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ABSTRACT

Automatic drum transcription (ADT) aims to detect drum events in
polyphonic music. This task is part of the more general problem of
transcribing a music signal in terms of its musical score and addi-
tionally can be very interesting for extracting high level informa-
tion e.g. tempo, downbeat, measure. This article has the objective
to investigate the use of Convolutional Neural Networks (CNN) in
the context of ADT. Two different strategies are compared. First
an approach based on a CNN based detection of drum only onsets
is combined with an algorithm using Non-negative Matrix Decon-
volution (NMD) for drum onset transcription. Then an approach
relying entirely on CNN for the detection of individual drum in-
struments is described. The question of which loss function is the
most adapted for this task is investigated together with the question
of the optimal input structure. All algorithms are evaluated using
the publicly available ENST Drum database, a widely used estab-
lished reference dataset, allowing easy comparison with other al-
gorithms. The comparison shows that the purely CNN based algo-
rithm significantly outperforms the NMD based approach, and that
the results are significantly better for the snare drum, but slightly
worse for both the bass drum and the hi-hat when compared to the
best results published so far and ones using also a neural network
model.

1. INTRODUCTION

Automatic music transcription is the task of describing a music
signal in a symbolic form - a score - that contains all of the neces-
sary information to replay the same music. Every event in a piece
of music has to be characterized by musically relevant parameters
like the pitch, time position, duration, and the instrument. Ac-
cordingly, the problem of music transcription can be divided into
different challenges: onset detection, fO-estimation and instrument
recognition. While the problem is considered as solved for mono-
phonic signals, it is more challenging for polyphonic ones. The ad-
ditivity of signals and the overlapping of partials of different notes
make the task more and more complex as the number of sources
increases.

A piece of music is generally performed by harmonic and per-
cussive instruments. These instruments have different features.
The spectrogram of a note is sparse in frequency, and a harmonic
note has relatively few constraints with respect to its duration. On
the contrary, a drum event covers a continuous part of the spec-
trum, but has a specific temporal response. Accordingly, different
features are used to transcribe the different events. In this article
we will focus on the automatic transcription of parts of the drum
kit.

Automatic drum transcription is still a challenge today. Sev-
eral methods have been proposed in literature and most of them
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can be categorised into two families: segment and classify or sep-
arate and detect. The first category segments the audio and then
tries to describe what the audio segment contains. The second one
separates different instruments and tries to detect onsets in the dif-
ferent channels.

In 2009, Paulus et al. proposed a method based on Hidden
Markov Model (HMM) network in [1]. Recently, different deep
learning methods have been proposed. Vogl et al. use a Recurrent
Neural Network (RNN) which provides an activation function for
the drum instrument (bass drum, snare drum and hi-hat) in [2]. The
first study to use CNN for drum transcription has been performed
in [3].

These different methods can be compared easily as most of
them have been evaluated on the same database, the ENST drum
database [4]. In light of the results, most DNN approaches seem
to lag behind those using Hidden Markov Models (HMM) such as
proposed in [1].

Automatic onset detection, which consists in locating the on-
sets of musical events in a piece of music, is an important initial
step for efficient transcription. Onset detection is frequently used
as a preprocessing step for more refined transcription, as used re-
cently in [5] for piano transcription, and in [6] for drum transcrip-
tion. A successful detection of all onsets significantly reduces the
processing time of the subsequent transcription algorithm which
does not need to be run over the complete signal.

There exists a large multitude of approaches that have been
developed for the onset detection problem. Bello et al. provide
a rather extensive overview of the various methods in [7]. The
methods generally are variations of the following approach: after
a pre-processing step, which highlights some properties of the sig-
nal facilitating the subsequent detection stage, the so called Onset
Detection Function (ODF) is calculated. The local maxima of the
ODF with a value above a threshold (which is a parameter of the
algorithm) are then retained as onsets. Elowsson in [8] for example
used the spectral flux, which is the difference of energy between
the actual temporal frame and the previous one, to calculate the
ODF. Many other approaches to calculate the ODF have been dis-
cussed in the literature.

Recently, onset detection methods based on deep learning have
shown very good results. While some works aim to improve peak
picking from an onset detection function as in [9], others use RNN
(Recursive Neural Network) as in [10] to create the ODF. In 2014,
Schliiter et al. investigated using CNN (Convolutional Neural Net-
work) [11] for the onset detection task, and according to MIREX
2017' the CNN based onset detection can now be considered as
state of the art. In [11] it is shown that the weights of the kernels
of the convolutive layers that are used to detect percussive and

'http://nema.lis.illinois.edu/nema_out/
mirex2017/results/aod/summary.html
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harmonic onsets are rather different. This observation seems to
suggest that these networks may not only be able to detect onsets,
but to detect onsets for specific classes of instruments.

If we compare the CNN architecture used by Schliiter in [11]
for general purpose onset detection and by Wang in [5] for piano
onset detection, we find that the overall structure is very similar.
However, they do not use the same data structure. Similarly how
the RGB channels are accounted for in image processing, Schliiter
uses as input three mel band spectrograms with the same number
of bands but calculated from different STFT representations. On
the contrary Wang uses just one constant Q spectrogram with a
much larger number of bands.

The following paper aims to investigate the use of CNN for
drum transcription. Two different approaches will be considered.
First, we will use a CNN based onset detection as an initial step
for subsequent drum transcription based on a recent method using
non-negative matrix deconvolution [6]. Here we will introduce the
new idea of a detection of qualified onsets meaning onsets fulfill-
ing additional criteria - for example onsets belonging to percus-
sive events or drum instruments. In developing the qualification
of onsets further we will investigate a CNN based drum transcrip-
tion where the CNN are trained to detect individual drum instru-
ments. The later system has strong resemblance to the approach
proposed in [3]. However, instead of training a multi label system
that detects multiple instruments at the same time, we will sepa-
rate the systems into individual drum instrument detectors. That
allows us to investigate the optimal input representation for the
different instruments. Instead of using the magnitude spectrogram
data directly [3], we will use single and multi channel* mel band
spectrogram data that has been introduced successfully for onset
detection in [11]. We will compare two different cost functions.
We will evaluate the final system using the ENST-Drums drum-
mer that was left aside during training. That allows to compare
our results with the various evaluations performed so far on the
ENST-Drums database. We notably compare with results in [1]
that to our knowledge are the best results reported so far. We also
evaluate the available model of Southall * on the three drummers
from ENST-Drums.

The article is organised as follows: Section 2 introduces the
neural network and the different parameters to be compared, Sec-
tion 3 shortly summarizes the NMD algorithm, Section 4 describes
the experimental results, and finally Section 5 summarizes the con-
clusions and describes future work.

2. ONSET DETECTION AND COMPARISON OF
CONFIGURATIONS

2.1. The CNN network

The model we use to compare different configurations is very sim-
ilar to the one in [11, 5] and is represented in Figure 1. We sum-
marize here the architecture of the network.

The input data contains mel frequency spectrogram data. The
subsequent layers are alternating stacks of convolutional layers
with ReLU activations and max-pooling layers. It finally ends with
a fully connected layer of ReLU units and an output layer contain-
ing either a sigmoid unit or a linear unit. The output layer provides

2the term channel will be used for the feature channels of a deep net-
work in the following and has nothing to do with the channels of stereo
audio signal

3https://github.com/CarlSouthall/ADTLib

the ODF. The method then follows the standard approach to detect
local maxima and uses a fixed threshold of 0.5 for the detection of
onset in a given frame, which significantly simplifies the algorith-
mic design.

The feature maps at the output of these layers can be seen as
a convolution between the input and a filter kernel. Usually in
computer vision, the convolution is achieved with square filter. In
time-frequency representation, the two dimensions represent two
different quantities. As the aim of the network is to find changes
over time dimension, it can be more interesting to use narrow rect-
angular filters frequency-wise and the max-pooling operations per-
formed only on the frequency axis.

Following [11] we apply dropout with 50% drop out probabil-
ity at the output of the first fully connected layer, to reduce over-
fitting during the training.

2.2. Parameter comparison
2.2.1. Loss function

The loss function used to direct the optimization of the neural net-
work measures the divergence between the predicted value - the
output of the network - and the target label. For onset detection,
cross-entropy is commonly used because the task of detecting an
onset in a frame has some relations to a binary classification task:
frames containing an onset are marked as 1 and frames without
onsets are marked as 0.

We note however, that the resemblance of the target ODF with
a probability is only partially followed. As the CNN model is
smooth in all parameters, the ODF function produced is smooth
as well. Accordingly, a Dirac-impulse is difficult to produce, and
therefore, similarly to [11], we will construct the target function
by means of placing a sequence of three ones centered at the anno-
tated onset. Broadening the target labels has the beneficial effect
of increasing the pressure on the network to correctly represent
the target labels, and at the same time reduces the problems of
incoherent label positions. In our experiments we have seen that
broadening the labels leads to reduced training times and slightly
improved results. The use of a CNN as onset detector does not
require the ODF to be confined to [0, 1]. This fact motivates us
to compare two different cost functions combined with two cor-
responding output activation functions. On the one hand there is
the binary cross entropy together with sigmoid activation function,
and on the other hand the linear (ReLU) output unit with MSE loss
function. We will discuss the results of the use of these two loss
functions in the experimental section.

2.2.2. Input data structure

Kelz et al. in [12] compare the importance of hyper-parameters
for piano transcription and they rank some hyper-parameters in re-
spect to relative importance. The data representation is the second
most important hyper-parameter. As a matter of fact, several dif-
ferent data representations are used as input data throughout the
literature.

Schliiter et al. in [11] use three log-magnitude mel band spec-
trograms obtained with different time-frequency resolutions. They
process the short time Fourier transform (STFT) with a hop size
of 10 ms and window sizes of 23 ms, 46 ms and 93 ms. As the
spectrograms must have the same size, they filter the spectrogram
with an 80-band mel filter bank covering the band from 27.5 Hz to
16 kHz. We will subsequently denote this representation as multi
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Figure 1: Convolutional neural network used for this work.

channel mel spectrogram (MCMS) where the term channel refers
to the feature channel of a DNN.

On the contrary, Wang in [5] uses a single constant Q trans-
form spectrogram. In this paper, we compare different data rep-
resentations. We feed the eight networks with spectrograms with
different resolution. Two STFT are processed with two different
window sizes, 0.064 ms and 0.125 ms. Then for each spectro-
gram four mel spectrograms are calculated with triangular filters
to compare four numbers of mel-bands: 116, 174, 231 and 289.
We compare these mel spectrograms calculated from an individual
STFT with the input representation proposed by Schliiter.

3. APPLICATION TO DRUM TRANSCRIPTION

We will use the CNN presented in this article in two ways to per-
form automatic drum transcription: combined with an ADT algo-
rithm or alone.

As mentioned in the introduction we will investigate qualified
onset detection with CNN with the objective to use these qualified
onsets in the context of drum transcription. By "qualified onsets",
we mean onsets that are created by one of the three targeted parts of
a drum kits (hi-hat, bass drum and snare drum), either in collection
(onset of any of these instruments) or individually.

In the first case, to achieve drum transcription, we combine
the onset detection with a second stage to determine which of the
three instruments have generated the onset. In the second case
CNNs will perform the complete transcription task.

3.1. Combination of onsets detector with a drum transcription
algorithm

The NMD algorithm for drum transcription we will use in the fol-
lowing is detailed in [6]. It decomposes the time-frequency rep-
resentation of the audio signal into a convolution of a dictionary
containing patterns of instruments and a matrix of activations.

For percussive instruments, the temporal response is a signifi-
cant characteristic. This is the reason for using a dictionary of two-
dimensional time-frequency patterns. These are previously learned
from isolated events of each instrument.

The dictionary contains only patterns from drum instruments
(hi-hat, snare drum and bass drum). But the drum transcription

is processed on polyphonic music with harmonic instruments. To
avoid the activation of drum patterns by other events, the decom-
position includes some patterns in the dictionary dedicated to rep-
resenting the non percussive part of the signal, which we call the
background.

To reduce the computational costs, a prior knowledge of the
onset position is given to the algorithm. An external algorithm,
e.g. [8], feeds the transcription algorithm with the onsets that it
detected. The transcription algorithm focuses on the parts of the
signal that are around these positions. At these positions several
instruments are likely to play. In that case, the segment study en-
ables to separate them.

For each segment, the NMD algorithm aims to approach the
studied spectrogram by activating some patterns from the dictio-
nary. In order to, the dictionary of patterns, called W, and acti-
vations H are usually updated iteratively. For our algorithm, only
background patterns in W are updated but all activations are con-
cerned by the updating step. The update rules are calculated by
minimizing a cost function, here the Itakura-Saito divergence. As
the background patterns are very flexible, they could in principle
represent all parts of the signal under study. Therefore, it is impor-
tant to penalize the algorithm for the use of background patterns.
To this end the objective function

C=Drs(V|Y W'H'™) + Xseg P(H), (1)
t

used for the decomposition contains a regularization term P(H)
that penalizes the use of background patterns. Asc4 is a weight to
give more or less importance to the penalization.

To keep the non-negativity property, we use multiplicative up-
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with p the number of patterns, [ the frequency bin and n the time
frame and with bg designating the background.

Once all segments are analyzed, we follow the procedure de-
scribed in [6] to adapt the detection thresholds that are applied to
the activation to retain onsets of the targeted instruments.

3.2. Using CNN to transcribe drum parts

We also can use CNN described in section 2.1 to transcribe one of
the targeted instrument. Instead of training the network to detect
qualified onsets, we train three individual networks so that each of
them detects only one instrument.

4. RESULTS

4.1. Datasets
4.1.1. RWC dataset

The training database used to adapt the CNN is extracted from
the Real World Computing (RWC) music database [13]. This
database contains annotated polyphonic music of different styles
in MIDI format. We choose two genres, Pop and Jazz and pick
only pieces where drums are present. For Jazz, there are 34 pieces
of music and 100 for the Pop database. Each piece was gen-
erated with three different publicly available MIDI sound fonts:
FluidR3_GM, GuGS_1.47 and HQOrchestralSFCollv2.1.2. The
training database finally contains 102 jazz pieces and 300 pop
pieces. In addition, we add recordings of a the single targeted
instrument. These recordings are given in SMT-Drums.

For some of the experiments, evaluation is performed using a
small hold out test set containing four pieces from the synthetic
RWC database described above.

4.1.2. ENST-Drums dataset

The ENST-Drums database [4] is composed of different multi-
channel recordings from three drummers on three different drum
kits. For each drummer, the data set provides individual hits and
phrases, individual soli which are more complex than the phrases
and longer tracks played without scores but with an accompani-
ment. For these longer tracks, called *minus-one’, the accompa-
niment is provided with two mixes: "dry" where minimal effects
are added and "wet" with effects and compression. The "wet" mix
sounds closer to commercial recordings than "dry" mix does and
we use the "wet" mix for the following evaluation.

We use the "minus-one’ tracks mixed with the synchronized
accompaniment. As in [1], scaling factors are applied to the differ-
ent parts: 2/3 for the drums and 1/3 for the accompaniment. The
data set also provides the ground truth annotations for each percus-
sive instrument. The test database contains 64 tracks (21 for two
drummers and 22 for the last one) which last between 30 s and 75
S.

The evaluation is performed by using the drummer cross vali-
dation procedure on the ENST-Drums database [4].

4.2. Evaluation criteria

To evaluate the algorithms, the detected onsets are compared to
the ground truth onsets. A detected onset is considered correct if
the absolute time difference with the associated ground truth on-
set does not exceed 30 ms. We denote by I'p the true positives,

correctly detected onsets, by F'p false positives, detected onsets
which are not in ground truth annotations and by F'n false nega-
tives, onsets present in ground truth annotation but not detected by
the algorithm.

Several measures are calculated from these values. The preci-
sion P gives the part of detected onsets which is relevant and the
recall R gives the part of relevant onsets which is selected. They
are defined as:

Tp Tp
P= R= 5
Tp+ Fp Tp+ Fn ©)
The F-measure is a compromise between recall and precision:
2PR
F = 6
PR (6)

4.3. Evaluation of onset detection for drum instruments

In the first part of the evaluation we will study the performance of
the CNN onset detection algorithm for detecting specific onsets.
In our case, this means the onsets of any of the targeted percussive
instruments. The goal of this first step is to prepare the subsequent
integration of the CNN onset detection algorithm as preprocessing
step into the NMD drum transcription algorithm.

Following a general practice, we will evaluate the detection of
the three main instruments of the percussive part: bass drum (BD),
snare drum (SD) and the hi-hat (HH). These three instruments are
predominant in popular music and are representative of the rhyth-
mic feel in music.

4.3.1. Loss function

As discussed before we compare two loss functions along with ad-
equate changes in the output activation function: binary cross en-
tropy with sigmoid output units and mean square error with ReLU
output units. Several networks are trained with different configu-
rations. We study four numbers of mel-bands (116, 174, 231 and
289) and two sizes of STFT window (0.064 s and 0.125 s). We also
give the results for the MCMS input data configuration detailed in
2.2.2. The networks are trained and evaluated to detect the onsets
of any of the three targeted percussive onsets (hi-hat, bass drum
and snare drum) in the RWC database detailed in section 4.1.1.

In Figures 2 and 3, the results obtained with binary cross en-
tropy are consistently outperforming those that are obtained with
mean square error. For the following comparison, we will there-
fore focus on the binary cross entropy. We note that the onset pre-
diction performance of only the three target percussive instruments
is encouraging with F-measure above 90% for all configurations.
There is no apparent and significant difference between any of the
input data structures.

4.3.2. Evaluation the influence of data structure on the ENST-
Drums database

To improve the relevance of the evaluation for real world sounds
we will now evaluate CNN drum detection approach on the record-
ings of the ENST-Drums database [4]. The evaluation follows the
common three-fold cross-validation scheme with the three config-
urations of the 3 drummers of the ENST-Drums database 4.1.2.
The networks are trained on two drummers of the dataset and
tested on the remaining one. We use all pieces available in the
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Figure 2: Comparison of loss functions on RWC database: binary
cross entropy and mean square error, for STFT window 0.064 s.

data set for the learning phase, during which the evaluation is per-
formed over the minus-one of the same drummers to determine
the optimal result for drum detection (according to the F-measure).
Then we test the generalization on the third drummer who was not
used during training.

We compare the different data input configurations: two STFT
window sizes 64 ms and 125 ms and four numbers of mel-bands
116, 174, 231 and 289 and the MCMS input representation. The
Figure 4 averages the results over the three experiments for the
detection of all percussive onset.

We notice that contrary to the evaluation with the RWC database,

for the ENST-Drums database the use of the MCMS format (three
spectrograms) seems to provide a significantly better results, im-
proving the performance from 91.5% F-measure for the best sin-
gle channel mel-band spectrogram to nearly 93.5% for the MCMS.
While the MCMS representation was equivalent with the individ-
ual spectrogram formats on the RWC database, it is significantly
better for the ENST-Drums database. That suggests the conclusion
that the multiple time resolutions in the different channels of the
MCMS lead to improved robustness of the final detection.

It is interesting to see to what extent the training of MCMS
detector on specific onsets (the main three percussive instruments)
does change its performance. To this end we use the MCMS detec-

tor provided by Schliiter in the madmom package [14]. We eval-
uate the two detectors on a different hold out test set of the RWC
database and we find that the specific onset detector significantly
improves the detection performance in F-measure from 86.8% for
the general purpose onset detector to 93.2% for the percussive on-
set detector.

4.4. Application to drum transcription

Characterizing detected onsets might be advantageous for drum
transcription. We investigate here two uses of the MCMS format
for the drum transcription task. The first method combines the
drum onset detector based on CNN with the ADT algorithm based

F-measure

Comparison of loss functions with stft
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Figure 3: Comparison of loss functions on RWC database: binary
cross entropy and mean square error, for STFT window 0.125 s.

on NMD described in 3.1. The CNN gives the drum onset posi-
tions and the NMD algorithm studies the segments around these
positions to determine which percussive instruments provided the
onset. The second one uses three individual CNNs. Each CNN is
trained to detect one of the three main percussive instruments.

4.4.1. Drum onset detector combined to automatic drum tran-
scription algorithm

Given the rather high performance of the drum onset detection
algorithm, we are interested in seeing the effect of the specific
onset detection when combined with an NMD based drum tran-
scription algorithm [6]. We evaluate the performance on ENST-
Drums dataset and present in Table 1 the average results on the
three cross-validation experiments. We compare the obtained re-
sults with Paulus’ and Southall’s results. We evaluate the models
by transcribing the drum parts for the *minus one’ pieces of ENST-
Drums and perform the mean over the three drummers.

Table 1: Results of transcription on three-fold cross validation.

Methods Metric  BD SD HH
HMM+ P(%) 802 663 84.7
MLLR [1] R(%) 81.5 453 828
F(%) 80.8 539 83.6

Soft Attention+ P(%) 98.5 88.2 678
mechanisms [15] R(%) 622 40.1 87.9
F(%) 720 537 764

NMD fed by P(%) 79.6 68.8 72.6
drum onset R(%) 647 439 67.1
detected by CNN  F(%) 689 52.6 68.3

Feeding the drum onsets to the NMD algorithm does not en-
able it to reach Paulus’s or Southall’s results.
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Figure 4: Comparison different input configurations on percussive
onset detection task on ENST-Drums dataset.

4.4.2. Individual CNNs trained on each drum instrument

In a final experiment, motivated by the very good performance of
the CNN based drum detection algorithm, we evaluate the CNN
specific onset detectors trained to detect the individual drum in-
strument events. We therefore perform the complete transcription
of an individual instrument. We focus this last experiment on the
MCMS network which had the best performance in the previous
experiments. Three independent CNNs are involved in this ex-
periment. Each network is trained to detect only one of the three
main percussive instrument. They are evaluated with the three-
fold cross validation on the ENST-Drums database. The results
averaged over the three folds of the cross validation are given in
Table 2. The results of drum onset detection in ’all drums’ are
also displayed. They are obtained with the CNN trained to detect
qualified onsets (without distinction between instrument) for our
method. Southall’s model does not provide those results.

Table 2: Results of drum transcription per instrument on three-fold
cross validation.

Comparing the bass-drum results between the HMM and CNN
methods we can find an explanation for the reduced performance
in Table 3, which displays the results of the individual folds of
the cross evaluation experiment. While the detection of drummer
3 and drummer 2 are performing very satisfyingly, the recall of
drummer 1 is particularly low. Listening to the bass drum sig-
nals of the different drummers reveals that the bass drum signal
of drummer 1 is clearly different from the two other drummers.
Its energy is significantly lower in comparison to the bass drum
signals of drummers 2 and 3. We have tried to counter this differ-
ence by means of using different mixes when training the network,
without achieving any improvement. One can also observe that the
bass drum signal of drummer 1 contains a much less pronounced
onset, which may constitute another explanation for the low recall.
Here, the high specificity of the CNN leads to an over-fitting of the
training signals, which in turn reduces the recall for drummer 1.
Although Southall’s model seems to encounter the same problem,
the HMM model displayed in Table 2 apparently does not have the
same issue with drummer 1. It may indicate that the CNN model
we chose and which worked very well for the general drum detec-
tion task, is too complex.

Table 3: Results of bass drum transcription on three-fold cross
validation.

Train drummers  Eval drummer P R F

1 and 2 3 825 96.7 89.1
2and 3 1 75.1 36.7 450
3and 1 2 74.6  98.1 8438

An other idea to improve detection of bass drum played by
drummer 1 is to normalize over time only. It highlights the sudden
changes of energy which can be characteristic of onsets. However,
this kind of normalization modify the relation of energy between
the frequency bands. But as the energy of bass drum is located in
low frequency bands, the networks is able to correctly detect the
onsets. In fact, for drummer 1, the F-measure on drummer 1 for
bass drum raises 67.7 % instead of 45%. The results for the other
drum instruments and for the percussive instruments are given in
Table 4. We compare the results with [1] and [15].

Table 4: Results of drum transcription per instrument on three-fold
cross validation with normalization over time.

Methods Metric BD SD HH  Percus.
Methods Metric  BD SD HH  Percus. HMM+ P(%) 80.2 66.3 84.7 79.0
HMM+ P(%) 802 663 84.7 79.0 MLLR [1] R(%) 81.5 453 828 70.9
MLLR [1] R(%) 815 453 828 70.9 F(%) 80.8 539 83.6 74.7
F(%) 80.8 539 836 74.7 Soft Attention+ P(%) 985 882 67.8 -
Soft Attention+ P(%) 98.5 88.2 678 - mechanisms [15] R(%) 622 40.1 879 -
mechanisms [15] R(%) 622 40.1 879 - F(%) 72.0 537 764 -
F(%) 720 537 764 - CNN with P(%) 840 542 719 93.8
CNN with P(%) 775 579 710 93.7 MCMS config. R(%) 80.7 68.1 86.6 91.7
MCMS R(%) 750 67.0 89.7 93.0 and tnorm F(%) 81.5 594 778 92.7
configuration F(%) 762 62.1 79.3 93.4

We notice that the CNN provides comparatively good results
for the snare drum, for which it obtains 8pts more in F-measure
than Paulus’ method. But it also loses 4pts for the two other in-
struments, the bass drum and hi-hat. Our model is better than
Southall’s method.

The F-measure is slightly better for bass drum and signifi-
cantly better for snare drum than F-measures obtained with the
method of HMM. The detection of percussive onsets is also largely
more effective. Although normalization over time degrades a little
bit the F-measure for snare drum and hi-hat detection in compari-
son with our model, it is much better for bass drum detection.

DAFx-85



Proceedings of the 21" International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4-8, 2018

5. CONCLUSIONS

In this paper, we investigated different new approaches to the use
of Convolutional Neural Networks for automatic drum transcrip-
tion. We compared different loss functions and input representa-
tions. We found that the best results are obtained with the MCMS
representation of the input data, namely three log-magnitude spec-
trograms with three different STFT window sizes: 23, 46 and
93 ms filtered into 80 mel frequency bands. We trained the net-
work for the detection of percussive onsets, achieving very good
detection performance well above 90% in F-measure. The com-
bination of specific onset detectors based on CNN with a drum
(bass drum, snare drum and hi-hat) transcription algorithm based
on Non-negative Matrix Deconvolution did not lead to competitive
performances.

Finally, we trained three individual CNNs: each of them de-
tecting one of the three percussive instruments (bass drum, snare
drum and hi-hat). The results obtained are significantly better than
the results obtained with the NMD, which leads us to believe that
the use of CNN for drum transcription has more potential than the
use of a non-negative decomposition. We conjecture that the main
reason for the better results is the fact that the CNN is trained with
an objective function (the ODF) that is much closer to the final
task than the objective function used in the NMD training. Fur-
ther investigation is required to compare the single label detector
proposed in the present paper with the multi label detector. While
the single label detector may have the advantage of specializing
more on the specific instrument, it also may be the reason for the
over-fitting observed notably during the bass drum detection of
drummer 1 of the ENST-Drums database.
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