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 is based on the fact that the current extension describes not only the ufg materials with grain size diameter (d) range of (100-1,000 nm), but also the nc materials having a range of diameters of (limit value-100 nm) which is defined by a lower slope of the linear Hall-Petch relation compared to the ufg regime. Note that such a limit value (lv) varies between about 15nm and 30 nm. As a model limitation, the nc metals with grain sizes below lv which behave in the case of copper (lv = 25 nm) either as a plateau or as a decrease of the yield strength cannot be described by the model. In this extension, the grain-boundary attribution is assumed to be globally and implicitly described particularly with further grain refinement (i.e., nc materials).

The used self-consistent scheme deals with a non-incremental inclusion/matrix interaction law of softened nature. It describes the non-linear elastic-plastic behavior of fcc polycrystals. The overall kinematic hardening effect can be naturally produced by the interaction law. Within the framework of small strain hypothesis, the elastic isotropic behavior is defined at the granular level. The heterogeneous inelastic deformation is locally determined using the slip theory. The model describes fairly well the effect of grain size on the strain-stress responses of copper and nickel.

Introduction

The ultrafine grained (ufg) and nanocrystalline (nc) materials are those materials which currently receive a particular attention due to their advanced properties. For the ufg materials, average grain sizes vary between the sub-micrometers (100-1,000 nm) [START_REF] Kumar | Mechanical behavior of nanocrystalline metals and alloys[END_REF] or (250-1000 nm) [START_REF] Meyers | Mechanical properties of nanocrystalline materials[END_REF]; while for the nc materials, average grain size is smaller than 100 nm (or 250 nm). With further grain refinement, several publications argue also that the yield stress hits the highest point in many cases at an average grain sizes on the order of 25 nm [START_REF] Cheng | Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals[END_REF][START_REF] Conrad | Grain size dependence of plastic deformation kinetics in copper[END_REF]. This point may depend on the material varying between about 15 and 30 nm, i.e., no fixed value for this limit. An additional decrease in grain size can cause weakening of the metals. This unusual response is not well understood for such a grain size regime.

The impact of grain size on the mechanical properties originally reported by [START_REF] Hall | Macroscopic aspect of Lüders band deformation in mild steel[END_REF] and then Petch (1955) shows that the yield strength of polycrystalline materials increases linearly with decreasing the inverse square root of grain size.

Regarding ufg materials, it is generally observed that their strength enhancement is accompanied by a lack of ductility [START_REF] Cheng | Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals[END_REF]. This is due to the increase in the highangle grain-boundaries fraction and some reduction in the total dislocation density with increase of deformation. The enhancement of ductility is associated with relaxation of the internal stresses and reduction of excess dislocation density [START_REF] Valiev | Principles of equal-channel angular pressing as a processing tool for grain refinement[END_REF][START_REF] Zhao | Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper[END_REF][START_REF] Zhao | Tougher ultrafine grain Cu via high-angle grain-boundaries and low dislocation density[END_REF]. The ufg materials are further characterized by low work-hardening rate [START_REF] Gürses | On tension-compression asymmetry in ultrafine-grained and nanocrystalline metals[END_REF]. In fact, after an initial stage of small plastic strain (≤ 3%) a quick strain hardening saturation takes place and this is not the case for coarse-grained polycrystalline metals (10 µm < d < 300 µm) [START_REF] Swygenhoven | Molecular dynamics computer simulation of nanophase Ni: structure and mechanical properties[END_REF][START_REF] Carsley | Mechanical behavior of a bulk nanostructured iron alloy[END_REF][START_REF] Koch | Ductility of nanostructured materials[END_REF]. This hardening is affected by the dislocation accumulation which should not be neglected in attempts to describe the mechanical response of ufg metals, along with the grainboundary strengthening [START_REF] Vinogradov | Mechanical properties of ultrafine-grained metals: New challenges and perspectives[END_REF]. A high strain rate superplasticity behavior at medium and elevated temperatures can be generally captured in the ufg metals [START_REF] Tjong | Nanocrystalline materials and coatings[END_REF][START_REF] Meyers | Mechanical properties of nanocrystalline materials[END_REF]. The grain-boundary sliding, in which the small grains slide over each other [START_REF] Langdon | An evaluation of the strain contributed by grain-boundary sliding in superplasticity[END_REF], is considered as a dominant mechanism of deformation particularly for d < 50 nm (Ball and Hutchinson, 1969). This strain-rate sensitivity might be increased due to the thermal activation of dislocation annihilation at grain-boundaries.

The specific inhomogeneous dislocation within these ufg metals, the non-equilibrium character of grain-boundaries, the improved diffusivity of grain-boundaries and the higher rate of static recovery are the major local features of the ufg materials [START_REF] Valiev | Bulk nanostructured materials from plastic deformation[END_REF]Estrin and Vinogradov, 2013;Langdon, 2013). Besides, it is recognized that the distribution of grainboundaries has a significant influence on their overall properties [START_REF] Valiev | Principles of equal-channel angular pressing as a processing tool for grain refinement[END_REF].

As a matter of fact, the dislocations/grain-boundaries interaction as well as the role of grainboundaries as sinks would control a number of significant behaviors such as strength and ductility.

The nc metals can be described by a large volume fraction of grain-boundaries (particularly triple-junctions) which multiplies as the grain size is decreased. This can lead to a remarkable change in the mechanical properties compared to the coarse-grained polycrystalline metals (e.g., [START_REF] Birringer | Nanocrystalline materials[END_REF][START_REF] Cohen | The early stages of sulute distribution below a transition temperature[END_REF]. For grain sizes of less than 1 µm as in Cu, for example, different forms in the Hall-Petch plot have been reported by several landmark publications (e.g., [START_REF] Kumar | Mechanical behavior of nanocrystalline metals and alloys[END_REF]Mayer et al., 2006). Note that the ufg regime falls in the grain sizes range of (100-1,000 nm). The nc regime is defined by a grain sizes range of (lv -100 nm), while the third nc regime (referred to also reverse Hall-Petch regime) is described by grain sizes less than lv [START_REF] Kumar | Mechanical behavior of nanocrystalline metals and alloys[END_REF]. In the third nc regime (d < lv), either the formation of a plateau or a decrease of the yield strength can be recorded (Mayer et al., 2006). The negative trend could be attributed to different deformation mechanisms like the Coble creep of grain-boundary diffusion [START_REF] Chokshi | On the validity of the Hall-Petch relationship in nanocrystalline materials[END_REF][START_REF] Lu | Microhardness and fracture properties of nanocrystalline Ni-P alloy[END_REF] or by the grain-boundary sliding [START_REF] Hahn | A model for the deformation of nanocrystalline materials[END_REF] or grain boundary sliding with only a minor contribution of the normal intragranular dislocation activity [START_REF] Schiøtz | Softening of nanocrystalline metals at very small grain sizes[END_REF]. This is similar to grain-boundary sliding in case of coarse-grained polycrystalline metals tested at high temperatures.

Regarding the dislocation density in deformed nc metals, competition between the dislocations generation and annihilation due to recovery defines the saturated state of this density. As it is believed, even still arguable, the dislocations could be generated at the grain-boundaries is acting also like sinks. Moreover, [START_REF] Huang | Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening[END_REF] revealed that the non-equilibrium state of grain-boundaries in the nc metals have a dislocation density higher than equilibrium boundaries. Furthermore, in fcc metals, to produce twinning, low temperatures or high strain rates should be applied. However, even with these severe conditions, aluminum with small grain sizes could not generate twinning [START_REF] Andrade | Dynamic recrystallization in highstrain, high-strain-rate plastic deformation of copper[END_REF]. It could be possible to conclude that the twinning becomes more difficult with a decrease in grain size. At high stress levels and at room temperature, the grain-boundary sliding is the major deformation mechanism; whereas for smaller grain sizes, the grain-boundary diffusion creep mechanism can be significant.

In brief, responses of the ufg and nc metals appear to be strongly dependent on their microstructure and could be attributed to several local mechanisms such as break-up of dislocation pile-ups, core-and-mantle, grain-boundary sliding, grain-boundary diffusion, grainboundary dislocation emission and annihilation which could explain the different deformation mechanisms.

From the modeling point of view, a number of models have been developed describing the dependence of materials strength on grain size. Only the main articles directly related to the present work will be addressed in this manuscript.

The non-local dislocation mechanics approaches based on Geometrically Necessary Dislocations (GNDs) have been developed predicting successfully the dependency of strainhardening level and its rate on the grain size [START_REF] Acharya | Grain-size effect in viscoplastic polycrystals at moderate strains[END_REF][START_REF] Aoyagi | Multiscale crystal plasticity modeling based on geometrically necessary crystal defects and simulation on fine-graining for polycrystal[END_REF][START_REF] Counts | Predicting the Hall-Petch effect in fcc metals using non-local crystal plasticity[END_REF]Keller et al., 2011, and many others). Note that the GNDs does not take into account the difference in dislocation density detected between the grains interiors and the grain-boundaries. Any framework integrating the concept of strain gradient would follow the dislocation densities in both grain interior and boundary as shown in [START_REF] Fu | Analytical and computational description of the effect of grain size on yield stress of metals[END_REF]. Moreover, [START_REF] Gao | Geometrically necessary dislocation and size-dependent plasticity[END_REF] reported that the size effect cannot be completely captured by this approach when a very small size such as the thickness of a thin film is used.

Therefore, a well-grounded question is worthy to be asked, if the GDNs concept could describe the reverse Hall-Petch behavior (i.e., d < lv)?

Focused on the grain size distribution effect and accounted for statistical description, several other works were based on stochastic internal parameters of the heterogeneous microstructure (e.g., [START_REF] Lian | Model for the prediction of the mechanical behavior of nanocrystalline materials[END_REF][START_REF] Zhu | Effects of grain size distribution on the mechanical response of nanocrystalline metals: part II[END_REF]Berbenni et al., 2007). Micro-macro-models considering the grain size effect have been developed (e.g., [START_REF] Weng | A micromechanical theory of grain-size dependence in metal plasticity[END_REF][START_REF] Abdul-Latif | A new concept for producing ultrafine grained metallic structures via an intermediate strain rate: experiments and modeling[END_REF] where a Hall-Petch-type equation with a single-valued grain size is considered at the slip system length scale.

The mixture model of two phases (grain and grain-boundary) concept has been developed [START_REF] Carsley | A simple, mixtures-based model for the grain size dependence of strength in nanophase metals[END_REF][START_REF] Wang | Effect of grain size on the mechanical properties on nanocrystalline materials[END_REF][START_REF] Kim | A composite model for mechanical properties of nanocrystalline materials[END_REF][START_REF] Kim | The effects of grain size and porosity on the Elastic modulus of nanocrystalline materials[END_REF]Kim et al., 2001;Kim and Estrin, 2001;[START_REF] Ding | A low cycle fatigue life prediction model of ultrafinegrained metals[END_REF][START_REF] Schwaiger | Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel[END_REF][START_REF] Jiang | A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials[END_REF][START_REF] Kim | Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials[END_REF][START_REF] Ramtani | A revisited generalized selfconsistent polycrystal model following an incremental small strain formulation and including grain-size distribution effect[END_REF][START_REF] Ramtani | A bimodal bulk ultrafine-grained nickel: experimental and micromechanical investigations[END_REF]and others). In fact, the grain interior is supposed to be plastically deformed by dislocation glide, while grain-boundary deforms plastically by a grainboundary sliding and/or grain-boundary diffusion mechanism. This concept can predict the strain hardening behavior and its sensitivity to the grain size and strain rate. As in [START_REF] Konstantinidis | On the "anomalous" hardness of nanocrystalline materials[END_REF]Kim et al., 2000), several local issues related to a given nc metal containing crystallites, such as grain-boundary surfaces, triple line junctions, and quadratic nodes have been considered. The volume fraction of each segment defined according to the grain size and the grain-boundary width.

Likewise, other modeling approaches have been recently developed in this area. These are the discrete dislocation dynamics [START_REF] El-Awady | The role of the weakest-link mechanism in controlling the plasticity of micropillars[END_REF], 2013;El-Awady, 2014 and others) and molecular dynamic simulations [START_REF] Sansoz | Atomistic processes controlling flow stress scaling during compression of nanoscale face-centered-cubic crystals[END_REF]Voyiadjis, andYaghoobi, 2015, 2016;[START_REF] Yaghoobi | Atomistic simulation of size effects in single-crystalline metals of confined volumes during nanoindentation[END_REF]. Besides, a new approach of dislocation kinematics has been also developed (Malygin G. A., 2007aand b, 2008[START_REF] Zontsika | Pertinence of the Grain Size on the Mechanical Strength of Polycrystalline Metals[END_REF]. It assumes that the grain is deformed plastically via dislocation glide; whereas the plasticity of grain-boundary takes place through a boundary diffusion mechanism. The latest development [START_REF] Zontsika | Pertinence of the Grain Size on the Mechanical Strength of Polycrystalline Metals[END_REF] describes the total Hall-Petch relation even for the inverse Hall-Petch effect with a negative trend for d < lv. It is worth reiterating for this grain size regime, that a limited activation of intragranular dislocation takes place and grain-boundary shear or grain-boundary diffusion [START_REF] Nieman | Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation[END_REF] seems to be the dominant deformation mechanism as demonstrated by atomistic simulations [START_REF] Conrad | Mechanisms for grain size hardening and softening in Zn[END_REF][START_REF] Conrad | Grain-size dependence of the flow stress of Cu from millimeters to nanometers[END_REF].

In this work, modeling the impact of grain size on the overall non-linear strain-stress behavior of fcc polycrystals is presented. Motivated by a non-incremental interaction law already developed in [START_REF] Abdul-Latif | Elasto-Inelastic Self-Consistent Model for Polycrystals[END_REF][START_REF] Abdul-Latif | Pertinence of the Grains Aggregate Type on the Self-consistent model response[END_REF], a new extension is thus developed using the framework of small strain hypothesis. This self-consistent model allows describing the non-linear inelastic behavior of fcc polycrystals. The theoretical basis of rate-dependent inelastic strain is examined at the slip system level. The elastic strain is assumed to be compressible, uniform and isotropic and defined at the granular level. Its heterogeneous distribution from grain to grain within a given polycrystal is taken into account. The overall kinematic hardening is naturally described by the interaction law. The difference between the new extension and that proposed in [START_REF] Abdul-Latif | A new concept for producing ultrafine grained metallic structures via an intermediate strain rate: experiments and modeling[END_REF] is based on the fact that the present extension describes the grain size effect on both ufg and nc metals when the grain sizes are greater than d > lv. It should be noted that the previous development [START_REF] Abdul-Latif | A new concept for producing ultrafine grained metallic structures via an intermediate strain rate: experiments and modeling[END_REF] can describe only the grain size effect within the ufg regime. In this paper, two different length scales, which are the microscale (crystallographic slip system) and the mesoscale (granular level via the grain/matrix interaction law) are used. With decreasing the grain size especially in the nc regime, the most prominent effects of the grain-boundary have to be taken into account and could be attributed to different local deformation mechanisms. It is assumed, in this extension, that the grain-boundary effects are globally and implicitly described by a phenomenological way via the inelasticity-hardening coupling model parameter (α) which will be discussed afterward. The influence of any type of defects (microcracks, porosity, impurities, etc.) on the mechanical response of materials is neglected for the sake of simplicity. Finally, the overall strain-stress behaviors copper and nickel polycrystals are faithfully described by the model.

Self-consistent model

Length scales and internal variables

Based on the elastoplastic self-consistent model [START_REF] Abdul-Latif | Elasto-Inelastic Self-Consistent Model for Polycrystals[END_REF][START_REF] Abdul-Latif | Pertinence of the Grains Aggregate Type on the Self-consistent model response[END_REF], different length scales are considered: (i) macroscale (grains aggregate) (ii) mesoscale (grain) and (iii) microscale (crystallographic slip system: css).

The polycrystal (macroscale) is initially assumed isotropic and usually viewed as an aggregate of numerous grains (single-phase or polyphase) having different orientations with respect to the loading axis. For polycrystalline metals, the random crystal distribution configuration is used.

The emphasis is placed on the single-phase polycrystals where the mechanical properties of each grain are considered to be identical with respect to the crystallographic reference system.

At the mesoscale, the heterogeneity comes from the differences in the orientation of the grains.

The morphology and spatial distribution of the grains are not taken into account. Moreover, regardless of the length scale, the adopted approach neglects, as simplifying assumptions, the influence of any type of defects (microcracks, porosity, impurities, etc.).

The mechanical state for each length scale can be mathematically described by the following internal state variables:

• At the macroscale: there are no state variables at this level. The overall stress tensor Σ (respectively the overall strain tensor E ) is the simple average of the granular stress tensor σ (respectively granular strain tensor ε ).

• At the mesoscale: the granular elastic tensor e ε is introduced as an internal state variable and its dual thermodynamic associated force variable is σ .

• At the microscale: a couple of internal state variables (q s , R s ) is the intergranular isotropic hardening for each css; the dual scalar variable R s is the thermodynamic associated force with this isotropic hardening variable q s . It is assumed that this hardening is affected by interactions among the slip systems within the same single crystal.

For several polycrystalline metals, two sources of kinematic hardening are experimentally observed at two different length scales. The first one comes from the plastic strain incompatibility at the grain-boundaries level (intergranular). This leads to non-uniform distribution of stress and strain fields at the mesoscale. The second source (intragranular)

represents the long-range interactions at the css. However, in the present modeling work, the overall effects of these hardening sources could implicitly and naturally be described by the interaction law via the inelasticity-hardening coupling parameter (α).

The slip processes on the octahedral slips define the inelastic deformation of single crystal, i.e., the slip is the dominant deformation mechanism.

Grains within the aggregate are considered to have the same elastic coefficients. The overall elastic strain tensor e E together with the overall inelastic strain tensor in E are determined through the micro-macro methodology.

Throughout this paper, the index s∈ {1,2,….,n} is associated to the system rank, with n being the maximum number of octahedral systems in the grain (n=12 for fcc). Similarly, the index g ∈{1,2,….,Ng} describes the grain rank, with Ng being the maximum number of grains contained in the grains aggregate.

Single crystal behavior modeling

The granular elastic part is assumed to be uniform, isotropic and compressible and its free energy per unit volume is written as a classical isotropic quadratic function of the granular elastic strain tensor e ε . The associated variable is thermodynamically represented by a granular stress tensor σ . Thus, the elastic granular specific free energy g e ψ is expressed by:
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where λ and μ are the classical Lame's constants of the grain.

Its associated granular stress variable σ is given by:
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where I is the second-order identity tensor.

Under isothermal condition, the granular coefficients λ and μ always remain constants, the time derivative of equation ( 2) gives:
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The granular inelastic part of the state potential g in ρψ is assumed to be exclusively dependent on the intragranular isotropic hardening. This potential is expressed as quadratic function of the internal variable q s as follows:
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where ρ is the granular material density, Q is the intragranular isotropic hardening modulus considered to be the same for all slip systems. The hardening interaction matrix (Hrs) is supposed to describe dislocation-dislocation interaction allowing the introduction of the cross effect of the slip of the system s on the hardening of the system r. The dual variable R s can be derived from (1), using the state law, as follows:
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This hardening tends to saturate on each slip system. This depends on the amount of the slip on the same system (self-hardening) as well as on the other systems of the same grain (cross hardening).

Using the Schmid type convex of micro-plasticity, the yield surface is defined for each css neglecting the grain size effect. It depends on the resolved shear stress τ s together with the hardening expressed by:

s o s R s τ s f τ - - = (6) 
where s o τ is the initial value of the critical resolved shear stress (friction stress).

In order to model the ufg and nc materials behavior, the local inelastic flow is considered to be explicitly influenced by the grain size for d > lv. It is worth emphasizing that the effect of the grain-boundary takes a gradual significance with the grain size decrease especially for the nc materials where they are viewed as a two-phase aggregate. In fact, the latter has a hard phase which is the grains and a soft one representing the grain-boundaries (with the triple junctions) [START_REF] Jiang | A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials[END_REF][START_REF] Ramtani | A revisited generalized selfconsistent polycrystal model following an incremental small strain formulation and including grain-size distribution effect[END_REF][START_REF] Ramtani | A bimodal bulk ultrafine-grained nickel: experimental and micromechanical investigations[END_REF][START_REF] Voyiadjis | Modeling of Strengthening and Softening in Inelastic Nanocrystalline Materials with Reference to the Triple Junction and Grain-boundaries using Strain Gradient Plasticity[END_REF]and many others). Dealing now with the hard phase, since its behaviour is evidently impacted by the grain size effect, therefore this phase is modeled at the css length scale using the same concept presented in Abdul-Latif et al., ( 2009) by:
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where s t τ is the initial flow stress, s o τ represents the flow stress with an infinite grain size, Π is a material constant and d is the average grain size.

Therefore, the new local yield surface affected by grain size is written by:
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The determination of the local inelastic flow is made when the absolute value of the resolved shear stress τ s is greater than the new actual flow surface radius, i.e., τ s ≥ s t s τ R + . The slip rate can be determined as long as the stress and the hardening variables are known. Note that each resolved shear stress s τ is computed by projecting the granular stress σ on each slip system using:

s s m : σ τ = (9)
where s m is the orientation tensor and ":" is the twice-contracted tensorial product.

The rates of change of the inelastic strain and intragranular isotropic hardening are obtained by introducing the yield function f s together with dissipation potential F s for each css adopting the non-associated plasticity concept. The non-linearity of the intragranular isotropic hardening is described by F s as follows:
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where b is a material constant characterizing the non-linearity of the local isotropic hardening assumed to be the same for all slip systems.

The evolution laws of the granular inelastic strain and the intragranular isotropic hardening variables are deduced by the generalized normality rule:
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where s γ & is the slip rate on the css.

The orientation tensor s m is defined by:
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where s l r and s n r are the slip direction and slip plane normal unit vectors, respectively.

After determining the associated force R s at the css, the formulation should be completed by the rate equation of s q & given by:
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In the framework of viscoplasticity, the value of pseudo-multiplier s λ & occurring along closedpacked crystallographic slip planes and directions is a power function of the distance to the yield point defined by the local yield criterion f s :
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where K and z are material constants describing the local viscous effect of the material.

Since the rate independent models (considering that plastic flow at the microscale is rate independent), do not possess the uniqueness in the numerical applications, the rate dependent slip is thus adopted to resolve such numerical difficulties used previously by several researchers. Although, the developed model is a rate dependent type, the rate independent case can be practically obtained by choosing a high value of viscous exponent z and a low value of the coefficient K, leading to low and constant viscous stress s v σ described by:

1/z s s v γ K σ & = .

Interaction law

A generalization of grain/matrix interaction law for fully anisotropic and compressible elasticviscoplastic behavior with small strain hypothesis has been developed in [START_REF] Molinari | On the Self-Consistent Modeling of Elasto-Plastic Behavior of Polycrystals[END_REF] with the assumption of the granular and macroscopic behaviors that are described by Maxwell elastic-viscoplastic relation. They proposed an approximate solution keeping the same structure of the incompressible interaction law developed in [START_REF] Kouddane | Self-consistent modeling of heterogeneous viscoelastic and elasto-viscoplastic materials[END_REF], i.e., with elastic and viscoplastic parts. The generalized elastic-viscoplastic interaction law is expressed as: ℜ can be computed using A and with Green function and integral method, respectively.
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In the case where the elastic response dominates, the viscoplastic term
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negligible, therefore the interaction law (equation 16) can be written as:
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Based on the solution of the general interaction law of elasticity for heterogeneous media using

Green function method, it can be easily demonstrated that the solution for a spherical inclusion embedded in an infinite homogeneous matrix having elastic properties defined by λ and µ, the fourth order interaction tensor is determined by [START_REF] François | Comportement mécanique des matériaux[END_REF]. Therefore, it can be defined by the following steps:

First, we have:
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For a spherical inclusion embedded in a finite homogenous isotropic matrix, s ℑ is defined by:
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and the macroscopic stiffness tensor is classically determined by:
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Therefore, one can obtain the following relation:
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where the constants A and B are defined totally by Lame's coefficients µ and λ:

) ( ) ( A λ 9 + µ 14 µ 2 λ 3 + µ 8 - = (22) ) ( ) )( ( B 2 2 λ 108 + µλ 456 + µ 448 µ µ 8 + λ 3 λ + µ 6 = (23)
As a result, the elastic part of the interaction law can be expressed by:
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For a fully viscoplastic behavior dominating at stationary state (in the long-range response),

the term ) Σ σ ( & & -
is practically vanished. Therefore, equation ( 16) can be approximated as:

) E ε ( ) S s ( : ) A ( in in 1 - s -1 & & - = - + ℜ (25) 
This equation represents a self-consistent approach developed by [START_REF] Molinari | A self-consistent approach of the large deformation viscoplasticity[END_REF] describing the viscoplastic behavior of polycrystals under large deformation conditions.

In the case of viscoplastic behavior for spherical inclusion where the matrix is supposed to be isotropic and incompressible, the tangent modulus is approximated by:

ijkl o ijkl I η 2 A = (26)
where η o is the scalar macroscopic viscous tangent modulus depending on the deformation history.

and the interaction tensor s ℜ is given by:
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The viscoplastic part of the general interaction law (equation 16) takes therefore the following form:

) E ε ( ) S s ( 3η 1 in in o & & - = - - (28) 13
Consequently, the general interaction law of the elastic-viscoplastic behavior of polycrystal (equation 16) in the case of spherical inclusion is equal to the sum of the two approximate parts (elastic: equation ( 24) and viscoplastic: equation ( 28)). Thus, one obtains:
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The same problem of η ο adjustment is encountered in order to satisfy the self-consistency conditions especially under multiaxial loading paths. Hence, the term ( o 1/3η ) is replaced by a phenomenological parameter (α > 0) and the modified interaction law (Abdul-Latif et al.,

2002

) can be written as:
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For polycrystalline metals, one of the principal sources of kinematic hardening induced is generally captured at the grain-boundary level. This hardening comes from the plastic strain incompatibility between grains giving a non-uniform granular stress distribution. Thus, it is evident that this hardening effect is naturally affected by the grain refinement since the fraction of grain-boundaries increases proportionally with the grain size reduction especially for the nc metals. From the standpoint of the grain-boundary sliding (or grain-boundary diffusion), it becomes the main deformation mechanism in nc materials as demonstrated by molecular dynamics simulations. This mechanism leads to stress accumulation across neighboring grains as revealed in [START_REF] Swygenhoven | Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni[END_REF][START_REF] Swygenhoven | Grain-boundary sliding in nanocrystalline fcc metals[END_REF]. For d < lv, all local deformations are accommodated at the grain-boundaries as displayed in the atomic level analysis for copper. Moreover, the average grain-boundary dislocation free path is greatly diminished leading to an easy dislocations motion towards the opposite grain-boundary side [START_REF] Swygenhoven | Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni[END_REF][START_REF] Swygenhoven | Grain-boundary sliding in nanocrystalline fcc metals[END_REF][START_REF] Derlet | Length scale effects in the simulation of deformation properties of nanocrystalline metals[END_REF][START_REF] Hasnaoui | Interaction between dislocations and grainboundaries under an indenter-a molecular dynamics simulation[END_REF]. Therefore, the dislocation density becomes low during the plastic deformation without significant hardening. Nevertheless, for greater grain sizes, i.e., d > lv as a main target of this work, deformations have also been observed in the grain interior.

Therefore, a particular attention has been paid to several local mechanisms occurring at the grain-boundary level such as grain-boundary sliding, grain-boundary diffusion, grain-boundary dislocation emission and annihilation.

Alternatively, in several studies as in [START_REF] Carsley | A simple, mixtures-based model for the grain size dependence of strength in nanophase metals[END_REF][START_REF] Jiang | A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials[END_REF]Ramtani et al., 2009[START_REF] Ramtani | A bimodal bulk ultrafine-grained nickel: experimental and micromechanical investigations[END_REF][START_REF] Voyiadjis | Modeling of Strengthening and Softening in Inelastic Nanocrystalline Materials with Reference to the Triple Junction and Grain-boundaries using Strain Gradient Plasticity[END_REF], the nc metals have been considered, as mentioned above, as two-phase composite models (i.e., core-and-mantle), where the soft phase volume increases with respect to the total aggregate volume. Regardless of their concepts, the main goal of the cited models is to describe the size effect particularly on the nc metals. For an accurate description of their response, consideration of the grain-boundary contribution will be an effective modeling strategy. Therefore, the impact of these local physical features is globally and implicitly modeled, in this work, via phenomenological approach based on the interaction law (30). In fact, it considers that its parameter α responsible for inelasticity-hardening coupling (i.e., describing implicitly the intragranular kinematic hardening) becomes dependent on the grain size which is expressed by:

Ω + = d o α α (31)
where αo is the model parameter with an infinite grain size and Ω is a material constant regarding globally the attribution of local mechanisms related to the grain-boundary.

It is obvious that the new Ω / d ratio in equation ( 31) participates with αo in controlling the predicted hardening evolution as a function of grain size. In fact, the size effect which is modeled at the mesoscale via the grain/matrix interaction law (equations 30 and 31) leads to such a new possibility for appropriately describing the nc materials. In fact, the competition between the size effect parameters at the two length scales, the microscale (equations 7 and 8)

and the mesoscale through the grain/matrix interaction law: equations 30 and 31, provides the ability in describing the material dependence on this relatively wide range of grain sizes (from the ufg to nc regime). Keeping in mind that equation (31), notably the ratio Ω / d has a key role in describing the critical grain size with which the end of the ufg regime and the start of the nc one is clearly defined. The determination of this critical value is totally based on an interaction generated by the grain size effect at these two length scales as it will be illustrated hereafter. They can globally describe the effect of the physical behavior coming from the grainboundary in the nc regime totally controlled by this Ω / d ratio.

Polycrystal Constitutive Relations

It is well-known that the overall properties are function of grain properties. Thus, each grain is assumed to be embedded in a homogenous equivalent medium exhibiting a response equal to the average response of all grains. In this context, the overall elastic and inelastic strain tensors are obtained through the micro-macro methodology, i.e., there are no state variables at this level. Hence, the macroscopic Cauchy stress tensor Σ is also deduced by the same concept. In fact, after determining the granular inelastic strain rate as the sum of the contribution from all activated slip systems, the transition from the single to polycrystal response is performed by the well-known averaging procedures depending on the granular elastic and inelastic rates. For homogenous elastic media, the overall stresses Σ (respectively the overall strain e Ε & ) are simple averages of the granular stresses σ (respectively granular strains e ε ) [START_REF] Mandel | Une Généralisation de la Théorie de la Plasticité de W. T. Koiter[END_REF][START_REF] Hill | Generalized Constitutive Relations for Incremental Deformation of Metal Crystals by Multislip[END_REF]. For the overall inelastic strain, the averaging procedure is usually not straightforward, since it involves localization tensors [START_REF] Mandel | Plasticité Classique et Viscoplasticité[END_REF]). In the special case of a single-phase polycrystal with isotropic elasticity, as in the actual case of elastoplastic behavior with homogeneous elasticity, the overall elastic and inelastic strain rates ( [START_REF] Mandel | Plasticité Classique et Viscoplasticité[END_REF]. The rates of change of the overall elastic and inelastic strains are therefore computed respectively:

∑ = = Ng 1 g e g e ε v E & & (32) ∑ = = Ng 1 g in g in ε v E & & (33)
where v g is the volume fraction of the same oriented grains. e ε & and in ε & are determined by equations

(3) and ( 9), respectively.

Since the small strain hypothesis is adopted, so the overall total strain rate ( Ε & ) is determined by:

in e E E E & & & + = (34)

Grain size distribution function

The grain size distribution in heterogeneous polycrystals which provides local heterogeneity can be characterized by several experimental techniques. In this work, the volume fraction of individual grain size is a key parameter since it has an important impact on the mechanical behavior and represents also the reality in the polycrystalline metallic materials. Hence, an accurate description of grain size via its diameter d can lead to suitable local and global mechanical behaviors of polycrystals. Consequently, a log-normal distribution function of the variable d is determined in such a manner that the variable x= ln (d) pursues a normal distribution. The probability density function is therefore defined by: ( ) ( )

              - - = 2 S M ln 2 1 exp 2π S 1 p d d d ( 35 
)
where M and S are the mean value and standard deviation of the variable d, respectively with ( )

1 d 0 p = ∞ ∫ d d .
Different discrete log-normal distributions for a given mean and different dispersions are generated adopting the same procedure as given in previous works [START_REF] Zhu | Effects of grain size distribution on the mechanical response of nanocrystalline metals: part II[END_REF][START_REF] Ramtani | A revisited generalized selfconsistent polycrystal model following an incremental small strain formulation and including grain-size distribution effect[END_REF][START_REF] Abdul-Latif | Modeling of grain shape effect on multiaxial plasticity of metallic polycrystals[END_REF]. Therefore, figure (1) shows an example of statistical volume weighted distributions for three different relative dispersions for three different average grain sizes of 49, 110 and 20,000 nm for copper polycrystal used in this work.

Applications of the model

The main goal of this paragraph is to reveal the abilities of the developed model in describing the grain size effect on elastoplastic behavior of polycrystals having spherical grain shape. The identification process is conducted to determine the different material coefficients employing experimental databases. To validate the proposed model, two distinct metallic materials (copper [START_REF] Sanders | Elastic and tensile behavior of nanocrystalline copper and palladium[END_REF] and nickel (experimental results provided via ANR-mimic, 2008-2012)) are studied.

According to [START_REF] Sanders | Elastic and tensile behavior of nanocrystalline copper and palladium[END_REF], the elastic properties of nanocrystalline Cu produced by inert-gas condensation and compaction have been measured. The decrease in the Young's moduli has been explained by the slight porosity in the specimens. The Young's moduli obtained from tensile tests reveal that no trends with grain size have been observed. It is worth noting that the model with its new extension shows an obvious restriction in describing the effect of any type of defects (microcracks, porosity, impurities, etc…) on its mechanical behavior including the elastic moduli. However, our main concern is the plastic response and its sensitivity to the size effect. Thus, a standard value of Young modulus is used as shown in table (1). For nickel, the overall mechanical behavior has been studied by means of uniaxial compression tests conducted at room temperature and strain rate of 10 -4 /s.

The model parameters calibration is carried out by iterative technique which will be discussed later.

Choice of the microstructure

According to the adopted hypothesis, the aggregate of grains (number and orientation of grains) is assumed to be of a single-phase fcc polycrystalline material having initially isotropic elastic properties at the macroscale. A random orientation distribution of 400 grains is used representing an acceptable compromise between minimizing the calculation and describing appropriately the polycrystalline microstructure [START_REF] Abdul-Latif | Pertinence of the Grains Aggregate Type on the Self-consistent model response[END_REF]. Each grain is defined by its size and its orientation described by the Euler angles. Besides, this grain distribution is suitably covered almost all space directions. The initial orientation of each grain is presented in inverse-pole figure (figure 2). The volume fraction of individual grain size within the grains aggregate is a key parameter having a significant influence on the mechanical behavior of materials. As experimental data, two different average grain size diameters of 220 and 3790 nm for nickel and three average diameters of 49, 110 and 20000 nm for copper [START_REF] Sanders | Elastic and tensile behavior of nanocrystalline copper and palladium[END_REF] are utilized. Also, three different distributions for each above grain size configuration are generated and simulated with three standard deviations of S= 0.1d, 0.01d and 0.001d (i.e., S=10%, 1% and 0.1% for each used d).

Determination of the model constants

The proposed model constitutive equations are programmed into a computer code.

Experimental databases of uniaxial tests for the two materials are employed to calibrate the model parameters. Figure 3 shows a representative example of uniaxial stress-strain prediction for copper having an average grain size of 49 nm using the three standard deviations. Moreover, to further understand the role of these three standard deviations (S= 4.9, 0.49 and 0.049), the granular stress distribution is recorded and then presented for such values at the end of loading.

An examination of figure 4 reveals that the granular stress σ11 distribution illustrates a significant heterogeneity for S= 4.9. However, for S= 0.49 and 0.049 cases, lower homogeneous distributions are recorded. This recorded average stress values are 459 MPa for S=4.9 and 453

MPa for S= 0.49 and 0.049. As a conclusion, the greater the value of the standard deviation, the greater is the local stress heterogeneity. Then, the identification and the simulations are conducted henceforth utilizing S= 4.9 due to the high local heterogeneity behavior.

The computer code uses the well-known 2 nd order Runge-Kutta algorithm with adaptive step size. It is a single-step method directly derived from the Euler method which has the advantage of being easy to implement and stable for those functions used in physics. With a non-stiff problem, this algorithm consists of improving the accuracy of the solution y (t). Its principle basis is the same as for the Euler method; whereas the difference is based on the introduction of additional correction terms to the iterative relation to reduce round-off errors. This approach is largely used for solving ordinary differential equations systems.

To solve the model constitutive equations, these equations are presented as: (1) Intragranular isotropic hardening variables q s ; (2) Viscoplastic pseudo-multiplier λ s for each crystallographic slip system; (3) Granular stress tensor σ obtained via the interaction law; (4) Granular elastic strain tensor e ε ; (5) Granular inelastic strain tensor in ε ; (6) Overall total strain tensor E .

As a result, Y & is considered as a vector defined by: We consider therefore that at the instant tn+1 = tn + ∆t, an increment of total overall strain ∆E (or an increment of overall stress ∆Σ under stress-controlled condition) is applied to the grains

q , λ , ε , ε , σ , E Y
aggregate. It is assumed that q , λ , ε , ε , σ , E Y s s in e t n =
is known at the instant tn. We then require to define how the most accurate space increments of the following variables and The Young's modulus (E) and Poisson's ratio (ν) are directly determined using the experimental data for the used metals. For the sake of simplicity, these overall elasticity constants are equal to these of granular ones due to the isotropic elasticity and the grain size independency assumptions. Thus, the Lame's coefficients (λ and µ) are classically computed from the overall Young's modulus and the Poisson's ratio for these metals using the classical elasticity relations λ= νΕ/(1+ν)(1-2ν) and µ= Ε/2(1+ν).

measurements Δq , Δλ , ε Δ , ε Δ , σ Δ , E Δ Y Δ
As discussed above, the plastic behavior can be described by choosing a relatively high value of viscous exponent z and a low value of the coefficient K, i.e., minimizing the viscosity effect.

The parameter αo, the initial yield stress of the slip system s o τ and the intragranular isotropic hardening coefficients (Q and b) should also be determined. In addition, six coefficients of the Hrs matrix (h1, h2, ….., h6) also require identification. In fact, the diagonal term (h1) is always equal to one. For simplification, it is considered that h2= h3= h4= h5= h1= 1.0, whereas, h6 needs calibration. To begin the identification process, the initial values of the model parameters are chosen based on some studies of our research laboratory. In order to achieve this operation satisfactorily, the following procedures are adopted:

(1) Identification of the elastoplastic behavior coefficients without taking the grain size effect into considering using therefore Π= Ω= 0. This step is achieved based on the experimental data of higher grains size, i.e., d=20000 nm for the copper and 3790 nm for nickel. In general, the coefficients which require identification are: s o τ , Q, b, h6, αo, z, K and h6.

(2) Regarding the grain size effect, the grain refinement coefficients (Π and Ω) are now calibrated. This procedure is made by fixing all the coefficients identified in the previous step.

After several numerical iterations, such parameters are then determined. The optimized material coefficients are finally specified by having the best fit between the predicted and experimental results. The calibrated parameters for the two materials are summarized in table 1.

Parametric study

3.3-1 Influence of Π

The effect of this model parameter (Π) modeled at the css level through the classical Hall-Petch concept (equation 7) is explicitly investigated by means of several predictions showing its impact on the overall yield strength evolution of the polycrystal. Except for Ω which is set to a value of 10 5 , all other model parameters used in these predictions are related to copper given in table (1). Therefore, five distinct values of Π are selected which are 1, 3, 5, 10 and 20. The aggregate of 400 grains is numerically tested under tensile strain-controlled condition along 11 direction (E11) imposing zero values for the other two normal stress components of the overall stress tensor (Σ22= Σ33=0). Moreover, the overall yield stress is determined using a macroscopic equivalent inelastic strain rate offset of 10 -4 /s. The study is made by varying these five values.

Figure 6 shows the pertinence of this parameter as well as the grain size on the overall yield strength (i.e., Hall-Petch law). With this value of Ω, it is generally noticed that the greater the value of Π, the lower the value of d, the more the attribution of grain-boundary in local deformation, consequently, the greater is the yield strength.

It is obvious that with the smallest employed value of Π= 1, it is recorded that when d= 20 nm, the yield strength hits the highest value. Then, a reverse Hall-Petch regime is predicted. This is the only case where this phenomenon can be numerically captured. Actually, this can be interpreted by a competition between Ω and Π with the variation of d. For this reason, it is insufficient to be convinced to confirm that the model can describe the reverse Hall-Petch behavior. However, for each other values, a clear singular point is observed where the Hall-Petch slope describes the end of the ufg regime and the start of the nc one as already demonstrated in [START_REF] Kumar | Mechanical behavior of nanocrystalline metals and alloys[END_REF]. Such a point is clearly directed by the value of Π. Indeed, the second slope starts when d= 100 nm for Π= 1, 3, 5 and 10. Nevertheless, when Π= 20, the critical value of d becomes 200 nm after which its linear evolution occurs with another slope.

These recorded critical values are in suitable agreement with those results presented in several published papers (e.g., [START_REF] Kumar | Mechanical behavior of nanocrystalline metals and alloys[END_REF][START_REF] Meyers | Mechanical properties of nanocrystalline materials[END_REF]. One can reveal that that the lower the value of Π, the lower is the second slope of the nc regime. This is due the competition controlled by the grain size effect within the two length scales levels showing implicitly the effect of grain-boundary.

3.3-2 Influence of Ω

Applying the same numerical methodology given in the above paragraph, the model parameter (Ω) proposed at the mesoscale is numerically studied showing its effect on the polycrystal response. Thus, a wide range of Ω is selected in which four different values are proposed: 10 4 , 10 5 , 10 6 and 10 7 and afterward tested by setting Π= 5. Figure ( 7) summarizes its impact on the Hall-Petch relation. It is revealed that the greater the value of Ω, the lower the value of d, the greater is the yield strength. It is worth emphasizing that for the two extreme values of Ω (i.e., 21 10 4 and 10 7 ), their effect can be easily described by two linear regions with two different slopes where the deflection points corresponding to d values of 100 nm and 200 nm for Ω of 10 4 and 10 7 , respectively. However, for the other two Ω values (i.e., 10 5 and 10 6 ), there is not a definite deflection point with which the definition of the ufg and nc regimes is clearly identified.

However, for such cases, transition zones are noticed which can be interpreted based on a competition between Π and Ω parameters, where the overall effect of grain-boundary becomes apparent especially with further grain refinement, i.e., d < 200 nm. Whatever the value of Ω, the predictions show that the transition zone from ufg to nc regime falls between 100 nm and 200 nm. These findings corroborate faithfully with many reference papers as in (e.g., Kumar et al., 2003 and Meyers et al., 2006).

Based on this parametric study, one can conclude that these two model coefficients have a significant influence on the overall yield strength evolution of the polycrystal, particularly their interactions. It seems that their pertinence comes from the fact that they are modeled at two different length scales.

Quantitative study

The comparisons between the recorded predictions and the experimental results for the copper and nickel are displayed respectively in figures 8 and 9. The elastoplastic behaviors of these metals are investigated showing the principal features of grain size effect described by the proposed model. Figure (8) shows the stress-strain behaviors of copper for three different grain sizes of 49, 110 and 20000 nm. These experimental data, extracted from [START_REF] Sanders | Elastic and tensile behavior of nanocrystalline copper and palladium[END_REF] confirm that the decrease in the Young's moduli has been explained by the existence of slight porosity in the samples. Furthermore, it has been shown that no trends with grain size have been observed. As discussed hereinabove, the influence of any type of defects (microcracks, porosity, impurities, etc.) on the mechanical response of materials is neglected for the sake of simplicity.

Moreover, the yield strength as well as the nonlinear work-hardening evolutions are remarkably dependent on the grain size. So, it is sufficient to be convinced to conclude that the lower is the grain size, the greater are the yield strength and the work-hardening. All the copper responses are faithfully described by the proposed model (figure 8).

The experimental stress-strain responses of nickel for two different average size diameters of 220 and 3790 nm are presented in figure (9). The average grain size of 220 nm is naturally considered as a ufg structure, whereas the other one falls in the coarse-grain category. The sensitivity of the material responses to the grain size is obviously observed. In fact, its yield strength is highly affected by the grain size. Moreover, the material work-hardening evolves almost linearly regardless the grain size with a relatively low slope. For the model response, this can be explained by a relatively high value of αo= 4.17x10 -4 . Note that the latter controls the hardening evolution as shown in [START_REF] Abdul-Latif | Elasto-Inelastic Self-Consistent Model for Polycrystals[END_REF]. It is now recognized that the model can produce these responses appropriately as illustrated in the figure.

The predicted well-known Hall-Petch relation of the copper is suitably described in figure (10).

The predicted yield strength evolves according to two linear regions having two different slopes. The critical d value targeting the transition zone from ufg to nc regime, represents the definite singular point of 100 nm. As in the abovementioned discussion, this transition is totally controlled by the two parameters model (Π and Ω) together with the grain size effect with which the effects of grain-boundary are globally described.

To illustrate the impact of grain size on the hardening evolution, the hardening moduli as function of the plastic strain (noted p 11 Ε ) are investigated as presented in figure 11 for copper.

In this figure, the hardening moduli evolution can be partitioned into two non-linear and almost linear phases. In the first non-linear phase, the hardening moduli decrease, whatever the grain size, exponentially for a plastic strain range 04 . 0 0 11 < Ε < p

. Whereas, the second linear phase starts by a plastic strain almost 04 . 0 11 > Ε p

. In general, the rate of change of hardening modulus depends principally on the grain size especially for the non-linear phase, i.e., this rate increases proportionally with the grain size. The average grain size of 20000 nm shows the maximum rate of change of the hardening modulus. However, for the linear phase, slow evolutions are recorded for all the grain sizes. Also, in this phase, the rate of hardening modulus becomes greater with the grain size decreasing.

Conclusions

A new extension of the micromechanical approach already developed in [START_REF] Abdul-Latif | A new concept for producing ultrafine grained metallic structures via an intermediate strain rate: experiments and modeling[END_REF] is proposed for generalizing the prediction of the grains size effect on the enhancement of the mechanical strength of polycrystals. Actually, the difference between this extension and that already developed can be viewed by the ability of the current extension to describe not only the ufg materials with grain size diameter (d) range of (100-1,000 nm) as in the already developed approach, but also the nc materials having a grain sizes range of (limit value-100 nm). It is worth noting that this limit value (lv) may depend on the material varying between about 15 and 30 nm. As a model limitation, the nc metals with grain sizes below lv which behave in the case of copper either as a plateau or as a decrease of the yield strength cannot be described by the model.

Since the responses of the ufg and nc metals appear to be strongly dependent on the microstructure directed by several local mechanisms such as break-up of dislocation pile-ups, grain-boundary sliding, grain-boundary diffusion, grain-boundary dislocation emission and annihilation. Therefore, within the framework of small strain hypothesis, the impact of the grains size on the overall mechanical behavior of such metals is described at two different length scales: (i) microscale (i.e., css) and (ii) mesoscale via the inelasticity-hardening parameter α of the grain/matrix interaction law. With this approach, the grain size effect is globally and implicitly considered describing inelastic behavior of the ufg and nc metals having grain size greater than lv. As a result, the two material coefficients related to grain size effect (Π and Ω)

are tested showing their pertinence on the yield strength and work-hardening evolutions. For a

given Ω value, it is generally concluded that the greater the value of Π, the lower the value of d, the more the attribution of grain-boundary in local deformation, consequently the greater is the overall yield strength. Also, the greater the value of Ω, the lower the value of d, the greater is the overall yield strength, for a certain value of Π. Note also that the competition (or interaction) between Ω and Π with the variation of d at the two length scales (microscale and mesoscale) provides the ability to this model to describe the dependence the ufg and nc metals responses on this relatively wide range of grain sizes especially the nc metals behavior where the effects of grain-boundary are globally described.

After the identification of model coefficients, it is obviously confirmed that the model with its new extension describes quantitatively successfully the effect of the grain size on the strainstress behavior of the sub-micrometer copper and nickel. For the copper, the related Hall-Petch relation is suitably described by a critical d of 100 nm determining the singular point which is confirmed by the relevant literature. 

(
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 1 Identified model parameters of copper and nickel

	E (MPa)	ν	α ο	(MPa)	z	K	Q (MPa)	b	h 6	Π (nm 0.5 ) Ω (MPa.nm 0.5 )
	Copper 114000 0.335	8.65x10 -10	8.3	10.1 45.2	33018	363	1.23	257	3.07x10 6
	Nickel 203000 0.35	4.17x10 -4	40.4	15 100	494	6.04	1.08	6657	2.77x10 4
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