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INTRODUCTION

Purpose: Analytic x-ray energy spectra are found with closed form mathematical formulas for the transmittance and the elements of the Jacobian matrix. The purpose is to provide formulas that can be used to develop and to test results on spectral x-ray imaging [START_REF] Alvarez | Energy-selective reconstructions in X-ray computerized tomography[END_REF]. Example applications are the invertibility of the dual energy transformation and correction for beam hardening artifacts.

Methods: Analytic expressions are derived and then verified with numerical simulations. The formulas are derived first by assuming the Compton scattering basis set coefficient is equal to zero. Then a linear approximation to the basis function is studied. The formulas are verified by comparing them to numerical simulations.

Results: Formulas are derived and verified for the transmittance and the Jacobian matrix elements with constant, linear, and parabola spectra over a fixed x-ray energy range and also a spectrum derived by Rigaud [START_REF] Rigaud | On analytical solutions to beam-hardening[END_REF] The Jacobian matrices are used to test for invertibility. The formulas are used to derive inverses for beam hardening correction for an object with zero Compton coefficient and Rigaud's derivation for a fixed composition object is verified. The use of a linear approximation to the Compton scattering basis function is studied.

Conclusion: The analytic formulas are accurate and useful for studying spectral x-ray imaging.

This paper describes x-ray energy spectra that, when used with the Alvarez-Macovski method [START_REF] Alvarez | Energy-selective reconstructions in X-ray computerized tomography[END_REF] have transmittance and Jacobian matrix elements with a closed form mathematical expression. The objective is insight into spectral x-ray systems and to test general mathematical results. An example application is the invertibility of the dual energy x-ray transform based on the method described in my paper [START_REF] Alvarez | Invertibility of the dual energy x-ray data transform[END_REF]. In the previous work, a number of example spectra with analytic parameters are described but those are mostly un-physical discrete spectra such as those with one and two delta functions. This paper presents example spectra that are continuous and therefore closer to reality. Potential applications of the analytic spectra are to study the effect of problems with photon counting detectors [START_REF] Overdick | Towards direct conversion detectors for medical imaging with X-rays[END_REF][START_REF] Taguchi | Vision 20/20: Single photon counting x-ray detectors in medical imaging[END_REF] and to understand the limits of neural network methods for inverting the spectral x-ray transformation [START_REF] Kevin | Empirical neural network forward model for maximum likelihood material decomposition in spectral ct[END_REF][START_REF] Clark | Multi-energy ct decomposition using convolutional neural networks[END_REF][START_REF] Lu | A learning-based material decomposition pipeline for multi-energy x-ray imaging[END_REF].

Formulas are derived for the transmittance and the elements of the Jacobian matrix with the following spectra: (1) constant, (2) linear, and (3) a quadratic over a specified region of x-ray energy, and (5) the Rigaud [START_REF] Rigaud | On analytical solutions to beam-hardening[END_REF] spectrum. In first part of the paper, the Compton scattering basis set coefficient is assumed to be zero. A linear approximation to the basis function is also studied.

Rigaud [START_REF] Rigaud | On analytical solutions to beam-hardening[END_REF] studied beam hardening artifacts using an analytic spectrum with a simple transmittance. He described a closed form inverse to the log of the transmittance with beam hardening assuming a homogeneous object with constant basis set coefficients. These results are re-derived here and verified with a computer simulation. An inverse formula assuming the Compton basis set coefficient of the material is equal to zero is also studied.

The ratios of the photoelectric Jacobian matrix elements with pairs of the spectra are used to explore conditions for invertibility. The formulas are verified by comparing them to numerical simulations.

Formulas for the Jacobian matrix with a linear approximation to the Compton scattering basis function are derived for the constant and Rigaud spectra. The formulas are used to compute the 3D Jacobian matrix column elements surfaces as a function of the basis set coefficient line integral vector and the zero Jacobian determinant curves. The results with the formulas are compared to numerical simulation results with an accurate basis function model.

To support open research, Maxima scripts to derive the formulas and Matlab programs to reproduce the figures are available on my website. The Matlab function to reproduce each figure and the Maxima script name are indicated in the captions. 

BACKGROUND

This section introduces the spectral x-ray transformation and describes conditions for invertibility. It is taken from my paper [START_REF] Alvarez | Invertibility of the dual energy x-ray data transform[END_REF] but is repeated here for the reader's convenience. Section 3 is added on the incomplete gamma function since it appears often in the theoretical results.

The spectral x-ray transformation

The transformation

Neglecting scatter the expected value of a measurement λ i with an effective measurement spectrum S i (E) is

λ i = ˆSi (E)e -´L µ(r,E)dr dE, i = 1, 2 (2.1)
where the line integral in the exponent is on a line L from the x-ray source to the detector. We can approximate the x-ray attenuation coefficient µ(r, E) with a two function basis set [START_REF] Alvarez | Energy-selective reconstructions in X-ray computerized tomography[END_REF][START_REF] Alvarez | Dimensionality and noise in energy selective x-ray imaging[END_REF] 

µ(r, E) = a 1 (r)f 1 (E) + a 2 (r)f 2 (E). (2.2)
Introducing the A vector whose components A j = ´L a j (r) dr, j = 1, 2 are the line integrals of the basis set coefficients, the expected values of the measurements are

λ i (A) = ˆSi (E)e -A•f (E) dE, i = 1, 2 (2.3)
where the basis functions at energy E are the components of the vector f

(E) = [f 1 (E), f 2 (E)]
T . The dual energy transformation relates the logarithm of the measurement vector

L(A) = -log( N(A) N 0 ) (2.4)
to the A vector. In this equation, N are the measurements and N 0 is the measurements with no object in the beam, and the division means that corresponding members of the vectors are divided. The measurements are assumed to be noise-free so they are equal to the expected values in Eq. 2.1.

Transmittance

The transmittance, defined in Eq. 2.5, is an important quantity in x-ray imaging.

T (A) = ´S(E)e -A•f (E) dE ´S(E)dE . (2.5)
As expected if A = 0, that is, if the thickness is zero, the transmittance is equal to one.

The Jacobian matrix of the transformation

The Jacobian matrix [START_REF] Fulks | Advanced Calculus: An Introduction to Analysis[END_REF], M, of the transformation is the matrix whose elements are the partial derivatives of L

M ij = ∂L i ∂A j , i, j = 1, 2.
(2.6)

Since L i = -log λ i λ i,0
, we can rewrite this as

M ij = - 1 λ i ∂λ i ∂A j .
(2.7)

Substituting the expected value of measurements given by Eq. 2.1

M ij = ´fj (E)S i (E)e -A•f (E) dE ´Si (E)e -A•f (E) dE .
(2.8)

The spectral x-ray transformation

Defining the transmitted spectrum,

S i,T (E) = S i (E)e -A•f (E) , (2.9) 
the normalized transmitted spectrum is

ŝi (E) = S i,T (E) ´Si,T (E)dE . (2.10)
With this definition, the elements of the Jacobian matrix are

M ij = ˆfj (E)ŝ i (E)dE = f j (E) i .
(2.11)

That is, M ij is the effective value of the f j (E) basis function in the normalized transmitted measurement spectrum, ŝi (E).

The Jacobian determinant

With dual energy measurements, M is two dimensional so its determinant is

J = M 11 M 22 -M 12 M 21 .
(2.12) Substituting from Eq. 2.8,

J = ´E1 ´E2 det [F] S 1 (E 1 ) S 2 (E 2 ) e -A•f (E 1 )-A•f (E 2 ) dE 1 dE 2 ´S1 (E 1 )e -A•f (E 1 ) dE 1 ´S2 (E 2 )e -A•f (E 2 ) dE 2 (2.13) where F = f 1 (E 1 ) f 1 (E 2 ) f 2 (E 1 ) f 2 (E 2 ) so det [F] = [f 1 (E 1 )f 2 (E 2 ) -f 1 (E 2 )f 2 (E 1 )].

M ratio test for the location of zero Jacobian

The global invertibility theorem described in Alvarez [START_REF] Alvarez | Invertibility of the dual energy x-ray data transform[END_REF] requires that we test whether the Jacobian is zero in the first quadrant of the A vector plane. An alternative formulation that provides additional insight is to compute the difference of the ratios of the elements of the columns of the M matrix. These ratios are dimensionless quantities and have less variation than the M element product terms in Eq. 2.12. Putting the difference of the ratios over a common denominator

M 11 M 21 - M 12 M 22 = J M 21 M 22
Since the M matrix elements in the denominator are always positive, the Jacobian J will be equal to zero if the ratios are equal.

The Compton scattering/Photoelectric interaction cross-section basis set

The Compton scattering/photoelectric interaction cross-section basis set [START_REF] Alvarez | Energy-selective reconstructions in X-ray computerized tomography[END_REF] is useful because the functions have analytical formulas and the basis set coefficients, which are proportional to the cross-section of each interaction, are positive. The Compton scattering basis function f Compton is computed as a normalizing constant times the integrated Klein-Nishina cross-section (see Eq. 2.11 of Evans [START_REF] Evans | The Atomic Nucleus[END_REF]) and the photoelectric interaction approximated as f P (E) = Constant /E 3 . Figure 2.1 shows that the basis functions and their ratio are monotonically decreasing.

Computing the transmittance and the Jacobian matrix

We can compute the transmittance using Eq. 2.5 and the elements of M as a function of A using Eq. 2.8.

Here, the incident spectra have a closed form mathematical description. The basis functions are the Compton scattering/photoelectric effect cross sections [START_REF] Alvarez | Energy-selective reconstructions in X-ray computerized tomography[END_REF] discussed in Sec. The Compton scattering and photoelectric interaction cross section basis functions (top) and their ratio (bottom). The functions and their ratio are monotonically decreasing with increasing x-ray energy. PhotoComptBasisFunctions.m

The gamma and incomplete gamma functions

Many of the formulas in Sec. II are expressed in terms of the gamma function and the incomplete gamma functions so these functions are discussed here.

The gamma function and the incomplete gamma functions are discussed in Chaudhry and Zubair [START_REF] Chaudhry | On a Class of Incomplete Gamma Functions with Applications[END_REF], Chapter 8 of Arfken and Weber [START_REF] Arfken | Mathematical Methods For Physicists International Student Edition[END_REF], Chapter 6 of Abramowitz and Stegun [START_REF] Abramowitz | Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables[END_REF] and Chapter 8 of the NIST DLMF [START_REF]Chapter 8 Incomplete Gamma and Related Functions[END_REF] website. Jameson [START_REF] Jameson | The incomplete gamma functions[END_REF]) presents some results with proofs.

The gamma function, which is a generalization of the factorial function for non-integer arguments, is

Γ (p) = ˆ∞ 0 e -t t p-1 dt, (3.1) 
for p greater than zero. The recurrence formula for the gamma function is

Γ(p + 1) = pΓ(p). (3.2) 
From this, we can see that for an integer n, Γ(n) = (n -1)! . The recurrence formula is applicable for nonintegers. It can also be used to extend Γ(p) to negative p. The functions are complementary so Γ (p, x) + γ (p, x) = Γ(p). The upper function Γ (p, x) will be emphasized in this paper since it is utilized by Maxima and it will be referred to as simply the incomplete gamma function.

Applying the fundamental theorem of calculus, the derivative is

∂Γ(p, x) ∂x = -e -x x p-1 , (3.4) 
It has the recurrence formula

Γ (p + 1, x) = pΓ (p, x) + x p e -x , (3.5) 
which can be derived from Eq. 3.3 by integration by parts [START_REF] Jameson | The incomplete gamma functions[END_REF].

For small x and p < 0,

Γ (p, x) ≤ - x p p e -x (3.6) 
(see Eq. 7 of Jameson [START_REF] Jameson | The incomplete gamma functions[END_REF]).

If x is small but p > 0[15], Γ (p, x) = Γ (p) - ∞ k=0 (-1) k x p+k k!(p + k) . (3.7)
For large x, we can use the asymptotic expansion (Abramowitz and Stegun[14] 6.5.32)

Γ (p, x) ∼ x p-1 e -x 1 + p -1 x + (p -1) (p -2) x 2 + . . . . (3.8) 
Fig. 3.1 shows that Γ (p, x) decrease rapidly with increasing x for either positive or negative parameters. The bottom panel shows that the ratio Γ(2/3,x) /Γ(-1/3,x) increases almost linearly with x. 

SPECTRA

This section describes the analytical models for x-ray spectra and derives closed form mathematical formulas their transmittance and theM matrix photoelectric element as a function of the photoelectric basis set coefficient line integral A P . In this section the Compton scattering basis set coefficient line integral A C is assumed to be equal to zero. Sec. 10 evaluates a linear approximation to the Compton scattering basis function.

The constant spectrum

The constant spectrum, shown in Fig. 4.1, is equal to S 0 inside E 1 < E < E 2 and zero elsewhere.

Transmittance: Constant spectrum

Assuming A P > 0 and A C = 0, the constant spectrum transmittance is

T const = ´E2 E 1 e -A P /E 3 dE E 2 -E 1 = A 1/3 P Γ -1 3 , A P E 3 2 -Γ -1 3 , A P E 3 1 3(E 2 -E 1 ) (4.1)
where the integral is evaluated in terms of the upper incomplete gamma function, as shown in the equation, by making the substitution, t = Ap /E 3 . For A P = 0, the transmittance is, of course, equal to one.

Defining

dΓ(p) = Γ p, A P E 3 2 -Γ p, A P E 3 1 , (4.2) 
where E 1 and E 2 refer to the endpoints of the non-zero region of the spectrum in question, the constant spectrum in this case, we can write Eq. 4.1 in this compact form

T const = A 1/3 P 3 (E 2 -E 1 ) dΓ(-1 /3) (4.3)

M const,photo : Constant spectrum

Using the effective value of the basis function interpretation of the M matrix elements in Eq. 2.11, and again assuming A P > 0, For A P = 0, we can evaluate the integrals in Eq. 4.4 using elementary methods resulting in

M Const,photo (A P ) = ´E2 E 1 1 E 3 e -A P /E 3 dE ´E2 E 1 e -A P /E 3 dE = Γ 2 3 , A P E 3 2 -Γ 2 3 , A P E 3 1 A P Γ -1 3 , A P E 3 2 -Γ -1 3 , A P E 3 1 . (4.4) M Const,photo (A P ) = dΓ( 2 3 ) A p dΓ(-1 3 ) . ( 4 
M Const,photo (0) = E 1 + E 2 2E 2 1 E 2 2 (4.6)
Maxima code to derive the constant spectrum formulas is shown in Fig. 4.2.

Limiting values: Constant spectrum

The Maxima code in Fig. 4.2 shows that

M Const,A P (0) = E 1 + E 2 2E 2 1 E 2 2 . (4.7)
Using the asymptotic formula

Γ (p, x) ∼ x p-1 e -x 1 + p -1 x the value of M Const,A P for large A P is M Const,photo (A P → ∞) ∼ 1 E 3 2 (4.8)
This is consistent with the reasoning in Alvarez [START_REF] Alvarez | Invertibility of the dual energy x-ray data transform[END_REF] that, with beam hardening, the normalized transmitted spectrum approaches a delta function at the maximum energy in the spectrum and M Const,photo (A P ) approaches the photoelectric basis function at the maximum energy. 

Validate constant spectrum formulas

Linear spectrum

The linear spectrum, shown in Fig. 5.1, is S linear (E) = mE + b, E 1 < E < E 2 and zero elsewhere. The

constants are m = S 2 -S 1 E 2 -E 1 and b = E 2 S 1 -E 1 S 2 E 2 -E 1 .

Transmittance: Linear spectrum

The Maxima code in Fig. 5.2 shows that the linear spectrum transmittance as a function of

A P assuming A C = 0 is T linear = 2A 1/3 p b dΓ (-1 /3) + m dΓ (-2 /3) A 1/3 p 3 [2b(E 2 -E 1 ) + m (E 2 2 -E 2 1 )] (5.1)
where dΓ is defined in Eq. 4.2.

M linear,photo : Linear spectrum

The M linear,photo is 

M linear,photo = b dΓ ( 2 /3) A 2/3 P + m dΓ ( 1 /3) A P b dΓ (-1 /3) A 5/3 P + m dΓ (-2 /3) A 2 P (5.2)

limiting values: Linear spectrum

As expected, if S 1 = S 2 and m = 0, Eq. 4.3 reduces to the constant spectrum transmittance and Eq. 5.2 reduces to the constant spectrum M const,photo .

The Maxima code in Fig. 5.2 shows that

M linear,photo (0) = 2E 1 E 2 m + b (E 1 + E 2 ) E 2 1 E 2 2 [m (E 1 + E 2 ) + 2b] (5.3) 
and

M lineat,photo (A P → ∞) ∼ 1 E 3 2 .
x-ray energy constant spectrum 

Validate linear spectrum formulas

Equation 5.2 for the linear spectrum M linear,photo was validated by computing the integrals numerically and comparing them to the formula. The integrals were computed as described in Sec. 2.7. Fig. 5.3 shows the result.

The quadratic spectrum

The quadratic spectrum, shown in Fig. 6.1, is

S quadratic (E) = 4S 0 (E -E 1 ) (E 2 -E) (E 2 -E 1 ) 2 , E 1 < E < E 2
and zero elsewhere. Maxima code to derive the formulas in this section is listed in Fig. 6.2.

transmittance: Quadratic spectrum

Using dΓ(p) as defined in Eq. 4.2, the Maxima code in Fig. 6.2 shows that the quadratic spectrum transmittance is

T quad = 2 A 2/3 p dΓ(-2 /3) (E 1 + E 2 ) -dΓ( -1 /3)A 1/3 p E 1 E 2 -dΓ(-1)A p (E 2 -E 1 ) 3 (6.1)

M quad,photo : Quadratic spectrum

The quadratic spectrum M quad,photo is

M quad,photo = dΓ( 2 /3)A 2/3 p E 1 E 2 -dΓ( 1 /3)A p (E 1 + E 2 ) + dΓ(0)A 4/3 p A p (dΓ( -1 /3)A 2/3 p E 1 E 2 -dΓ(-2 /3)A p (E 1 + E 2 ) + dΓ(-1)A 4/3 p ) . (6.2) 

limiting values:Quadratic spectrum

With a derivation shown in Fig. 6.2,

M quad,photo (0) = 3 E 2 2 -E 2 1 + 2E 1 E 2 [log (E 1 ) -log (E 2 )] E 1 E 2 (E 2 -E 2 ) 3 (6.3)
and the asymptotic value of M quad,photo for large A P is

M quad,photo (A P → ∞) → 1 E 3 2 (6.4)
As expected, this is the value of the photoelectric basis function at the maximum energy in the spectrum.

x-ray energy quadratic spectrum " q u a d r a t i c spectrum from E1 t o E2 w i t h m i d p o i n t =s0 " $ k i l l ( a l l ) $ assume ( Ap>0 ,E1>0 ,E2>0 ,E2>E1 , s0 >0) $ " p h o t o e l e c t r i c b a s i s f u n c t i o n " $ fP ( E ) : = 1 / E^3$ "dGamma f u n c t i o n from my paper " $ dg ( p ) : = gamma_incomplete ( p , Ap / E2^3)-gamma_incomplete ( p , Ap / E1 ^3 ) $ " q u a d r a t i c spectrum from E1 t o E2 , 0 elsewhere " $ sq ( E ) : = s0 * ( 4 * ( E-E1 ) * ( E2-E ) ) / ( E2-E1 ) ^2 $ " t r a n s m i t t a n c e " $ I 0 : r a t s i m p ( i n t e g r a t e ( sq (E ) , E , E1 , E2 ) ) $ I 1 : i n t e g r a t e ( sq (E) * exp(-Ap * fP (E ) ) , E , E1 , E2 ) $ T : r a t s i m p ( I 1 / I 0 ) $ " s i m p l i f y t r a n s m i t t a n c e " $ T r a n s m i t t a n c e : 

Validate quadratic spectrum formulas

Figure 6.3 compares Eq. 6.1 for the quadratic spectrum transmittance and Eq. 6.2 for the quadratic spectrum photoelectric M element to the numerical evaluated integrals The integrals were computed as described in Sec. 2.7.

The Rigaud spectrum

Rigaud [START_REF] Rigaud | On analytical solutions to beam-hardening[END_REF] derived a spectrum with an analytically simple transmittance using the Laplace transform. The spectrum, shown in Fig. 7.1, is

S Rigaud (E) = 3b c R R Γ(c R ) e -b R /E 3 E -3c R -1 , (7.1)
The Rigaud spectrum is closely related to the gamma function. We can use Maxima to show that

ˆ∞ 0 e -b R /E 3 E -3c R -1 dE = Γ(c R ) 3b c R R . (7.2)
where b R and c R are constants. Note that the spectrum is normalized so its integral is equal to one.

Transmittance: Rigaud spectrum

The transmittance ( P in Rigaud's notation) is

T (A P ) = λ R (A P ) λ R (0) = ´SRigaud (E)e -A P /E 3 dE ´SRigaud (E)dE = 1 + A P b R -c R (7.3)

M Rigaud,P hoto : Rigaud spectrum

The L vector component for the Rigaud spectrum is the negative of the log of the transmittance, T (A P ),

L Rigaud (A P ) = -log (T (A P )) = c R log 1 + A P b R (7.4)
and, from Eq. 2.6, M Rigaud,photo (A P ) is its derivative M Rigaud,photo (A P ) = ∂L Rigaud/∂A P = c R (b R +A P ) (7.5) Fig. 7.2 lists Maxima code the compute the M Rigaud,photo in Eq. 7.5 using the effective value of the photoelectric basis function method. Maxima does not invoke the gamma function recurrence relation, Eq. 3.2, to simplify the final result so it should be applied to the final formula.

x-ray energy Rigaud spectrum " Rigaud spectrum w i t h parameters b , c " $ k i l l ( a l l ) $ " p h o t o e l e c t r i c b a s i s f u n c t i o n " $ fP ( E ) : = 1 / E^3$ " Rigaud spectrum " $ sR ( E , b , c ) : = E^(-3 * c -1) * exp(-b / E^3 ) $ " compute M as e f f e c t i v e b a s i s f u n c t i o n i n n o r m a l i z ed x m i t t e d spectrum " $ " t r a n s m i t t e d f l u x : f o r n o r m a l i z a t i o n " $ assume ( c >0 ,bp > 0 , ( c +1) >0) $ I 0 : i n t e g r a t e ( sR ( E , bp , c ) , E, 0 , i n f ) $ " e f f e c t i v e fP (E) f o r M photo element " $ " modify c i n Rigaud spectrum t o g i v e e x t r a 1 /E^3 (= fP (E) ) i n i n t e g r a n d " $ I p : i n t e g r a t e ( sR ( E , bp , c + 1 ) ,E, 0 , i n f ) $ " Rigaud P h o t o e l e c t r i c M element " $ Mphoto : I p / I 0 ; " r e p l a c e parameters w i t h a c t u a l v a r i a b l e s " $ bp : Ap+b$ MphotoSimp : ev ( Mphoto ) ; " l i m i t o f Mphoto as Ap-> i n f " $ MpLimit : l i m i t ( MphotoSimp , Ap , i n f ) ; " Mphoto f o r Ap=0"$ Ap : 0 $ Mphoto0 : ev ( MphotoSimp ) ; 

Limiting values: Rigaud spectrum

As shown by Eq. 7.5, M Rigaud,photo is cr /b R for A p = 0 and approaches zero for large A p .

The zero limiting value M Rigaud,photo (A P → ∞) is due to the spectrum in Eq. 7.1 being non-zero for all x-ray energies. Therefore, as discussed in Alvarez [START_REF] Alvarez | Invertibility of the dual energy x-ray data transform[END_REF], with beam hardening, the effective energy of the normalized transmitted spectrum approaches infinity for large A P . At large energies, the photoelectric basis function and therefore M Rigaud,photo , approaches zero. The infinite non-zero range of the Rigaud spectrum is, of course, not physically realistic. 

Validate Rigaud spectrum formulas

Ratio of Compton scattering M elements with constant f C (E) approximation

Fig. 2.1 shows that the Compton scattering basis function is approximately constant. If it were a constant, f C0 , then, using the effective value of the basis function interpretation in Eq. 2.11, the M matrix element is equal to f C0 for any spectrum

M Compton = f C0 ´S(E)e -A•f (E) dE ´S(E)e -A•f (E) dE = f C0 .
Therefore, under the constant approximation, the ratio of the Compton column M elements is equal to one for any pair of spectra.

M ratios-formulas vs. numerical

This section applies the formulas derived in the previous sections to compute the M element ratios for the constant/quadratic and constant/Rigaud spectra. The results also show numerical computations of the ratio of Compton scattering basis function to test how close to they are to one, as discussed in Sec. 8.

Constant/quadratic spectra

Fig. 8.1 compares the formula and the numerical photoelectric M column ratios for constant and quadratic spectra as a function of A P with A C = 0. When both spectra had the same start and end energies, 10 and 50 keV, Fig. 8.1 shows that the photoelectric and Compton element ratios intersect implying that they are not invertible by the M-ratio test described in Sec. 2.5. Figure 8.2 shows that changing the range of energies of the constant spectrum to 15 to 55 keV while keeping the quadratic energies at 10 to 50 results in the system being invertible since the photoelectric/Compton ratios do not intersect.

Constant/Rigaud spectra

Fig. 8.3 shows the constant/Rigaud spectra M-ratio. Note that the system is not invertible as there are two intersection points. Also note that the ratio of M photo,const/M photo,Rigaud increases for large A P . This is due to the fact that the constant spectrum M photo,const approaches a constant, 1/E 3 : M-ratios with constant and quadratic spectra but with the constant spectrum from to 15 to 55 keV but the quadratic spectrum range still 10 to 50 keV. With these ranges, the system is invertible since the photoelectric/Compton ratios do not intersect. As in Fig. 8.1, the bottom panel magnifies the vertical axis region around one. MratioFigs.m

Beam hardening

The analytic spectra derived in this paper can be used to study beam hardening artifacts.

Beam Hardening with the Rigaud Spectrum

With the a C component equal to zero as assumed in this paper, we can easily invert the formula for L with the Rigaud spectrum in Eq. 7.4 to compute A P . Assuming the negative of the logarithm of the measured transmittance is g and solving the equation for A P yields,

A P = b R (e g/c R -1).

(9.1)

In Sec. 3.2 of his paper [START_REF] Rigaud | On analytical solutions to beam-hardening[END_REF], Rigaud analyzes the case of a single material object. His derivation is repeated here using the notation of this paper. A single material object is defined to be an object with a constant basis set coefficient a 0 vector, a 0 = [a C0 , a P 0 ] at all points. In a previous paper [START_REF] Alvarez | Invertibility of spectral x-ray data with pileup-two dimension-two spectrum case[END_REF], I showed that a single material object is invertible with any spectrum. Rigaud derived an analytic formula for the inverse with his spectrum. The derivation is repeated here using the notation of this paper.

For the single material object, the A vector components are A C = a C0 T and A P = a P 0 T , where T = ´L dr is the integrated thickness of the object along the line L. Assuming, as discussed in Sec. 8, that the Compton scattering basis function is the constant f C0 , we can substitute in Eq. 2.3 to derive an expression the transmitted flux λ (T ) = e -a C0 f C0 T ˆSRigaud (E)e -a P 0 T/E 3 dE.

(9.2)

Taking the negative of logarithm of both sides of the equation and substituting Eq. 7.4 for the logarithm of the integral on the right hand side

-log (λ) = a C0 f C0 T + c R log 1 + a P 0 T b R . (9.3) 
Defining α = a C0 f C0 and β = a P 0/b R and setting the right hand side of Eq. 9.3 equal to g, αT + c log (1 + βT ) = g. (9.4) This can be inverted, see for example the Wolfram Alpha website [START_REF]WolframAlpha computational intelligence[END_REF], resulting in

T = βcW α βc e α+βg βc -α αβ . (9.5)
where W is the Lambert W function [START_REF]Lambert W-Function[END_REF], which is the inverse function of f (W ) = W e W . Eq. 9.5 is same as Eq. 6 of Rigaud [START_REF] Rigaud | On analytical solutions to beam-hardening[END_REF].

Test beam hardening correction formulas

The formulas derived in the previous section were tested by comparing to numerical simulations. The error of the inverted result minus the actual result is plotted as a function of the object thickness. The results are shown in Fig. 9.1. The top panel shows an object with a zero Compton scattering component while the bottom is for a bone-only object. Both plots also include dashed red curves of the errors of a straight line fit to the negative logarithm of the transmittance vs. object thickness. 

Beam hardening

Linear model for Compton basis function

This section studies a linear approximation to the Compton basis function that provides analytically tractable results with constant and Rigaud spectra. The results are compared to numerical simulations with an accurate basis function. The formulas provide reasonable accuracy although important details such as the position and slope of one of the zero Jacobian curve are somewhat different from the numerical results.

Linear model for f C (E)

Suppose we use a linear approximation to the Klein-Nishina function

f C (E) = c 0 + c 1 E. ( 10.1) 
The coefficients, c 0 , c 1 are determined by a least squares fit over the 10 to 150 keV energy region. Assuming that c 1 is small, the transmission is then approximately

t C (A C , E) = e -A C f C (E) ≈ e -c 0 A C (1 -c 1 A C E) .
(10.2)

M with Compton model: Constant spectrum

Using the effective basis function approach to compute the Jacobian matrix elements, the Maxima code in Fig. 10.1 shows that the constant spectrum M elements with the linear approximation are:

M const,P (A P , A C ) = c 1 A C A P dΓ( 1 /3) -A 2/3 P dΓ( 2 /3) A 4/3 p c 1 A C A 2/3 P dΓ(-2 /3) -A 1/3 P dΓ(-1 /3) . (10.3) M const,C (A P , A C ) = c 2 1 A C A P dΓ (-1) + c 1 A 2/3 p [c 0 A C -1] dΓ (-2 /3) -c 0 A 1/3 p dΓ (-1 /3) c 1 A C A 2/3 P dΓ (-2 /3) -A 1/3 P dΓ(-1 /3) . (10.4)
Setting c 1 equal to zero, M const,C (A P , 0) = c 0 , and M const,P (A P , 0) is the same as Eq. 4.5.

M with Compton model: Rigaud Spectrum

Based on the Maxima script in Fig. 10.2, the photoelectricM matrix element for the Rigaud spectrum is in Eq. 10.5,

M Rigaud,P (A

P , A C ) = - (b R + Ap) 2 3 Γ (c R + 1) -Ac (b R + Ap) Γ 3c R +2 3 c1 (b R + Ap) 5 3 Ac (b R + Ap) 1 3 Γ 3c R -1 3 c1 -Γ(c R ) (10.5)
and the Compton scattering is in Eq. 10.6, M Rigaud,C (A P , A C ) = . . .

Ac (b R + Ap) 2 3 Γ 3c R -2 3 c1 2 + (b R + Ap) 1 3 Γ 3c R -1 3 (Ac c0 -1) c1 -Γ(c R ) c0 Ac (b R + Ap) 1 3 Γ 3c R -1 3 c1 -Γ(c R ) (10.6)
As a check, the last lines of the script set c 1 = 0 giving the results for A C = 0 from Sec. II. 

DISCUSSION

Discussion

The approach taken to study invertibility [START_REF] Alvarez | Invertibility of the dual energy x-ray data transform[END_REF] assumes that the number of spectral measurements is equal to the dimension of the basis set and neglects noise. Both of these can be generalized by the concept of identifiability (see van den Bos [START_REF] Van Den Bos | Parameter Estimation for Scientists and Engineers[END_REF] Sec. 4.9), which is applicable if there are more measurements than the basis set dimension and includes the effects of random measurement noise. A system is identifiable if the Fisher matrix is nonsingular. For the multivariate normal distribution and large expected values of most x-ray measurements [START_REF] Alvarez | Near optimal energy selective x-ray imaging system performance with simple detectors[END_REF][START_REF] Alvarez | Dimensionality and noise in energy selective x-ray imaging[END_REF], the Fisher matrix is

F = M T C -1 M, (11.1) 
where C is the covariance matrix. Since the Fisher matrix is the inverse of the Cramèr-Rao lower bound (CRLB), which is the minimum noise covariance for any unbiased estimator [START_REF] Kay | Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory[END_REF], Note that F depends on M so the closed form expressions for the Jacobian matrix elements derived in this paper can also be used with the identifiability approach. We can generalize this concept to systems that are close to non-invertible by studying the condition number [START_REF] Trefethen | Numerical Linear Algebra[END_REF] of the Fisher matrix. A large condition number would result in highly amplified A vector noise.

Levine [START_REF] Levine | Nonuniqueness in dual-energy CT[END_REF] describes an alternate formulation for processing spectral data with discrete, delta function spectra. In this formulation, the logarithm of the spectral weights is included in the exponent with the object attenuation. With this formulation and spectra with three energies he showed that the dual energy transformation is ambiguous having two A vectors with the same measurement L vector. This implies that the system is not invertible since it is not one-to-one. In my paper [START_REF] Alvarez | Invertibility of the dual energy x-ray data transform[END_REF], I replicated the ambiguous points with the formulation used here and also showed how the ambiguous points are related to zero Jacobian curves.

The modeling of the Compton scattering cross section is an important topic for future research. As shown in Sec. 8, assuming the cross section is constant implies that the ratio of the Compton scattering basis function M

elements is equal to one. The simulations in Sec. 8.1 show that the actual ratios are close enough to one that they do not substantially affect the location of the intersections of the photoelectric M element ratio curve with the Compton element ratios, at least for A C = 0. However, the 3D plots of the ratio surfaces in Alvarez [START_REF] Alvarez | Invertibility of the dual energy x-ray data transform[END_REF] show that the intersection curve in the A plane is not perfectly parallel to the A C axis. This indicates that a more accurate model is required to fully model the intersection points.

Sec 10 shows 3D M-ratio and zero Jacobian curves using a linear approximation to the Compton scattering basis function. In Fig. 10.3 the formulas based on the linear assumption provide results reasonably close to the numerical simulation values but there are some significant differences. The main differences are that the location and slope of the zero Jacobian curve for large A P are different than the numerically simulated data. The numerical data uses the full formula for the Compton scattering basis function so it is more accurate.
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 2 Figure 2.1.: The Compton scattering and photoelectric interaction cross section basis functions (top) and their ratio (bottom). The functions and their ratio are monotonically decreasing with increasing x-ray energy. PhotoComptBasisFunctions.m
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 31 Figure 3.1.: Plot of Γ (p, x) for positive (2/3) and negative (-1/3) parameters. The insets show the values near the origin. Note the logarithmic vertical scale in the top plot. PlotGammaIncomplete.m
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 42 Figure 4.2.: Maxima code to derive constant spectrum transmittance and M photoelectric element. ConstSpec-trumMphoto.max
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 443 Figure 4.3.: Compare equations 4.3 and 4.5 for the constant spectrum transmittance and photoelectric M element with numerical simulation. The black solid line is the formula and the red circles are computed by numerical evaluation of the integrals. The red x in the bottom panel is the value computed with the A P = 0 formula in Eq. 4.6. MphotoFormulaVsNumericFig.m
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 5 Fig. 5.2 shows Maxima code to derive this formula
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 2515253 Figure 5.1.: The linear spectrum. MakeSpectrumFigs.m
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 61 Figure 6.1.: The quadratic spectrum. MakeSpectrumFigs.m
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 26263 Figure 6.2.: Maxima code to derive Eq. 6.2 for M quad,photo for the quadratic spectrum. QuadraticSpectrumMphoto.max

S 0 Figure 7

 07 Figure 7.1.: Rigaud spectrum. Although the spectrum becomes small, it is non-zero for all energies as shown in Eq. 7.1. The values of the constants are b R = 2.2 and c R = 1.5 and the maximum energy in the plot is 150 keV. MakeSpectrumFigs.m
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 7 Figure 7.2.: Maxima code to derive Eq. 7.5 for M Rigaud,P hoto . The code also verifies the limiting values discussed in Sec. Spectrum.max
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 673 Figure 6.3 compares the transmittance in Eq. 7.3 and M Rigaud,photo in Eq. 6.2 to the numerical evaluated integrals The integrals were computed as described in Sec. 2.7.

Figure 8 Figure 8 . 2 .

 882 Figure 8.1.: M-ratios with constant and quadratic spectra. Both spectra had start and end energies of 10 and 50 keV respectively. The solid line is the formulas and the circles are computed by numerical evaluation of the Eq. 2.8 integrals. The bottom panel changes the vertical scale to magnify the region around a ratio equal to one. The dashed line in the bottom panel is at a ratio exactly equal to one. The A P value for the intersection of the photoelectric and Compton ratio curves is listed in the bottom panel. MratioFigs.m
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 91 Figure 9.1.: Test Rigaud spectrum beam hardening inversion formulas. The top panel shows the results with an object with a zero Compton scattering component while the bottom is for a bone-only object. The error, the inverted result minus the actual result, is plotted as a function of the object thickness. Both plots also include the errors of a straight line fit to the negative logarithm of the transmittance as the dashed red curve. BeamHardening4Rigaud.m
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 102 Figure 10.2.: Maxima code to derive M elements for Rigaud spectrum with linear model for the Compton basis function. RigaudSpectrumMwithCompt.max

Figure 10 . 3 .

 103 Figure 10.3.: 3D M-ratio surfaces and zero Jacobian curve as a function of A from the formulas derived in Sections 10.2 and 10.3 versus numerical simulations. J0curveConstRigaudWithFormulas.m
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	4. The constant spectrum
	" c o n s t spectrum from E1 t o E2 " $			
	k i l l ( a l l ) $			
	assume ( E1>0 ,E2>0 ,E2>E1 , Ap>0 , s0 >0) $			
	" p h o t o e l e c t r i c b a s i s f u n c t i o n " $			
	fP ( E ) : = 1 / E^3$			
	"dGamma f u n c t i o n from my paper " $			
	dg ( p ) : = gamma_incomplete ( p , Ap / E2^3)-gamma_incomplete ( p , Ap / E1 ^3 ) $
	" t r a n s m i t t e d f l u x " $			
	I 0 : s0 * ( E2-E1 ) $			
	I 1 : s0 * i n t e g r a t e ( exp(-Ap * fP (E ) ) , E , E1 , E2 ) $		
	" t r a n s m i t t a n c e " $			
	T : I 1 / I 0 ;			
	" compute M as e f f e c t i v e b a s i s f u n c t i o n i n n o r m a l i z ed x m i t t e d spectrum " $
	I p : s0 * i n t e g r a t e ( fP (E) * exp(-Ap * fP (E ) ) , E , E1 , E2 ) $	
	Mphoto : I p / I 1 $			
	" s i m p l i f i e d f o r m u l a f o r Mphoto " $			
	MpSimp : dg ( 2 / 3 ) / ( Ap * dg ( -1 / 3 ) ) $			
	" t e s t s i m p l i f i e d Mphoto " $			
	r a t s i m p ( Mphoto -MpSimp ) ;			
	" Mphoto f o r Ap=0"$			
	Mphoto0 : r a t s i m p ( i n t e g r a t e ( fP (E ) , E , E1 , E2 ) / ( E2-E1 ) ) ;	
	" Mphoto l i m i t as Ap-> i n f " $			
	constant spectrum S Figs.m	E 1	x-ray energy	E 2

0 Figure 4.1.: The constant spectrum. It is equal to S 0 inside E 1 < E < E 2 and zero elsewhere. MakeSpectrum-" a s y m p t o t i c l i m i t s f o r l a r g e Ap " $ gincAsymp ( p , x ) : = ( x ^( p-1) * exp(-x ) ) * ( 1 + ( p -1)/ x ) $ dgBigAp ( p ) : = gincAsymp ( p , Ap / E2^3)-gincAsymp ( p , Ap / E1 ^3 ) $ MpBigAp : dgBigAp ( 2 / 3 ) / ( Ap * dgBigAp ( -1 / 3 ) ) $ MpLimit : l i m i t ( MpBigAp , Ap , i n f ) ;

The spectral x-ray transformation

, while the Rigaud spectrum M photo,Rigaud approaches zero for large A P .

2 × 2 M matrices as a function of A. The M matrices were also computed numerically as discussed in Sec.

2.7. From these, the 3D surfaces of the column element ratios were computed and are shown in the top panels.

The zero Jacobian contours are plotted in the bottom panels. The formulas based on the linear approximation provide results reasonably close to the numerical simulation values but there are some significant differences. See the Discussion in Sec. 11.

CONCLUSION

The formulas for the photoelectric M elements of the spectral x-ray transform as a function of A P with A C = 0 are derived and verified by the numerical simulations. The constant, linear, parabola, and Rigaud spectra provide formulas that can be used to test general mathematical results on spectral imaging. Here they are applied to study invertibility of the transform and to study beam hardening. The use of a linear approximation to the Compton scattering basis function is studied and provides generally correct results with some errors.
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