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Introduction

Nous nous intéressons ici au traitement numérique tri-dimensionnel de la ruine progressive de structures de grandes dimensions au moyen de la méthode des éléments finis. Cette ruine s'opère typiquement suivant 3 étapes : endommagement diffus, localisation de la déformation, fissuration. Dans la présente approche, la première étape d'endommagement diffus est régie par le modèle de GTN [START_REF] Tvergaard | Needleman Analysis of cupcone fracture in a round tensile bar[END_REF] et l'ouverture ultime de la fissure est décrite via l'utilisation de la méthode des éléments finis étendus (XFEM), comme proposée pour le cas des métaux ductiles par Crété et al. [START_REF] Crété | Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM[END_REF] . Pour la phase intermédiaire de localisation de la déformation, la méthode retenue est l'association d'un segment cohésif (CZM) et d'une discontinuité forte dans l'élément fini 3D dans le cadre de la formulation XFEM [START_REF] Wolf | Numerical modeling of strain localization in engineering ductile materials combining cohesive models and X-FEM[END_REF]. Enfin, la mise en oeuvre de la méthodologie est développée en tant que routine utilisateur (UEL) dans le code commercial de calculs par éléments finis ABAQUS.

Endommagement diffus et fissuration 2.1 Endommagement diffus GTN

Afin de décrire le comportement du matériau en présence de micro-vides, le modèle de Gurson [START_REF] Gurson | Continuum theory of ductile rupture by nucleation and growth : Part i -yield criteria and flow rules for porous ductile media[END_REF] est utilisé, tel que modifié par Tveergard et Needleman [START_REF] Tvergaard | Needleman Analysis of cupcone fracture in a round tensile bar[END_REF], dans le cadre de la méthode des éléments finis standard FEM.

Φ = σ eq σ y 2 + 2q 1 f cosh - 3 2 q 2 p m σ y -(q 3 f ) 2 -1 (1) 
avec σ eq la contrainte équivalente, p m le pression, σ y la contrainte d'écoulement, f la fraction volumique des vides et q 1 , q 2 , q 3 des constantes.

Fissuration XFEM

Dans cette étude, la méthode utilisée pour décrire les conséquences cinématiques de la présence et de la propagation d'une fissure dans la structure est la méthode des éléments finis étendus (XFEM) [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF]. Les noeuds de chaque élément fini fissuré sont enrichis avec des degrés de liberté supplémentaires. Il a été montré que dans le cas d'un matériau ductile élasto-plastique fortement non linéaire la partie asymptotique peut être omise avec une perte de précision négligeable et entraînant une réduction importante du nombre de degrés de la liberté du problème [START_REF] Crété | Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM[END_REF]. En utilisant la variante de la base décalée [START_REF] Zi | New crack-tip elements for xfem and applications to cohesive cracks[END_REF] le champ de déplacement enrichi peut s'écrire comme suit :

u(x) = i∈I N i α i + j∈J (H(x) -H j )N j β j , où H j = -0.5 ou + 0.5 (2) 
3 Phase intermédiaire de localisation

Combinaison XFEM-CZM

La combinaison d'une discontinuité forte avec une bande cohésive dans le cadre de la XFEM [START_REF] Wolf | Numerical modeling of strain localization in engineering ductile materials combining cohesive models and X-FEM[END_REF] peut se présenter sous la forme suivante, sans tenir compte des efforts extérieures :
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(3) avec σ le vecteur contenant les contraintes, T loc le vecteur des efforts cohésifs, B la matrice des dérivées spatiales des fonctions d'interpolation, B* la matrice des dérivées spatiales des fonctions (H(x) -H j )N j et Γ D la bande de discontinuité. L'indice loc fait référence au repère local de la bande de localisation. Le schéma d'intégration choisi provisoirement dans cette étude est celui proposé dans [START_REF] Belytschko | A finite element with embedded localization zones[END_REF], dans lequel les 8 points de Gauss de l'élément sont tous utilisés deux fois, une pour la partie supérieure et une pour la partie inférieure de l'élément coupé. Il s'agit d'une approche simple et plus légère que celle proposée par Elguedj et al. [START_REF] Elguedj | Combescure Appropriate extended functions for x-fem simulation of plastic fracture mechanics[END_REF].

Modèle de CZM adopté

La loi de cohésion développée est une loi linéaire avec un plateau initial. Elle est caractérisé par une variable d'endommagement scalaire D, prenant des valeurs comprises entre 0 si zone saine et 1 si zone totalement endommagée. T loc (∆) est activée quand le critère de transition endommagement diffus-localisation est vérifiée et suit provisoirement une loi linéairement décroissante. ∆ est un déplacement équivalent [START_REF] Camanho | Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials[END_REF] qui prend en compte la composante normale δ 1 et les composantes de cisaillement δ 2,3 du saut de déplacement, exprimées dans le repère local de la bande de localisation.

∆ = << δ 1 >> 2 +δ 2 2 + δ 2 3 , où << δ 1 >>= max(0, δ 1 ) (4) 
La traction initiale au moment de la localisation de l'élément est calculée via l'utilisation d'un tenseur de contrainte moyenné σ sur tous les points Gauss :

T 0 =< σ n > loc (5) 
Le vecteur des efforts cohésifs s'écrit alors :

T loc = (1 -D) * T 0 , où D =      0 si ∆ ≤ κ 0 ∆-κ 0 κc si κ 0 < ∆ < κ 0 + κ c 1 sinon (6) 
avec κ 0 le seuil de déplacement équivalent, à partir duquel l'adoucissement commence et κ c la valeur critique au-delà de laquelle nous considérons l'élément comme rompu. En dérivant, on obtient alors la matrice tangente de la loi cohésive :

C loc (i, j) = ∂T loc (i) ∂δ j = - ∂D ∂δ j * T 0 (i) = - 1 κ c δ j ∆ * T 0 (i), C loc (i, 1) = 0 si δ 1 < 0 (7) 
Sur la Fig. 1, nous pouvons voir l'impact de la valeur κ c sur l'adoucissement. Cette méthode conduit à une loi cohésive qui nécessite de fixer une seule constante, à savoir κ c , car T 0 est déterminée automatiquement par le critère de transition endommagement diffus-localisation. 

Transitions

-ENDOMMAGEMENT DIFFUS VERS LOCALISATION : Afin de détecter le plan de localisation dans le matériau, on réalise une analyse de bifurcation [START_REF] Rice | The localization of plastic deformation[END_REF]. Avec l'utilisation de l'opérateur tangent élastoplastique D t et l'hypothèse des petites déformations, le critère consiste en la recherche du plan n pour lequel :

det n T D t n = 0 (8) 
On utilise une condition de porosité critique pour l'activation de la bande cohésive dans l'élément. Celle-ci n'est insérée que lorsque la porosité moyenne de tous les points de Gauss de l'élément dépasse une valeur critique f c .

-LOCALISATION VERS FISSURATION : Le critère pour la transition de la localisation à la fissuration de l'élément est atteinte lorsque la variable d'endommagement D dans (6) atteint la valeur 1.

Application

Le modèle numérique présenté dans les chapitres précédents a été implanté en tant qu'élément fini utilisateur UEL dans le code commercial par éléments finis Abaqus. Pour vérifier la méthodologie, une éprouvette en traction composée d'éléments hexaèdriques à intégration complète (C3D8) dans le cadre des petites déformations est utilisée (voir Fig. 2). Celle-ci a un centre plus étroit, ce qui oblige la localisation à apparaître au centre de l'éprouvette. Un déplacement est appliqué comme présenté sur la Fig. 2. Un maillage fin et un grossier ont été utilisés. Il en résulte que la partie adoucissante de la loi cohésive pour le maillage grossier a la même pente mais elle commence tardivement.

Conclusions

Il a été démontré que la méthodologie présentée peut décrire toutes les différentes étapes du phénomène de rupture ductile en 3D. Une légère dépendance au maillage a également été constatée, une réalité qui devra être traitée ultérieurement dans cette étude. Enfin, dans le maillage 1, nous pouvons également assister à un petit saut de la force de réaction qui est dû à un mauvais calcul du vecteur des forces internes au moment de la localisation.

Ces faiblesses sont en phase d'amélioration. En outre, notre objectif est de passer de l'utilisation de la théorie des petites déformations à la théorie des grandes déformations. Notre intérêt pour cette application provient du fait que la déformation plastique peut impliquer des changements importants dans la géométrie de la structure qui ne peuvent pas être négligés. Ce travail a été cofinancé par la DGA.
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FIGURE 1 -

 1 FIGURE 1 -Impact de κ c sur l'adoucissement

TABLE 1

 1 La raison pour laquelle une si grande valeur de κ 0 a été choisie tient au fait que cela contribue à la convergence. Les éléments de la zone de localisation entrent dans la phase de localisation à deux moments différents. D'une part, cela indique que notre modèle peut décrire les fissures qui se propagent en plusieurs incréments. D'autre part, cela conduit à ce que certains éléments localisés se trouvent dans la phase de plateau, tandis que d'autres sont déjà entrés dans la phase d' adoucissement. Cela peut entraîner des difficultés de convergence et l'utilisation d'une valeur de plateau plus grande permet à plus d'éléments d'entrer simultanément dans l'adoucissement. Dans les deux cas, l'analyse de bifurcation nous donne le même plan de localisation. Nous pouvons remarquer que le maillage grossier atteint la localisation à un moment légèrement différent de celui du maillage fin. Ceci est dû au fait que la porosité augmente avec un taux légèrement plus élevé dans le maillage fin, ce qui est également FIGURE 2 -(à gauche) Eprouvette, (à droite) affichage de l'effort de réaction pour les maillages 1 et 2 visible à partir de la courbe de force de réaction du maillage 1 légèrement plus basse que celle du maillage 2.

				-Données des deux calculs
	κ 0 κ c	f c	Maillage 1 (Fin)	Maillage 2 (Grossier)
	3	4 0.03 11704 éléments (4 dans l'épaisseur) 1336 éléments (2 dans l'épaisseur)