min(v1, v2)..max(w1, w2)]

The Cartesian product of the m lattices related to attributes also forms a
lattice [61] that we can also equip with an infimum operator u which provides
the maximum common description of two descriptions d, d′:

d u d′ = 〈r1, ..., rm〉u〈r′1, ..., r′m〉 = 〈r1 tu1r
′
1, ..., rm tumr′m〉 (5)

with tuj is nu for numerical attributes and cu for categorical ones.
The maximum common description covering a subset S of a collection (S ⊆

G) is then obtained by: (where u is commutative, associative and idempotent)

δ(S) = ug∈S(δ(g)) (6)

For example, in the dataset given in Table 1, individuals are de-
scribed by both categorical and numerical attributes. The description d =
〈truecountry, truegroup, age ∈ [20, 40]〉 identifies the deputies whose age is be-
tween 20 and 40. Its support GdI is {i1, i2}. Interestingly, these two in-
dividuals share more elements in common w.r.t. their descriptors. Indeed,
d′ = δ({i1, i2}) = 〈 country=’France’, truegroup, age∈ [26, 30]〉. Notice that
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(i) the two descriptions share the same support (GdI=G
d′

I ) and (ii) d v δ(GdI),
as d is less specific than δ({i1, i2}) = δ(GdI).

Since we expect a support to be described only once in the result, the
enumeration process has to prevent the enumeration of descriptions sharing
the same support. More precisely, we expect to obtain the closed description,
clo(d), which is a description sharing its support with d (Gd = Gclo(d)), and
which is also the most specific one (if Gd=Gd

′
, then d′ v clo(d)). This is

not a constructive definition, but interestingly clo(d) = δ(Gd).This provides a
method to obtain the desired description. This equality results from the fact
that �d and δ(�) are a pair of Galois derivation operators between 2G and
(D,v) providing as a consequence a closure operator: namely the composite
operator δ(Gd). Proof and details of this equality is omitted as it is a well-
known notion in pattern mining and formal concept analysis [27,26].

4.1.2 Description Enumeration

Our exploration algorithm is based on a depth-first enumeration method start-
ing from the most general description 〈truea1 , . . . , trueam〉, shortly noted ∗. It
proceeds by atomic refinements to progress, step by step, toward more specific
descriptions. Intuitively, an atomic refinement of a description d produces a
more specific description d′ by reinforcing the condition of one attribute only.
Furthermore, such refinement is minimal (d @ d′ ∧ @e ∈ D : d @ e @ d′).
Again, the atomic refinement of condition rj takes different forms depending on
the type of aj . Since a condition over a numerical attribute is of the form aj ∈
[inf..sup]6, an atomic refinement corresponds to a left-minimal change with
respect to existing values of the attribute aj in Gd (aj ∈ [nextGd(inf)..sup])
or a right-minimal change (aj ∈ [inf..predGd(sup)]) on the interval bounds of
the condition. An empty resulting interval means there is no possible refine-
ment. Considering a categorical attribute, the atomic refinement of a condition
trueaj gives a condition of the form aj = v, v being a value in dom(aj). Other-
wise, a condition of the form aj = v does not admit any refinement. Whatever
the type of the attribute is, d ≺ d′ denotes the fact that d′ results from an
atomic refinement of condition d. This notion enables to easily progress from
one description d to the next ones by relying on the following refining operator
η.

ηj(d) = {d′ = 〈r′1, . . . , r′m〉 ∈ D : rj ≺ r′j and ∀k ∈ [1..j[∪]j..m], rk = r′k} (7)

η(d) =
⋃

j∈[1..m]

ηj(d) (8)

Algorithm 1 called EnumCC (Closed Description ENumerator), first in-
troduced in [8], describes the exploration of the search space over a collection
of records G defined by the attributes A = {a1, . . . , am}. Remind that such

6Note that trueai is equivalent to aj ∈ [MINaj ..MAXaj ], MINaj , (resp. MAXaj ) being
the minimal (resp. maximal) value of the domain of the attribute aj .
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a collection may refer to either the collection of entities GE or the collection
of individuals GI . Closed Description ENumerator enumerates once and only
once all the closed descriptions that verify the support constraint |Gc| ≥ σG
with σG a user defined threshold. EnumCC follows the same spirit as Close-
byOne algorithm [44]. Note that EnumCC goes along the same lines of the
enumeration algorithm EnumCC in our previous paper[8]. The main differ-
ences between the two algorithms reside on their implementation and the
optimizations on which EnumCC relies. The implementation is available and
maintained online7.

Starting from a description d, EnumCC first computes its corresponding
support Gd (line 1). If the size exceeds the threshold (line 2), the closure
of d is computed (line 3). Subsequently, a canonicity test between closure d
and d is assessed (line 4). It allows to determine if a description after closure
was already generated and to discard it, if appropriate, without addressing
the list of already generated closed descriptions requiring hence no additional
storage. The canonicity test relies on an arbitrary order between attributes in
AG = {a1, a2, ..., am} indicating that, in the enumeration process, attribute
conditions are refined following this arbitrary order. Let d = 〈r1, ..., rf , ..., rm〉
a description resulting from the refinement of the f th condition of some pre-
ceding description, and d′ = 〈r′1, ..., r′f , ..., r′m〉 = clo(d) the closure of d. Fol-
lowing the arbitrary order between attributes, we expect for d′, if it is the
first tim e that it is encountered, that no condition before r′f (i.e. r′1, ..., r

′
f−1)

is refined; otherwise, clo(d) was already generated after a refinement of pre-
ceding conditions and need thus to be discarded. The intuition behind the
canonicity test being explained, a canonicity test rests essentially on a lectic
order (cf. [27, p.66-68]) between d and its closure d′ denoted d lf d′ which
is defined as follows: d lf d′ ⇐⇒ ∀i ∈ [1..f − 1] | ri = r′i ∧ rf l r′f . The
latter condition, rf l r′f , corresponds to an analogous canonicity test between
conditions and makes sense for multi-valued attributes types only (e.g. HMT

Algorithm 1: EnumCC(G, d, σG, f, cnt)

Inputs : G is the collection of records depicted each by m descriptor attributes
d a description from D, σG a support threshold,
f ∈ [1,m] a refinement flag, cnt a boolean

Output: yields all closed descriptions, i.e. clo[D] = {clo(d) s.t. d ∈ D}
1 if |Gd| ≥ σ then
2 closure d← δ(Gd)
3 if d lf closure d then
4 cnt c← copy(cnt) . cnt c value can be modified by a caller algorithm
5 yield (closure d, Gclosure d, cnt c) . yield the results and wait for next call
6 if cnt c then
7 foreach j ∈ [f,m] do
8 foreach d′ ∈ ηj(closure d) do
9 foreach (nc, Gnc, cnt nc) ∈ EnumCC(G, d′, σG, j, cnt c) do

10 yield (nc, Gnc, cnt nc)

7https://github.com/Adnene93/DEBuNk

https://github.com/Adnene93/DEBuNk
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in section 4.2). It does not need to be calculated for simple attributes (nu-
merical, categorical). If the canonicity test is successful (line 4), closure d is
returned as a valid closed candidate (line 6). The algorithm then generates
the neighbors by refining the attributes {af , ..., an} continuing from d on the
condition that cnt c is not switched to False (lines 7-9). Flag f determines
the index of the last attribute that was refined in the description d (operator
η). Boolean cntc can be modified externally by some caller algorithm to prune
the search space, for instance, when using optimistic estimates on the quality
measures. Eventually, a recursive call is done to explore the sub search space
related to d (lines 10-11). Hence, to enable the full exploration of search space
D associated to a collection of records G, the algorithm is called with this
initial parameters EnumCC(G, ∗, σ, 1, true). Recall that ∗ is the description
〈truea1 , truea2 , . . . trueam〉 having the complete collection G as its support.

4.2 Hierarchical Multi-Tag Attribute (HMT)

Several votes and reviews datasets contain multi-tagged records whose tags
are part of a hierarchical structure. For instance, the ballots in the European
parliament can have multiple tags (e.g., the ballot Gender mainstreaming in
the work of the European Parliament is tagged by 4.10.04-Gender equality
and 8.40.01-European Parliament. Tag 4.10.04 identifies a hierarchy where
tag 4.10 depicts Social policy which is a specialization of tag 4 that covers
the ballots related to Economic, social and territorial cohesion). For the sake
of simplicity, we consider G a set of tagged records where each record g is
described by a unique attribute tags which is a set of tags. Tags form a tree
noted T . Fig. 2 depicts a dataset of tagged records.

We can define the partial order ≤ between tags as the same usual partial
order in a tree structure where the tree root is the minimum (e.g. ∗ < 1 < 1.20).
This enables us to define the ascendants (resp. descendants) operator ↑ (resp.
↓) of a tag t ∈ T . We have ↑ t = {u ∈ T |u ≤ t} and ↓ t = {u ∈ T |u ≥ t}. Let
t and u be two tags, t is a lower neighbor of u denoted t ≺ u if t < u and
@e ∈ T | t < e < u. Thus t is a parent of u denoted as t = p(u).

A condition over an HMT attribute is assimilated as a membership in a set
of tags {t1, ..., tn}. We denote the condition domain by D which is a subset of
2T . Each object g ∈ G is mapped by δ(g) to its corresponding condition in D.
Clearly, if δ(g) = {t1, t2}, the object g is tagged explicitly by the tags t1 and

*

1 2 3

1.10 1.20 2.10

tags

g1 {1.20, 2.10}
g2 {1, 3}
g3 {1.10, 2.10, 3}
g4 {2.10}
g5 {1.20}

∗ 1 1.10 1.20 2 2.10 3

g1 × × × × ×
g2 × × ×
g3 × × × × ×
g4 × × ×
g5 × × ×

Fig. 2: A tree of tags (left), a set of tagged items (middle) and its flat representation (right)
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*

1 2 3

1.10 1.20 2.10

(c)

hu

*

1 2 3

1.10 1.20 2.10

(d)

=

*

1 2 3

1.10 1.20 2.10

(c hu d)

Fig. 3: Illustration of the infimum operator hu

t2 but also implicitly by all their generalizations ↑ t1 and ↑ t2 as shown in the
flat representation in Fig. 2. Hence, an HMT restriction can be depicted by a
rooted sub-tree of T and a record supports such restriction if it contains at least
all tags of the sub-tree. It follows that, the partial order between two HMT
conditions r, r′ denoted r v r′ (r′ more specific than r) is valid if the sub-tree
r covers the sub-tree r′. More formally, r v r′ means ∀t ∈ r ∃u ∈ r′ | u ∈ ↓ t.

Two ways are possible to handle this attribute among the other attributes
in the complex search space defined previously. One straightforward solution
is to consider HMT attribute values as itemsets as depicted in the vector
representation in Fig. 2. However, such a solution ignores the taxonomy T im-
plying the enumeration of chain descriptions. For instance, a chain description
{1, 1.20.01} is regarded as a different description than {1.20.01}. This stems
from the fact that items are unrelated from the viewpoints of itemsets solu-
tion. As a consequence, a larger search space is explored while determining
the same closed descriptions. The same observation has been made for nu-
merical attributes [40]. To tackle such issue, we define an HMT description
language. Similarly to the aforementioned attributes, we define the infimum
operator between two conditions which computes the maximum common sub-
tree covering a set of conditions. Let r = {t1, ..., tn} and r′ = {u1, ..., um} be
two conditions of D, we define hu as : r hu r′ = max(∪t∈r ↑ t ∩ ∪u∈r′ ↑u) with
max : 2T → 2T a function that maps a subset of tags s ⊆ T to the leafs of the
sub-tree compound of the tags of s: max(s) = {t ∈ s | (↓ t \ {t}) ∩ s = ∅}.

Intuitively, r hu r′ depicts the set of the maximum explicit or implicit
tags shared by the two descriptions. For instance, if c = {1.10, 2} and d =
{1.20, 2.10}, c hu d = {1, 2}. Fig. 3 illustrates the HMT infimum operator,
where green and yellow tags represent respectively the explicit and the im-
plicit tags of some given conditions in D.

Similarly, a restriction r is an upper neighbor of r′, that is r ≺ r′ if either
only one tag of r is refined in r′ or a new tag is added in r′ that shares a
parent with a tag in r or with one of its ascendants. Formally:{
∃! (t, u) ∈ c× d : t ≺ u ∧ ∀t′ ∈ (c \ t) ∃u′ ∈ d : t′ = u′ if |d|= |c|
∀t ∈ c ∃u ∈ d : t=u ∧ ∃!(t, u) ∈ c×d ∃t′∈ ↑ t : p(u)=p(t′) |d|= |c|+1

Finally, we need to define the lectic order between two conjunctions of tags
r = {t1, ..., tn} and its closure r′ = {u1, ..., un, ..., um} to assess the canonicity
test. Given that r is generated after a refinement of the f th, the lectic order is
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defined as: rlfr′ ⇔ ∀i ∈ [1..f−1] : ti = ui∧tfluf . The linear order l between
tags can be provided by the depth first search order on T . These concepts being
defined, the mapping function δ and Gd can be extended easily to handle
HMT among other attributes. Note that the HMT attributes support itemset
attributes. This can be done simply by considering a flat tree T compound of
all the items. Hence, HMT attributes can be seen as generalizations of itemset
attributes, where implications between items are known.

4.3 Optimistic Estimates on Quality Measures

The enumeration of closed patterns enables a non-redundant traversal of the
search space without pruning based on the quality measure. We present some
pruning properties based on bounds on ϕconsent and ϕdissent.

Let u1, u2 be two descriptions from DI that respectively cover the two
groups Gu1

I , Gu2

I . We consider optimistic estimates only with regards to the
search space DE . We assume that u1 and u2 are instantiated a priori. Below,
we give the definitions of an optimistic estimate [33].

Definition 6 (Optimistic Estimate) An optimistic estimate oe for a given
quality measure ϕ is a function such that:

∀ contexts c, d ∈ DE . c v d⇒ ϕ(d, u1, u2) ≤ oe(c, u1, u2)

Tight optimistic estimates, defined in [33], offer more pruning abilities than
simple optimistic estimate. Without loss of generality, we assume that the
input domains of oe and ϕ are defined over both the pattern space P and over
2E×2I×2I . This is possible, since the quality measure only depends on extents.

Definition 7 (Tight Optimistic Estimate) An optimistic estimate oe is
tight iff: ∀c ∈ DE . ∃S ⊆ GcE : oe(GcE , G

u1

I , G
u2

I ) = ϕ(S,Gu1

I , G
u2

I ).

Note that this does not require S to have a corresponding description in DE .

4.3.1 Lower Bound and Upper Bound for the IAS Measure

The two quality measures ϕconsent and ϕdissent rely on the IAS measure. Since
u1 and u2 are considered to be instantiated for optimistic estimates, we can
rewrite the IAS measure for a context c ∈ DE and its extent GcE :

IAS(GcE , G
u1

I , G
u2

I ) =

∑
e∈GcE

we × α(e)∑
e∈GcE

we
with

{
α(e) = sim(θ(Gu1

I , e), θ(G
u2

I , e))

we = w(e,Gu1

I , G
u2

I )
.

We can now define a lower bound LB and an upper bound UB for the
IAS measure based on the following operators that are defined for any context
c ∈ DE and for n ∈ N:
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– m(GcE , n) = Loweste∈GcE ({we × α(e) | e ∈ GcE}, n) returns the set of the n
distinct records e from GcE having the lowest values of we × α(e).

– M(GcE , n) = Higheste∈GcE ({we × α(e) | e ∈ GcE}, n) returns the set of the

n distinct records e from GcE having the highest values of we × α(e).

– mw(GcE , n) = Loweste∈GcE ({we | e ∈ GcE}, n) returns the set of the n
distinct records e from GcE having the lowest values of we.

– Mw(GcE , n) = Higheste∈GcE ({we | e ∈ GcE}, n) returns the set of the n
distinct records e from GcE having the highest values of we.

Proposition 1 (Lower bound LB for IAS) we define function LB as

LB(GcE , G
u1

I , G
u2

I ) =

∑
e∈m(GcE ,σE) we × α(e)∑

e∈Mw(GcE ,σE) we

For any context c (corresponding to a subgroup GcE), LB provides a lower
bound for IAS w.r.t. contexts with σE a minimum context support threshold:

∀c, d ∈ DE . c v d⇒ LB(GcE , G
u1

I , G
u2

I ) ≤ IAS(GdE , G
u1

I , G
u2

I )

Proposition 2 (Upper bound UB for IAS) we define function UB as

UB(GcE , G
u1

I , G
u2

I ) =

∑
e∈M(GcE ,σE) we × α(e)∑

e∈mw(GcE ,σE) we

For any context c (corresponding to a subgroup GcE), UB provides an upper
bound for IAS w.r.t. contexts. i.e.

∀c, d ∈ DE . c v d⇒ IAS(GdE , G
u1

I , G
u2

I ) ≤ UB(GcE , G
u1

I , G
u2

I )

Now that both the lower bound and the upper bound of IAS are defined
w.r.t. contexts, we define the optimistic estimates corresponding to ϕconsent

and ϕdissent. The proofs of the propositions are given in Appendix A.

4.3.2 Optimistic Estimates for Quality Measures

Proposition 3 (Optimistic estimate for ϕconsent and ϕdissent) oeconsent

(resp. oedissent) is an optimistic estimate for ϕconsent (resp. ϕdissent) with:

oeconsent(G
c
E , G

u1

I , G
u2

I ) = max(UB(GcE , G
u1

I , G
u2

I )− IAS(GE , G
u1

I , G
u2

I ), 0)

oedissent(G
c
E , G

u1

I , G
u2

I ) = max(IAS(GE , G
u1

I , G
u2

I )− LB(GcE , G
u1

I , G
u2

I ), 0)

The two defined optimistic estimates tight if the IAS measure is a simple
average. i.e. all weights are equal to 1.

Proposition 4 If ∀({e}, Gu1

I , G
u2

I ) ⊆ GE × GI × GI : w(e,Gu1

I , G
u2

I ) = 1,
oeconsent (resp. oedissent) is a tight optimistic estimate for ϕconsent (resp.
ϕdissent).
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4.4 Algorithm DEBuNk

DEBuNk is a Branch-and-Bound algorithm which returns the complete set
of patterns as specified in the problem definition (Section 2). To this end,
it takes benefit from the defined closure operator and optimistic estimates.
Relying on algorithm EnumCC, DEBuNk starts by generating the couples of
confronted groups of individuals that are large enough w.r.t. σI (lines 2-3).
Then it computes the usual agreement observed between these two groups
of individuals when considering all entities in GE (line 4). Next, the context
search space is explored to generate valid contexts c (line 5). Subsequently, the
optimistic estimate oe is evaluated and the context sub search space is pruned if
oe is lower than σϕ (lines 7-8). Otherwise, the contextual inter-group agreement
is computed and the quality measure is calculated (lines 9-10). If the pattern
quality exceeds σϕ then two scenarios are possible. Either the current pattern
set P already contains a more general pattern, or it does not. In the former
case, the pattern is discarded. In the latter, the new generated pattern is added
to pattern set P while removing all previous generated patterns that are more
specific than p w.r.t. extents (lines 11-14). Since the current pattern quality
exceeds the threshold and all the remaining patterns in the current context
sub search space are more specific than the current one, the sub search space is
pruned (line 15). Eventually, if the quality measure is symmetric w.r.t. u1 and
u2 (i.e. ∀u1, u2 ∈ D2

I | ϕ(c, u1, u2) = ϕ(c, u2, u1)) there is no need to evaluate
both qualities. As a consequence, it is possible to prune the sub search space
of the couple descriptions (u1, u2) whenever u1 = u2 (lines 16-17).

Algorithm 2: DEBuNk(〈GI , GE , O, o〉, σE , σI , ϕ, σϕ)

Inputs : 〈GI , GE , O, o〉 a behavioral dataset;
σE (resp. σI) minimum support threshold of a context (resp. group);
ϕ the quality measure; σϕ quality threshold on the quality.

Output: P the set of exceptional (dis)agreement patterns.
1 P ← {}
2 foreach (u1, G

u1
I , contu1 ) ∈ EnumCC(GI , ∗, σI , 0,True) do

3 foreach (u2, G
u2
I , contu2 ) ∈EnumCC(GI , ∗, σI , 0,True) do

4 IASref ← IAS(∗, u1, u2)
5 foreach (c,GE , contc) ∈ EnumCC(GcE , ∗, σE , 0,True) do
6 if oeϕ(c, u1, u2) < σϕ then
7 contc ← False . Prune the unpromising sub-search space under c
8 else
9 IASref ← IAS(c, u1, u2)

10 quality← ϕ(c, u1, u2) . computed using IASref and IAScontext
11 if quality ≥ σϕ then
12 pnew ← (c, u1, u2)
13 if @pold ∈ P | ext(pnew) ⊆ ext(pold) then
14 P ← (P ∪ pnew) \ {pold ∈ P | ext(pold) ⊆ ext(pnew)}
15 contc ← False . Prune the sub search space

16 if ϕ is symmetric and u1 = u2 then
17 break . Prune the sub search space

18 return P
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DEBuNk and DSC algorithm[8] differs on several levels. First, DEBuNk
overcomes the limitations of lack of diversity of results provided by DSC which
was designed to discover the top-k solutions. The present algorithm discards
all patterns for which a generalization is already a solution. Second, DEBuNk
handles a wider range of bounded quality measures (i.e. weighted mean IAS),
in contrast to DSC algorithm which handles only a subset of these measures.
Finally, DSC requires the prior definition of an aggregation level which makes
it difficult to use and interpret. DEBuNk overcomes this issue by reducing the
number of input parameters and integrating relevancy check between patterns.
Hence, it requires less effort from the end-user both in terms of setting the
parameters, and in terms of interpreting the quality of the resulting patterns.

5 Sampling (Dis)Agreement Patterns

DEBuNk returns the exact solutions according to the problem definition. Al-
though relying on the enumeration of closed descriptions and pruning tech-
niques, such an exploration may take a considerable time depending on the size
and the complexity (i.e. attributes types) of the behavioral data. To address
this concern, we devise a (dis)agreement pattern sampling approach called
Quick-DEBuNk. It enables instant mining of (dis)agreement patterns by yield-
ing approximate solutions that improve over time. Quick-DEBuNk relies on
the two major steps to sample patterns, depicted in Fig. 4:

Frequency-Based Sampling(Step 1). A (dis)agreement pattern p ∈ P is
drawn with a probability proportional to the size of its extent (i.e. |ext(p =
(c, u1, u2))| = |GcE | × |Gu1

I | × |Gu2

I |). The key insight is to provide more
chance to patterns supported by larger groups and contexts which are less
likely to be discarded by more general ones generated by future iterations.
This technique is inspired by the direct frequency-based sampling algo-
rithm proposed in [12] which considers only Boolean attributed datasets.

Minimum support 
threshold Individuals 

Search Space DI

Contexts Search 
Space DE

u1

contexts c forming interesting

patterns (c,u1,u2)

Sampled groups 
of  individuals 

Local sub-search space 
corresponding to the 
sampled context c

Step 1 : Sampling patterns satisfying cardinality constraints (FBS) Step 2 : Random Walk on Contexts (RWC)

Selected context to 
refine in a random 
walk process iteration

Interesting pattern p
found by Quick-DEBuNk

Sampled context c to expand

u2

Confronted
groups

Fig. 4: Quick-DEBuNk approach in a nutshell



20 Adnene Belfodil et al.

Here, this method is extended to handle more complex data with HMT,
categorical and numerical attributes.

Random Walk on Contexts (step 2). Starting from a context obtained
in step 1, a random walk traverses the search tree corresponding to the
contexts description space DE . We introduce some bias to fully take ad-
vantage of the devised quality measures and the optimistic estimates , this
being done to reward high quality patterns by giving them more chance to
be sampled by the algorithm.

5.1 Frequency-Based Sampling (Step 1)

To sample patterns of the form p = (c, u1, u2), we aim to draw description
c, respectively u1 and u2, from description space DE , respectively DI , with
a probability proportional to their respective support size. To this end, we
devise the algorithm FBS (Frequency-Based Sampling).

In the following, for any d ∈ D, ↓ d denotes the set of all descriptions
subsuming d, i.e: ↓d = {d′ ∈ D : d′ v d}. Since D8= D1 × D2 × ...× Dm, it
follows that: ↓d =↓(r1, r2, ..., rm) =↓ r1× ↓ r2 × ...× ↓ rm, where ↓rj is the set
of conditions less specific than (implied by) rj in the conditions space Dj .

FBS generates a description d with a probability proportional to its fre-

quency P(d) =
|Gd|)∑

d′∈D |Gd
′ | (formally defined in proposition 5). To this end,

FBS performs two steps as depicted in Algorithm 3.
FBS starts by drawing a record g from G (line 1) with a probability propor-

tional to the number of descriptions d ∈ D covering g (i.e: | ↓δ(g)|). To enable
this, each record g ∈ G is weighted by wg = | ↓δ(g)|. For now, we use dg to re-
fer to δ(g). Knowing dg = (rg1 , ..., r

g
m), the weight wg = | ↓dg| = ∏j∈[1,m] | ↓r

g
j |

is the product of the numbers of restrictions subsuming each rgj . The size of
| ↓rgj | depends on the type of the related attribute aj :

- categorical attribute: given that rgj corresponds to a value v ∈ dom(aj), we
have ↓rgj = {∗, v} thus | ↓rgj | = 2.

- numerical attribute: given that rgj corresponds to an interval [v, w] with
v, w ∈ dom(aj), we have ↓ rgj is equal to the number of intervals having
a left-bound v ≤ v and a right-bound w ≥ w. More formally, ↓ rgj =

Algorithm 3: FBS(G)

Input: G a collection of records which may be GE or GI

Output: a description d from D with P(d) =
|Gd|∑

d′∈D |Gd
′ |

1 draw g v wg from G . with wg = | ↓δ(g)|
2 draw d v uniform(↓δ(g))
3 return d

8Cartesian product of them lattices related to attributes conditions spaces forms a lattice[61]
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{[v, w] | v ≤ v ∧ w ≥ w}. Hence, the cardinal of this set is | ↓ rgj | = |{v ∈
dom(aj) : v ≤ v}| × |{w ∈ dom(aj) : w ≥ w}|.

- HMT attribute: given that rgj corresponds to a set of tags {t1, t2, ...tl} ∈
dom(aj), with tk ∈ T and T a tree, the condition rgj can be conceptu-
alized as a rooted subtree of T where the leaves are {t1, t2, ...tl}. Thus,
↓rgj represents the set of all possible rooted subtrees of rgj . The latter car-
dinality can be computed recursively by starting from the root ∗ using
nbs(tree, root) =

∏k
1 (nbs(treei,neighbori) + 1) where neighbori returns

the child tags of a given root and treei the subtree rooted on neighbori.

Given g the record returned from the first step and its corresponding descrip-
tion dg = δ(g) = 〈rg1 , ..., rgm〉, FBS uniformly generates a description d from the
set of descriptions covering g, that is ↓dg. This can be done by uniformly draw-
ing conditions rj from ↓ rgj , hence returning a description d = 〈r1, r2, ..., rm〉.
This comes from the fact that ∀j ∈ [1,m] : P(rj) = 1

|↓rgj |
:

P(d|g) =
∏

j∈[1,m]

P(rj) =
1∏

j∈[1,m] | ↓ r
g
j |

=
1

|∏j∈[1,m] ↓ r
g
j |

=
1

| ↓ dg| .

We now define the method used to uniformly draw a condition correspond-
ing to an attribute aj , according to its type:

- categorical attribute: given that ↓ rgj = {∗, v} with v ∈ dom(aj), it is
sufficient to uniformly draw an element rj from {∗, v}.

- numerical attribute: given that ↓rgj = {[v, w] | v ≤ v ∧w ≥ w}, to generate
an interval [sv, sw] from ↓ rgj uniformly, one needs to uniformly draw a
left-bound sv from the set {v ∈ dom(aj) : v ≤ v} and a right-bound sw
from the set {w ∈ dom(aj) : w ≥ w}.

- HMT attribute: given that ↓rgj represents the set of rooted subtrees of rgj ,
we have to uniformly draw such rooted subtrees. A first way is to generate
all the possible rooted subtrees and then uniformly draw an element from
the resulting set. This does not scale. Hence we devised another method, re-
lying on a stochastic process using the aforementioned function nbs (which
counts the number of subtrees rooted on some given node). The algorithm
takes the root ∗ as a starting tree. Next, the resulting subtree is augmented
by a child c of ∗ with a chance equal to the number subtrees of ↓rgj contain-

ing c. That is
nbs(rgj ,∗)−nbs(rgj−{c},∗)

nbs(rgj ,∗)
. Recursively, the algorithm continues

from a drawn candidate child c.

Proposition 5 A description d ∈ D has a probability of being generated by

FBS equal to P(d) =
Gd∑

d′∈D |Gd
′ | . (see Appendix A for proofs)

FBS algorithm makes it possible to generate valid patterns p = (c, u1, u2)
from the pattern space P = DE×DI ×DI . This is achieved in the first step of
Quick-DEBuNk (lines 3-6 in Algorithm 5) by sampling two group descriptions
u1, u2 from DI and a context c from DE followed by assessing if the three
descriptions satisfy the cardinalities constraints C (min. support thresholds).
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Proposition 6 Given the cardinality constraints C, every valid pattern p is
reachable by the first step of Quick-DEBuNk. i.e. ∀p ∈ P : p satistifies C ⇒
P(p) > 0 (see Appendix A for proofs)

Step 1 of Quick-DEBuNk does not favor the sampling of high quality pat-
terns as it does not involve an exploitation phase. The random walk process on
contexts used in Step 2 enables a smarter traversal of the search space while
taking into account the devised quality measures and optimistic estimates.

5.2 Random Walk on Contexts (RWC)

RWC ( Algorithm 4) enumerates contexts of the search space corresponding to
DE while considering closure and optimistic estimates. RWC takes as input
two confronted groups of individuals described by u1,u2 for which it looks for
relevant contexts (i.e., to form an (dis)agreement pattern) following a random
walk process starting from a context c. Mainly, RWC has two steps that are re-
cursively executed until a terminal node is reached. RWC starts by generating
all neighbors d of the current context c (line 2). Next, RWC assesses whether
the size of the corresponding support GcE and the optimistic estimates respec-
tively exceed the support threshold σE and the quality threshold σϕ (line 3).
If appropriate, the closed description d is computed (line 4). The algorithm
proceeds by evaluating the quality of pattern (line 5). If the quality exceeds the
threshold σϕ, the pattern is valid and is hence yielded (line 6). Otherwise, the
pattern is added to NtE (Neighbors to be Explored) (line 8) as its related sub
search space may contain interesting patterns (i.e oeϕ(d, u1, u2) ≥ σϕ). The
second step of RWC consists in selecting a neighbor from NtE to be explored
with a probability proportional to its quality (lines 10 − 12). This process is
recursively repeated until a terminal node is reached (i.e. NtE = ∅).

Algorithm 4: RWC(〈GI , GE , O, o〉, c, u1, u2, σE , ϕ, σϕ)

Inputs : 〈GI , GE , O, o〉 a behavioral dataset; c the current context;
(u1, u2) couple of confronted group descriptions of individuals;
σE threshold on support; ϕ the quality measure; σϕ quality threshold.

Output: yield valid patterns (c, u1, u2)
1 NtE← {}
2 foreach d ∈ η(c) do
3 if |GdE | ≥ σE and oeϕ(d, u1, u2) ≥ σϕ then
4 closure d← δ(GdE)
5 if ϕ(d, u1, u2) ≥ σϕ then
6 yield closure d

7 else
8 NtE← NtE ∪ {d}
9 if NtE 6= ∅ then

10 draw next v ϕ(next, u1, u2) from NtE
11 foreach cnext ∈ RWC(〈GI , GE , O, o〉, next, σE , ϕ, σϕ, u1, u2) do
12 yield cnext
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5.3 Quick-DEBuNk

Quick-DEBuNk (Algorithm 5) samples patterns from the full search space
DE × DI × DI . It is based on FBS and RWC. It takes as input the same
parameters as DEBuNk in addition to a timebudget. It starts by generating a
couple of closed group descriptions of individuals u1, u2 that fulfill the support
constraint (lines 3− 5) using FBS. Next, Quick-DEBuNk generates a context
while only considering entities having a quality greater than the threshold σϕ

(line 6). The reason behind considering only G
≥σϕ
E is clear: we have ∀p ∈ P

p satisfies C and ϕ(p) ≥ σϕ ⇒ ∃e ∈ GcE : ϕ({e}, Gu1

I , G
u2

I ) ≥ σϕ (since the
quality measure is a weighted mean). If the context fulfills the cardinality
constraint and its evaluated optimistic estimate is greater than the quality
threshold (line 7), the algorithm then evaluates the quality of the sampled
pattern (line 8). If this quality is greater than the threshold σϕ, the pattern
is appended to the resulting pattern set if and only if it is not more specific
of an already found pattern w.r.t. extents (lines 9− 11). Otherwise, a random
walk is launched starting from context c (line 13). This is done by relying on
RWC. The algorithm continues by updating the resulting pattern set by each
pattern yielded by RWC, as long as there is no more general pattern in the
current pattern set P (lines 14−16). Otherwise, RWC is interrupted (line 18).
The process is repeated as long as the time budget allows.

Algorithm 5: Quick-DEBuNk(〈GI , GE , O, o〉, σE , σI , ϕ, σϕ,timebudget)

Inputs : 〈GI , GE , O, o〉 a behavioral dataset;
σE (resp. σI) minimum support threshold of a context (resp. group);
ϕ the quality measure; σϕ threshold on the quality;
timebudget the maximum amount of time given to the algorithm.

Output: P the set of local relevant (dis)agreement patterns
1 P ← {}
2 while executionTime < timebudget do
3 u1 ← clo(FBS(GI))
4 u2 ← clo(FBS(GI))
5 if |Gu1

I | ≥ σI ∧ |G
u2
I | ≥ σI then

6 c← clo(FBS(G
≥σϕ
E )) . G

≥σϕ
E = {e ∈ GE | ϕ({e}, Iu1 , Iu2 ) ≥ σϕ}

7 if |GcE | ≥ σE ∧ oeϕ(c, u1, u2) ≥ σϕ then
8 if ϕ(c, u1, u2) ≥ σϕ then
9 pnew ← (c, u1, u2)

10 if @pold ∈ P | ext(pnew) ⊆ ext(pold) then
11 P ← (P ∪ pold) \ {pold ∈ P | ext(pold) ⊆ ext(pnew)}
12 else
13 foreach d ∈ RWC(〈GI , GE , O, o〉, c, u1, u2, σE , ϕ, σϕ) do
14 pnew ← (d, u1, u2)
15 if @pold ∈ P | ext(pnew) ⊆ ext(pold) then
16 P ← (P ∪ pnew) \ {pold ∈ P | ext(pold) ⊆ ext(pnew)}
17 else
18 break
19 if executionTime ≥ timebudget then
20 return P

21 return P
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6 Empirical Study

In this section, we report on both quantitative and qualitative experiments
over the implemented algorithms. For reproducibility purposes, source code
(in Python) and data are made available in our companion page9.

6.1 Aims and Datasets

The experiments aim to answer the following questions:

– How effective is DEBuNk compared to State-of-the-Art algorithms?
– How well can DEBuNk and Quick-DEBuNk identify exceptional inter-

group agreement patterns in synthetic data?
– Are the closure operators and optimistic estimate based pruning, efficient?
– How effective is HMT closed description enumeration compared against

closed itemset enumeration?
– Does DEBuNk scale w.r.t. different parameters?
– How effective is Quick-DEBuNk at sampling interesting patterns in limited

time budgets?
– Do the algorithms provide interpretable patterns?

Most of the experiments were carried out on four real world behavioral
datasets whose general characteristics are summarized in Table 2. Each of the
considered behavioral datasets figures out entities with an HMT (H) attribute
together with categorical (C) and numerical (N) ones, while the individuals
have numerical and categorical attributes.

EPD8 10 features voting information of the eighth European Parliament
about the 958 members who were elected in 2014 or after. The dataset
records 2.7M tuples indicating the outcome (For, Against, Abstain) of a
member’s voting during one of the 4161 sessions. Each session is described
by its themes (H), its voting date (N) and its organizing committee (C). In-
dividuals are described by their national party (C), political group (C), age
group (C), country(C) and additional information about countries (date of
accession to EU (N) and the country currency (C)). To analyze exceptional
inter-agreement in this dataset, we consider the measure IASvoting. This
measure is defined using θmajority and simvoting.

|GE | AE |GI | AI Outcomes

EPD8 4161 1H + 1N + 1C 958 1N + 5C 2.7M
Movielens 1681 1H + 1N 943 3C 100K
Yelp 127K 1H + 1C 18 3C 750K
Openmedic 12 219 1H 78 3C 500K

Table 2: Main characteristics of the behavioral datasets

9https://github.com/Adnene93/DEBuNk
10http://parltrack.euwiki.org/, last accessed on 17 November 2017

https://github.com/Adnene93/DEBuNk
http://parltrack.euwiki.org/
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Movielens11 is a movie review dataset [34] consisting of 100K ratings (rang-
ing from 1 to 5) expressed by 943 users on 1681 movies. The movies are
characterized by their genres (H) and release date (N), while individuals
are described with demographic information such as age group (C), gender
(C) and occupation (C). To investigate (dis)agreement patterns, we use the
adapted measure IASratings. Its definition relies on θwavg and simratings.

Yelp12 is a social network dataset featuring individuals who rate (scores
ranging from 1 to 5) places (stores, restaurants, clinics) characterized by
their categories (H) and their state (C). The dataset originally contains
1M users. We preprocessed the dataset to constitute 18 groups of individ-
uals based on the size of their friends network (C), their seniority (C) in
the platform and whether users are elites or not (C). This preprocessing
has been done to allow the discovery of interpretable patterns. The same
IASratings measure is used to analyze this dataset.

Openmedic13 is a drug consumption monitoring dataset that has been re-
cently made available by Ameli14. This dataset inventories the number of
drug boxes (described by their ATC classification (H) ) yearly adminis-
tered to individuals (2014, 2015 and 2016). Individuals are described with
demographic information such as age group (C), gender (C) and region
(C). In the qualitative results, we discuss an adapted IAS measure.

Comparing the size and the complexity of these datasets is difficult because
of the heterogeneity of the attributes. In particular, the hierarchies of the
HMT attributes are very different, as well as the range of the numerical ones.
To enable a fair comparison, we operate a (kind of) conceptual scaling [27].

Entities (AE) Individuals (AI)

EPD8 attribute types 1H + 1N + 1C 1N + 5C
size after scaling 347 + 26 + 40 = 413 16 + 285 = 301
average scaling values in a tuple 20.44 14

Movielens attribute types 1H + 1N 3C
size after scaling 20 + 144 = 164 4 + 2 + 21 = 27
average scaling values in a tuple 75.72 3

Yelp attribute types 1H + 1C 3C
size after scaling 1175 + 29 = 1204 3 + 2 + 3 = 8
average scaling values in a tuple 5.77 3

Openmedic attribute types 1H 3C
size after scaling 14094 2 + 13 + 3 = 18
average scaling values in a tuple 7 3

Table 3: Behavioral Datasets Characteristics After Scaling

11https://grouplens.org/datasets/movielens/100k/
12https://www.yelp.com/dataset/challenge, last accessed on 25 April 2017
13http://open-data-assurance-maladie.ameli.fr/, last accessed on 16 November 2017
14Ameli - France National Health Insurance and Social Security Organization

https://grouplens.org/datasets/movielens/100k/
https://www.yelp.com/dataset/challenge
http://open-data-assurance-maladie.ameli.fr/
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Dataset Transactions Items AverageSize

EPD8 1 727 032 585 1 015 34.48
Movielens 16 807 109 218 79.37
Yelp 5 860 354 1 220 9.00
Openmedic 28 512 418 14 130 10.00

Table 4: Characteristics of datasets considered as plain collections of itemsets records - the
plain collections correspond to GE × GI × GI while considering only pairable individuals
(pairs of individuals who both expressed outcomes/actions)

The attributes are “projected” to a set of items by transforming each one
to a Boolean representation. Each possible value of a categorical attribute
provides a single item (e.g. gender gives male, female and unknown). The
items corresponding to an HMT attribute are all the nodes of the tag tree (T ).
Each numerical attribute is transformed to an itemset with an interordinal
scaling [40]. To a given set of values [v1, v2, ...vn], we associate 2n items {≤
v1,≤ v2, ... ≤ vn,≥ v1,≥ v2, ... ≥ vn}. Table 3 illustrates this step, while
Table 4 shows the obtained comparable characteristics.

Some questions we aim to answer require data for which the ground truth
is known. Since it is notoriously difficult to obtain such data, we designed
an artificial behavior data generator. The generator works as follows. It first
generates nb hidden patterns (dis)agreement patterns. Each pattern is rep-
resented by two group descriptions (u1, u2) and a context (c) where u1, u2 and
c are defined over random categorical descriptions and are of random size. For
each pattern, the extent is generated (i.e., context support size entities for
the context and the two groups involving group support size individuals).
These patterns describe conflictual situations, i.e., the individuals of one group
in the pattern context express a voting outcome which is different from the
other group’s one. Conversely, the two groups are in agreement in the usual
case, i.e., their votes over the entities outside the pattern are similar. Once

Parameter Description
Default
value

|GE | (nb entities) Number of entities 2000
|GI | (nb individuals) Number of individuals 500
|O| Number of possible categorical outcomes 2
|AE | Number of categorical attributes for entities 2
|dom(aj)| with aj ∈ AE Domain size of a categorical attribute aj ∈ AE 4
|AI | Number of categorical attributes for individuals 2
|dom(aj)| with aj ∈ AI Domain size of a categorical attribute aj ∈ AI 4
nb hidden patterns Number of planted conflictual patterns 3
context support size Support size of a hidden pattern context 5
group support size Support size of a hidden pattern group 5
noise rate Noise rate in/out the ground truth patterns 0
data sparsity Probability of an individual not to cast an outcome 0.33

Table 5: Default Parameters Used for Generating Artificial Behavioral Data
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these patterns are generated, the rest of the dataset is generated by adding
entities and individuals randomly while preserving the exceptionality of the
patterns (i.e., the patterns must remain the most general exceptional patterns)
till the desired size of the dataset is reached (i.e. |GE | = nb entities and
|GI | = nb individuals). As described, the hidden patterns are pure. A last
step enables to add noise within the patterns. For each pattern, the expressed
outcome of individuals are randomly replaced with a noise rate probabil-
ity. Similarly, noise is added outside the patterns. The parameters used are
summarized in Table 5.

The rest of this section is organized as follows. We qualitatively compare
DEBuNk and Quick-DEBuNk with state-of-the-art methods on artificial data
(subsect. 6.2). We then study their ability in noisy data (subsect. 6.3). A full
performance study of our two algorithms is reported in subsect. 6.4. Qualitative
results on the four real-world datasets are provided in subsect. 6.5. A discussion
on the limitations of our algorithms closes this section.

6.2 Comparison to state-of-the-art techniques

To put DEBuNk and its sampling alternative Quick-DEBuNk to the test, we
investigates the ability of classical SD/EMM techniques to tackle the problem
of discovering exceptional disagreement among groups of individuals in Sec-
tion 6.2.1 and we compare their efficiency and effectiveness against our first
attempt[8] implemented by DSC Algorithm in Section 6.2.2.

6.2.1 Comparison to SD/EMM methods

We aim to study how the SD/EMM methods are able to discover relevant
(dis)agreement patterns. SD algorithms available in public implementations
(e.g., Vikamine[5], Cortana [54], PySubgroup [50]) only consider one flat table
with a target attribute. However, behavioral datasets involve three relations
(Entities, Individuals, Outcomes) which are all processed by DEBuNk and its
sampling alternative Quick-DEBuNk to discover the interesting (dis)agreement
patterns. To handle the problem we defined with a classical SD algorithm, we
need to preprocess the data. We discuss and compare several problem adap-
tations.

SD-Majority: SD to discover contextual disagreements with the ma-
jority. The most direct way to apply SD on behavioral data is to consider the

Entities Individuals Outcomes

ide theme date idi country group outcome SAME AS MAJORITY

e1 1.20 Citizen’s rights 20/04/16 i1 France S&D For +
... ... ... ... ... ... ... ...

Table 6: Example of input data format for SD-Majority after transforming the behavioral
dataset given in Table 1.
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discovery of groups of individuals who express disagreement with the majority
vote. This enables to discover patterns (c, g1) where c is a context describ-
ing a set of entities and g1 is a description of a group of individuals. To this
end, we preprocess the behavioral data to obtain a Flat Behavioral Dataset
(FBD) with a single table and a singe target class SAME AS MAJORITY as follow-
ing: (1) we combine the entities and individuals tables using a join operation
with the outcomes collection. (2) We compute the majority vote by aggregat-
ing the votes expressed on each entity. (3) We use this information to extend
each record in the newly generated FBD with the attribute SAME AS MAJORITY

which is equal to +, indicating that the individual voted in agreement with
the majority in the considered entity. Otherwise SAME AS MAJORITY is equal
to −. Example of FBD after such preprocessing is given in Table 6. Hav-
ing this FBD augmented with the target class SAME AS MAJORITY offers the
possibility to run common SD techniques to identify subgroups with a high
prevalence of disagreement with the majority (Target label = ′−′). The most
adapted interestingness measure in this case is the precision gain [25], i.e.
Precision(subgroup)−α−, which is high when there is a high disagreement in
a subgroup compared to the disagreement observed in the full dataset. Note
that this model does not fit perfectly our problem setting. It enables only the
discovery of bi-set patterns (c, g1) rather than the desired three-set patterns
(c, g1, u2). Nevertheless, highlighting this type of pattern may help to partially
identify interesting (dis)agreement patterns in a behavioral dataset. Further-
more, this adaptation does not takes into account the usual behavior of the
group against the majority. This might clearly lead to the discovery of obvi-
ous patterns highlighting the individuals that are known to be a systematic
opposition.

SD-Cartesian: SD to discover contextual disagreement between two
groups. We propose a second modeling to enable the discovery of three-set
patterns (c, u1, u2) with SD techniques. To this end, the behavioral dataset is
transformed into a flat table equivalent to the Cartesian product GE×GI×GI .
This flat table is then augmented with a target class attribute SAME VOTE

which captures the (dis-)agreement between each couple of individuals on each
entity for which both expressed an outcome. SAME VOTE is thus equal to + if
both individuals expressed the same outcome for the entity, − otherwise. This
modeling – illustrated in Table 7 – makes it possible to discover patterns
(c, u1, u2) which identify two groups of individuals and a context regrouping a
set of entities over which the individuals in the first group disagrees with the

Entities Individuals Individuals Outcomes

ide theme idi 1 country 1 idi 2 country 2 outcome1 outcome2 SAME VOTE

e5 7.30 i1 France i2 France For For +
e5 7.30 i1 France i3 France For Against -
... ... ... ... ... ... ... ...

Table 7: Example of input data format for SD-Cartesian after transforming the behavioral
dataset given in Table 1 to a Cartesian product GE ×GI ×GI .
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ones composing the second group. This can be done using the precision gain
as the interestingness measure. Even if the syntax of the patterns is similar
to ours, the usual inter-agreement between the two selected groups is not take
into account. Hence, the semantics conveyed by these patterns is different from
ours. Another major drawback of such modeling is the size of the table resulting
from the Cartesian product. For instance, a small behavioral dataset with 200
entities and 100 individuals can contain up to 2 × 106 records which clearly
make this setting not adapted and not scalable for real-world behavioral data.

Exceptional Contextual Subgraph Mining to discover contextual dis-
agreement between two groups. Applying SD in the two aforementioned
modelings does not allow to take into account the usual inter-agreement in
the model. A way to overcome this issue is to model the behavioral dataset
as an attributed graph and looking for exceptional contextual subgraphs [41].
The so-called COSMIC algorithm is rooted in SD/EMM and aims at discov-
ering contextual subgraphs whose edges have weights larger than expected.
To this end, we transform the behavioral dataset to the Cartesian product
GE × GI × GI extended with SAME VOTE attribute like in SD-Cartesian for-
malization. This table is then used to build a bipartite graph where each side
represents the collection of individuals GI and an edge is instantiated be-
tween two vertices (individuals) for each entity on which the two individuals
expressed conflicting outcomes. The set of transactions from GE × GI × GI
where two individuals are disagree are associated to the edge between the
two corresponding vertices (see Fig. 5). Once this transactions set obtained,
COSMIC algorithm can be used to obtain exceptional contextual subgraphs.
Note that, in this problem setting, an exceptional contextual subgraph corre-
sponds to two groups of individuals which exhibit a higher disagreement rate
in the considered context compared to the disagreement expected in a similar
sized subgraph. Several interestingness measures have been proposed in the
COSMIC framework [9,41]. For the aim of this study, the lift measure is the

ide themes date

e1 1.20 20/04/16
e2 2.10 16/05/16
e3 1.20; 7.30 04/06/16
... ... ...

(a) Entities

idi country group age

i1 France S&D 26
i2 France PPE 30
... ... ...

(b) Individuals

id edge ide idi 1 idi 2

t1 e2 i1 i3
t2 e5 i1 i3
t3 e3 i2 i3
t4 e5 i2 i3

(c) Transactions set (edges)

i3i1

i2 i4

e2  , e5 

(d) Augmented Graph

Fig. 5: Example of input data format for Cosmic after transforming the behavioral dataset
given in Table 1 to an augmented graph and its corresponding transactions set according to
the observed discords.
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most adapted: ϕ(S) = P(S|C)
P(S) with S is the connected contextual subgraph

induced by the selection performed by the description C. Note that: P(S|C) is
the probability that a random drawn edge from all the edges in the full graph
supporting the selection C falls in the induced contextual subgraph, P(S) is
the relative weights in terms of the number of edges of the full subgraph S
(the subgraph with the most general context). Note that a post-processing is
necessary to transform exceptional contextual subgraphs into (dis)agreement
patterns (c, u1, u2). Applying contextual subgraph mining given this modeling
has some limitations: (1) the expected disagreement between two groups is
computed from all the individuals instead of the individuals of the two groups.
This can lead to the discovery of obvious patterns. (2) it considers as an input
a transaction dataset computed from the Cartesian product GE × GI × GI
which limits its usage, even for relatively small behavioral dataset.

We aim to compare how state-of-the-art methods perform in this three
modelings and compare them to DEBuNk and Quick-DEBuNk. To this end,
we generated 81 artificial dataset with 3 hidden patterns by varying several
parameters (see Fig. 6). Note that the behavioral datasets are relatively small
to be sure to obtain results for each modeling, especially ones that requires
to build a Cartesian product. For SD-Majority and SD-Cartesian modelings,
we used PySubgroup[50] to discover subgroups for the following reasons: the
implementation is available online15 as well as the easiness of its use. We ran
the exhaustive search algorithm BSD[51] which is tailored to find relevant sub-
groups [28], this choice is also motivated by the fact that the selected interest-
ingness measure is the Precision gain. For the attributed graph modeling, we
used an implementation of COSMIC algorithm provided by the authors [41].

To evaluate the ability of the different approaches of uncovering planted
patterns, we first define a similarity measure simP between two patterns p =
(c, u1, u2) and p′ = (c′, u′1, u

′
2) from P. It captures to what extent two patterns

provide similar insights about changes of inter-agreement.

simP(p, p′) =

√
J(GcE , G

c′
E)× 1

2
.
(
J(Gu1

I , G
u′1
I ) + J(Gu2

I , G
u′2
I )
)

With J the Jaccard index between two sets given by: J(G,G
′
) =

|G∩G
′
|

|G∪G′ |

If the quality measure ϕ is symmetric, the quantity (J(Gu1

I , G
u′1
I )+J(Gu2

I , G
u′2
I ))

is replaced by the following measure:

max(J(Gu1

I , G
u′1
I ) + J(Gu2

I , G
u′2
I ), J(Gu1

I , G
u′2
I ) + J(Gu2

I , G
u′1
I ))

For comparing two pattern sets P , P ′ returned by two different algorithms,
we use an F1 score defined as follows.

F1(P, P ′) = 2 · precision(P, P ′) · recall(P, P ′)
precision(P, P ′) + recall(P, P ′)

(9)

15https://bitbucket.org/florian_lemmerich/pysubgroup

https://bitbucket.org/florian_lemmerich/pysubgroup
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with


precision(P, P ′) =

∑
p∈P max({sim(p, p′) | p′ ∈ P ′})

|P |
recall(P, P ′) =

∑
p′∈P ′ max({sim(p′, p) | p ∈ P})

|P ′|

A similar measure to the recall has been proposed by the authors in [14] to
evaluate the ability of their algorithm to retrieve the ground-truth patterns.
We extend this measure with the precision to evaluate not only that all the
hidden patterns have been discovered by an algorithm (i.e. recall=1.) but also
the conciseness of the returned set (i.e. precision=1 if and only if all returned
patterns are actually present in the behavioral dataset).

We report in Figure 6a the comparative experiments between DEBuNk,
Quick-DEBuNk, SD-Cartesian, SD-Majority and COSMIC in terms of their
ability to retrieve each planted pattern in synthetic behavioral datasets. We
report for each method the average similarity (over the 81 artificial data) be-
tween one of the three hidden patterns and its nearest representative in the
result set. As expected, DEBuNk and Quick-DEBuNk outperforms other ap-
proaches. Moreover, the order between the approaches/modelings is sound.
Majority-SD has the worst results due to the fact that this method, in the
best case scenario, is only able to identify two of the three restrictions of a
(dis)agreement pattern which impact on its performance. COSMIC performs
slightly better than its alternative SD technique over the Cartesian product
GE ×GI ×GI thanks to a more sophisticated model to capture the usual be-
havior.
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(a) Average similarity between the
planted patterns and their representa-
tives returned by each method.
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(b) Boxplots of F-score comparing the top-10 discovered
patterns set by each method on each generated artificial
data and the corresponding ground truth.

Fig. 6: Comparative qualitative performance study between DEBuNk (σE = 3, σI = 3,
σϕ = 0.5 and the quality measure ϕdissent), Quick-DEBuNk (same parameters as DEBuNk
with timebudget = 5 seconds), SD-Majority (resultSetSize= 50, i.e. Top-50), SD-
Cartesian (resultSetSize= 25, i.e. Top-25) and Cosmic (Default parameters) performed
over 81 artificial behavioral data with 3 hidden patterns by varying the number of indi-
viduals in [100, 125, 150], the number of entities in [100, 150, 200], the sparsity factor in
[0., 0.25, 0.5] and the noise in [0., 0.2, 0.4].
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Figure 6b summarizes the results obtained after running the five approaches.
For a fair comparison (i.e., the problem of setting the good thresholds), we
report the average F-Score of the only top-10 results for each approach. We
observe that DEBuNk and Quick-DEBuNk achieves to return high-quality re-
sults compared to the other approaches. Interestingly, COSMIC adaptation
is of less quality than SD-Cartesian adaptation when analyzing both their
conciseness and exactitude in terms of hidden pattern identification. Finally
SD-Majority performs the worst due to its fundamental difference with the
other approaches when comparing the provided patterns format.

6.2.2 Comparison to DSC

In this subsection, we report the results of experiments conducted to compare
DEBuNk against first attempt [8] implemented by algorithm DSC.

We recall that DSC solves the problem of discovering top-k patterns that
elucidate exceptional (dis)agreement between groups of individuals. In addi-
tion, as aforementioned in Section 2, for a sufficiently large k, DSC solves
the core problem tackled in this paper limited to the two first conditions. To
compare between DEBuNk and DSC, we designed experiments to answer to
the two following questions. Note that, we disable the aggregation dimension
parameter for DSC to obtain comparable pattern sets.

Q1. How concise is the patterns set provided by DEBuNk compared to the
one provided by DSC?
Q2. How diversified is the patterns set, limited to k patterns, provided by
DEBuNk compared to the one provided by DSC?

In order to answer to (Q1), we evaluate the number of patterns returned by
DEBuNk and DSC when looking for the complete pattern set P (i.e. k suffi-
ciently large for DSC). For this, we run both methods on EPD8 with various16

quality thresholds σϕ and descriptive attributes AE , AI . Figure 7 reports the
results of these experiments. Results demonstrate that DEBuNk compresses
considerably the desired pattern set while ensuring that each pattern returned
by DSC is represented by a pattern returned by DEBuNk (according to the
problem definition). In average, DSC returns ×38 more patterns than DE-
BuNk. Moreover, DEBuNk achieves better performance than DSC in terms of
run time . Thanks to (i) the model simplification which reduces the complexity
of computing the interestingness measure and (ii) the pruning property imple-
mented by DEBuNk supported by condition (3) of the problem definition.

So far, we compared DEBuNk against DSC when looking for the complete
pattern set. Experiments discussed above clearly demonstrated the fact that
in such setting DSC returns an overwhelmingly large results set. To tackle
such problem, DSC implemented a top-k algorithm to control the size of the
provided pattern set. Of course, the main drawback of using a top-k algorithm
is the lack of diversity even when redundancy is avoided by closure operators.

1627 runs for each method by varying (|AE |, |AI |, σϕ) ∈ [[1, 2, 3] , [1, 2, 3] , [0.2, 0.4, 0.6]]
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This lack of diversity is induced by the fact that, most likely, the patterns
observing the highest qualities are condensed in small region of the dataset.
In order to fairly evaluate the diversity of patterns returned by both DSC and
DEBuNk (Q2). We run both algorithms for several parameters17 and compare
the size of the datasets regions covered by both returned patterns set. This
quantity can be captured by the number of outcomes covered by a results set,
that is |o[P k]| = |{(i, e) ∈ GI × GE s.t. o(i, e) is expressed}| with P k an ar-
bitrary pattern set containing k patterns. For a fair comparison, we compare
|o[P kDSC]| (top-k patterns) against |o[P kDEBuNk]|. To obtain the latter quantity,
we run DEBuNk so as to obtain the complete pattern set PDEBuNk. Next, we
draw 100 k-sized samples drawn uniformly from the obtained PDEBuNk and
then compute the average |o[P kDEBuNk]|. It is worth mentioning that compar-
ison can be made also by taking the top-k patterns PDEBuNk rather than an
arbitrary k-sized sample. We resolved to study the latter scenario, since the
philosophy of DEBuNk is to retrieve the complete patterns set summarizing
exceptional (dis)agreement in an underlying behavioral dataset.

Figure 8 sums up the results of the experiments. Clearly, DEBuNk’ k-sized
pattern set covers larger (and different) parts of the dataset compared to DSC’
top-k pattern set. We observe that DEBuNk surpasses DSC by one order of
magnitude (×12.5 in average) when comparing the portions of the dataset
covered by their respective k-sized pattern set. Simply put, when the pattern
set related to DEBuNk covers 10% of the dataset, DSC patterns cover less
than 1% of the underlying dataset records.

6.3 Robustness to noise and ability to discover hidden patterns

We now study the ability of DEBuNk and Quick-DEBuNk to discover hidden
patterns for larger behavioral datasets as well as their robustness to noise. To
this end, we carried out DEBuNk and Quick-DEBuNk over several artificial
datasets varying the noise rate from 0 to 0.8. The results illustrated in Figure 9
demonstrates that the exhaustive search approach DEBuNk is able to discover
almost exclusively all the hidden patterns (F1 Score > 0.8) even jf the noise

1 2 3
#attributes entities

103

104

105

#
P

at
te

rn
s

101

102

103

104

E
xe

cu
ti

on
ti

m
e

(s
) DEBuNk DSC

1 2 3
#attributes individuals

103

104

105

#
P

at
te

rn
s

102

103

104

E
xe

cu
ti

on
ti

m
e

(s
) DEBuNk DSC

0.2 0.4 0.6
σϕ

102

103

104

105

106

#
P

at
te

rn
s

102

103

104

E
xe

cu
ti

on
ti

m
e

(s
) DEBuNk DSC

Fig. 7: Comparison between DEBuNk and DSC for the task of discovering the complete
set of the desired patterns. Experiments consider the full EPD8 Dataset with the following
default parameters: |AE | = 2, |AI | = 2, σϕ = 0.4, σE = 40, σI = 10 and ϕdissent. Lines
correspond to the execution time and bars correspond to the number of returned patterns.

1781 runs by varying (k, |AE |, |AI |, σϕ) ∈ [[10, 50, 100] , [1, 2, 3] , [1, 2, 3] , [0.2, 0.4, 0.6]]
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Fig. 8: Comparison between DEBuNk and DSC (top-k) for the task of discovering k-
sized pattern set. Experiments consider the full EPD8 Dataset with the following default
parameters: |AE | = 2, |AI | = 2, σϕ = 0.4, σE = 40, σI = 10 and ϕdissent. Box plots
correspond to the size of O[Pk] when varying k in [10, 50, 100].

rate is rather high (≤ 0.6). Indeed when the noise rate is substantially high,
DEBuNk does not retrieve the noisy hidden patterns. This clearly results
from the evidence that several planted patterns disappear in the underlying
artificially generated data after adding too much noise. This is an advantage
for DEBuNk since the quality threshold is able to remove nonsensical pat-
terns from the final set. In contrast, from these experiments, we observe that
Quick-DEBuNk less robust to noise than DEBuNk. The performance of Quick-
DEBuNk in terms of finding hidden patterns decreases faster with regard to
the noise rate compared to DEBuNk. This is mainly due to the random walk
procedure (RWC) which considers other sub search space than the one actually
containing a hidden context as the noise reduces the quality of its subsuming
parents. Still, it is worth mentioning that Quick-DEBuNk is able to retrieve
partially planted patterns even when the noise is rather high. Interestingly,
the sampling approach achieves a comparable precision to the exhaustive ap-
proach, this demonstrates that most of returned patterns are valid.
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Fig. 9: Efficiency of DEBuNk (σE = 7, σI = 7, σϕ = 0.5 and ϕdissent) and Quick-DEBuNk
(σE = 7, σI = 7, σϕ = 0.5, timebudget = 3 mn and ϕdissent) performed over 21 behavioral
artificial data generated with the following default parameters (|GE | = 2000, |GI | = 500,
|AE | = |AI | =3, size dom entities attributes = size dom individuals attributes =4,
nb hidden patterns =5, context support size =10, group support size =10).
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6.4 Performance study

6.4.1 Efficiency of closure operators and optimistic estimates

To evaluate the efficiency of closure operators and optimistic estimates, we re-
solve to compare DEBuNk against two baseline algorithms. The first baseline,
named Baseline, is obtained by disabling both closure operators and the prun-
ing properties supported by the defined optimistic estimates. Thus, Basline
only pushes the anti-monotonic constraints. The second baseline, dubbed Base-
line+Closed, is proposed to study more precisely the efficiency of the optimistic
estimates. Thus, it is obtained by disabling the optimistic estimate based prun-
ing. In this experiments, we interrupt a method if its execution time exceeds
ten hours. Figures 10, 11 and 12 report the execution time and the num-
ber of evaluated patterns by each of the three methods (i.e. Baseline, Base-
line+Closed, DEBuNk) when carried out on respectively EPD8, Movielens and
Yelp datasets.

Experiments show evidence that the closure operator and the canonicity
tests performed by EnumCC are effective as they substantially reduce the
number of evaluated patterns. Additionally, DEBuNk is about one order of
magnitude faster than Baseline+Closed algorithm, thanks to the optimistic
estimate-based pruning. This especially happens when the IAS measure is a
simple average, which is the case of the IAS measure used for EPD8, Yelp and
Movielens. This is explained by the fact that the corresponding optimistic esti-
mate is tight. Additional performance experiments on Openmedic are reported
in Appendix B.
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Fig. 10: Effectiveness of DEBuNk considering EPD8 Dataset with |GE | = 2000, |GI | = 500,
|Outcomes| = 750k, |AE | = 3, |AI | = 4, σE = 40, σI = 10, σϕ = 0.5 and ϕdissent. Lines
correspond to the execution time and bars correspond to the number of evaluated patterns.
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Fig. 11: Effectiveness of DEBuNk considering Movielens Dataset with |GE | = 1681, |GI | =
943, |Outcomes| = 100k, |AE | = 2, |AI | = 3, σE = 8, σI = 50, σϕ = 0.2 and the quality
measure ϕdissent
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Fig. 12: Effectiveness of DEBuNk considering Yelp Dataset with |GE | = 25000, |GI | = 18,
|Outcomes| = 146k, |AE | = 2, |AI | = 3, σE = 5, σI = 1, σϕ = 0.5 and the quality measure
ϕdissent

6.4.2 Efficiency of HMT closed descriptions vs. closed itemsets enumeration

In order to evaluate the performance of the closed descriptions enumeration in
the presence of a taxonomy linking the tags (items), we study the behavior of
DEBuNk (i.e. execution time and the number of explored patterns) both with
and without leveraging the hierarchy between items. The latter can be done by
scaling the HMT values (as illustrated in Fig. 2) using a vector representation
for each tagged record. Experiments are carried out on EPD8 and Yelp datasets
which entities are characterized respectively by a hierarchy of 347 tags and
1175 tags. To vary the number of items/tags constituting the hierarchy, we
remove tags from the tree in a bottom-up fashion until the desired number of
tags/items is reached, followed by replacing the HMT values of each entity by
the set of ascendants tags remaining in the obtained tree.

Experiments reported in Figure 13 demonstrate that taking into account
the hierarchy of tags significantly improves the performance of DEBuNk (5×
faster). This results from the fact that, in contrast to itemsets enumeration,
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HMT descriptions enumeration exploits the structure of the hierarchy and
therefore avoids considering chain descriptions (e.g. {1, 1.10.40}). Note that
the bars depict the number of patterns that are visited by EnumCC used in
DEBuNk to generate the closed patterns. Obviously, the HMT and Itemset
closed description enumeration return the same number of closed patterns.
We choose to represent the number of visited patterns rather than the number
of closed patterns to explicit the differences between the HMT and Itemset
enumeration in terms of the size of the explored search space.
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Fig. 13: Efficiency of HMT against itemsets closed descriptions enumeration according to
the number of items/tags constituting the hierarchy for the two datasets EPD8 (left) and
Yelp (right). For both datasets we only consider the HMT attribute for entities |AE | = 1.
The used parameters for EPD8 are: |AI | = 6, σE = 1, σI = 10, σϕ = 0.5 and ϕdissent. The
used parameters for Yelp are: |AI | = 3, σE = 5, σI = 1, σϕ = 0.5 and ϕdissent.

6.4.3 Performance study of DEBuNk

We now focus on the study of DEBuNk according to the size of the descrip-
tion spaces (DE , DI), the support thresholds, the quality threshold and the
quality measures. To conduct the study of DEBuNk according to the size of
the description spaces, we choose to vary the number of items resulting from
projecting the attributes values of each record (entity/individual) to their
corresponding vector representation. To this end, we select values from each
attribute according to the size of its corresponding domain so as to obtain the
required number of items. We follow the same approach as in the experiments
reported in Figure 13 to select the required number of tags for an HMT at-
tribute. Numerical attributes domains are discretized according to the required
number of items. Subsets of values of categorical attributes are regrouped un-
der single categories in order to obtain the desired number of values.

Figures 14,15 and 16 report the behavior of DEBuNk when run on EPD8,
Movielens and Yelp. Clearly, the number of evaluated patterns and the execu-
tion time increase with regards to the size of description spaces DI and DE .
The reported experiments confirm that pushing monotonic constraints (i.e.
supports threshold σE , σI) improves drastically the efficiency of DEBuNk. Fi-
nally, a greater threshold on the quality σϕ leads to an important reduction of
the number of visited patterns and therefore to a better execution time. This
demonstrates the effectiveness of the pruning properties enabled by the use of
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Fig. 14: Effectiveness of DEBuNk over EPD8 according to the sizes of E, I, DE , DI , the
supports and quality measures thresholds. Considering by default |GE | = 4161, |GI | = 958,
|Outcomes| = 750k, |AE | = 3, |AI | = 6. σE = 40, σI = 10, σϕ = 0.5 and ϕdissent.
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Fig. 15: Effectiveness of DEBuNk over Movielens Dataset according to the sizes of E,
I, DE , DI , the supports and quality measures thresholds. Considering by default the full
dataset. σE = 8, σI = 50, σϕ = 0.2 and the quality ϕdissent
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Fig. 16: Effectiveness of DEBuNk over Yelp Dataset according to the size of E, I, DE , DI ,
the supports and the quality measures thresholds. Considering by default the full dataset.
σE = 50, σI = 1, σϕ = 0.5 and the quality ϕdissent

optimistic estimates. We also notice that ϕconsent performs slightly better than
ϕdissent. This effect arises mainly from the fact that in the parliament, Movie-
lens and Yelp datasets the overall observed inter-agreement between groups of
individuals is rather consensual. Similar results where observed when carrying
out the experiments on Openmedic dataset. For more details, see Appendix B.

6.4.4 Quick-DEBuNk vs. DEBuNk

Since it is impossible to provide a ground-truth over real-world behavioral
dataset, we evaluate the efficiency of Quick-DEBuNk over these type of datasets
by comparing its results set against the one returned by the exhaustive search
algorithm DEBuNk, this according to different time budgets. We use F-score
measure, presented earlier in Equation 9, to capture to what extent the two
patterns set returned by DEBuNk and Quick-DEBuNk provide similar insights
about the change of pairwise behavior.

Figures 17a, 18a and 19a report the comparative study between DEBuNk
and Quick-DEBuNk carried out on respectively EPD8, Movielens and Yelp. We
notice that in all situations, Quick-DEBuNk is able to promptly returning high
quality patterns. Interestingly, some differences can be observed from one to
another dataset. For instance, Quick-DEBuNk is less efficient on Yelp dataset.
We argue that this is due to the fact that the corresponding context search
space is much larger than the three other behavioral datasets (see Table 3)
which might impede random walk step RWC for finding high quality patterns.
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We investigate also the empirical distribution from which the patterns are
sampled from when using Quick-DEBuNk. This requires the true distribution
of the qualities of valid patterns in the corresponding datasets. In this respect,
we run DEBuNk by disabling the generality condition (see Problem definition).
This is done to make it possible to identify all interesting (dis)agreement pat-
terns in the dataset. In these experiments, we choose an arbitrary threshold
set to σϕ = 0.1. Similarly, we run Quick-DEBuNk so as to obtain a sufficiently
large pattern set, and calculate the sampling distribution from the retrieved
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Fig. 17: Efficiency of Quick-DEBuNk compared to DEBuNk over EPD8. Parameters used
are σE = 40, σI = 10, σϕ = 0.5 and ϕdissent. The red line in each figure correspond to the
required time by DEBuNk to perform an exhaustive search.
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Fig. 18: Efficiency of Quick-DEBuNk compared to DEBuNk over MOVIELENS. Parame-
ters used are σE = 5, σI = 10, σϕ = 0.25 and ϕdissent. The red line in each figure correspond
to the required time by DEBuNk to perform an exhaustive search.

200 400 600 800 1000 1200 1400 1600
timespent(s)

0.0

0.2

0.4

0.6

0.8

1.0

Precision Recall F1 Score

(a) F1(PQuick-DEBuNk, PDEBuNk)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
ϕ

0%

5%

10%

15%

20%

25%

30%

P
ro

b
.

DEBuNk

Quick-DEBuNk

(b) Empirical Distribution

Fig. 19: Efficiency of Quick-DEBuNk compared to DEBuNk over Yelp. Parameters used
are σE = 15, σI = 1, σϕ = 0.1 and ϕdissent. The red line in each figure correspond to the
required time by DEBuNk to perform an exhaustive search.
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patterns’ qualities. Clearly, we observe from the empirical distributions de-
picted in Figures 17b, 18b and 19b that Quick-DEBuNk rewards high quality
patterns by giving them more chance to be sampled.

Finally, to evaluate the importance of RWC (Random Walk on Contexts)
step in Quick-DEBuNk, we perform the same experiments with the same time
budgets with RWC step disabled. In such configuration, Quick-DEBuNk with-
out RWC returned only 3 472, 389 and 120 valid patterns compared to 408 610,
64 198 and 75 398 valid patterns when carried out on, respectively, EPD8,
Movielens and Yelp. In average, Quick-DEBuNk without RWC retrieved 20×
less valid patterns than the original Quick-DEBuNk. This clearly indicates that
RWC improves the performance of Quick-DEBuNk. This stems from the fact
that, when the first step (FBS step) generates a pattern, most of the time,
the pattern is not of a sufficient quality. RWC tackles this issue by locally
searching for interesting patterns, starting from the generated pattern.

6.5 Qualitative Results

We now focus on reporting example patterns discovered by the algorithm DE-
BuNk. We demonstrate the actionability of the provided patterns with three
real world case studies: (i) In collaborative rating platforms (Yelp, Movielens),
we study the affinities between groups of users with regard to their expressed
ratings. (ii) In the voting system (European Parliament Dataset), we show how
the voting behavior of parlementarians can provide interesting insights about
the cohesion and the polarization between groups of parliamentarians in dif-
ferent contexts. Such information can be valuable for journalists and political
analysts. (iii) Eventually, we give some example patterns reporting substantial
differences in medicine consumption behavior between groups of individuals.
Such results can be leveraged by epidemiologists to study comparative preva-
lence of sicknesses among different groups of individuals.

6.5.1 Study of Collaborative Rating Data

Table 8 describes some patterns returned by DEBuNk when applied over
Movielens Dataset when looking for contexts that lead to a disagreement be-
tween groups of individuals labeled by their professional occupations. The first
pattern describes that, while Student and Health professionals agree 74% of the
time, they tend to disagree for Horror and Comedy Movies released between
1986 and 1994 (e.g. Evil Dead II, Braindead). Figure 20 illustrates the usual
and the contextual ratings distribution of each of the two groups. We observe
from this rating distributions, that the students like the movies highlighted by
the pattern, whereas the healthcare professionals dislike them.

In Table 9, we present some results provided by DEBuNk over the Yelp
dataset. The groups of individuals are labeled by the size of their friend net-
work and their seniority in the Yelp platform. Notice that additional demo-
graphic data about users are missing. This prevents DEBuNk from obtaining



42 Adnene Belfodil et al.

concrete results similar to the ones obtained in Movielens. The resulting pat-
terns highlight the places for which groups of individuals have divergent opin-
ions. For example, the second pattern in Table 9 states that Senior Yelp users
(registered in Yelp before 2010) having a friend network of medium size (less
than 100 friends) disagree with users registered in Yelp before 2015 having a
large friend network (more than 100 friends) on Internal Medicines Clinics in
Nevada (e.g. University Urgent Care, Las Vegas Urgent Care), contrary to the
usual, where these two groups roughly share the same opinions about places
in general (81% of the time). Figure 21 gives the overall rating distribution
corresponding to the second pattern. Note that in Table 9, the values shown
in columns (|Gu1

I |, |Gu2

I |) designating respectively the size of the groups u1, u2

correspond to the number of their composing aggregated groups. For instance,
the (Senior, Medium) group is made up of two high granularity groups (elite
and non-elite) which in reality is comprised of 44927 registered users.

(c, u1, u2) |GcE | |Gu1
I | |Gu2

I | o(i, e) ϕdissent

1
Student vs. Healthcare in

6 196 16 106
0.42 =

[’11 Horror’, ’5 Comedy’] [1986, 1994] 0.74− 0.33

2 Student vs. Healthcare in
5 196 16 40

0.41 =
[’5 Comedy’] [1991, 1991] 0.74− 0.33

3 Healthcare vs. Artist in
5 16 28 28

0.42 =
[’5 Comedy’, ’8 Drama’] [1987, 1993] 0.73− 0.3

4 Lawyer vs. Executive in
5 12 32 27

0.42 =
[’4 Children’] [1997, 1997] 0.8− 0.38

5 Executive vs. Artist in
8 32 28 24

0.41 =
[’7 Documentary’] [1996, 1997] 0.77− 0.36

Table 8: Top-5 w.r.t. number of expressed outcomes (o(i, e) column) of Relevant
(dis)agreement patterns discovered over Movielens considering by default the full dataset,
|AE | = 2, |AI | = 1, σE = 5, σI = 10 and σϕ = 0.4.
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Fig. 20: Pattern 1 Illustration - distribution of ratings of individuals constituting the group
of students versus distribution of ratings of individuals constituting the group of health
professionals. Left figure corresponds to the usual distribution observed over all movies.
Right figure corresponds to the contextual distribution observed over the context highlighted
by pattern 1
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(c, u1, u2) |GcE | |Gu1I | |Gu2I | o(i, e) ϕdissent

1
(Newcomer,*) vs. (Middler,*) in

10 6 6 43
0.4 =

[’03 Automotive’, ’14.22 Electronics Repair’, 0.8− 0.4
’22.06 Battery Stores’, ’22.21 Electronics’] *

2
(Senior, Medium) vs. (Middler, Large) in

15 2 2 39
0.43 =

[’10.55.21 Internal Medicine’] NV 0.81− 0.38

3
(Newcomer, Medium) vs. (Middler, Large)

14 2 2 30
0.4 =

[’11.59.01 Apartments’, 0.78− 0.38
’11.59.18 University Housing’] AZ

4
(*, Small) vs. (Middler, Large),in

10 6 2 30
0.43 =

[’10.55.50 Urologists’] * 0.79− 0.36

5
(*, Large) vs. (Newcomer,*) in

12 6 6 30
0.4 =

[’08 Financial Services’, ’22 Shopping’] AZ 0.79− 0.39

Table 9: Top-5 w.r.t. number of expressed outcomes (o(i, e) column) of Relevant
(dis)agreement patterns discovered over Yelp considering by default the full dataset, |AE | =
2, |AI | = 2, σE = 10, σI = 1 and σϕ = 0.4.
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Fig. 21: Pattern 2 Illustration - distribution of ratings of individuals constituting the group
of Yelp user registered in between 2010-2015 having a large friend network versus distribution
of ratings of individuals constituting the group of Yelp users registered before 2010 having
a medium friend network. Left figure corresponds to the usual distribution observed over all
Yelp places. Right figure corresponds to the contextual distribution observed over Nevada’s
Internal Medicines Places.

6.5.2 Analysis of the Voting Behavior in the European Parliament Dataset

Table 10 exposes patterns obtained by DEBuNk where the aim is to find con-
texts (subsets of ballots) that lead groups of parlementarians (labeled by their
countries and their corresponding date of accession to the European Union)
to strong disagreement compared to the usual observed inter-agreement. Such
analysis can be valuable to political analysts and journalists as it enables to
uncover subjects/thematics of votes on which countries have divergent points
of view. For instance, the second pattern in Table 10 illustrated in Figure 22,
states that the ballots concerning theme 4.15.05 (Industrial Restructuring,
job losses, EGF, e.g. Mobilization of the European Globalization Adjustment
Fund: redundancies in aircraft repair and installation services in Ireland) lead
to strong disagreements of parlementarians from the United Kingdom with
their peers. In Figure 22, we choose to visualize the second pattern by a simi-
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larity matrix where each cell represents the similarity between two countries.
This can be seen as post-processing step where the end-user chooses to en-
rich the pattern with more related information (similarities between other
countries). Such augmented visualization brings more context to the pattern.
While the second pattern conveys that UK parlementarians are in strong dis-
agreement with their peers, the visualization goes beyond by reporting that

(c, u1, u2) |GcE | |Gu1I | |Gu2I | o(i, e) ϕdissent

1
([1973, 1973] United Kingdom) vs. (*,*)

47 88 958 30255
0.54 =

[’4 Economic, social & territorial 0.68− 0.14
cohesion’, ’8.70 Budget of the Union’]

2
([1973, 1973] United Kingdom) vs. (*,*)

47 88 958 30250
0.54 =

[’4.15.05 Industrial restructuring, job 0.68− 0.14
losses, Globalization Adjustment Fund’]

3
([1958, 1958] Italy) vs. ([1981, 2013] *)

79 99 433 29501
0.51 =

[’3.40 Industrial policy’, ’6.20.02 Export 0.87− 0.35
/import control, trade defence’]

4
([1958, 1995] *) vs. ([1973, 2013] *)

44 709 547 28989
0.55 =

[’3.40.16 Raw materials’] 0.91− 0.36

5
([1958, 1995] *) vs. ([1973, 2013] *)

38 709 547 25268
0.51 =

[’6.20 Common commercial policy’ 0.91− 0.39
, ’6.30 Development cooperation’]

Table 10: Top-5 w.r.t. number of expressed outcomes (o(i, e) column) of Relevant
(dis)agreement patterns discovered over EPD8 considering by default the full dataset,
|AE | = 1, |AI | = 2, σE = 25, σI = 1 and σϕ = 0.5 using ϕdissent. It is important to
note that we choose carefully σE ≥ 25 to reach subgroups of the third level of the themes
hierarchy which on average contain v 25 ballots.

Fig. 22: Illustration of Pattern 2 reported in Table 10. Left matrix depicts the inter-
agreement observed in general between countries when considering all ballots. The right
matrix correspond to the itner-agreement between countries for the context pointed out by
Pattern 1 = ([’4.15.05 Industrial restructuring, job losses and EGF’], UK, *)
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(c, u1, u2) |GcE | |Gu1I | |Gu2I | o(i, e) ϕconsent

1
S&D vs. ECR in

185 211 103 43162
0.41 =

[’6.20.03 Bilateral economic and 0.9− 0.49
trade agreements and relations’]

2
PPE vs. GUE/NGL 137 263 60 33664 0.41 =
[’8.70.03.03 2013 discharge’] 0.85− 0.43

3
ENF vs. *

42 48 958 27191
0.4 =

[’3’, ’8 State & evolution of the Union’] 0.69− 0.29

4
GUE/NGL vs. *

41 60 958 25553
0.41 =

[’4.10.04 Gender equality’, ’4.15.08 0.98− 0.57
Employment, wages and salaries’]

5
ECR vs. *

39 103 958 25189
0.4 =

[’1.20.09 Protection of privacy’, 0.97− 0.57
’7 Area of freedom, security & justice’]

Table 11: Top-5 w.r.t. number of expressed outcomes (o(i, e) column) of relevant
(dis)agreement patterns discovered over European Parliament Dataset considering by de-
fault the full dataset, |AE | = 1, |AI | = 1, σE = 15, σI = 1 and σϕ = 0.4 using ϕconsent.

Fig. 23: Illustration of pattern 3 reported in Table 11. The left matrix depicts the inter-
agreement observed in general between political groups when considering all ballots. The
right matrix corresponds to the inter-agreement between groups for the context pointed
out by pattern 3. We observe that group ENF is in disagreement with ALDE, PPE and
S&D who hold 63% of the seats in the 8th European Parliament. The context of Pattern 3,
which mainly covers EGF (European Globalisation Adjustment Fund) ballots, suggests an
agreement between group ENF and the majority.

all other countries formed a coalition against the voting decision of British
parlementarians.

Algorithms elaborated in this work also enable the discovery of consen-
sual subjects, thanks to the quality function ϕconsent. In Table 11 , we report
patterns where groups of parliamentarians agree more than what is observed
in general. For example, pattern 1 of Table 11 shows that while Socialists
and Democrats (S&D - left-wing) parlementarians are usually in disagree-
ment (IASvoting = 0.41) with European Conservatives and Reformists (ECR -
right-wing), they tend to have convergent opinions (IASvoting = 0.9) on ballots
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concerning theme 6.20.03 (bilateral agreement and relations with countries ex-
ternal to the union, e.g. Implementation of the Free Trade Agreement between
the European Union and the Republic of Korea). In Figure 23, we illustrate
the inter-agreement similarities between political groups for pattern 3 reported
in Table 11. It is worth to note that, as part of a collaboration with political
journalists, we provide an online tool18, dubbed ANCORE[45], which makes
it possible to analyze European parliament voting sessions.

6.5.3 Illnesses Prevalence on the Basis of Medicine Consumption

One interesting analysis task to be carried out on Openmedic Dataset is to look
for subgroups of drugs where the ratio of consumption between two groups of
individuals is substantially different than the one usually observed. For in-
stance, we found that while Females takes 1.32× more drugs than Males in
overall terms, this ratio icreases up to 5× when considering drugs prescribed
for Hyperthyroidism (see Pattern 3 in Table 12). These results are similar to
what reports an epidemiology study by Wang et Al. in [66]. Such task can pro-
vide insightful hypothesis regarding some sicknesses prevalence for particular
groups of individuals. In the behavioral dataset Openmedic, the outcomes of
individuals are depicted by numerical values reporting the count of drug boxes.
As we are interested in characterizing the inter-agreement by the consumption
ratio, we instantiate IAS as follows:

IASratio(c, u1, u2) =

∑
e∈GcE

θavg(G
u1

I , e)∑
e∈GcE

θavg(G
u2

I , e)

This ratio falls under the definition of IAS considered in Definition 5 as it
can be rewritten in the form of a weighted average.

IASratio(c, u1, u2) =

∑
e∈Gc

E
θavg(Gu2

I , e)× θavg(G
u1
I
,e)

θavg(G
u2
I
,e)∑

e∈Gc
E
θavg(Gu2

I , e)

=

∑
e∈Gc

E

w(e,Gu1
I , Gu2

I )× simratio(θavg(Gu1
I , e), θavg(Gu2

I , e))∑
e∈Gc

E
w(e,Gu1

I , Gu2
I )

with w(e,Gu1
I , Gu2

I ) = θavg(Gu2
I , e) and simratio(x, y) =

x

y

In order to provide interpretable patterns according to the aim of the study,
we define an adapted quality measure ϕratio as :

ϕratio(p) =
IASratio(p)

IASratio(p∗)
with p = (c, u1, u2) ∈ P and p∗ = (∗, u1, u2)

18http://contentcheck.liris.cnrs.fr

http://contentcheck.liris.cnrs.fr
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Drug boxes are labeled by tags in the ATC19 classification system. We aim
at leveraging the medical consumption differences between groups of individ-
uals to investigate the comparative prevalence20 of illnesses between gender
groups. Table 12 gives an example of patterns returned by DEBuNk when ap-
plied on Openmedic. For instance, Pattern 4 states that, for drugs prescribed
for Gout sickness21, Men consume 3× more drugs than Women, whereas in
overall terms, Men consume 0.76× less drugs than Women. Similar results
were reported by an epidemiology study of Gout in [60] giving an incidence of
gout per 1,000 person-years of 1.4 in women and 4.0 in men. Patterns 3 and 4,
depicted in Figure 24, report details on the differences between the two gender
groups in terms of population size and number of medicines consumed both
in overall and in the context highlighted by the pattern.

(c, u1, u2) |GcE | |Gu1I | |Gu2I | o(i, e) ϕratio

1
Men vs. Women in 138 39 39 4195 4.59 = 3.48

0.76
N07B - Drugs used in addictive disorders

2
Women vs. Men in 54 39 39 3174 3.96 = 5.21

1.32
A12A - Calcium

3
Women vs. Men in 31 39 39 1981 3.89 = 5.13

1.32
H03 - Thyroid Therapy

4
Men vs. Women in 42 39 39 1940 3.91 = 2.97

0.76
M04A - Antigout preparations

Table 12: Top-4 w.r.t. the number of expressed outcomes on Openmedic considering by
default the full dataset, |AE | = 1, |AI | = 1, σE = 10, σI = 1 and σϕ = 3.5 using ϕratio. It
is important to note that we choose carefully σE ≥ 10 to reach subgroups of medicines of
the fifth level of ATC tree which on average contain v 10 medicines.
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Fig. 24: Drugs consumption behavior of gender groups in Patterns 3 (left) and 4 (right).

19ATC: the Anatomical Therapeutic Chemical classification system classifies therapeutic
drugs according to the organ or system on which they act and their chemical, pharmaco-
logical and therapeutic properties - http://www.who.int/classifications/atcddd/en/

20 http://www.med.uottawa.ca/sim/data/epidemiology rates e.htm
21 https://www.medicinenet.com/gout gouty arthritis/article.htm
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6.6 Discussion

DEBuNk scales well w.r.t. the size of the search space corresponding to the
entities collection thanks to the defined optimistic estimates which enable to
prune unpromising parts of the search space. However, DEBuNk does not scale
according to the size of the description spaces related to the individuals. This
limits its application when behavioral datasets have a large number of indi-
viduals described with many attributes. This is due the need of taking into
account the usual inter-group agreement in the interestingness measures. As a
consequence, it is notoriously difficult to define an optimistic estimate which
not only works on the entities related search space, but also on the one cor-
responding to the confronted couples of groups of individuals. This should be
the scope of future research, starting with definition of bounds on the usual
agreement quantity. Algorithm Quick-DEBuNk partially addresses this scala-
bility issue by sampling the couples of groups directly from the patterns space
rather than starting from the search tree root. Interestingly, the experiments
demonstrated that Quick-DEBuNk makes it possible to retrieve most of the
interesting patterns in a relatively small amount of time (i.e. compared to
what returns the exhaustive search algorithm DEBuNk and the ground truth
in artificial data). This is particularly observed for EPD8 dataset involving
the largest descriptions space DI × DI , hence empirically demonstrating its
interest. Nevertheless, Quick-DEBuNk does not have theoretical guarantees
on the distribution of the sampled patterns (we only proved that all valid
patterns are reachable and are generated proportionally to their size). This
shortcoming is due to two reasons. On the one hand, the three-set format of
the patterns makes them challenging to be sampled proportionally to their
interestingness measure since the value is computed only when the context is
known (no information is available before the instantiation of the two groups).
On the other hand, quality measures that are expressed as average functions
are complex to apprehend under direct pattern sampling framework. Dealing
with this two issues is required to obtain theoretical guarantees.

To avoid misleading interpretations, it is important to be aware of the data
sparsity. Remind that the proposed approaches enable to discard some patterns
that involve too small subset of entities on which the two confronted groups
haven’t expressed enough outcomes. Moreover, the strength of the claim re-
lated to the pattern should be assessed according not only to the data sparsity
but also to the representativeness of the two subpopulation of interest (e.g.
the claims drawn from the EU parliament votes are usually consistent even
though the data are fairly sparse).

7 Related Work

Scientists have always seen Exploratory Data Analysis (EDA) as an important
research area since its introduction [65]. Among the various EDA techniques
that aim to maximize insight into datasets and uncover underlying structures,
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Subgroup Discovery (SD) [42,67,4,36] is a generic data mining task concerned
with finding regions in the data that stand out with respect to a given target.
Many other data mining tasks have similar goals as SD, e.g., emerging pat-
terns [19], significant rules [64], contrast sets [7] or classification association
rules [53]. However, among these different tasks, SD is known as the most
generic one, especially SD is agnostic of the data and the pattern domain.
For instance, subgroups can be defined with a conjunction of conditions on
symbolic [46] or numeric attributes [32,6] as well as sequences [31]. Further-
more, the single target can be discrete or numeric [49]. Exceptional Model
Mining (EMM) [48], while sharing exactly the same exploration space (i.e.,
the description space), extends SD by offering the possibility to handle com-
plex targets, e.g., several discrete attributes [47,22,21], graphs [41,10,9], two
numeric targets [20] and preferences [63,62]. Our method is rooted in the
SD/EMM framework. Nevertheless, the problem we tackle cannot be directly
addressed with an instance of SD/EMM because a target space is provided
instead of explicit targets. As a consequence, the discovery of (dis)agreement
patterns with a SD/EMM instance would consist in performing a SD discovery
algorithm per pair of confronted groups of individuals, which is not feasible
in practice due to the exponential number of possible pairs of groups. Dy-
namic EMM/SD (i.e., EMM/SD with a non-fixed model) has been recently
investigated for different aims. Bosc et al. [15] propose a method to handle
multi-label data where the number of labels per record is much lower than
the total number of labels which prevent the use of usual EMM model. Other
dynamic EMM approaches aim to discover exceptional attributed sub-graphs
[41,10,9]. This work, which is an extension of [8], is the first attempt to dis-
cover (dis)agreement patterns with a method rooted in dynamic SD/EMM.
[8] is extended on many levels: (1) we provide an easier to use framework to
discover exceptional (dis)agreement between groups which requires less pa-
rameter setting and interpretation efforts by the end-user. (2) Our proposal
enables to use a wider spectrum of interestingness measures that can be en-
riched by relying on the building blocks discussed in Section 3. (3) This work
provides a more elaborate exhaustive search algorithm compared to the former
algorithm as discussed in Section 4 and (4) An alternative sampling approach
Quick-DEBuNk is proposed. It enables instant mining of (dis)agreement pat-
terns, which sets the ground for interactive pattern mining tools.

Behavioral data analysis has received a wide interest in the last two decades
allowing the development of new services for consumers, citizens, companies
and organizations. In [18], the problem of discovering meaningful ratings inter-
pretation is introduced. It can be formalized as a SD problem, the authors’ aim
is to identify groups of users that substantially agree or disagree w.r.t. some
given subset of entities while using a mono-objective measure (ratings average).
Extensions have been proposed to enable multi-objective groups identification
thanks to more complex statistical measure (rating distribution) [3,57]. This
makes it possible the discovery of intra-group behavior patterns such as po-
larized and homogeneous opinions. The main differences with our work are:
(i) these methods consider intra-group agreement only (no inter-group agree-
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ment) without taking into account the usual agreement observed between the
individuals; (ii) the set of reviewees on which the study is performed is given
in prior, in contrast to our SD/EMM based approach, which discovers relevant
contexts by leveraging the reviewees dimension.

Similarly, the two past decades have witnessed an increasing emergence of
Open Government Data22 (OGD) promoting transparency and accountabil-
ity in public institutions. Consequently, many researchers from different fields
(e.g., information science, political and social sciences, data mining and ma-
chine learning) have studied such data [16]. For instance, [38] uses hierarchical
clustering and PCA to identify cohesion blocs and dissimilarity blocs of voters
within the US Senate. Similar work was done on the Finnish [59], the Italian [2]
and the Swiss [24] parliaments to study the polarization and cohesion between
parliamentarians. In the same spirit, [30] investigates the voting behavior of
citizens instead of politicians relying on subgroup discovery. Our work goes
further and supports the discovery of new insights in such data.

Monitoring the disease prevalence is an important task. Many researchers
dedicated their effort to analyze the prevalence of diseases considering different
sources of data. In [58], the authors highlight the importance of considering
outpatient data (e.g. medical prescriptions) in such epidemiology studies. This
motivates the analysis task proposed over Openmedic data. It provides an in-
teresting additional tool in epidemiology surveillance applications by revealing
substantial differences in medicine consumption between subpopulations.

The discovery of the complete set of interesting patterns (e.g., frequent,
discriminant) has two disadvantages that limit the use of such methods in
practice. It is time consuming to compute the complete set of solutions. Fur-
thermore, this set can be absolutely huge and non-manageable for a human
expert. To overcome this limitation, many approaches that can effectively sam-
ple the pattern space for interesting patterns have been proposed for a decade.
These methods address some frequent or discriminant itemset mining tasks
[12,29,52,56] offering some theoretical guarantees on the sampling quality or
more generic ones [23,11,1]. In [23], the authors define the problem of sampling
pattern sets and propose a method based on a SAT solver sampling solution.
However, this approach only supports pattern languages that can be compactly
represented by binary variables such as itemsets. It requires the discretization
of numerical attributes. Authors in [11,1] use a MCMC (Monte-Carlo Markov-
Chain) based algorithm to achieve sampling with guarantees according to a
desired probability distribution. Despite the generic nature and the interest-
ing guarantees that MCMC algorithms provide, it requires a number of steps
that grows exponentially in the input size to generate a single pattern [11].
This may prevent the user to obtain instant results. The problem we are in-
terested in has several specificities. First, the search space involves attributes
of different types (i.e., numerical, symbolical, HMT attributes) which prevents
us to use sampling techniques based on itemset language. Second, the quality
measure is not considered in the state-of-the-art methods that mainly support

22http://www.oecd.org/gov/digital-government/open-government-data.htm



Identifying exceptional (dis)agreement between groups 51

frequency and discriminative measures [12,13]. Finally, the method proposed
in [55] for EMM is not suited to our problem since we have to simultaneously
consider both description space and target space. Algorithm Quick-DEBuNk
handles the specificity of the problem by combining an exploration step (i.e.
direct sampling step from the pattern space) and an exploitation step while
taking profit of the quality measures properties (i.e. random walk step on con-
texts search space). However, we have no theoretical guarantee on the quality
of the sampled (dis)agreement patterns.

8 Conclusion

In this paper, we defined the problem of discovering exceptional (dis)agreement
in behavioral data. The generic definition of behavioral data enables to en-
compass datasets featuring individuals and their outcomes on some entities
whatever the application domain. The exceptional (dis)agreement patterns
discovery is rooted in SD/EMM with a novel pattern domain and associ-
ated quality measures. However, the targets are not specified and have to
be enumerated in our framework. We defined DEBuNk, a branch and bound
algorithm which takes benefit from closure operators, properties of some de-
scriptions space (as for HMT attributes) and (tight) optimistic estimates to
efficiently enumerate the patterns. Alternatively, we devised Quick-DEBuNk,
an algorithm that does not return the complete set of (dis)agreement patterns
anymore but rather samples the space of patterns. We investigated several
quality measures to assess inter-group agreement. The extensive experimental
study we reported demonstrates the efficiency of our algorithms as well as
their ability to provide new insights in three case-studies: (i) the investigation
of contexts that impact the inter-agreement between parliamentarians, (ii) the
characterization of affinities and contrasted opinions between reviewers in rat-
ing platforms and (iii) the study of prevalence of certain sicknesses that can
be pointed out by high discrepancies between the medicine consumption rates
of two subpopulations.

We believe that this work opens new directions for future research. This
generic framework can be extended by paying a particular attention to the
analysis of intra-group agreement within a group of individuals. It may sup-
port the discovery of contexts that divide a political group. This requires the
definition and the integration of adapted similarity measures into the IAS
(Inter-group Agreement Similarity) measure. For instance, the cohesion of
a political group can be assessed by the “agreement index” [37], which is
an application-specific measure to the study the European parliament. More
generic measures, such as Krippendorff’s alpha coefficient [35], could also be
investigated. While our method is able to analyse behavioral datasets with
large collections of entities (e.g., Yelp), tackling large collections of individ-
uals still remains challenging to assure the scalability of both DEBuNk and
Quick-DEBuNk. Indeed, the search space related to individuals does not have,
according to our problem definition, properties that can be leveraged to prune
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unpromising parts of this search space. Another interesting future direction
is to take into account the temporal dimension into the analysis of behav-
ioral data. This can offer the opportunity to investigate how the relationship
(e.g. inter-group agreement) between groups of individuals evolves through
time. The study of this dynamics makes it possible to discover new insights in
behavioral data.
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36. Herrera, F., Carmona, C.J., González, P., Del Jesus, M.J.: An overview on subgroup
discovery: foundations and applications. Knowledge and information systems 29(3),
495–525 (2011)

37. Hix, S., Noury, A., Roland, G.: Power to the parties: cohesion and competition in the
european parliament, 1979–2001. British Journal of Political Science 35(2), 209–234
(2005)

38. Jakulin, A., Buntine, W.: Analyzing the us senate in 2003: Similarities, networks, clus-
ters and blocs (2004)

https://doi.org/10.1007/s10115-016-0979-z
https://doi.org/10.1007/s10115-016-0979-z
https://doi.org/10.1007/978-3-642-40988-2_24
https://doi.org/10.1007/s10618-009-0136-3


54 Adnene Belfodil et al.

39. Johnson, D., Sinanovic, S.: Symmetrizing the kullback-leibler distance. IEEE Transac-
tions on Information Theory (2001)

40. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data
with pattern structures in formal concept analysis. Information Sciences 181(10), 1989–
2001 (2011)

41. Kaytoue, M., Plantevit, M., Zimmermann, A., Bendimerad, A., Robardet, C.: Excep-
tional contextual subgraph mining. Machine Learning pp. 1–41 (2017)

42. Klosgen, W.: Explora: A multipattern and multistrategy discovery assistant. Advances
in knowledge discovery and data mining (1996)
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Symbol Definition

GE A finite collection of records depicting entities

GI A finite collection of records depicting individuals

O the domain of possible outcomes

o function returning the outcome of an individual over an entity

(GI , GE , O, o) A behavioral dataset

AE Descriptive attributes of entities

AI Descriptive attributes of individuals

θ An outcome aggregation measure

sim a similarity function between two outcomes from O

PBS Pairwise Behavior Similarity measure

ϕ An interestingness measure (capturing the intensity of pairwise

behavior change)

DE The description domain of entities containing all possible contexts

DI The description domain of individuals

GdE A subgroup of entities supporting a description d ∈ DE
GuI A subgroup of individuals supporting a description u ∈ DI
δ A mapping function that binds an entity from G to a description in D
P = DE ×DI ×DI and denotes the pattern space

p = (c, u1, u2) ∈ P depicts a (dis)agreement pattern

p∗ = (∗, u1, u2) ∈ P depicts the referential (dis)agreement pattern

related to some pattern p = (c, u1, u2)

P ⊆ P denotes a pattern set

v read “less restrictive than” is a partial order between descriptions (resp.

patterns) in some descriptions space D (resp. patterns space P)

≺ d ≺ d′ ⇔ d @ d′ ∧ @e ∈ D : d @ e @ d′. d′ is said upper neighbor of d

u the infimum operator which computes the least common subsumer of

two descriptions in some description space D (being a complete lattice)

tu the infimum operator corresponding to the restriction space related to

an attribute having as type “t” (h: hierarchical, c: categorical and

n: numerical)

η the refinement operator which applies atomic refinements of a given

description d ∈ D, thereby yielding neighbor descriptions of d w.r.t. v

Table 13: Symbol table
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A Appendix: Proofs of Theorems and Propositions

Before giving the proof of the proposition 1 we present the following lemma.

Lemma 1 Let n ∈ N∗, A = {ai}1≤i≤n and B = {bi}1≤i≤n such that:

∀i ∈ 1..n− 1 : 0 ≤ ai ≤ ai+1

∀i ∈ 1..n− 1 : 0 < bi+1 ≤ bi

we have:

∀k ∈ 1..n :

∑k
i=1 ai∑k
i=1 bi

≤
∑n
i=1 ai∑n
i=1 bi

≤
∑n
i=n−k+1 ai∑n
i=n−k+1 bi

Proof (Lemma 1) Using the same notations of the lemma, we know that:∑n
i=1 ai∑n
i=1 bi

−
∑k
i=1 ai∑k
i=1 bi

is of the same sign of:(
n∑
i=1

ai

)
×
(

k∑
i=1

bi

)
−
(

k∑
i=1

ai

)
×
(

n∑
i=1

bi

)

This above quantity is equal to: k∑
i=1

ai +

n∑
i=k+1

ai

×( k∑
i=1

bi

)
−
(

k∑
i=1

ai

)
×

 k∑
i=1

bi +

n∑
i=k+1

bi


Which is equal to n∑

i=k+1

ai

×( k∑
i=1

bi

)
−
(

k∑
i=1

ai

)
×

 n∑
i=k+1

bi


Using the lemma hypotheses (orders between ai’s and bi’s), we have:

n∑
i=k+1

ai ≥ (n− k)× ak

k∑
i=1

bi ≥ k × bk

k∑
i=1

ai ≤ k × ak

n∑
i=k+1

bi ≤ (n− k)× bk

Thus:  n∑
i=k+1

ai

×( k∑
i=1

bi

)
≥ (n− k)× k × ak × bk

(
k∑
i=1

ai

)
×

 n∑
i=k+1

bi

 ≤ (n− k)× k × ak × bk
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We conclude that

 n∑
i=k+1

ai

×( k∑
i=1

bi

)
−
(

k∑
i=1

ai

)
×

 n∑
i=k+1

bi

 ≥ 0

Hence, we have:

∀k ∈ 1..n :

∑k
i=1 ai∑k
i=1 bi

≤
∑n
i=1 ai∑n
i=1 bi

Similarly the inequality
∑n
i=1 ai∑n
i=1 bi

≤
∑n
i=n−k+1 ai∑n
i=n−k+1

bi
can be easily proved following the same

line of reasoning of the proof of the first part of the inequality.

ut

Proof (Proposition 1) By a straightforward application of Lemma 1 we obtain for any d s.t.
|GdE | ≥ σE the following inequality.

LB(GdE , G
u1
I , Gu2

I ) ≤ IAS(GdE , G
u1
I , Gu2

I ) (10)

This stems from the fact that LB(GdE , G
u1
I , Gu2

I ) takes the sum of the lowest σE quan-

tities constituting the numerator of IAS(GdE , G
u1
I , Gu2

I ) and divides them by the sum of the

greatest σE quantities forming the denominator of IAS(GdE , G
u1
I , Gu2

I ).
Moreover, we have that LB is monotonic w.r.t. v of DE . i.e.

c v d⇒ LB(GcE , G
u1
I , Gu2

I ) ≤ LB(GdE , G
u1
I , Gu2

I ) (11)

This results from c v d ⇒ GdE ⊆ GcE . Hence, if we reorder values of GcE and GdE where

GcE = {ec1, ..., ec|Gc
E
|} and GdE = {ed1, ..., ed|Gd

E
|
} as such:

we
c
1
.α(ec1) ≤ wec2 .α(ec2) ≤ ... ≤ wecσE .α(ecσE ) ≤ ... ≤ wec|Ec| .α(ec|Gc

E
|)

wed1
.α(ed1) ≤ wed2 .α(ed2) ≤ ... ≤ wedσE

.α(edσE ) ≤ ... ≤ wed
|Gd
E
|
.α(ed

|Gd
E
|
)

Given that GdE ⊆ GcE , it is clear that: ∀i ≤ σE | weci .α(eci ) ≤ wedi
.α(edi ). Having that

m(GcE , σE) = {ec1, ..., ecσE} and m(GdE , σE) = {ed1, ..., edσE}, it follows that:∑
e∈m(Gc

E
,σE)

we × α(e) ≤
∑

e∈m(Gd
E
,σE)

we × α(e) (12)

Similarly, if we reorder entities e in descending order w.r.t the weights we we have
∀j ≤ σE | wedj ≤ we

c
j
. Resulting in:

∑
e∈Mw(Gc

E
,σE)

we ≥
∑

e∈Mw(Gd
E
,σE)

we (13)

Hence, from (12) and (13) we have LB(GcE , G
u1
I , Gu2

I ) ≤ LB(GdE , G
u1
I , Gu2

I ) and pro-

vided that LB(GdE , G
u1
I , Gu2

I ) ≤ IAS(GdE , G
u1
I , Gu2

I ) from (10), we have: ∀c, d ∈ DE . c v
d⇒ LB(GcE , G

u1
I , Gu2

I ) ≤ IAS(GdE , G
u1
I , Gu2

I )

ut
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Proof (Proposition 2) This proof is similar to the proof of Proposition 1. For the sake of
brevity, we give a proof sketch. By a direct application of Lemma 1, it is clear that for any
d s.t. |GdE | ≥ σE .

IAS(GdE , G
u1
I , Gu2

I ) ≤ UB(GdE , G
u1
I , Gu2

I ) (14)

We have that UB is anti-monotonic w.r.t. v of DE . i.e.

c v d⇒ UB(GcE , G
u1
I , Gu2

I ) ≥ UB(GdE , G
u1
I , Gu2

I ) (15)

This results from c v d⇒ GdE ⊆ G
c
E . Thus,∑

e∈M(Gc
E
,σE)

we × α(e) ≥
∑

e∈M(Gd
E
,σE)

we × α(e) and
∑

e∈mw(Gc
E
,σE)

we ≤
∑

e∈mw(Gd
E
,σE)

we

Hence, given (14) and (15) it follows that:

∀c, d ∈ DE . c v d⇒ IAS(GdE , G
u1
I , Gu2

I ) ≤ UB(GcE , G
u1
I , Gu2

I ) ut

Proof (Proposition 3) given c, d ∈ DE such that c v d, using proposition 1 we have:

IAS(GdE , G
u1
I , Gu2

I ) ≤ UB(GcE , G
u1
I , Gu2

I )

IAS(GdE , G
u1
I , Gu2

I )− IAS(GE , G
u1
I , Gu2

I ) ≤ UB(GcE , G
u1
I , Gu2

I )− IAS(GE , G
u1
I , Gu2

I )

Since ϕconsent(GdE , G
u1
I , Gu2

I ) = max(IAS(GdE , G
u1
I , Gu2

I ) − IAS(GE , G
u1
I , Gu2

I ), 0) thus

ϕconsent(GdE , G
u1
I , Gu2

I ) ≤ oeconsent(GcE , G
u1
I , Gu2

I )
Similarly we have:

IAS(GdE , G
u1
I , Gu2

I ) ≥ LB(GcE , G
u1
I , Gu2

I )

IAS(GE , G
u1
I , Gu2

I )− IAS(GdE , G
u1
I , Gu2

I ) ≤ IAS(GE , G
u1
I , Gu2

I )− LB(GcE , G
u1
I , Gu2

I )

Since ϕdissent(G
d
E , G

u1
I , Gu2

I ) = max(IAS(GE , G
u1
I , Gu2

I )− IAS(GdE , G
u1
I , Gu2

I ), 0) we get

ϕdissent(G
d
E , G

u1
I , Gu2

I ) ≤ oedissent(GcE , G
u1
I , Gu2

I ) ut

Proof (Proposition 4) Given that ∀(e,Gu1
I , Gu2

I ) ∈ E × 2I × 2I : w(e,Gu1
I , Gu2

I ) = 1, we
have for any c ∈ DE s.t. |GcE | ≥ σE .

IAS(GcE , G
u1
I , Gu2

I ) =

∑
e∈Gc

E

α(e)

|GcE |
and UB(GcE , G

u1
I , Gu2

I ) =

∑
e∈M(Gc

E
,σE)

α(e)

σE

It follows from the fact that M(GcE , σE) ⊆ GcE :

∃S ⊆ GcE : UB(GcE , G
u1
I , Gu2

I ) = IAS(S,Gu1
I , Gu2

I )

UB(GcE , G
u1
I , Gu2

I )− IAS(GE , G
u1
I , Gu2

I ) =

IAS(S,Gu1
I , Gu2

I )− IAS(GE , G
u1
I , Gu2

I )

oeconsent(G
c
E , G

u1
I , Gu2

I ) = ϕconsent(S,G
u1
I , Gu2

I )

The subset S being for example the set M(GcE , σE) itself. The same reasoning applies when
considering oedissent. In this case we consider the lower bound LB. We have:

LB(GcE , G
u1
I , Gu2

I ) =

∑
e∈m(Gc

E
,σE) α(e)

σE

Given that m(GcE , σE) ⊆ E, we have:
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∃S ⊆ GcE : LB(GcE , G
u1
I , Gu2

I ) = IAS(S,Gu1
I , Gu2

I )

IAS(GE , G
u1
I , Gu2

I )− LB(GcE , G
u1
I , Gu2

I ) =

IAS(GE , G
u1
I , Gu2

I )− IAS(S,Gu1
I , Gu2

I )

oedissent(G
c
E , G

u1
I , Gu2

I ) = ϕdissent(S,G
u1
I , Gu2

I )

This proves that, if IAS is a simple mean, for any c ∈ DE s.t. |GcE | ≥ σE :

∃S, S′ ⊆ GcE :

{
œconsent(GcE , G

u1
I , Gu2

I ) = ϕconsent(S,G
u1
I , Gu2

I )

œdissent(G
c
E , G

u1
I , Gu2

I ) = ϕdissent(S
′, Gu1

I , Gu2
I )

Hence oeconsent and oedissent are tight optimistic estimates for respectively ϕconsent and
ϕdissent if the underlying IAS is a simple average. �

Before giving the proof of the proposition 5 we present the following lemma.

Lemma 2 The sums of the number of all descriptions covering each record in G is equal
to the sum of the supports of all descriptions in D. That is:∑

g∈G
|↓δ(g)| =

∑
d∈D
|Gd|

Proof (Lemma 2) For g ∈ G, we have ↓δ(g) = {d ∈ D : d v δ(g)} and for d ∈ D, we have
Gd = {g ∈ G | d v δ(g)}. Let us define the indicator function on D ×G:

1v(d, g) =

{
1 if d v δ(g)
0 else

Hence, we have | ↓δ(g)| =
∑
d∈D 1v(d, g) and |Gd| =

∑
g∈G 1v(d, g) thus:∑

g∈G
| ↓δ(g)| =

∑
g∈G

∑
d∈D

1v(d, g) =
∑
d∈D

∑
g∈G

1v(d, g) =
∑
d∈D
|Gd| ut

Proof (Proposition 5) We denote by gs the random record drawn in line 1 and by ds the
random description drawn in line 2 of FBS.

P(ds = d) =
∑
g∈G

P(gs = g)(ds = d|g)

=
∑
g∈Gd

1

|↓δ(g)|
×

|↓δ(g)|∑
i∈G |↓δ(i)|︸ ︷︷ ︸

weight wg normalized

=
|Gd|∑

g∈G |↓δ(g)|

It follows that from Lemma 2 that P(ds = d) =
|Gd|∑

d′∈D |Gd
′ |

ut

Proof (Proposition 6) Given Proposition 5, it is clear that ∀p ∈ P : p = (c, u1, u2) satisfies

C ⇒ P(p) =
|ext(p)|
Z

> 0. with |ext(p)| = |GcE | × |G
u1
I | × |G

u2
I | and Z =

∑
p′∈P |ext(p′)| a

normalizing factor. ut
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B Appendix: Additional Performance Experiments for Openmedic

In this appendix we report additional performance experiments over OpenMedic. Figure 25
depicts a comparative performance study between the baseline approach performing an ex-
haustive search without using closure operators, a Baseline+Closed approach and DEBuNk.
In contrast with what we observed with the comparative performance experiments over
EPD8, Yelp and Movielens, the performance gain for Openmedic between the three method
is negligible. This is mainly due to the structure of OpenMedic Data and the type of study
we conduct on, more precisely: (1) the ratio between closed description/all description is
rather small, (2) the used IAS is a weighted average with a very scattered distribution of
weights, (3) the optimistic estimate proposed for weighted averages IAS measures is not
tight.
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Fig. 25: Effectiveness of DEBuNk over Openmedic Dataset considering |GE | = 12219,
|GI | = 78, |Outcomes| = 500k, |AE | = 1, |AI | = 3, σE = 5, σI = 1, σϕ = 5 and the quality
measure ϕratio

Figure 26 illustrates the behavior of DEBuNk when conducted on OpenMedic according
to different parameters. Bottom line, the experiments shows evidence that the number of
descriptive attributes (complexity of descriptions space) are the ones which impact the most
the efficiency of the algorithm. Moreover, the same conclusion on the experiments on EPD8,
Movielens and Yelp can be drawn regarding the behavior of the algorithm according to the
cardinality and quality thresholds.

Finally, we report in figure 27 a comparative performance between DEBuNk and Quick-
DEBuNk over Openmedic dataset. In the first stages, the sampling algorithm achieves to
find a good portion of the patterns which are returned by the exhaustive search algorithm
DEBuNk. However, the method seems to converges less slowly, compared to the its perfor-
mance in the other datasets, to the full results set. This results from the fact that the quality
measure ϕratio applied over openmedic is not symmetric, which requires to the algorithm
to look twice for each couple of confronted groups of individuals, since the order matter
between the two groups for the used interestingness measure.
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Fig. 26: Effectiveness of DEBuNk over Openmedic Dataset according to the sizes of E,
I, DE , DI , the supports and quality measures thresholds. Considering by default the full
dataset. σE = 5, σI = 1, σϕ = 5 and the quality ϕratio
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Fig. 27: Efficiency of Quick-DEBuNk compared to DEBuNk over Openmedic. We consider
the full dataset (i.e. all attributes and all records), the parameters used for Openmedic are
σE = 5, σI = 1, σϕ = 5 and ϕratio.
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