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Schauder estimates for drifted fractional operators in

the supercritical case

Paul-Éric Chaudru de Raynal∗, Stéphane Menozzi† and Enrico Priola‡

February 13, 2019

Abstract

We consider a non-local operator Lα which is the sum of a fractional Laplacian △
α/2, α ∈ (0, 1), plus

a first order term which is measurable in the time variable and locally β-Hölder continuous in the space
variables. Importantly, the fractional Laplacian ∆α/2 does not dominate the first order term. We show
that global parabolic Schauder estimates hold even in this case under the natural condition α + β > 1.
Thus, the constant appearing in the Schauder estimates is in fact independent of the L∞-norm of the first
order term. In our approach we do not use the so-called extension property and we can replace △

α/2

with other operators of α-stable type which are somehow close, including the relativistic α-stable operator.
Moreover, when α ∈ (1/2, 1), we can prove Schauder estimates for more general α-stable type operators like
the singular cylindrical one, i.e., when △

α/2 is replaced by a sum of one dimensional fractional Laplacians∑d
k=1

(∂2

xkxk
)α/2.

1 Statement of the problem and main results

We are interested in establishing global Schauder estimates for the following parabolic integro-partial differential
equation (IPDE):

∂tu(t, x) + Lαu(t, x) + F (t, x) ·Dxu(t, x) = −f(t, x), on [0, T )× R
d,

u(T, x) = g(x), on R
d, (1.1)

where T > 0 is a fixed final time horizon.
The operator Lα can be the fractional Laplacian △α/2, i.e., for regular functions ϕ : Rd → R,

△α/2ϕ(x) = p.v.

∫

Rd

[ϕ(x+ y)− ϕ(x)]να(dy), where να(dy) = Cα,d
dy

|y|d+α , (1.2)

or a more general symmetric non-local α-stable operator with symbol comparable to −|λ|α but associated with
a wider class of Lévy measures να (see Section 1.1 for our precise assumptions). We can also consider some

non-symmetric stable operators like the relativistic stable one with symbol −
(

|λ|2 +m
2
α

)
α
2 +m, m > 0.

In (1.1), the source f : [0, T ]× R
d → R and terminal condition g : Rd → R are assumed to belong to some

suitable Hölder spaces and to be bounded.
The drift term F can be unbounded. It is only assumed to be (locally) β-Hölder continuous, β ∈ (0, 1), i.e.

F : [0, T ]× R
d → R

d is Borel measurable, locally bounded and there exists K0 > 0 such that

|F (t, x)− F (t, y)| ≤ K0|x− y|β, t ∈ [0, T ], x, y ∈ R
d s.t. |x− y| ≤ 1. (1.3)

In particular, we concentrate on the so-called super-critical case, i.e., α ∈ (0, 1), although our estimates can
be extended to the simpler case α ∈ [1, 2). The difficulty is quite clear: in the Fourier space, Lα is of order α
and does not dominate, when α ∈ (0, 1), the drift term which is roughly speaking of order one (see also Remark
3.5 in [Pri12] for related issues).
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In order to compensate the low smoothing effect of Lα, it is natural to ask more on the Hölder exponent β
of the drift. Namely, we need that the gradient Dxu(t, x) in (1.1) exists in the classical sense. To this end, since
the smoothing effect of Lα on the β-Hölder source f is expected to be of order (α + β) in space, it is natural
to consider α+ β > 1. This condition also appears from a probabilistic viewpoint; it had indeed already been
observed in the scalar case by Tanaka et al. [TTW74] that uniqueness might fail for the corresponding SDE
when α+ β ≤ 1.

In the previously described framework, we obtain estimates like

‖u‖L∞([0,T ],Cα+β
b

) ≤ C(‖g‖Cα+β
b

+ ‖f‖L∞([0,T ],Cβ
b
)), (1.4)

with usual notations for Hölder spaces, where C is independent of u, f and g.
An interesting example covered by our assumptions is the non-local Ornstein-Uhlenbeck operator

△α/2ϕ(x) +Ax ·Dxϕ(x), (1.5)

when F (t, x) = Ax and A is any d × d real matrix (in this case assumption (1.3) holds for any β ∈ (0, 1)).
If α = 2 Schauder estimates where first proved by Da Prato and Lunardi [DPL95]. After that paper the OU
operator has been much investigated as a prototype of operator with unbounded coefficients.

Related results. Schauder estimates in the α-stable non-local framework have been addressed by several
authors, always assuming that the drift term is globally bounded and mainly assuming that α ≥ 1. In some
papers, the Lévy measure να may also depend on t and x. We mention for instance the so-called stable-like
setting, corresponding to time-inhomogeneous operators of the form

Ltϕ(x) =

∫

Rd

[ϕ(x + y)− ϕ(x) − Iα∈[1,2)Dxϕ(x) · y]m(t, x, y)
dy

|y|d+α + F (t, x) ·Dxu(t, x)Iα∈[1,2), (1.6)

where the diffusion coefficient m is bounded from above and below, Hölder continuous in the spatial variable,
and even in the y variable for α = 1. In that framework, Mikulevicius and Pragarauskas [MP14] obtained
parabolic Schauder type bounds on the whole space and derived from those estimates the well-posedness of the
corresponding martingale problem. Observe that, in (1.6), in the super-critical case α ∈ (0, 1), the drift term
is set to 0. Again, this is mainly due to the fact that, in that case, the drift cannot be viewed anymore as a
lower order perturbation of the fractional operator.

In the driftless framework, the (elliptic)-Schauder type estimates for stable-like operators were first derived
by Bass [Bas09]. We can refer as well to the recent work of Imbert et al. [IJS16] concerning Schauder estimates
for a driftless stable like operator of type (1.6) for α = 1 and some non-standard diffusion coefficients m with
applications to a non-local Burgers type equation. Eventually, still for F = 0, in the general non-degenerate
symmetric α-stable setting, for which να writes in polar coordinates y = ρs, (ρ, s) ∈ R+ × S

d−1 as

να(dy) = ρ−1−α dρ µ̃(ds), (1.7)

where µ̃ is a non-degenerate symmetric measure on the sphere Sd−1, we can also mention the works of Ros-Oton
and Serra [ROS16] for interior and boundary elliptic-regularity and Fernandez-Real and Ros-Oton [FRRO17]
for parabolic equations. We can also refer to Kim and Kim [KK15] for results on the whole space involving
more general, but rotationally invariant, Lévy measures, or to Dong and Kim [DK13] for stable like measures
that might be non-symmetric and non-regular w.r.t the jump parameter.

In the elliptic setting, when α ∈ [1, 2) and Lα is a non-degenerate symmetric α-stable operator and for
bounded Hölder drifts, global Schauder estimates were obtained by Priola, see e.g. Section 3 in [Pri12] and
[Pri18] with respective applications to the strong well-posedness and Davie’s uniqueness for the corresponding
SDE. Also, when α ∈ [1, 2), elliptic Schauder estimates can be proved for more general Lévy-type generators
invariant for translations, see Section 6 in [Pri18] and Remark 5.

For a non trivial, and potentially rough, drift, there is a rather large literature concerning the regularity of
(1.1) when the drift (possibly depending on the solution) is divergence free, i.e., ∇ · F (t, x)=0, in connection
with the quasi-geostrophic equation even for α ∈ (0, 1). We can mention the seminal work of Caffarelli and
Vasseur [CV10] and the work of Silvestre et al. [SVZ13] which exhibits counter-examples to regularity of (1.1)
when the terminal condition lacks good integrability properties or when the condition α+β > 1 is not met (see
Theorem 1.1 therein). Conditions on divergence free drifts F in Morrey-Campanato or Besov spaces giving the
Hölder continuity of (1.1) are discussed in [CM16] and [CM18].
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When, α ∈ (0, 1) and F is Hölder continous and bounded (but not necessarily divergence free), Silvestre
obtained in [Sil12] sharp Schauder estimates on balls for the fractional Laplacian. His approach heavily relies
on the so-called extension property, see [CS07] or [MO69] for a more probabilistic approach, and therefore
seems rather delicate to extend to more general operators of stable type or with varying coefficients. Also,
it seems that our result when Lα = △α/2 and F satisfying (1.3) cannot be obtained from the estimates by
Silvestre using a standard covering argument; indeed the Schauder constant in [Sil12] also depends on the global
boundedness of F . We can mention as well the recent work of Zhang and Zhao [ZZ18] who address through
probabilistic arguments the parabolic Dirichlet problem in the super-critical case for stable-like operators of
the form (1.6) with a non trivial bounded drift, i.e., getting rid of the indicator function for the drift. They
also obtain interior Schauder estimates and some boundary decay estimates (see e.g. Theorem 1.5 therein).

Outline for Schauder estimates through perturbative approach. In this work we will establish global
Schauder estimates for the solution of (1.1) inspired by the perturbative approach first introduced in [CHM18]
to derive such estimates in anisotropic Hölder spaces for degenerate Kolmogorov equations.

Roughly speaking, the main steps of our perturbative approach are the following: choose first a suitable
proxy for the main equation (i.e., an integro-partial differential operator whose associated semi-group and
heat kernel are known and close enough to the original one), exhibit then suitable regularization properties
associated with the proxy, expand consequently the solution of the IPDE of interest around the proxy (Duhamel
type formula or variation of constants formula) and eventually use such a representation to obtain Schauder
estimates. Let us emphasize that the derivation of a robust Duhamel representation for the IPDE is crucial in
this approach.

More precisely, the perturbative argument takes here the following form: first choose a flow θs,τ (ξ) =
ξ+
∫ s

τ F (v, θv,τ (ξ))dv depending on parameters ξ ∈ R
d and τ ∈ [0, T ] to be chosen carefully and introduce then

the time inhomogeneous drift F (t, θt,τ (ξ)) frozen along the considered flow. Rewrite then (1.1) as

∂tu(t, x) + Lαu(t, x) + F (t, θt,τ (ξ)) ·Dxu(t, x) = −f(t, x) + [F (t, θt,τ (ξ))− F (t, x)] ·Dxu(t, x),

u(T, x) = g(x), on R
d. (1.8)

This system reflects more or less the main ingredients needed for our perturbative approach: the integro-partial
differential operator in the above l.h.s. will be our proxy which is hence a frozen version of the operator in
(1.1), where the freezing is done along the chosen flow, and the second term in the r.h.s. is precisely the error
made when expanding the solution around the proxy. Roughly speaking, by the Duhamel principle we get a
representation formula for the solution u and we can perform estimates by choosing the proxy parameters τ
and ξ. In this respect it is useful to look at the proof of Proposition 8 and in particular to the derivation of
estimates (2.30) and (2.31). On the other hand, a more general Duhamel formula is needed in Section 2.4.2 to
complete the proof of Schauder estimates.

At this stage, let us eventually mention that when dealing with unbounded first order coefficients, the
previous associated flow is a rather natural object to consider in order to establish Schauder estimates and was
already used by Krylov and Priola [KP10] in the diffusive setting.

In comparison with [CHM18], where the main difficulties encountered consisted in handling the degeneracy
of the operator and its associated anisotropic behavior (while the derivation of a Duhamel representation as
well as the existence of a solution were the easier parts), we here face different problems, especially when trying
to obtain a suitable Duhamel representation or when dealing with the existence part. Such difficulties come
from two main features of our framework: the stable operator Lα induces major integrability issues and we
consider drift terms that are only locally Hölder continuous (see again (1.3)).

To overcome these particularities, we introduce a localized version of (1.8). The point is to multiply u
by a suitable localizing test function ητ,ξ where (τ, ξ) are freezing parameters and to establish a Duhamel
type representation formula for uητ,ξ (cf. equation (2.25)). We point out that, in our current setting, this
localization is not simply motivated by the fact to get weaker assumptions on F (i.e., from global to local
Hölder continuity). Indeed, even when Lα = ∆

α
2 for α ∈ (0, 1/2), it is also needed to give a proper meaning

to the Duhamel representation of the solution because of the low integrability properties of the underlying
heat-kernel (see again Proposition 8 and its proof). Let us also emphasize that, the key to perform our analysis
consists in having good controls on the heat kernel (or density) pα associated with Lα and some of its spatial
derivatives (cf. (NDb) in Section 1.1.1).

This will for instance be the case when the spherical measure µ̃ in (1.7) has a smooth density w.r.t. the
Lebesgue measure of Sd−1, following the work of Kolkoltsov [Kol00]. Roughly speaking, in that framework,
the heat-kernel pα associated with Lα, and its first two derivatives, will behave similarly to the rotationally
invariant density of ∆

α
2 for which we have precise pointwise controls. In this framework we establish Schauder

estimates for any α ∈ (0, 1) and β ∈ (0, 1) s.t. β + α > 1 for the potentially unbounded drift satisfying (1.3).
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On the other hand, in the case of more general, and possibly singular, fractional operators of symmetric
stable type, following the approach initiated by Watanabe [Wat07] and also used in Huang et al. [HMP19]
consisting in treating separately the small and large jumps for the considered characteristic time scale, we have
an additional constraint. We are only able to derive that the spatial derivatives of the heat kernel pα(t, z) (which
have the expected additional time singularity associated with the derivation order), can integrate z 7→ |z|β,
i.e.,

∫

Rd |z|β|Dk
zpα(t, z)|dz < ∞, k ∈ {1, 2}, provided β < α, t > 0. The constraint α + β > 1 then gives that

we can handle in this general super-critical case, indexes α ∈ (1/2, 1). The difference between the previous
two cases can be intuitively explained as follows: for the fractional Laplacian the derivation of pα(t, ·) induces
a concentration gain at infinity, see e.g. Bogdan and Jakubowicz [BJ07], which precisely permits to get rid of
the integrability constraints that we have to face; for operators whose symbol is equivalent to |ξ|α but whose
Lévy measure να has a very singular spherical part, we do not have such concentration gain (cf. Remark 4).

Eventually, our approach will also allow to handle stable fractional truncated operators viewing the differ-
ence between the truncated and the non-truncated operators as a bounded perturbative term under control.

Organization of this paper. The article is organized as follows. We state our precise framework and give
our main results at the end of the current section. Section 2 is then dedicated to the perturbative approach
which is the central point to derive our estimates. In particular, we obtain therein some Schauder estimates
for drifted operators along the inhomogeneous flow as well as the key Duhamel representation for solutions.
We establish in Section 3 existence results. Eventually, Section 4 is devoted to the derivation in the previously
described cases, i.e., stable-like and general stable operator for α ∈ (1/2, 1), of the properties required to obtain
our main estimates. The proof of some technical results concerning the stability properties of non-Lipschitz
flows are postponed to Appendix A.

1.1 Setting

1.1.1 Operators considered

We consider a Lévy generator L such that for φ ∈ C∞
0 (Rd), where C∞

0 (Rd) stands for the space of real-valued
infinitely differentiable functions with compact support one has:

Lφ(x) =

∫

Rd

(

φ(x + y)− φ(x)
)

ν(dy), x ∈ R
d, (1.9)

where ν is a Borel measure on R
d such that

∫

Rd(1 ∧ |x|)ν(dx) < ∞, and ν({0}) = 0 (ν is an example of Lévy
measure). It is well known (see e.g. Sato [Sat99]) that there exists a convolution Markov semigroup (Pt)
associated with L:

Pth(x) =

∫

Rd

h(x+ y)µt(dy), h ∈ Bb(R
d), t > 0, x ∈ R

d, (1.10)

P0 = I, where (µt) is a family of Borel probability measures on R
d and Bb(R

d) stands for the set of real-valued
bounded measurable functions. The function v(t, x) = Ptφ(x) provides the classical solution to the Cauchy
problem

∂tv(t, x) = Lv(t, x) = Lv(t, ·)(x), t > 0, v(0, x) = φ(x) on R
d. (1.11)

In probabilistic term, µt is the distribution at time t ≥ 0 of a purely jump Lévy process (Zt)t≥0.

(NDa) We assume that µt has a C
2-density p(t, ·), t > 0, and that there exists α ∈ (0, 1) such that if 0 < γ < α:

∫

Rd

|y|γp(t, y)dy ≤ c tγ/α, t ∈ [0, 1]. (1.12)

for some c = c(γ, α) > 0.
In the sequel we write L = Lα, ν = να Pt = Pαt and p = pα in order to explicitly emphasize the dependence

of these objects w.r.t. the parameter α.

(NDb) To prove Schauder estimates with Hölder index β ∈ (0, 1), beside the condition α + β > 1, we need
the following smoothing effect: there exists a constant c = c(α, β) > 0 such that

∫

Rd

|y|β |Dk
ypα(t, y)| dy ≤ c

t[k−β]/α
, t ∈ (0, 1], k = 1, 2. (Pβ)

where D1
ypα(t, y) = Dypα(t, y) and D

2
ypα(t, y) denote the first and second derivatives in the y-variable.
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Remark 1. It is known that in the case of the fractional Laplacian Lα = △α/2 assumption (Pβ) is always
verified for any β ∈ (0, 1) and α ∈ (0, 1). On the other hand, in the more general class of non-degenerate
symmetric stable operators, (Pβ) holds only if 0 < β < α (see Proposition 1). This condition together with
α + β > 1 imposes α > 1/2. We also manage to establish (Pβ), β ∈ (0, 1) for the non-symmetric relativistic
stable operator.

Remark 2. We mention that (NDb) is specifically needed to handle the remainder perturbative term in the
r.h.s. of (1.8) and can be viewed as a sufficient condition to cope with the supercritical case.

1.1.2 Non-degenerate symmetric stable operators

We now introduce a class of operators Lα which verify (NDa) and (NDb). These operators Lα will be the
generators of non-degenerate symmetric stable processes, i.e., Lα can be represented by (1.9) where ν = να
is a symmetric stable Lévy measure of order α ∈ (0, 1). If we now write in polar coordinates y = ρs, (ρ, s) ∈
R+ × S

d−1, the previous measure να decomposes as

να(dy) =
dρµ̃(ds)

ρ1+α
, (1.13)

where µ̃ is a symmetric measure on the S
d−1 which is a spherical part of να. Again, if µ̃ is precisely the

Lebsegue measure on the sphere, then Lα = ∆
α
2 . It is easy to verify that

∫

Rd(1 ∧ |x|)να(dx) <∞.
The Lévy symbol associated with Lα is given by the Lévy-Khintchine formula

Ψ(λ) =

∫

Rd

(

ei〈λ,y〉 − 1
)

να(dy), λ ∈ R
d, (1.14)

where 〈·, ·〉 denotes the Euclidean scalar product on R
d (see, for instance Jacob [Jac05] or Sato [Sat99]). In the

current symmetric setting, Theorem 14.10 in [Sat99] then yields:

Ψ(λ) = −
∫

Sd−1

|〈λ, s〉|αµ(ds), (1.15)

where µ = Cα,dµ̃ for a positive constant Cα,d. The spherical measure µ is called the spectral measure associated
with να. We suppose that µ is non-degenerate, i.e., there exists η ≥ 1 s.t. for all λ ∈ R

d,

η−1|λ|α ≤
∫

Sd−1

|〈λ, s〉|αµ(ds) ≤ η|λ|α, α ∈ (0, 1). (1.16)

We carefully point out that condition (1.16) is fulfilled by many types of spherical measures µ, from measure
equivalent to the Lebesgue measure on S

d−1 (a stable-like case) to very singular ones, like sum of Dirac masses
along the canonical directions, which would correspond to the pure cylindrical case (or equivalently to the sum
of scalar fractional Laplacians):

d
∑

k=1

(∂2xkxk
)α/2. (1.17)

For symmetric stable operators under (1.16), it is well known (see e.g. [Kol00]) that the associated convolution
Markov semigroup (Pαt ) (see (1.10)) has a C∞-smooth density pα(t, ·). Through Fourier inversion, we get for
all t > 0, y ∈ R

d:

pα(t, y) =
1

(2π)d

∫

Rd

exp
(

− 〈y, λ〉
)

exp
(

− t

∫

Sd−1

|〈λ, s〉|αµ(ds)
)

dλ. (1.18)

From (1.18) and (1.16) we derive directly (NDa). Indeed we have the following scaling property: pα(t, y) =
t−d/α pα(1, t

−1/αy), t > 0, y ∈ R
d.

Moreover, we have the following global upper bound for the derivatives of the heat-kernel: there exists
C := C(η) s.t. for all k ∈ {0, 1, 2} and for all t > 0, y ∈ R

d,

|Dk
xpα(t, y)| ≤

C

t
d+k
α

, t > 0. (1.19)

which in turns yields with the notations of (1.10): ∀t > 0, x ∈ R
d, |Dk

xP
α
t h(x)| ≤ Ct−(d+k)/α‖h‖∞, t > 0.

The validity of (NDb) for general symmetric non-degenerate stable operators follows by the next result
(note that in this case we have the property for any t > 0 and not only for t ∈ (0, 1]).
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Proposition 1. Let α ∈ (0, 1). Assume (1.16) holds, then for any 0 ≤ γ < α, there exists C := C(η, γ) s.t.
for all ℓ ∈ {1, 2},

∫

Rd

|y|γ |Dℓ
ypα(t, y)| dy ≤ C

t[ℓ−γ]/α
, t > 0. (1.20)

This proposition can be proved following the arguments of Lemma 4.2 in [HMP19]. A complete proof is
provided in Section 4 for the sake of completeness. Importantly, it gives for β = γ with α+β > 1 the constraint
α > 1/2 in Schauder estimates for any non-degenerate symmetric stable operator.

For a class of more regular non-degenerate symmetric stable operators including the fractional Laplacian
we have the following better result.

Proposition 2. Let α ∈ (0, 1). Assume (1.16) holds and that the spectral measure µ has a smooth density
equivalent to the Lebesgue on S

d−1. Then for any γ ∈ [0, 1], there exists C := C(η, γ, µ) s.t. for all ℓ ∈ {1, 2},
∫

Rd

|y|γ |Dℓ
ypα(t, y)| dy ≤ C

t[ℓ−γ]/α
, t > 0. (1.21)

This result can be derived using the estimates of Kolokoltsov [Kol00]. It extends to a wider class of spectral
measure what was already known for the fractional Laplacian itself. Namely, since the derivatives of the
associated heat-kernel exhibit a decay improvement at infinity, see e.g. Bogdan and Jakubowicz [BJ07], then
(1.21) holds for any γ ∈ [0, 1]. We prove this in Section 4.

Thus for β = γ with α + β > 1 we can prove Schauder estimates for operators Lα as in Proposition 2 for
any α ∈ (0, 1).

Remark 3. We will be also able to treat a non-degenerate symmetric stable operator perturbed by a bounded
term after proving Schauder estimates for the non-degenerate symmetric stable operator; this is why we can
also consider truncated stable operators. Namely, for a given truncation threshold K > 0, we can consider as
well, with the notations of (1.13), a Lévy measure of the form

να,K(dy) =
dρµ̃(ds)

ρ1+α
Iρ∈(0,K]. (1.22)

Remark 4. We believe that formula (1.21) with γ ∈ [0, 1] may hold for other class of stable operators. Indeed
estimates on the derivatives of densities of stable-like operators which could be useful to establish (1.21) are
already given in [Pen17].

On the other hand, one can check that (1.20) does not hold for γ = α in the case of a cylindrical fractional

Laplacian
∑2

k=1(∂
2
xkxk

)α/2. Indeed in such case the density pα(t, x) = qα(t, x1)qα(t, x2) (qα(t, r) is the density
of a one-dimensional fractional Laplacian) and so, for t > 0,

∫

R2

|y|α|Dpα(t, y)|dy is not finite.

1.1.3 Relativistic Stable Operators

Let us consider here Lα corresponding to the relativistic stable operator with symbol

Ψ(λ) = −
(

|λ|2 +m
2
α

)
α
2 +m, (1.23)

for somem > 0, α ∈ (0, 1), λ ∈ R
d. It appears to be an important object in the study of relativistic Schrödinger

operators (see [Ryz02] and also the references therein).

The operator Lα can be represented by (1.9) with ν = να,m which has density Cα,d|x|−d−α e−m
1/α |x|

·φ(m1/α |x|), x 6= 0, with 0 ≤ φ(s) ≤ cα,d,m(s
d−1+α

2 + 1), s ≥ 0 (see Lemma 2 in [Ryz02]). It is clear that
∫

Rd(1 ∧ |x|)να(dx) <∞.
Let us fix α ∈ (0, 1). The heat-kernel pα,m of such operator is given in formula (7) of [Ryz02] at page 4

(with the correspondence 2β = α):

pα,m(t, x) = emt
∫ ∞

0

g(u, x)e−m
2
α u θα(t, u)du, (1.24)
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where g(u, x) = (4πu)−d/2e−|x|2/4u is the Gaussian kernel. Moreover θα(t, u), u > 0, is the density function
of the strictly α/2-stable subordinator at time t (see (4) in the indicated reference). It is well know that
pm(t, ·) ∈ C∞(Rd), t > 0. In the limit case m = 0, one gets the density of △α/2:

pα(t, x) = pα,0(t, x) =

∫ ∞

0

g(u, x) θα(t, u)du, x 6= 0, (1.25)

which is also considered in the proof of Lemma 5 in [BJ07]; note that θα(t, u) ≤ c1 tu
−1−α

2 . We obtain easily
that, for t ∈ (0, 1], x 6= 0,

pα,m(t, x) ≤ empα,0(t, x) (1.26)

and so (NDa) holds. It will be shown in Section 4.3 that (Pβ) holds even in this non-symmetric case.

1.1.4 Hölder spaces and smoothness assumptions

In the following, for a fixed terminal time T and a Borel function ψ : [0, T ]×R
d → R

ℓ, ℓ ∈ {1, . . . , d} which is
γ-Hölder continuous in the space variable, γ ∈ (0, 1), uniformly in t ∈ [0, T ] we denote by

[ψ]γ,T := inf{K > 0 : ∀(t, x, x′) ∈ [0, T ]× (Rd)2, |ψ(t, x) − ψ(t, x′)| ≤ K|x− x′|γ}. (1.27)

We write that ψ ∈ L∞
(

[0, T ], Cγ(Rd,Rℓ)
)

as soon as [ψ]γ,T <∞.

If additionally the function ψ is bounded, we write that ψ ∈ L∞
(

[0, T ], Cγb (R
d,Rℓ)

)

, where the subscript
precisely emphasizes the boundedness, and introduce the corresponding norm:

‖ψ‖L∞(Cγ
b ) := ‖ψ‖∞ + [ψ]L∞(Cγ) = ‖ψ‖∞ + [ψ]γ,T , ‖ψ‖∞ := sup

(t,x)∈[0,T ]×Rd

|ψ(t, x)|. (1.28)

Again, Cγb (R
d,Rℓ) is the usual Hölder space of index γ.

We also naturally define, accordingly the spaces L∞
(

[0, T ], C1+γ
b (Rd,Rℓ)

)

and C1+γ
b (Rd,Rℓ) respectively

endowed with the norms:

‖ψ‖L∞([0,T ],C1+γ
b ) := ‖ψ‖∞ + ‖Dψ‖∞ + [Dψ]γ,T , ψ ∈ L∞([0, T ], C1+γ

b );

‖ϕ‖C1+γ
b

:= ‖ϕ‖∞ + ‖Dϕ‖∞ + [Dϕ]γ

:= sup
x∈Rd

|ϕ(x)| + sup
x∈Rd

|Dϕ(x)| + sup
(x,x′)∈(Rd)2,x 6=x′

|Dϕ(x) −Dϕ(x′)|
|x− x′|γ , (1.29)

ϕ ∈ C1+γ
b (Rd,Rℓ). With these notations at hand, for a fixed stability index α ∈ (0, 1), and given final horizon

T > 0 our assumptions concerning the smoothness of the coefficients in (1.1) are the following:

(S) There exists β ∈ (0, 1) s.t. α+ β > 1 and the source f ∈ L∞
(

[0, T ], Cβb (R
d,R)

)

, g ∈ Cα+βb (Rd,R).

(D) The drift/transport term F verifies (1.3) with β as in (S) for some K0 > 0.

We will say that assumption (A) is in force as soon as the above conditions (S), (D), (NDa) and (NDb)
hold. In particular under (A) we have that property (Pβ) holds.

1.2 Main Results

The solutions of (1.1) will be sought in function spaces which are the natural extension in the current stable
framework of those considered in the diffusive setting by Krylov and Priola [KP10]. Namely, we introduce

C
α+β
b ([0, T ]× R

d) the set of functions ψ(t, x) defined on [0, T ]× R
d such that:

(i) The function ψ is continuous on [0, T ]× R
d.

(ii) For any t ∈ [0, T ] the function ψ(t, ·) ∈ Cα+βb (Rd) and the norm ‖ψ(t, ·)‖Cα+β
b

is bounded w.r.t t ∈ [0, T ],

i.e., ψ ∈ L∞
(

[0, T ], Cα+βb (Rd)
)

.

(iii) There exists a function ϕψ : [0, T ] × R
d → R s.t. for any smooth and compactly supported function

η ∈ C∞
0 ([0, T ] × R

d), the product (ϕψη)(t, x) is bounded and β + α − 1-Hölder continuous in space
uniformly in t ∈ [0, T ] and for any x ∈ R

d, 0 ≤ t < s ≤ T , it holds that:

ψ(s, x) − ψ(t, x) =

∫ s

t

ϕψ(v, x)dv.

For ψ ∈ C
α+β
b ([0, T ] × R

d), we write ∂tψ = ϕψ which is actually the generalized derivative w.r.t. the
time variable of the function ψ.
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Accordingly, having a solution to (1.1) in C
α+β
b ([0, T ]×R

d) is equivalent to say that for 0 ≤ t < s ≤ T, x ∈ R
d,

u(t, x) = u(s, x) +

∫ s

t

drf(r, x) −
∫ s

t

dr
(

Lα + F (r, x) ·D
)

u(r, x). (1.30)

Theorem 3 (Schauder Estimates). Let α ∈ (0, 1) be fixed. Under (A) there exists a constant C := C((A), T,K0)

s.t. for any solution u ∈ C
α+β
b ([0, T ]× R

d) of (1.1), it holds that:

‖u‖L∞([0,T ],Cα+β
b ) ≤ C(‖g‖Cα+β

b
+ ‖f‖L∞([0,T ],Cβ

b )). (1.31)

In particular, the previous control provides uniqueness in the considered function space. Associated with
an existence result developed in Section 3, we eventually derive the following theorem.

Theorem 4 (Existence and Uniqueness). Let α ∈ (0, 1) be fixed. Under the assumptions of the previous

theorem there exists a unique solution u ∈ C
α+β
b ([0, T ]× R

d) to (1.1) which also satisfies the estimate (1.31).

We finish the section with some comments on the case α ∈ [1, 2).

Remark 5. When α ∈ [1, 2), a quite general class of generators of Lévy processes such that elliptic Schauder
estimates hold is the one considered in Section 6 of [Pri18]. To introduce such class we define the Lévy generator

Lφ(x) =

∫

Rd

(

φ(x + y)− φ(x) − 1{|y|≤1}Dφ(x) · y
)

ν(dy), x ∈ R
d, φ ∈ C∞

0 (Rd).

We assume that the Blumenthal-Getoor exponent α0 = α0(ν), α0 = inf
{

σ > 0 :
∫

{|x|≤1 }|y|σν(dy) < ∞
}

belongs to (0, 2). Moreover, we require that the associated convolution semigroup (Pt) verifies: Pt(Cb(R
d)) ⊂

C1
b (R

d), t > 0, and, further, there exists cα0 = cα0(ν) > 0 such that

sup
x∈Rd

|DPtf(x)| ≤ cα0 t
− 1

α0 · sup
x∈Rd

|f(x)|, t ∈ (0, 1], f ∈ Cb(R
d). (1.32)

Non-degenerate symmetric α-stable operators, relativistic α-stable operators, temperate α-stable operators
verify the previous two assumptions with α = α0.

According to Theorem 6.7 in [Pri18] we have, for α0 ≥ 1, β ∈ (0, 1) and β + α0 > 1,

λ‖wλ‖∞ + [Dwλ]Cα0+β−1

b (Rd)
≤ C0‖λw − Lw − b ·Dw‖Cβ

b (Rd), λ ≥ 1, (1.33)

assuming b ∈ Cβb (R
d,Rd). Such elliptic estimates could be extended to the parabolic setting without difficulties.

2 Proof of the main results through a perturbative approach

2.1 Frozen semi-group and associated smoothing effects

The key idea in our approach consists in considering a suitable proxy IPDE, for which we have good controls
along which to expand a solution u ∈ C α+β([0, T ] × R

d) to (1.1). Under (A), which involves potentially
unbounded drifts, we will use for the proxy IPDE a non zero first order term which involves a flow associated
with the drift coefficient F (which in the current setting exists from the Peano theorem). This flow is, for given
freezing parameters (τ, ξ) ∈ [0, T ]× R

d, defined as:

θs,τ (ξ) = ξ +

∫ s

τ

F (v, θv,τ (ξ))dv, s ≥ τ, (2.1)

θs,τ (ξ) = ξ for s < τ . For f and g as in Theorem 3 we then introduce our proxy IPDE:

∂tũ(t, x) + Lαũ(t, x) + F (t, θt,τ (ξ)) ·Dxũ(t, x) = −f(t, x), on [0, T )× R
d,

ũ(T, x) = g(x), on R
d. (2.2)

Under (A), it is clear that the time-dependent operator Lα+F (t, θt,τ (ξ)) ·Dx generates a family of transition

probability (or two parameter transition semi-group)
(

P̃
(τ,ξ)
s,t,α )0≤t≤s≤T . For fixed 0 ≤ t < s ≤ T , the associated

heat-kernel writes:

p̃(τ,ξ)α (t, s, x, y) = pα

(

s− t, y −m
(τ,ξ)
s,t (x)

)

, m
(τ,ξ)
s,t (x) := x+

∫ s

t

F (v, θv,τ (ξ))dv, (2.3)
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(we remark that, for fixed (t, x) ∈ [0, T ] × R
d and s ∈ [t, T ], the corresponding process with frozen drift is

X̃τ,ξ
s = x +

∫ s

t
F (v, θv,τ (ξ))dv + Zs−t) with generator Lα. Observe that from the above definition of the shift

m
(τ,ξ)
s,t (x) we have the important property

m
(τ,ξ)
s,t (x)|(τ,ξ)=(t,x) = θs,t(x). (2.4)

Let us now state the smoothing effect of the semi-group associated with (2.2).

Lemma 5 (Smoothing effects of the derivatives of the frozen semi-group). Assume (NDa) and (NDb) (so
property (Pβ) holds). There exists C ≥ 1 s.t. for any ϕ ∈ Cβ(Rd,R), any freezing couple (τ, ξ), ℓ ∈ {1, 2} and
all 0 ≤ t ≤ s ≤ T, x ∈ R

d :

|Dℓ
xP̃

(τ,ξ)
s,t,αϕ(x)| ≤

C[ϕ]β

(s− t)
ℓ
α− β

α

. (2.5)

Proof. We recall that, with the notation of (2.3), m
(τ,ξ)
s,t (x) := x +

∫ s

t
F (v, θv,τ (ξ))dv. Again, if (τ, ξ) = (t, x)

then m
(τ,ξ)
s,t (x) = θs,t(x) but this will not be the only case to be considered. Let us prove (2.5). We use a

cancellation argument (recall that
∫

Rd dyp̃
(τ,ξ)
α (t, s, x, y) = 1) and property (Pβ) to write:

|DxP̃
(τ,ξ)
s,t,αϕ(x)| =

∣

∣

∣

∫

Rd

dyDp̃(τ,ξ)α (t, s, x, y)
[

ϕ(y)− ϕ(m
(τ,ξ)
s,t (x))

]

∣

∣

∣

=
∣

∣

∣

∫

Rd

dyDxpα(s− t, y −m
(τ,ξ)
s,t (x))

[

ϕ(y)− ϕ(m
(τ,ξ)
s,t (x))

]

∣

∣

∣

≤ [ϕ]β

∫

Rd

dy|Dxpα(s− t, y −m
(τ,ξ)
s,t (x))| |y −m

(τ,ξ)
s,t (x)|β

≤ [ϕ]β

∫

Rd

dỹ|Dxpα(s− t, ỹ)| |ỹ|β ≤
(Pβ)

C[ϕ]β

(s− t)
1
α− β

α

.

This proves the result for ℓ = 1. The case ℓ = 2 is dealt similarly.

We point out that, if we restrict to bounded functions ϕ ∈ Cβb (R
d,R), the above result can also be derived

directly from standard interpolation arguments provided (1.16) holds and without the integrability constraints
of (Pβ) (see e.g. the proof of Theorem 3.3 in [Pri12]).

We now define our candidate to be the solution of the proxy IPDE. This candidate appears to be (if it exists
and is smooth enough) the representation of the solution of (2.2) obtained through the Duhamel principle.
Hence, we call it the Duhamel representation associated with (2.2). As it will appear, such a representation is
robust enough to satisfy Schauder estimates under the assumptions of Theorem 3. It then indeed provides a
solution to (2.2).

Definition 1 (Duhamel representation associated with (2.2)). For any freezing couple (τ, ξ) ∈ [0, T ]×R
d, we

call Duhamel representation associated with (2.2), and we denote it by ũ(τ,ξ) the map

ũ(τ,ξ) : [0, T ]× R
d ∋ (t, x) 7→ P̃

(τ,ξ)
T,t,αg(x) +

∫ T

t

ds
(

P̃
(τ,ξ)
s,t,α f(s, ·)

)

(x), (t, x) ∈ [0, T ]× R
d. (2.6)

Proposition 6 (Schauder estimate for the frozen semi-group). Under (A), for any freezing couple (τ, ξ) ∈
[0, T ]× R

d, the following Schauder estimate holds for the map ũ(τ,ξ) defined by (2.6). There exists a constant
C := C((A)) s.t.

‖ũ(τ,ξ)‖L∞([0,T ],Cα+β
b ) ≤ C

(

‖g‖Cα+β
b

+ ‖f‖L∞([0,T ],Cβ
b )

)

. (2.7)

Proof. We focus on the proof of (2.7) and proceed in three steps: control of the supremum norm of the function,
of its gradient, of the Hölder modulus of the gradient.

(i) Supremum norm of the solution.
The control for the supremum norm readily follows from (2.6). Indeed, for a fixed frozen couple (τ, ξ) ∈

[0, T ]× R
d and any (t, x) ∈ [0, T ]× R

d:

|ũ(τ,ξ)(t, x)| =
∣

∣

∣
P̃

(τ,ξ)
T,t,αg(x) +

∫ T

t

ds
(

P̃
(τ,ξ)
s,t,α f(s, ·)

)

(x)
∣

∣

∣
≤ ‖g‖∞ + T ‖f‖∞. (2.8)
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(ii) Supremum norm of the gradient.
Let us now give a global bound for the gradient. Differentiating (2.6) yields:

|Dxũ
(τ,ξ)(t, x)| =

∣

∣

∣
DxP̃

(τ,ξ)
T,t,αg(x) +

∫ T

t

dsDx

(

P̃
(τ,ξ)
s,t,α f(s, ·)

)

(x)
∣

∣

∣

≤
∣

∣

∣
DxP̃

(τ,ξ)
T,t,αg(x)

∣

∣

∣
+
∣

∣

∣

∫ T

t

dsDx

(

P̃
(τ,ξ)
s,t,α f(s, ·)

)

(x)
∣

∣

∣
. (2.9)

From (2.3) write for g ∈ Cα+βb (Rd) recalling that α+ β > 1:

DxP̃
(τ,ξ)
T,t,αg(x) = Dx

∫

Rd

dyp̃(τ,ξ)α (t, T, x, y)g(y) = Dx

∫

Rd

dypα(T − t, y −m
(τ,ξ)
T,t (x))g(y)

= Dx

∫

Rd

dypα

(

T − t, y −
(

x+

∫ T

t

F (v, θv,τ (ξ))dv
)

)

g(y)

= Dx

∫

Rd

dzpα
(

T − t, z
)

g
(

z +
(

x+

∫ T

t

F (v, θv,τ (ξ))dv
)

)

,

|DxP̃
(τ,ξ)
T,t,αg(x)| ≤ ‖Dg‖∞. (2.10)

Let us now turn to control of the source in (2.9). From Lemma 5 we derive

|Dx(P̃
(τ,ξ)
s,t,α f(s, ·))(x)| ≤

C[f ]β,T

(s− t)
1
α− β

α

.

Since α+β > 1 we thus get that 1/α−β/α < 1 so that the above singularity is integrable in time. We therefore
derive:

∣

∣

∣

∫ T

t

dsDx

(

P̃
(τ,ξ)
s,t,α f(s, ·)

)

(x)
∣

∣

∣
≤ C[f ]β,T

∫ T

t

ds

(s− t)
1
α− β

α

≤ C[f ]β,T (T − t)
α+β−1

α . (2.11)

Plugging (2.11) and (2.10) into (2.9) gives the following bound for the gradient:

|Dxũ
(τ,ξ)(t, x)| ≤ ‖Dg‖∞ + C(T − t)

α+β−1
α [f ]β,T . (2.12)

(iii) Hölder modulus of the solution.
It now remains to control the α + β − 1 Hölder modulus of the gradient of the solution. To this end we

introduce for a given time t ∈ [0, T ] and given spatial points x, x′ ∈ R
d, the notion of diagonal and off-diagonal

regime.
For the frozen semi-group, we say that the off-diagonal regime (resp. diagonal) holds when T−t ≤ c0|x−x′|α

(resp. T − t ≥ c0|x − x′|α). We use here a constant c0, which will be for our further perturbative analysis
meant to be small for circular type arguments to work. Anyhow, for the frozen semi-group this constant could
be arbitrary, for instance 1.

We first investigate the Hölder continuity in space of x 7→ DxP̃
(τ,ξ)
T,t,αg(x).

(iii) − (a) Off-diagonal regime. Let T − t ≤ c0|x − x′|α. Observe from (2.3) that Dxp̃
(τ,ξ)
α (t, T, x, y) =

−Dyp̃
(τ,ξ)
α (t, T, x, y). We therefore write:

DxP̃
(τ,ξ)
T,t,αg(x)−DxP̃

(τ,ξ)
T,t,αg(x

′)

=

[
∫

Rd

p̃(τ,ξ)α (t, T, x, y)Dg(y)dy −
∫

Rd

p̃(τ,ξ)α (t, T, x′, y)Dg(y)dy

]

=

[
∫

Rd

p̃(τ,ξ)α (t, T, x, y)[Dg(y)−Dg(m
(τ,ξ)
t,T (x))]dy

+[Dg(m
(τ,ξ)
t,T (x)) −Dg(m

(τ,ξ)
t,T (x′))]−

∫

Rd

p̃ξ
′

α (t, T, x
′, y)[Dg(y)−Dg(m

(τ,ξ′)
T,t (x))]dy

]

,
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recalling that p̃
(τ,ξ)
α (t, T, x, ·), p̃(τ,ξ

′)
α (t, T, x′, ·) are probability densities for the last equality. SinceDg is α+β−1-

Hölder continuous and α+ β − 1 < α, we therefore get:

|DxP̃
(τ,ξ)
T,t,αg(x)−DxP̃

(τ,ξ)
T,t,αg(x

′)|

≤ [Dg]α+β−1

(

∫

Rd

dypα(T − t, y −m
(τ,ξ)
T,t (x))|y −m

(τ,ξ)
T,t (x)|α+β−1

+|m(τ,ξ)
t,T (x) −m

(τ,ξ)
t,T (x′)|α+β−1 +

∫

Rd

dypα(T − t, y −m
(τ,ξ)
T,t (x′))|y −m

(τ,ξ)
T,t (x′)|α+β−1

)

≤ [Dg]α+β−1

(

C(T − t)
α+β−1

α + |x− x′|α+β−1
)

,

using property (NDa) and recalling that the mapping x 7→ m
(τ,ξ)
T,t (x) is affine for the last inequality. On the

considered off-diagonal regime, the previous bound eventually yields:

|DxP̃
(τ,ξ)
T,t,αg(x)−DxP̃

(τ,ξ)
T,t,αg(x

′)| ≤ [Dg]α+β−1

(

Cc
α+β−1

α
0 + 1

)

|x− x′|α+β−1, (2.13)

which is the expected bound.

(iii)− (b) Diagonal regime. If T − t > c0|x− x′|α, we directly write for all (τ, ξ) ∈ [0, T ]× R
d:

|DxP̃
(τ,ξ)
T,t,αg(x)−DxP̃

(τ,ξ)
T,t,αg(x

′)|

≤
∣

∣

∫

Rd

[p̃(τ,ξ)α (t, T, x, y)− p̃(τ,ξ)α (t, T, x′, y)]Dg(y)dy
∣

∣

≤
∣

∣

∫ 1

0

dµ

∫

Rd

[Dxp̃
(τ,ξ)
α (t, T, x′ + µ(x− x′), y) · (x− x′)]Dg(y)dy

∣

∣

=
∣

∣

∫ 1

0

dµ

∫

Rd

[Dxpα(T − t, y −mξ
T,t(x

′ + µ(x− x′))) · (x − x′)]Dg(y)dy
∣

∣.

This contribution is again dealt through usual cancellation techniques recalling that since
∫

Rd p̃
ξ
α(t, T, x

′+µ(x−
x′), y)dy = 1 then for ℓ ∈ {1, 2}, Dℓ

x

∫

Rd p̃
(τ,ξ)
α (t, T, x′ + µ(x − x′), y)dy = 0. We get from the above estimate

that denoting as well as in (2.3) by m
(τ,ξ)
T,t

(

x′ + µ(x− x′)
)

:= x′ + µ(x− x′) +
∫ T

t
F (v, θv,τ (ξ))dv, we obtain:

|DxP̃
(τ,ξ)
T,t,αg(x)−DxP̃

(τ,ξ)
T,t,αg(x

′)| (2.14)

≤
∣

∣

∣

∣

∫ 1

0

dµ

∫

Rd

[Dxpα(T − t, y −m
(τ,ξ)
T,t (x′)− µ(x− x′))) · (x− x′)]

[

Dg
(

y
)

−Dg
(

m
(τ,ξ)
T,t (x′) + µ(x − x′)

)

]

dy.

≤ [Dg]α+β−1

∫ 1

0

dµ

∫

Rd

|Dxpα(T − t, y −m
(τ,ξ)
T,t (x′)− µ(x− x′))) · (x− x′)| |y −m

(τ,ξ)
T,t (x′)− µ(x− x′)|α+β−1dy,

since g ∈ Cα+βb (Rd). From Lemma 5, we obtain

|DxP̃
(τ,ξ)
T,t,αg(x)−DxP̃

(τ,ξ)
T,t,αg(x

′)|

≤ C[Dg]Cα+β−1
b

(T − t)−
1
α+α+β−1

α |x− x′| ≤ C[Dg]α+β−1|x− x′|α+β−1, (2.15)

where the above constant C also depends on c0: since c0|x − x′|α < (T − t) and α + β < 2, we indeed have

(T − t)−
1
α+α+β−1

α |x− x′| ≤ (c0|x− x′|α)− 1
α+α+β−1

α |x− x′| ≤ C|x− x′|α+β−1. Then, from equations (2.15) and
(2.13) we get that, for all x, x′ ∈ R

d:

|DxP̃
(τ,ξ)
T,t,αg(x)−DxP̃

(τ,ξ)
T,t,αg(x

′)| ≤ C[Dg]α+β−1|x− x′|α+β−1, (2.16)

which gives the expected control.

Let us now turn to the mapping x 7→
∫ T

t
dsDx

(

P̃
(τ,ξ)
s,t,α f(s, ·)

)

(x). For separate points, i.e., |x−x′| > 0, while

integrating in s ∈ [t, T ] we have that, accordingly with the previous terminology if s ∈ [t, (t+ c0|x− x′|α) ∧ T ]
then the off-diagonal regime holds for the analysis of

Dx

(

P̃
(τ,ξ)
s,t,α f(s, ·)

)

(x)−Dx

(

P̃
(τ,ξ)
s,t,α f(s, ·)

)

(x′) (2.17)
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and similarly, if s ∈ [(t+ c0|x− x′|α) ∧ T, T ] then the diagonal regime holds.
We now introduce the transition time t0 defined as follows:

t0 = (t+ c0|x− x′|α) ∧ T, (2.18)

i.e., t0 precisely corresponds to the critical time at which a change of regime occurs. Observe that, if t0 = T
the contribution (2.17) is in the off-diagonal regime along the whole time interval.

Introduce the following family of Green kernels.

∀0 ≤ v < r ≤ T, G̃(τ,ξ)
r,v,αf(t, x) :=

∫ r

v

ds

∫

Rd

dyp̃(τ,ξ)α (t, s, x, y)f(s, y). (2.19)

The off-diagonal contribution associated with the difference (2.17) now writes:

∣

∣DxG̃
(τ,ξ)
t0,t,αf(t, x)−DxG̃

(τ,ξ)
t0,t,αf(t, x

′)
∣

∣ ≤
∣

∣

∣

∫ t0

t

dsDx

(

P̃
(τ,ξ)
s,t,α f(s, ·)

)

(x)
∣

∣

∣
+
∣

∣

∣

∫ t0

t

dsDx

(

P̃
(τ,ξ)
s,t,α f(s, ·)

)

(x′)
∣

∣

∣

≤ C[f ]T,β

∫ t0

t

ds(s− t)−
1
α+ β

α ≤ C[f ]T,β |x− x′|α+β−1, (2.20)

using equation (2.5) of Lemma 5 for the last but one inequality.
For the diagonal regime, which appears if t0 < T and corresponds in that case to the difference

DxG̃
(τ,ξ)
T,t0,α

f(t, x)−DxG̃
(τ,ξ)
T,t0,α

f(t, x′),

we have to be more subtle and perform a Taylor expansion of Dx(P̃
ξ
s,t,αf(s, ·)) similarly to what we did in

(2.14). Namely:

∣

∣DxG̃
(τ,ξ)
T,t0,α

f(t, x)−DxG̃
(τ,ξ)
T,t0,α

f(t, x′)
∣

∣ ≤
∫ T

t0

ds
∣

∣

∣

∫ 1

0

dµD2
x

(

P̃
(τ,ξ)
s,t,α f(s, ·)

)

(x′ + µ(x− x′)) · (x− x′)
∣

∣

∣

≤ |x− x′|
∫ T

t0

ds

∫ 1

0

dµ
∣

∣

∣
D2
x

(

P̃
(τ,ξ)
s,t,α f(s, ·)

)

(

x′ + µ(x− x′)
)

∣

∣

∣

≤ C[f ]β,T |x− x′|
∫ T

t0

ds(s− t)−
2
α+ β

α ,

using again Lemma 5, equation (2.5) for the last inequality. This finally yields, recalling that t0 =
(

t+ c0|x−
x′|α

)

∧ T :
∣

∣DxG̃
(τ,ξ)
T,t0,α

f(t, x)−DxG̃
(τ,ξ)
T,t0,α

f(t, x′)
∣

∣ ≤ C[f ]β,T |x− x|(|x − x′|α)1− 2
α+ β

α

≤ C[f ]β,T |x− x′|α+β−1. (2.21)

Gathering (2.20) and (2.21) gives the stated estimate for the Hölder modulus of the gradient of the Green
kernel. We eventually derive:

|Dxũ
(τ,ξ)(t, x)−Dxũ

(τ,ξ)(t, x′)| ≤ C([Dg]α+β−1 + [f ]β,T )|x− x′|α+β−1). (2.22)

The estimate (2.7) of the proposition follows from (2.8), (2.12) and (2.22).

Proposition 7. Let ũ be the map defined in (2.6). Then,

(i) if property (Pβ) holds, for any freezing couple (τ, ξ) ∈ [0, T ]×R
d the function ũ(τ,ξ) defined in (2.6) belongs

to C α+β([0, T ]× R
d) and solves (2.2);

(ii) “conversely”, if for any freezing couple (τ, ξ) ∈ [0, T ]×R
d, ṽ(τ,ξ) is a solution to (2.2) in C α+β([0, T ]×R

d)
with bounded support, i.e., there exists a compact set K ⊂ R

d such that

Supp(ṽ(τ,ξ)(t, ·)) ⊂ K, t ∈ [0, T ]. (2.23)

then ṽ(τ,ξ) = ũ(τ,ξ) defined by (2.6).
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Proof. Assertion (i) is rather direct in view of Proposition 6: first, it follows from this result that for all

(τ, ξ) the map ũ(τ,ξ) belongs to L∞([0, T ], Cα+βb ). Secondly, we have from the proof of the aforementioned

proposition that for all x in R
d, the mapping s ∈ (t, T ] 7→ (Dx + Lα)[P̃

(τ,ξ)
s,t,α (f(s, ·))](x) is controlled by an

integrable quantity on (t, T ]. From the very definition of p̃
(τ,ξ)
α (fundamental solution of (2.2)) one can hence

invert the (time) differentiation and integral operator in second term in the r.h.s. of (2.6). Similar arguments

apply for the first term P̃
(τ,ξ)
T,t,αg(·) in (2.6). This proves, on the one hand, that for all (τ, ξ) the map ũ(τ,ξ)

indeed belongs to C α+β([0, T ]× R
d). On the other hand, using again the fact that the kernel p̃

(τ,ξ)
α in P

(τ,ξ)
·,·,α

is a fundamental solution of (2.2) we obtain (inverting again differentiation and integration operator) that
ũ(τ,ξ) solves (2.2). The previous arguments are detailed in the diffusive setting in Lemma 3.3 in [KP10]. This
concludes the proof of the first point.

Concerning (ii), we first fix τ and ξ and set b(t) = F (t, θt,τ (ξ)), t ∈ [0, T ]. We define

h(t, x) = ũ
(

t, x−
∫ T

t

b(v)dv
)

.

Note that, a.e. in t, ∂th(t, x) + Lαh(t, x) = −f(t, x −
∫ T

t
b(v)dv), h(T, x) = g(x), x ∈ R

d. Set l(t, x) =

f(t, x−
∫ T

t
b(v)dv).

We can apply the (partial) Fourier transform in the x-variable to ∂th(t, x)+Lαh(t, x) and obtain, a.e. in t,

∂tv(t, λ) + F(Lαh(t, ·))(λ),

where v(t, λ) = Fh(t, ·)(λ). Note that, for each t ∈ [0, T ], Lαh(t, ·) =
∫

|y|≤1
[h(t, · + y) − h(t, ·)]να(dy)

+
∫

|y|>1
[h(t, ·+ y)− h(t, ·)]να(dy) belongs to Lp(Rd), for any p ≥ 1.

Now we use the symbol Ψ(λ) = Ψα(λ) of Lα given in (1.14). We find (cf. Section 3.3.2 in [App09])

v(s, λ)− v(t, λ) + Ψ(λ)

∫ s

t

v(r, λ)dr = −
∫ s

t

l̂(r, λ), λ ∈ R
d, t ≤ s ≤ T, (2.24)

where F l(t, ·)(λ) = l̂(t, λ) with the condition v(T, λ) = F(g)(λ) = ĝ(λ). The solution is given by

v(t, λ) = e(T−t)Ψ(λ) ĝ(λ) +

∫ T

t

e(r−t)Ψ(λ)l̂(r, λ)dr.

Using the stable convolution semigroup Pt = Pαt associated with Lα and the anti-Fourier transform we get

h(t, x) = PT−tg(x) +

∫ T

t

Pr−t l(r, ·)(x)dr.

It follows that ũ
(

t, x−
∫ T

t
b(v)dv

)

= PT−tg(x)+
∫ T

t
Pr−t f(r, ·)(x−

∫ T

r
b(v)dv)dr. Since

∫ T

r
b(v)dv =

∫ T

t
b(v)dv−

∫ r

t b(v)dv, we arrive at

ũ
(

t, y
)

= PT−tg(y +

∫ T

t

b(v)dv) +

∫ T

t

Pr−t f(r, ·)(y +
∫ r

t

b(v)dv)dr.

which gives (2.6).

2.2 Duhamel type formulas

The central point is that we will use the auxiliary proxy IPDE (2.2) in order to derive appropriate quantitative
controls on a solution u ∈ C α+β([0, T ]× R

d) of (1.1). The parameters (τ, ξ) are set free and will be chosen in
function of the control we aim to establish.

Importantly, we can exploit equation (2.2) in the following proposition which gives a Duhamel type repre-
sentation of the solution of (1.1) involving precisely the proxy IPDE (2.2).

Proposition 8 (A first Duhamel type representation). Let (A) hold. For a smooth non-negative spatial test
function ρ which is equal to 1 on the ball B(0, 1/2) and vanishes outside B(0, 1), we introduce using the proxy
parameters (τ, ξ) the following cut-off function

ητ,ξ(s, y) = ρ(y − θs,τ (ξ)), y ∈ R
d, s ∈ [0, T ],
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which precisely localizes around the frozen flow.
For u ∈ C α+β([0, T ]× R

d) solving (1.1) the function vτ,ξ := uητ,ξ solves the equation

∂tvτ,ξ(t, x) + Lαvτ,ξ(t, x) + F (t, θt,τ (ξ)) ·Dxvτ,ξ(t, x) = −
[

(ητ,ξf)(t, x) +Rτ,ξ(t, x)
]

, (t, x) ∈ [0, T )× R
d,

vτ,ξ(T, x) = g(x)ητ,ξ(T, x), on R
d, (2.25)

where, ν = να,

Rτ,ξ(t, x) =
[

(

[F (t, x) − F (t, θt,τ (ξ))] ·Dxu(t, x)
)

ητ,ξ(t, x)
]

−
[

u(t, x)Lαητ,ξ(t, x) +

∫

Rd

(

u(t, x+ y)− u(t, x)
)(

ητ,ξ(t, x+ y)− ητ,ξ(t, x)
)

ν(dy)
]

=: Rτ,ξ(t, x) + Sτ,ξ(t, x), (2.26)

and for u ∈ C α+β([0, T ]× R
d) solving (1.1), Sτ,ξ ∈ L∞([0, T ], Cβb (R

d,R)).
Importantly, the following representations also hold:

vτ,ξ(t, x) = ũ(τ,ξ)(t, x) +

∫ T

t

dsP̃
(τ,ξ)
s,t,α

(

Rτ,ξ(s, ·)
)

(x),

Dxvτ,ξ(t, x) = Dxũ
(τ,ξ)(t, x) +Dx

∫ T

t

dsP̃
(τ,ξ)
s,t,α

(

Rτ,ξ(s, ·)
)

(x) (2.27)

where the function ũ(τ,ξ) solves

∂tũ
(τ,ξ)(t, x) + Lαũ

(τ,ξ)(t, x) + F (t, θt,τ (ξ)) ·Dxũ
(τ,ξ)(t, x) = −

(

ητ,ξf + Sτ,ξ
)

(t, x), (t, x) ∈ [0, T )× R
d,

ũ(τ,ξ)(T, x) = g(x)ητ,ξ(T, x), on R
d, (2.28)

Eventually,

(

Dxvτ,ξ(t, x)
)∣

∣

∣

(τ,ξ)=(t,x)
= Dxu(t, x) =

(

Dxũ
(τ,ξ)(t, x)

)∣

∣

∣

(τ,ξ)=(t,x)
+

∫ T

t

ds
[

DxP̃
(τ,ξ)
s,t,α

(

Rτ,ξ(s, ·)
)

(x)
]∣

∣

∣

(τ,ξ)=(t,x)
,

(2.29)

Remark 6. The above representation formulas (2.27) are crucial in the sense that they allow to write any
solution u ∈ C α+β([0, T ]× R

d) of (1.1) localized with a cut-off along the flow in terms of the solution ũ(τ,ξ)

to equation (2.2) with modified source and terminal condition, namely −(ητ,ξf) + Sτ,ξ and gητ,ξ(T, ·) respec-
tively, and the remainder term

∫ T

t
dsP̃

(τ,ξ)
s,t,α

(

Rτ,ξ(s, ·)
)

. Roughly speaking, the regularity of ũ(τ,ξ) follows from

Proposition 6 whereas the control of the remainder will precisely be the difficult remaining part of the work
for which we will also need to specify, in the representations, the appropriate values of the freezing parameters
(τ, ξ) ∈ [0, T ]× R

d.

Proof. Let a solution u ∈ C α+β([0, T ]×R
d) of (1.1) be given and let us prove that vτ,ξ = uητ,ξ satisfies (2.25).

Observe that:

∂tvτ,ξ(t, x) = ∂tu(t, x)ητ,ξ(t, x) + u(t, x)∂tητ,ξ(t, x)

= ∂tu(t, x)ητ,ξ(t, x)− u(t, x)Dρ(x − θt,τ (ξ)) · F (t, θt,τ (ξ)),
F (t, θt,τ (ξ)) ·Dvτ,ξ(t, x) =

(

F (t, θt,τ (ξ)) ·Du(t, x)
)

ητ,ξ(t, x) + u(t, x)F (t, θt,τ (ξ)) ·Dρ(x − θt,τ (ξ)),

Lα(vτ,ξ(t, x)) =
(

Lαu(t, x)
)

ητ,ξ(t, x) +
(

Lαητ,ξ(t, x)
)

u(t, x)

+

∫

Rd

(

u(t, x+ y)− u(t, x)
)(

ητ,ξ(t, x+ y)− ητ,ξ(t, x+ y)
)

ν(dy)
]

=
(

Lαu(t, x)
)

ητ,ξ(t, x) − Sτ,ξ(t, x).

Summing the above terms yields:

∂tvτ,ξ(t, x) + F (t, θt,τ (ξ)) ·Dvτ,ξ(t, x) + Lα(vτ,ξ(t, x))

= (∂tu+ F (t, θt,τ (ξ)) ·Du(t, x) + Lαu(t, x))ητ,ξ(t, x)− Sτ,ξ(t, x)
= (∂tu+ F (t, x) ·Du(t, x) + Lαu(t, x))ητ,ξ(t, x) +

(

(

F (t, θt,τ (ξ))− F (t, x)
)

·Du(t, x)
)

)

ητ,ξ(t, x) − Sτ,ξ(t, x)

= −
(

f(t, x)ητ,ξ(t, x) +Rτ,ξ(t, x) + Sτ,ξ(t, x)
)

= −
(

f(t, x)ητ,ξ +Rτ,ξ

)

(t, x),
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which precisely gives equation (2.25). In the above right-hand side it is clear that fητ,ξ ∈ L∞
(

[0, T ], Cβb (R
d,R)

)

.
Also, the mapping

Rτ,ξ : (t, x) ∈ [0, T ]× R
d 7→

(

(

F (t, θt,τ (ξ)) − F (t, x)
)

·Du(t, x)
)

)

ητ,ξ(t, x)

belongs to L∞
(

[0, T ], Cα+β−1
b (Rd,R)

)

.

The lower regularity is precisely due to the fact that Du ∈ L∞
(

[0, T ], Cα+β−1
b (Rd,R)

)

. Anyhow, this is
not a problem here since we are, for the moment, simply interested in finding the representation formulas in
(2.27) which will in turn allow to investigate quantitative bounds related to the smoothness of u (gradient
bounds and Hölder moduli). Let us now show similarly to the proof of Theorem 3.4 in [Pri12] that Sτ,ξ ∈
L∞([0, T ], Cβb (R

d,R)). In the quoted reference, the previous smoothness property is obtained for α = 1.
Introduce the non-local operator Tτ,ξ defined for f ∈ C1

b (R
d,R) as:

Tτ,ξf(x) :=

∫

Rd

(

f(x+ y)− f(x)
)(

ητ,ξ(x+ y)− ητ,ξ(x)
)

ν(dy).

It is direct to check that Tτ,ξ is continuous from C1
b (R

d,R) to Cb(R
d,R). Observe now that for a function

f ∈ Cα+βb (Rd,R):

|DTτ,ξf(x)| ≤
∣

∣

∣

∫

Rd

(

Df(x+ y)−Df(x)
)(

ητ,ξ(x+ y)− ητ,ξ(x)
)

ν(dy)
∣

∣

∣

+
∣

∣

∣

∫

Rd

(

f(x+ y)− f(x)
)(

Dητ,ξ(x+ y)−Dητ,ξ(x)
)

ν(dy)
∣

∣

∣

≤
(

‖Df‖Cα+β−1
b

‖ηη,τ‖C1
b

∫

|y|≤1

|y|α+βν(dy) + 4‖Df‖∞
∫

|y|>1

ν(dy)

+‖Df‖∞‖ητ,ξ‖C2
b

∫

|y|≤1

|y|2ν(dy) + 4‖f‖∞‖Dητ,ξ‖∞
∫

|y|>1

ν(dy)
)

≤ C‖ητ,ξ‖C2
b
‖f‖Cα+β

b
.

Hence, T is also continuous from Cα+βb (Rd,R) into C1
b (R

d,R). We also recall the following interpolation
equality between Hölder spaces:

(

C1
b (R

d,R), Cα+βb (Rd,R)
)

β,∞
= C

(1−β)+β(α+β)
b (Rd,R),

see e.g. Chapter 1 in Lunardi [Lun09].Therefore the operator T is also continuous from C
(1−β)+β(α+β)
b (Rd,R)

into Cβb (R
d,R) (see Theorem 1.1.6 in [Lun09]). Recall that, since α + β > 1, we indeed have (1 − β) +

β(α + β) < α + β. To derive the stated smoothness of Sτ,ξ we want to apply Tτ,ξ to u(t, ·) where u ∈
L∞
(

[0, T ], Cα+βb (Rd,R)
)

. From the above computations and since Cα+βb (Rd,R) ⊂ C
(1−β)+β(α+β)
b (Rd,R) we

readily derive that Tτ,ξu ∈ L∞
(

[0, T ], Cβb (R
d,R)

)

. The other term in Sτ,ξ, namely Lαητ,ξ(t, x)u(t, x) is handled

without difficulties. This concludes the proof of the statement that Sτ,ξ ∈ L∞
(

[0, T ], Cβb (R
d,R)

)

.
It now follows from Proposition 7 that

vτ,ξ(t, x) = P̃
(τ,ξ)
T,t,α

(

gητ,ξ(T, ·)
)

(x) +

∫ T

t

dsP̃
(τ,ξ)
s,t,α

(

ητ,ξf + Sτ,ξ(s, ·)
)

(x) +

∫ T

t

dsP̃
(τ,ξ)
s,t,α

(

Rτ,ξ(s, ·)
)

(x)

= ũ(τ,ξ)(t, x) +

∫ T

t

ds
(

P̃
(τ,ξ)
s,t,αRτ,ξ(s, ·)

)

(x),

where

ũ(τ,ξ)(t, x) = P̃
(τ,ξ)
T,t,α

(

gητ,ξ(T, ·)
)

(x) +

∫ T

t

dsP̃
(τ,ξ)
s,t,α

(

ητ,ξf + Sτ,ξ(s, ·)
)

(x).

Also, from Definition 2.6, Proposition 6 and 7, ũ(τ,ξ) is the unique solution in C
α+β
b ([0, T ] × R

d) of (2.28).
Therefore the first Duhamel representation formula in (2.27) holds.

Since both Dṽτ,ξ(t, x) and Dũ
(τ,ξ)(t, x) exist (recall indeed that ṽτ,ξ = uητ,ξ), we deduce that

Dx

∫ T

t

ds
(

P̃
(τ,ξ)
s,t,αRτ,ξ(s, ·)

)

(x)
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is also meaningful. This proves the second assertions of (2.27). Eventually, recall now that under (Pβ), one
has for (τ, ξ) = (t, x):

(

|Dx

(

P̃
(τ,ξ)
s,t,αRτ,ξ(s, ·)

)

(x)|
)
∣

∣

∣

(τ,ξ)=(t,x)

≤
∫

Rd

dy
(

|Dxp̃
(τ,ξ)
α (t, s, x, y)

(

F (s, y)− F (s, θs,τ (ξ))
)

Du(s, y)ητ,ξ(y)|
)
∣

∣

∣

(τ,ξ)=(t,x)

≤ K0‖Du‖∞
∫

Rd

dy
(

|Dxp̃
τ,ξ
α (t, s, x, y)||y − θs,τ (ξ)|β

)∣

∣

∣

(τ,ξ)=(t,x)

≤ K0‖Du‖∞
∫

Rd

dy
(

|Dxpα
(

s− t, y −m
(τ,ξ)
s,t (x)

)

||y − θs,τ (ξ)|β
)∣

∣

∣

(τ,ξ)=(t,x)

≤ K0‖Du‖∞
∫

Rd

dy|Dxpα
(

s− t, z
)

|
∣

∣

∣

z=y−θs,t(x)
|y − θs,t(x)|β

≤
(Pβ)

CK0‖Du‖∞
(s− t)

1
α− β

α

, (2.30)

recalling from (2.4) that m
(τ,ξ)
s,t (x)|(τ,ξ)=(t,x) = θs,t(x) for the last but one inequality. Hence, we derive the

following important control

(

Dx

∫ T

t

ds
(

P̃
(τ,ξ)
s,t,αRτ,ξ(s, ·)

)

(x)
)∣

∣

∣

(τ,ξ)=(t,x)

= lim
ε→0

ε−1
(

∫ T

t

ds

∫

Rd

dy
[

p̃α
(

s− t, y − (x+ ε+

∫ s

t

F (v, θs,τ (ξ))dv)
)

−p̃α
(

s− t, y − (x+

∫ s

t

F (v, θs,τ (ξ))dv)
)

]{

F (s, y)− F (s, θs,τ (ξ))
}

Du(s, y)ητ,ξ(s, y)
)

(τ,ξ)=(t,x)

= lim
ε→0

ε−1
(

∫ T

t

ds

∫

Rd

dy
[

p̃α
(

s− t, y − (x+ ε+

∫ s

t

F (v, θs,t(x))dv)
)

−p̃α
(

s− t, y − (x+

∫ s

t

F (v, θs,t(x))dv)
)

]{

F (s, y)− F (s, θs,t(x))
}

Du(s, y)ηt,x(s, y)
)

=
(

∫ T

t

ds

∫

Rd

dy lim
ε→0

ε−1
[

p̃α
(

s− t, y − (x+ ε+

∫ s

t

F (v, θs,t(x))dv)
)

−p̃α
(

s− t, y − (x+

∫ s

t

F (v, θs,t(x))dv)
)

]{

F (s, y)− F (s, θs,t(x))
}

Du(s, y)ηt,x(s, y)
)

=

∫ T

t

ds
(

D
(

P̃
(τ,ξ)
s,t,αRτ,ξ(s, ·)

)

(x)
)∣

∣

∣

(τ,ξ)=(t,x)
, (2.31)

where (2.30) allowed to use the bounded convergence theorem in the last but one equality. Equation (2.31) in
turn yields (2.29). Indeed, Dxvτ,ξ(t, x) = Dxu(t, x)ητ,ξ(t, x) + u(t, x)Dxητ,x(x) and for (τ, ξ = (t, x)) one has
(

ητ,ξ(t, x)
)

(τ,ξ)=(t,x)
= 1, (Dxητ,ξ(t, x))(τ,ξ)=(t,x) = 0.

Remark 7 (About the localization in the Duhamel formula). We mention that the localization with the cut-off
ητ,ξ is precisely needed because we imposed in (1.3) a local Hölder continuity condition. Anyhow, even if we
had assumed a global Hölder assumption, such a localization would still be needed to give a meaning to the
first identity in (2.27) when α < 1/2 (recall that (Pβ) involves the derivatives of the heat-kernel). For α > 1/2
and β < α such a localization could have been avoided for a globally β-Hölder continuous drift F .

2.3 Derivation of the main a priori estimates

From the representations (2.27) and (2.29) in Proposition 8 we see that, since we also know from Proposition 6

that ũ(τ,ξ) is itself smooth, the main term which remains to be investigated is the remainder
∫ T

t ds
(

P̃
(τ,ξ)
s,t,αR(s, ·)

)

(x).

In the following, we first give bounds for the solution u ∈ L∞
(

[0, T ], Cα+βb (Rd,R)
)

. Estimates for the
supremum norm of the solution and its gradient are given in Lemma 9 and the control of the Hölder modulus
of the gradient are stated in Lemma 10. Then, we eventually prove Theorem 3 in paragraph 2.3.2.
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We emphasize that as the proof of Lemma 10 requires a thorough analysis (namely a refinement of Propo-
sition 8, in order to consider different freezing points in function of the diagonal and off-diagonal regimes
introduced in the proof of Proposition 6), it will be postponed to the next subsection 2.4.

2.3.1 Control of the supremum norms for the solution and its gradient and associated Hölder
modulus

As an important corollary of Proposition 8, we get the next estimates for the supremum norm of u and its
gradient.

Lemma 9 (Control of the supremum norm of the solution and the gradient). Assume (A) (thus property
(Pβ) holds). Let u ∈ C α+β([0, T ]× R

d) be a solution of (1.1). There exists a constant C := C((A)) s.t. for
all (t, x) ∈ [0, T ]× R

d:

|u(t, x)| ≤ ‖g‖∞ + T ‖f‖∞ +K0‖Du‖∞T, (2.32)

|Du(t, x)| ≤ ‖Dg‖∞ + C(T − t)
α+β−1

α

(

[f ]β,T + ‖u‖L∞([0,T ],Cα+β
b ) +K0‖Du‖∞

)

≤ ‖Dg‖∞ + C(T − t)
α+β−1

α

(

[f ]β,T + ‖u‖L∞([0,T ],Cα+β
b )(1 +K0)

)

. (2.33)

Proof. Equation (2.32) readily follows from (2.27) taking (τ, ξ) = (t, x) and observing that v(τ,ξ)(t, x)|(τ,ξ)=(t,x) =
u(t, x)ηt,x(t, x) = u(t, x). To derive (2.33) we start from (2.29) to write:

|Dxu(t, x)| ≤ |Dxũ
(τ,ξ)(t, x)|

∣

∣

∣

(τ,ξ)=(t,x)
+ |
∫ T

t

ds
(

D
(

P̃
(τ,ξ)
s,t,αR(s, ·)

)

(x)
)∣

∣

∣

(τ,ξ)=(t,x)
|.

From equation (2.28) and the proof of Proposition 6 (see equation (2.12)) and (2.30) we thus derive, recalling
that 1/α− β/α < 1:

|Dxu(t, x)| ≤ ‖Dg‖∞ + C
(

(T − t)
α+β−1

α

(

[fητ,ξ + Sτ,ξ]β,T
)

∣

∣

∣

(τ,ξ)=(t,x)
+K0‖Du‖∞

∫ T

t

ds

(s− t)
1
α− β

α

)

≤ ‖Dg‖∞ + C(T − t)
α+β−1

α

(

(

[fητ,ξ + Sτ,ξ]β,T
)

∣

∣

∣

(τ,ξ)=(t,x)
+K0‖Du‖∞

)

. (2.34)

It therefore remains to precise the quantity
(

[fητ,ξ + Sτ,ξ]β,T
)

∣

∣

∣

(τ,ξ)=(t,x)
≤
(

[fητ,ξ]β,T + [Sτ,ξ]β,T
)

∣

∣

∣

(τ,ξ)=(t,x)
.

We have,

[fητ,ξ]β,T ≤ [f ]β,T + C‖f‖∞ ≤ C‖f‖L∞([0,T ],Cβ
b ),

[Sτ,ξ]β,T ≤ [(Lαητ,ξ)u]β,T + [Tτ,ξ]β,T ≤ C
(

‖u‖∞ + ‖Du‖∞ + ‖u‖
L∞([0,T ],C

(1−β)+β(α+β)
b )

)

≤ Cβ,α
(

(1 + ε−1)(‖u‖∞ + ‖Du‖∞) + ε‖u‖L∞([0,T ],Cα+β
b )

)

, (2.35)

for any ε ∈ (0, 1) using for the last inequality that for all t ∈ [0, T ], the usual interpolation inequality

[u(t, ·)](1−β)+β(α+β) ≤ [u(t, ·)]s/(α+β)α+β [u(t, ·)]1−s/(α+β)1 ,

for s = (1 − β) + β(α + β) − 1 (see e.g. [Kry96], p. 40, (3.3.7)) then yields from the Young inequality
[u(t, ·)](1−β)+β(α+β) ≤ Cβ,α

(

ε[u(t, ·)]α+β + ε−1[u(t, ·)]1
)

. Plugging (2.35) with ε = 1/2 into (2.34) gives (2.33).
This completes the proof.

Remark 8 (On the β-Hölder modulus of Sτ,ξ). We eventually mention that equation (2.35) will also be crucial,
for a parameter ε sufficiently small, when investigating the Hölder modulus of the gradient, in order to make
the circular argument working.

Concerning the Hölder modulus of the gradient of the solution we have the following control whose proof
is presented in the next section.

Lemma 10 (Hölder modulus of the gradient). Assume (A). Let u ∈ C α+β([0, T ]×R
d) be a solution of (1.1).

There exists two constant C1 := C((A)) > 0 and C2 := C((A)) > 0 such that

[Du]β+α−1,T ≤ C1

{(

(1 + c0)‖g‖Cα+β
b

+
(

c
α+β−1

α
0 [f ]β,T + T

α+β−1
α ‖f‖L∞([0,T ],Cβ

b )

)

+K0(c
1+ β−2

α
0 + c

α+β−1
α

0 )‖Du‖L∞

}

+
(1

4
+ C2c

α+β−1
α

0 (1 +K0)
)

‖u‖L∞([0,T ],Cα+β
b ). (2.36)
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2.3.2 Final derivation of Theorem 3: Schauder estimate for the solution of (1.1)

Observe carefully from the above Lemmas that the norm of u appears in the r.h.s of the previous controls.
However, those contributions are multiplied either by a constant c0, either by a function of T or a small constant.
Provided these quantities can be chosen small enough, we can conclude the proof of our main estimates through
a circular argument, i.e., the norms in the r.h.s. will be absorbed by those on the l.h.s. When doing so, we end
up with Schauder estimates in small time only. To extend it to an arbitrary fixed horizon T , we eventually use
the fact that Schauder estimates precisely provide a kind of stability result in the class C α+β([0, T ]× R

d) so
that the final bound follows by inductive application of the estimate in small time.

Note now that thanks to (2.32), (2.33) we have from (2.36) that

‖u‖L∞ + ‖Du‖L∞ + [Du]β+α−1,T

≤ C1

{(

(1 + c0 +K0(c
1+ β−2

α
0 + c

α+β−1
α

0 ) +K0T )‖g‖Cα+β
b

+
(

c
α+β−1

α
0 [f ]β,T +

(

1 +K0(c
1+ β−2

α
0 + c

α+β−1
α

0 ) +K0T
)

(T − t)
α+β−1

α ‖f‖L∞([0,T ],Cβ
b )

)}

+Ψ(K0, c0, α, β, (A))‖u‖L∞([0,T ],Cα+β
b )

up to a modification of C1 and where

Ψ(K0, c0, α, β, (A)) =
1

4
+ C2c

α+β−1
α

0 (1 +K0) + C(T − t)
α+β−1

α (1 +K0)
(

1 +K0T + C1K0(c
1+ β−2

α
0 + c

α+β−1
α

0 )
)

.

We can hence choose c0 small enough so that C2c
α+β−1

α
0 (1 + K0) ≤ 1/4 and then T small enough so that

C(T − t)
α+β−1

α (1 +K0)
(

1 +K0T + C1K0(c
1+ β−2

α
0 + c

α+β−1
α

0 )
)

≤ 1/4. This eventually yields that there exists

C̃ := C̃((A), c0) s.t.

‖u‖L∞([0,T ],Cα+β
b ) ≤ C̃

(

‖g‖Cα+β
b

+ ‖f‖L∞([0,T ],Cβ
b )

)

+
3

4
‖u‖L∞([0,T ],Cα+β

b )

≤ 4C̃
(

‖g‖Cα+β
b

+ ‖f‖L∞([0,T ],Cβ
b )

)

. (2.37)

Equation (2.37) provides the control of Theorem 3 for T small enough, i.e., for T ≤ T0((A), (Pβ)). The
result is extended to an arbitrary time T considering N subintervals of [0, T ] s.t. T/N ≤ T0 and applying
inductively (2.37) going backwards in time on the time intervals [(i− 1)T/N, iT/N ], i ∈ [[1, N ]] considering as

final condition on the current time interval the function gi(x) := u(iT/n, x) which precisely belongs to Cα+βb

from the previous application of the Schauder estimate (2.37) if i < N or by (1.1) if i = N . This proves
Theorem 3 is complete provided Lemma 10 holds.

2.4 Proof of Lemma 10

Let t ∈ [0, T ] be fixed. For this part of the analysis, we distinguish two cases, either the given points (x, x′) ∈ R
d

are for a fixed t ∈ [0, T ) in a globally off-diagonal regime, i.e., c0|x − x′|α ≥ (T − t) for a constant c0 to be
specified but meant to be small. This means that the spatial distance is larger than the characteristic time-scale
up to a prescribed constant which will be useful to equilibrate the computations. In this case, we will mainly
use the controls of Lemma 9.

In the diagonal case, c0|x−x′|α ≤ (T−t), the spatial points are closer than the typical time-scale magnitude
but in the time integration for the source and the perturbative term (see e.g. (2.45) below), when (s − t) ≤
c0|x − x′|α there is again a local off-diagonal regime. The key point is that to handle these terms properly it
will be useful to be able to change freezing point, i.e., it seems reasonable that, when the spatial points are
in a local diagonal regime, i.e., (s− t) ≥ c0|x− x′|α, the auxiliary frozen densities are considered for the same
freezing parameter and conversely that in the locally off-diagonal regime the densities are frozen along their
own spatial argument (similarly to equation (2.29) in Lemma 9). We are thus faced with a change of freezing
point in the Duhamel formulation. This approach was already used in [CHM18] to obtain Schauder estimates
for degenerate local Kolmogorov equations and can be used in the current setting.

2.4.1 Off-Diagonal Regime

Let x, x′ ∈ R
d be s.t. c0|x− x′|α ≥ (T − t). In that case, we claim that:

|Du(t, x)−Du(t, x′)| ≤ C|x−x′|α+β−1
(

[Dg]β+α−1(1+c0)+c
α+β−1

α
0

(

[f ]β,T+‖u‖L∞([0,T ],Cα+β
b )(1+K0)

)

)

. (2.38)
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Indeed, we readily get from (2.29), (2.33) and the proof of Lemma 9 that:

|Du(t, x)−Du(t, x′)| ≤ C

(

∣

∣

∣
DP̃

(τ,ξ)
T,t,α(gητ,ξ(T, ·))(x)

∣

∣

(τ,ξ)=(t,x)
−DP̃

(τ,ξ′)
T,t,α (gητ,ξ′(T, ·))(x′)

∣

∣

(τ,ξ′)=(t,x′)

∣

∣

∣

∣

∣

∣

∣

∣

∫ T

t

ds

∫

Rd

dy
(

Dxp̃
(τ,ξ)
α (t, s, x, y)

(

ητ,ξf − Sτ,ξ(s, y)
)

)∣

∣

∣

(τ,ξ)=(t,x)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T

t

ds

∫

Rd

dy
(

Dxp̃
(τ,ξ)
α (t, s, x′, y)

(

ητ,ξ′f − Sτ,ξ′
)

(s, y)
)∣

∣

∣

(τ,ξ′)=(t,x′)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T

t

ds

∫

Rd

dy
(

Dxp̃
(τ,ξ)
α (t, s, x, y)

(

F (s, y)− F (s, θs,τ (ξ))) ·Du(s, y)
)

ητ,ξ(s, y)
)
∣

∣

∣

(τ,ξ)=(t,x)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T

t

ds

∫

Rd

dy
(

Dxp̃
(τ,ξ′)
α (t, s, x′, y)

(

F (s, y)− F (s, θs,τ (ξ
′))) ·Du(s, y)

)

ητ,ξ′(s, y)
)∣

∣

∣

(τ,ξ′)=(t,x′)

∣

∣

∣

∣

∣

)

≤ C
(
∣

∣

∣
DP̃

(τ,ξ)
T,t,α(gητ,ξ(T, ·))(x)

∣

∣

(τ,ξ)=(t,x)
−DP̃

(τ,ξ′)
T,t,α (gητ,ξ′(T, ·))(x′)

∣

∣

(τ,ξ′)=(t,x′)

∣

∣

∣

+(T − t)
α+β−1

α

(

[f ]β,T + ‖u‖L∞([0,T ],Cα+β
b )(1 +K0)

)

)

C
(
∣

∣

∣
DP̃

(τ,ξ)
T,t,α(gητ,ξ(T, ·))(x)

∣

∣

(τ,ξ)=(t,x)
−DP̃

(τ,ξ′)
T,t,α (gητ,ξ′(T, ·))(x′)

∣

∣

(τ,ξ′)=(t,x′)

∣

∣

∣

+c
α+β−1

α
0 |x− x′|α+β−1

(

[f ]β,T + ‖u‖L∞([0,T ],Cα+β
b )(1 +K0)

)

)

. (2.39)

The last term in the r.h.s. gives a good control in the sense that provided c0 is small, the above bound is
compatible with the previously indicated circular argument to absorb the norms of u in the r.h.s. Hence to
conclude in that case it remains to handle the difference of the frozen semi-groups observed at different freezing
points in space.

Recall from (2.3) that Dxp̃
(τ,ξ)
α (t, T, x, y) = −Dyp̃

(τ,ξ)
α (t, T, x, y) and write:

(

DxP̃
(τ,ξ)
T,t,α

(

gητ,ξ(T, ·)
)

(x)−DxP̃
(τ,ξ′)
T,t,α

(

gητ,ξ′(T, ·)
)

(x′)
)

=

[
∫

Rd

p̃(τ,ξ)α (t, T, x, y)D
(

gητ,ξ
)

(y)dy −
∫

Rd

p̃(τ,ξ
′)

α (t, T, x′, y)D
(

gητ,ξ′
)

(y)dy

]

=

[
∫

Rd

p̃(τ,ξ)α (t, T, x, y)[D
(

gητ,ξ
)

(y)−D
(

gητ,ξ
)

(θT,t(ξ))]dy

+[D
(

gητ,ξ
)

(θT,t(ξ))−D
(

gητ,ξ′
)

(T, θT,t(ξ
′))]−

∫

Rd

p̃(τ,ξ
′)

α (t, T, x′, y)[D
(

gηη,ξ′
)

(y)−D
(

gηη,ξ′
)

(θT,t(ξ
′))]dy

]

,

recalling that p̃
(τ,ξ)
α (t, T, x, ·), p̃(τ,ξ

′)
α (t, T, x′, ·) are probability densities for the last equality. Taking τ = t, ξ =

x, ξ′ = x′ we now write from (2.3) (recall that α + β − 1 < α) and observing from the definition of the cut-
off functions ητ,ξ, ητ,ξ′ that ητ,ξ(θT,τ (ξ))

∣

∣

(τ,ξ)=(t,x)
= ητ,ξ′(θT,τ (ξ

′))
∣

∣

(τ,ξ′)=(t,x′)
= 1, Dητ,ξ(θT,τ (ξ))

∣

∣

(τ,ξ)=(t,x)
=

Dητ,ξ′(θT,τ (ξ
′))
∣

∣

(τ,ξ′)=(t,x′)
= 0:

|DxP̃
(τ,ξ)
T,t,α

(

gητ,ξ(T, ·)
)

(x) −DxP̃
(τ,ξ′)
T,t

(

gητ,ξ′(T, ·)
)

(x′)|(τ,ξ,ξ′)=(t,x,x′)

≤ C

[
∫

Rd

pα(T − t, y −mξ
T,t(x))

(

[Dg]β+α−1 + 1
)

|y − θT,t(ξ)|β+α−1dy + [Dg]β+α−1|θT,t(ξ)− θT,t(ξ
′)|α+β−1

+

∫

Rd

pα(T − t, y −mξ′

T,t(x
′))
(

[Dg]β+α−1 + 1
)

|y − θT,t(ξ
′)|β+α−1dy

]

∣

∣

∣

(ξ,ξ′)=(x,x′)
,

≤ C

[
∫

Rd

pα(T − t, y − θT,t(x))
(

[Dg]β+α−1 + 1
)

|y − θT,t(x)|β+α−1dy + [Dg]β+α−1|θT,t(x) − θT,t(x
′)|α+β−1

+

∫

Rd

pα(T − t, y − θT,t(x
′))
(

[Dg]β+α−1 + 1
)

|y − θT,t(x
′)|β+α−1dy

]

.
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With the corresponding scaling (cf. (NDa)) we derive:

|DxP̃
(τ,ξ)
T,t,α

(

gητ,ξ(T, ·)
)

(x)−DxP̃
(τ,ξ′)
T,t

(

gητ,ξ′(T, ·)
)

(x′)|
∣

∣

∣

(τ,ξ,ξ′)=(t,x,x′)

≤ C([Dg]β+α−1 + 1)
[

(T − t)
β+α−1

α + |θT,t(x)− θT,t(x
′)|α+β−1

]

. (2.40)

From the spatial regularity of F we have the following key result whose proof is postponed to the Appendix.

Lemma 11 (Controls on the flows). Let α+β > 1 and F satisfying (1.3). Then there exists a constant C ≥ 1
s.t. for all 0 ≤ t ≤ s ≤ T ≤ 1, (x, x′) ∈ (Rd)2:

|θs,t(x)− θs,t(x
′)| ≤ C(|x − x′|+ (s− t)

1
1−β ) ≤ C(|x − x′|+ (s− t)

1
α ). (2.41)

From (2.41) with s = T and (2.40), we therefore derive that:

|DxP̃
(τ,ξ)
T,t,α

(

gητ,ξ(T, ·)
)

(x)−DxP̃
(τ,ξ′)
T,t

(

gητ,ξ′
)

(x′)|
∣

∣

∣

(τ,ξ,ξ′)=(t,x,x′)

≤ C([Dg]β+α−1 + 1)
[

(T − t)
β+α−1

α + |x− x′|α+β−1
]

≤ C([Dg]β+α−1 + 1)(1 + c0)|x− x′|α+β−1. (2.42)

Plugging (2.42) into (2.39) eventually yields for the off-diagonal regime that (2.38) holds.

2.4.2 Diagonal-Regime

It is here assumed that for given points (t, x, x′) ∈ [0, T ]× (Rd)2, c0|x− x′|α ≤ (T − t). All the statements
of the paragraph tacitly assume this condition holds. We first need here to consider a Duhamel
representation formula for which we change freezing point along the time integration variable. With the
previous notations of Proposition 8 the following expansion of u and its gradient holds.

Proposition 12 (Duhamel formula with change of freezing points). Let u ∈ C
α+β
b ([0, T ]× R

d) be a solution

of (1.1). For fixed (t, x′) ∈ [0, T ]×R
d and any freezing parameters (τ, ξ′, ξ̃′) ∈ [0, T ]× (Rd)2, for all τ0 ∈ [t, T ]:

vτ,ξ′(t, x
′) = P̃

(τ,ξ̃′)
T,t,α (gητ,ξ̃′(T, ·))(x′) + G̃

(τ,ξ′)
τ0,t,α(fητ,ξ′ − Sτ,ξ′)(t, x′) + G̃

(τ,ξ̃′)
T,τ0,α

(fητ,ξ̃′ − Sτ,ξ̃′)(t, x′)

+P̃
(τ,ξ′)
τ0,t,αvτ,ξ′(τ0, x

′)− P̃
(τ,ξ̃′)
τ0,t,αvτ,ξ̃′(τ0, x

′)

+

∫ T

t

ds

∫

Rd

dy

(

Is≤τ0 p̃
(τ,ξ′)
α (t, s, x′, y)

(

(

F (s, y)− F (s, θs,τ (ξ
′))
)

·Du(s, y)
)

ητ,ξ′(s, y)

+Is>τ0 p̃
(τ,ξ̃′)
α (t, s, x′, y)

(

(

F (s, y)− F (s, θs,τ (ξ̃
′))
)

·Du(s, y)
)

ητ,ξ̃′(s, y)

)

, (2.43)

where vτ,ξ′(t, x
′) = (uητ,ξ′)(t, x

′) and we recall from (2.19) that:

∀0 ≤ v < r ≤ T, G̃(τ,ξ′)
r,v,α f(t, x) :=

∫ r

v

ds

∫

Rd

dyp̃(τ,ξ
′)

α (t, s, x′, y)f(s, y).

Let now x, x′ ∈ R
d be s.t. c0|x − x′|α ≤ T − t. Then we can differentiate the previous expression for suitable

freezing parameters. Namely:
(

Dxvτ,ξ′(t, x
′)
)

|(τ,ξ′)=(t,x)

=
(

DxP̃
(τ,ξ̃′)
T,t,α (gητ,ξ̃′(T, ·))(x′)

)

(τ,ξ̃′)=(t,x)
+
(

DG̃
(τ,ξ′)
τ0,t,α(fητ,ξ′ − Sτ,ξ′)(t, x′)

)

(τ0,τ,ξ′)=(t0,t,x′)

+
(

DxG̃
(τ,ξ̃′)
T,τ0,α

(fητ,ξ̃′ − Sτ,ξ̃′)(t, x′)
)

(τ0,τ,ξ̃′)=(t0,t,x)

+
(

DxP̃
(τ,ξ′)
τ0,t,αvτ,ξ′(τ0, x

′)
)

(τ0,τ,ξ′)=(t0,t,x′)
−
(

DP̃
(τ,ξ̃′)
τ0,t,αvτ,ξ̃′(τ0, x

′)
)

(τ0,τ,ξ̃′)=(t0,t,x)

+

∫ T

t

ds

∫

Rd

dy

(

Is≤τ0Dp̃
(τ,ξ′)
α (t, s, x′, y)

(

(

F (s, y)− F (s, θs,τ (ξ
′))
)

·Du(s, y)
)

ητ,ξ′(s, y)

+Is>τ0Dp̃
(τ,ξ̃′)
α (t, s, x′, y)

(

(

F (s, y)− F (s, θs,τ (ξ̃
′))
)

·Du(s, y)
)

ητ,ξ̃′(s, y)

)

(τ0,τ,ξ′,ξ̃′)=(t0,t,x′,x)

,

where t0 = t+ c0|x− x′|α as in (2.18).
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The previous proposition thus emphasizes that changing the freezing point according to the current (local)
diagonal or off-diagonal regime can actually been done up to an additional discontinuity term.

Proof. Restarting from (2.27) we can indeed rewrite for given (t, x′) ∈ [0, T ]× R
d and any r ∈ (t, T ], (τ, ξ′) ∈

[0, T ]× R
d:

vτ,ξ′(t, x
′) = P̃

(τ,ξ′)
r,t,α vτ,ξ′(r, x) + G̃

(τ,ξ′)
r,t,α (fητ,ξ′ − Sτ,ξ′)(t, x′)

+

∫ r

t

ds

∫

Rd

dyp̃(τ,ξ
′)

α (t, s, x′, y)
(

F (s, y)− F (s, θs,τ (ξ))
)

·Du(s, y)ητ,ξ′(s, y). (2.44)

According to Proposition 5, we obtain that for a.e. r ∈ (t, T ] for any ξ′ ∈ R
nd:

0 = ∂r[P̃
(τ,ξ′)
r,t,α vτ,ξ′(r, x

′)] +

∫

Rd

dyp̃(τ,ξ
′)

α (t, r, x′, y)
(

fητ,ξ′ − Sτ,ξ′
)

(r, y)

+

∫

Rd

dyp̃(τ,ξ
′)

α (t, r, x′, y)
(

(

F (r, y)− F (r, θr,τ (ξ))
)

·Du(r, y)
)

ητ,ξ′(r, y). (2.45)

Integrating (2.45) with respect to r between t and t0 ∈ (t, T ] for a first given ξ′ and between t0 and T with a
possibly different ξ̃′ yields:

0 = P̃
(τ,ξ′)
t0,t,αvτ,ξ′(t0, x

′)− vτ,ξ′(t, x
′) +

∫ t0

t

ds

∫

Rd

dyp̃(τ,ξ
′)

α (t, s, x′, y)(fητ,ξ′ − Sτ,ξ′)(s, y)

+

∫ t0

t

ds

∫

Rd

dyp̃(τ,ξ
′)

α (t, s, x′, y)
(

(

F (s, y)− F (s, θs,τ (ξ
′))
)

·Du(s, y)
)

ητ,ξ′(s, y)

+P̃
(τ,ξ̃′)
T,t,α vτ,ξ̃′(T, x

′)− P̃
(τ,ξ̃′)
t0,t,αvτ,ξ̃′(t0, x

′) +

∫ T

t0

ds

∫

Rd

dyp̃(τ,ξ̃
′)

α (t, s, x′, y)(fητ,ξ̃′ − Sτ,ξ̃′)(s, y)

+

∫ T

t0

ds

∫

Rd

dyp̃(τ,ξ̃
′)

α (t, s, x′, y)
(

(

F (s, y)− F (s, θs,τ (ξ̃
′))
)

·Du(s, y)
)

ητ,ξ̃′(s, y).

Since vτ,ξ̃′(T, x
′) = (gητ,ξ̃′(T, ·))(x′) (terminal condition), using the notations of (2.44), the above equation

rewrites:

vτ,ξ′(t, x
′) = P̃

(τ,ξ̃′)
T,t,α (gητ,ξ̃′(T, ·))(x′) + G̃

(τ,ξ′)
t0,t,α(fητ,ξ′ − Sτ,ξ′)(t, x′) + G̃

(τ,ξ̃′)
T,t0,α

(fητ,ξ̃′ − Sτ,ξ̃′)(t, x′)

+P̃
(τ,ξ′)
t0,t,αvτ,ξ′(t0, x

′)− P̃
(τ,ξ̃′)
t0,t,αvτ,ξ̃′(t0, x

′)

+

∫ T

t

ds

∫

Rd

dy

(

Is≤t0 p̃
(τ,ξ′)
α (t, s, x′, y)

(

(

F (s, y)− F (s, θs,τ (ξ
′))
)

·Du(s, y)
)

ητ,ξ′(s, y)

+Is>t0 p̃
(τ,ξ̃′)
α (t, s, x′, y)

(

(

F (s, y)− F (s, θs,τ (ξ̃
′))
)

·Du(s, y)
)

ητ,ξ̃′(s, y)

)

. (2.46)

This gives (2.46). Expression (2.43) can then, for the indicated freezing parameters, be differentiated in space
reproducing the arguments used to derive (2.29) and noting that when s > τ0 > t the bounded convergence
theorem readily applies for the last contribution. This gives (2.44).

We can from (2.43) express the full expression of the difference to be investigated. Namely, for all (t, x, x′) ∈
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[0, T ]× (Rd)2, recalling that for (τ, ξ, ξ′) = (t, x, x′), ητ,ξ(t, x) = ητ,ξ′(t, x
′) = 1 we get:

|Dxu(t, x
′)−Dxu(t, x)|

=
∣

∣

∣
Dx(uητ,ξ′)(t, x

′)
∣

∣

(τ,ξ′)=(t,ξ′)
−Dx(uητ,ξ)(t, x)

∣

∣

(τ,ξ)=(t,x)

∣

∣

∣

≤
∣

∣

∣

[

DxP̃
(τ,ξ̃′)
T,t,α

(

ητ,ξ̃′(T, ·)g
)

(x′)−DxP̃
(τ,ξ)
T,t,α

(

ητ,ξ(T, ·)g
)

(x)
]∣

∣

∣

∣

∣

∣

(τ,ξ̃′,ξ)=(t,x,x)

+
∣

∣DxP̃
(τ,ξ′)
τ0,t,αvτ,ξ′(τ0, x

′)−DxP̃
(τ,ξ̃′)
τ0,t,αvτ,ξ̃′(τ0, x

′)
∣

∣

∣

∣

∣

(τ0,τ,ξ′,ξ̃′)=(t0,t,x′,x)

+|DxG̃
(τ,ξ′)
τ0,t,α

(

fητ,ξ′ − Sτ,ξ′
)

(t, x′) +DxG̃
(τ,ξ̃′)
T,τ0,α

(

fητ,ξ̃′ − Sτ,ξ̃′
)

(t, x′)

−DxG̃
(τ,ξ)
T,t,α(fητ,ξ − Sτ,ξ)(t, x)|

∣

∣

∣

(τ0,τ,ξ′,ξ̃′,ξ)=(t0,t,x′,x,x)

+
∣

∣

∣

∫ T

t

ds

∫

Rd

dy

(

Is≤τ0Dxp̃
(τ,ξ′)
α (t, s, x′, y)

(

(

F (s, y)− F (s, θs,τ (ξ
′))
)

·Du(s, y)
)

ητ,ξ′(s, y)

+Is>τ0Dxp̃
(τ,ξ̃′)
α (t, s, x′, y)

(

(

F (s, y)− F (s, θs,τ (ξ̃
′))
)

·Du(s, y)
)

ητ,ξ̃′(s, y)

−Dxp̃
(τ,ξ)
α (t, s, x, y)

(

(

F (s, y)− F (s, θs,τ (ξ))
)

·Du(s, y)
)

ητ,ξ(s, y)

)

(τ0,τ,ξ′,ξ̃′,ξ)=(t0,t,x′,x,x)

∣

∣

∣
.

Since we have initially assumed T small and we are currently in the diagonal-regime, |x− x′| ≤ [(T − t)/c0]
1
α ,

we may assume |x− x′| ≤ 1 provided c0 is small enough. In such case, we obtain the following estimate.

Lemma 13. There exists C ≥ 1 s.t. for all (t, x, x′) ∈ [0, T ]× R
d × R

d, s.t. c0|x − x′|α ≤ T − t, one has for
g ∈ Cβ+α(Rd,R):

|Dxu(t, x
′)−Dxu(t, x)|

≤ |x− x′|α+β−1

{

C

(

(

[Dg]Cβ+α−1
b

+ 1
)

+ ‖g‖Cα+β
b

+ T
α+β−1

α ‖f‖L∞([0,T ],Cβ
b )

+c
α+β−1

α
0 ([Du]β+α−1,T + ‖u‖∞)(1 +K0) +K0(c

1+ β−2
α

0 + c
α+β−1

α
0 )‖Du‖L∞

)

+
1

4
‖u‖L∞([0,T ],Cα+β

b )

}

The proof of Lemma 10 then follows from above Lemma and control (2.38). The remainder of this part is
dedicated to the proof of the above estimate.

Controls of the frozen semi-group. Note that the freezing points ξ̃′ = ξ̃ = x. Hence, the first contribution
in the r.h.s. of (2.47) can be handled similarly to the proof of Proposition 6 (see equations (2.13)-(2.16)).
Namely, we get the following lemma.

Lemma 14. There exists C ≥ 1 s.t. for all (t, x, x′) ∈ [0, T ]× R
d × R

d, s.t. c0|x − x′|α ≤ T − t, one has for
g ∈ Cβ+α(Rd,R):

∣

∣DxP̃
(τ,ξ)
T,t,α

(

gητ,ξ(T, ·)
)

(x) −DxP̃
(τ,ξ̃′)
T,t,α

(

gητ,ξ̃′(T, ·)
)

(x′)
∣

∣

∣

∣

∣

(τ,ξ̃′,ξ)=(t,x,x)

=
∣

∣DxP̃
(τ,ξ)
T,t,α

(

gητ,ξ(T, ·)
)

(x) −DxP̃
(τ,ξ)
T,t,α

(

gητ,ξ(T, ·)
)

(x′)
∣

∣

∣

∣

∣

(τ,ξ)=(t,x)

≤ C
(

[D(gητ,ξ)(T, ·)]Cβ+α−1
b

)

∣

∣

∣

(τ,ξ)=(t,x)
|x− x′|α+β−1 ≤ C

(

[Dg]Cβ+α−1
b

+ 1
)

|x− x′|α+β−1.

Smoothing effects associated with the Green kernel. Let us recall that in the proof of the Schauder
estimates for the frozen operator (Proposition 6), to control in the global diagonal-regime the Hölder norms of
the Green kernel, we split into two parts the time integrals according to the position of the time integration
variable w.r.t. the change of regime time t0 (see (2.18)) a posteriori chosen to be t0 := t+ c0|x− x′|α. This is
again the splitting according to the (now local) off-diagonal and diagonal regime.
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Lemma 15. Under (A) and for T small enough, there exists a constant C := C((A), T ) s.t for fixed points
(t, x, x′) ∈ [0, T ]× (Rd)2, s.t. c0|x− x′|α ≤ T − t and for all f ∈ L∞

(

[0, T ], Cβ(Rd,R)
)

:

(

|DxG̃
(τ,ξ)
τ0,t,α

(

fητ,ξ − Sτ,ξ
)

(t, x)−DxG̃
(τ,ξ′)
τ0,t,α

(

fητ,ξ′ − Sτ,ξ′
)

(t, x′)|
∣

∣

∣

(τ0,τ,ξ,ξ′)=(t0,t,x,x′)

+|DxG̃
(τ,ξ)
T,τ0,α

(

fητ,ξ − Sτ,ξ
)

(t, x) −DxG̃
(τ,ξ̃′)
T,τ0,α

(

fητ,ξ̃′ − Sτ,ξ̃′
)

(t, x′)|
∣

∣

∣

(τ0,τ,ξ,ξ̃′)=(t0,t,x,x)

)

≤
(

C
(

‖g‖Cα+β
b

+ T
α+β−1

α ‖f‖L∞([0,T ],Cβ
b )

)

+
1

4
‖u‖L∞([0,T ],Cα+β

b )

)

|x− x′|α+β−1. (2.47)

Proof of Lemma 15. Let us first control the Hölder moduli of the arguments of the Green kernel. Observe that:

[fητ,ξ]β,T ≤ [f ]β,T + C‖f‖∞ ≤ C‖f‖L∞([0,T ],Cβ
b ). (2.48)

On the other hand, from (2.35) and Lemma 9 we derive that for any ε ∈ (0, 1):

[Sτ,ξ]β,T ≤ Cβ,α
(

(1 + ε−1)(‖u‖∞ + ‖Du‖∞) + ε‖u‖L∞([0,T ],Cα+β
b )

)

,

≤ Cβ,α
(

(1 + ε−1)(‖g‖∞ + T ‖f‖∞ + ‖Du‖∞(1 +K0)) + ε‖u‖L∞([0,T ],Cα+β
b

)

)

≤ Cβ,α(1 +K0)
(

(1 + ε−1)
(

‖g‖α+β + T
α+β−1

α ‖f‖L∞([0,T ],Cβ
b )

)

+
(

(1 + ε−1)T
α+β−1

α (1 +K0) + ε
)

‖u‖L∞([0,T ],Cα+β
b )

)

.

Now, for ε small enough and T small enough w.r.t. ε it is clear from the above equation that

[Sτ,ξ]β,T ≤ Cβ,α(1 +K0)
(

(1 + ε−1)
(

‖g‖α+β + T
α+β−1

α ‖f‖L∞([0,T ],Cβ
b )

)

)

+
c

2−(α+β)
α

0

8
‖u‖L∞([0,T ],Cα+β

b ).

(2.49)

Let us then consider for the difference of the Green kernels the off-diagonal regime. We readily get from
Lemma 5 (with τ = t) and the above equations (2.48) and (2.49) that

∣

∣DxG̃
(τ,ξ)
τ0,t,α

(

fητ,ξ − Sτ,ξ
)

(t, x)−DxG̃
(τ,ξ′)
τ0,t,α(fητ,ξ′ − Sτ,ξ′)(t, x′)

∣

∣

∣

∣

∣

(τ0,τ,ξ,ξ′)=(t0,t,x,x′)

≤
∣

∣

∣

∫ t0

t

dsDxP̃
(τ,ξ)
s,t,α (fητ,ξ − Sτ,ξ)(s, x)

∣

∣

∣

∣

∣

∣

∣

(τ,ξ)=(t,x)

+
∣

∣

∣

∫ t0

t

dsDxP̃
(τ,ξ′)
s,t,α (fητ,ξ′ − Sτ,ξ′)(s, x′)

∣

∣

∣

∣

∣

∣

∣

ξ′=x′

≤ C([fητ,ξ]β,T + [Sτ,ξ]β,T + [fητ,ξ′ ]β,T + [Sτ,ξ′ ]β,T )
∣

∣

(τ,ξ,ξ′)=(t,x,x′)

∫ t0

t

ds(s− t)−
1
α+ β

α

≤
(

C
(

‖g‖Cα+β
b

+ T
α+β−1

α ‖f‖L∞([0,T ],Cβ
b )

)

+
1

8
‖u‖L∞([0,T ],Cα+β

b )

)

|x− x′|α+β−1,

(2.50)

recalling that c0 ≤ 1 for the last inequality.
For the diagonal regime, we proceed as in the proof of Lemma 6 (see equation (2.21)) using again the

previous controls (2.48) and (2.49) to bound [fητ,ξ − Sτ,ξ]β,T . We obtain a control similar to (2.50) for:

|DxG̃
(τ,ξ)
T,τ0,α

(

fητ,ξ − Sτ,ξ
)

(t, x)−DxG̃
(τ,ξ̃′)
T,τ0,α

(

fητ,ξ̃′ − Sτ,ξ̃′
)

(t, x′)|
∣

∣

∣

(τ0,τ,ξ,ξ̃′)=(t0,t,x,x)
,

which then gives the statement.

Smoothing effects associated with the discontinuity term. It now remains to control the contribution
arising from the change of freezing point in equation (2.47). The main result of this section is the next lemma.

Lemma 16 (Control of the discontinuity terms). There exists C := C((A)) s.t. for all (t, x, x′) ∈ [0, T ]×R
d×

R
d, s.t. c0|x− x′|α ≤ T − t, for t0 =

(

t+ c0|x− x′|α
)

≤ T as in (2.18),

∣

∣DxP̃
(τ,ξ′)
τ0,t,αvτ,ξ′(τ0, x

′)−DxP̃
(τ,ξ̃′)
τ0,t,αvτ,ξ̃′(τ0, x

′)
∣

∣

(τ0,ξ′,ξ̃′)=(t0,x′,x)

≤ Cc
α+β−1

α
0 ([Du]β+α−1,T + ‖u‖∞)(1 +K0)|x − x′|α+β−1.
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We can write:
(

DxP̃
(τ,ξ′)
τ0,t,αvτ,ξ′(τ0, x

′)−DxP̃
(τ,ξ̃′)
τ0,t,αvτ,ξ′(t0, x

′)
)

(τ0,τ,ξ′,ξ̃′)=(t0,t,x′,x)

=

[

∫

Rd

p̃(τ,ξ
′)

α (t, τ0, x
′, y)Dvτ,ξ′(τ0, y)dy −

∫

Rd

p̃(τ,ξ̃
′)

α (t, τ0, x
′, y)Dvτ,ξ̃′(τ0, y)dy

]

(τ0,τ,ξ′,ξ̃′)=(t0,t,x′,x)

=

[

∫

Rd

p̃(τ,ξ
′)

α (t, τ0, x
′, y)[Dvτ,ξ′(t0, y)−Du(τ0,m

(τ,ξ′)
τ0,t (x′))]dy

−
∫

Rd

p̃(τ,ξ̃
′)

α (t, τ0, x
′, y)[Dvτ,ξ̃′(τ0, y)−Dvτ,ξ̃′(τ0,m

(τ,ξ̃′)
τ0,t (x′))]dy

]

(τ0,τ,ξ′,ξ̃′)=(t0,t,x′,x)

+|Dvτ,ξ̃′(τ0,m
(τ,ξ̃′)
τ0,t (x′))−Dvτ,ξ′(τ0,m

(τ,ξ′)
τ0,t (x′)|(τ0,τ,ξ′,ξ̃′)=(t0,t,x′,x).

Exploiting now the regularity of Du and the integrability property (NDa) we then derive:

|DxP̃
(τ,ξ′)
τ0,t,αvτ,ξ′(τ0, x

′)−DxP̃
(τ,ξ̃′)
τ0,t,αvτ,ξ̃′(τ0, x

′)|(τ0,τ,ξ′,ξ̃′)=(t0,t,x′,x)

≤ C
(

[Du]α+β−1,T + ‖u‖∞
)

[

(t0 − t)
α+β−1

α + |m(t,x)
t0,t (x

′)−m
(t,x′)
t0,t (x′)|α+β−1

]

≤ C
(

[Du]α+β−1,T + ‖u‖∞
)

[

c
α+β−1

α
0 |x− x′|α+β−1 + |m(t,x)

t0,t (x
′)−m

(t,x′)
t0,t (x′)|α+β−1

]

, (2.51)

recalling from (2.18) that t0 = t+ c0|x−x′|α for the last inequality. It therefore remains to control m
(t,x)
t0,t (x

′)−
m

(t,x′)
t0,t (x′). Write:

|m(t,x)
t0,t (x

′)−m
(t,x′)
t0,t (x′)| = |[x′ +

∫ t0

t

F (v, θv,t(x))dv] − [x′ +

∫ t0

t

F (v, θv,t(x
′))dv]|

≤ K0

∫ t0

t

dv|θv,t(x)− θv,t(x
′)|β ≤ CK0 (t0 − t)

(

|x− x′|+ (t− t0)
1
α

)β

≤ CK0c0|x− x′|α+β ≤ CK0c0|x− x′|, (2.52)

using Lemma 11 for the second inequality. We have also assumed w.l.o.g. that |x − x′| ≤ 1 and exploited as
well that α+ β > 1. Plugging (2.52) into (2.51) yields the statement of the lemma.

Smoothing effects associated with the perturbative term. This section is dedicated to the investigation
of the spatial Hölder continuity of the perturbative term in (2.47). We prove the following Lemma which is
the most difficult part of the proof of Theorem 3.

Lemma 17. Under (A), there exists a constant C := C((A), T ) s.t. for fixed (t, x, x′) ∈ [0, T ] × (Rd)2 s.t.
c0|x− x′|α ≤ T − t, we have that:

∣

∣

∣

∫ T

t

ds

∫

Rd

dy
(

Is≤t0Dxp̃
(τ,ξ′)
α (t, s, x′, y)

(

(

F (s, y)− F (s, θs,τ (ξ
′))
)

·Du(s, y)
)

ητ,ξ′(s, y)

+Is>t0Dxp̃
(τ,ξ̃′)
α (t, s, x′, y)

(

(

F (s, y)− F (s, θs,τ (ξ̃
′))
)

·Du(s, y)
)

ητ,ξ̃′(s, y)

−Dxp̃
(τ,ξ)
α (t, s, x, y)

(

(

F (s, y)− F (s, θs,τ (ξ))
)

·Du(s, y)
)

ητ,ξ(s, y)
∣

∣

∣

(τ0,τ,ξ,ξ′,ξ̃′)=(t0,t,x,x′,x)

≤ CK0(c
1+ β−2

α
0 + c

α+β−1
α

0 )‖Du‖L∞|x− x′|α+β−1. (2.53)

As already used for the semi-group and the Green kernel, we split the investigations into two parts: the first
one is done when the system is in the local off-diagonal regime w.r.t. the current integration time s (i.e. for
s ≤ t0) and the other one when the system is in the local diagonal regime (i.e., for s > t0). We also recall that
the critical time giving the change of regime is (chosen after potential differentiation) t0 = t+ c0|x− x′|α ≤ T
(in the current global diagonal regime).
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• Control of (2.53): Local Off-Diagonal case. Arguing as in Lemma 15 we write for the local off-diagonal
regime:

|Dx∆
ξ,ξ′

off-diag(t, x, x
′)|
∣

∣

(ξ,ξ′)=(x,x′)

:=
∣

∣

∣

∫ t0

t

ds

∫

Rd

(

Dxp̃
(τ,ξ′)
α (t, s, x′, y)

(

(

F (s, y)− F (s, θs,τ (ξ
′))
)

·Du(s, y)
)

ητ,ξ′(s, y)

−Dxp
(τ,ξ)
α (t, s, x, y)

(

(

F (s, y)− F (s, θs,τ (ξ))
)

·Du(s, y)
)

ητ,ξ(s, y)
∣

∣

∣

(τ,ξ,ξ′)=(t,x,x′)

≤ CK0‖Du‖∞
[

∣

∣

∣

∫ t0

t

ds

∫

Rd

dy|Dxp̃
(τ,ξ)
α (t, s, x, y)||y − θs,t(ξ)|β

∣

∣

∣

∣

∣

∣

∣

(τ,ξ)=(t,x)

+
∣

∣

∣

∫ t0

t

ds

∫

Rd

dy|Dxp̃
(τ,ξ′)
α (t, s, x′, y)||y − θs,t(ξ

′)|β
∣

∣

∣

∣

∣

∣

∣

(τ,ξ′)=(t,x′)

]

. (2.54)

We readily get since t0 = t+ c0|x− x′|α ≤ T using the integrability property (Pβ):

|Dx∆
ξ,ξ′

off-diag(t, x, x
′)|
∣

∣

(ξ,ξ′)=(x,x′)
≤ CK0

∫ t0

t

ds

(s− t)
1
α− β

α

‖Du‖L∞

≤ CK0‖Du‖L∞c
α+β−1

α
0 |x− x′|α+β−1. (2.55)

• Control of (2.53): Local Diagonal case. Let us now turn to the control of

|Dx∆
ξ,ξ̃′

diag(t, T, x, x
′)|
∣

∣

∣

(ξ,ξ̃′)=(x,x)
(2.56)

:=
∣

∣

∣

∫ T

t0

ds

∫

Rd

dy
(

Dxp̃
(τ,ξ̃′)
α (t, s, x′, y)

(

(

F (s, y)− F (s, θs,t(ξ̃
′))
)

·Du(s, y)
)

ητ,ξ̃′(s, y)

−Dxp̃
(τ,ξ)
α (t, s, x, y)

(

(

F (s, y)− F (s, θs,t(ξ))
)

·Du(s, y)
)

ητ,ξ(s, y)
∣

∣

∣

(τ,ξ,ξ̃′)=(t,x,x)

:=
∣

∣

∣

∫ T

t0

ds

∫

Rd

dy
(

Dxp̃
(τ,ξ)
α (t, s, x′, y)−Dxp̃

(τ,ξ)
α (t, s, x, y)

)

×
(

(

F (s, y)− F (s, θs,t(ξ))
)

·Du(s, y)
)

ητ,ξ(s, y)
∣

∣

∣

(τ,ξ)=(t,x)

≤ ‖Du‖∞|x− x′|
∫ T

t0

ds

∫ 1

0

dµ

∫

Rd

dy
∣

∣D2pα(s− t, y − θs,t(x) + µ(x− x′))| |F (s, y)− F (s, θs,t(x))|ηt,x(s, y),

recalling (2.3) for the last inequality. We finally get:

|Dx∆
ξ,ξ̃′

diag(t, T, x, x
′)|
∣

∣

∣

(ξ,ξ̃′)=(x,x)

≤ ‖Du‖∞K0|x− x′|
∫ T

t0

ds

∫ 1

0

dµ

∫

Rd

dy
∣

∣D2pα(s− t, y − θs,t(x) + µ(x− x′))| |y − θs,t(x)|βI|y−θs,t(x)|≤2

≤ ‖Du‖∞K0|x− x′|
∫ T

t0

ds

∫ 1

0

dµ

∫

Rd

dy
∣

∣D2pα(s− t, y + µ(x− x′))| |y|β

≤ ‖Du‖∞K0|x− x′|
∫ T

t0

ds

∫ 1

0

dµ
[

∫

Rd

dy
∣

∣D2pα(s− t, y + µ(x− x′))| |y + µ(x − x′)|β

+

∫

Rd

dy
∣

∣D2pα(s− t, y + µ(x− x′))| |µ(x − x′)|β
]

Now since s ∈ [t0, T ] and t0 = t+ c0|x− x′|α we have s− t ≥ c0|x− x′|α and so

|x− x′| ≤ (c0)
−1/α (s− t)1/α ≤ K(s− t)

1
α (2.57)

if the threshold K is chosen large enough. Applying property (Pβ) twice with γ = β and γ = 0 we eventually
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derive:

|Dx∆
ξ,ξ̃′

diag(t, x, x
′)|
∣

∣

(ξ,ξ̃′)=(x,x′)
≤ CK0‖Du‖∞|x− x′|

∫ T

t0

ds

(s− t)
2
α− β

α

≤ CK0‖Du‖L∞ (t0 − t)1+
β
α− 2

α |x− x′|
≤ CK0‖Du‖L∞|x− x′|α+β−1, (2.58)

where C = C(c0, (A)) > 0. Equations (2.55) and (2.58) give the statement of the lemma.

3 Existence result.

We point out here that the classical continuity method, which is direct from the a priori estimate, and which
was successfully used in [Pri12] to establish existence in the elliptic setting, does not work for α ∈ (0, 1). The
key point is that when one tries to write:

∂tu(t, x) + Lαu+ δ0F (t, x) ·Du(t, x) = −f(t, x) + (δ0 − δ)F (t, x) ·Dv(t, x),

where v ∈ Cα+βb (Rd,R) then, the product F (t, x) · Dv(t, x) has under (A) a Hölder-regularity of order
β + α − 1 < β, since α ∈ (0, 1). Therefore, we cannot in this framework readily apply our a priori esti-
mate in a fixed point perspective.

We will proceed through a vanishing viscosity approach, as it was also for instance considered by Silvestre
in [Sil12] or by Zhang and Zhao in [ZZ18]. Namely, we consider for a given parameter ε > 0 the IPDE:

∂tu(t, x) + Lαu(t, x) + Fε(t, x) ·Dxu(t, x) + ε∆
1
2 u(t, x) = −fε(t, x), on [0, T )× R

d,

u(T, x) = gε(x), on R
d, (3.1)

where fε, gε are mollified version of the initial sources and terminal condition f and g in time-space and space
respectively which satisfy uniformly w.r.t. the mollification procedure assumption (A). Also, Fε stands for a
mollified truncation of F so that for any fixed ε > 0, Fε is smooth, bounded and uniformly β-Hölder continuous
in space and satisfies assumption (A)uniformly w.r.t. the mollification procedure as well.

The procedure is the following we aim at showing that, for any fixed ε > 0, there is a unique solution
u := uε to equation (3.1) which belongs to the function space C

1+β
b ([0, T ] × R

d) (where for the regularity of
the generalized time derivative in point iii) of the corresponding definition at p. 6, the parameter α + β − 1

has to be replaced by β because, from the ε∆
1
2 regularization term, we go back to the sub-critical case). The

next step then consists in rewriting (3.1) as:

∂tu(t, x) + Lαu(t, x) + Fε(t, x) ·Dxu(t, x) = −fε(t, x) − ε∆
1
2u(t, x), on [0, T )× R

d,

u(T, x) = gε(x), on R
d, (3.2)

and to establish that ε‖∆ 1
2u‖L∞([0,T ],Cβ

b ) is controlled uniformly in ε allowing thus to expand u along the

frozen semi-groups
(

P̃
(τ,ξ)
s,t

)

0≤s,t≤T
as in Section 2 to establish that the solution satisfies the Schauder estimates

uniformly in ε. The existence of a solution in C
α+β
b ([0, T ] × R

d) then follows from a standard compactness
argument letting ε go to 0. We also point out that, although inefficient in our case, the continuity method
described above will be used several times for the analysis of the equation (3.1).

3.1 A priori controls for the regularized equation

3.1.1 Estimates for a generic source in L∞([0, T ], Cβb )

We focus in this section on an equation of the form

∂tv(t, x) + Fε(t, x) ·Dxv(t, x) + ε∆
1
2 v(t, x) = −f̄ε(t, x), on [0, T )× R

d,

v(T, x) = gε(x), on R
d, (3.3)

where f̄ε, Fε is in Cβb ([0, T ] × R
d) (i.e., fε, Fε are β-Hölder continuous in both time and space) and gε ∈

C1+β(Rd).
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In this framework, it follows from [MP14] that there exists a unique solution v := vε to (3.3) in C
1+β
b ([0, T ]×

R
d) which satisfies:

‖v‖L∞([0,T ],C1+β
b ) ≤ C

(

Θ1(ε)‖gε‖C1+β
b

+Θ2(ε)‖f̄ε‖L∞([0,T ],Cβ
b )

)

. (3.4)

With respect to the previously described procedure, we actually need to precisely quantify how the
(

Θi(ε)
)

i∈{1,2}

behave when ε goes to 0. This behavior actually depends on the smoothing effects associated with P εs,1 which

denotes the semi-group associated with ε∆
1
2 . We can therefore appeal to the results of Section 2 considering

appropriate scaling arguments. Namely, let us consider w := wε solving:

∂tw(t, x) + ε∆
1
2w(t, x) = −f̄ε(t, x), on [0, T )× R

d,

w(T, x) = gε(x), on R
d.

Setting w(t, x) =: w̄(t, x/ε) then

∂tw̄(t, y) + ∆
1
2 w̄(t, y) = −f̄ε(t, εy), on [0, T )× R

d,

w̄(T, y) = gε(εy), on R
d,

From the proof of point iii) of Proposition 6 (see also Lemma 5), we get:

ε1+β[Dw(t, ·)]β = [Dw̄(t, ·)]β ≤ C(ε1+β [Dg]β + εβ[f ]β,T ).

We thus derive that there exists C := C((A)) idependent of ε s.t. :

‖w‖L∞([0,T ],C1+β
b ) ≤ C

(

‖gε‖C1+β
b

+ ε−1‖f̄ε‖L∞([0,T ],Cβ
b )

)

. (3.5)

We can then follow the arguments of [KP10] to establish from the continuity method that a similar bound will

also hold for the unique solution v in C
1+β
b ([0, T ]× R

d) of the drifted equation (3.3). Namely,

‖v‖L∞([0,T ],C1+β
b ) ≤ C

(

‖gε‖C1+β
b

+ ε−1‖f̄ε‖L∞([0,T ],Cβ
b )

)

, (3.6)

where the above C also depends on [F ]β,T . Equation (3.6) specifies that the functions
(

Θi(ε)
)

i∈{1,2}
in (3.4)

actually write Θ1(ε) = 1,Θ2(ε) = ε−1.

3.1.2 Solvability of equation (3.1)

In order to prove existence we would like to benefit from the results of the previous section. From equation
(3.1) we introduce for a parameter λ ∈ [0, 1]:

∂tu(t, x) + Fε(t, x) ·Dxu(t, x) + ε∆
1
2 u(t, x) = −fε(t, x)− λLαu(t, x), on [0, T )× R

d,

u(T, x) = gε(x), on R
d, (3.7)

which can be viewed as a particular case of (3.3) with f̄ε = fε + λLαu.
We now recall a useful inequality. For θ ∈ (0, 1] consider an operator Lθ with symbol of the form (1.14)

satisfying (ND) and γ ∈ (0, 1) s.t θ + γ > 1. There exists Cθ,γ s.t. for a function ϕ ∈ Cγ+θb , it holds that:

‖Lθϕ‖Cγ
b
≤ Cθ,γ‖ϕ‖Cγ+θ

b
. (3.8)

Recalling that Hölder spaces can be viewed as Besov spaces, this inequality is as a direct consequence of norm
equivalences on Besov spaces (see e.g. Triebel [Tri83]). We also provide a direct proof of (3.8) in Appendix
A.2 for a self-contained presentation.

From (3.8), we derive that for v ∈ C
1+β
b ([0, T ] × R

d), Lαv ∈ L∞([0, T ], C1+β−α
b ). Hence, the continuity

method will also give from the previous estimates that for any fixed ε > 0 there exists a unique solution
uε = u ∈ C

1+β
b ([0, T ]× R

d) to (3.7) for λ ∈ [0, 1] and therefore to (3.1) corresponding to λ = 1. Also, for the

unique solution of (3.1) in C
1+β
b ([0, T ]× R

d) it holds that:

‖u‖L∞([0,T ],C1+β
b ) ≤ C

(

‖gε‖C1+β
b

+ ε−1‖fε‖L∞([0,T ],Cβ
b )

)

, C := C((A), (3.9)

and for all 0 ≤ t < s ≤ T, x ∈ R
d,

u(t, x) = u(s, x) +

∫ s

t

drfε(r, x) −
∫ s

t

dr
(

ε∆
1
2 + Lα + Fε(r, x) ·D

)

u(r, x). (3.10)
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3.2 Viscosity viewed as a source and compactness arguments

We now rewrite equation (3.1) viewing the viscous perturbation as a source. Namely, as in (3.2). We now
observe from (3.9) and (3.8) that:

ε‖∆ 1
2 u‖L∞([0,T ],Cβ

b ) ≤ C1,βε‖u‖L∞([0,T ],C1+β
b ) ≤ C1,βC(ε‖gε‖C1+β

b
+ ‖fε‖L∞([0,T ],Cβ

b ))

≤ C1,βC(ε‖gε‖C1+β
b

+ ‖f‖L∞([0,T ],Cβ
b )).

Hence, reproducing the previous expansion of Section 2 we derive that u := uε solving (3.1) satisfy the estimate:

‖uε‖L∞([0,T ],Cα+β
b ) ≤ C

(

‖g‖Cα+β
b

+ ‖f‖L∞([0,T ],Cβ
b ) + ε‖gε‖C1+β

b

)

≤ C
(

‖g‖Cα+β
b

+ ‖f‖L∞([0,T ],Cβ
b ) + h(ε)‖g‖Cα+β

b

)

≤ C
(

‖g‖Cα+β
b

+ ‖f‖L∞([0,T ],Cβ
b )

)

, (3.11)

where h(ε) →
ε→0

0, considering a suitable regularization of g, i.e., s.t. ε‖gε‖C1+β
b

≤ h(ε)‖g‖Cα+β
b

, for the second

inequality.
Note that proceeding as in Corollary 4.2 of [KP10], we also have local γ-Hölder continuity in [0, T ]×K, for

some small γ > 0, for uε and Duε for any compact set K ⊂ R
d (with a control of the Hölder norm independent

of ε).
From the Ascoli-Arzelà theorem, we deduce that there exists a subsequence εn →

n
0 and a continuous

function u on [0, T ]× R
d having bounded and continuous derivatives with respect to x such that

(uεn , Duεn) → (u,Du)

as n → ∞, uniformly on bounded subsets of [0, T ]× R
d. We also have that u ∈ L∞([0, T ], Cα+βb ) satisfies the

last inequality of (3.11). Rewrite now (3.10) along the considered subsequence:

uεn(t, x) = uεn(s, x) +

∫ s

t

drfεn(r, x)−
∫ s

t

dr
(

εn∆
1
2 + Lα + Fεn(r, x) ·D

)

uεn(r, x). (3.12)

It is readily seen that, in order to pass to the limit in the previous equation, the only delicate term to analyze
is εn∆

1
2 uεn(t, x). Observe that:

|∆ 1
2uεn(t, x)| ≤

∣

∣

∣

∫

|z|≤1

(

uεn(t, x+ z)− uεn(t, x)−Duεn(t, x) · z
) dz

|z|2
∣

∣

∣
+

∫

|z|≥1

2‖uεn‖∞
|z|2 dz

≤ C
(

[Duεn ]α+β−1,T + ‖uεn‖∞
)

≤ C
(

‖g‖Cα+β
b

+ ‖f‖L∞([0,T ],Cβ
b )

)

.

We can then pass to the limit in (3.12) and so u satisfies:

u(t, x) = u(s, x) +

∫ s

t

drf(r, x) −
∫ s

t

dr
(

Lα + F (r, x) ·D
)

u(r, x). (3.13)

The Schauder estimates of Theorem 3 then gives uniqueness. This also proves Theorem 4.

4 Proof of the Property (Pβ) in the indicated case

4.1 Proof of Proposition 2 on stable like operators close to △α/2, α ∈ (0, 1)

In other words, the Lévy measure ν in (1.9) rewrites:

ν(dy) = να(dy) = f
( y

|y|
) dy

|y|d+α .

We have to prove (1.21) for all α ∈ (0, 1), and γ ∈ [0, 1]; this will rely on global estimates on the derivatives
of pα(t, ·), t > 0, which can be deduced from the work of Kolokoltsov [Kol00]. First by [Kol00, formula (2.38) in
Proposition 2.6] we know that there exists c = c(α, η) (where η denotes the non degeneracy constant associated
with the spectral measure in (1.15)) such that

|Dypα(t, y)| ≤ c
( 1

t1/α
∧ 1

|y|
)

pα(t, y), y ∈ R
d, t > 0. (4.14)

We need the following result for the second derivatives.
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Lemma 18. For any positive K > 0, there exists c = c(α, η,K) > 0 such that, for |y| ≤ Kt1/α we have

|D2
ypα(t, y)| ≤

c

t2/α
pα(t, y), t > 0, (4.15)

and for |y| > Kt1/α we have

|D2
ypα(t, y)| ≤

c

t
· 1

|y|2−α pα(t, y), t > 0. (4.16)

Proof. As in formula (2.23) of [Kol00] we consider with b = 2, σ = t > 0,

φ2,θ(x, α, tµ) =
1

(2π)d

∫

Rd

[

∫

Sd−1

〈p, s〉2θ(ds)] exp
(

− t

∫

Sd−1

|〈p, s〉|αµ(ds)
)

e−i〈p,x〉dp.

where θ is a finite positive measure on S
d−1 such that θ(Sd−1) ≤M for some M > 0.

Then by [Kol00, Proposition 2.5] (see in particular estimates (2.29) and (2.30)) for any positive K > 0,
there exists c = c(α, η,K,M) > 0 such that, for |x| ≤ Kt1/α we have

|φ2,ν(x, α, tµ)| ≤
c

t2/α
pα(t, x), x ∈ R

d, t > 0, (4.17)

and for |x| > Kt1/α we have

|φ2,ν(x, α, tµ)| ≤
c

t
· 1

|x|2−α pα(t, x), x ∈ R
d, t > 0 (4.18)

(recalling that in [Kol00] pα(t, x) is denoted by S(x, α, tµ)). Let us fix M > 0. Let h ∈ R
d, h 6= 0, with

|h| ≤
√
M . Choosing the measure θ = |h|2 δ h

|h|
we find that

φ2,θ(x, α, tµ) =
1

(2π)d

∫

Rd

〈p, h〉2 exp
(

− t

∫

Sd−1

|〈p, s〉|αµ(ds)
)

e−i〈p,x〉dp = −D2
hhpα(t, x),

i.e., we are considering the second derivative of pα(t, ·) in the direction h. Assertions (4.15) and (4.16) now
readily follow from (4.17), (4.18).

Proof of Proposition 2. Let l = 1. Using (4.14) we find

∫

|y|≤t1/α
|y|γ |Dypα(t, y)|dy ≤

∫

|y|≤t1/α
tγ/α |Dypα(t, y)|dy

≤ c

∫

|y|≤t1/α
tγ/α t−1/αpα(t, y)dy ≤ ct[γ−1]/α.

On the other hand
∫

|y|>t1/α
|y|γ |Dypα(t, y)|dy ≤ c

∫

|y|>t1/α
|y|γ−1pα(t, y)dy

≤ c

∫

|y|>t1/α
t[γ−1]/αpα(t, y)dy ≤ ct[γ−1]/α.

Let k = 2. Using (4.15) and (4.16) we find

∫

|y|≤t1/α
|y|γ |D2

ypα(t, y)|dy ≤ c

∫

|y|≤t1/α
tγ/α t−2/αpα(t, y)dy ≤ ct[γ−2]/α.

Since α+ γ < 2, we find

∫

|y|>t1/α
|y|γ |D2

ypα(t, y)|dy ≤ c

∫

|y|>t1/α

1

t
|y|γ−2+αpα(t, y)dy

≤ c

∫

|y|>t1/α

1

t
t[γ−2+α]/αpα(t, y)dy ≤ ct[γ−2]/α.

and the assertion follow.
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We can mention that, in the specific case of the rotationally invariant heat kernel, corresponding to the
fractional Laplacian ∆α/2, the previous computations could have been shortened exploiting explicitly the
concentration gain for the derivatives of the heat kernel. Namely, it is known from Lemma 5 and Remark 6 in
Bogdan and Jakubowicz [BJ07] that in that case:

|Dxpα(t, z)| ≤
C

t
1
α

1

t
d
α

1

(1 + |z|

t
1
α
)d+α+1

. =:
C

t
1
α

p̄α(t, z). (4.19)

In other words, the derivative induces a concentration gain. The same arguments as in [BJ07], see also the
decompositions in [Wat07], also yield the corresponding result for |D2

xpα(t, z)| ≤ Ct−2/αp̄α(t, z).

4.2 Proof of Proposition 1 on symmetric stable operators with α ∈ (1/2, 1)

Here we are considering symmetric stable operators such that (1.16) holds. We want to prove (1.21) for all
α ∈ (0, 1), and γ ∈ [0, α). The result follows easily from the following key lemma.

Lemma 19 (Bounds and Sensitivities of the Stable Heat Kernel). There exists C := C((A)) s.t. for all
ℓ ∈ {1, 2}, t > 0, and y ∈ R

d:

|Dℓ
ypα(t, y)| ≤

C

tℓ/α
q(t, y), (4.20)

where
(

q(t, ·)
)

t>0
is a family of probability densities on R

d such that q(t, y) = t−d/α q(1, t−1/αy), t > 0, ∈ R
d

and for all γ ∈ [0, α), there exists a constant c := c(α, η, γ) s.t.
∫

RN

q(t, y)|y|γdy ≤ Cγt
γ
α , t > 0, (4.21)

Remark 9. From now on, for the family of stable densities
(

q(t, ·)
)

t>0
, we also use the notation q(·) := q(1, ·),

i.e., without any specified argument q(·) stands for the density q at time 1.

Proof. We denote by (St)t≥0 a stable process defined on some probability space (Ω,F , (Ft)≥0,P) whose Lévy
exponent is given by (1.14). For t > 0, the heat kernel pα(t, ·) associated with Lα given in (1.18) is then
precisely the density of St.

Let us recall that, for a given fixed t > 0, we can use an Itô-Lévy decomposition at the associated charac-
teristic stable time scale (i.e., the truncation is performed at the threshold t

1
α ) to write St := Mt +Nt where

Mt and Nt are independent random variables. More precisely,

Ns =

∫ s

0

∫

|x|>t
1
α

xP (du, dx), Ms = Ss −Ns, s ≥ 0, (4.22)

where P is the Poisson random measure associated with the process S; for the considered fixed t > 0, Mt and
Nt correspond to the small jumps part and large jumps part respectively. A similar decomposition has been
already used in [Wat07], [Szt10] and [HM16], [HMP19] (see in particular Lemma 4.3 therein). It is useful to
note that the cutting threshold in (4.22) precisely yields for the considered t > 0 that:

Nt
(law)
= t

1
αN1 and Mt

(law)
= t

1
αM1. (4.23)

To check the assertion about N we start with

E[ei〈p,Nt〉] = exp
(

t

∫

Sd−1

∫ ∞

t
1
α

(

cos(〈p, rξ〉) − 1
) dr

r1+α
µ̃S(dξ)

)

, p ∈ R
d

(see (1.14) and [Sat99]). Changing variable r

t
1
α

= s we get that E[ei〈p,Nt〉] = E[ei〈p,t
1
αN1〉] for any p ∈ R

d and

this shows the assertion (similarly we get the statement for M). The density of St then writes

pS(t, x) =

∫

Rd

pM (t, x− ξ)PNt(dξ), (4.24)

where pM (t, ·) corresponds to the density ofMt and PNt stands for the law of Nt. From Lemma A.2 in [HMP19]
(see as well Lemma B.1 in [HM16]), pM (t, ·) belongs to the Schwartz class S (RN ) and satisfies that for all
m ≥ 1 and all ℓ ∈ {0, 1, 2}, there exist constants C̄m, Cm s.t. for all t > 0, x ∈ R

d:

|Dℓ
xpM (t, x)| ≤ C̄m

t
ℓ
α

pM̄ (t, x), where pM̄ (t, x) :=
Cm

t
d
α

(

1 +
|x|
t

1
α

)−m

(4.25)
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where Cm is chosen in order that pM̄ (t, ·) be a probability density.
We carefully point out that, to establish the indicated results, since we are led to consider potentially singular

spherical measures, we only focus on integrability properties similarly to [HMP19] and not on pointwise density
estimates as for instance in [HM16]. The main idea thus consists in exploiting (4.22), (4.24) and (4.25). The
derivatives on which we want to obtain quantitative bounds will be expressed through derivatives of pM (t, ·),
which also give the corresponding time singularities. However, as for general stable processes, the integrability
restrictions come from the large jumps (here Nt) and only depend on its index α. A crucial point then consists
in observing that the convolution

∫

Rd pM̄ (t, x − ξ)PNt(dξ) actually corresponds to the density of the random
variable

S̄t := M̄t +Nt, t > 0 (4.26)

(where M̄t has density pM̄ (t, .) and is independent of Nt; to have such decomposition one can define each S̄t on
a product probability space). Then, the integrability properties of M̄t +Nt, and more generally of all random
variables appearing below, come from those of M̄t and Nt.

One can easily check that pM̄ (t, x) = t−
d
α pM̄ (1, t−

1
αx), t > 0, x ∈ R

d. Hence

M̄t
(law)
= t

1
α M̄1, Nt

(law)
= t

1
αN1.

By independence of M̄t and Nt, using the Fourier transform, one can easily prove that

S̄t
(law)
= t

1
α S̄1. (4.27)

Moreover, E[|S̄t|γ ] = E[|M̄t + Nt|γ ] ≤ Cγt
γ
α (E[|M̄1|γ ] + E[|N1|γ ]) ≤ Cδt

γ
α , γ ∈ (0, α). This shows that the

density of S̄t verifies (4.21). The controls on the derivatives are derived similarly using 4.25 for ℓ ∈ {1, 2} and
the same previous argument.

4.3 Proof of Property (Pβ) for the relativistic stable operator

In order to prove the required integrability properties we first have to differentiate the density.
Starting from (1.24) and similarly to the proof of Lemma 5 in [BJ07] we can differentiate under the integral

sign and obtain, for x 6= 0,

|Dxpα,m(t, x)| =
∣

∣

∣
emt

∫ ∞

0

Dxg(u, x)e
−m

2
α u θα(t, u)du

∣

∣

∣
=
∣

∣

∣
emt

−x
2

∫ ∞

0

g(u, x)

u
e−m

2
α u θα(t, u)du

∣

∣

∣

≤ emt
|x|
2

∫ ∞

0

g(u, x)

u
θα(t, u)du = emt|Dxpα,0(t, x)|. (4.28)

The spatial concentration gain induced by the differentiation of pα,0(t, x) then provides the required integrability
property for the first derivative. Similarly,

D2
xpα,m(t, x) = emt

∫ ∞

0

D2
xg(u, x)e

−m
2
α u θα(t, u)du

= emt
−1

2

∫ ∞

0

g(u, x)

u
e−m

2
α u θα(t, u)du + emt

|x|2
4

∫ ∞

0

g(u, x)

u2
e−m

2
α u θα(t, u)du.

Since

|emt −1

2

∫ ∞

0

g(u, x)

u
e−m

2
α u θα(t, u)du| ≤

em|Dxpα,0(t, x)|
|x| , x 6= 0,

and

emt
|x|2
4

∫ ∞

0

g(u, x)

u2
e−m

2
α u θα(t, u)du ≤ em

|x|2
4

∫ ∞

0

g(u, x)

u2
θα(t, u)du ≤ em|D2

xpα,0(t, x)|+
em|Dxpα,0(t, x)|

|x| ,

to prove (NDb) for k = 2, we concentrate on
|Dxpα,0(t,x)|

|x| . The estimate

1

|z| |Dxpα,0(t, z)| ≤
C

t
1
α

1

t
d
α

1

(1 + |z|

t
1
α
)d+α+1

1
|z|

t
1
α
t

1
α

,

easily yields (Pβ) for k = 2.
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A Proof of some technical results

A.1 Proof of the flow lemma 11

We first assume for the proof that the control (1.3) holds globally, i.e., the function F is globally β-Hölder
continuous with constant K0. The point is then to write for 0 ≤ t ≤ s ≤ T, (x, x′) ∈ (Rd)2:

θs,t(x)− θs,t(x
′) = x− x′ +

∫ s

t

[F (u, θu,t(x)) − F (u, θu,t(x
′))]du

= x− x′ +

∫ s

t

[F (u, θu,t(x)) − Fδ(u, θu,t(x))]du

+

∫ s

t

[Fδ(u, θu,t(x)) − Fδ(u, θu,t(x
′))]du +

∫ s

t

[F (u, θu,t(x
′))− Fδ(u, θu,t(x

′))]du,

where for all y ∈ R
d, and δ > 0, Fδ(y) :=

∫

Rd F (y − z)φδ(z)dz where φδ(z) =
1
δdφ(

z
δ ), where φ : Rd ∈ R

+ is a
standard mollifier, i.e., a smooth non negative function s.t.

∫

Rd φ(z)dz = 1. It is then clear from the fact that

F ∈ L∞(Cβ) that:

∀(u, z) ∈ [0, T ]× R
d, |Fδ(u, z)− F (u, z)| ≤ K0δ

β,

|DFδ|∞ ≤ K0δ
β−1. (A.29)

We therefore get:

|θs,t(x)− θs,t(x
′)| ≤ |x− x′|+ 2K0δ

β(s− t) +K0δ
−1+β

∫ s

t

|θu,t(x) − θu,t(x
′)|

≤
(

|x− x′|+ 2K0δ
β(s− t)

)

exp(K0δ
−1+β(s− t)),

using the Gronwall lemma for the last inequality. Choose now δ−1+β(s − t) = 1 ⇐⇒ (s − t) = δ1−β to
equilibrate the previous contributions. We eventually derive:

|θs,t(x)− θs,t(x
′)| ≤

(

|x− x′|+ 2K0(s− t)1+
β

1−β

)

exp(K0),

≤ C(|x − x′|+ (s− t)
1

1−β ) ≤ C(|x − x′|+ (s− t)
1
α ),

recalling for the last inequality that (s− t) ≤ T ≤ 1 and 1
α <

1
1−β since α+ β > 1. This gives the result when

F is globally β-Hölder continuous.

Recalling now that we appeal to this result when |x − x′| ≤
(

(T − t)/c0
)1/α

where the r.h.s. is small,
provided that T is, it is plain to localize the above computations and to observe that the previous global
results are actually also local when the final time horizon T is small enough and the initial points are close
w.r.t. the time scale. This concludes the proof of the Lemma.

A.2 Proof of equation (3.8)

Let ϕ ∈ Cγ+θb (Rd) where we recall γ + θ > 1 with θ ∈ (0, 1], γ ∈ (0, 1). We aim at proving:

‖Lθϕ‖Cγ
b
≤ Cθ,γ‖ϕ‖Cγ+θ

b
.

Write first, for all x ∈ R
d:

|Lθϕ(x)| ≤
∣

∣

∣

∫

|z|≤1

(

ϕ(x + z)− ϕ(x) −Dϕ(x) · zIθ=1

)

νθ(dz)
∣

∣

∣
+

∫

|z|≥1

‖ϕ‖∞νθ(dz)

≤
(

∫ 1

0

dλ

∫

Sd−1

µ̃(dξ)

∫

ρ∈(0,1]

dρ

ρ1+θ
[Dϕ(x+ λξρ)−Dϕ(x)Iθ=1] · ξρ+ Cθ‖ϕ‖∞

)

≤ Cθ,γ(‖Dϕ‖∞Iθ∈(0,1) + [Dϕ]γIθ=1 + ‖ϕ‖∞) ≤ Cθ,γ‖ϕ‖Cθ+γ
b

.
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This gives the control for the supremum norm. Let us now turn to the Hölder modulus. Fix, x, x′ ∈ R
d, x 6= x′.

We first consider the case θ ∈ (0, 1) for simplicity. Write:

|Lθϕ(x) − Lθϕ(x
′)|

≤
∣

∣

∣

∫ 1

0

dλ

∫

|z|≤|x−x′|

(

Dϕ(x + λz)−Dϕ(x′ + λz)
)

· zνθ(dz)
∣

∣

∣

+
∣

∣

∣

∫ 1

0

dλ

∫

|z|≥|x−x′|

(

Dϕ(x′ + z + λ(x − x′)) −Dϕ(x′ + λ(x − x′))
)

· (x− x′)νθ(dz)
∣

∣

∣

≤ C
(

∫

ρ∈(0,|x−x′|]

dρ

ρ1+θ
[Dϕ]θ+γ−1|x− x′|θ+γ−1ρ+

∫

ρ≥|x−x′|

dρ

ρ1+θ
[Dϕ]α+γ−1ρ

θ+γ−1|x− x′|
)

≤ Cθ,γ [Dϕ]θ+γ−1|x− x′|γ .

The only modifications needed for θ = 1 concern the small jumps. Indeed, we can introduce the compensator
only up to the threshold |x− x′|. We are simply led to analyze:

∣

∣

∣

∫ 1

0

dλ

∫

|z|≤|x−x′|

(

[Dϕ(x + λz)−Dϕ(x)] − [Dϕ(x′ + λz)−Dϕ(x′)]
)

· zν1(dz)
∣

∣

∣

≤ C

∫

ρ∈(0,|x−x′|]

dρ

ρ2
[Dϕ]γρ

(1+γ−1)+1 ≤ C1,γ [Dϕ]γ |x− x′|γ .

The other contribution can be handled as above. We have therefore established for all θ ∈ (0, 1], γ ∈ (0, 1) s.t.
θ + γ > 1:

|Lθϕ(x) − Lθϕ(x
′)| ≤ Cθ,γ [Dϕ]θ+γ−1|x− x′|γ .

This completes the proof of inequality (3.8).
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tors. Journal de Mathématiques Pures et Appliquées, 121:162–215, 2019.

[IJS16] C. Imbert, T. Jin, and R. Shvydkoy. Schauder estimates for an integro-differential equation with
applications to a nonlocal Burgers equation. arXiv 1604.07377, to appear in Ann. Fac. Sc. Toulouse,
2016.

[Jac05] N. Jacob. Pseudo differential operators and Markov processes. Vol. I. Imperial College Press, 2005.
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