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Abstract. The present work is devoted to the numerical simulation of crack propagation in
engineering materials whose failure results from void initiation, growth and coalescence. The
behavior of the plate material is described via a Gurson type model accounting for the com-
bined effects of strain hardening, thermal softening, viscoplasticity and void growth induced
damage. The eXtended Finite Element Method has been retained to describe the kinematic con-
sequences of the crack propagation across the mesh. The crack is assumed to propagate as soon
as the stored energy around the crack tip reaches a critical value. The related crack length is es-
timated from the crack velocity considering the current time increment. The constitutive model
and the extended finite elements were both implemented in the engineering FE computation
code Abaqus as user subroutines. The numerical simulation of a notched plate under tension
loading has been conducted. While making some simplifications, the present work reproduces
numerically the 2D propagation of a crack resulting from void growth induced damage.
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1 INTRODUCTION

The present work is devoted to the numerical simulation of crack propagation in engineering
materials whose failure results from ductile damage The fracture of ductile materials is known
to result from void initiation, growth and coalescence. During the process of void growth in-
duced damage, the bulk material is subject to a progressive loss of its overall properties and to
the appearance, in addition to the isochoric plastic deformation due to dislocation glide in the
matrix material, of an inelastic dilatancy due to void growth. In order to describe these effects,
the behavior of the material at stake is described via a modified version of the micromechanics
based Gurson model, see Gurson ( [4]), Tvergaard and Needleman ( [5]) and Longère et al ( [6]),
accounting for the combined effects of strain hardening, thermal softening, viscoplasticity and
void growth induced damage.
The numerical treatment of crack propagation in structures is not trivial. The first attempts to
achieve it mainly consisted in meshing very finely the crack front to reproduce as accurately
as possible the stress-displacement fields at the crack tip. This method implies a very large
number of meshes and may be prohibitive when applied to engineering complex structures.
Very recently, methods consisting in enriching the finite element kinematics to account for the
aforementioned singular fields at the crack tip have emerged. One of these methods, namely
the eXtended Finite Element method (X-FEM) [3], has been here retained to describe the kine-
matic consequences of the crack propagation across the mesh. In the present work, the crack
is assumed to propagate as soon as the stored energy around the crack tip reaches a critical
value. The related crack length is estimated from the crack velocity considering the current
time increment. To estimate the ability of the adopted approach, the numerical simulation of
a notched plate under tension loading has been conducted employing the engineering FE com-
putation code Abaqus [13]. While making some simplifications, the present work reproduces
numerically the 2D propagation of a crack resulting from void growth induced damage. The
constitutive model and the extended finite elements were both implemented in the computation
code Abaqus as user subroutines.
The constitutive model of the material considered in the present study is outlined in Sect.2. The
finite element enrichment technique adopted in the present work is described in Sect.3. The
combination of the constitutive model with the finite enrichment method is detailed in Sect.4.
The application of the approach to the numerical simulation of the tension loading of a notched
plate is shown and commented in Sect.5.

2 MATERIAL CONSTITUTIVE MODELLING

2.1 Constitutive equations

The failure of the material considered in the present work is supposed to result from void
initiation, growth and coalescence. To reproduce the process of ductile damage at stake, the
material behavior is described via a Gurson type model, extended by Tvergaard and Needleman.
The GTN damage-plastic potential may be written as :

ΦGTN = (
σeq
σy

)2 + 2q1f cosh(−3

2
q2
pm
σy

)− (1 + q3f
2) = 0 (1)

where σeq represents the equivalent stress, pm the pressure, σy the rate dependent yield stress,
f the volume fraction of voids, and where (q1, q2, q3) are material constants. Motivated by phys-
ical considerations, Longère et al [6] recently introduced in GTN model a mean stress provoking

2
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a shift of the yield locus towards negative stress triaxialities allowing to describe damage growth
under shear dominated loading. The modified damage-plastic potential is accordingly proposed
in the form :

ΦGTN = (
σeq
σy

)2 + 2q1f cosh(−3

2
q2
pm + pr
σy

)− (1 + q3f
2) = 0 (2)

pr = b ln(q1f) (3)

with b a positive constant value. The yield stress σy accounts for the combined effects of
strain hardening, thermal softening and viscoplasticity :

σy(κ, κ̇, T, ...) = σy(κ, T ) + σvp(κ̇, T, ...) (4)

where κ represent the matrix plastic strain, κ̇ the matrix plastic strain rate and T absolute
temperature. In the rate independent yield stress σy(κ, T ), the isotropic strain hardening is
described via a Voce type law and the thermal softening via a power law :

σy = (R0 +R∞[1− exp(−kκ)]β)

(
1−

(
T

Tref

)m)
(5)

where (R0, R∞, k, β) are isotropic hardening related constants and (Tref , m) thermal soften-
ing related constants. The strain rate induced overstress reproduces the potential tension/compression
asymmetry ( [7]) :

σvp = Y [κ̇ exp(
Vapm
kbT

)]
1
n (6)

where (Y ,n) are viscosity related constants and (Va,kB) behaviour asymmetry related con-
stants, with Va = Vhβ

3 where Vh is a constant and β Burgers vector magnitude (β=2.5Å),
and with kB Boltzmann constant (kB=1.3804.10−23J/K). Assuming the normality rule, the
evolution laws are expressed as:

d∼
p = Λ

∂ΦGTN

∂σ∼
= Λ(

∂ΦGTN

∂σeq
n∼ −

1

3

∂ΦGTN

∂pm
δ∼) = ε̇pDn∼ +

1

3
ε̇pMδ∼ (7)

n∼ =
3

2

s∼
σeq

(8)

where the distortional and dilatational parts, namely ε̇pD and ε̇pM , respectively, of the inelas-
tic strain rate d∼

p are given by

ε̇pD = Λ
∂ΦGTN

∂σeq
= 2Λ

σ̃eq
σy

(9)

3
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ε̇pM = −Λ
∂ΦGTN

∂pm
= 3q1q2fΛ

sinh[−3
2
q2(p̃m + p̃r)]

σy
(10)

with σ̃eq = σeq
σy

, p̃m = pm
σy

and p̃r = pr
σy

. The evolution law of the isotropic hardening variable
κ is deduced from the equality of the macroscopic plastic work rate with the microscopic one,
see Gurson ( [4]) :

κ̇ =
σeq ε̇

pD − pmε̇pM

(1− f)σy
(11)

According to the aforementioned considerations, adiabatic heating under dynamic evolution
is evaluated from

ρCṪ = σeq ε̇
pD − pmε̇pM − rκ̇ (12)

The porosity rate ḟ is decomposed into a contribution due to growth of existing defects,
namely ḟg, and a contribution due to the formation of new defects, namely ḟn:

ḟ = ḟg + ḟn (13)

ḟg = (1− f)Trd∼
p = (1− f)ε̇pM (14)

ḟg(0) = f0

ḟn = Bσ̇y (15)
ḟn(0) = 0

B = fsup
p

σc
Φp−1
Io exp(−Φp

Io) (16)

where p is a constant (p=2) and where fsup represents the upper bound of the nucleated
secondary void volume fraction. ΦIo is the hole nucleation criterion, see Longère & al. ( [6]).

2.2 Numerical procedure

The material behavior outlined in the previous subsection is implemented as user material
(UMAT) in the engineering finite element computation code Abaqus. The numerical integration
is achieved using the classical return mapping procedure combined with the Newton-Raphson
solving algorithm, see Aravas ( [10]) for further details. Time increments are small and the
tangent operator is elastic. Dividing Eq.(9) by Eq.(10), or inversely, allows for eliminating the
viscoplastic multiplier and defining from the incremental viewpoint :

Ξ∆ = ∆εpD
∂ΦGTN

∂pm
+ ∆εpM

∂ΦGTN

∂σeq
= 0 (17)

The numerical integration consists thus in solving the following system of equations

4
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ΦGTN(σeq, pm;Hα) = 0 (18)

Ξ∆ = 0 (19)

pm = pem +K∆εpM (20)

σeq = σeeq − 3µ∆εpD (21)

∆H = h(∆εpD,∆εpM , σeq, pm, H) (22)

where σeeq and pem represent the trial, equivalent stress and pressure respectively, and ∆H the
system of complementary laws Eqs.(9)-(10) and Eqs.(35)-(16) written in the incremental form.
The constants K and µ represent the bulk and shear moduli respectively. Adiabatic conditions
are assumed for strain rates greater than 1s−1.

3 FE ENRICHMENT

3.1 Principle

The extended finite element method (X-FEM) [3] consists in embedding strong discontinu-
ities, induced by e.g. cracks, inside finite elements while enriching the regular displacement
of the affected finite elements with singular functions attempting to reproduce the kinematic
consequences of the discontinuities at stake. The current displacement field u(x, t) is generally
expressed as :

u(x, t) =
∑
i∈I

ui(t)Ni(x) +
∑
j∈J

bj(t)Nj(x)H(x) +
∑
k∈K

Nk(x)

( 4∑
l=1

clk(t)Fl(x)

)
(23)

where ui(t) represents the regular nodal displacement of node i, bj(t) the discontinuous
nodal displacement magnitude of node j belonging to a crack-crossed finite element, and clk(t)
the singular nodal displacement magnitude of node k belonging to a crack tip-containing finite
element. Ni(x) represent the shape functions, Fl(x) the four singular functions at the crack tip,
and H(x) the generalized Heaviside funtion with H(x) = sign(dΓ(x)) where dΓ(x) denotes a
signed distance function from the crack (H(x) takes the value +1 for the nodes located above
the crack and -1 for the nodes located below the crack). The total set of nodes is denoted as I ,
the set of nodes belonging to crack-crossed finite elements as J , and the set of nodes belonging
to crack tip-containing finite elements asK, see 1. In the case of a two-dimensional (2D) elastic
problem, the singular functions Fl(x) are expressed in a cylindrical frame (r, θ) as:

Fl=1,2,3,4(r, θ) = [
√
rsin

θ

2
,
√
rcos

θ

2
,
√
rsinθsin

θ

2
,
√
rsinθcos

θ

2
] (24)

5
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Figure 1: Principle of designation of enriched nodes

3.2 Adopted approach

Regarding the singular displacement field at the crack tip

The X-FE method is particularly efficient when applied to 2D problems involving elastic-brittle
materials for which the singular functions Fl(x) can be determined analytically, see Eq.(24).
Dealing with elastic-(visco)plastic materials makes the resolution much more difficult because
the aforementioned singular functions are generally not a priori known. In certain cases, the
functions may be approximated by analytical studies considering simplified material behaviors
or by numerical simulations. The fact that the material of the present study is subject to strain
hardening, thermal softening, viscoplasticity and ductile damage, see Sect.2, increases signifi-
cantly the complexity of the singular functions in question. An alternative way consists in using
the singular functions defined in the elastic context so as to represent the presence of crack in the
element containing the crack tip. Using only the Heaviside function without other enrichment
functions, the crack grows element by element, i.e. the crack tip is always located on an edge of
an element, so the position of the crack tip is approximate and the field the near crack tip can be
perturbed. Fig.2 represents the evolution of the equivalent stress which is averaged over a patch
near the crack tip, see [8], for an elastic-plastic notched plate under tensile loading. According
to Fig.2, using the sole Heaviside function allows to describe the field near the crack tip with
lightly finest mesh compared with X-FEM using singular functions. Moreover neglecting the
singular functions allows to reduce drastically the required number of degrees of freedom (dof),
48 dof with the singular functions vs. 8 dof with the sole Heaviside function.

In absence of knowledge of the singular functions for the complex material behavior consid-
ered in the present work, and according to the aforementioned remarks, we are here using the
reduced current displacement field

u(x, t) =
∑
i∈I

ui(t)Ni(x) +
∑
j∈J

bj(t)Nj(x)H(x) (25)

6
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Figure 2: History of the average equivalent stress with and without singular functions. Case of a notched plate
submitted to Mode I loading

Regarding the numerical integration

There exist several techniques devoted to capture the crack propagation. The original method
consists in subdividing the finite element in which the crack is currently propagating into adap-
tive sub-triangles, see Fig.3. This however implies re-projecting the state variables values de-
fined at the integration points of the original finite element onto the integration points of the
sub-finite elements. The procedure which is easy when dealing with linear evolutions (as it is
the case for elastic behavior) is far from being trivial when dealing with non-linear evolutions
(it is the case for the present damage-plastic behavior). For this reason, the technique consisting
in increasing significantly the number of integration points [1] of the original finite element has
been preferred in the present case. We are here using 64 integration points.
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a) First increment b) Second increment

Figure 3: Gauss Points evolution in finite elements during a crack growth

Concerning the nodes belonging to cut and uncut finite elements
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To ensure that the enrichment vanishes in all elements not cut by the crack, see [2], the cur-
rent displacement field u(x, t) takes thus the form

u(x, t) =
∑
i∈I

ui(t)Ni(x) +
∑
j∈J

bj(t)Nj(x)(H(x)−H(j)) (26)

where H(j) corresponds to the global discontinuous step function at node j.

4 Coupling X-FEM and ductile damage

The physical process of crack formation being very complex, in particular the transition
between the stages of void coalescence and crack germination, we are here tentatively assuming
that the transition in question is instantaneous. To avoid too strong mesh size dependence, we
are adopting a damage-crack transition criterion based on the stored energy, averaging over
a patch at the crack tip. The patch method has notably been used by Haboussa & al.( [8])
involving a mean stress based criterion.

4.1 Crack propagation criterion

The instantaneous material state is supposed to be well described via the Helmholtz free
energy ω(εe∼ , κ, T ) where εe∼ represents the elastic strain tensor. The Helmholtz free energy is
decomposed into a reversible and a stored part, namely ωr(εe∼ ) and ωs(κ, T ) respectively:

ω(εe∼ , κ, T ) = ωr(ε
e

∼ ) + ωs(κ, T ) (27)

According to the constitutive model outlined in Sect.2, the two contributions to the Helmholtz
free energy are expressed as

ωr(ε
e

∼ ) =
1

2
εe∼ : C∼∼

: εe∼ (28)

ωs(κ, T ) = h(κ)g(T )

where h(κ) represents the stored energy of cold work and g(T ) the thermal softening func-
tion. The thermodynamic forces are written as

σ∼ =
∂ω

∂εe∼
=

dωr
dεe∼

= C∼∼
: εe∼ (29)

r =
∂ω

∂κ
=
∂ωs
∂κ

= h′(κ)g(T )

where r represents the matrix isotropic hardening force. According to Eq.(5), the expressions
of the strain hardening and thermal softening functions are given by

σy = R0g(T ) + r(κ, T ) (30)

h′(κ) = R∞[1− exp(−kκ)]β (31)

8
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g(T ) = 1−
(

T

Tref

)m
(32)

From the incremental viewpoint, the value of the stored energy at current step (n+1) is de-
duced from its value at previous step (n) via

ωn+1
s = ωns + ∆ωs (33)

∆ωs =
∂ωs
∂κ

∆κ+
∂ωs
∂T

∆T = h′(κ)g(T )∆κ+ h(κ)g′(T )∆T

This quantity is then averaged over a patch containing a finite number of elements namely, p
(according to Eq.(35)), located at the crack tip and in the crack growth direction according to

Wpatch =
1

A

p∑
i=1

ωisA
i (34)

A =

p∑
i=1

Ai

where A represents the patch area. Keeping constant the total patch area for configurations
involving different mesh sizes allows for reducing the mesh size dependence of the numerical
results. The principle is illustrated in Fig.4. The crack propagates if

F (Wpatch) = 1− Wc

Wpatch

> 0 (35)

Angle of propagation θc

Patch for crack growth criteria

Figure 4: Shape of the patch use for evaluation of the crack growth criteria

4.2 Crack propagation speed

The crack growth rate is estimated using the expression developed by [9] and adapted to the
present approach :

ȧ = CrF (Wpatch) = Cr(1−
Wc

Wpatch

) (36)
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where ȧ represents the crack growth rate and Cr the Rayleigh wave celerity in the material.
The value of the critical value Wc depends on the material and on the patch radius. From the
numerical viewpoint, the crack advance increment is deduced from

∆a = Cr(1−
Wc

Wpatch

)∆t (37)

4.3 Crack propagation orientation

Identifying the crack propagation orientation constitutes another challenge in the numerical
treatment of crack propagation, in particular when dealing with elastic-(visco)plastic materials.
Fracture mechanics based criteria, see e.g. Haboussa et al.( [8]), as well as bifurcation analyses,
see e.g. Hill [11] or Rice [12], are used depending on the application. In a first approach, we
used the former works with some modifications. The presence of damage near the crack tip
involves a stress drop making the use of the stress field unsuitable from the physics point of
view. Therefore an approach based on plastic strain field near the crack tip seems to be more
efficient. In a first step, we define a local plastic strain tensor averaged in a patch which is
perpendicular to the crack. The crack propagation direction is tentatively deduced from

θc = 2arctan(
1

4
[
εp22

εp12

− sign(εp12)

√
8 +

εp22

εp12

2

) (38)

0.1m

0.1m

crack (0.02m)

U(t)

Figure 5: Numerical test of a notched plate under tension loading
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5 APPLICATION TO MODE I CRACK PROPAGATION IN A NOTCHED PLATE
MADE OF A DUCTILE MATERIAL

To evaluate the prediction ability of our approach, we are considering the crack propagation
in a 2D (plane strain) notched plate made of a ductile material, namely the mild steel in Longère
et al [6] study, submitted to Mode I loading, see Fig.5. Finite elements are 4 node-quadrilateral
with 64 integration points, enriched according to the formulation outlined in Sect.3. The ma-
terial behavior is described via a user material subroutine integrating the rate equations given
in Sect.2. For reason of confidentiality, some constant values are not given. The nodes of the
plate upper side are submitted to a constant velocity (1m/s) whereas those of the lower side are
constrained.
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Figure 6: Comparison of the evolution of Wpatch during the test for an angle of 0◦ for a patch with a radius of
6.25mm

Figure 7: Porosity field for the mesh 1 at 0.001s
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5.1 Tension without crack propagation

In a first step, we study the notched plate without crack propagation. The evolution of the
energy Wpatch storaged in a patch (see Eq.35) with a radius of 6.25mm and a angle of 0◦ for
three different mesh size (the mesh 3 is the smallest mesh size and the mesh 1 the most coarse) is
drawn in Fig.6. According to Fig.6 one can observe a convergence of the curves which denotes a
weak influence of the mesh size on the crack propagation criterion proposed in Sect.4. In Fig.7,
the porosity map arround the crack tip at 0.001s is presented. According to Fig.7, the porosity is
concentrated near the crack tip, provoking the large mesh dependency observed when a failure
porosity is used to represent the crack propagation [14].

The method presented in Sect.4 which allows to propagate a crack, needs two parameters
(Wc the crack growth criterion and the radius of the patch). They have to be defined from
experimental data. In a first approach, to evaluate the efficiency of the model we use arbitrary
values. The crack growth quantity Wc is chosen to be equal to 4.106 J.m−3 and the radius value
of the patch used to definine the crack propagation direction is 6.25mm.

5.2 Tension with crack propagation

The history of the upper side reaction force for configurations with and without crack propa-
gation are drawn in Fig.8. According to Fig.8, one can clearly observe that the crack propagation
provokes a drop in the plate response, as expected.
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Figure 8: a) Evolution of reaction force with and without propagation and b) Evolution of Wpatch during crack
growth

The evolution of the averaged stored energyWpatch is presented in Fig.8. According to Fig.8,
Wpatch increases with the increasing displacement (or time), reaches Wc, rises above Wc, then
drops suddenly to a value below Wc, then increases, reaches Wc and repeats the aforemen-
tionned scenario. The sequential evolution of Wpatch may be explained by the need for the
crack to cut completely the element. Refining the mesh size would reduce the magnitude of the
fluctuations of Wpatch around Wc and smooth the evolution.

The map porosity in the plate at 4ms is drawn in Fig.9. According to Fig.9, the porosity is
concentrated along the crack and as expected the crack growth follows an angle of 0 approxi-
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mately. One can observe numerical artefacts consisting in a concentration of porosity in the two
corners of the plate which are due to boundary conditions.

0.001 0.0482 0.0954

Porosity

Figure 9: Porosity field at time 0.004s

6 CONCLUDING REMARKS

• This work is devoted to the numerical simulation of crack propagation in engineering
materials whose failure results from void initiation, growth and coalescence.

• Our numerical approach coupled a Gurson material ( [4], [5]) behavior type with extended
finite element method ( [3]) to reproduce the crack propagation in a 2D notched structure
submitted to Mode I loading.

• The crack growth criterion is based on the energy stored in a patch located near the crack
tip. This criterion based on a patch allows to attenuate the mesh size dependence observed
when dealing with softening materials. In a first approach the crack propagation direction
is deduced from the plastic strain field near the crack tip. The crack length is defined
using the definition introduced in reference ( [9]) in adequation with our approach.

• Experimental tests in modes I and II would be very useful to define more accurately the
quantities used in our approach.
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